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Casson Invariant

In 1985, Casson introduced an invariant λ for oriented integer
homology 3-spheres.

Y closed smooth 3–manifold, H∗(Y ;Z) ∼= H∗(S3;Z)

The Casson invariant is defined by ”counting” irreducible SU(2)
representations of π1(Y ) up to conjugation.

Here, an SU(2) representation is called irreducible, if the commutator
of its image is equal to the center of SU(2) (namely {±1}).
Otherwise, it is called reducible.

Many topological applications, e.g. existence of non-triangulable
4–manifolds.
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The construction of Casson invariant

Take a Heegaard splitting of Y = H1 ∪Σ H2.

Σ is a Riemann surface, H1 and H2 are 3–dimensional handlebodies.

The SU(2) character variety (i.e. the space of SU(2) representations
up to conjugations) of π1(Hi ) can be viewed as subsets of of the
character variety of π1(Σ).

The character variety of π1(Y ) is equal to the intersection of the
character varieties of π1(H1) and π1(H2) in the character variety of
π1(Σ).

Shaoyun Bai SU(n) Casson and symplectic geometry March 26, 2021 5 / 23



The construction of Casson invariant

Take a Heegaard splitting of Y = H1 ∪Σ H2.

Σ is a Riemann surface, H1 and H2 are 3–dimensional handlebodies.

The SU(2) character variety (i.e. the space of SU(2) representations
up to conjugations) of π1(Hi ) can be viewed as subsets of of the
character variety of π1(Σ).

The character variety of π1(Y ) is equal to the intersection of the
character varieties of π1(H1) and π1(H2) in the character variety of
π1(Σ).

Shaoyun Bai SU(n) Casson and symplectic geometry March 26, 2021 5 / 23



The construction of Casson invariant

Take a Heegaard splitting of Y = H1 ∪Σ H2.

Σ is a Riemann surface, H1 and H2 are 3–dimensional handlebodies.

The SU(2) character variety (i.e. the space of SU(2) representations
up to conjugations) of π1(Hi ) can be viewed as subsets of of the
character variety of π1(Σ).

The character variety of π1(Y ) is equal to the intersection of the
character varieties of π1(H1) and π1(H2) in the character variety of
π1(Σ).

Shaoyun Bai SU(n) Casson and symplectic geometry March 26, 2021 5 / 23



The construction of Casson invariant

Take a Heegaard splitting of Y = H1 ∪Σ H2.

Σ is a Riemann surface, H1 and H2 are 3–dimensional handlebodies.

The SU(2) character variety (i.e. the space of SU(2) representations
up to conjugations) of π1(Hi ) can be viewed as subsets of of the
character variety of π1(Σ).

The character variety of π1(Y ) is equal to the intersection of the
character varieties of π1(H1) and π1(H2) in the character variety of
π1(Σ).

Shaoyun Bai SU(n) Casson and symplectic geometry March 26, 2021 5 / 23



The construction of Casson invariant

reducibles

It turns out that the intersection number is always even. The Casson
invariant λ(Y ) is defined to be 1/2 times the intersection number.
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SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to SU(n)?

Atiyah 1988, ”New Invariants of 3– and 4– Dimensional Manifolds”:
”In principle SU(2) here could be replaced by SU(n), but then more
care would need to be taken with reducible representations.”

Reducible representations are no longer isolated for n ≥ 3;

The character varieties have singular points, hard to make
perturbations;

Even if transversality is achieved, the naive definition of intersection
number depends on the perturbation.
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SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to SU(n)?

Boyer-Nicas (1990), Walker (1990),

Cappell-Lee-Miller (1990),

Curtis (1994) [SO(3),U(2),Spin(4),SO(4)].

3-dimensional gauge-theoretic construction: Taubes (1990) for SU(2),
Boden-Herald (1998) for SU(3).

Moreover, Taubes shows that the gauge-theoretic definition equals
Casson’s original intersection-theoretic definition.
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Main result

Construction (B-Zhang, 2020)

Generalization of the definition of the Casson invariant to SU(n) using
gauge theory.

Theorem (B, 2021)

The SU(n) Casson invariant is equal to a version of equivariant
intersection number of character varieties.

The above theorem extends Taubes’ result to all SU(n): equivariant
decategorified Atiyah-Floer conjecture.
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Equivariant Lagrangians and transversality

Y = H1 ∪Σ H2, G = SU(n), g = su(n).

Jeffrey’s extended moduli space: Mg(Σ), Hamiltonian G–symplectic
manifold.

The moment map reduction µ−1(0)/G is naturally isomorphic to the
G–character variety of Σ.

Hi defines G–equivariant Lagrangians Li in Mg(Σ).

G–orbits of L1 ∩ L2 have 1− 1 correspondence with conjugacy classes
of representations from π1(Y ) to G .

We will study equivariant geometry instead of orbifolds.
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Equivariant Lagrangians and transversality

Definition

We say that L1 and L2 intersect non-degenerately, if L1 and L2 have clean
intersection along Orb(p) for each p ∈ L1 ∩ L2.

Proposition

L1 and L2 intersect non-degenerately after a generic G–equivariant
Hamiltonian perturbation of L1.

The proof is inspired by Wendl’s recent work on the super-rigidity
conjecture.

One can also analyze wall-crossings of the intersection when
deforming the Hamiltonian perturbation in 1–parameter family.

For the symplectic manifold Mg(Σ), the Hamiltonian perturbations
could be related to holonomy perturbations on Y .

We have a correspondence: perturbed intersections of L1 and L2 ⇔
perturbed flat connections on Y .
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Maslov index and spectral flow

Let’s assume L1 and L2 intersect non-degenerately in Mg(Σ).

For each G–orbit Orb(p) ∈ L1 ∩ L2, after certain choices, one can
define a version of equivariant Maslov index µ(p).

Thinking Orb(p) as a flat connection on Y , there is a notion of
equivariant spectral flow Sf (p).

Theorem

We have the equality µ(p) = Sf (p).

The proof combines manifold-splitting techniques for computing
spectral flows, adiabatic limit type arguments and infinitesimal version
of the symplectic slice theorem.

Amusingly again, many ingredients date back to the 1990s.
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Maslov index and spectral flow

The equivariant intersection number is defined using a weighted sum
of Maslov indices.

The above identification theorem between spectral flows and Maslov
indices identifies the equivariant intersection number with our earlier
gauge-theoretic definition.

To show it is a topological invariant of Y , it suffices to show that the
gauge-theoretic definition is an invariant.
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Bifurcations

The weights must be chosen such that the weighted sum is
independent of perturbations.

This requires a detailed analysis of bifurcations when varying the
perturbation data.

This is done in the earlier work with Zhang.
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Bifurcations
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SU(3)–Casson invariant

λSU(3)(Y ) =
∑

[p]∈(ΦH(L1)∩L2)irr

(−1)µ(D(p))

−
∑

[p]∈(ΦH(L1)∩L2)red

(−1)µt(D(p))(µn(D(p))− ω(D(p̂))

2π2
+ 1)

This shows that Boden-Herald’s SU(3) Casson invariant is the natural
generalization of Walker’s invariant for rational homology spheres.
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Further questions

Surgery formula.

Conjecture

Suppose K ⊂ Y is a knot and let Y1/k be the 3–manifold obtained from Y
by doing 1/k–Dehn surgery along K . Then λSU(3)(Y1/k) = O(k2) as

k →∞ and limk→∞
λSU(3)(Y1/k )

k2 recovers the SU(3) version of Casson-Lin
type invariant.

An extension of the weighted counting discussed above in the setting
of J–holomorphic curves should be related to a symplectic definition
of Gopakumar-Vafa invariants.
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Thanks!
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