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» Let (X,w) be a closed symplectic manifold of dimension 2n.
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> w € Q3(X), dw =0, for Vx € X, the restriction

wx @ TxeX ® T, X — R is a skew-symmetric non-degenerate
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» Let (X,w) be a closed symplectic manifold of dimension 2n.
> w € Q3(X), dw =0, for Vx € X, the restriction
wx @ TxeX ® T, X — R is a skew-symmetric non-degenerate
bilinear form.

» J: TX — TX an w-compatible almost complex structure:
P =—d, w(-,") =w(J, J).
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» Let (X,w) be a closed symplectic manifold of dimension 2n.

> we Q%(X), dw =0, for Vx € X, the restriction
wx @ TxX ® TyX — R is a skew-symmetric non-degenerate
bilinear form.

» J: TX — TX an w-compatible almost complex structure:
P =—d, w(-,") =w(J, J).

» Given a (nodal) Riemann surface (¥,j), amap u: X — X is
J-holomorphic if

- 1
duoj=Jodu, equivalently 0, u = E(du +Joduoj)=0,

e.g. algebraic curves in smooth projective varieties.
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» Given A € Hax(X;Z), consider the moduli space

Mg k(X,J,A) == {u: = X|(Z,)) € Mgk, 0yu,u stable}.
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» Given A € Hax(X;Z), consider the moduli space

Mg k(X,J,A) == {u: = X|(Z,)) € Mgk, 0yu,u stable}.

> stability < finite automorphism group.
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» Given A € Hax(X;Z), consider the moduli space

Mg k(X,J,A) == {u: = X|(Z,)) € Mgk, 0yu,u stable}.

> stability < finite automorphism group.

> Mg «(X,J,A) is a compact Hausdorff space with expected
dimension

vdimg = 2(n — 3)(1 — g) + 2k + 2c1(A).
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» Given A € Hy(X;Z), consider the moduli space

Mg k(X,J,A) == {u: T = X|(Z,)) € Mgk, Oju,u stable}.

> stability < finite automorphism group.

> ﬂgﬂk(X, J, A) is a compact Hausdorff space with expected
dimension

vdimg = 2(n — 3)(1 — g) + 2k + 2¢1(A).

> |t is a singular space in general: non-triviality of autmorphism
group = “orbifold” singularity;
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» Given A € Hy(X;Z), consider the moduli space

Mg k(X,J,A) == {u: T = X|(Z,)) € Mgk, Oju,u stable}.

> stability < finite automorphism group.

> ﬂgﬂk(X, J, A) is a compact Hausdorff space with expected
dimension

vdimg = 2(n — 3)(1 — g) + 2k + 2¢1(A).

> |t is a singular space in general: non-triviality of autmorphism
group = “orbifold” singularity; failure of transversality of 0,
= non-smoothness.
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Theorem (Fukaya—Ono, Li-Tian, Ruan, Siebert, Pardon...)

The space /V&k(X ) J,.A) carries a Q-valued virtual fundamental
cycle [Mg (X, J, A)]V" of expected dimension.
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Theorem (Fukaya—Ono, Li-Tian, Ruan, Siebert, Pardon...)

The space ./V&k(X ) J,.A) carries a Q-valued virtual fundamental
cycle [Mg (X, J, A)]V" of expected dimension.

> The cobordism class of [M, «(X, J, A)]“" is independent of J.
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Theorem (Fukaya—Ono, Li-Tian, Ruan, Siebert, Pardon...)
The space ./Vg*(X ) J,.A) carries a Q-valued virtual fundamental
cycle [Mg (X, J, A)]V" of expected dimension.

> The cobordism class of [M, «(X, J, A)]“" is independent of J.

Mg (X, J, A)
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Gromov-Witten invariants in symplectic geometry

Theorem (Fukaya—Ono, Li-Tian, Ruan, Siebert, Pardon...)
The space /Vg*(X ) J,.A) carries a Q-valued virtual fundamental
cycle [Mg (X, J, A)]V" of expected dimension.

> The cobordism class of [M, «(X, J, A)]“" is independent of J.

Mg (X, J, A)

> / \

)

> By pairing with classes in H*(M x; Q) and H*(X; Q) using
st and ev, we obtain the so-called Gromov—Witten invariants.
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Why are the Gromov-W/itten invariants Q-valued?

» Moral reason: given a finite group I, the orbispace */I" should
be counted with weight 1/|I|.
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Question
Why are the Gromov-W/itten invariants Q-valued?

» Moral reason: given a finite group I, the orbispace */I" should
be counted with weight 1/|I|.

E
> Local model of M (X, J,A) : s71(0) for ”g ’55 , where D

D
is an orbifold, E is an orbi-bundle, s is an “equivariant”
section.
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Question
Why are the Gromov—Witten invariants Q-valued?

» Moral reason: given a finite group I, the orbispace */I" should
be counted with weight 1/|I|.

E
> Local model of M (X, J,A) : s71(0) for “C '}5 , where D
D
is an orbifold, E is an orbi-bundle, s is an “equivariant”

section.

» Fukaya—Ono, Li-Tian: use multi-valued perturbation of s to
achieve transverslity.
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Gromov—Witten invariants in symplectic geometry

Question
Why are the Gromov—Witten invariants Q-valued?

» Moral reason: given a finite group I, the orbispace */I" should
be counted with weight 1/|I|.

E
> Local model of M (X, J,A) : s71(0) for “C '}5 , where D
D
is an orbifold, E is an orbi-bundle, s is an “equivariant”

section.

» Fukaya—Ono, Li-Tian: use multi-valued perturbation of s to
achieve transverslity.

» Pardon: Poincaré duality for orbifolds holds only over Q.
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Theorem (B—Xu, 2022)

Suppose (X,w) is a closed symplectic manifold and A € Hy(X; Z).
Fix a non-negative integer k. Then there is a well-defined integral
homology class

[Mox(X, J, A)¥r, € Ho(Mox x X5 Z)

defined by virtually “counting” J-holomorphic maps in
Mo« (X, J,A) with trivial automorphism group.
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Suppose (X,w) is a closed symplectic manifold and A € Hy(X; Z).
Fix a non-negative integer k. Then there is a well-defined integral
homology class

[Mox(X, J, A)¥r, € Ho(Mox x X5 Z)

defined by virtually “counting” J-holomorphic maps in
Mo «(X, J, A) with trivial automorphism group.

» Not true on the nose: we need to perturb the 9 -equation
abstractly.
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Theorem (B—Xu, 2022)

Suppose (X,w) is a closed symplectic manifold and A € Hy(X; Z).
Fix a non-negative integer k. Then there is a well-defined integral
homology class

[Mox(X, J, A)¥r, € Ho(Mox x X5 Z)

defined by virtually “counting” J-holomorphic maps in
Mo,k(x, J, A) with trivial automorphism group.
» Not true on the nose: we need to perturb the 9 -equation
abstractly.
» This realizes a proposal of Fukaya—Ono back in the 1990s.



Z-valued Gromov-Witten
LBackground and results

L Z valued Gromov-Witten invariants

Z~valued Gromov—Witten invariants

Theorem (B—Xu, 2022)

Suppose (X,w) is a closed symplectic manifold and A € Hy(X; Z).
Fix a non-negative integer k. Then there is a well-defined integral
homology class

[Mox(X, J, A)¥r, € Ho(Mox x X5 Z)

defined by virtually “counting” J-holomorphic maps in
Mo,k(x, J, A) with trivial automorphism group.
» Not true on the nose: we need to perturb the 9 -equation
abstractly.
» This realizes a proposal of Fukaya—Ono back in the 1990s.
» Coincides with the ordinary fundamental class in the
semi-positive case, which is known to be integral by
Ruan—Tian.
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» Based on work in progress of Hirschi-Swaminathan, we can

define higher genus Z-valued Gromov—Witten type invariants
along the same line as well.
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» Based on work in progress of Hirschi-Swaminathan, we can
define higher genus Z-valued Gromov—Witten type invariants
along the same line as well.

» These invariants are expected to satisfy certain variants of the
Kontsevich—Manin axioms.
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Z~valued Gromov—Witten invariants

» Based on work in progress of Hirschi-Swaminathan, we can
define higher genus Z-valued Gromov—Witten type invariants
along the same line as well.

» These invariants are expected to satisfy certain variants of the
Kontsevich—Manin axioms.

» The same technique could be applied to define Hamiltonian
Floer theory with Z coefficients, or Lagrangian Floer theory
with Z/2 coefficients, modulo smoothness issues of
(thickened) moduli spaces.
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Z~valued Gromov—Witten invariants

» Based on work in progress of Hirschi-Swaminathan, we can
define higher genus Z-valued Gromov—Witten type invariants
along the same line as well.

» These invariants are expected to satisfy certain variants of the
Kontsevich—Manin axioms.

» The same technique could be applied to define Hamiltonian
Floer theory with Z coefficients, or Lagrangian Floer theory
with Z/2 coefficients, modulo smoothness issues of
(thickened) moduli spaces.

» In principle, such definitions would allow us to prove the
Arnol’d conjecture over Z, improving the best result so far by
Abouzaid—Blumberg (over F)).
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Question
How to construct refinements of the Q-valued virtual fundamental
cycle?

» Slogan: one should do it in two steps.
mg,k()<7 J7 A)
» Step 1: Show that lstxev defines an element in
ﬂg,k X Xk

Cder(MgkXX )
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A general scheme of refining Gromov—Witten invariants

Question
How to construct refinements of the Q-valued virtual fundamental
cycle?

» Slogan: one should do it in two steps.
Mg (X, 4, A)
» Step 1: Show that lstxev defines an element in

ﬂg,k X Xk

Q5% (M. x X¥) = complex derived orbifold bordism.
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A general scheme of refining Gromov—Witten invariants

Question
How to construct refinements of the Q-valued virtual fundamental
cycle?

» Slogan: one should do it in two steps.

Mg (X, J, A)
» Step 1: Show that lstxev defines an element in

ﬂg,k X Xk

ﬁf’der(ﬂg* x X¥) = complex derived orbifold bordism.

» Step 2: Construct natural transformations between
. . =Cd
generalized homology theories €, < = MU, KU, Z,Q...
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Moduli spaces as derived orbifolds

Definition
A derived orbifold chart is a triple (D, E, s) where D is a smooth
orbifold, E — D is a smooth orbibundle and s : D — E is a smooth

section. (D, E, s) is said to be compact if s7(0) is compact.
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Moduli spaces as derived orbifolds

Definition
A derived orbifold chart is a triple (D, E, s) where D is a smooth
orbifold, E — D is a smooth orbibundle and s : D — E is a smooth

section. (D, E, s) is said to be compact if s7(0) is compact.

» The Kuranishi models of ﬂg,k(X,J, A) present it locally as
the zero locus of derived orbifold charts.
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Moduli spaces as derived orbifolds

Definition

A derived orbifold chart is a triple (D, E,s) where D is a smooth
orbifold, E — D is a smooth orbibundle and s : D — E is a smooth
section. (D, E, s) is said to be compact if s7(0) is compact.

» The Kuranishi models of ﬂgyk(X, J, A) present it locally as
the zero locus of derived orbifold charts.

> It is possible to patch the local charts together to get a global
derived orbifold chart for M, (X, J, A) using some recent
results of Pardon, but there is a shortcut to take.
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Moduli spaces as derived orbifolds
Proposition (Abouzaid—McLean-Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived
orbifold chart (D, E,s) along with a map

st x évv:D—)ﬂokaXk

such that the zero locus s=1(0) is isomorphic to Mo x(X, J, A)
and the restriction of st x év along s~1(0) coincides with the
product of the stabilization map and the evaluation map.
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Moduli spaces as derived orbifolds
Proposition (Abouzaid—McLean-Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived
orbifold chart (D, E,s) along with a map

st x évv:D—>ﬂo7k><Xk

such that the zero locus s=1(0) is isomorphic to Mo x(X, J, A)
and the restriction of st x év along s~1(0) coincides with the
product of the stabilization map and the evaluation map.

» Actually TD and E are complex vector bundles.
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Moduli spaces as derived orbifolds
Proposition (Abouzaid—McLean-Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived
orbifold chart (D, E,s) along with a map

st x évv:D—>ﬂo7k><Xk

such that the zero locus s=1(0) is isomorphic to Mo x(X, J, A)
and the restriction of st x év along s~1(0) coincides with the
product of the stabilization map and the evaluation map.

» Actually TD and E are complex vector bundles.

» The work in progress by Hirschi-Swaminathan generalizes this
result to the higher genus moduli spaces.
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Moduli spaces as derived orbifolds
Proposition (Abouzaid—McLean-Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived
orbifold chart (D, E,s) along with a map

st x gv:D—)ﬂoijXk

such that the zero locus s=1(0) is isomorphic to Mo x(X, J, A)
and the restriction of st x év along s~1(0) coincides with the
product of the stabilization map and the evaluation map.

» Actually TD and E are complex vector bundles.

» The work in progress by Hirschi-Swaminathan generalizes this
result to the higher genus moduli spaces.

» The quadruple (D, E, s, st x ev) is independent of various
. . =C,der ,—
choices as an element in Q" (Mo, x X*).
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Stable complex derived orbifold bordism

» Suppose M is a topological space. We consider quadruples

(D, E,s, f) such that: (D, E,s) is a compact derived orbifold
chart, f : D — M is a continuous map.
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Stable complex derived orbifold bordism

» Suppose M is a topological space. We consider quadruples
(D, E,s, f) such that: (D, E,s) is a compact derived orbifold
chart, f : D — M is a continuous map.

» Introduce the following relations:
1. (Restriction) (D, E,s,f) ~ (D', E',s', f') if D' C D is an

open subset with s71(0) C D’ and E’ = E|p/, s’ = s|p, and
f'=flp.
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Stable complex derived orbifold bordism

» Suppose M is a topological space. We consider quadruples
(D, E,s, f) such that: (D, E,s) is a compact derived orbifold
chart, f : D — M is a continuous map.

» Introduce the following relations:

1. (Restriction) (D, E,s,f) ~ (D', E',s', f') if D' C D is an
open subset with s71(0) € D’ and E' = E|p/, s’ = s|p/, and
f = flor.

2. (Stabilization) (D, E,s,f) ~ (D', E',s', f'") if D' is the total
space of a vector bundle 7 : F — D, E' = nfE & wgF,
s’ = mfs @ 7F where 77 : F — w5 F is the tautological
section, and f’ = f o f.
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Stable complex derived orbifold bordism

» Suppose M is a topological space. We consider quadruples
(D, E,s, f) such that: (D, E,s) is a compact derived orbifold
chart, f : D — M is a continuous map.

» Introduce the following relations:

1. (Restriction) (D, E,s,f) ~ (D', E',s', f') if D' C D is an
open subset with s71(0) € D’ and E' = E|p/, s’ = s|p/, and
f = flor.

2. (Stabilization) (D, E,s,f) ~ (D', E',s', f'") if D' is the total
space of a vector bundle 7 : F — D, E' = nfE & wgF,
s’ = mfs @ 7F where 77 : F — w5 F is the tautological
section, and f’ = f o f.

3. (Cobordism) (D, E,s,f) ~ (D', E',s', f') if there is a bordism
between them.
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Stable complex derived orbifold bordism
Definition

A stable complex structure on (D, E,s) is a lifting of TD — E from
KO to the complex K-theory.
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Stable complex derived orbifold bordism

Definition
A stable complex structure on (D, E,s) is a lifting of TD — E from
KO to the complex K-theory.

Definition

The stable complex derived orbifold bordism of M, denoted by
ﬁ(*c’der(Y), is defined to be the equivalence classes of (D, E, s, )
endowed with a stable complex structure modulo the relations

introduced before.
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Stable complex derived orbifold bordism

Definition
A stable complex structure on (D, E,s) is a lifting of TD — E from
KO to the complex K-theory.

Definition

The stable complex derived orbifold bordism of M, denoted by
ﬁf’der(Y), is defined to be the equivalence classes of (D, E, s, )
endowed with a stable complex structure modulo the relations

introduced before.

» This definition was first considered by Joyce and is developed
further by Pardon.
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Stable complex derived orbifold bordism

Definition
A stable complex structure on (D, E,s) is a lifting of TD — E from
KO to the complex K-theory.

Definition

The stable complex derived orbifold bordism of M, denoted by
ﬁf’der(Y), is defined to be the equivalence classes of (D, E, s, )
endowed with a stable complex structure modulo the relations

introduced before.
» This definition was first considered by Joyce and is developed
further by Pardon.
» Abouzaid—McLean—-Smith’s result actually shows that
Mo (X, J, A) uniquely defines an element in
o der(Mo L x XK.
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Stable complex derived orbifold bordism

Theorem (B—Xu, 2022)

Denote by [ the set of isomorphism classes of finite groups.



Z-valued Gromov—Witten
LRefined curve-counting from bordism

LStable complex derived orbifold bordism

Stable complex derived orbifold bordism

Theorem (B—Xu, 2022)

Denote by [ the set of isomorphism classes of finite groups. For
any [vy] € T, there is a natural transformation between
(generalized) homology theories

FOPpy : Q0% (Y) = H(Y: 2)

by “recording” the contribution to the Euler class by points with
stabilizer in the class [v].
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Stable complex derived orbifold bordism

Theorem (B—Xu, 2022)

Denote by [ the set of isomorphism classes of finite groups. For
any [vy] € T', there is a natural transformation between
(generalized) homology theories

—C,der
(

‘FOP[’Y] : Q* Y) — H*(Y;Z)

by “recording” the contribution to the Euler class by points with

stabilizer in the class [].

> Applying FOP|,] to the global chart of Mg (X, J,A), we
obtain Z-valued Gromov-Witten type invariants.
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Stable complex derived orbifold bordism

Theorem (B—Xu, 2022)

Denote by [ the set of isomorphism classes of finite groups. For
any [vy] € T', there is a natural transformation between
(generalized) homology theories

—C,der
(

.7:073[,\/] : Q* Y) — H*(Y;Z)

by “recording” the contribution to the Euler class by points with
stabilizer in the class [].

> Applying FOP|,] to the global chart of Mg (X, J,A), we
obtain Z-valued Gromov-Witten type invariants.

» Work in progress: a decomposition of (Q-valued invariants into
a weighted sum of integers.
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> To be more concrete, let us focus on a special case.

» Suppose X is a compact effective almost complex orbifold: X
is locally modeled on U/, the I-action is faithful;
3J: TX — TX such that J> = —/d.

» E — X is a complex orbifold vector bundle.

Theorem (B—Xu)

Denote by X c X the suborbifold consisting of points with
trivial isotropy group. Then there exist normally complex smooth
sections s : X — & such that s~1(0) N X' defines a pseudocycle.
Moreover, given a pair of such sections s; and sy, the pseudocycles

s;1(0) N XTee and s51(0) N X are cobordant.
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> s71(0) N X™ee is a pseudocycle < s71(0) N XTree ¢ Xfree s a
smooth submanifold and the boundary
s—1(0) N Xfree \ (s71(0) N X™¢) could be covered by
submanifolds with at least 2-dimensions lower.
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submanifolds with at least 2-dimensions lower.
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> s71(0) N X™ee is a pseudocycle < s71(0) N XTree ¢ Xfree s a
smooth submanifold and the boundary
s—1(0) N Xfree \ (s71(0) N Xfe®) could be covered by
submanifolds with at least 2-dimensions lower.

» = s71(0) N X defines a homology class.
> 51_1(0) N Xfree and 52_1(0) N Xfree are cobordant = the

homology class is an invariant of E — X. = "“integral Euler
class”

» \We can drop the compactness of X by considering almost
complex compact derived orbifold chart (D, E,s). The section
s is perturbed in a neighborhood of s~1(0).
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a smooth algebraic variety over C.



Z-valued Gromov-Witten
LDiscussion of the proof
LOverview of the proof

Overview of the proof

Question
Why could this sort of equivariant transversality be achieved?

Lemma (Fukaya—Ono)

Given a finite group ', suppose V and W are finite dimensional
complex [ representations. If V is faithful, then there exists d > 1
such that for a generic p € PolyL,(V, W), the zero locus p~(0) is
a smooth algebraic variety over C.

Proof.
For d > 1, W is a sub-representation of Sym¢(V/). O



Z-valued Gromov-Witten
LDiscussicm of the proof
LOverview of the proof

Overview of the proof

Question
Why could this sort of equivariant transversality be achieved?

Lemma (Fukaya—Ono)

Given a finite group ', suppose V and W are finite dimensional
complex [ representations. If V is faithful, then there exists d > 1
such that for a generic p € PolyL,(V, W), the zero locus p~(0) is
a smooth algebraic variety over C.

Proof.
For d > 1, W is a sub-representation of Sym¢(V/). O

» For p generic, the boundary of p~1(0) is of real codimension
at least 2.
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the degree d and the group I, so much of the hard work is to
remove such dependence.
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Our result is a globalization of Fukaya—Ono’s lemma.

We make use of a special class of sections of E — X, whose
existence crucially relies on the (almost) complex structures,
so that the zero loci along X of these sections are (families
of ) smooth complex algebraic varieties.

Warning: The genericity in Fukaya—Ono's result depends on
the degree d and the group I, so much of the hard work is to
remove such dependence.

To this end, we need to investigate Whitney stratifications on
the universal zero locus

2V, W) == {(v,p) € V x Poly(V, W)|p(v) = 0}.
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Thanks for your attention!

The rest is a bonus, which will be discussed only if time permits.
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>

>

Suppose V, W are finite dimensional complex
[-representations.

Suppose the isotropy group of x € V under the -action is
r<r.

Decompose the tangent space TV as VI @ (V)L similarly
W = W" & (W)L as complex [-representations.

Assume (V)L is not {0}.

Identifying Nbdg T,V with Nbd,V, a smooth -equivariant
map s : V — W near x could be written as

S = Sinv D SL

under the decomposition W = W™ @ (W' )+
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Normally complex sections

» By [M-equivariance, s(V"" x {0}) c W'

> Define Poly! (V™)L, (W™)1), M-equivariant complex
polynomial maps of degree at most d.

> If we have a map s, : Nbd,,r (V) — Poly!, (V™)L (W™)h),
we can construct a section s, : Nbd,r (V) — (W)L by
composing s, with the evaluation map. The map s is called
a complex polynomial lifting of s .

> A l-equivariant map s: V — W is called a
Fukaya—Ono—Parker map near x if s; from the decomposition
S = Siny D 51 has a complex polynomial lifting.
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If d is sufficiently large, any generic equivariant map s admitting a
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» In reality, under the decomposition s = s;,, @ 51, we can take
Sinv to be constant along the normal direction (VFI)L.

Lemma (Fukaya—Ono)

If d is sufficiently large, any generic equivariant map s admitting a
complex polynomial lifting satisfies:

1. s71(0) N Ve js smooth;
2. s71(0) N Viree \ (s71(0) N V) s of codimension at least 2.

» This is the local version of our statement.

» There is a parametric version of the above lemma dealing with
cobordism invariance.
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tubular neighborhoods, and the choice of local uniformizer
group of an orbifold chart.
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» Fukaya—Ono's lemma is not sufficient to establish the full
proof.

» The relevant definition of polynomial perturbation and
transversality condition in their statement is not intrinsic
enough: it depends on the cut-off degree d, the choice of
tubular neighborhoods, and the choice of local uniformizer
group of an orbifold chart.

» In other words, it was unclear about how to choose a complex
polynomial section varying coherently along different strata
indexed by isotorpy groups, and it was unclear if the
transversality is open.
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» \We overcome these problems by studying a “canonical”
Whitney stratification on the universal zero locus

Zy = {(v,P) € (V")* x Polyy (V")*, (W™)H)|P(v) = 0}

and study its behavior when varying d and .
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» Certain aspects of the proof are inspired by an unpublished
work of Brett Parker.
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P> We overcome these problems by studying a “canonical”
Whitney stratification on the universal zero locus

Zy= {(v, P) € (V") x Palyy (V7). (W™)H) P(v) = 0}

and study its behavior when varying d and I''.

» Certain aspects of the proof are inspired by an unpublished
work of Brett Parker.

» Once the openness of a suitable transversality condition is
established, a good perturbation and the relevant parametric
statement follow by the usual arguments in differential
topology.
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