
ON THE LINEAR STABILITY OF
BLACK HOLES

The treatment of perturbations of Kerr space-
time has been prolixious in its complexity. Per-
haps at a later time the complexity will be un-
ravelled by deeper insights. But meantime the
analysis has led into a realm of the rococo,
splendorous, joyful and immensely ornate.
[S. Chandrasekhar]
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PROBLEM OF EVOLUTION

Rαβ −
1

2
Rgαβ = Tαβ(Φ)

Data ( Σ(0), g(0), k(0),Φ(0))+ constraints

Asympt. flatness (AF)

Developments i : Data −→ (M, g,Φ)

Vacuum Ric(g) = 0.

MGFHD Maximal Global Future Hyperbolic
Development
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EXPLICIT SOLUTIONS

• Minkowski R1+3 = K(0,0)

• Schwarzschild K(0,m)

• Kerr K(a,m), 0 ≤ a < m.

QUESTIONS

1. Are there other AF, stationary, solutions ?

2. Are Kerr spacetimes stable ?
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SCHWARZSCHILD SPACETIME

−(1−
2m

r
)dt2 + (1−

2m

r
)−1dr2 + r2dσ2

S2

• Event horizon r = 2m,

• Black and white holes r < 2m

• Exterior domains r > 2m.

• Photon sphere r = 3m.
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KERR SPACETIMES

Km,a, 0 ≤ a < m.

−
ρ2∆2

Σ2
dt2 +

ρ2

∆2
dr2 + ρ2dθ2

+
Σ2 sin2 θ

ρ2
(dφ−

2amr

Σ2
dt)2

∆ = r2 + a2 − 2mr, a < m

ρ2 = r2 + a2 cos2 θ

Σ2 = (r2 + a2)2 − a2∆ sin2 θ

• Horizon r = r+ := m+
√
m2 − a2.

• Black Hole r < r+
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KERR SPACETIME

r+ = m+
√
m2 − a2, re = m+

√
m2 − a2 cos2 θ

• Exterior domain r ≥ r+

• Ergo-region r+ ≤ r ≤ re

• Photon-region r∆ = m(r2 − a2)
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COSMIC CENSORSHIP AND

STABILITY OF KERR

Null

geodesics

in and

outside

black

holes.

Weak Cosmic Censorship. Generic asymp-

totically flat initial data have MFGHD with

complete future null infinity.

Global stability of Kerr. Small perturbations

of Kerr initial data have MFGHD with a com-

plete future null infinity which, within its DOC,

behaves asymptotically like (another) Kerr.
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STABILITY OF MINKOWSKI SPACE

Theorem.[Chr-Kl] Any asymptotically flat ini-
tial data set which is sufficiently close to the
trivial one has a regular MFGHD.

Main ideas

1. Cannot prove stability without robust de-
cay.

2. To prove robust decay one needs approxi-
mate symmetries

3. To construct approximate symmetries one
needs control of causal geometry

4. To control causal geometry one needs pre-
cise decay (peeling) for the curvature ten-
sor.
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VECTORFIELD METHOD

I. Generalized energy method

II. Commuting vectorfieds method

�gφ = 0, L(φ) = gµνDµφDνφ

Qαβ = DαφDβφ−
1

2
gαβL(φ)

• Q is symmetric

• Q is divergenceless

• Q(X,Y ) > 0 if X,Y timelike, f- oriented

Q(T, T ) ≥ c|Dφ|2

Q(T, L) ≥ c|Lφ|2 + |∇/ φ|2
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GENERALIZED ENERGY

Main Lemma∫
N
Qw(X,L) +

∫
Σ1

Qw(X,T ) =∫
Σ0

Qw(X,T )−
∫
D(0,1)

Err

Here X vectorfield, w scalar

Q(X,Y ) = X(φ)Y (φ)−
1

2
g(X,Y )L(φ)

Qw(X,Y ) = Q(X,Y ) +
1

2
wφY (φ)−

1

4
Y (w)φ2

Err(w,X) =
1

2

(
Q · LXg + wL(φ)

)
−

1

4
�(w)φ2
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Example 1. LXg = 0, g(X,X) < 0, w = 0.∫
N
Q(X,L) +

∫
Σ1

Q(X,T )

=
∫

Σ0

Q(X,T )

Example 2. LXg = Ωg, g(X,X) < 0, w =

Ωd−1
2 . ∫

N
Qw(X,L) +

∫
Σ1

Qw(X,T )

=
∫

Σ0

Qw(X,T )

Example 3. Err(w,X) ≥ 0

II. Commuting vectorfields. π = LXg

�g(LXφ) = LX(�gφ)− παβDαDβφ
−

(
2Dβπαβ −Dα(trπ)

)
Dαφ
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SYMMETRIES AND DECAY IN

MINKOWSKI SPACE Rd+1

Theorem. There exists an expression Q[φ](t),

constructed by the vectorfield method, such

that Q[φ](t) = Q[φ](0) if �φ = 0 and, with

u = t− |x|, u = t+ |x|,

|φ(t, x)| ≤ c
1

(1 + u)
n−1

2 (1 + |u|)
1
2

sup
t≥0
Q[φ](t)

• Generators of translations : Tµ = ∂
∂xµ.

• Generators of rotations Lµν = xµ∂ν − xν∂µ.

• Generator of scaling: S = xµ∂µ.

• Generators of inverted translations Kµ =

2xµxρ ∂
∂xρ − (xρxρ) ∂

∂xµ.
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LINEAR STABILITY OF KERR K(a,m)

Can the vectorfield method still be applied ?

• Only two linearly independent Killing vec-

torfields, T and Z

• T becomes space-like in the ergo-region.

Even for a = 0, T becomes null on the

horizon. Thus Q(T, T ) is degenerate for

any t-like T .

• Trapped null geodesics
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MAIN RESULTS

Theorem 1. (M, g) smooth, stationary ,

A.F. Any solution of �gφ = 0, with reasonable

data on Σ0 is bounded in the colored region.

Theorem 2.[Decay in Schwarzschild] Con-

sider �gφ = 0 in K(0,m) with data on Σ0.

Then, with u = t− r∗, u = t+ r∗,

|φ| ≤
C

u
, |rφ| ≤

CR

|u|1/2
, r ≥ R > 2m
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Theorem[Decay in Kerr, 0 ≤ a << m] Any

solution of �φ = 0 decays uniformly at the

rates,

|r1/2φ| ≤ Cτ−1+δ, |rφ| ≤ Cτ−
1−δ

2

Decay for K(0,m)

with respect to

u = t − r∗ and

v = u = t+ r∗.

Decay for K(a,m)

with respect to a

T-equivariant foli-

ation Στ .
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MAIN IDEAS

1. Red shift vectorfield

2. Modified Morawetz vectorfield

3. Decompose into super-radiant and sub-radiant

frequencies

4. Patching of non-causal vectorfields

5. New mechanism for decay
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RED SHIFT VECTORFIELD

Proposition[Dafermos-Rodnianski] Event hori-
zon N of a regular, asymptotically flat station-
ary spacetime admits a T- invariant neighbor-
hood U of N and a strictly time-like, smooth,
vector-field H on U, both invariant with respect
to the T flow φτ , τ ≥ 0, such that, for a con-
stant c > 0,

(H)π ·Q ≥ cQ(H,H)

Moreover, given any Λ > 0, we can choose H
such that, all along N ,

(H)π · Q ≥ c e3(φ)2 + Λ
(
(e4(φ)2 + |∇/ φ|2

)
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MODIFIED MORAWETZ

VECTORFIELD

Idea: Find X = f∂r∗, w = w(f),

Err(φ;w,X) ≥ 0, at r = 3m

r∗ := r + 2m log(r − 2m)− 3m− 2m logm.

• f = 1, w = µ
r , µ = 1− 2m

r :

1

2
Q(w) ·

(X)π =
r − 3m

r2
|∇/ φ|2

• X = f(r∗)∂r∗, w = f ′+ 2µ
r

Err(w,X) = f
r − 3m

r2
|∇/ φ|2 + f ′µ−1(∂r∗φ)2

−
1

4
∆(w)φ2

Want: f ′ ≥ 0, f r−3m
r2 ≥ 0, ∆w ≤ 0.

Can be done near r = 3m.
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BOUNDEDNESS THEORM

• T is everywhere time-like.

• T becomes null on the horizon.

• T becomes space-like near the horizon
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X-Rays Indicate Star Ripped Up by Black Hole

Illustration Credit: M. Weiss, CXC, NASA
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Credit: NASA/CXC/SAO riginally discovered

in 1964, Cygnus X-1 has been observed in-

tensely since
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In the 1970s, X-ray and optical observations

led to the conclusion that Cygnus X-1 con-

tained a black hole, the first one identified

Because it is only 6,000 light years from Earth,

Cygnus X-1 is a very bright and therefore a

good target for astronomers to study he Cygnus

X-1 system consists of a black hole with a mass

about 10 times that of the Sun in a close or-

bit with a blue supergiant star with a mass of

about 20 Suns. Gas flowing away from the su-

pergiant in a fast stellar wind is focused by the

black hole, and some of this gas forms a disk

that spirals into the black hole. The gravita-

tional energy release by this infalling gas pow-

ers the X-ray emission from Cygnus X-1.



Credit: X-ray: NASA/CXC/Wisconsin/D.Pooley

This composite NASA image of the spiral galaxy
M81, located about 12 million light years away,
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includes X-ray data from the Chandra X-ray

Observatory (blue), optical data from the Hub-

ble Space Telescope (green), infrared data from

the Spitzer Space Telescope (pink) and ultra-

violet data from GALEX (purple). The inset

shows a close-up of the Chandra image. At the

center of M81 is a supermassive black hole that

is about 70 million times more massive than

the Sun.


