ON THE LINEAR STABILITY OF BLACK HOLES

The treatment of perturbations of Kerr spacetime has been prolixious in its complexity. Perhaps at a later time the complexity will be unravelled by deeper insights. But meantime the analysis has led into a realm of the rococo, splendorous, joyful and immensely ornate. [S. Chandrasekhar]

- 1. Problem of evolution
- 2. Kerr spacetimes
- 3. Stability of Minkowski space
- 4. Linear stability of Kerr
- 5. Main results

PROBLEM OF EVOLUTION

$$R_{\alpha\beta} - \frac{1}{2}Rg_{\alpha\beta} = T_{\alpha\beta}(\Phi)$$

Data $(\Sigma_{(0)}, g_{(0)}, k_{(0)}, \Phi_{(0)})$ + constraints **Asympt. flatness** (AF)

Developments $i: Data \longrightarrow (\mathcal{M}, g, \Phi)$

Vacuum

$$\operatorname{Ric}(g) = 0.$$

MGFHD Maximal Global Future Hyperbolic Development

EXPLICIT SOLUTIONS

- Minkowski $\mathbb{R}^{1+3} = \mathcal{K}(0,0)$
- Schwarzschild $\mathcal{K}(0,m)$
- Kerr $\mathcal{K}(a,m), \ 0 \leq a < m.$

QUESTIONS

- 1. Are there other AF, stationary, solutions ?
- 2. Are Kerr spacetimes stable ?

SCHWARZSCHILD SPACETIME

- Event horizon r = 2m,
- Black and white holes r < 2m
- Exterior domains r > 2m.
- Photon sphere r = 3m.

KERR SPACETIMES

$$\mathcal{K}_{m,a}, \quad 0 \le a < m.$$

$$-\frac{\rho^2 \Delta^2}{\Sigma^2} dt^2 + \frac{\rho^2}{\Delta^2} dr^2 + \rho^2 d\theta^2$$

$$+\frac{\Sigma^2 \sin^2 \theta}{\rho^2} (d\phi - \frac{2amr}{\Sigma^2} dt)^2$$

$$\Delta = r^2 + a^2 - 2mr, \qquad a < m$$

$$\rho^2 = r^2 + a^2 \cos^2 \theta$$

$$\Sigma^2 = (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta$$

• Horizon $r = r_+ := m + \sqrt{m^2 - a^2}$.

• Black Hole
$$r < r_+$$

KERR SPACETIME

$$r_{+} = m + \sqrt{m^2 - a^2}, \ r_e = m + \sqrt{m^2 - a^2 \cos^2 \theta}$$

- Exterior domain $r \ge r_+$
- Ergo-region
- Photon-region

$$r_{+} \leq r \leq r_{e}$$

$$r\Delta = m(r^2 - a^2)$$

COSMIC CENSORSHIP AND STABILITY OF KERR

Null geodesics in and outside black holes.

Weak Cosmic Censorship. Generic asymptotically flat initial data have MFGHD with complete future null infinity.

Global stability of Kerr. Small perturbations of Kerr initial data have MFGHD with a complete future null infinity which, within its DOC, behaves asymptotically like (another) Kerr.

STABILITY OF MINKOWSKI SPACE

Theorem.[Chr-KI] Any asymptotically flat initial data set which is sufficiently close to the trivial one has a regular MFGHD.

Main ideas

- 1. Cannot prove stability without *robust* decay.
- 2. To prove robust decay one needs approximate symmetries
- 3. To construct approximate symmetries one needs control of causal geometry
- To control causal geometry one needs precise decay (*peeling*) for the curvature tensor.

VECTORFIELD METHOD

- I. Generalized energy method
- II. Commuting vectorfieds method

$$\Box_{g}\phi = 0, \quad L(\phi) = g^{\mu\nu}D_{\mu}\phi D_{\nu}\phi$$
$$Q_{\alpha\beta} = D_{\alpha}\phi D_{\beta}\phi - \frac{1}{2}g_{\alpha\beta}L(\phi)$$

- Q is symmetric
- Q is divergenceless
- Q(X,Y) > 0 if X,Y timelike, f- oriented

GENERALIZED ENERGY

Here X vectorfield, w scalar

$$Q(X,Y) = X(\phi)Y(\phi) - \frac{1}{2}g(X,Y)L(\phi)$$
$$Q_w(X,Y) = Q(X,Y) + \frac{1}{2}w\phi Y(\phi) - \frac{1}{4}Y(w)\phi^2$$
$$\mathsf{Err}(w,X) = \frac{1}{2}(Q \cdot \mathcal{L}_X g + w L(\phi)) - \frac{1}{4}\Box(w)\phi^2$$

Example 2. $\mathcal{L}_X g = \Omega g, \ g(X, X) < 0, \ w =$ $\Omega \frac{d-1}{2}.$ $\int_{\mathcal{N}} Q_w(X, L) + \int_{\Sigma_1} Q_w(X, T)$ $\int_{\Sigma_0} Q_w(X, T) = \int_{\Sigma_0} Q_w(X, T)$

Example 3. $Err(w, X) \ge 0$

II. Commuting vectorfields. $\pi = \mathcal{L}_X g$

$$\Box_{g}(\mathcal{L}_{X}\phi) = \mathcal{L}_{X}(\Box_{g}\phi) - \pi^{\alpha\beta}D_{\alpha}D_{\beta}\phi - (2D^{\beta}\pi_{\alpha\beta} - D_{\alpha}(\mathrm{tr}\pi))D^{\alpha}\phi$$

SYMMETRIES AND DECAY IN MINKOWSKI SPACE \mathbb{R}^{d+1}

Theorem. There exists an expression $\mathcal{Q}[\phi](t)$, constructed by the *vectorfield method*, such that $\mathcal{Q}[\phi](t) = \mathcal{Q}[\phi](0)$ if $\Box \phi = 0$ and, with $u = t - |x|, \underline{u} = t + |x|$,

$$|\phi(t,x)| \le c \frac{1}{(1+\underline{u})^{\frac{n-1}{2}}(1+|u|)^{\frac{1}{2}}} \sup_{t\ge 0} \mathcal{Q}[\phi](t)$$

- Generators of translations : $\mathbb{T}_{\mu} = \frac{\partial}{\partial x^{\mu}}$.
- Generators of rotations $\mathbb{L}_{\mu\nu} = x_{\mu}\partial_{\nu} x_{\nu}\partial_{\mu}$.
- Generator of scaling: $\mathbb{S} = x^{\mu} \partial_{\mu}$.
- Generators of inverted translations $\mathbb{K}_{\mu} = 2x_{\mu}x^{\rho}\frac{\partial}{\partial x^{\rho}} (x^{\rho}x_{\rho})\frac{\partial}{\partial x^{\mu}}.$

LINEAR STABILITY OF KERR $\mathcal{K}(a,m)$

Can the vectorfield method still be applied ?

- Only two linearly independent Killing vectorfields, $\mathbb T$ and $\mathbb Z$
- T becomes space-like in the ergo-region.
 Even for a = 0, T becomes null on the horizon. Thus Q(T,T) is degenerate for any t-like T.
- Trapped null geodesics

MAIN RESULTS

Theorem 1. (\mathcal{M},g) smooth, stationary , A.F. Any solution of $\Box_g \phi = 0$, with reasonable data on Σ_0 is bounded in the colored region.

Theorem 2. [Decay in Schwarzschild] Consider $\Box_g \phi = 0$ in $\mathcal{K}(0,m)$ with data on Σ_0 . Then, with $u = t - r^*$, $\underline{u} = t + r^*$,

$$|\phi| \leq \frac{C}{\underline{u}}, \qquad |r\phi| \leq \frac{C_R}{|u|^{1/2}}, \ r \geq R > 2m$$

14

Theorem[Decay in Kerr, $0 \le a \ll m$] Any solution of $\Box \phi = 0$ decays uniformly at the rates,

$$|r^{1/2}\phi| \le C\tau^{-1+\delta}, \qquad |r\phi| \le C\tau^{-\frac{1-\delta}{2}}$$

Decay for $\mathcal{K}(0,m)$ with respect to $u = t - r^*$ and $v = \underline{u} = t + r^*$.

Decay for $\mathcal{K}(a,m)$ with respect to a \mathbb{T} -equivariant foliation Σ_{τ} .

MAIN IDEAS

- 1. Red shift vectorfield
- 2. Modified Morawetz vectorfield
- 3. Decompose into super-radiant and sub-radiant frequencies
- 4. Patching of non-causal vectorfields
- 5. New mechanism for decay

RED SHIFT VECTORFIELD

Proposition[Dafermos-Rodnianski] Event horizon \mathcal{N} of a regular, asymptotically flat stationary spacetime admits a \mathbb{T} - invariant neighborhood \mathcal{U} of \mathcal{N} and a strictly time-like, smooth, vector-field \mathbb{H} on \mathcal{U} , both invariant with respect to the \mathbb{T} flow $\phi_{\tau}, \tau \geq 0$, such that, for a constant c > 0,

$$(\mathbb{H})\pi \cdot Q \geq c Q(\mathbb{H},\mathbb{H})$$

Moreover, given any $\Lambda > 0$, we can choose \mathbb{H} such that, all along \mathcal{N} ,

$$(\mathbb{H})_{\pi} \cdot \mathbf{Q} \ge c \, e_3(\phi)^2 + \Lambda \left((e_4(\phi)^2 + |\nabla \phi|^2) \right)$$

MODIFIED MORAWETZ VECTORFIELD

Idea: Find $X = f\partial_{r^*}, w = w(f),$ $\operatorname{Err}(\phi; w, X) \ge 0, \quad \text{at } r = 3m$ $r^* := r + 2m \log(r - 2m) - 3m - 2m \log m.$

•
$$f = 1$$
, $w = \frac{\mu}{r}$, $\mu = 1 - \frac{2m}{r}$:
 $\frac{1}{2}Q_{(w)} \cdot {}^{(X)}\pi = \frac{r - 3m}{r^2} |\nabla \phi|^2$

•
$$X = f(r^*)\partial_{r^*}, w = f' + \frac{2\mu}{r}$$

 $\operatorname{Err}(w, X) = f \frac{r - 3m}{r^2} |\nabla \phi|^2 + f' \mu^{-1} (\partial_{r^*} \phi)^2$
 $- \frac{1}{4} \Delta(w) \phi^2$

Want: $f' \ge 0$, $f \frac{r-3m}{r^2} \ge 0$, $\Delta w \le 0$.

Can be done near r = 3m.

BOUNDEDNESS THEORM

- \mathbb{T} is everywhere time-like.
- $\bullet~\mathbb{T}$ becomes null on the horizon.
- $\bullet~\mathbb{T}$ becomes space-like near the horizon

X-Rays Indicate Star Ripped Up by Black Hole Illustration Credit: M. Weiss, CXC, NASA

Credit: NASA/CXC/SAO riginally discovered in 1964, Cygnus X-1 has been observed intensely since In the 1970s, X-ray and optical observations led to the conclusion that Cygnus X-1 contained a black hole, the first one identified

Because it is only 6,000 light years from Earth, Cygnus X-1 is a very bright and therefore a good target for astronomers to study he Cygnus X-1 system consists of a black hole with a mass about 10 times that of the Sun in a close orbit with a blue supergiant star with a mass of about 20 Suns. Gas flowing away from the supergiant in a fast stellar wind is focused by the black hole, and some of this gas forms a disk that spirals into the black hole. The gravitational energy release by this infalling gas powers the X-ray emission from Cygnus X-1.

Credit: X-ray: NASA/CXC/Wisconsin/D.Pooley

This composite NASA image of the spiral galaxy M81, located about 12 million light years away,

includes X-ray data from the Chandra X-ray Observatory (blue), optical data from the Hubble Space Telescope (green), infrared data from the Spitzer Space Telescope (pink) and ultraviolet data from GALEX (purple). The inset shows a close-up of the Chandra image. At the center of M81 is a supermassive black hole that is about 70 million times more massive than the Sun.