
BILINEAR ESTIMATES ON CURVED SPACE-TIMES

SERGIU KLAINERMAN AND IGOR RODNIANSKI

Abstract. To settle the L2 bonded curvature conjecture for the Einstein-
vaccum equations one needs to prove bilinear type estimates for solutions of the
homogeneous wave equation on a fixed background with H2 local regularity. In
this paper we introduce a notion of primitive parametrix for the homogeneous
wave equation for which we can prove, under very broad assumptions, the
desired bilinear estimates.

1. introduction

In this paper we address the issue of proving bilinear estimates for solutions of the
wave equation,

�gφ =
1√|g|∂α

(
gαβ∂βφ

)
= 0, (1)

in an asymptotically flat curved spacetime (M,g) with limited regularity. We
assume that M is endowed with a time function t whose level hypersurfaces define
a spacelike foliation Σt. We are interested in solving the initial value problem for
(1),

φ[0] :=
(
φ(0), ∂tφ(0)

)
= (φ0, φ1) (2)

for given functions φ0, φ1 on Σ0. We shall assume the existence of coordinates
x1, x2, x3 on Σ0 relative to which

‖φ[0]‖Hs := ‖φ0‖Hs(Σ0) + ‖φ1‖Hs−1(Σ0) < ∞ (3)

for some s ≤ 2.

To motivate our results consider the flat case when (M,g) is the four dimensional
Minkowski space, t its canonical time function and � the flat D’Alembertian. We
recall the following result, see [Kl-Ma],

Theorem 1.1. Consider φ, ψ solutions of the flat wave equation

�φ = �ψ = 0

and Q one of the following null forms,

Q0(φ, ψ) = ∂αφ · ∂αψ, Qαβ(φ, ψ) = ∂αφ · ∂βψ − ∂βφ · ∂αψ, ∀α �= β.

Then,

‖Q(φ, ψ)‖L2(R3+1) � ‖φ[0]‖H2(R3) · ‖ψ[0]‖H1(R3) (4)
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In what follows we shall give an equivalent formulation of the estimate (4) in terms
of the energy fluxes acros a family of null hypersurfaces.

To every unit vector ω ∈ S
2 we consider the family of functions

uω = t − x · ω (5)

Observe that each u = uω is an optical function, i.e.,

gαβ∂αu ∂βu = 0. (6)

The level hypersurfaces (ω)H are null hyperplanes. Let
(ω)N = ω · ∇ = ω1∂1 + ω2∂2 + ω3∂3

be the vectorfield tangent to Σt perpendicular to the direction ω. Observe that
(ω)N(uω) = −1 and

(ω)L = ∂t + ω · ∇ = ∂t + (ω)N (7)

is the null generator vectorfield of (ω)H. Consider also the null conjugate vectorfield,
(ω)L = ∂t − ω · ∇ = ∂t − (ω)N. (8)

Clearly (ω)L, (ω)L form a null pair, i.e. < (ω)L, (ω)L >= −2. Denote by (ω)St,u

the 2 dimensional surfaces of intersection between (ω)Hu and Σt and by (ω)∇ the
induced covariant derivative on (ω)St,u. On each point on (ω)St,u we can choose
an orthonormal frame ( (ω)ea)a=1,2. Together with (ω)L = (ω)e4 and (ω)L = (ω)e3

they form a null frame (ω)e1,
(ω)e2,

(ω)e3,
(ω)e4 at the particular point.

Given a function f we denote,

| (ω)∇f |2 = | (ω)∇f |2 + | (ω)Lf |2 =
∑

a=1,2

| (ω)ea(f)|2 + | (ω)L(f)|2 (9)

Remark 1.2. The null function conjugate to uω = t−x ·ω is uω = t+x ·ω. Observe
that uω = u−ω. Also remark that (ω)L is the null generator of the null folition
generated by uω. Together uω, uω define a canonical double null foliation.

According to the standard energy inequality for the flat wave equation � we have,
for each ω ∈ S

2,

sup
u

∫
(ω)Hu

| (ω)∇φ|2 = E[φ] (10)

where E[φ] denotes the total energy of φ i.e.,

E[φ] =
∫

Σ0

(|∂tφ|2 + |∇φ|2)dx (11)

We are now ready to reformulate (4)

‖Q(φ, ψ)‖L2(R3+1) � ‖φ[0]‖H2 · ( sup
u,ω

∫
(ω)Hu

| (ω)∇ψ|2) 1
2 (12)

This is the form of the standard bilinear estimates in Minkowski space which we
shall try to generalize to nonflat backgrounds.
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In what follows we sketch the proof of (12) for the null forms Qij . The other null
forms can be treated in the same manner. As well known the general solution of
the initial value problem

�φ = 0, φ[0] = (ϕ0, ϕ1)

can be written in the form,

φ(t, x) = φ+ + φ− =
∫

ei(t|ξ|+x·ξ)f̂+(ξ)dξ +
∫

ei(t|ξ|−x·ξ)f̂−(ξ)dξ

f̂+(ξ) =
1
2
(
ϕ̂0(ξ) +

1
|ξ| ϕ̂1(ξ)

)
f̂−(ξ) =

1
2
(
ϕ̂0(ξ) − 1

|ξ| ϕ̂1(ξ)
)

Introducing spherical coordinates ξ = λω, λ = |ξ|, ω ∈ S
2 we can rewrite,

φ−(t, x) =
∫

eiλ(t−x·ω)f̂+(λω)λ2dλdω =
∫

eiλuω(t,x)f̂+(λω)λ2dλdω

φ+(t, x) =
∫

eiλ(t+x·ω)f̂+(λω)λ2dλdω =
∫

eiλu−ω(t,x)f̂−(λω)λ2dλdω

Observe now that the proof (12) for Q(φ, ψ) reduces to the following:

Proposition 1.3. Let

Φf (t, x) =
∫

S2

∫ ∞

0

eiλuω(t,x)λ2f̂(λω)dλdω (13)

be a special, complex valued, solution of the free wave equation. Then,

Q(φ(a), ψ) � ‖f‖H2 · ( sup
u,ω

∫
(ω)Hu

| (ω)∇ψ|2) 1
2 (14)

Proof : We easily calculate,

Qij(φa, ψ) =
∫

S2

∫
R+

Qij(uω, ψ)eiλ uωλ3f̂(λω) dλ dω

=
∫

S2
Qij(uω, ψ)

( ∫
R+

eiλ uωλ3f̂(λω) dλ
)
dω (15)

To calculate Qij(uω, ψ) we expand as follows

∂i = ωi
(ω)N +

∑
a=1,2

Xai
(ω)ea, Xai =< ∂i,

(ω)ea >

Observe that
∑

i ωiXai = 0 and δij =< ∂i, ∂j >= ωi ωj +
∑

a=1,2 XaiXaj . Also,
since

(ω)ea =
∑

i

< ∂i,
(ω)ea > ∂i =

∑
i

Xai ∂i

and < (ω)ea, (ω)eb >= δab we deduce,∑
i=1,2,3

XaiXbi = δab,
∑

a=1,2

XaiXaj = δij − ωi ωj ,
∑

i

ωiXai = 0
(16)
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Since (ω)N(uω) = −1 and (ω)e(uω) = 0, ∂i uω = −ωi

Qij(uω, ψ) = ∂i uω ∂jψ − ∂j uω ∂iψ

= −ωi(ωjN +
∑

a=1,2

Xaj
(ω)ea)ψ + ωj(ωiN +

∑
a=1,2

Xai
(ω)ea)ψ

= −
∑

a=1,2

(ωiXaj − ωjXai) (ω)eaψ

Thus,

|Q(φ, ψ)|2 =
∑

i,j=1,2,3

|Qij(uω, ψ)| = 2
∑

a,b=1,2

∑
i

XaiXbi
(ω)eaψ (ω)ebψ

= δab
(ω)eaψ (ω)ebψ = | (ω)∇ψ|2

Thus, returning to (15),

|Q(φa, ψ)| ≤
∫

S2
|Q(uω, ψ)| |

∫
R+

eiλ uωλ3f̂(λω) dλ| dω

≤
∫

S2
| (ω)∇ψ| |

∫
R+

eiλ uωλ3f̂(λω) dλ| dω

=
∫

S2
| (ω)∇ψ| |J(uω, ω)|dω

where,

J(u, ω) =
∫

R+

eiλuλ3f̂(λω) dλ (17)

depends only on u for every fixed ω. Now, by the Minkowski inequality,

‖Q(φ, ψ)‖L2(R3+1) ≤
∫

S2
‖ | (ω)∇ψ| J(uω, ω) ‖L2(R3+1) (18)

For each fixed ω, we express the volume integral dtdx in R
3+1 with respect to the

variables uω, t and the volume element dAω on (ω)St,u,

dtdx = dt du dAω.

Observe that dtdAω is precisely the volume element on the null hypersurface (ω)Hu.
Thus, applying the Plancherel formula to the function J(uω, ω) defined by (17),

‖ | (ω)∇ψ| J(uω, ω) ‖2
L2(R3+1

+ )
=

∫ ∞

0

∫ +∞

−∞

∫
(ω)St,u

| (ω)∇ψ|2 |J(u, ω)|2dtdudAω

=
∫ +∞

−∞
|J(u, ω)|2

( ∫
(ω)Hu

| (ω)∇ψ|2
)

du

� sup
u,ω

∫
(ω)Hu

| (ω)∇ψ|2 ·
∫ +∞

−∞
|J(u, ω)|2du

= sup
u,ω

∫
(ω)Hu

| (ω)∇ψ|2
∫ ∞

0

λ6|f̂(λω)|2dλ
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Thus, returning to (18),

‖Q(φ, ψ)‖L2(R+
3+1) ≤ sup

u,ω

( ∫
(ω)Hu

| (ω)∇ψ|2) 1
2
( ∫

S2

∫ ∞

0

λ6|f̂(λω)|2dλ
) 1

2

� ‖∇2f‖L2(R3) · sup
u,ω

( ∫
(ω)Hu

| (ω)∇ψ|2) 1
2

as desired.

Remark 1.4. The representation

Φf =
∫

S2

∫ ∞

0

eiλuω f̂(λω) dλdω

corresponds to the decomposition of a solution of the homogeneous wave equation
into a superposition of traveling waves

(ω)Φf :=
∫ ∞

0

eiλuω f̂(λω) dλ.

This decomposition was used, along similar lines, by D. Tataru in the proof of
bilinear product estimates in Minkowski space in his pioneering work on the wave
maps equation [Ta]. The goal of this work is to point out that expressing solutions
of the wave equation as a superposition of travelling waves does not only provide
a quick proof of the bilinear estimate (14) in flat space but, more to the point, it
provides the right framework for generalization to the wave equation on a curved
spacetime background with limited regularity.

2. Geometric set-up.

In order to formulate the precise version of the bilinear estimate on a curved back-
ground we first need to introduce the relevant geometric objects.

1). Space-like foliation: We foliate space-time (M,g) by space-like hypersurfaces
Σt defined as level hypersurfaces of a time function t. We denote by T the unit
future oriented normal to Σt and define the lapse function n of the foliation Σt

according to the formula

n−1 = ∇T t. (19)

The second fundamental form kij of the Σt foliation is given by

kij = −1
2
LT gij (20)

2). Optical functions and null hyperplanes: We assume given a family of null
hypersurfaces (uω) with ω ∈ S

2,

gαβ∂α uω ∂β uω = 0. (21)

defineed in a canonical way such that uω become the flat null hypersurfaces uω −
t − x · ω in the flat case. This can be achieved, for example, by assuming that
on Σ0 the level surfaces of uω(0, x) are minimal planes asymptotic to x · ω. More
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precisely, relative to coordinates xi on Σ0 for which the metric is asymptotically
flat, i.e. gij − (1 + 2M/r)δij = O(r−1) as r → 0, we have

uω(0, x) − x · ω = O(1), as r → ∞

The level hypersufaces uω = u of the optical function uω are null hyperpsurfaces
associated with the direction ω which we denote by (ω)Hu. The null geodesic
generator of (ω)Hu is given by,

(ω)L = −gαβ∂a uω∂β . (22)

3.) Induced t-foliation of (ω)Hu: The 2-surfaces (ω)St,u = Σt ∩ (ω)Hu form a
foliation of the hull hypersurfaces (ω)Hu. The null lapse (ω)a of this foliation of is
given by

(ω)a−1 = − < (ω)L, T >= T (uω). (23)

We denote by (ω)γ the restriction of the metric g to (ω)St,u and by (ω)∇ its induced
covariant derivative.

4.) Null pair: Recall the definition of the null geodesic vectorfield, see (22),
(ω)L = −gαβ∂αuω ∂β . Clearly, (ω)L(uω) = 0. Moreover, since 〈 (ω)L, T 〉 = −∇T uω =
− (ω)a−1, it follows that

(ω)L = (ω)a−1(T + (ω)N),

where (ω)N is the outward unit normal to (ω)St,u in Σt.

At any point P ∈ (ω)St,u ⊂ (ω)Hu we denote by Lω the null vector conjugate to L
relative to the t-foliation, i.e.

〈Lω, Lω〉 = −2 , 〈Lω, X〉 = 0 for all X ∈ Tp(St,uω ).

It follows by a simple calculation that
(ω)L = (ω)a(T − (ω)N) = (ω)a( (ω)a (ω)L + 2T ). (24)

Thus,

〈 (ω)L, (ω)L〉 = − (ω)L(uω) = −2 (ω)aT (uω) = −2 (25)

Therefore L, L form a null pair, which we call the canonical null pair associated to
the t, uω-foliation. An arbitrary orthonormal frame on (ω)St,u will be denoted by
( (ω)ea)a=1,2. Clearly,

〈 (ω)ea, (ω)L〉 = 〈 (ω)ea, (ω)L〉 = 0, 〈 (ω)ea, (ω)eb〉 = δab.

Together with the null pair (ω)e4 = (ω)L and (ω)e3 = (ω)L we obtain a null frame,
(ω)e1,

(ω)e1,
(ω)e3,

(ω)e4.

Given a function f we denote,

| (ω)∇f |2 = | (ω)∇f |2 + | (ω)Lf |2 =
∑

a=1,2

| (ω)ea(f)|2 + | (ω)L(f)|2 (26)
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5.) Null connection coeficients: The null second fundamental forms (ω)χ, (ω)χ of
the foliation St,uω are given by

(ω)χab = 〈∇ (ω)ea

(ω)L , (ω)eb〉, χ
ab

= 〈∇ (ω)ea

(ω)L , (ω)eb〉 (27)

The torsion is given by,

(ω)ζa =
1
2
〈∇ (ω)ea

(ω)L , (ω)L〉 (28)

We also denote (ω)trχ = δab (ω)χab and (ω)χ̂ = (ω)χ̂ − 1
2

(ω)trχδ.

3. Bilinear estimates for primitive parametrices

To prove bilnear estimates analogous to those of proposition 1.3 we need to make
certain assumptions for our spacetime (M,g).

Assumption 1. We assume that there exists a global system of coordinates
t, x1, x2, x3 on (M,g) relative to which the metric takes the form,

ds2 = −n2dt2 + gijdxidxj .

We assume that the lapse n verifies, c < n(t, x) ≤ c−1 for some fixed c > 0,
uniformly in (t, x). Moreover we shall assume that the induced metric g is euclidean
on Σ0. This last assumption is not compatible with the application we have in
mind, i.e. to vacuum Einstein equations, but there are obvious ways to modify the
definition below such that it applies to a nonflat initial hypersurface Σ0. Observe
that under this assumption we can pick the initial data for uω on Σ0 such that

uω(0, x) = x · ω.

Assumption 2. For every ω ∈ S
2 our spacetime can be foliated, in a regular

fashion, by a family of null hypersurfaces (ω)Hu, −∞ < u < +∞. The null lapse
(ω)a verifies,

c < (ω)a(t, x) < c−1

for some fixed c > 0, uniformly in ω, (t, x).

We now consider the following operator,

Φf (t, x) =
∫

S2

∫ ∞

0

eiλuω(t,x)λ2f̂(λω)dλdω (29)

where f̂ denotes the standard Fourier transform of f relative to the euclidean
coordinates xi of Σ0. We shall call this a primitive parametrix, see remark below,
solution of the wave equation. To justify the definition we note the following:

Lemma 3.1. We have the following identity:

�gΦf =
∫

S2

∫
R+

(ω)trχ(t, x)eiλ uω(t,x)λ3f̂(λω) dλ dω (30)
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Proof : The proof of (30) follows from the definition of the optical function
gαβ∂α uω ∂β uω = 0 and the simple calculation �guω = (ω)trχ.

Observe that in flat space (ω)trχ ≡ 0 and thus Φf is an exact solution of the
homogeneous wave equation.

Remark 3.2. Formula (29) is the first term in the standard geometric optics ap-
proximation. Typically one improves the approximation by solving a sequence of
transport equations, see [Ba-Ch] for an application of this construction to quasi-
linear wave equations. Unfortunately each additional transport equation requires
more differentiability for the background metric. Our choice here, to take the most
primitive approximation involving only the solution uω of the eikonal equation (21),
is somewhat related to that made by Smith-Tataru in [Sm-Tat]. However they use
a wave packet construction which depends heavily on coordinates. The coordinate
dependence manifests itself in the dependence of the accuracy of approximation on
the Cristoffel symbols Γ of the metric g, i.e., if wλ is a wave packet at frequency λ
then

�gwλ = Γ · ∂wλ + ....

To show that wλ is an acceptable approximation requires the Strichartz estimate

‖Γ‖L2
tL∞

x
� ‖g‖L∞

t Hs
x
, s > 2

which severely limits the validity of this approximation to the metrics with reg-
ularity Hs for s > 2. The parametrix introduced in (29) does not depend on a
particular choice of coordinates. Moreover, we have shown in [Kl-Rodn1] that the
error coefficients (ω)trχ ∈ L∞

t,x in (30) for an Einstein metric with the bounded
curvature flux, which corresponds to H2 regularity.

Another crucial difference is that angular and physical space localizations that are
part of the wave packet construction require a dyadic frequency localization of the
parametrix. In other words, the wave packet construction can only approximate a
single dyadic piece Pλφ of the solution φ of a homogeneous wave equation. Here Pλ

is a Fourier space projection on the region {ξ : λ ≤ |ξ| ≤ 2λ} and the wave packet
has dimensions 1×λ−1 × (λ− 1

2 )n−1. This would introduce additional difficulties in
the proof of the bilinear estimate for the true solutions of the wave equation due to
the lack of orthogonality with respect to λ.

The main result of this paper is the following,

Theorem 3.3. Assume that the spacetime (M,g) verifies Assumptions 1,2 .
Let Qij(φ, ψ) denote the null forms, relative to our given coordinates Qij(φ, ψ) =
∇iφ∇jψ −∇jφ∇iψ. Then, for any smooth ψ,

‖Q(Φf , ψ)‖L2
t L2

x
� ‖f‖H2(Σ0) · sup

u,ω
‖ (ω)∇ψ‖L2( (ω)Hu). (31)

where L2
t L

2
x denotes the spacetime norm in a slab 0 ≤ t ≤ T ,

‖f‖2
L2

tL2
x

=
∫ T

0

( ∫
Σt

|f(t, x)|2n
√

det gdx
)
dt
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Proof : The proof is exactly as in Minkowski space. We compute

Qij(Φf , ψ) =
∫

S2

∫
R+

Qij(uω, ψ)eiλuω λ3f̂(λω) dλ dω

Therefore, defining |Q| = gikgjlQijQkl where gij denotes the induced metric on Σt

and gij its inverse,

|Q(Φf , ψ)| �
∫

S2
|Q(uω, ψ) |

∫
R+

eiλuω λ3f̂(λω) dλ |dω

Moreover, we can express the coordinate derivatives ∂i relative to the orthonormal
frame (ω)N, (ω)e on Σt as follows,

∂i = (ω)Ni
(ω)N +

∑
a=1,2

Xai
(ω)ea, (ω)Ni = 〈 (ω)N, ∂i〉, Xai =< ∂i,

(ω)ea >

Since 〈 (ω)ea, (ω)eb〉 = δab we easily infer that XaiXbjg
ij = δab. Also, since 〈 (ω)N , (ω)N〉 =

1, 〈 (ω)N , (ω)ea〉 = 0 we easily check that gij (ω)Ni · Xai = 0. Hence,

XaiXbjg
ij = δab, gij (ω)Ni · Xai = 0. (32)

Now, using that

∇ (ω)ea
uω = 0, ∇ (ω)N uω = −a−1

we have ∂i uω = −a−1 (ω)Ni. Hence,

Qij(uω, ψ) = ∂i uω∂jψ − ∂j uω∂iψ

= − (ω)a−1
[

(ω)Ni

(
(ω)NjN(ψ) + Xaj

(ω)ea(ψ)
) − (ω)Nj

(
(ω)NiN(ψ) + Xai

(ω)ea(ψ)
)]

= (ω)a−1
(

(ω)NjXai − (ω)NiXaj

)
Using (32) we easily infer that,

|Q(uω, ψ)| = (ω)a−1| (ω)∇ψ|.
We then derive

|Q(Φf , ψ)| �
∫

S2
|Q(uω, ψ)| |

∫
R+

eiλuωλ3f̂(λω)| =
∫

S2
| (ω)a−1 (ω)∇ψ| |J(uω, ω)

where,

J(uω, ω) =
∫ ∞

0

eiλ uωλ3f̂(λω) dλ

By the Minkowski inequality,

‖Q(Φf , ψ)‖L2
t L2

x
�

∫
S2

dω‖ (ω)a−1 · (ω)∇ψ · J(uω, ω)‖L2
tL2

x

We now express the volume element n
√

det gdtdx relative to the foliation (ω)St,u

i.e n
√

det gdtdx = (ω)a n dt du dAω with dAω denoting the area element on (ω)St,u.
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Thus, using our assumptions on (ω)a, n,

‖ (ω)a−1 (ω)∇ψ J(uω, ω)‖2
L2

tL2
x

=
∫ T

0

dt

∫ +∞

−∞
du

∫
(ω)St,u

| (ω)∇ψ|2 · |J(u, ω)|2 (ω)a−1n dAω

�
∫ +∞

−∞
|J(u, ω)|2du

∫ T

0

dt

∫
(ω)St,u

| (ω)∇ψ|2 · dAω

�
∫ +∞

−∞
|J(u, ω)|2du

∫
(ω)Hu

| (ω)∇ψ|2

� sup
u,ω

∫
(ω)Hu

| (ω)∇ψ|2
∫ +∞

−∞
|J(u, ω)|2du

By Plancherel,
∫ +∞
−∞ |J(u, ω)|2du =

∫ ∞
0

λ6|f̂(λω)|2dλ. Hence,

‖Q(Φf , ψ)‖2
L2

t L2
x

� sup
u,ω

∫
(ω)Hu

| (ω)∇ψ|2
∫

S2
dω

∫ ∞

0

λ6|f̂(λω)|2dλ

≤ ‖f‖2
H2 · sup

u,ω

∫
(ω)Hu

| (ω)∇ψ|2

as desired.

4. Further comments

The result of theorem 3.3 is just a first step in proving bilinear estimates for exact
solutions �gφ = �gψ = 0 in Einstein vacuum spacetime (M,g) with L2 bounded
curvature. The main remaining task is to show that the primitive parametrix Φf of
(29) can be used to define a good notion of approximate solution to the homogeneous
wave equation. To do this we need to show that the L2

tH
1
x norm of the error term,∫

S2

∫
R+

(ω)trχ(t, x)eiλ uω(t,x)λ3f̂(λω) dλ dω

in (30) is small in a suitable sense. To verify this we need al lot more information
about both Σt and (ω)Hu foliations. In particular it is quite clear that nothing
can bee done unless, at least, (ω)trχ is uniformly bounded. To show that, however,
is highly nontrivial under our limited regularity assumptions. In the sequence of
paper [Kl-Rodn1],[Kl-Rodn2], [Kl-Rodn3] we have developed methods to prove such
results, indeed have proved one for the particular case of a geodesic foliation on a
fixed null hypersurface verifying only a small curvature flux condition, compatible
with H2 regularity. We have developed those methods with the expectation that
they can applied precisely in this context.
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