ON THE FORMATION OF TRAPPED SURFACES

SERGIU KLAINERMAN AND IGOR RODNIANSKI

1. INTRODUCTION

1.1. Main Goals. In a recent important breakthrough D. Christodoulou [Chr| has solved a long
standing problem of General Relativity of evolutionary formation of trapped surfaces in the Einstein-
vacuum space-times. He has identified an open set of regular initial conditions on a finite outgoing
null hypersurface leading to a formation a trapped surface in the corresponding vacuum space-time
to the future of the initial outgoing hypersurface and another incoming null hypersurface with the
prescribed Minkowskian data. He also gave a version of the same result for data given on part of past
null infinity. His proof, which we outline below, is based on an inspired choice of the initial condition,
an ansatz which he calls short pulse, and a complex argument of propagation of estimates, consistent
with the ansatz, based, largely, on the methods used in the global stability of the Minkowski space
[Chr-Kl]. Once such estimates are established in a sufficiently large region of the space-time the
actual proof of the formation of a trapped surface is quite straightforward.

The goal of the present paper is to give a simpler proof by enlarging the admissible set of initial
conditions and, consistent with this, relaxing the corresponding propagation estimates just enough
that a trapped surface still forms. We also reduce the number of derivatives needed in the argument
from two derivatives of the curvature to just one. More importantly, the proof, which can be easily
localized with respect to angular sectors, has the potential for further developments. We prove in
fact another result, concerning the formation of pre-scarred surfaces, i.e surfaces whose outgoing
expansion is negative in an open angular sector. We only concentrate here on the finite problem, the
problem from past null infinity can be treated in the same fashion as in [Chr| once the finite problem
is well understood. The problem from past null infinity has been subsequently considered in a recent
preprint by Reiterer and Trubowitz, [R-T].

We start by providing the framework of double null foliations in which Christodoulou’s result is
formulated. We then present, in subsection 1.3, the heuristic argument for the formation of a trapped
surface. In subsection 1.4 we then introduce Christodolou’s short pulse ansatz and discuss the
propagation estimates which it entails.
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1.2. Double null foliations. We consider a region D = D(u,,u,) of a vacuum spacetime (M, g)
spanned by a double null foliation generated by the optical functions (u,u) increasing towards the
future, 0 < u < u, and 0 < u < wu,. We denote by H, the outgoing null hypersurfaces generated by
the level surfaces of v and by H,, the incoming null hypersurfaces generated level hypersurfaces of u.

We write S, , = H, N H, and denote by Jirs ’22), and H S“’“Q) the regions of these null hypersurfaces

to the two foliations and define,
1
S0 = —g(L, L) 1)

Observe that the flat value' of  is 1. As well known, our space-time slab D(u,,u,) is completely
determined (for small values of u,,u,) by data along the null, characteristic, hypersurfaces Hy, H,
corresponding to u = 0, respectively u = 0. Following [Chr| we assume that our data is trivial along
H,, i.e. assume that H, extends for u < 0 and the spacetime (M, g) is Minkowskian for u < 0 and
all values of u > 0. Moreover we can construct our double null foliation such that 2 = 1 along H,
ie.,

Q0,u) =1, 0<u<u,. (2)

Throughout this paper we work with the normalized null pair (e, e4),
e3=0OL, es=0QL, g(es, eq) = —2.

Given a 2-surfaces S(u,u) and (eq)q—1,2 an arbitrary frame tangent to it we define define the Ricci
coefficients,

Fovwe) = 9(eny, Deg e), A pv=1,2,3,4 (3)
These coefficients are completely determined by the following components,

Xab:g(Dae476b)7 Xab:g(Da€37eb)7

1 1
Ny = —ig(D?)@,“ 64); ﬂa = —§g(D46a, 63)
1 1 (@
W = —ZQ(D4€3,€4); w = —ZQ(D3€47 €3),
1
Ca = §g(Da€4a 63)
where D, = D, . We also introduce the null curvature components,
Agp = R(@a,€4,eb7€4)7 gab = R(ea’e37€b’e3)’
1 1
Bo = 5 Rlea,ea,3,€4), B, = S Rlea, €3,€3,€4), (5)

p = ZR(L647637€4763)7 0 = Z*R(Le4763a64763)

!Note that our normalization for Q differ from that of [K-Ni
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Here *R denotes the Hodge dual of R. We denote by V the induced covariant derivative operator
on S(u,u) and by V3, V4 the projections to S(u,u) of the covariant derivatives D3, Dy, see precise
definitions in [K-Ni]. Observe that,

1 1
w = —§V4(10g ), W= —§V3(logQ),
Na = Ga+ Va(log), n = —C+ Va(log)

The connection coefficients I' verify equations which have, very roughly, the form,
Vi l'=R+VI'+T.T
Va'=R+VI'+T-T (7)
Similarly the Bianchi identities for the null curvature components verify, also very roughly,
ViIR=VR+T-R
VsR=R+T" R (8)

(6)

The precise form of these equations is given in the next section, see (47)—(50). Among these equations
we note the following two, which play an essential role in Christodoulou’s argument for the formation
of trapped surfaces.

1
Vatry + 5 (trx)° = —[{" — 2wiry 9)
S S -~ 1 ~
Vsx + étrxx = V&n+ 2wy — §tr)@ + n&n (10)

1.3. Heuristic argument. We start by making some important simplifying assumptions. As men-
tioned above we assume that our data is trivial along H,, i.e. assume that H, extends for u < 0
and the spacetime (M, g) is Minkowskian for u < 0 and all values of v > 0. We introduce a small
parameter 0 > 0 and restrict the values of u to 0 < wu <9, i.e. u, = 9.

”

The colored region on the right repre-
sents the domain D(u,u), 0 < u < 4.
The same picture is represented, more
realistically on the left The lower red
region on the left is the flat portion of
Hy, u = 0, while the upper red region,
corresponding to a large values of u, is
trapped starting with u = 6.

"
B N Y
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We also make the following additional assumptions, assumed to hold in the entire slab D(u,d). We
denote by r = r(u,u) the radius of the 2-surfaces S = S(u,u), i.e. |S(u,u)| = 4mr?.

e For small §, u, u are comparable with their standard values in flat space, i.e. u =~
H=r0 - We also assume that Q ~ 1, £ ~ —1.

e Assume that try is close to its value in flat space, i.e. try ~ —%.

e Assume that the term E = V&n + 2wy — %trxX + n®n on the right hand side of equation
(10) is sufficiently small and can be neglected in a first approximation. Assume also that we

can neglect the term tryw on the right hand side of (9).

, u ~

t—r+ro
2

Given these assumptions we can rewrite (9),

d
—t < _Ix]2
S X
or, integrating,
() € r(w0) - [ i) (11)
0

Multiplying (10) by x we deduce,
d . . .
XXX = X
u

or, in view of our assumptions for try, and g—’”
A u

d 52 o d dr o 21 ~12 2dr 24
_— fr— —_— 2— = —t JR— .E
- (r71%P) PP R 2 X = Pty o) + %
2 2 dr
— 21412 _t _ _1 2A.E::F
r?1x P ( (rerT)—i—r( +du))—|—rx

l.e.
ﬂwmm:ﬁmmwum+/Fwwm’
0

Therefore, as f05 || is negligible in D, we deduce
r?IX P (u, w) = 120, w)[X[*(0, w)
We now freely prescribe x along the initial hypersurface H(go,a)’ ie.
X(0,2) = Xo(u) (12)
for some traceless 2 tensor y,. We deduce,
r2(0, u)
r2(u, u)

X (u, u) =

|>20|2(Q)




TRAPPED SURFACES 5
or, since |u| < 9§ and r(u,u) =19+ u — u,

2
- T ~
|X|2(U,Q) ~ (7"0 _Ou)g |X0’2(ﬂ>

Thus, returning to (11),

2
2 rH

t < — e 2 /dl
rx(u,u) < P (TO—U)Q/O Ixo|*(u')du' + error

Hence, for small §, the necessary condition to have try(u,u) <0 is,

2(rg — ) o
2 < / |X0‘2
o 0

Analyzing equation (9) along H, we easily deduce that the condition for the initial hypersurface Hy
not to contain trapped hypersurfaces is,
5
. 2
[ <2
0 To

i.e. we are led to prescribe xq such that,
2(rg — u J . 2
At o [k <2 (13)

We thus expect, following Christodoulou, that trapped surfaces may form if (13) is verified.

1.4. Short pulse data. To prove such a result however we need to check that all the assumptions
we made above can be verified. To start with, the assumption (13) requires, in particular, an L*
upper bound of the form,

Xo| S 6712

If we can show that such a bound persist in D then, in order to control the error terms F we need,
for some ¢ > 0,

2 _ c d’f’ _ c _ —1/2+c
tTX‘FT—O((s )7 du+1_0(5 )7 77—0(5 )7

w=0@0"1), V=05, (14)

Other bounds will be however needed as we have to take into account all null structure equations.
We face, in particular, the difficulty that most null structure equations have curvature components
as sources. Thus we are obliged to derive bounds not just for all Ricci coefficients x,w,n,n, x,w but
also for all null curvature components «, 3, p, o, 3, a. In his work [Chr| Christodoulou has been able
to derive such estimates starting with an ansatz (which he calls short pulse) for the initial data Yo.
More precisely he assumes, in addition to the triviality of the initial data along H, that x, verifies,
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relative to coordinates u and transported coordinates w along Hy, (i.e. transported with respect to
)
Xo(w,w) = 672 fo(67 u, w) (15)

where fj is a fixed traceless, symmetric S-tangent two tensor along Hy. This ansatz is consistent with
the following more general condition, for sufficiently large number of derivatives N and sufficiently
small § > 0.

51/2+k||VZVm)A(0”L2(O,g) < 00, 0<k+m< N, 0<u< 0. (16)

Notation. Here ||+ || 12(u) denotes the standard L? norm for tensorfields on S(u,u). Whenever there
is no possible confusion we will also denote these norms by ||-[|22(s). We shall also denote by ||- || 22
and || - || 2y the standard L? norms along the null hypersurfaces H = H, and H = H,,.

Remark 1.5. In [Chr| Christodoulou also includes weights, depending on |ul, in his estimates. These
allow him to derive not only a local result but also one with data at past null infinity. In our work
here we only concentrate on the local result, for |u| < 1, and thus drop the weights.

Assumption (16), together with the null structure equations (7) and null Bianchi equations (8) leads
to the following estimates for the null curvature components, along the initial null hypersurface Hy,

Sllatll r2crey + 18l c2cae) + 021 (ps o)l 22(rg) + 6218l r2(rey < 00
(17)

Consistent with (16), the angular derivatives of «, 3, p, o, f obey the same scaling as in (17) while
each V4 derivative costs an additional power of §.

_1 _
SVl rece) + IV B2y + 0721V (0, o) |12y + 62V Bl r2(myy < 00,
8|V acrl| r2(me) + 611V aBlr2(e) + 62V alp, o) L2quy) + 02V aBl r2qmyy < 00
(18)

Moreover one can derive estimates for the Ricci coefficients, in various norms, weighted by appro-
priated powers of §. Note that if one were to neglect the quadratic terms in (8) than the expected
scaling behavior in ¢ would have been,

Slledll z2 oy + 1Bl z2cg) + 61 (ps )l r2ae) + 0 2Bl 12y < 00

Most of the body of work in [Chr| is to prove that these estimates can be propagated in the entire
space-time region D(u., d), with u, of size one and § sufficiently small, and thus fulfill the necessary
conditions for the formation of a trapped surface along the lines of the heuristic argument presented
above. The proof of such estimates, which follows the main outline of the proof of stability of
Minkowski space, as in [Chr-Kl] and [K-Ni|, requires a step by step analysis to make sure that all
estimates are consistent with the assigned powers of . This task is made particularly taxing in view
of the fact that there are many nonlinear interferences which have to be tracked precisely.
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1.6. Outline of Christodoulou’s propagation estimates. To see what this entails it pays to say
a few words about the strategy of the proof. As in [Chr-Kl] and [K-Ni] the centerpiece of the entire
proof consists in proving spacetime curvature estimates consistent with (17). In this case however
the primary attention has to be given to the stratification of the estimates for different curvature
components based on their J-weights. This is done using the Bianchi identities,

DieRagpys = 0,

the associated Bel-Robinson tensor () and carefully chosen vectorfields X whose deformation tensors
(X)71 depend only on the Ricci coefficients x,w,n, 7, X;w. These vectorfields can be used either as
commutation vectorfields or multipliers. In the latter case we would have,

DY (Qupys XYPZ%) = (M, Y, Z) + ... (19)

As multipliers X, Y, Z we can chose the vectorfields es, e;. The choice X =Y = Z = e4 leads to,
after integration on D(u, u),

al? 2/ gy (0.) Jr||5H HOW) T ||04||22 Oy T 3@((4)7364764) (20)
L2(HPY ™) L2(Hy ™)

where 7 is the deformation tensor of e4. Since the initial data at HO verifies (17) we write,

% ([leell?, (W) +HBHL2@§M)) = &[lalf?, (H) +352//D( 7, €4, )

and expect to bound the double integral term on the right. One can derive similar identities for
all other possible choices of XY, Z among the set {e3,es}. This allows one to estimate both the
L?(H) norms of «, 3, p, o, and the L*(H) of f3,p, o, 3,a, with appropriate § weights, in terms
of corresponding §-weighted L?(H,) norms of «, 3, p, o, 3 and spacetime integrals of Q( ¥, e,,e,)
and Q(®m, e, e,) with p,v = 3,4. We can thus extend the initial estimates (17) to every null
hypersurface H, in our slab provided that we can bound all the double integrals on the right hand
side of our integral identities. Now, both deformation tensors 7 and ®7 can be expressed in
terms of our connection coefficients x,w,n,n,w, x. Since @ is quadratic in R, to be able to close
estimates for our null curvature components we need to derive sup-norm estimates for all our Ricci
coefficients. This leads us to the second pillar of the construction which is to derive estimates for Ricci
coefficients in terms of the null curvature components, with the help of the null structure equations
(7). Combining these equations with the constrained equations, on fixed 2 surfaces S(u,u), and the
null Bianchi identities we are lead to precise J- weighted estimates of all Ricci coefficients in terms of
§- weighted L?(H) and L*(H) norms of all null curvature components and their derivatives. Thus, in
a first approximation, the error terms in the above integral identities are quadratic in R and linear
in their first derivatives. Therefore to be able to close one needs:

(1) Derive higher derivative estimates for the curvature components.

(2) Make sure that all error terms can be controlled in terms of the principal terms, in the
corresponding energy inequality, or terms which have already been estimated at previous
steps.
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Note that 2) here seems counterintuitive in view of the large data character of the problem under
consideration. Indeed, typically, in such situations one cannot expect to control the nonlinear error
terms by the principal energy terms. The miracle here is that the error terms are either linear (in
the main energy terms), or they contain factors which have been already estimated in previous steps,
or are truly nonlinear, in which case they are small in powers of § relative to the principal energy
terms. This is due to the structure of the error terms, reminiscent of the null condition, in which the
factors combine in such a way that the total weight in powers of d is positive.

In his work Christodoulou derives estimates for the first two derivatives of the curvature tensor by
commuting the Bianchi identities with the vectorfields L, S = %(ueg + ue,) and rotation vectorfields
O. This process leads to a proliferation of error terms. Moreover not all error terms which are
generated this way verify the following essential requirement, alluded above; that they lead to an
overall factor of 6¢, with a positive exponent ¢, and thus can be absorbed on the left, for sufficiently
small §. Due to nonlinear interactions, Christodoulou has to tackle anomalous error terms which are
O(1) in §. Yet he is able to show, by a careful step by step analysis, that all such terms are, indeed,
linear relative to terms which have already been estimated and thus only quadratic (i.e. linear in the
principal energy norm) relative to the remaining components. They can therefore be absorbed by a
standard Gronwall inequality. A similar phenomenon helps him to estimate, step by step, all Ricci
coefficients.

1.7. New initial conditions. As explained above the main purpose of this paper is to embed
the short-pulse ansatz of Christodoulou into a more general set of initial conditions, based on a
different underlying scaling. The new scaling, which we incorporate into our basic norms, allows
us to conceptualize the separation between the linear and nonlinear terms in the null Bianchi and
null structure equations and explain the favorable appearance of additional positive powers of §
in the nonlinear error terms mentioned above. Though the initial conditions required to include
Christodoulou’s data do not quite satisfy this scaling, the generated anomalies are fewer and thus
much easier to track.

We start with the observation that a natural alternative to (15) which comes to mind, related to the
familiar parabolic scaling on null hyperplanes in Minkowski space, is

Xo(u, w) = 072 (67w, 6712w), (21)

This does not quite make sense in our framework of compact 2-surfaces S(u, u), unless of course one

is willing to consider the initial data xo(u,w) supported in the angular sector w of size § 2. Such a
support assumption would be however in contradiction with the lower bound in (13) required to be
satisfied for each w € S2.

The following interpretation of (21) (compare with (16)) makes sense however.

ML VAV ™0l L2 (0.6) < 00, 0<k+m<N (22)
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Just as in the derivation of (17) we can use null structure equations (7) and null Bianchi equations
(8) to derive, from (22),

52 (|exll Laqargy + 1Bl p2ce) + 621 (s o) | n2(ar) + 6 1Bl L2(ay) < 00
IVl r2rg) + 0PIV B L2(ay) + IV (0 o) |20y + 62V B L2 (y) < 00, (23)
82|V acr|| 2oy + 61|V aB 20y + 62V alp, o) r2(me) + 11 VaBl 12015y < 00

We refer to these conditions, consistent with the null parabolic scaling, as d-coherent assumptions.
Observe that, unlike in the Christodoulou’s case, each V derivative costs a 6~1/2. It turns out that
proving the propagation of such estimates can be done easily and systematically without the need of
the step by step procedure mentioned earlier. In fact one can show, in this case, that all error terms,
generated in the process of the energy estimates are either quadratic in the curvature and can be
easily taken care by Gronwall or, if cubic, they must come with a factor of §'/2 and therefore can be
all absorbed for small values of §.

The main problem with the ansatz (21), as with initial conditions (22), however, is that it is incon-
sistent with the formation of trapped surfaces requirements discussed above. One can only hope to
show that the expansion scalar try along H,, at S(u,u), for some u ~ 1, will become negative® only
in a small angular sector of size 6'/2. This is because, consistent with (23), condition (13) may only
be satisfied in such a sector.

At this point we abandon the ansatz formulation of the characteristic initial data problem for the
Einstein-vacuum equations and replace with an hierarchy of bounds, which “interpolate” between
the regular §-coherent assumptions (23) and the estimates (17)-(18) following from Christodoulou’s
short pulse ansatz.

At the level of curvature the new assumptions correspond to:
Ol 2oy + 18Il e2caro) + 0721 (py )| c2atg) + 0~ 18]l 2y < 00
3|1V all 2y + 821V Bl w20y + 1V (0 0) | r2 a0y + 621V Bl 2 arp) < 00, (24)
IV actll 2 (a0) + 011V aBl| 2 rig) + 821 (Vap, Vao) |l 210 + [ VaBll r2(ar) < 00

Observe that, by comparison with (23), the only anomalous terms are ||c||z2(m,) and || Vaa|| L2 (sy)-

In the next section we make precise our initial data assumptions, state the main results and explain
the strategy of the proof. We close the discussion here with a summary of our approach

(1) Replace the short pulse ansatz of Christodoulou with a larger class of data satisfying (24)
(2) Prove propagation of the curvature estimates consistent with (24) through the domain of
existence and show that these (weaker) estimates are sufficient for the existence result

2We could call such a region locally trapped, or a pre-scar
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(3) The propagation estimates involve only the L? based norms of curvature and its first deriva-
tives but generate nonlinear terms involving both the Ricci coefficients and its first derivatives.
To close such estimates requires addressing two major difficulties

e Regularity problem: show that the L? propagation curvature estimates are sufficient
to control the Ricci coefficients (in L*°) and its first and even second derivatives in
appropriate norms required by the nonlinear terms in the curvature estimates

e )-consistency problem: show that the nonlinear terms are either effectively linear in
(curvature and its derivatives), and thus can be handled by the Gronwall inequality, or
contain a smallness coefficient generated by an additional power of the parameter 4. Our
approach, based on the weaker propagation estimates (24), is particularly suitable for
dealing with this problem in that a) it generates fewer borderline terms of the first kind
and b) it naturally lends itself to the introduction of a notion of scale-invariant norms
relative to which the structure of the nonlinear terms and their d-smallness become
apparent and nearly universal.

(4) The propagation estimates consistent with (24), and the corresponding Ricci coefficient esti-
mates which it generate, are not strong enough to prove the formation of a trapped surface.
However, once such estimates have been proved in the entire domain D(u ~ 1,u = J) it is
straightforward to impose slightly stronger conditions on the initial data and show that they
lead to spacetimes which satisfy all the necessary conditions to implement, rigorously, the
informal argument presented above.

2. MAIN RESULTS

2.1. Initial data assumptions. We define the initial data quantity,
70 = sup IO0(u) (25)

0<u<s
where, with the notation convention in (16),

IOWw) = 6"Rollz~ + > 8210V Kol r20m)

0<k<2
£ S S (V) Vol o
0<k<1 1<m<4

Our main assumption, replacing Christodoulou’s ansatz, is

70 < x (26)

We show that, under this assumption and for sufficiently small § > 0, the spacetime slab D(u, §) can
be extended for values of u > 1, with precise estimates for all Ricci coefficients of the double null
foliation and null components of the curvature tensor. We can then show, by a slight modification

of this assumption together with Christodoulou’s lower bound assumption on f05 |%0]? (see equations
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14, 15 in [Chr]), that a trapped surface must form in D(u ~ 1,4). As in the case of [Chr]) most of
the work is required to prove the semi global result concerning the double null foliation. Once this is
established the actual formation of trapped surfaces result is proved by making a slight modification
of the main assumption (26) and following the heuristic argument outlined below. In addition we
show that a small modification of the regular d-coherence assumption leads to the formation of a
pre-scar.

2.2. Curvature norms. To give a precise formulation of our result we need to introduce the fol-
lowing norms.

Ro(usn) i = Slallyp + 18l g0 + 6720 (0,0 |y + 6~ By
Ru(u,w): = 890l + 82 V8 g + 90,0l oo + 0~V o
+ 81Vl g (27)
Ro(w,w): = 018l o0 + 10,0l oo + 6~ Bl o0 + 5"y
Ri(u,w): = 8[Bl 0 + 32190 0) g0 + VBl o0 + 6721Vl

+ 571HV%Q”ESM)

We also set Rg, R1 to be the supremum over u,u in our spacetime slab of Ro(u, u) and respectively
Ri(u,u) and similarly for the norms R. Also we write R = Ry + Ry and R = R, + R,. Finally,
R denotes the initial value for the norm R i.e.,

RO = sup (Ro(0,u) + Ry (0, u))

0<u<é

Remark that the only V, derivative appearing in the norms above is that of . All other V,
derivatives can be deduced from the null Bianchi equations and thus do not need to be incorporated
in our norms. We denote the norms of a specific curvature component ¢ by Rq[¢)] and R[]

2.3. Ricci coeflicient norms. : We introduce norms for the Ricci coefficients x, trx, w,n,n,w, X

and tr/i = trx — try,, with trx, = —= 1

P the flat value of try along the initial hypersurface H,.
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For any S = S(u,u) we introduce norms O, ,(u, u),
SO0 o(u,) = 8 ([Rllzoe(s) + lwllzoo(s)) + [1lloegs) + 10l s)
+ 5P (IR Nleeis) + ltrxllzoe(s) + lwllze(s))
DO0aw,w) = 6| RllLscs) + 87 wllLas) + 67 (Inllacs) + nllacs))
+ 5% ey + 07 (lerxllzaes) + llwllacs))
(28)
DOy a(u,u) = 53/4(||VX||L4 ) + Wllzaes)) + 84 (IVllzacs) + VnllLacs))
+ TV IVXlacs) + llwllzacs))
DOy s(u,u) = 51/2(HVXHL2 + |wllzas)) + 1Vallzzs) + 1Vl
+ 52 (IIVllzags) + llwllzocs))
Also,
DO@,u) = 821Vl oo, + V20 o g0m))
V20l o o, + 1V 0l o 0))
3 2(IV2R o oy, + V20 o o))

+ o+

and,

DO(u,u) 02 (IV2Xl oy + IV o))

+ (”V%”p@gm) + ||v2ﬂ||L2(§$v“)))

+ 571/2(HV2X HLQ(ES‘“)) + Hvzgl‘Lz(ﬂgau)))

We define the norms (5)0074, (5)0172, (5)0174, (H)O, O to be the supremum over all values of u, u
in our slab of the corresponding norms. Finally we set set total Ricci norm O,

O = (S)Oo,oo + (5)0074 + (S)OL2 + (5)01,4 + (H) + H) O

and by O© the corresponding norm of the initial hypersurface Hy. We further differentiate between
the first order norms O = (5)00,4 + (S)Ol’g and second order ones, Ojy = (5)0174.

2.4. Main Theorems. We are now ready to state our main result. The first result follows from
analyzing assumption (25) on the initial hypersurface Hy.

Proposition 2.5. In view of our initial assumption (25) we have, for sufficiently small 6 > 0, along
HO;

RO 4 00 < 7O (29)
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The proof of the proposition follows by analyzing the null structure and null Bianchi equations
restricted to the initial hypersurface Hy, as in chapter 2 of [Chr|. In view of this result we may
replace assumption (25) with (29), as an initial data assumption. Alternatively we may assume only
that R < T Tt is not too hard to see, following roughly the same steps as in the proof of
proposition 2.5, that, for small §, we would also have O(© < (),

Theorem 2.6 (Main Theorem). Assume that R < IO for an arbitrary constant T®). Then, there
exists a sufficiently small 6 > 0 such that,

R+R+0 < 1O, (30)
Theorem 2.7. Assume that , in addition to (25), we also have, for 2 < k < 4
621187 V)* Roll 20 < € (31)

for a sufficiently small parameter € such that 0 < § < e. Assume also that xo verifies (13). Then,
for 6 > 0 sufficiently small, a trapped surface must form in the slab D(u ~ 1,9).

Proof. We sketch below the proof of theorem 2.7.

Step 1. We reinterpret (31) in terms of the curvature norms according to the following:

Proposition 2.8. Under the smallness condition (31) the initial curvature norms satisfy, in addition
to the estimates of proposition 2.5,

51/2||Vﬁ||H(()0,5) -+ ||V(,0, O->HH(<JO’5> + 5*1/2HV§HH(()076> <e (32)

The proof is standard and will be omitted.

Step 2. We show, see the end of section 15, that this condition can be propagated in the entire slab
D(u ~1,4),

Proposition 2.9. Under the assumptions (31) we have, uniformly inu < 1,u <6, for § sufficiently
small,

32V B gow + V() o + 32V 0w < e.

5Y2|V (p, U)Hﬂg,w + HVﬁHﬂg,u) + 5*1/2“Vg”£§),u) <e

(33)

Step 3. We return to the system (9)- (10),
1
Vatry + §(trx)2 = —|x* - 2wtry

S S ~ .1 ~
Vsx + étrxx = V&n+2wx — étrxx + n&n

responsible, as we have seen, for the formation of a trapped surface. Theorem 2.6 implies that
the terms ignored in our heuristic derivation are negligible. Specifically, the bounds |wtry| < 5_%,
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w| + [trx % | 4 [n@n| < 1 should be compared to the principle terms of size 6! and 62 in the first
and the second equation respectively. We can also easily verify the other bounds in (14) with the
exception of that for V&n,. The additional condition (31) is imposed in fact precisely in order to
assure that the linear term V®n in (10) is sufficiently small. To control this term we rely on the
following proposition.

Proposition 2.10. Under the assumptions of Theorem 2.7 the solution ® ¢ of the problem Vég)qzﬁ =
V&n, with trivial initial data on Hy, verifies,

g < C5 2 (34)

The proof of proposition 2.10, which appear is section 15.12, depends on the arguments of section 11,
in particular proposition 11.12. The argument for the formation of a trapped surface then proceeds
as above with a renormalized quantity (¥ —®) ¢) in place of ¥. Note that in view of the estimate on
)¢ the size of (Y —3) ¢) is comparable to that . An important comment in this regard, is that our
curvature propagation estimates does not allow us to control the L™ norm of V&, let alone prove
the bound stated in (14). This regularity problem, which is discussed in the two remarks below, is
resolved with the help of the renormalized estimates for the Ricci coefficients in section 11, of which
Proposition 2.10 is an important example. U

Remark 1. We remark that while a loss of derivatives occurs when passing from assumption (26)
to assumption R(® < Z(® in the main theorem, no further derivative losses occurs in (30).
Remark 2. By contrast with [Chr], where two derivatives of the curvature and up to three deriva-
tives of the Ricci coefficients are needed, here we need only one derivative of the curvature and
two of the Ricci coefficients. This is due to our new refined estimates for the deformation tensor
of the angular momentum vectorfields O. As mentioned above these vectorfields are needed to de-
rive estimates for the angular derivatives of the null curvature components. These new estimates
for the deformation tensor of the angular momentum vectorfields O are based on the renormalized
estimates for the Ricci coefficients developed in Section 11. Together with the trace estimates for the
curvature components, which serve as a replacement for the failed H'(S) C L*°(S) embedding on a
2-dimensional surface S, proved in Section 12, they allow us to limit the degree of differentiability
required in the proof to the L? norms of curvature and its first derivatives. Similar ideas related
to the gain of differentiability via renormalization and trace estimates were exploited in our earlier
work [K-R:causal].

. . . 1
Our next and final result concerns the formation of a pre-scar in an angular sector of size 9z.

Theorem 2.11. Let € be a small parameter such that 0 < § < €. Assume that the initial data X
satisfies

O %ol + D D ell(€157 V)M (6Va) Kol 20w < 00

0<k<1 0<m<4



TRAPPED SURFACES 15

and that the lower bound in (13) is verified in angular sector w € A of size 5z. Then, for 6 > 0
sufficiently small, a pre-scar must form in the slab D(u = 1,0), i.e. the expansion scalar try(u,u,w)
becomes stricly negative for some values of u ~ 1, u =10 and all w € A.

Remark. Theorem 2.11 corresponds to the initial data consistent with the ansatz
Ro(u,w) = 672 fo(67"u, 67 %ew)

and localized in an angular sector of size §2¢1. This should be compared with the data discussed
in (21). As in Theorem 2.7 additional smallness provided by the parameter € is only needed to
guarantee the formation of a pre-scar but not required for the proof of the existence result. A direct
comparison shows that the data of Theorem 2.11 is significantly more regular than that of Theorems
2.6 and 2.7. In particular, it essentially corresponds to the d-coherent assumptions, consistent with
the natural null parabolic scaling discussed in (23). Thus the proof of Theorem 2.11 is significantly
easier than that of our main result and will be omitted.

2.12. Strategy of the proof. We divide proof of the main theorem in three parts. In the first
part we derive estimates for the Ricci coefficients norms @ in terms of the initial data Z(® and the
curvature norms R. More precisely we prove:

Theorem 2.13 (Theorem A). Assume that O©) < 0o and R < co. There exists a constant C
depending only on O©) and R, R such that,

0 SCOYR,R). (35)
Moreover,
(S)OOA[X] < 00 4 C’(I(O), R, R) S1/4 (36)

We prove the theorem by a bootstrap argument. We start by assuming that there exists a sufficiently
large constant Ag such that,

SO0 < Ag. (37)
Based on this assumption we show that, if 0 is sufficiently small, estimate (35) also holds. This allows

us to derive a better estimate than (37).

In the second part we need to define angular momentum operators O and show that their deformation
tensors verify compatible estimates, stated in Theorem B, at the end of section 13 .

Finally in the last and main part we need to use the estimates of Theorems A and B to derive
estimates for the curvature norms R and thus end the proof of the main theorem.

Theorem 2.14 (Theorem C). There exists 0 sufficiently small such that,
R+R<T, (38)
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Theorem C is proved in sections 14 and 15.

2.15. Signature and Scaling. Our norms are intimately tied with a natural scaling which we
introduce below.

Signature. To every null curvature component «, 53, p, o, 5, a, null Ricci coefficients components
X, ¢, 1,1, w,w, and metric 7 we assign a signature according to the following rule:

sgn(9) = 1 Nu(6) + 5 - Na(d) +0- Ny(g) — 1 (39)

where Ny(¢), N3(¢), No(¢) denote the number of times ey, respectively es and (e,)q=1.2, which appears
in the definition of ¢. Thus,

sgn(a) =2, sgn(B)=1+1/2, sgn(p,o) =1, sgn(B)=1/2, sgn(a)=0.

Also,
sgn(x) = sgn(w) =1, sgn(¢,n,n) =1/2, sgn(x) = sgn(w) = sgn(y) = 0.

Consistent with this definition we have, for any given null component ¢,

1
sgn(Vyo) =1+ sgn(¢), sgn(Veo) = 5 +sgn(9), sgn(Vso) = sgn(e).
Also, based on our convention,

sgn ey - ¢2) = sgn(r) + sgn(ez).

Remark.  All terms in a given null structure or null Bianchi identity (see equations (47)—(53))
have the same overall signature.

We now introduce a notion of scale for any quantity ¢ which has a signature sgn(¢), in particular for
our basic null curvature quantities «, 3, p, o, 5, @ and null Ricci coefficients components x, ¢, 7,7, w, w.
This scaling plays a fundamental role in our work.

Definition 2.16. For an arbitrary horizontal tensor-field ¢, with a well defined signature sgn(¢),
we set:

se(d) = —sgn(9) + 3 (10)

Observe that sc(Vo¢) = sc(¢) — 1, sc(Vo) = sc(¢) — &, se(Vp) = sc(¢). For a given product of two

horizontal tensor-fields we have,

selgn - 62) = scl(6) + 5e(n) — 5 (41)
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2.17. Scale invariant norms. For any horizontal tensor-field ¢ with scale sc(y)) we define the
following scale invariant norms along the null hypersurfaces H = H and H=H, 0.1,

16z oy = 0O llizanys 1¥le, any = 62 [l 2o

(42)
We also define the scale invariant norms on the 2 surfaces S = Sy 4,
lller 9 = 5 el (43)
In particular,
—sc(yp)—2 §se
\|¢’|cgsc>(5) = 52|y 12 ), Hd’”ﬁf:c) = 57O ||| oo sy
Observe that we have,
2 a1 [F 2 / 2 “ 2 /
= 9 N, N ,od 44
912, o, L1l s WOy ey = [ 101 et (4)

We denote the scale invariant L norm in D by ||¢|| e
Y (s0)

Remark. Observe that the noms above are scale invariant if we take into account the scales of the
L? noms along H and H, given by,

1 1
Sell gy ) = 1 sell llzzqagy ) = 55 selll lleees)) = 2

Moreover they are consistent to the following convention,

Vi~ Vad2, Vi~l

In view of (41) all standard product estimates in the usual L? spaces translate into product estimates
in L, spaces with a gain of 6'/2. Thus, for example,

lor eller o S 8P brlles s - Inbelles, s (45)
or,
[1 ol ) S 51/2||¢1||£<(’fc) N2llez (46)
Remark 2.18. If f is a scalar function constant along the surfaces S(u,u) C D, we have
Il s S 1ller, ¢

(.5(,) (.SL)

or, if f is also bounded on H,
If - ¢||L§Sc)(H) S ||¢||L§sc)(H)

This remark applies in particular to the constant trx, = 4

2rotu—u’
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We can reinterpret our main curvature and Ricci coefficient norms in light of the scale invariant
norms. Thus (27) can be rewritten in the form?,

Ro(u,u): = 51/2||0‘H£%SC)(H£M>) +11(8, p, 0, ﬁ)HCfSC)(Hi"@)
Ri(u,u): = 51/2HV404H£?SC>(H£0,@) + |[V(«a, B, p, o, Q)HE%SC)(HS)&»)
Rou,w): = 0218 o+ 100,08l oo
Ri(u,u): = HVBQHE@)(@QW) +[IV(8,p,0,8, Q)HL@C)(Q;O’“))

Remark 2.19. All curvature norms are scale invariant except for the anomalous |aff . (O
(s0) U
HV40¢||£2 (o , and ||6H£2 ) By abuse of language, in a given context, we refer to «, re-

spectlvely 3, as anomalous

To rectify the anomaly of a we introduce an additional scale-invariant norm

R[] := sup HaH[;z o),
SHCH

where °H is a piece of the hypersurface H = H2? obtained by evolving a disc S5 C S, o of radius 4 2
along the integral curves of the vectorfield ey.

The Ricci coefficient norms (28) can be written,
S Op oo (usw) = [|(% w11, trx, X, 0) [, ()

(S)OOA(%H) 51/4(||X”£‘(‘Sc> +”X‘|E?sc> )

+ It w,m,m, tex @)l s)
3)01,4(%2)
(3)01,2(%2)

IV 06w, mmtrx X, @)l o)

IV 0w, trx, X, w)llez, o)

DO(wu) = V206w nnt00 %@l o)

Remark 2.20. All quantities are scale invariant except for X, x in the 5?80)(5) norm.

As before we complement the anomalous norms for y, x by the local, non-anomalous, scale-invariant
norms

Op X (u, w) = sup [[Xles, os), 05 % ] (u, u) = sup [[Xles, os),
58cS 5scS

where 95 is a disk of radius 62 obtained by transporting from the initial data embedded in S, .

3We use the short hand notation ||(3, p, mé)HL(2 (HED) = ||ﬁ\|£? (O + ||p||£(2 () + ||O'||£(2 () +...



TRAPPED SURFACES 19

3. MAIN EQUATIONS. PRELIMINARIES

3.1. Null structure equations. We recall the null structure equations (see section 3.1 in [K-Ni] or

[Chr].)

Vax = —x-x —2wx — «
Vax = —x X —2wx —a
Van=—-x-(n—n) —p

Ven=-x-(n—n+p (47)
Viw = 20w+ oy -l = S =) - (1) — <0+ + =
aw = 2ww + ol =0l = 2 —n) - (n+n0) = cn+al”+5p

3 1 1 1
V3w=2w£+1\n—ﬂ!2+1(n—ﬂ)'(n+ﬂ)—§|n+ﬂ!2+§p

and the constraint equations

1 1 1
div x = QVUX - 5(77 —n) (X — §tTX) - B,
1 1 1
div y = =Vt —(n — (v — =t
Y 2V rx—i—2(n n) - (X 2@)—1—@ (48)

curl n = —curlp =0+ x A X

1 1
K:_p""?%'X_ZtrX'UX

with K the Gauss curvature of the surfaces S. The first two equation in (47) can also be written in
the form,

1
Vatrx + i(trx)2 = —|x* — 2wtry
Vuix + tryx = 2wy — «

1 (49)
Vstry + E(trx)Q = —2wtry — X B
VX +tryx = —2wx —a
Also, with p = p — %)QX,
1 o )
Vtry + §trxtrx = 2wtry + 2p + 2div n + 2|n|
B N B - (50)

1
Vstry + §trxtrx = 2wtry + 2p + 2div 1 + 2|n|?
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and?,

Vsx + %trx)z = Vn + 2wy — %trxi + n®@n 51
Vax + %trxX = V@Q + 2wy — %trx}% + Q@Q
Remark. The transport equations for w and w in (47) are obtained from the null structure equation,
Viw+Vsw=¢-(n—n) —n-n+4dww+p
and the commutation relation, for a scalar f (see proposition 4.8.1 in [K-Ni])
Vs, Vulf = —2wVsf + 2wV f +4C -V f (52)
applied to f = log ).

3.2. Null Bianchi. We record below the null Bianchi identities (Observe that we can eliminate
¢ = 4(n —n) in the equations below),
1 ~ ~
Vsa+ Strxa = VS + dwa — 3(Xp +" X0) + (¢ +41) 8B,
V4B + 2trx S = div a — 2w + na,
V3B +trxB = Vp + 2wB +* Vo + 2 - B+ 3(np +" no),

—_

3
V4J+§trxa:—div*ﬂ+—X Fa—(F =200,

2
3 1
Vga—i-itrxaz—div *é—i-iA Ta—(CT B2 B,
3 1 (53)
V4p—|—§trxp:divﬁ—§X ca+ (- B+2n- 0,
3 1.
V3p+§tI‘X,O: —divﬁ—éx~g+C-§—2n-ﬁ,
VB +trxB =—-Vp+" Vo +2wB+2x - - 3(np —"no),
V3B + 2trx = —diva — 2w + 1 - a,
1 ~ ~
Via + strxa = V&S +4wa = 3(Xp =" X0) + (( —4n)®f
We record below commutation formulae between V and V4, Vs:
Lemma 3.3. For a scalar function f:
1
V4, VIf = 5(77 +n)Dyf —x-Vf (54)
1

4Recall the notation (u@v)ab = UgUp + UpVq — (U - V)Ogp-
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For a 1-form tangent to S':

1
[D4, Va]Ub - _Xacchb+ Cac *ﬁbUc + 5(% + ﬂa>D4Ub
- _Xacﬁb Uc+XabQ' U
1
[D37 Va][]b = _Xacchb—i_ Cac *ébUc + 5(% + QG)D?’Ub

= XUt x,nU

In particular,

1 1
V4, div]U = —§trxdivU—)2-VU—B-U+§(17+Q)'V4U

1

- Q-)Z-U—;frxg-U—i—ﬁ)@-U
1 1

Vs, div U = _étrxdz‘vU—X-VU+§-U+§(77+Q)~V4U

1
— n-;%-U—Etrj_(n-UnLtrxn-U

3.4. Integral formulas. Given a scalar function f in D we have®,

d df
f fs(u’u)( + Qtrx f) / (ea(f) + trx [f)

d_ﬂ S (u,u) d@ S (u,u)

d df

el f = / — + Qtryf —/ Qes(f) +trxf
du S(u,u) S(u,u) (du - ) S(u,u) ( 3( ) o )

As a consequence of these we deduce, for any horizontal tensorfield ),

1
It = 1B astaan + [ ) 2006 T+ erxof)
: (56)

1
101225y = 1017250, + /H(“’O) 2Q(¢p - Vatp + §trx|¢|2)

Proof. The first formula in (56) is derived as follows,

u

d
| ¢||%2(5(w)) = ||77Z)||%2(S(u,0)) +/ @(/S(w) ¥[?)

0

1
= Wlsuon + [, 2600 Ve + Seudu?)
H U

u

%see for example Lemma 3.1.3 in [K-Ni]
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The second formula is proved in the same manner. O

3.5. Hodge systems. We work with the following Hodge operators acting on the leaves S = S(u, u)
of our double null foliation.

(1) The operator D; takes any 1-form F' into the pairs of functions (div F', curl F')
(2) The operator Dy takes any S tangent symmetric, traceless tensor F' into the S tangent one
form div F'.
(3) The operator *D; takes the pair of scalar functions (p, o) into the S-tangent 1-form® —Vp +
*Vo.
4) The operator *Dy takes 1-forms F on S into the 2-covariant, symmetric, traceless tensors
y

—%E/\Fv with Lz the traceless part of the Lie derivative of the metric v relative to F', i.e.

—_—

(L), = VoFy + VaF, — (div F)ye.

The kernels of both D; and D, in L?*(S) are trivial and that *Dj, resp. *D, are the L? adjoints of
D, respectively Dy. The kernel of *D; consists of pairs of constant functions (p, o) while that of
*D, consists of the set of all conformal Killing vectorfields on S. In particular the L2- range of D;
consists of all pairs of functions p, o on S with vanishing mean. The L? range of D, consists of all L?
integrable 1-forms on S which are orthogonal to the Lie algebra of all conformal Killing vectorfields
on S. Accordingly we shall consider the inverse operators D; ' and D, ' and implicitly assume that
they are defined on the L? subspaces identified above.

Finally we record the following simple identities,
*D;-D; = —-A+K, D, "Dy =-A (57)
1 1
*Dy-Dy = —§A+K, D, - *D2:—§(A+K) (58)

Proposition 3.6. Let (S,v) be a compact manifold with Gauss curvature K.

i.) The following identity holds for vectorfields 1 on S:

/ (IV6P + KJof) = / (Idiv 9P + |curl YJ) = / Dy’ (59)
S S S

ii.) The following identity holds for symmetric, traceless, 2-tensorfields 1» on S':

Vo2 + 2K =2 [ |div|?> =2 | |Dyth]? 60
J o+ 2x1p) =2 [ Jdio v =2 [ 1D (60)

6Here (*V0)o =€ap Vio.
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iii.) The following identity holds for pairs of functions (p,o) on S:

/(|vp|2+yvg| /|—vp+ (Vo)* /| Di(p, o (61)
S

iv.) The following identity holds for vectors v on S,

/ (Vo - KJgP) =2 / Dy (62)
S S

4. PRELIMINARY ESTIMATES

As explained in the introduction the proof of Theorem A is based on the bootstrap assumption (37),
ie.

FOp,00 < Ap.
In this section we use this bootstrap to prove various preliminary results. In the following three

sections we then derive estimates for the Ricci coefficient norms ) Oo.4, (S)Ol’g and (5)0174 respec-
tively.

4.1. Preliminary results. We prove here results which follows easily from our bootstrap assump-
tion. (S)O[W3 < Ay. We first derive an estimate for €. To do this we use the definition of
w=—1V3log Q= 10V;(Q)~' = 1L(Q)~!. Thus, since Q! =2 on Hy,

2 du

197" = 2l Lo uay S /’@MW%WW§5W(%%mM§5mAO
0

Thus, if 0 is sufficiently small we deduce that [Q — £| is small and therefore,

1
;s0<4 (63)
We now prove the following proposition.

Proposition 4.2. Under assumption (37) we have the following estimates for an arbitrary horizontal
tensor-field v,

(R P 2 PO
g (o4

I 6ltu S [0 + | Va2
0

More generally the same estimates hold in LP(S) norms.
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Also,
1602y S 112y + 190 g0, V6 o
102y S 16020y + 196 0o, 1V o
Corollary 4.3. Under the same hypothesis,
et o S 19 o0+ [ 80l gy
o (66)
|| QﬁHEQ (u,u) 5 ||1/}||£2 (0,u) + ||V3¢||52 (u,u) du/
(s0) (sc) (s0)
0
and,
1902 S 1912+ 0ls_ o IVl 2o
sc sc (sc) u (sc) u (67)

1912wy S 10220 + 18l 2 o IVadl o)

More generally, let S" C Sy, and S, ,, S, are obtained by evolving S" along the null generators of
H,, H, respectively. Then

Il

(sc)

Il

(s¢)

‘o 1
) S Wleg o0+ [ 5 ITa0+ Sirvley oy

(SC) (SC) u,g’

(68)

“ 1
s S ||¢||cf(’sc)(s(g,u) +/ | V31) + gtrX@Z)HU&C)(SL, ) du’
u ; “

Proof. The corollary follows immediately from the proposition and definition of the scale invariant
norms. The last statement of the corollary follows by applying (66) to the function yv, where the
cut-off function x is first defined on S, ,, as the characteristic function of S” and then extended by
solving the transport equations V,x = 0 and V3yx = 0.

To prove the proposition we first make use of (63) and (37),
Jorxlls S Aod

and deduce from the first equation in (56),
“ 1
| Wl S Wliauoy [ [ 11900+ g
“ _1
S 10lBswon + [ Wolliz (Vv o)+ B84

< 10 1Easmon + / 1l IVl zscs) + Aod 2 / 112206
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Thus, by Gronwall, since u < 4,

WH%?(S(M)) S HwH%Q(S(u,O))—{_/(; HVWHL?(M’) ) WHL%M’) du’ (69)

from which we easily derive the V4 equations in both (64) and (65).

To prove the V3 estimates we need to take into account the anomalous character of try. From our

o 4
u—u+2rg

bootstrap assumption we deduce (recall that trx, = is the flat value of trx) ,

[trx — trx[lr= < Agd/?
Thus,

Wl S Wl + [ [ 1190+ gy
S ||¢||%2(S(0,g)) + /0“ ||¢||L2(S)(||V31/J||L2(S) + A051/2||¢||L2(5))
S AP
S W0+ [ Wl (19swlgs + (1+ 08" ¥l

Thus, using Gronwall and smallness of §'/2A, we deduce,

Il sy S WH%Z(s(o,u))JF/O 191205 [[ Vst [l 22s) (70)

from which both (64) and (65) follow. O

We next prove an improved estimate for try.

Proposition 4.4. For 6'/2A sufficiently small we have for all S = S(u,u),

lerxlles) S Ag (71)

Proof. We recall that try verifies the transport equation,

1
Vatry = =5 (trx)” — [X]” — 2wirx

or,

1 .
—try = —Q(g(tr)()2 + ’X‘z + thrx)
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Thus, since ||, w|z= < I7Y2A,,

/

”trX”LO"(u,g) N ||X||L°°(u7g’)(HXHL“(u,y’) + HWHLO"(u@’))dﬂ

O

4.5. Transported coordinates. We define systems of, local, transported coordinates along the null
hypersurfaces H and H. Staring with a local coordinate system 6 = (6',6%) on U C S(u,0) C H,
we parametrize any point along the null geodesics starting in U by the the corresponding coordinate
0 and affine parameter u. Similarly, starting with a local coordinate system 6 = (0',6%) on V C
S(0,u) C H, we parametrize any point along the null geodesics starting in V' by the the corresponding
coordinate § and affine parameter u. We denote the respective metric components by 74, and Yop:

Proposition 4.6. Let %, denote the standard metric on S*. Then, for any0 <u <1 and 0 <u < 4§
and sufficiently small 52 Ay

1 1
|7ab - '72{;’ < 02 A,, |Zab - 735‘ <62 A.
In addition, the transported coordinates verify
V30| < 6o, [V

~

Va0 < 00, VO S
for a =1,2. The Christoffel symbols T g and L, obey the scale invariant estimates’
Cavellez ) S O N0alavelle2 ) S Ora)s (72)
ILasellez ) S Omy N0aLasellez, ) S Oras (73)

Proof. We will only show the argument in the case of 7v,. In the transported coordinate system the
metric v, verifies

d

—Yab = 280 ap-
du’Yb Xab

Therefore,
L 1
=25l <2 [ |l <8480,
0

where in the last inequality we used that |x.| < |x||7™!| and ran a simple bootstrap argument.

The transported system of coordinates 0 satisfies the system of equations
V40* = 0.

"we can attach signature to I’ and T sgn(I') = 1 sgn(l) = 1
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Commuting these equations with V3 and taking into account the commutation formula (52) we
obtain

Va(V30%) = 20V36 — 4C - V6°

Using the bootstrap assumptions (37), the inequality |V60*| < 1 and the triviality of the data for
V360* we obtain that

IV56°| < 5.

To verify that |V#? < 1 we commute the transport equation for % with V to obtain according to
(54)

V4(VO*) = —x - VO°,
which together with the bootstrap assumption (37) gives the desired result.

To prove (72) we differentiate the transport equation for 7, to obtain

d
- (acr)/ab) = 28cQXab + QQachlr
du
Taking into account that
0 SIVQ < Inl+ 0, [0xal S VX +ITIIx]

we derive

10ab || 2wy S /0 (171l 2y + 1l 22 uary) X 24y A2

4 / (190 2wy + 1T 220 1l oy e

AN
e

S Oalx] D Opuln, 1) + D O12[x] + 5724 / 1Tl 22 0y
0

Thus, by Gronwall,
HF“LQ(M) < (S)OLZ 4+ §3/4 (3)08,4

Y

The desired estimate for I' follows by Gronwall. The second estimate of (72)can be derived by
an additional differentiation of the transport equation. The estimates (73) are proved in the same
manner. We omit the details. 0

4.7. Estimates for Rj[a]. Using the transported coordinates of the previous subsection we now
derive estimates for R3[a] norm of the anomalous curvature component a.

Proposition 4.8.
Rolal(u) S Rolal(0) +R
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Proof. Recall that, Ri[a] := sups .y |la| 2 (H) where °H is the subset of H, generated by trans-
porting a disk %S of radius & %, embedded in the sphere S, o, along the integral curves of the vectorfield
es. We denote by S, the intersection between ° H and the level hypersurfaces of u and by %S, the
sets obtained by transporting °S, along the integral curves of ez According to (68)

) du'

U

u
1
| O‘HE?SC)@SE) S ||04||£§SC)(5SM) +/ V3o + ét@@“ﬁ'g’sc)(ésu,
0

We note that (72) implies that %S, , are contained in the intersection of ? H,, and the level hyper-
surface of u. Therefore,

I alle

u
1
oo S ol oy + [ IVaa+ trxalles eon, di

2
Using the equation for a

| ~ .
Vaa + Strya = VO + dwa = 3(Xp +* Xo) + ((+ 4n)0f

and the bootstrap assumptions (37) we obtain

(H,)

) u

1 1
Vs + _trKOCHE%SC)(Q&Hu/) < || Vsa + §trxa]|£?se

2
< HVBHLfSC)(H ’) + 6% (S)OO,OO ) RO 5 R+ 5%A0R0

u

It remains to observe that
lllez e S Role](u = 0),

which follows from a simple covering argument. 0

4.9. Calculus inequalities.

Proposition 4.10. Let (S,7) be a compact 2-dimensional surface covered by local charts (disks) U;
in which the metric v satisfies

1
[vij — 5] < 3
Let d denote the minimum between 1 and the smallest radius of the disks U;. Then for any p > 2
1 1 1
[¥llzs) S 19172 VO T2(s) + d7 219l 22s), (74)
[¥llzs) S NN 7ags) IV Taisy + d P Logs).- (75)
More generally,
1 1 1
[Pl sy S NN 22y IVl 2y + 210l 2w (76)

_pP_
[¥llmco S sup (1157,

The disk U] is a doubled version of U;.

4 4
VUl +d H olly ) ()
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We can combine the above proposition with Proposition 4.6 to obtain

Corollary 4.11. Let S = S,, and Ss C S denote a disk of radius 53 relative to either 0 or [
coordinate system. Then for any horizontal tensor 1

Il S 12 kums + 1l z2gs) (78)
1ll ety S 161250 V86128 + 146l o) (79)
and
1llzass) S 551Vl 2sas) + 07 T 1Ml z2(s,)s (80)
[9ll<cs) S s0p (53196 sy + 0~ Wlancs) - (81)

Also, in the scale invariant norms

Corollary 4.12. Let S = S,, and S; C S denote a disk of radius 62 relative to either 6 or 0
coordinate system. Then for any horizontal tensor

1 1

1llct, 0 S 1012 o IV012 6+ 6510z, 50 (82)
(sc) )

¥llezy o) S IGIZ ITUIZ o)+ 81y, s (83)
( ( (sc)

and
llles s S IVl ) + 180z, (s (84)
sc) (s¢) (sc
¥l S s (19¢]er, 520 +|r¢||ﬁg 52)) - (85)

4.13. Codimension 1 trace formulas. We will use the L*(S) trace formulas® along the null hy-
persurfaces H and H, see [Chr-Kl|, [K-Ni|, [K-R:LP].

Lemma 4.14. The following formulas hold true for any two sphere S = S(u,u) = H(u)U H(u) and
any horizontal tensor

1/2 1/2

1l asy S <||w||L2<H>+||w||Lz<H>)/(\wum )+ 14| o)
1/2

[Vllasy S (||¢||L2(g)+||v¢||L2(H)) (||¢||L2 y Vsl L2 )/

Also, in scale invariant norms,

80ur bootstrap assumption are more than enough to verify the conditions of validity of these estimates.
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Proposition 4.15. The following formulas hold true for a fized S = S(u,u) = H(u) N H(u) C D
and any horizontal tensor

1/2
[Plles, 59 S (51/2||¢||cfsc)(H) + ||V¢||L§SC>(H)) (51/2||¢||£§SC)(H) + ||V4¢||L§SC>(H))

1/2
[Plles s) S (02192 IVl ) (51/2’\¢||,c§sc)(g)+ HV3¢||£§SC)(£))

(sc (sc) ‘==

1/2

1/2

4.16. Estimates for Hodge systems. Consider a Hodge system,
Dy =F
with D one of the operators in section 3.5. In view of proposition 3.6,

/S VP + /S KL S |F[2ss)

where,

—_

1
K = —p+§)Z-X——trxtrX

=~

is the Gauss curvature of S. Hence,
IVelZesy S 1Kz l¢lzas) + 1F1Z2s)
Making use of the calculus inequality on S,
[Vl S IVElLas) el
we deduce,
IVl S K2 VY2 191z2cs) + 1F 112200
and consequently,
IVllzzisy S 1K z2sll¥llzzes) + 1F Ml z2s)
We state below the same result in scale invariant norms
Proposition 4.17. Let ¢ verify the Hodge system
Dy =F (86)
Then,
IVl ) S 621K e, s lbllee, s+ 1Flles, o (87)

To obtain the second derivative estimates for the Hodge system Dy = F we apply the operator D*
and write the resulting equation schematically in the form

Aty = Koy + D*F.
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Multiplying the equation by A, integrating over S and using that | D*F| 25 S ||V L2s

obtain

A 2205y S 1K L2y 1Pl ooy + IV F | 22(s)
Using Bochner’s identity, see e.g. [K-R:LP],

IV*¥ll22(s) S 1K [z ll9 2o (s) + ||K||%2(S)||V¢HL4(S) + [ A%l z2(s)-
we then obtain
Proposition 4.18. Let ¢ verify the Hodge system
DYy =F
Then,
IV20es, 0 S 04K e ll¥lex, o+ IENE o IV¥le,
+ ||VF||LfSC)(S)

5. Ops AND )0y ESTIMATES

31

)we

(83)

(89)

(90)

5.1. Estimates for y,n,w. The null Ricci coefficients y,n and w verify transport equations of the

form,

V' = Z YD L qp(s2) st

S1+s2=s+1

(91)

Here 1(*) denotes an arbitrary Ricci coefficient component of signature s while ¥(®) denotes a null

curvature component of signature s. In view of proposition 4.2 we have

||17Z}(S) ||£Elsc) (u,y) S ”1/](8) ||£4(lsc) (u70) + / 5_1 H V4w(8) ||£Elsc) (u,g’)
0

To estimate | V40| £h (ua) We make us of the scale invariant estimates

16-¥ler, ) S 3l0ler

(sc

o l¥lles s

Hence,

S S 1 S S
IV )HL‘(*SC)(S) < ot +1)||L‘<‘SC>(S) +67 > |yt ez, (5119 2)||£;;C)(5)
S1+s2=s+1

At this point we remark that if all Ricci coefficient and curvature norms (5)(90,4,720 were scale

invariant we would proceed in a straightforward manner as follows,
Hv‘ﬂ/}(S)Hﬁ?sc)(S) < ||W(S+1)H£Z‘sc)(5) 4 §1/2 (S)@o,oo' (S)@&4
< H\I;(s+1)H£?SC)(S) + 627, - (5)00’4
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Hence

Hw(S)”E?s@(u,g) S W(S)Hcﬁsc)(u,oﬂr/o (5*1”\1’(“1)!\5@@(“@)+(51/2Ao- SO 4

~Y

1 1 1
S 199 les oy + RERE +01Ro + 62480 - FOy,

where in the last step we used the interpolation inequality (82) for the curvature U*™!. Thus, since
the initial data is trivial along u = 0,

1 1 1
H(c_u, 7])”[:215C>(u7ﬂ) 5 Rng + (SZRO +51/2A0 . (5)0074

We only have to be more careful with the cases when || U+ i () is anomalous, i.e. ¥ = o, and

both (1) (*2) are anomalous. The first situation ( but not second) appear only in the case of the
transport equation for x while the second appear only in the transport equation for try.

Vax +trxx = —2wy —«
1
Vatry + 5(’51‘){)2 = —|X|* - 2wtry

Thus, for fixed u, we estimate with °S, denoting a disc of radius 53 transported from the data at
Su,o( recall also the triviality of the initial data on Hy),

||>%||£Z(1-5°)(6S!) SJ / 5_1||a||[f(156)(6su,u’)dgl _I_ 51/2A0 : (5)00,4
O =
Using (84) we obtain

U
5 e, S oles oo, + IVl gy oy S Rl + Rl

Therefore,
H?A(HE‘(*SC)(‘SSQ S H)A(Hq*“)(éso) + Rye] + Rafe] + 62N, - (8)00,4
from which we derive both the scale invariant ¢ estimate for y,

GO S Rile]+Rife] +62A - DOy, (92)

~Y

We can also estimate directly the anomalous 9Og 4[] from,

”)AC”[,?SC)(SE) S /51HO‘H£E‘M)(‘55‘“ ydu’ + 520y DOy,
0 1=
Using the scale invariant interpolation inequality (74) we deduce,

. < 1/2 ‘ 1/2 1/4 12A . (S)
Wt 50 S Do o IV o 0%l s o + 6780 D004

sc)

Taking into account the anomalous character of Ro[a] and the definition of )0y 4[x], we deduce,

04[] S Rola]*(Rala] + Rola]) > + 5740, - ©0y (93)
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On the other hand,
“ _1
lerxliey S lerleg oo+ | 574 Bolltrxlles i
0

_1 “ ~
+ 0 2Ao/ HXHL‘(*SC)(u,y)dH/+51/2A0' 0.4
0

1
S ltexlles oy + 9780 ) 0g4

We summarize the results of the section in the following®.

Proposition 5.2. Under the bootstrap assumption DOy, < Ay and assuming that 620, is
sufficiently small we derive,

O Opalwsn] < Ro+ RIRE 4+ 61Re + 6200 - OOy,
(3)00,4[”9(] N 1+5%A0' (5)00,47
©0palx] S Rola]*(Rala] + Rola])? + 640 - OOy,
Also,
O] < Ry +672A0- WOy,

5.3. Estimates for yx,n,w. The Ricci coefficients 7, x and w verify equations of the form,

1
Vi = _§k trxw(s) + Z YD L qp(s2) s

S1+s2=s
with & a positive integer. Writing try = trx, + trz, with trx, = —#Hm, we derive
S 1 S S S S
Vi) = _§ktrXow( ) Z P L pls2) 4 pls) (94)

81+s2=s

In this case we observe that the curvature term ¥(®) is never anomalous and the only time when both
1) and 9(*2) are anomalous is in the case of the transport equations for X and try. In all other
cases we can write, proceeding exactly as before,

L L e A 2
and,

IVs s s S 19w + 10y + 82 D o0+ D0,

9Recall the triviality of our initial conditions at u = 0.
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Thus, in these cases,

1]l S 19ler

toey(u 10w + / H\I/(s)Hﬁ?sc)(U’&) 4+ 512 (S)Oo,oo . (3)0074
0

1 1
S I9ller 0w + RERE + 1R, +0"2A - D0y

~

Similarly,
1@l 2

(sc

)(uvl) S—J ||,[7Z}(S)||ﬁ%sc)(0,g) + E(] + 51/2A0 : (5)0074

It thus only remains to estimate try, x . We first estimate o [x] from the equation,

Vs = —attoxg X —fxx - 2w
Clearly, for fixed u

1 A
Sk ey o5 S llalley, os,) + X Ner, @50 + 077 PO+ P00

and thus, after a standard application of the Gronwall inequality,

[V3x +

u
HXH&?SC)(ﬁsu) S HXHL;*SC>(6SO)+/ ‘|QH£‘<*SC>(5SH/)
0

Taking into account the scale invariant interpolation inequality (82) we deduce,

1

A 1 1
12ler 50 S 12 les, o5+ Rilal - Rila] + 84Rofa] + 8220 POy,

or, since HX”E?SC)(‘SSO) < 00,

~

1 1
X les s S O + R¢[a] (R [a] + i Ry[al]) + 628y DOy

Y

Proceeding in the same fashion,

1

~ 5 1
X es s S Xz, so)+Ro[] Rila] + 61 Ryla] + 6280 POy

~Y

Now, observe that the only anomaly on the right hand side is due to ||x || £h,(S0)" In fact
I llee sy S 077100

Thus,
®0plx] S OO +51RE[a] - RP[a] + 63 R, + 67400 ©)0y 4

To estimate t/fi = trx — trx, we start with the equation

1
Dstry + §(trX)2 = —2wtry — X .

(98)

(99)



TRAPPED SURFACES 35

4

. _ O-1 _ ; —
Since, Dyu = Q~', D3u = 0 we have, since trx, = —ourm

!
Dstry, = -0t 1 rXO

Hence, using t?i = trx — trx,,

— —~ 1 —
Vitry + try, - try = —ﬁ(Q — 5)‘51"&?) + 2wtry,, — 2wtry — |¥ |2 (100)
Now, taking into account the anomalous scaling of (%) Opalx] and estimate, || — 3|z 2llez o) <
||| 22,8 (which can be easily derived using the transport equation V3{2 = w) we derive,
||V3UAX||L;;C>(S) S ||t?i||ﬁ§s )+ llelles s) + 01 50+ DOy
from which,
P L Py G2 P
0
S ey o+ [ 1,
+ / HQHE? )(ulmdu' + 6%AO . (5)00’4_
0 sc —
By Gronwall, and using the estimate for w derived in the previous section,
—~ 1 1 1 1
HtrxHE?SC)(uw 5 ||tIX”£4(1SC)(O’E) + Rg Rf + 64R0 + (54A0 . (5)00’4.
Thus,
SOpultry] S 09+ ReR1 + 1Ry + 5180 - DOy (101)

We summarize the result of this subsection in the following

Proposition 5.4. We have, for sufficiently small 6,
DOpalnw] < OO + Ry +RIRF + 65 R, + 5300 - D0y,
S0palx] < OO 4+ 674R: - RF + 53R, + 642 G0y,
NOpaltry] S OO+ ReRy + §1Rg + 510y - 5Oy
Also,

OR] S OO 4 REIR? +6iRy+034,- POy,

N
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5.5. Summary of )0, estimates. Putting together the results of the last two propositions we
deduce the following.

Proposition 5.6. There exists a constant C depending only on O and R such that, if 6'/2Aq is
sufficiently small, we have,

®0ps < C (102)

Moreover,
®00al] < Rolo]*(Rulo] + Rofa]) ' + 8"/4C (103)
S Opalx] < 00 4 5Y4C (104)

5.7. 90y, estimates. The following estimates will also be needed.

Proposition 5.8. There exists a constant C depending only on O and R such that, if 6'/2Aq is
sufficiently small, we have,

&0y, < C (105)

~Y

Proof. These are similar but somewhat simpler, once we already have the ) Qo4 estimates. Indeed,
starting with (91), (dropping indices for simplicity) we write as before,

ez S 1leg 00+ [ 5 10l o

and, assuming the worst case scenario when both terms in v - ¢ are anomalous, i.e. both satisfy
WHL;*SC)(S) < C6,

19012, )+ 2 el
||‘I’||L2 s) T () 02
H‘I’Hcfsc)(a + C*.

IVatlizz () ) 19| 2

(SC)

AR AR YA

Thus,

ez o S+ [ 57 1¥les, g+ C°
S ||‘1’||L§sc)(Hu) + C?
U can only be the anomalous « in the case of the transport equation for y. Thus,
@Ml jwe S Ro+ c?
Ixllez S 0 *Rolal
or, with a constant C' = C(O©), R, R),
(5)00,2 [try, X w,n] S C



TRAPPED SURFACES 37

The estimates for try, X ,w,n are proved in the same manner.

6. O; ESTIMATES

6.1. General Strategy. To get the first and second derivative estimates for the Ricci coefficients
we cannot proceed as we did in the previous section. Following a path first pursued in [Chr-KI]
and continued in [K-Ni], [K-R:causal] and [Chr] we introduce new quantities'® ©() with signature
s, depending on first derivative of the Ricci coefficients and which verify transport equations of the
form?!!

V4@(S) — tI‘X(@(S) + Vw(sfé)) 4 Z 1/}(81) (VZ/J(SQ) + \11(82))

s1ts2+3=s+1

+ Z try, - P L gp(s2) Z 1) L qp(s2) L gp(ss)

s1+s2=s+1 s1+s2+s3=s+1
(106)
V50 = try(0®) + V@ZJ(S_%)) + Z POV (Vpls2) 4 ple2))
s1+s2+3=s
+ Z trXO . w(sl) . w(SZ) + Z w(sl) . w(sg) . w(sg)
S1+s2=s Ss1+s2+s3=s
(107)

Here ®) are components of all the Ricci coefficients (try, X> W, 1,1, t?i, X ) with signature s, while
U() are curvature components with signature s.

The main idea behind our strategy is to show that once we control the [,%SC)(S) norms of these
quantities © we derive all O; estimates by using the elliptic Hodge systems. The most general form
of such systems is given by

sal 1 1 s
DY) = O6ta) 4 ylbts) 4 try, - Peta) 4 Z P (s2), (108)
s1ts2=s+3
where D is one of the Hodge systems of section 3.5. Observe also that both Hodge systems have

non- anomalous curvature source terms, (3, respectively 5 and no quadratic anomalies in 1 (relative
to the Oy norm).

ODifferent components © appear in (106) and (107). It may in fact be more appropriate to call © the components
which appear on the left of the V4 equation and by © those appearing on the left of the V3 equations.
HWe neglect to write possible constants in front of each term on the right of our equations
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6.2. Explicit © variables and Hodge systems. In this section we introduce explicit variables
©®) and derive transport equations of the type (106), (107).

Transport-Hodge systems for x, x. First observe that the Codazzi equations

. 1 1 1
divy = 5Virx - 5(77 -n)- (X — §tr><) -3, (109)
1 1 1
divy = §VtrX + 5(77 -n)- (X — Etrx) + (110)

can be written as Hodge systems of type (108). with D the Hodge operator D, discussed in section
3.5, and © = Vtry, resp. © = Vitry.

We now derive a V4 transport equation for Vtry. Using commutation formula, [V4, V]f = 3(n +
n)Dyf — x - Vf, we obtain,

V,Viry = —Vtrytry — 2tryVw — 2wVtry — 2Vy - x (111)
1 1 N
+ S+ ) (= 5(r)” = 2wiry — [X°) = x - Viry

which is clearly of the form (106) with no curvature terms present and no triple anomalies (relative
to the Op norm, i.e. among the cubic terms at least one of the factors are not anomalous).

To derive a transport equation for Viry we start with the transport equation,
1 —
Vstry = —5(‘51%)2 +F, F=-wtry—|x]’= —2wtry, — 2wtrx — [¥ K

Using the commutator formula, [V3, V|f = —x -V f + %(77 +n)Dsf we deduce,

. 3 1
V3(Vtry) = —x -Viry — 5trthrX —(V+ 5(7] +n))F
Or, writing try = tryx, + tfrvx, we deduce,
. 3 3~ 1
V3(Vitry) = —x - Vtry — §trX0VtrX — Etrxvmx — (V + 5(77 + Q))F (112)

This is clearly a system of the form (107) with no curvature terms present and no anomalous cubic
terms.

Transport- Hodge systems for p, u, Vn, Vn. We start with equation

curlp = cuwlp=0+x A X
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We derive equations for div n and div 5 by taking he divergence of the transport equations

Vin =—stex(n—n)—X-(n—n)—p
Vsn =—stex(n—n)—x -(n—n)+ 3

Using commutation lemma (3.3) we derive,
: : 1 .
Va(div ) = div (=gtex(n —n) =X (1 —1) = F)

1 . . 1
- §trxdwn—x-vn—n-ﬁ+§(n+ﬂ)~V4n
1 1
= —div §— §trx(2div n—divn) —(n—-n)- (§Vtrx + div x)
N 1
= X-V@n=n)=n-B+50+mn) - Vay
Using the null Codazzi equation,

1 1
§Vtrx +divy = Vtry+ §Ctrx -0

we derive,
Vy(divny) = —div g — %trx(Qdiv n—divny) —x-V(2n—n)—(n—mn)- Vtry
- n-B- ;ltrx(n—ﬂ)2+%(n+ﬂ)(— %trx(n—g) —X-(n—n)-B)
= —div g — %trx(Qdiv n—divny) —x-V(2n—n)—(n—mn)- Viry
- %(3ﬂ+77)'5— %UX(|77|2—77'Q) - %(n+ﬂ) X (n—n)
or,
Vi(div n) + trxdivy = —div 8+ %trxdiv n—x-V(2n—n)—(n—mn)- Viry
- %(3ﬂ+n)-ﬁ— %trx(lmz—n-ﬂ) - %(UJFQ) X (n—n)

On the other hand,

3 ) 1.
V4p+§trxp:dlvﬁ—§x a+(-B+2n-6
Adding the two equations and setting,

p=—divy—p
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we derive,
1 . . 1, 1
Vap + trxyp = —étrxdw n+(n—n)Vtrx +x-V(2n —n) + SX - (n—3n)- 8+ Qtrxp
1 1 .
+ Stex(Inf —n-m) + 5 +m) - X (n—n)
Similarly, setting
p=—divn—p
we derive,
1 . . 1, 1
Vap ttryp = —toxdivn + (n—n)Vtrx +x - V(2n —n) + gX a— (n—3n)- B+ S TXp
1 1 .
+ Stex(nf —n-m) + 50 +m) - X - (0 —n)

We summarize the results above in the following.

Lemma 6.3. The reduced mass aspect functions,

po= —divn—p
po= —divn—p
verify the transport equations,
1 _ . 1, 1
Vapttrxp = —gtrxdivn + () =) Vi +X- V(20 —n) + 5 X -a— (0 —=3n) - 5+ 5trxp
1 1 .
+ gt =n-m)+ 50 +mn)- % (n—n) (113)
1 . . 1. 1
Vap + trxp = —§trxdwn—|—(g—n)vm_<+x-V(?g—n)+§ ~g—(g—3n)~§+§tm_<p
1 1 .
+ Strx(Inl =n-n) +50+n)-x - (n—n) (114)

Remark 6.4. Observe that our mass aspect functions differ from those of [Chr-KI] or [K-Ni]. Thus,
in [K-Ni]), p = —div p — p+ 5% - X verifies (see equation 4.3.32 in [K-Ni}),
. - 1 :
Vap+trxp = X - (Vo) + (n—mn) - (Viry + trx¢) + §trx(u +div (n — Q))
1

. 1 N .
— XX g X + 20— [nl*) + 200 X -n —n - B)
The reason we prefer our definition here is to avoid the presence of triple anomalous terms on the
right hand side of the transport equations for p, p.
We write (113) symbolically in the form,
Vap = - (Vo 4+ V) + X -a+v ¢y (115)
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which is of the form (106), with ¥, € {trx, X, 7,1, w,w,trx} and ¥, € {8, p,o B}. We can also write,
in shorter form,

Vap = - (Vo + )+ 499,
and recall that ¢ - ¥ contains the more difficult term x - o anomalous in both ¢ and W.

We also rewrite (114) symbolically. In this case we have to keep track of the terms proportional to
try = try, + trx. We thus write symbolically,

Vap = trx (Vo +p) + 9 - (VY + ) + 1y - B+ trx - g + 9 - -,
(116)

Here ¥, € {p,0,3,a}. Observe that at least one of the factors ¢ in trx ¥ - ¢y and ¢ - ¢ - by can
be anomalous. Unlike in the case of V4 u equation, there are no terms of the form v - 5 with ¢ also
anomalous (recall that 5 is anomalous for R,).

We combine the transport equations (115) and (116) with the Hodge systems,

divng = —pu—p (117)
1
curln = o— 5)2 A X
and,
divpg = —p—p (118)
.o .
curlyg = o— X A X (119)

They are both systems of type (108). Note that the quadratic term X - x is anomalous with respect
to both factors.

Transport-Hodge systems for k, k, Vw, Vw. We look for transport equations for quantities connected
to Vw and Vw. Recall that

1
Vw = §P+F (120)
3 , 1 1 )
Fo= 2ww+—n—n"—~m-n)-(n+n)—Zn+n
4 4 8
and,
1
Viw = §P+E (121)

1

3 1
E o= 2w+ ln—nl+ 0 —n)-(+n) — gln+nf
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We introduce the auxiliary quantities w! and w' as follows.

1
V40_JT = 50
1
Viw! = 50

(122)

(123)

with zero boundary conditions along H ), respectively Hy. We introduce the pair of scalars < w >=

(w,w') and < w >= (—w,w") and apply the Hodge operator *D; ( see subsection 3.5),
D) <w> = —Vw+ *Vwl, *D; <w>=Vw+ *Vul.

Next we derive a V, equation for < w > and a V3 equation for < w >. To do this we write the

commutation relation (55) in the form,

1 R 1
Vo VIf = —5toxVf=x-Vf+ 5 +n)Daf
1 A~ * 1 * *
Ve, "V]g = —5tx"Vg+x - "Vg+ 50" +1")Dag
Thus, for a pair of scalars (f, g),
* 1 * " * 1 1 * *
Ve, "Dil(f,9) = —5tox"Dulf,9) + X - (VF+ 7Vg) = S+ m)Vaf + 507 +17) Dag

Therefore,

Vi'Di <w> = *Dl(p,O')—VF—f— [V4, *Dl] <w >
1
= *Di(p,0) — VF — §trx Dy <w>+x - (Vw + *Vuw')

1 1, . .,
= S+n)p+F)+ 507 +17)o
On the other hand, we have the Bianchi equation,
Dy +trx = Di(p,0) +2wB +2x - B —3(np =" no),

Thus,introducing the new horizontal vector,

1 1 1
ki="D <w> —§§ = "D (w, ‘«_UT) - 5@ =-Vw+ *Vuw' - 5@
we deduce,
~ 3 * 1 1 * *
Vi = —tix £—wf—x B+ 5@mp— "n0) = 5 +n)p+ 50" +1)o

1
+ X (Vau+ *V@)—VF—§(77+77)F

Similarly we set,

1 1 1
ki="D; <w> —§ﬁ = *Dy(~w, w') — 55 =Vw+ *Vuwl - 55

(124)

(125)

(126)
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and, using the Bianchi equations,
D3f +trx 8 = Di(—p,0) +2wB + 2X - B+ 3(np +" no),
we derive,

1

A~ 3 * 1 * *
Vs = —tix -k —wB—x-F+mp+ o) —cm+n)p+ 5 +n)e

+ X (-Vw+ *Vw') + VF + %(g—l—n)ﬂ (127)

To estimate Vw we combine the V4 equation (125) with the Hodge system,
"Di(w, wh) = &+ %ﬁ (128)

To estimate Vw we combine the V3 equation (127) with the Hodge system,

Di(-w,wl) = Kt 30 (129)

Clearly transport equations for xk and & are of the form (106) and (107) provided that we extend the
set of Ricci coefficients 1) to also include the new scalars w' and w!. We observe that w' has the same
signature as w and w' has the same signature as w. Moreover w', w' they satisfy equations similar
to those satisfied by w,w. Thus, for example, we can easily derive both ﬁ%sc) and L’?sc) estimates for
them. Indeed, from (122) we easily derive,

u

'l S [ 5Nl uande’ S Rolol
0

Similarly, from (123),

u
H&TH%C)(M) S / ‘|U’|C<28C>(u’,g)dg, S Rylo]
0

It thus make perfect sense to extend the definition of the set of Ricci coefficients as well as the
definition of the norms O, (3)0074, (3)01727 (3)01,4 to include them. We thus also assume, from
now on, that the main bootstrap assumption (37) includes w', w'.

Finally we observe that equations (125), (127) can be written in the form,
Vi = —trx-5+¢- (Vg + Vi) + ¢ -9 -4y
Vik = —trx-k+9-(Vy+ Vo) +1-1 -1,

with U, € {8,p,0,8} and ¥, € {try,w, g*,n,ﬂ,w,wﬂt&}. Since k can be expressed in terms of
Vw, Vw' and [ we can also write the first equation in the form

Vi = ¢- (Y + V) + -9 -9

The second equation can be written in the form,
Vik = —trx, -k +¢ - (Y + V) +9 -9ty (130)
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6.5. Main O; estimates. We start by rewriting systems (106), (107) and (108) in short form,
dropping the reference to signature.

V,0 = ¢'(V¢+\I’)+tfxo'¢'¢g+¢'¢'¢g (131)
V3O = trx, - Ve + - (VY +0) +trx, -0y +1 -1, (132)

where 1), denotes an extended Ricci coefficient term (i.e. including w', w' defined below.) which is
not anomalous in the VO 4-norm.). Also,

Dy = O+ T +try, -y +1-¢. (133)

Remark 1. In reality equation (132) should also contain a term of the form trx,© as seen in

(112), (116) and (130). We observe however that such terms can be easily eliminated by a standard
Gronwall inequality.

Remark 2. The curvature terms ¥ appearing on the right hand side of (131) belong to the admis-
sible!? set {a, 8, p, o, B}. Special attention needs to be given to terms of the form®? X - a.

Remark 3. The curvature terms W appearing on the right hand side of (132) belong to the ad-
missible'* set {83, p, o, B,a}. Special attention needs to be given to terms of the form 1 - 3, since
R,[A] is anomalous. We observe however that among all possible terms of the form ¢ - 5, ¢ is never
anomalous.

Remark 4. The curvature terms W appearing on the right hand side of (133) belong to the set
{B? p? 0-7 é}‘

Remark 5. 1, denotes an extended Ricci coefficient which is not anomalous in the Oy norm.
Whenever we write simply ¢ we allow for the possibility that it may be anomalous. For example the
terms of the form 1 -1 in (133) may be both anomalous (as happens to be the case for the div -curl
systems for 7,7, due to x - X ).

Remark 6. Due to the triviality of our initial data at u = 0 we have

1Oz, w0) = O-
In view of the definition of the © we have,
1Ol 0w S 00+ RO, (134)

We start deriving estimates for (131). As in the proof of the Oy estimates,
I0llct w5 1012w+ [ 571948 o
0

12This are the curvature components appearing in the main curvature norms R, R1.
Bsuch a term appear in the transport equation for p.
14This are the curvature components appearing in the main curvature norms Ry, R;.
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Recall that none of the L7, (S) norms of the Ricci coefficients ¢ or the E%sc)(S) norms of their
derivatives Vi) are anomalous. Moreover,

||¢g||£4 [(9) +51/4||@/)g||c4 >(s $0y4(8) < C
where C' is the constant in proposition 5.6. Also,

[l s) S 620, IVYllez s) S SO, ,,

Go 8~

Now, according to (131), for 6*/2A, < 1,

IV:0llez, i) S - Tlea, ) + 82 lless s

< ) 1Vl
61/2r|w||£4%)(s Weylles, ) + 5||¢||£<SC) ||w||,;(%>

i 1% ”L"(‘SC)(S)
S M- lle s+ 020Vl 2 s) + 61107

Recalling the triviality of the initial conditions at u = 0, we deduce,

IR A ey
0
< o /W.qful;? way A+ D89 812 9O, 5 4 51/4C2
0 sc —

Among the terms of the form 1 - U the most dangerous' is X -« which is anomalous in both ¢ and
V. In this case, recalling estimate (102),

~

HXH%C)(S) S Ve
we deduce,

||X O‘HLfSC) ) S 51/2||XH£‘<‘SC)(S HO‘HLZ?SC) (S)

1/2 1/2 1
< 00 (I9all o - lallf o+ ol o))
All other terms are better in powers of 9, i.e.,

1/2 1/2 1
-9, 5 07 (I - IVWIE o+ 0101y o)

15This is the case for the V4 equation for .
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Therefore, recalling Remark 2 and the definition of the scale invariant norms E%Sc)(Hu),

— “ 1/2 1/2
1/0 [ Vle e S OO 3/4/ 112 IV

5 N 1/2

S CRY?- (Ro+R1)"

~Y

We have thus established,

18llez, ey S 8280+ D015+ CRG? - (Ro+ Ra)"* + 6/4C? (135)

We next estimate the © components which verify the V3 equation (132). The only terms which do
not appear in (131) are of the form, trx, V. Thus, exactly as before,

1V:0llc2, 59 S [0 Tllez, (s) + 1+ 8P20)[ Vbl ez ) +674C2

(SC> ~

and,

In view of Remark 3 ¥ € {f,p,0,3,a} and there are no double anomalous terms ¢ - W. Thus,
proceeding exactly as above,

10l s S 1Oz u+ [ 19O les

S / IVYlle2, di + 620 - DO,
0

+ O8RS (R, + Ry O
Combining with (135) we deduce, for a constant C' = C(O©®) R, R) and sufficiently small &,

v 1
[0l S O [ IVl g + 55800, (136)
0

It remains to discuss estimates for the Hodge systems (133). The following proposition will be needed.

Proposition 6.6. There exists a constant C = C(O©), R, R) such that if § is sufficiently small, the
following estimates hold true:

15 p,0:Bllez sy S C (137)
1K || 2 s C (138)

(sc

>(S
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In view of proposition 4.17 we derive from (133),

1 1
HV?PH%C)(S) NERE HK”Z%M)(S)W”qlsc)(s*) + H@HL%SC)(S)
+ Wz ) + [ 0gllez o) + 10 Dllez ()
According to proposition 6.6, ||K||£% ,(9) < C. Thus even if the term||¢||£%‘ ,(9) multiplying ||K||£% RE)
< g4 (3)00,4 < C5 Y4 we deduce, for some C = C(O9, R, R),

Uu) ~S

is anomalous', i.e. ||¢||£?SC)(

1 1
64”K”Z%M)(S)HwHL‘(‘SC)(S) 5 C
Also, since H‘I’Hz:? () S Cfor W e {B,p,0,8} and ngHﬂ% (5) < Oolthy] S C we deduce,

||V”¢Hcfsc)(5) S C+ H@”cfsc)(S) + [ - W\L’g’sc>(5)-

Among the remaining quadratic terms |2 - || £2,(s) We can have terms such as x - X , in which both

factors are anomalous'” . For such terms
1
14 ¢||L§sc)(5) S 02 ||1/)||L§SC)(S) : ||¢||L;lsc)(5) S
Henceforth,
||V¢||L§sc>(5) S P+ ||@||£fsc)(5)

Combining this with (136) we deduce,

“ 1
IVlt, 50 S O [ IV0ley s, e+ 52800
0 u
from which, by Gronwall,

1
HVIPHL%E)(SH,H) S CP4624 (S)01,2-

Y

and thus
Oy + ’|®Hc§sc>(5) <c?

~

as desired. We summarize the results in the following

Proposition 6.7. Consider systems of the form (106), (107), (108) verifying the properties discussed
in the Remarks 1-5 below. There exists a constant C = C(O®), R, R) such that,

||@||/L(2SC)(S)+ ®0o, < C (139)

16This situation occur only for the Hodge system div ¥, see (109), since Oy[¥] is anomalous.
T fact ¥ - X appears in the Hodge systems for  and 7, see formulas (117) and (118).
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6.8. Curvature Estimates. In this subsection we prove proposition 6.6 concerning E%Sc)(S ) esti-
mates for the curvature components 3, p,0,3. We also provide estimates for a,a which will be
needed later. Recall the Bianchi identities,

VyB +2trxB = diva —2wh — (2¢ +n)a

3 1
V4p—|-§tr)<p = —divﬁ+§X-a—C-ﬁ—2ﬂ-5,

3 1
V4o + §trxa = —div g+ —)Z Fa—(r =278,
VyB+trxf = —Vp+* V0—|—2w6—|—2x B —3(np—"no)

Thus 3, p, o, B verify equations of the form:

vV, = vsts) 4 Z ¢81. (s2)

S1+82=s+1

Among the curvature terms on the right we have to play special attention to multiples of the curvature
term a with signature 2. We write schematically,

VU, = VU 4 - U (140)
with W, € {3, p,0, B} while ¥ € {«, 3, p, 0, B}.
Thus,

||V4\I/g||%c>(5) S ||V\IJ||£?SC)(S) + o ¢||L§SC>(S) + 51/2||¢||ng0)

Tyl s

Now, as in the estimates for © in the previous section the worst case scenario estimate for ||a-9)|| £2,(5)"
sc
for anomalous 1, has the form

1 1/2 1/2 1
19 ale, s < C 4(ku/ Mol +64Han%<s>)
We deduce,
1
IVa¥llzz sy ||V‘I’Hz:2sg)(3)JF52A0||‘I’g||.c2

~Y

ey (5)
1/2 1/2 1
- (uv 12 ) ol +64uau%<s>)

from which,

S Illez, oy + R + 62 AgRo+ CR2[a] - R?[a] + CRola]

)uu) ~

Wglle2, ¢

c

Thus, since the initial data ||¥|| 2 (w0) 19 trivial

1 1
IWlle2 uw S Ry + 02 AR + CRE[]RE[a] + CRolal

~Y
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or, with a new constant C' = C(O® R, R),
||\IJ ||£ SC)(uu 5 C (141)

as desired.

It remains to estimate the /J?SC)(S) norm of the Gauss curvature

1 1 1 1 1 —~
K = —p+§f(-X —Zcrx“crxzp—i— §>ZX —Ztrxwrxo—ztrx-trx
Thus,
1Kz ) S Mol o) + 51/2”)2”%6)(5) Ax e, s
+ lrxdlen, + 82 olirxler,

< O+ 672A0R0

~

from which the desired estimate follows.
||K||z:§ KBRS C(0Y, R, R)

as desired.

In the next proposition we derive estimates for the remaining curvature components.
Proposition 6.9. There exists a constant C = C(O©), R, R) such that for 5%A0 sufficiently small

_1
lallez sy < €Oz, lalle g <C

(SC)

Proof. To prove the estimate for o we use the Bianchi equation for V3o, which can be written
schematically in the form

Vs =try, -a+v-a+VU+¢- U

with ¥ from the set not containing o. We therefore obtain

ol o S ez 5o+ (1+5280) [ falg

1
+ R+ 52A0H‘I’HL§SC (H,)

)

(sc) U

1

#, < 072 R,. Thus, by

~Y

In the worst case when W = (3, which is anomalous, we have, ||| 22
Gronwall,

lerllez S e, s +R

Su,u)

Similarly, the equation for Vo has the form

Via=VU 4.0,
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where the curvature term in VW is not a and ¥ # « in the nonlinear term. Therefore, using the
triviality of initial data

f u
lallz ) S Ri+02400 /0 (\|QH£§SC>(U'@) + ||\Ing£(QSC)(u’,g))dul

with WU, € p, 0, 8. The result follows then easily by Gronwall and the ,C%SC)(H ) curvature bounds for
U,. O

7. SECOND ANGULAR DERIVATIVE ESTIMATES FOR THE RICCI COEFFICIENTS

To derive second angular derivative estimates for the Ricci coefficients we differentiate (106), (107)
and (108) with respect to V.

7.1. Basic equations. Based on the experience with the first derivative estimates we expect that
the V3 equation for VO is slightly more challenging as it contains a lot more try terms. Thus,
differentiating (132) we derive,

VsVO = try, (VO + VU + V) +¢- (VO + VU + V) + Vi - (0 4 T + Vi)
+ trx ¥ VY + 4 Vi + [V, VIO
According to commutation formulae of lemma (3.3) we write symbolically,
V3, VIO = try-VO+x -VO+ T -O+try-¢-O+1¢-1-0+1-V30
— X, VO+ - VO+ U O+ try, - 10O+ -0 +1- V30
Hence,
ViVO =ty (VO + VU + V) + ¢ (VO + VU + V) + Vi - (0 + ¥ + V)
+O - Ut try, (V- VY +9-0) +4- (¢- Vi +¢ -0+ V30)

Ignoring the term of the form trXOV@ which can be easily eliminated by Gronwall, and observing

that © and VO on the left can be can be expressed in terms of Vi) and ¥, respectively, V¢ and
VU, we write,

V5VO = (trx, + ) (VU + V) + trx, (1 - Vi + 1 - ©) + Vi - (¥ + V)
+O0 - U+¢- (V- V+1-0+V30) (142)
=P+ Fy+ F3+ Fy+ F;
Similarly,
ViVO =9 (VU + V) + VY- (U + V) + 0 -0 +9-¢-Vip+[Vy, V]O
and

Vi, VIO=4¢-VO+V -0+ -¢-0+1¢-V,0
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so that'®
ViVO =1 (VU + V) + V- (U + V) +¢- (- Vi +¢ -0+ V,0)
(143)
=G1+ G35+ G+ G5
Equations (142),(143) will be combined with the differentiated Hodge system for ¢ in (133):
DDy — D*(@+w+¢-w+t%-w>, (144)

which can be schematically written in the form

A¢=K¢+V@+V\IJ+V¢-¢+M&)-V¢

7.2. Estimates for VO, V?¢. We now collect estimates for the terms on the right hand side of the
transport equations (142),(143):

||F1||£(2w) S (L +8200) IV ez () + IV Plle2 ()
1Bllez sy S 67220102 s) + VY2 ()
||F3||L:fsc) < 8PVl s (IVEller o)+ 1Pllee ()
1Eullez ) S 672100er o) 1%ler o)
1Bl 9 S 67280(52 80 (V4. 0)l 22, 5) + V5Ol 2 (s))
Similarly,
1Gillez, 5) S 6220 (1VONl2, () + IVl 2 () + V¥ 2 (5))
1Gsllz s S 6V2IVlles o) - (IV9lls s +||\P|!c4sc)<s)
IGallzz sy S 67210Ner o) [1¥ler o)
IGallez sy S 8"2A0- (5280 [[(V,0)llz,_ 5 + IV4Oll 2 (s)

We note that the curvature terms W present in the F' terms belong to the admissible set {f, p, o, B, al
while the curvature terms ¥ appearing in the GG terms belong to the set {«, 3, p, o, 3}. We also recall

that according to the (3 )(91,2 estimates and their consequences proved in the previous section

IVl L2s) + 1Ol 29y + VaOl 2y + V3Ol 2y < C

18Observe that the structure of
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Using the L* interpolation estimate from (82) which imply that
1 1 1 1 1
IV6ler 0 S NV6IE_ o I9201E g+ 85190l i S CIVHIE_ ) + 800,
1 1 1 1 1
I0let, 0 S 101 IVOIE_ o)+ 84181, ) S CIVOIE_ ) +8%C,

|2

(sc

1 1 1
RERS H‘I’HZ%SC)(S)HV‘I’HZ%M)(S) +01 Wz s
we obtain for 62/, sufficiently small

[VOlle:

<190l 0w+ C / IV ler, + IV 2, )
0

() S HV@H%C)(O,@ +/o HVBVQHcfw)(w,g)dul

1o [t 2,113 3 3 o213 3 '
+62C/0 <||V ¢||L?sc)(5)H\IJHE%SC)(S)”V‘;[IHE%SC)(S) +54||v ¢||£%Sc)(5)||qj||g?sc)(5) du

1 u 1 1 1 1 1 1
5 2 2 2 I 2 / 5
+520/0 (HV@Hﬁ%Sc)(S)|]\I/H£(QSC>(S)\|V\IJH£<QSC>(S) +(54HV@H%C)(S)|]\IJH£<QSC>(S)> du' +62C

We kept track of the terms containing || V]| 2, (s) 3 they may lead to the potentially anomalous
norm H\I/||£? () in the case of ¥ = . However, even in that case

_1
Illez ) S 02 Ry

By Gronwall, and recalling the definition'® of R,

HV@H%C)(M) S HV@”%C)(O,@) + C/Ou HV%HL%SC)W@)CZU/ + CR,. (145)
In view of the estimates for the G terms we similarly obtain

V023, guan S 190l 00+ € [ 1260, el + CRa (146)

We now couple this with the second derivative estimates for the Hodge system
Dp=0+V+try v +v-1.
Using Proposition 4.18 we deduce

1 1 1
||V2¢Hcfsc)(5) N HK|’£§SC)(S)||¢”£‘;§c)(5) + 07 ||K||Z%Sc)(5)||V¢HL;*SC>(S)
+ VOl s + VW2 s) + Itrx Vel s) + 19 - Vliez is)

note again that o does not appear among the U’s
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By Proposition 6.6, HKH[;? (5) < C with a constant C = C(O© R, R). Therefore,

IV%0lles 5y S 02CAg+53C (||v2¢|| L ol o+ 5‘1‘||V@/)||£§SC)(S))
+ V8l + 1V¥lles, ) + IV¥ler ) + 0 OBl VW ez 5
Using Cauchy-Schwarz and the boundedness of the (S)OLQ norm we then obtain
IVl () S O+ [VOez, s+ V¥ ez (o). (147)

We note that the curvature terms ¥ involved in the above inequality belong to the set {3, p, o, 5}.
In particular,
IV i SR 19 ) S R

Thus, substituting the estimate for || V2¢|| 22.(9) into (145) and (146) and using Gronwall we obtain
VOl ww S NV 0w + CRy,
VOl ww S VO o + CR1

This, together with (147), in turn, implies

Proposition 7.3. There exists a constant C = C(O©), R,R) such that all second derivatives V1)
of the Ricci coefficients 1 € {trx, X,n,m,w,w, X, trx} and the first derivatives of the quantities © €
{Virx, divn+p, divn+p, Vo + *Vwl — 18, —=Vw + *Vw! — 35, Viry} verify,

VOl | ww + HVZ"LPHz:?SC)(Hu) + HV%H%@ < C

7.4. 9O, , estimates. As a corollary of proposition 7.3, together with corollary 4.12 we also have,

Corollary 7.5. There exists a constant C = C(O©), R, R) such that, for §'/2Ay sufficiently small,
®o,, < C (148)

~

We end this section by deriving a slightly more refined estimate on the second angular derivatives of
1. These estimates are needed in the application to the problem of formation of a trapped surface.
We review the system of equations for 7, written schematically it has the form
curl n =0+ ¢ - ¢, divn = —p—p,
Vap=v¢-(Vp+0+ ¥ +19-1).
We note the absence of try, terms in this system. Applying D* to the Hodge system for n and
commuting the equation for g with V we obtain

An=Vo+Vp+Vu+ V- -+ Kn,
VaVp =V - (VY +O0 + U+ -p) + - (V) + VO + VU + Vi - ¢))
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The absence of try, terms allows us to estimate Vy in terms of its (trivial) data on Hy and an error

term of size 2. To show that we bound

IV - (Vo + 0+ ¥+ - Yz,

S 4V Ulles ) (IV0lles ) + 1Ot sy + 19les sy + 82 Iller, IV s ) )
‘|‘5||¢||L°°

5 (||v2w||ﬁgsc)wu> +IVOlle iy + ||wn,;gs o+ 0 e, IV e i)
<520

(s¢)

In the final estimate the only dangerous term is || V]| £h ., (5); which may be =1 anomalous in the case

of ¥ = «. It is not difficult to check however that ¥ = « does not appear in this system but even if
it did the size of the error term would have been §7 instead of §2. As a result of this estimate and
the trivial data for Vu we obtain

IVallez (s < 62C.
To estimate 1 we remember that K = p + try, - g + 1 - 1. Therefore,
18902 ) S WVPllez 1 +1IVOlle2 ry + [IVElle2 )
o8l (I960er, 1)+ glles, oy + 04 Wllezs, - 19lLes o
N HVPH%C)(HU) + HVUHcfSC)(Hu) e

(Ha) T ||P||£(§C)

Using the Bochner identity we obtain

IVnllcz iy S 1ATez, iy + 071K (L2 oy 1]l cz

1 1
to TOMKNZ i lIV¥ler s

S ‘|V:0H£?SC>(Hu) + HVUHC?M)(Hu) +51C.
The same estimates also hold along the H, hypersurfaces.

We summarize this in a proposition.

Proposition 7.6. The Ricci coefficient n verifies the estimate
HV%IH%F H) S ||VP||L2 () T ||VU||£2 (Hu)+5 10,
IV*nllez ) S HVPHcgsc)(gQ +Valle ) + e

8. REMAINING FIRST AND SECOND DERIVATIVE ESTIMATES

In the previous sections we have derived estimates on the first and second angular derivatives of the
Ricci coefficients. In this section examine their V3, V4, VV, and VV3 derivatives.
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8.1. Direct V3, V, estimates. These are derived directly from the null structure equations (see
section 3.1).

Proposition 8.2. There exists a constant C = C(O©), R, R) such that for 527 sufficiently small
and any S = Sy

HVMTXH%C)(S) + HV477HL:§SC)(S) + HVMHcfSC)(S) + HV4”’>_<HL§SC)(S)

<C,
HVs{TV?_(Hc?SC)(S) HlVsnllez )+ 11Vawllez s) + [ Vstrxllez s) < €,

||V4>A<”cfsc)(5) + ||V4X||L§SC>(S) + ||V3>2HL§5 )+ [[Vax Hz? (5) = Coa.

Remark. Note the anomalous estimates of the last line. The anomaly of V4 is due to the curvature
term « in the second equation in (49). The anomaly of V3X is due to the term try - x in the fourth
equation in (49) . The anomalies for V3y and V,X are explained by the presence of trxx in both
equations of (50).

Proof. The claimed estimates follow directly from all the estimates derived so far. We need the full
set of || U] 25y estimates for all null curvature components ¥ which were derived in propositions 6.6
and 6.9. We also need to make use of the (5)00,2 estimates of proposition 5.8. As an example we
prove the estimate for V,4x in more detail. We start with V,x = —tryxy — 2wy — a which we write
in the form,

Vax = djg X+«
As a result,
S g - X||L§SC) + ||CY||L§SC)(S)
< 8y ller s - I¥ller, + lalles, s
<

oV OF  + C5T S O6

||V4X”L‘2SC)(S

as desired. Similarly we write,
v?f( = tfxo'¢b+¢g'¢b+v¢+‘1’g>

with v¢,, ¥, non- anomalous and 1, anomalous. Hence,

19:xlles, ) < Illez, o)+ Wolles (s 1¥lles

N sy + ||V”¢||c2 s+ || ¥y ||L2sc)(s
5 5_1/2O+5_1/402 +C

(s0)(5)

More generally, all of our null structure equations have the form
Vap =trx -+ -+ Vi + 0,
Ve =trx -+ -+ Vi + 0,

and one can easily see that the only anomalies occur for V3, V4 of x, x . O
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8.3. Estimates for V3n, V41, Viw, V w. The above proposition does not address the fate of V31, V4n, Vsu
and V4w derivatives which do not appear in the null structure equations. These can be estimated
by commuting the valid transport equations for these quantities with the desired derivative.

Proposition 8.4. There exists a constant C = C(O©), R, R) such that for 82Ny sufficiently small

HV4QHc§SC)(S) + “VMH%C)(S) + HV377H1:<25C>(5) + HV?&H%C)(S) <C.

Proof. As all the arguments are similar we will only derive the estimate for V47. Commuting the
transport equation
1 .
Vs = —gtrix(n—n)—x - (p—n) +5
with V4 (according to Lemma 3.3) we obtain

1 1
Vs(Van) = —§V4’BTX(Q —n) — strxVa(n —n)

= 2
— Vux-(n—mn)—x-Valn—n) + V8
— 2(n—n) - Vn+2wVan — 2wVsn — 2(nan, — 0,7, — Cab 0)1,
which we write symbolically,

Va(Van) = trx, - (Vag +Van + 9 - g) + ¢ - (Vath + Van)
+ - (Vi + T, +9-1y) + Vafp

Remark. In the above expression, V4,9 denotes quantities already controlled according to the
previous proposition and, among them, V41, denote those which are not anomalous. Also ¥, is
a curvature component different from «. Furthermore we can eliminate V4f according to the null
Bianchi equations

VB +trxB = —-Vp+" Vo +2wB+2x - —3(np —"no)
Thus,
Vs(Van) = try, - (Vi + Van+ - 1,) + - (Vath + V)
+ - (Vo + T+ -19) + VU,
Therefore,
IVs(Van)llez sy S (14 51/2A0)||V4Q||cfsc)(5) I Vatgliez (s + 51/2A0|V4¢||5§“)(5)
1l eze, 5 (Igllez, o) + 1V Nez )+ 1l ez s) + IV llez, (s

G0
(1+06"200)[IVan 2 5 HIIVllz s)+C

N+




TRAPPED SURFACES 57

Therefore,
IVanles o S 19sler s+ | 192Vl oy
S IVatley o + (14 8380) [ 19l i
[ IV e+ C

S O(O) + (1 + (S%AO) / HV4QH£?SC)(U'@)du/ + El + C
0

Thus by Gronwall,
HV4QH£§SC)(M) < 09+

8.5. Direct angular derivative estimates. Here we derive angular derivative estimates for all the
quantities which appear in proposition 8.2. We shall first prove the following:

Lemma 8.6. If §'/2A is small we have with a constant C = C(O©), R, R), for all Ricci coefficients
Y,

Ve VYl s S C
Ve, VYl s S C

As a corollary we also have,

Ve VIOl i+ 1Va VIl @y S C
Vs, VI¥llez |y + Vs, VIl ) S C

Proof. We write,

Vi, VI =0 - Vi + -9 + 1, Vi),
Vs, VI = try, - Vo + - Vi + -0 + by Vat),

Hence, in view of the previous estimates 90, < C, |3 22.(8) < C and the possibly anomalous

estimate ”VMDHC(Q () S C5 12 we derive,

1
1194, VIl 5y S 6200 (IV¥llez, ) + 1Bz, )+ IVatllez ) S €
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Similarly,
Vs, VUl s S (14 51/2A0)||V¢||L§SC>(S)
+ 38 (I8llez, ) + I V30llez ) S €
from which the estimates of the lemma quickly follow by integration. U

Proposition 8.7. There exists a constant C' = C(O®), R, R) such that for 520 sufficiently small
IVVaxllez o +IVVanlle ) +1IVVawliez @) + 1VVaxllez o < C
INNatrxllez o + IVVanlle | + 1IVVallez @ + IVVaxliez ) < €,
INVsxliez i + IVVsillez ) + IVVsw@liez o + IVVaxlie ) < C,
||Vv3{5_(“£?sc)(H) +IVVaille o + I1IVVswllez ) + 1VVaxlle o < C

Remark 8.8. Note the absence of anomalies. This is analogous to the situation with (s )(’)172 estimates:
additional V derivatives eliminate the anomalies due o and Ricci coefficients x, x .

Remark 8.9. The quantities VV,x and VV3x are controlled only along H and H respectively. This
is due to the absence of the corresponding estimates for Va and Va along H and H respectively.

Remark 8.10. As a consequence of the Lemma above the same estimates hold true if we reverse the
order of differentiation.

Proof. Consider the V, transport equations verified by ¢ € {try, x,w, 7, tfrz, X}
Vit = try, v+ -+ Vb + Uy,
with curvature components ¥, € {«, 5, p,0}. Clearly,

1
||VV4¢||L§SC)(H) S (||V2¢Hc§sc)(ﬂ) + ||V‘1’4||L§SC)(H)) +(1+ 52)||V¢||L(2SC)(H)

e
Also, along H,
1
IVVatbllee oy S (VN2 ) + IV allez ) + 1+ 02Vl ez
< C

provided that WU, # «, (i.e. the original ¥ on the left is not x).

On the other hand the V3 transport equations verified by ¢ € {trx, X,, trNX, X ,w} are of the form,
Vi) = try, v+ - v + Vb + W,

with the curvature components V3 € {p, o, B, a}. The corresponding estimates follow precisely in
the same manner. O
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8.11. Estimates for VV3n, VVyn, VViw, VV,w. In this subsection we prove the following:
Proposition 8.12. There ezists a constant C = C(O®) R, R) such that
INNVanllez o +1VVsille o +1IVVanllez o + 1V Vsillez @) < C

Remark 8.13. Together with the previous proposition, this proposition allows us to control all angu-
lar derivatives of all V3,V derivatives of all the Ricci coefficients try, x,w,n,n,trx, x,w (in some
C%SC)(H) or E%SC) (H) or both) except for VVw and VVjw.

Proof. To control VV3n, VV,n we make use of lemma 6.3. Recall that reduced mass aspect functions
p and p verify equations of the form,

Vap = ¥ (Virx + Vi + Uy) + - - 1y
Vsp = trzo-(Vtrx—szﬂ)—l—w-(Vtrx—i—Vzﬁ%—%) (149)
+ trxo'¢'¢g+¢'¢'¢g

which are to be coupled with the Hodge systems of the form

D(n,n) = (wp)+p+o+i-1. (150)
Here ¥y = {a 3,p,0} and V3 = {a, 8, p,0}.

Remark. We note absence of the Ricci coefficients w, w among the i variables in the above equations,
in particular among the terms of the form V. This fact is very important in view of the lack
of estimates for VVyw and VV3w. Equally important is the absence of the terms try 0V with

¥ = {X, X } in equation (149). Such terms would lead to an unmanageable double anomaly.

To estimate VV4n we need to commute the above equations for 7, u with V4. Making use of lemma
3.3 we derive,

V3(Vap) = Vatry, - (Viry + Vi) + try, - (VaVitry + ViVo)) + ¢ - Vi

Vatp - (Virx + Vo + U3) + ¢ - (VyViry + V4V 4 VU5 + V)
Vatrx, ¥ - g +trx - Vap - b+ Vb - - + wVap + wVsp
D(Vun) = Vap+ Vi(p,0) + - (Vi + Vn + Uy)

+
+

Proceeding as many times before, we write,

IVitler o & 19z o+ | I¥aViler
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and (with H(u,u) = H)

/0 ||V3V4E||E%SC)(U’,g)du/ S / ||V4V?/)||£2 (u/,u)du’+/ ||£V4g||z2 (u’,y))d“,
+ ViYWl ) + IV - VYl )
+ Y- V4@/’||52 | (H (u,u)) + [ - v4‘1’3||c2 | (H) (u,)
+ - VMH[:? (H(u,u)) Jr||WV3M||1:2 [ (H ()
We have kept on the right only the most problematic terms. We now write,

|Vath - W3’|L§SC>(Q) S 51/2||V4¢||L;156)(ﬂ) : H‘I’?,HLZISC)(Q)

Using the interpolation estimates of corollary 4.12,

1 1 1
IVl S I9Vailhs Vel i+ SH IV o

1 1 1
Islles ) S HV‘I’:’)HZ?SC)@H‘I’?)HZ@)@ + 00| Wsll 2

Taking into account the possible anomaly of ||V || 2(9) (recalling also that 1) here differs from

w,w !) we deduce,
IVablles S co—H 1Wslles ) S C

Therefore,

IVah - Wslle2 ) S ca't.

Similarly, taking into account the estimates for (O, 4 of corollary 7.5,

1Vt Vil 5 0P IVable, - IV¥lley o) S OOV

To estimate ||V, V3| c2,, (i) We write, using the Bianchi equations,
V4\I/3:V\I/g+w-\11—|—w-\ll,
where VU, € {Vf3,Vp,Vo,VS}. Recalling the estimate H\IIHE% S C5'/% encountered before
and HV‘II ||£2 (H) < R
- Vel ey S 62 Wl (IV %l + 12 ) < €

The term ||V - || £z, (i) May contain a double anomaly. We estimate it as follows:

1Vt 0l < 2 Wlless,

V4¢||£2 yH) ~S SC
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All other terms in E%sc) (H) can be estimated in the same manner to derive,
IVasller o S [9ler, o+ [ 19l oy
0

+ / A e
0 .

or, by Gronwall,

IVapllez ww S ||V4H||L(2$C)(O,u)+/ IVaVPlle2 s’ +C
0

Now,
/o |W4V¢Hc§sc>(u/,u)dulf§/o HV4VQHE%SC)(u’,y)dUI+Hv4vwguﬁfsc)(ﬂ(u,g))

where ¢, € {trx, X,n, X ,tArX}. Thus, in view of the estimates of proposition 8.7 and commutator
lemma, 8.5,

/ \|V4V¢||z:§sc)(u',u)dulr§/ \|Vv4ﬂ|fﬁfsc)(u',y)du/+c
0 0

and therefore,

IVaslleg o S 19l o+ [ 19Vnlcr e’ + € (151)
0

Using the elliptic estimates of proposition 4.17 applied to the Hodge system for V41 we derive,
||VV4Q||L§SC)(S) S ||V4ﬁ||c§sc>(3) + [ Valp, 0')||L§sc)(5)
1
+ 020 (IVathllez () + VWl (s) + [1Wallez, ()

Now,
Va(p,o) =VB+1-Vy+w- Yy,
with ¥y € {a, 8, p,0}, Now,

1
IValp: o)z s) S IV Bllez s) + 02 Dol Wallez (s),

In the particular case when ¥, = «, (recall that a component is not allowed in the definition of the
curvature norms R) we recall (see proposition 6.9) the estimate ||«|| 2,(9) < 67120, Therefore, in

all cases,
~1/2
1llez sy S CO
and consequently,

IValp, o)z s) S IVBlez s +C
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with C' = C(O®), R, R). Therefore,

Integrating,

IVVanlez sy S IIVaplle s +1IVBlez s+ C (152)

u u u
[ 19Vl i’ S [ 19l e+ [ 198 i + €
0 0 0

ie.,

S [ IVl e’ + R +-C

| 19Vl e’ S [ Vsl ol + € (153)
0 0

Therefore, combining with (151) and applying Gronwall again, we deduce,

HV%H%@(M) S HV4H“£%SC) (Ou) T C
It is easy to check on the initial hypersurface Hy,

HV4H||1:§SC)(0,@) S 0.

On the other hand, returning to (152), we deduce

IVVanllez sy S CHIVBIe )
Hence,

HVV4EHE<QSC>(H) + vaﬂxﬂﬂcfsc)(g) S C

as desired.

The remaining estimate

INNasnllzz an + 1V Vanllez

)
is proved in exactly the same manner.

9. O ESTIMATES AND PROOF OF THEOREM A

In this section we combine the estimates obtained so far to derive L™ estimates for all our Ricci
coefficients and thus verify the bootstrap assumption (37). This would also allow us to conclude the
proof of theorem A 2.13. To achieve this we combine the (9Og 4, 015, B O, B O and the remaining
second derivative estimates with the interpolation results of Proposition 4.15. We will only require
results before and culminating with Proposition 8.7. In particular it does need the estimates of

Proposition 8.12.
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For the Ricci coefficients ¢ € {try, x,n,w} we make use of the interpolation estimate of Proposition
4.15 together with (D0, , + O < C and ||V4V¢||Lf () < C of Proposition 8.7 in the previous
section, to derive

1/2
I96ler, ) < 198l e, )+ IVl e, on)

1/2
(012 + IVaV ez )
< C

Similarly, for ¢ € {trz, X1, w}, using the estimates SO 9+ O < C and estimate HV;),VLDHE? ()
C' of Proposition 8.7 in the previous section

IVl 9y S (51/2”V¢Hcfsc)(ﬁ)+||V2¢||L?SC)(£))

(se)
1/2
(6 IV ¢l ez ) + V5 Vellez )

S C

1/2

Next, for the non-anomalous coefficients ¢ € {trx,n,n,w,w, trz} we use the interpolation inequality

[Pl e

1 1 1
R N 1 N Y P

which leads to the desired estimate,
19l ) S C.

In the anomalous case of 9 = {X, X } we use the interpolation inequality (85)

19| 2o

%, (8) S sup (HVZDH%C)(S) + WH%C)(&S)) ;
b5

which gives

[Pl e

<
=S C

as desired. We deduce,

Proposition 9.1. There erists a constant C = C(O©), R, R) such that, for 6'2Ay sufficiently
small we have,

S Opoe < C. (154)

In particular, choosing Ay ~ C', and § > 0 sufficiently small, depending only on C" we dispense of
the bootstrap assumption and derive the conclusion of Theorem A.

<

Y
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10. L{,,,(S) ESTIMATES FOR CURVATURE AND THE FIRST DERIVATIVES OF THE RICCI
COEFFICIENTS

In this section we establish C?SC)(S ) estimates for all first derivatives of the Ricci coefficients . In
the previous section we have already established such estimates for V. The Ricci coefficients satisfy
the structure equations

Vo =trx -+ -+ Vi + 0,
Vi =trx -+ -+ Vi + 0.
We note that the double anomalous terms trx, - X and trx, - X appear only in the Vyx, V3x and

V3X equations. Similarly the anomalous « curvature component only appears in the VY equation.

For the remaining equations we estimate
||V4¢||£§SC)(S) S ||¢HL§S )+ o 2|9l e, ¢ S)||¢||L(SC) (s) T ||V¢||L‘(*SC)(S) + ||‘I’||L§SC)(S)
S Ooa + 5100,0000,4 + O1a+ H‘I’Hc4 1(8);

where the §1 takes into account a potential anomaly of the H1/1|| £t (s) term. To estimate ||¥|| £, ()
we use the interpolation estimates

1 1
1 2 1 2
190es s S (03 1%lez, o + 1V% ez ) (9319 lez, o + V4l o))

1 1
1 2 1 2
190cs s S (03 1%lez, o + 1V% ez an) ™ (93192, o + 15 ¥ ez o)

Each of the null curvature components ¥ satisfies either V, or V3 equation. These equations can be
written schematically in the form

VvV, — yolts) Z YD L gls2),
s1+s2=s+1
VUl = VOO oy 0 Y ) gl
s1+s0=s
Let us consider the V3 equation since the presence of the trx, makes it more difficult to handle. We

estimate
A% II@ H>NHV\I’(S ||£2 m + W2 ) +90 > ||1/J(51)Hc;>:c
S1+82=s

SIS

wis ||£§SC) ()

Note that the terms H\IISHZ;? () and ||‘I/52H£? () are anomalous only for s = sy = 2, that is in the
case of the estimate for . We summarize these estimates in the following

Lemma 10.1. For a constant C = C(Z,0,R,R) and ¥ € {3, p,0, 3, a}
1
otflalle o)+ 1¥les, s <€
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Combining this result with V41 and V31 equations, as described above, gives us the
IValles s+ 1Valles sy < C

estimates for those derivatives, with the exception of ¢» = X, x. On the other hand, the anomalies
present in their respective equations lead to the anomalous estimates

. . . . 1
||V4X||cgsc>(5) + ||V3X||£E‘SC)(S) +[[Vax H%C)(S) +[[Vsx HE‘(*SC)(S) <Coa

It remains to estimate V31, Vyn, Vaw, V4w which do not satisfy direct equations. We argue as in
sections 8.3 and 8.11. Using the interpolation estimates stated in the beginning of this section and
the bounds

||VV377||L2 o)t ||V4V377||L2 () <C,

||VV4Q||£(QSC)(H) + HV3V4Q||£(2$C)(H) <C

of sections 8.3 and 8.11, we obtain the desired ,C?SC)(S ) estimates for V3n and V7. However, we can
not obtain the corresponding estimates for V w and Viw. We summarize the second main result of
this section.

Lemma 10.2.

HVWL;*SC)(S) + ”V3,477”£‘(*56)(S) + Hv3,4Q”L‘<*SC>(S) + HVMHL‘(*SC)(S) + HV3WHE‘(*SC)(S) <C,

~ A ~ A _1
||V4X||L‘(*SC)(S) + ||V3X||L§SC>(S) + ||V4X||L;lsc)(5) + IVax ”LZ‘SC)(S) <o

11. RENORMALIZED ESTIMATES

11.1. Trace theorems. The results of this section rely on sharp trace theorems which we discuss
below. We introduce the following new norms for an S tangent tensor ¢ with scale sc(¢) along

H = HI(LO’@), relative to the transported coordinates (u,#) of proposition 4.6:

—sc! 1/2
|Gl = 6-<O=5( sw(/wwue|d)/

0eS(u,0)

Also, along H = H. g)’”) relative to the transported coordinates (u, ) of proposition 4.6

SC 1/2
16ll7r iy = 0 sup wuue|d)/
GESUO
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Proposition 11.2. For any horizontal tensor ¢ along H = HQ(LO’@)

IVall 7 in S (IV36llcz ) + I0llez i + 63 C b, + IVadlles ()

=

1

x (I928llc2, iy + S C Uz, + IV 9ller, 50)) (155)
FIVAYolee )+ 5306l + IV6ller, o) + 98]z

where C' is a constant which depends on O R, R.

Also, for any horizontal tensor ¢ along H = Héu’o), and a similar constant C,

=

) +16les an + FCUl ez, + IVs0less)))

(sc)

I¥56l ) S (IV300lez,,

X (vau% Il + 199l )>a (156)

(se)

FIVaVoler, ) + 57Ol +HV¢||/;4) )+ IV6ler,

(sc)

The proof relies on the classical (euclidean) trace inequality formulated in (u, 6) or (u, ) coordinates

(0,u)

Lemma 11.3. For any scalar function ¢ along H = Hy, ™, supported in a coordinate chart, we have

“ / N1/2 1/2
(/0 |0ud(u, ', 0)*du’) ? < (1026 r2(ery + 02|l r2(2r)) / !|39¢H1/2
+  [|0p0ud||L2(rry + 01|Opd || L2(1r) (157)

For any scalar function ¢ along H = ﬂf’“), supported in a neighborhood patch,

“ 1/2
(/0 0u6 (' w, O)Pd) S (10261 2y + 1026 2am) 93¢l o
+ 1000udll 2y + 1069 | 2 () (158)
In scale invariant norms we have,
0ullrri S (1020lcs, iy + 18l m)
+ 1000udllc2 i) + 11000l 2 o)

1/2

|02 qsu“

and,

1/2 1/2
10l S (10F0llcs, 10z, ) ™™ - NOBOINLS,
+ 11000u8llc2 ) + 11000l .2 2
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Proof. We start by making the additional assumption that ¢(u,f) is compactly supported for v’ €
(0, w).

Integrating by parts in 6 = (6%, 62),
[ wotwor) = | [ [ avtas oo [ouot.0)- ool )]
S [ 1w [ ouotw.0)- .00, 0yt av'as
S [ 1] o 0w0,0(0.0) - 0,0(u. O)ulas
+ / / . 1000w (u, 0) | df
D JO

Now, integrating by parts in wu,

/ 0 O 0ud(i, ) - D0, O)dl = — / S 0ndpd(d,0) - 2(u, 0)
0 0

Hence,

/Olauqb(u, O < 11050lLeqm) - 10501 L2y + 1060uBll 72 ar)- (159)

To remove our additional assumption concerning the compact support in (0,u) we simply extend
the original ¢ to —§ < u < 20 such that all norms on the right hand side of (157), on the extended
interval, are bounded by a constant multiple of the same norms restricted to the original interval
(0,u). We then apply a cut-off to make the extended ¢ compactly supported in the interval (—d, 29)
and finally use (159) in the extended interval to get the desired result. The proof of (158) is exactly
the same. The scale version of these estimates is immediate. U

We now pass to the proof of proposition 11.2. It suffices to prove (155), the proof of (156) is exactly
the same.

One can easily pass from the coordinate dependent form of the trace inequalities to a covariant form
with the help of the estimates of proposition 4.6.

According to that proposition we have, for C = C(O©®, R, R),
HFH%C)(S) + HVFH£§SC>(5) S C

~

Thus,
v4925(1 = Q_laggba_Xabgbb
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As a consequence, along H = H,,,

18u ey + 6211, 1]

10ullzs .oy + CO [l 5

<
~ (sc)
<

~ (sc)

Also, schematically, ignoring factors of Q (which are bounded in L*), we have with ¢ € {x,w},
Vie = 0i0+v-0bt+a ¢+ o

Thus, in view of our estimates for the Ricci coefficients 1, we have

||a£¢||£%sc)(H) S Vi Az, )(H)+51/2||¢||£;>§C> IVadllez )
51/2||¢||£?§C)(||04||L(36) () T ¢||%g° )

+
N ||v4¢||£%sc)(H) + O51/2(||V4¢||L§S y T ||¢||£<(>§C))

We next note that for a horizontal tensor we can convert dy into a covariant V derivative according
to the formula 9y = V + I'. Therefore,

1000allcz, s) S IVOllez s) Jr51/2||F||z:2 sllllee
S IVole s+ 51/20“¢Hc§§c)
and,
’|83¢aHz:<25C>(5) S HV2</)H£§SC) + 51/2H<9FH£2 sll@llce, + 51/2HFH£‘(‘SC)(5 IV@llcs )
S IVllez )+ 51/QC(H¢H£(SC) +IVlles ()
Also,

IVVadllz2(s) + 62100 | gy @l e + 0 IT a5 IV abll s

<
S vVl s + 02 C(1ler, + IVadler, s)

10Butallcz (s

According , to the the scale invariant estimate of lemma 11.3,

1/2 1/2
10u8lrnm S (1030lez, an + 1llcz, an) ™ - 10501
+ 106 u¢||c2 H)+||ae¢||£2 (H)

Combining this with the previous estimates we obtain the desired result, which can be clearly ex-
tended to any ¢ along H,, not necessarily restricted to a coordinate patch, by a simple partition
of unity argument. This proves the desired estimate (155). Estimate (156) is proved in exactly the
same manner.
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11.4. Estimate for the trace norms of Vy, Vy. Our main goal in this subsection is to derive
estimates for the trace norms ||[Vx||z ., ) and ”V_X”Tr(sc)( ) In view of proposition 11.2 we could
achieve this goal if we could write Vy = V¢ and Vx = V3¢ where ¢, respectively ¢ are such that
the norms on the right hand side of (155), respectively (156), are finite. We prove the following
proposition.

Proposition 11.5. Consider the following transport equations along H = H,, respectively H = H,,
and

(1) Solution ¢ of (160) verifies the estimates,

10llez sy + 0lles o)+ 1VOllez s) + 1 Vadllez sy S C (162)
||VV4¢||£§SC)(H) + ||V?1¢||L§sc)(H) NS (163)
with a constant C = C(O") R, R). Moreover,
12602y S I9°trxlles, oy +C (164)
As a consequence (see calculus inequalities of subsection 4.9) we also have,
6llex, S I9%trler, o +C (165)
and as a consequence of the trace estimate (155),
IVadllrr oo S ||V3WX||£(2$C)(H) +C (166)
(2) Solution ¢ of (161) verifies the estimates,
19lle2 sy + 9llcs o) + 1VOllez s) + IVadllez sy S C (167)
IVVsdllc2 ) + HV§¢HL<QSC>(§) S C (168)
with a constant C = C(O©, R, R). Moreover,
Hvzé\\cﬁsc)(g) S HV?’”XHL%SC)(E) +C (169)

As a consequence (see calculus inequalities of subsection 4.9) we also have,

llex, < IV*trxllee, p+C (170)

and as a consequence of the trace estimate (155),

IVs@lirrioem S ||V3t@||cfsc)(1{)+c (171)
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Proof. Estimates (162)-(163) and respectively (167)-(168) follow easily from (160), respectively (161)
in view of our estimates for y, respectively x, and their first two derivatives derived in the previous
sections. The second V derivative estimates are subtle; they require a non-trivial renormalization
procedure, nothing less than another series miracles. As always we expect the estimates for ¢ to be

somewhat more demanding in view of the presence of try = tryg —1—trx We shall thus concentrate on
them in what follows. No other anomalies occur at this high level of differentiability. The idea is to
derive first a transport equation for A¢ and hope somehow that the principal term on the right, i.e.
VAY, can be re-expressed a V, derivative of another quantity depending only on two derivatives of
a Ricci coefficient. We write,

V3A¢p = AVY +[V3, Alg

Now, recalling commutation lemma 3.3, we write schematically (we eliminate 8 using the Codazzi
equation)

¢ X - Vo+Vih3-¢+1s3-Vip+ x-13-¢
V3, Vg = x-V20+ Vi3 (Vo+ Vsp) + Vs - ¢ +1hs - VV30 + V(X - 13- @)
+ 3-V3Vo+x -93-Vo

where 93 € {t&,iaﬁaﬁ}-

Hence, using our estimates for 3 as well as the estimates (167)-(168) for ¢ we can write,

Vs, Al = try V¢ + X - V¢ + Erry (172)
IErrglles oy S COVAH(C+1V8llez o) (173)
Indeed, we have, for example,
V243 Ollez ) S 51/2H¢H£g§c) v? Usllez ) S 51/20”?“1:356)
N 0(51/2(”V2¢H£<256>(ﬂ) +IVVsoliez ) + ||¢HL<QSC>(Q))
S O8IVl + OV
Consequently,
V3Agp = AVY + trXOVQQ + X - V¢ + Err, (174)
Since,
A, V] = KVo+VK- ¢
we have,

1AVl wn S 1Klet w1V laun + 1VK e anl9llex

(s0)
C8' 2Vl 2 qary + C*6"/7

AR AN
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Hence, also,
ViAp = AVY +try, V2o + X - V¢ + Erry (175)
1Bl ) S C8V2(C+IVZ0lle2 )
Now, according to the Codazzi equations,
Dox = —B — 5Vitrx +trxws + ¢y - s
Thus,
"DyDox = *Dyff — 5 Dy Viry + *Da(trxths + s - 1h3)

or, making use of (58),

—%AX + KX = "Dy - %*ngux + *Dy(trxws + 13 - 1h3).
Thus, differentiating once more,
VAR = V’B+ Vitrxy + KVY +Emr (176)
Err = VK -x +trx Vs + V(13 - 13)
Here, and in what follows, Err denotes an error term of the form,
HEU”LEM)@) S C
On the other hand we recall the structure equation,
Van =B+x-(m—mn)
Thus, commuting, and writing as before,
V3, VIn = x-Vn+ Vs -n+vs3-Van+x-vs-n
V5, Vi = x-Vn+ Vs (Vn+ Vsn) + Vs - n+ 13- VVsn+ V(X -3 1)
+ ¥3-V3Vn+x -v3-Vn
Observe that,
IIVs, Vil a S C

and consequently,
VB = V3(V’np) + Err (177)
Err = V? (K' (n— Q)) + [V3, VZ]Q
Clearly,
||Err||£(23€)(ﬁ) < C (178)

~J
Therefore, we deduce,

VAR = =V3(V?n) + Vitry + KVx + Err
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Commuting V with A again,
AVyxy = VAx +KVx +VKy
Hence, since Vx = V39,
AVY = V3(Vp) + Vitrx + KV3¢ + Err (179)

Back to (175) we rewrite,
VisAg = —Vs(V?n) + Viirx +try, - V2o + K -V + 3¢ + Erry
el o S CO+E21V8] e, )
which we could rewrite in the form,
Vi(Ap+ VP — K¢) = Vitry+try, - V¢ — V3K - ¢+ Erry (180)

Recall that K = p — %ltrxtrz — %f( - X - Hence, we easily find,

VKl S €
Thus,

IV3(Ag + V21 — Kx)llez ww S HV%IXHL@C) () T ’VzéHcﬁsc) ()
+ Errgllez ww

ie.,

HA?H%C)(W) IS ||V2ﬂ||z:§m(u,g) + C51/2HKHL§SC)(u,g) + Hvstrxﬂ.c%“)(g)

+ (1 +51/2C’)/ ||V2?||£%sc>(ul7ﬁ)d1/ + ||E1||£%SC)(H)
0

Now, using the elliptic estimates discussed in subsection 4.16, we have and our estimates for K, we
deduce

V6l S 1Al s (1s1)
+ 8P(IVKllee lldlleg, s + 1K e ) IVEller )
S A2l )+ 51/2(”?”6‘(’;)(5) + ”V?”%c)(S))
< 186l 5) + 32(C + IV, )
Thus,

HVQQH%C) () S ||V2Q||£<256>(u7g) + O51/2HKHL<QSC)(U,Q) + HV?"JYX||L§SC) (H)

+ (1—|—(51/2C>/ HV2?”£(QSC)(H,&)d’U,/
0

+ C(L+8) V82 ()
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Using Gronwall,

||V2?||£§SC)(M) S ||V2ﬂ||£<2sc>(u7g) + C51/2HK||L<256)(U,@) + HV?’trxllchC)@ (182)
+ C(+ 51/2)||V2?||£§SC)@)

Integrating we deduce, for C'6/? sufficiently small,
||V2?||c?8c)(g) S O+ HV%TXH%C)@
as desired. U

To close the estimates of proposition 11.5 it remains to estimate |]V3trxl|£<z () and ]|V3trx||£% ()
To achieve this we start with the transport equation for try,

1
Vi(try) = ——trX2 —Ix 2 — 2wX
which we rewrite in the form,
1
V4(trg) = —§Q_ltrx2 — Q_1|X 2

trx’ = Q_ltrx

The plan is to derive a transport equation for the quantity AVtry’. We make use of the following
commutation formulae, written schematically, for an arbitrary scalar f verifying the equation Vs f =
F,
Vg(Vf) = VF‘FX'Vf‘F@bg - F
Va(V2f) = V(VE+x-Vf+s-F)+x-Vf+3-Vf+is- Vs(VY)
= VPF+13 - VE+Vi3-F+x -V’ f+Vy -Vf
+ s Va(Vf)+x -3 Vf
V3(VPf) = VPF 413 V*F+ Vi3 - VF + Vi3 - F
X-Vf+Vx -V f+Vx-Vf
V(0sVs(Vf)+ X -3 V) + 8- V2f 41y Vs (V3f)
or,
Vs(V3f) = VPF 44y V’F+ Vi3 VF + Vs F
+ X Vf+Vx -V f+Vx-Vf
+ 3 Va(V2f) + Vb - Va(Vf) + 93V, V3| (V) + V(X 93 - V)
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Applying the calculations above to f = Q7 'try, F = —1Q 'trx? — Q7'|x|? and using V(Q7!) =
—Q?VQ = —1Q72(n — ) we derive, omitting factors of Q which are bounded in L,

Vi(AViry) = x-AVY +x-Vtrx +Vx - VX +Vx - Vitry + F
Fo= trx, (¢s- Vs + Vibs - Viby + 43 - 103 - Viby)
+ by g - Vs 4 by - Vihg - Vs + s - 4 - 3 - Vg

Making use of our estimates for 13 we easily derive, with a constant C' = C ((9(0)), R,R),

1El ez, < §'2C

~Y

Thus,
V3(AVEry') = X -AVX +x-Vitry + VX - VX + Vx - Viry + Fy (183)

||F1||£?Sc)(H) < 62

Observe that neither the principal term x - VAY or the lower order term Vy - V2x appear to
satisfy an E?SC)(H ) estimate. The principal terms seems particularly nasty since we can’t possible
expect to estimate three derivatives of x using norms which involve only one derivative of curvature
components. Clearly another renormalization is needed. In fact we make use of equation (174) which
we write in the form,

AVX = V3A¢ —try Vo —x - Vo — E
We can thus replace the dangerous term AVy in (183) and obtain,

V3(AViry') = x - V3A¢+ x - Virx + Vy - VX + Vx - Viiry + F
FQ = F1 — (trXOVQQ—X . v2?— E) X

In view of our estimates for ¢ we have,

1Follee ) S CO2(1+ 020NVl 2y

~Y

Now, recalling also the definition of ¢,

Vg(AVtrX/ —X-A¢) = —Vzx - -A¢+ trzovij’trx + s - V?’trz + V3¢ - sz
+ Vtr&- V%rz + I



TRAPPED SURFACES 75

Hence,
(s¢)
(1 + 061/2) / ||v3trx||ﬁ(2 )(u/ﬂL)dul
O sc 7

C51/2||V3X [ERNGR ||A?||L?SC)(Q)

51/2|’V3?|’Tr(sc>(ﬂ) . ||V2XH£§SC)@)

HAVUXHQZSC)(M) S HAVUX’HL:@C)(O,@)+C51/2HXH£°° 'HA?H%C)(M)

5| Vtrx e, - 9%l 2

+ o+ + o+ o+

1E2l 2,y
Using the calculus inequalities of subsection 4.9 and our estimates for V2V3trz,
IVtrxles, S C+ Ve

Also, in view of the trace estimate (171),

IVsdllrroen < C+I1Viexle.,w

Hence,
IAVEX 2wy S IAVEX [z 0 + CO VDN 2
+ (1+C8?) /0 ullv?’trxllcfsc)(ucwdw
+ COPIVsR llzrom - 180l
+ COVIVPtexll e ) + C%61
Now,

|\AVUX/HL:(QSC>(M) S NAVtrxlee uw + 51/20(”V2£H£§m(w) +C6'?)

Y

Now, using the elliptic estimates discussed in subsection 4.16, we have and our estimates for K, we
deduce

IVirxlles s) S N1AEXle2 (s)
51/2(||VK||£%SC)(S)HVtrXHD’O © 1Kl ) IVirxlles )

(sc

IAVtX 22 (s) + 02 (IVtrxleze, s) + [V20rxler o)

AN N+

AVt le s+ 672(C+ 1Vl )
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Hence, after using Gronwall,

I9%exlle S IV%txles, 0 + O3 (1V%lle2gua + V8, )

(sc)

+ COPNVsk ey - 128z

+ COVP|IVPtexll e ) + C%61

Thus, after integration,

u
vatrXHZ?SC)(E(O’u) S/ CQ + CYZ(S/Ov HVSX H;T(sc)(ﬂ(o’u,) ‘ HA?HZ%SC)(E(O’uI))dU/

It remains to estimate the trace norm [[V3x ||TT( (O We claim the following,

(184)

Lemma 11.6. There exists a constant C depending only on O R, R as well as ||V3g||5% ) such

that,
IVsX vy S C V2

~Y

Proof. in view of the trace estimate (156), we have for H = H®"),
IVaxtlrrnen S 13 ler, a + 19V ller,
+ V2R ez, oy + 1% ez ) + C 21X e,
Observe that,
IVaxllez ) + 11X Ne2 o S o'
We claim also that,
IVEx llez ) < OS5 + || Vaallez | .
Indeed, differentiating,
Vix = —a—tryx —2wx
Thus,
Vix = —Via-— Vatry - x —trx - Vax —2Vsw - x —w - V3x
Hence,

IVExllez <
< o524 IVsallez | )

which completes the proof of our estimate.

IVsallez | an + X [lez ) + 051/2(||V3¢_UH£<256)(§) + Vsx ||L§SC)(g))

(185)
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Returning to (184), we have with a constant C' depending on O R, R, as well as ”V3QH£? )(ﬁ))’
HVSU‘XHZ%SC)(E(O’“) S Cz + 02/0 HVQQHZ?“)(E(O,u’))duI

< 02(1 + / ||V3trx||i? )(H(O,u/))du’)
0 sc —
Thus, applying Gronwall once more we derive,

||V3trx||i%\ C?

c>(ﬂ<°’”) 5
This finishes the proof of the second part of the following.
Proposition 11.7. The following estimates hold true with a constant C' depending on O, R, R as

well as sup,, HV40z||£%SC)(Hu) and sup,, Hv?’QHﬁ(QSC)(ﬂg)

(1) We have along H = H,,

||V3tTX||L§SC)(H) + ||V757"X||£§§C) NG
sup VXl s + VX2 S C
(2) We have along H = H,,
IVPtrxlles m + IVErXlles, S C
sup VX lley,, 9 + IVE v S €

11.8. Estimates for the trace norms of V7, Vr. As in the previous subsection we need a series of
renormalization. The proof follows, however, the same outline as above. We first prove the following,

Proposition 11.9. Consider the following transport equations along H = H,, respectively H = H,,

ViWe = Vi, We(0,u) =0 (186)

Vil = vnp  We(0,u) =0 (187)
and

Vs = Vi, De(0,u) =0 (188)

Vs e = v, @ (0,u) =0 (189)

(1) Solutions ¢ = (We, W) of (186) -(187) verify the estimates,
WHE%M)(S) + HQS”L‘(*SC)(S) + HV¢HL§SC)(S) + ”V4¢H£§SC)(3) S C (190)
IVVadllcz ) + ||v421¢||£?3c)(H) S C (191)
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with a constant C = C(O©) R, R). Moreover,
||V2¢||£§SC)(H) S ||V2M||£§SC)(H) +C
As a consequence (see calculus inequalities of subsection 4.9) we also have,

Il < IVellez, )+ C

and as a consequence of the trace estimate (155),

IVadllrr i < HVQMHc?SC)(H)JrC

Solutions ¢ = (¥g, ¥) of (188), (189) verify the estimates,
H?Hﬁ%sc)w) + H?HLE{SC)(S) + HVQHL%SC)(S) + HVBQH%C)(S) S
HVV?)QH,C(?SC)(Q) + ||V§¢||£§Sc)(g) NS
with a constant C = C(O©) R, R). Moreover,

IV2(®g, (3)@||L§SC)@) N HVQEH%C)(@) +C

As a consequence (see calculus inequalities of subsection 4.9) we also have,

100 Plezs, S 19" plet, o + €

and as a consequence of the trace estimate (156),

1Vs(D, DOzren S 1V2ellez, ) +C

Proof. We start with

ViPo=n  ViPo=n

(192)

(193)

(194)

(195)
(196)

(197)

(198)

(199)

Commuting both equations with A and proceeding exactly as in the derivation of (175) we derive

VsA®g = VAp+trx, V? o+ -V’ P+ E
VsA®g = VAp+trx, V¢ + 1 -V’ P+ E

1Bl ez, ) S o' (C + ||V (g)ﬁb”cfﬂ)(g))
IEl ez, i) S Co'2(C+ V2 (S)QHL%SC)(Q))
Recall that, see (117), (118),
1
divn = —u—p, curln:a—ﬁfg/\z
1
divpg = —p—p, curln:cf—E)%/\X

(200)
(201)
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i.e., schematically,

)

*Dlpln = *D1<—/L —pP,0 — )A( AN
AX)

[><> [

DiDin = "Di(—p—p,0—X
Prceeding as in the derivation of (176) we find, schematically,

VA = Vu+V3(p,0)+F
VAp = Vu+V3(p,0)+F
Il ) S C

We now make use of the equations, see equations (121) and (123),

1 3 1 1
Vsw = —p+2ww+=n—n+=-(n—n)-(n+n) —=n+n?
2 A 1 8
1
ngT = 50’

Proceeding now exactly as in the derivation of (177) and (178), we deduce,
Vi(p,0) = V3Vi(w,w) + F
1Pl S C.
Therefore, just as before for the derivation of VAY, schematically,
VAR = V3Viw,w') +Vu+ F
VAp = V3V (w,w’) + VQE + F
IE Bl S C
Thus, back to (200) and (201) we deduce (just as in (180)
Vs((A®¥¢ -V (w,0)) = Vu+trx, V?Po+x -V Op+E
HEHLJ?SC)(Q) S C(1+02v? (3)¢”£§Sc)(@)
and,
Vi(AP9—Viww) = Vutiy V@43 V0t 1
IEle2 i S C(1+ &2V (3)9”5?5@(@)
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(202)
(203)

(204)

(205)

We then proceed with elliptic E?SC) estimates, exactly as in (181) and, after using also Gronwall, we

find (as in (182))

IV Ol 0 S 19500t + [ 9%,

+ CA+3)V 0l

(206)
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and
V2 (3)@’%6) ww S VA, WT)HL(QSC)(M) + /0 HVQHHLES@(u’@)duI (207)
+ CO+NV 0z
Integrating we deduce, for C'6/? sufficiently small,
V2 (3)¢||z:§sc)(g) S O+ ||V2NHL?SC)(E)
VOl S C+ IVl

as desired. ]

It remains to estimate HV2MHL§ () and ”VQHH[,f (- As before we treat only the estimate for the

slightly more difficult case of u. In view of the proof of the previous proposition we have (neglecting

signs and constants, as before),

VAp = VsA®g+try V2O 4+ x -V P+ E (208)
VAn = tr&ov2 (3)9 +X - \& (3)9 +E (209)
HEHLfSC)(g) S OOV (C+|IV? (3)¢H£?SC)(§))
IEllez iy S C§(C+IVOllez )

We start with the transport equation (114),

1
Vap +trxp = —?r&div n+(n—n)Viry
. 1,
+ X'V(QQ_U)"‘Q 'Q—(Q—3n)-@+§trxp
1 1 )
+ st =n-m) + 50 +m)-x - (=)

Commuting with the laplacean, we derive
VsAp = X -AV(p+n) + trxAdiv g+ (Vi + V) - VX + trxAp
1 1
+ (VP +V2n) - VE + 35X Aa = (n=3n) - AB + StrxAp
+ Err

Here, and in what follows, Err denotes any term which allows a bound of the form,

[Errllze oy S C (210)



TRAPPED SURFACES 81
Using equation, Vsx = —a —trx x + vs -3 we write,
Aa = —V3Ax + Err.
Using equation, Vin = S+ x - (7 — 1) we can write
AB = V3An+ Err
Using equation Viw = %p + 1 - we can write
Ap = 2V3Aw + Err
Therefore we can write,
Valp = X - VsA(Po+ @)+ trxVsA(Pg 4+ Do)
+ Va(Wo+ Do) VP + V2 +1) - VX
+ trxVsAw + (;4— Q)V_?,AQ +X - V_gAX_—l— Err,
with Erry verifying,
S O+ [VH(We+ (3)@||L§SC)(Q))
S CO+IVille, m)

Therefore, introducing the renormalized quantity

|Errg ||L§SC> (H)

h=p—x - A(Pp+ @) —trx - Aw—(n+n) - Ap—x - Ax (211)
we have,
Vagh = —Vax A(Fo+ Bg+ 1) — Vstry - A(Wo + Pg)
+ Va(Po+ Do) VX + V2 +1n) - VX
+ Vstry - Aw + V3(n +1n) - An + Erry,
Consequently,

ez oy S 02NV o - VAP + (3)¢+X)Hz:§ ()
021Vs(Pé+ D) vy IV Do+ D)2y
O 2(1Vs(n + Wllzroa - 19022 )

51/2HVX HTT(%) HVQ(T] + 77)“[:2 (H) + EI’I’¢

+ o+ o+

We recall from the previous subsection, see lemma 11.6, that
IVsx vy S C52

with a constant C' depending only on O R, R as well as ||Vsa| 2 (1) Also, from the previous

section, we have (see proposition 11.7)
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Also, in view of (199),
V390, D )rri S IVl +C

Also, we can easily show, with the help of the trace estimates of proposition 11.2 and our Ricci
coefficient estimates,

1V3(n,n) Hﬁfsc)(g) S C
Consequently,

e, S Wllea, 0 + L+ CO2 20l e
On the other hand,

e S 18l + 1Vl + COIVnl 2 g
+ C151/2||V2X ||L?SC)(u,g)
Hence,

||AE||£(QSC>(u,g) /S Hé”ﬁ%sc) (0,u) + ||v2gl|£%56) (u,u) + 051/2Hv277‘|£%56) (u,u)
IVl + OVl

We can now proceed precisely as in the last part of the proof of proposition 11.7 to deduce, after
applying elliptic estimates and integrating,

||V2H\|c§“)(ﬂ$'“>) s oY +(1+C‘51/2)/0 ||V2/_L”£?sc>(§$”"’)du/+C

from which the desired estimate follows. We have thus proved the second part of the following:

Proposition 11.10. The following estimates hold true with a constant C' depending on O R, R
as well as sup,, |]V4a||£% (H) and supEHV;;gHC% (L)

(1) We have along H = H,,

(2) We have along H = H,,,
IV )l S C

(3) Also,
W[Vl o 5 O
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11.11. Refined estimate for (¥¢. We end this section by establishing a more refined estimate on
(3)¢. This estimate is needed in the argument for the formation of a trapped surface described in our
introduction. We examine the equation

V5 G = vn.
Commuting with V we obtain

VsV W6 = (try, +¢) VP + (T +v- ) Do+ V)

Taking into account triviality of the data for V )¢, non-anomalous estimates for ¥ appearing in
this equation, and Gronwall we obtain

1
IV O ollee ) SNVnllez o,y + 62C.
(sc) (sc) \==u
Using Proposition 7.6 we obtain
1
HV(B)ész:?SC)(S) SIVole  wy +1IVolle @, +05C.

Combining with the interpolation estimates

1 1 1
190llez 9 SUVlZ: o IVD0NZ s+ 05190l o)

IIV(3)¢||czgc><S> < ”V(S)gb”ZfSC)(S)||V2((3)¢)HZ?SC)(S) + 01 ||V(3)¢||£§$C)(S)
we conclude

Proposition 11.12. The solution ®) ¢ of the problem V3 3¢ = Vn with trivial initial data satisfies

1
i 1
||(3)¢||£‘(°§C)(S) SC (HVPH%C)@H) + vanﬁ?m(ﬂg)) + O55.

12. TRACE ESTIMATES FOR CURVATURE

Proposition 12.1. Under the assumptions of the finiteness of the norms R and R, which include
HV;;QHQ () and the anomalous norm HV404H5(2 (H,) We have

atl| 7,y < 075C,
1B, p, o) 17,011y < C,
1 (0; o, B 2oy < C,
|| 7,21y < 675C

The proof is based on the application of the trace inequalities of Proposition 11.2 and the null
structure equations (47), (49)-(51). According to these the curvature components ¥, = {a, 8, p,0}
can be expressed in the form

Uy =Vips+ 90,
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while W3 = {p, 0, 3,a} can be represented as
V3 = Vg +try, - v+ 00,
with?® ¢, € {X,n, < w >} and ¢3 € X,n<w>}.

Therefore,
1
[Valltr ooy S (IVa@ally oy + 52||¢||%oo :

195 v o) S NI Va3 070 oy + (1 + 62 H¢||£;’§’c))H¢H£<“)

By Proposition 11.2

1
1 2
IVadallme oin S (IV30llcz,an + 19allcz i + 02 C 0l eze, + I Vadulless)))

=

% (I926ullez, gy + 33 Clgullezs, + IV@uler ()

H ViVl )+ o 2O([0allez,) + 1Vadaller (s) +[IVeallez )

[un

1Va6s i S (I30501es

)+ 19sllezan + 03 CIosle, + 1 Vadsller )

(se)

=

% (I9%6sllc2 an + 03 CIgs ez, + IV aslles,s))

(0)
+VsVslle | + o 2C (|03l cee ) + ||V3¢3||z:4g ) T IVl
We observe that all the involved norms with the exception of [|[V3idyl| 2 () and ||[V3gs| 2 () have
been already estimated.

Recall that the derivatives with no estimates are the £?SC)(S) norms of Vyw, Vsw and either L%SC) (H)
and E%SC) (H) norms of VV4w and VV3w, while VV4x and VV3x are controlled only along H and
H respectively. Finally, the £?

(se)(5) and E?sc)(S) estimates for X, X, V34X, V34X are 572 and 61
anomalous. Therefore, for ¢, = x, i.e. ¥y =«

IVaxlle o S CUIVERN ez, )+ CO72)% +C,
for ¢3 :X, ie. ‘1/3 =
IV I oy S CUVER g2, 1y + CO72)7 + C.
The remaining ¢y, ¢3 satisfy
1
IVadallne oo S CUIVidall 2, oy + C)

Vst o S CUIVISsl 2 ) + O)?

20Recall that < w >= (w,w') and < w >= (—w,w’), see (122) and (123).
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We now express
Vigs = ViU, + Vi - ¢,
Vigs = V3Ws + V36 - 1.

Therefore,
1
IVidallez oy S NVaLallez oy + 02 Vadllez, nlldlle, S NValallez @y +C,

1
IV3esllez S 1V Wslicz ) + 021 Vadllez anlldlle, S NValallez a + C,

where we took into account possible =2 anomalies of ||[V44|| £z (i) and || V39| £z, 1) These imme-

diately yield the desired trace estimates for @ and a. For the remaining components ¥4, U3 we may
express from Bianchi

VU, =V 4600,
V303 = VI +try, -V +¢- T,

where U* € {a, 8} and U? € {a, }. Therefore,

1
||V4\1/4||£§SC)(H) S ||V‘1’4||L§sc)(ﬂ) + 02 ||@]| oo

(s¢)

1
IVsWslicz ) S IVllez oy + (140216l MI¥llez, iy S R+ C-

Ve, iy SR+C,

In the last step we have to be careful to avoid the double anomalous term try, - a. Its appearance
is prohibited by the signature considerations, according to which

1 > sgn(VsVs) = sgn(try, - o) = 2.

13. ESTIMATES FOR THE ROTATION VECTORFIELDS

We define the algebra of rotation vectorfields WO obeying the commutation relations
[(i)07(j) O] =Cijn (k)07

obtained by parallel transport of the standard rotation vectorfields on S* = S, o C H, o along the
integral curves of e,. Suppressing the index ) we obtain that

v401) = Xchc-
Commuting with V and V3 we obtain

Vi(VO)=x-VO+-O+Vx-O+x-n-0,
V4(V3O):(ﬁ—ﬁ)'VO‘F(X—FOJ)V;J,O—FJ-O—F(C_U‘X‘F??'Q)'O‘FVgX'O
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The only non-trivial components of the deformation tensor 7,5 = %(VQOB +V;30,,) are given below:

T34 = _2(77 +ﬂ)a0a>
1
Tap = §(Va0b + V4,0,),

1 1
T3q — §(V30a — Xabob) = §Za.

13.1. Estimates for H,Z. The quantity Z verifies the following transport equation?!, written
schematically,

ViZ =NVn+n)-0+m—n)-VO+wZ+(0+p)-O+(n—n)-n+n) -0

Let H,, = V,0, denote the non-symmetrized derivative of O. Then,
ViH=x-H+3-O+Vx-O+x-1n-0
We now rewrite these equations schematically in the form
VuZ =Vipsy - O+ gy - H+ (X +w)Z + Wy O+ P34 -3y~ O,
ViH=v9 -H+(0,+ V) - O+ 13- 0.

Here 134 € {n,n}, ¥y € {p,0}. In what follows 134 will be treated either as a 13 or a 14 quan-
tity, depending on the situation. The quantities, H and Z can be assigned signature and scaling,
(consistent with those for the Ricci coefficients and curvature components) according to.

(212)

sgn(H) — % = sc(H) =0, sgn(Z) — % =sc(Z) = —é. (213)

In view of equations (212) we derive, by integration,

1
1Zlle, S IVYallrrgy + 1Wllzr., + 0210l (Wl + 1 H e, + 1 Z]leee,)

Thus, according to the trace estimates of proposition 11.10 for 4 € {n,7} and proposition 12.1 for
v, we derive,

1
1Zlex, S C+3C(Hlem, +1Zllcr,)
Similarly,

1
Wz, < 19%lrne, + 1€ullex, + 6501, (1lle, + 1 Hllc,)

S C+82C(C+ | Hlex,),

~

Therefore we have proved®? the following.

2INote the absence of X and w.
22Note the triviality of the data for Z on H,. Otherwise the term X - O in the definition of Z might have caused an
L) anomaly. The data for H however is not trivial. Initially ||H| L ~ 1, which means that while it is anomalous

in E?Sc)(S) it is not in L77 .
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Proposition 13.2. The quantities Z and H verify the estimates

1Hl e, + 1121l e, S C

(sc) (se) ™~

with a constant C = C (T, Rup Rpyy)-

We add a small remark concerning the symmetrized V derivatives of O.

Proposition 13.3. Let H., :== V,0,+V,0, = Ho, + Hy,. Then in addition to all the estimates for
H, H' also enjoys a non-anomalous ,C%sc)(S) estimate

|2, () S C.

Similarly,

1Zllez s < C.

The result follows easily from the transport equation for H’, which is virtually the same as for H, and
crucially, triviality of the initial data for H®. The claim for Z follows from the same considerations.

13.4. L?

(sc)(5) estimates for VH,VZ. We prove below the following,

Proposition 13.5. The following estimates hold true with C = C(Z", R, R),

IVH|lzz sy +IVZ]lz2 sy S C,
(sc) (sc)

IVaVH| 22y + VeV 2l ) S C

Proof. We first commute the transport equations for H and Z with V.

ViVH) =9 -VH+ V- H+ (VO,+ V) - O+ (0,+V,) - H
+ -V O+ gy Vil + 1) -ty - H,

Vi(VZ)=Vss - O+ (Vo +U,) - (H+ Z)+1- (VH+VZ)+ V¥, -0
+ VY- O+ - (H+Z)+93uViZ
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The term VW, is in fact V(o + p). The estimate for VH follows immediately from the following:

- VAl ez, iy S 3l

1
s VHHN <5QCHVHHL§SC)(H)
IV0 - Hllee, ) < 621 H e

2 VOl an S e
IVO-Ollez ) S IVOle2 i S C
V24 - Ollez an S ||V21/J||c2 S C
(O +y) - Hllzz 1) S 52 ||H||£(°:C)(||@||,c2 S T 1Yl ) S 52C
14+ V- Ol iy S 0% 10, IV 2 ) S 62C
104y - Hllez, ) S Ol lleee, 1 H Nl e %H%C)(H) S 0C,

1 1
|9 - V4H||ﬁfsc)(H) NCE ||¢||£<(>§C) m SozC.

(sc)

V4H [,2

The estimates for VZ are proved in exactly the same manner. O

13.6. E?SC)(S) estimates for VH,VZ. The results of the previous proposition can be strengthened
to give the following,

Proposition 13.7. The following hold true,
IVHIl s s) + 1V Zes s) S C

~Y

Proof. The arguments can be followed almost verbatim, as in the last proposition, with the exception
of the analysis of the two terms:

Vs - O, VU,-0=V(o+p) O

We recall that ¢34 = {n,n} and according to Proposition 11.9 we can write,

Vipsz = Vi
with ¢ satisfying the estimates
HV2¢||£§SC>(H) + HV2¢’|£§S) HIVole s+ 10l ) < C,
HV4¢HL:§SC>(S) + HV4V¢4H£§5 A H¢H£(Sc) + HV¢HL§SC)(S) SC

We now the write

V2¢43'O=V4(V¢'O)—V¢'X'O_[V47V]¢'O
:V4(V¢-O)+X-V¢~O+\Dg-¢-O+¢-V¢-O+w-w-¢-0
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We estimate

57 [TI96- - Olley 5.y S 8% sup 190y s e, 82
7 [0 6-Olley st 0% (IV0IE, o194l + 04101z ) Wl S 93C,
57 100 Ol 5,n £ 0% 5up [Vt s, ez, S 52C.

0 u

0Ol S S5up loley s, ll V1, < 0C
0 u

On the other hand, the null structure equations give for < w >= (w, w')
Vi<w>=(p,0) + 1y 1,
As a result,
V(p,0)0=Vi(V<w>0)+1 -V +x-V<w>+V, <w>+), - Uy + 1919, (Kw > +1))-0

We can estimate

1/ IV <w>-x-Ollg (5,0
0

AN
?\3’\1—‘

(se) ™

sup [V < w > [les (s, lIxXllezs, S 62C.
u

A
?\3?»—‘

Y 1 1 .
100l sdn 5 8% (190 lE g+ 640 ) e,

U900 Ol s S sVl s ller, S 5EC

v (> ) Olley s S sl <w> il s, oI, S 6C
These allow us to conclude that,
_1/||V4 (VH,VZ)-V¢-O0—-V <w>- ]||%C) ydu "< 52 Su<p||(VH VZ)||E4 &,)—HS%O.

Maklng use of the E(SC)(S) bounds on both V¢ and V < w > we finally obtain the estimate
S IVa(VH, VZ)HE? (S, du' < 5z sup,<, [[(VH, VZ)HK(; (S T C§Y/2, from which the con-
clusion of the proposition easily follows. 0

13.8. Estimates for V3Z. We now examine the equation for V3Z.
Viu(V3Z) = V3Vihgy + Vs - Z + ViPsa - X + Vathas - H + ¢34 - V3 H
+ (Vax+ Vsw) - Z +w-V3Z
+ V3V, O+ (p+0)  Z+ Wy X+ Vathsg - Vza+ P3a - 34+ Z + 34 - P34 - X,
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To estimate the right hand side of this equation we will need to use the first and second deriva-
tive estimates for 1 of Propositions 8.2,8.4,8.7 and 8.12, keeping in mind possible anomalies of x;,

VX, VX, V3x, the relationship

Vi(p+o)=VB+(trx, +¢) ¥

given by the null Bianchi identities and the L, (S) curvature estimate® ||| 22,9 < C of Propo-

sitions 6.6 and 6.9. Thus,
IVaViaallez iy S C,
IV - Zllez ) S 52HZH£(SC) Ve <820,
IV - Xllez oy S E ||X||£;’§C) Ve an S C
||V31/134 : H||£§S (H) < 5 ||H||L<(>§C)H 3¢34||£2 o) f, 550,
[0 VaHll ez ) S 52|W”£ VsHllz2 ) S 5%O”V3HHE%SC)(H)7
IVsw - Zliez ) S D) S el
Vsx - Z|’£§Sc)(1{) < o3 ||ZHL(°§C)||V3X||£2 (H) S G,
HW'VSZH[,?SC)H <52Hw|\co;;) VaZllez, ) S 82CVaZllez, o,
IVslp+ o)z, i S IVBIlez ) + ||(’5YX0 +9) Ve iy SR+ 0

||‘I/g‘Z||£(QSC) H) <‘5 ||ZH£‘<’;?C)||‘I’ HL2 ) (H) <520,

(sc)

g - xllez ) S E ?[Ixleee,
V3134 - ¢||c2 NGRS < o3 fy
19 Zllez i) S Ol Z e

(o)
¢+ b - XHcfsc)

‘I’chZ NOPSEE

e IVstsallez ) <6:C,

[Wllege, 191z ) S < o3,
[l 1Wgllez ) S 62C

<
H) 5”XH£(SC) (sc) (sc)

13.9. Estimates for |V3H || 2, . The only quantity still requiring an estimate is ||V3H|| o,

We use the relation®*

Vsl = V3VO0 = VV30 + [V, V3]0 = VZ +Vx - O+ -0+ Z + 34 x - O

23Note that ¥ in the nonlinear term may contain an a component but not the anomalous « term.

2ANote a crucial cancellation of an anomalous term X H.

H .
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Therefore,
1
IVsHllzz sy SNV 2z s) + 1IVXllez, ) + 1Wllez s) + 02 1sallz o)1 2]l
Uaallez ) SNV 22 (s)+C

(sc)

+ 50 ||x||%

This immediately implies the bounds
||V3H||£2 (s T ||V3Z||L2 s) + ||V4V3Z||L§sc)(H) SC.
A similar argument allows us to immediately strengthen the ||V3H || 2,9 estimate (unlike the one
for V3Z) to the L{,,(S) norm
HV3HH£4 5 <C

Furthermore,

V4V3H:V4VZ+V4VXO+VXXO+V4é0+\1/gXO+V4¢34Z
+ 34+ VaZ + Vazs - X - O+ th3g - Vax - O +h3s - x - x - O

We once again remind the reader of the possible anomalies for x, x in £ SC)(S ), double anomaly for
try in ,C(SC)(S ) and a simple anomaly in L), anomalies for Vyx and Vzyx . We estimate

HV4VZHc§SC)(H) S G,
HVZNX”[P () S G,

1
||VX X||c2 (H)<52||X||E‘(fc) vX||c2 (H)<520
1
I98lles, i S IVlez, iy + 116 Tlles, ) S R +83C,
Uyl S 02C,

Ii' ;ES (:77

1%y X2y S 821z

(sc) (sc)
|V aths4 “Xlle oy (H) ~ 5 ||X %)

1
¢34 - V4X||,cfsc) ) S 52”@0”0’" ||V4X”£2 o (H) S 620,

o)
1
Usallez ) S 02C.

H%zx‘X'XHLfSC) ) S Olxlleee, xlex

(s¢) (s¢)

As a result we now established the following

Proposition 13.10. There exists a constant C = C(Op, Ox, Rpy), Ryy)) such that

~

Vsl 2 sy +IVsZliez s) + (IVaVsZliez ) + VaVsHll g2 i) S C
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13.11. Derivatives of the deformation tensor. We now compute the derivatives of the deforma-
tion tensor Dr.

Dymyy =0, Dymzg = —2V4(n +ﬁ) -0 —2(n +ﬂ) X0,

Dyms3 = %ﬂ 2, Dyms, = %V4Z +n- (n +ﬂ) - %ﬂ “H®,  Damae =0, Dymap = V4H?,
D3myy =0, Dsmag = —2V3(n+n)-O—-2(n+n)-(Z—-x-0)— }177 - Z,

D333 =0, Dsms, = %V;:,Z, D3mtyg = —1n-(n+1n) — %17 - H®,  Dsmg, = V3H® + }Ln A
Dy =0, Dc7T34:—QV(UJFQ)'O—Z(TIJFQ)'HS—%X'Z

1 1
DC’/T33:—§X'Z, Dcﬂga:§VZ—XHS—2X<7’]+Q>O,

Dc7T4a:_X'HS_2X<7]+ﬂ>'Ou Dcﬂab:vHs_X'Zv
Based on the results of the previous section we then easily deduce the following result
Proposition 13.12. There exists a constant C' = C(Ol, O, Rpy), Ryy)) such that

1Dz, ) S C

The only potentially problematic term is x - H*, which can be estimated as follows:

s 1
||X -H H£<256>(S) NEE Hl”cm

s <
(sc) H ||£%sc) C'

~

It is precisely this term that requires a non-anomalous E%SC)(S ) estimate for H*, which incidentally
does not hold for the non-symmetrized derivative H.

13.13. Theorem B. We are now ready to state the main result of this section, mentioned in the
introduction.

Theorem 13.14 (Theorem B). The deformation tensors ()1 of the angular momentum operators
O werify the following estimates, with a constant C = C(Z), R, R),

1Ol s + | O lle, s < € (214)

()

Also all null components of the derivatives DO, with the exception of (D3 ©O)m)s,, verify the
estimates,

1Dz HL;*SC)(S) SC (215)
Moreover,
||(D3 (0)77')3(1 — V3Z||L4(S) + HSU_p v3Z||L2(S) SJ C (216)
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14. CURVATURE ESTIMATES 1.

In this section, in all the remaining sections of the paper C' denotes a constant which depends on

the initial data Z, all the curvature norms R, R, including ||V ., (o, and Vol (1O
(sc) u (sc) \ =1

Using the results of the previous sections we assume that the norms O of the Ricci coefficients are
bounded by C'.

14.1. Preliminaries. Let W be a Weyl tensorfield, with *W its Hodge dual verifying the Bianchi
equations with sources

DivIV = J, Div "W = J* (217)
where J, *J are Weyl currents, i.e.
Jog) = 0. Jagy=—Jars, 975 =0.

and J35, = 5Jau €, the right Hodge dual of J. Following the definitions of [Chr-KI1] we let Q[WV]
be the Bel-Robinson tensor of W. As proved there we have,

Proposition 14.2. Assume W verifies (217). Given vectorfields X,Y,Z and P[W] = PW](X,Y, Z)
defined by P[W] := Q[W]ap s XPY7Z° we have,

Div(PW]) = DiwQ[W|(X,Y,Z)+ %(Q[W] -mX,Y, Z) (218)
where,

QW] - m)(X,)Y.Z): = Q[W]((X)W Y, Z)+QW|(Yr, X, 2)
+ QW D7, X,Y)

Thus, integrating on our fundamental domain D = D(u,u),

cmwuxxm+/<wmxxz¢>

Hy

chnym+/mexng

//uu)DwQ (X,Y, Z)+ //uu (XY, Z)

In the particular case when W is the curvature tensor R (and thus J = J* = 0), recalling that the
initial data on H ( vanishes, we have
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Corollary 14.3. The following identity holds on our fundamental domain D(u,u),

/HQ[R](LX,Y,ZH/H QRIY.21) = [ QIAEXY.2)

+ //M w(X,Y,Z)

On the other hand, given a vectorfield O, we have
Div(LoR) = J(O,R),  Div(*LoR) = J*(O,R). (219)

where J(O, R) is a Weyl current (calculated below in lemma 14.5) and LoR denotes the modified Lie

derivative of the curvature tensor R, i.e. (following [Chr-Kl]), LoR = LoR — rOrR-1O% . R
and,

((0)7% “R)aprs = HWMB% + © )%Wam + ¢ HWaﬁM + Oz T s Wapyu

with (@7 is the traceless part of ()7 ie. O = Oz —|—}ltr ©)1 g. Observe that ZOR is also a Weyl
field and that the modified Lie derivative commutes with the Hodge dual, i.e.,EO( *R) = “LoR.
The following corollary of proposition 14.2 and proposition 7.1.1 in [Chr-KI].

Corollary 14.4. Let O be a vectorfield defined in our fundamental domain D(u,w), tangent to H o.
Then, with H, = H,([0,u]),

Q[EOR](L XY, 2)+ / QILoR|(X.Y,Z,L)= | Q[LoR|(L,X,Y,2)

Hy

//D(M QILoR] - #(X,Y,Z) + //M) (R,0)(X,Y, )

where, D(O, R) := Din[EoR] is given by the formula,
D(O.R)ss = (LoR)s"5"J(O. R)uy + (LoR)s" " (O, R)usy
+ “(LoR)s" 7" J* (O, R)uél/ + "(LoR)s" A (0, R)uév
The Weyl current J(O, R) is given by the following commutation formula, see proposition 7.1.2 and
in [Chr-Kl],
Lemma 14.5. We have,

Div(LoR) = J(O;R):= JY O;R) + J*(O:R) + J*(O; R) (220)
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1 A v
J1(07R>ﬁ'y6 = §(O)W“ Dy Ryys

1
JHO, R)prs = 5 IRy

1
(O, R)srs = 5((0)%&3” 25+ Daan R 575+ Dgusn R 5, %)

where, (O)pw — Da( (O)ﬁm)_ (O)q = Dg (O)frw —- D, (O)ﬁﬁa _ %( (O)p7 G — (O)pﬁ ga'y>

In the remaining part of this section we should establish estimates for the norms R, and R,. We
start with «.

14.6. Estimate for a. We apply corollary 14.3 to X =Y = Z = e, to derive,

[olabs [ 18P s [ el [ (@RI On)enenen (221)
Hy Hy " Hy* D(u,u)

Based on conservation of signature we write schematically,
QIR]- Dm)(epener) = 3 o wl gl (222)
s1+s2+s3=4
with Ricei coefficients ¢ € {x,w,n, n, w}, null curvature components ¥ and labels sy, s2, s3 denoting
the signature of the corresponding component. In scale invariant norms we have,

2 2 2
oy ygomy + 181, oy S 01y +1

with,

_ 512 ol ' (s2) | (sa) !
I=67 3 16", /0 L PR i WU

s1+s2+s3=4

By far the worst term occur when s, = s3 = 2 and s; = 0. Observe also that, since the signature of a
Ricci coefficient ¢*1) may not exceed s; = 1, neither s, or s3 can be zero, i.e. a cannot occur among
the curvature terms on the right. Using our estimates, ||qb(81)||£?:c) < O, with C = C(Z° R, R) we

deduce,

+ Cél/QHOé”i%SC)(HﬁO’E))

+ CRod"*|al (H<o,@)+051/2723
(se)\ 7w

2 2 < 2
HO[H‘C%sc) (Hq(ﬁ&)) + H/B||£%SC) (Hl(io!u)) ~ ||aH’C%sc) (H(()O,ﬁ))

Therefore, recalling the anomalous character of Ry[a], R,[5] we deduce,

Rola] + Rl < I° + O/ Ry (223)
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14.7. Remaining estimates. We follow the procedure outlined in the introduction. Define the
energy quantities,

Qolu,u) = & / QIR)(es, ex, €1, 1) + / QIR (e, 4, €1 ¢4) (224)
Hio’ﬂ) H&O’w

+ 61/(0 )Q[R]<€3,€37e4,€4)—|—52/( )Q[R](€3,€3,€3,64)
Hy s 34 (O

Q) = & [ QReenene)+ [ Qe (225)
Ha'

KR GO R (T CRERR)
Hu’u ﬂl,u

According to corollary (14.3), for all possible choices of the vectorfields X, Y, Z in the set {e4, e3} we
are led to the identity,

Qo(u, u) + Qy(u,u) = Qo(0, u) + Eo(u, u) (226)

where,

Eoluu) = & / /D QR ee)

(4) ®)
" //D(“,U)Q[R]( 7r,€3764)+ //;(U,U)Q[R]< 7T,647€4)
+ 5_1//D( )Q[R]((4)7T,63,€3)+5_1//D( )Q[R]((3)7T,64,63)
i 5_2//73( )Q[R](B)W’e&%)

with W7, @7 the deformation tensors of e4, e5. Every term appearing in the above integrands linear
in Wr or ®7r and quadratic with respect to R. Also all components of W7 can be expressed
in terms of our Ricci coefficients x,w,n,n, w. In fact one can easily check the following, Dy, =
Wiy = 0, Uzy = g(Dseq, eq) + g(Daey,e3) = 4w, Dmay = 2g9(Dsey,e3) = —8w, Yy, = 2Xap,
W73 = g(Dgey, e3) + g(Dsey, eq) = 2(, + 21,. A similar formula holds for @)z, with y replaced by
x. Observe, in particular, that the term try can only occur in connection to ®)wr. Thus, all terms
appearing in the & integrand are of the form,

¢ Wy -y

with ¢ one of the Ricci coefficients and Wy, W5 null curvature components. Consider first the contribu-
tion to Qq of the anomalous terms 62 fH 0w Q[R](e4, €4, €4, €4) + 0> fH o) Q[R](eu, €4, €4, €3) obtained

in (19) in the case X =Y = Z = ¢,. Since Q[R](e4, €4, €4, €4) = |a|* and Q[R)](ey, €4, €4, €3) = | B>
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we derive,

2oy 1B oy &l o) + Eor(u,)

g()l(”,ﬂ) ~ // Q( (4)7T)647€4)
D(u,u)

Since all terms of the form ¢ - ¥, - ¥, have the same overall signature 4. Thus, it is easy to derive
the scale invariant norms estimate,

e

L L [

and,
< 2ol [ : )
o S 0 ||¢H£(SC)/O ||\Ijl||5?sc>(ﬁﬁo’ﬂ))“%Hﬁ?sc)(ffﬁw)) (227)

The gain of 6'/2 is a reflection of the product estimates of type (46). Now, the only null curvature
component which is anomalous with respect to the scale invariant norms E%SC)(HI(LO’Q)) is a. On the
other hand the only Ricci coefficient which is anomalous in szc) is try. Indeed we have to decompose
try = try + try,, where try, is the flat value of try, and therefore independent of §. This leads to
a loss of §'/2 in the corresponding estimates. Now, since try cannot appear among the components

of W7, we can lose at most a power of § on the right hand side of (227), which occurs only when
¥, = U, = a. Fortunately the terms on the left of our integral inequality are also anomalous with
respect to the same power of §. Therefore, since ||¢|| cee, < O, with C = C(Z° R, R) we derive

Rilo] + RG[8] S (V) +6'% - CR,.
Therefore, for small § > 0, we derive the bound,
Rola] + Ro[6] STV + 6V*C(R, R). (228)

with C' a universal constant depending only on the curvature norms R, R. We would like to show
that all other error terms can be estimated in the same fashion, i.e. we would like to prove an
estimate of the form,

Ro+Ry S IO+ 67'C(R,R). (229)

Assuming that a similar estimate holds for R; + R; we would thus conclude, for sufficiently small
0 >0,

R+R < I (230)

To prove (229) we observe that all remaining terms in (226) are scale invariant (i.e. they have the
correct powers of ). In estimating the corresponding error terms, appearing on the right hand side,
we only have to be mindful of those which contain try and «. All other terms can be estimated
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by 6'/2p(R,R) exactly as above. It is easy to check that all terms involving try can only appear
through ®#5,. Thus, it is easy to see that all such terms are of the form,

Q3 V7~ - |8 trx
Q330 V7~ —(p* + 0¥ty
Q3433 V7 = — |é|2trx

Thus, since try = tfr& + try,, we easily deduce that all error terms containing try can be estimated
by,

o / Qo(u,u)du’ + 5*/*C(R, R).
0

It is easy to check that the integral term can be absorbed on the left by a Gronwall type inequality.

It thus remains to consider only the terms linear® in ||c|| £ ooy (HO2) which we have already estimated

above. These lead to error terms with no excess powers of ¢, which could be potentially dangerous.
In fact we have to be a little more careful, because we would get an estimate of the form,

Ro+Ry S IV +C(R,R)

~Y

which is useless for large curvature norms R, R. To avoid this problem we need to refine our use
of the )0y, norms. We observe that among all terms ¢ - ¥, - U, linear in a we can get better
estimates for all, except those which contain a Ricci component ¢ which is anomalous in E?SC)(S ).
All other terms gain a power of §/4. Indeed the corresponding error terms in & can be estimated
by26,

. . 1/2 . 1/2
w1l o 192 o Nl o

5216

(s)
< 5174 (5)0074 Ry - Ro[a]m . Rl[a]1/2_
Denoting by &, all such error terms we thus have,
&l < §V'C(R,R)

It remains to check the terms linear in « for which the Ricci coefficient is anomalous in the L’?SC)
norm, i.e. terms for which ¢ is either y or x. It is easy to check that there are no terms linear in «
which contain X and thus we only have to consider terms of the form x -« - ¥, which we denote by
&. Since ||x ||£? () loses a power of §'/4 we now have,

1/2
L:(sc) (Héo’l))

1/2

51/2
L:(sc) (Hfl,o’!))

I et o ¥y o - 190 Nlal

< (5)00,4[X] ‘R - Ro[a]1/2 "Ry [a]1/2

~Y

Since we are left with no positive power of § we must now be mindful of the fact that the estimates
for %) Qo4 depend at least linearly on the curvature norms R, R, in which case &, is super-quadratic

2By signature considerations there can be no terms quadratic in «
261t follows from the Gagliardo-Nirenberg inequality Ha||%4(u&) SIVall Lz w el 22 (uw
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in R,R. We can however trace back the '/ loss of || ¥ ||£z(1 () O initial data, i.e. upon a careful

inspection we find, see estimate (36) of theorem A,

”X ||£?‘sc)(u,y) S 5_1/41.(0) + C(R,E) (231)

~

Thus,
& < IO . Ry Rola]? - Ry[a)V? + 6VC(R, R)

Y

The above considerations lead us to conclude, back to (226),
Ro+Ry < IO+ eRo[a]V? - Ryi[a]V? + 6Y3C(R, R). (232)
with ¢ = ¢(Z(") a constant depending only on the initial data.

Remark In the analysis above we have not considered the possibility that, among the terms in the
integrands of & we can have terms of the form ¢ - U, - Uy with at least one of the curvature term
being the null component «, which cannot be estimated along H,. Among these terms only those
containing try lead to terms which are O(1) in §. These can be treated by using H which leads to
estimates of the form,

Qo(u, u) + Qy(u,u) 3 2+ (/o Qo(v, u)du' +6* /Ogo(u,g’)dg') + C6Y?

with C = C(Z®,R,R). The final estimate would follow from the following: lemma below(which
can be easily proved by the method of continuity).

Lemma 14.8. Let f(x,y), g(x,y) be positive functions defined in the rectangle, 0 < z < xg, 0 <y <
yo which verify the inequality,

x y
f@y) +g(x,y) < J+a/ f(x’,y)dx”rb/ 9(z,y')dy’
0 0
for some nonnegative constants a,b and J. Then, for all 0 < x < xp, 0 <y < yp,

f(@,y),9(z,y) S Je™t

We summarize the results of this section in the following.

Proposition 14.9. The following estimate hold true with constants C = C(I(0, R, R), ¢ = ¢(TO))
and 6 sufficiently small,

TO) 4 o534

7O 4 ¢(ZORY2 4 §Y/8C.

Rola] + Ry[f]

S
Ro+Ry S
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15. CURVATURE ESTIMATES II.

We shall now estimate the first derivative of the null curvature components appearing in Ry, R;.
We apply (14.4) for the angular momentum vectorfields O as well as for the vectorfields L, L. We
prefer to work here with the vectorfields L, L instead of e4, e3, as in the previous section, because
their deformation tensors do not include w, respectively w. This will make a difference in this section
because we don’t have good estimates for V 4w and V3w which would appear among the derivatives
of Wr and ®xr. On the other hand, since e, e, differ from L, L only by the bounded factor  no
other estimates will be affected.

15.1. Deformation tensors of the vectorfields L and L. Below we list the components of LT('ag
and L7,

L L L -1
=0, "mz=0, “my=-20 w,

by =0, Lmg, = Q’l(na + () + O W,logQ, Lrw=0"vw

L L L -1
g3 =0, “m3 =0, =my=-20" w,

Itge =0, Emyq = Q_l(ﬁa +C) + Q7 Vo log Q. Emg = _IXQI;

We start first with a sequence of lemmas:

15.2. Preliminaries. Given a vectorfield X we decompose both EXR and Dx R into their null
components o(LxR), B(LxR),...a(LxR) and a(DxR), 3(DxR),...a(DxR). We consider these
decompositions fo the vectorfields (note our discussion above concerning X = L, L and e,, a = 1,2.
In the spirit of our discussion above we write e4 and ez instead of L, L. In the following lemma we
estimate the null components of Dx R, for X = e3, e4, €,, in terms of R, R.

Lemma 15.3. Denoting R, and R, the restriction of the norms R and R to the interval [0, u] and
[0, u] respectively, we have with C' = C(O©) R, R), the following anomalous estimates,

1 1 1
52||04(D3R)||1;? (o) +62||6(DaR)||L(2 () S IV + 65,

We also have the regular estimates,

(DBl gy ooy + 18Dy oy + 1BDAR o
. DB s gy + 110N DsR) s oy + 10, ) DB s o

1
+ ||é(D4R>H£? )(Hq(f)’ﬂ)) + Hé(DaR)HLf )(Hio’ﬂ)) + ||Q(D4R)||L(2 )(Hff&)) 5 Ry + 0aC
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and
IIB(D:aR)HEz () + [I(p, ) (Ds )ch ) +H(p,0)(D3R)HE§SC)(H;M>)

o)
+ |, 0)(Ds )Hﬁz ey BB 2 o) + 1B(Ds Bl 2 (s
1
£ BDuR s ooy + laDiR) o) + la(DuR)l o o) S Ry +67C

Remark 15.4. We note the special nature of the anomalies in a(D3R) and B(D,R). Specifically, we
can show that both terms can be written in the form G + F' with G = trx, - o and F' obeying the
estimate

”FHE?SC)(HSW)) + ”FH,C%SC)(ESLO’E)) <C.

Proof. Let \IJ(S)(DXR) denote the null components of DxR and ¢ Ricci curvature components of
signature s. Then, for X = L, L, ey, eq, recalling that sgn(X) =1,1/2,0 for X = L,e,, L, we write,
\I/(s)(DXR) — VX\I/(S) + Z ¢(81) Cp(s2) (233)
s1+sa=s+sgn(X)
Ignoring possible anomalies we write,

H\If(s)(DXR)HC%S (HOW) S HVX\IJ

S [Vxe® -
234

|

i
||\Ij(8)(DXR)||£?§C)(E$au)) 5 ||VX\I[ S)(R
S VU

We only have to pay special attention to the case When ng s1) = try and U2 = . If 55 = 2, ie.
U(2) = o then s; can be 1, 1/2 and 0. The case s; = 1 occur only if X = ey, which is not covered by
the lemma. The case ss = 2,51 = 1/2 is regular. Indeed, in that case s+ sgn(X) = 5/2. Thus either
s=2,X =¢e, 0ors=3/2, X = L. In both cases we simply estimate the worst quadratic term, on
the right hand side of (233), with s, = 2, by

1
l6-allye (uowy S 029lles

S 81 D0palg] Rola)? - Rafa]? S C6/1.

~Y

1 1 1
e, S8 90udllall  IVall,
u,u u,u (s€) gy, (

S$C)u,u

The principal term is either Vo in the first case or V15 in the second. In the second situation, using
the null Bianchi identities, (proceeding as above with the term of the form ¢ - «),

”VLﬁ“g?SC)(Hﬁo’ﬂ)) S HVO‘HE%SC)(H?@))—I—Cél/A‘

In the case (sy = 2, s1 = 0) try can appear among the quadratic terms on the right. In that case
s+sgn(X) =2. The s =2 and X = L corresponds to the anomalous estimate for o(DyR). In that
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case the estimate is,

‘|a(DLR)HL<25C>(H§°’ﬂ)) S Hvéa”g%sc)(mgo’ﬂ)) + 1+ 51/20)HQHL<258>(H(0,@ +6'%C

Also, in view of the Bianchi identities, (53),

V20 s 19815, oo, + ol n) + €5

<
)(Hl(to’g)) ~
Hence, in view of our estimate for « in the previous section

51/2Ha(DLR)H£? ) < 51/2”VL04|£2

< 1O 4 sVAC

(H(Ou)) (1 +(51/20)(51/2HQ’“E%SC)(H(O,E)

as desired. We need also to consider the case sy = 2,51 =0, s = 3/2 and X = ¢,. Then, due to the
term try, - a on the right hand side of (233) we have,

||6(DGR)||£?SC)(H£0’£)) 5 ||V5||£?SC)(H;0&>) + HOCHllfSC)(HfLO’E)) + 051/4

Thus,
SPNB(DaR)l gy oy S T+ OO

as which is the second anomalous estimate.

It remains to consider the cases sy < 2, s; = 0. In the worst case, when a quadratic term on the
right hand side of (233) is of the form try, - W(2) we make the following correction to estimate (234),

[¥ODxR) 2 oy S NV Bllgs oy + 19 2 o + O3
SIVUI By o) + Rt CO

H\IJ(S)(DXR)||[;?SC)(E8“)) 5 “vX\IJ S)(R)Hl;z . H(O u) + ||‘I’ ||£2 (H<0 u) +C(51/4
SIVxv S)(R)HLZ (™) TR, + 051/4

These imply the regular estimates of the Lemma for the case X = e,. For the cases X = L, L we
can express VxU®)(R) using the Bianchi identities,

ViUl = volmd g 3 gl gl < <2
S1+82=s

V4‘If(s) _ V\I,(S—&-%) + Z ¢(81) . \11(52)7 0<s<?2.
S1+s2=s+1

The worst quadratic terms which can appear on the right are of the form try - U() with s < 2 which
can be easily estimated. We thus derive all the regular estimates of the Lemma. 0
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Lemma 15.5. The following estimates for the Lie derivatives EAXR, with respect to hold true X =
{L,L,O}.

lo(ZLR) = Vol (om, S C (235)
51/2||O‘(ELR)_VLOZ||£? ey S Ry + C6*/* (236)
Also,
(LR — (VD)D) ow, < C8YY, 1< s<5/2, 237
£z (W)~
(se)\Hu
WO (LLR) = (VL) oy S Ro+CoM% 1<s<3/2 (238)
(se)\Hu
H\p<s><2ﬁ)—(vL\p)<s>|,£%_)@0,u)) < Ro4+ OOV <1/ (239)
For X = O we have the estimates.
U (LoR) = (Vo) o ow, < C8YY 1<s<5/2 240
Loy ™)
U(LoR) — (Vo)D) 0 0w, < CV4  1/2<s<2. 241
ﬁ( )(ﬂl ) ~

Proof. We will make use of the regular EE’;’C) estimates for Ricci coefficients ¢ € {x,w,n, 7, X 5 tfrz, w}.

We also make use of the following estimates for VO and Q7.

We write, recalling the definition of the Lie derivative and with E denoting the set ey, es, €3, €4,

U (LyR) = X(UP) — Z Z([X’ Y]y w2

s1+s2=sYeFE

=L (W) = 3 (XYY

s1t+s2=sY€EE

(242)

Here £, (¥()) denotes the projection of the Lie derivative on the S(u,u) surfaces and [X, Y] the
orthogonal component of [X,Y] i.e.,

X, Y] = = 20(X V], es)ea — 591X, Y], ea)es

Consider first the case when X = L, L. In that case [X,Y]' depends only on the regular Ricci
coefficients w, n,n,w Therefore, taking into account the worst possible case when a appear among
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the quadratic terms (in which case we appeal to E‘(lsc) estimates), we derive,

9O LLR) = LD oy S OOV, 1<5<3
[WOLLR) = (£, 0] s o) S O 1< <2 (243)
[P (LLR) ~ (£,0) 2 oy S COV 0<5<1)2

On the other hand, schematically,
¢L\p(8) =V, U 4 Z 1) . pls2)

S1+s2=1+s

with ¢t € {y, n,ﬂ}. In the particular case s = 3 we can have a double anomaly of the form, x - a.
In that case,

1
£ 0= Vi . 0wy, S Cofal . (0,u) + /2
Ll oy (Hu™) Llsey(Hu™™)

Therefore, ||£ o — Vol . () < O, from which, combining with (243),
(sey U

Ha(ﬁLR) — VLOCHE? )(HI(LO,H)) S C
Recalling the definition of L R we deduce,
51/2”@(,ELR) - VLQHE? >(Hﬁ0’!)) 5 C

as desired.

We now consider all other cases, 1 < s < 5/2. Since there are no double anomalies, we deduce,
(using E?SC)(S ) estimates for the term containing o)

12,0 — (V) < o8t

5)
ez ooy
Hence, combining with (243),

TS (LLR) — (VL) < oA

(s)
H£<256> (Hq(io'*))
Recalling the definition of W*) (L. R) we deduce,

IWLLR) = (Vi) oy S C8Y4 1<s<5/2
(se) 7w

)

as desired.

We now consider the estimates for L. We have,

£,09 = V00 iy 0 T gl gl

S1+s2=s
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with ¢! € {77’@X>t}2}' Observe that the worst terms try, - @ can only appear for s = 2. In that
case,

£ o — VLozHL% ) < HozHE? ) +O8YA < VR, + O

Thus, combining with (243),

51/2”a(£LR) - VL&”E% Ro + 053/4

(HL)

sc)

< Ry + C§3/4

Finally, recalling the definition of a(£,R) we deduce, 6*/2||a(L,R) — Vial s gow) S
(se) Hu

as desired.

In all other cases, 1 < s < % we have,

1£,99 = (Vo0 oy S 0C

HI(LO,E)) + 051/4

)
(H"SO,E)) HE%SC)(

)
< Ro+CsV4

~

Hence, combining with (243) and recalling the definition of L we deduce,

[ (£LR) — (Vo) V| o, S Ro+ O3V
(s

as desired.

We now consider the case when X = O. In view of (242),

10 (LoR) — (£,7) < cat

(s)
||L?sc) ()~

Indeed the projections of [0, e4], [O, e3] on e3, e4 depend only on O and the Ricci coefficients w, 7,7, w

while [O, e,], a = 1,2 are tangent to S(u,u). On the other hand, £,¥® differs from (VoW¥)® by
terms quadratic in VO and W. We recall that we have HVOHﬁE’?c) < C, i.e. they are regular in the
supremum norm. Thus, as before,

1209 = (Vo) < cott

J(H)

Combining this with the estimate above and recalling the definition of EOR as well as the estimates
| ©x “E?fc) < C we derive, for all s > 1/2.

< 051/4

(H)

[V9EZoR) - (Vo) 5

Similarly we prove, for s < 3/2

[T (LoR) — (Vob)! < ¢t

)
’ HE%SC) (ﬂg)’u)) ~
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15.6. Estimate for ||V | 2 (H)- It is important to observe throughout this section that the de-

formation tensors Y7 of L does not contain w and Yx of L does not contain either w.

We apply corollary 14.4 to O = L and X =Y = Z = e,. and derive

/H<07u) |04(ELR)|2 < /H<0,u) |0‘(ZLR)|2+/ (Q[ELR] W) (e, €4, €4)

D(u,u)
+ / D(L, R) (64, €4, 64) (244)
D(u,u)
In view of the conservation of signature we can write schematically,

(QILLR]- Wm)(esenen) = Y ¢V UILR] - UL (245)

s1+s2+53=06
_l)(L7 R)(@47 €4, 64) = Z \11(52)[24R] . (w(sl) . (D\Ij)(SB) + (D¢>(31) . \IJ(SB)) (246)

s1+s2+53=6

with Ricci coefficients ¢ € {x,w,n,n,w}, ¥ € {x,n,n,w} null curvature components ¥ and labels
S1, S2, S3 denoting the signature of the corresponding component. Thus,

(L1 R) (L1 R) Ny S Ay A

2 < 2
||£?Sc) (Hq(lovﬂ)) ~ || E?ﬂ) (Héovﬂ))

with
L= 8% 116l

(sc

) /0 |!\1:<82)(£LR)HE%SC)(HS,Q) : “\p(s3>(£41{)Hﬁ%sc)(Hig@))du/
L= 023 )|, / I LLR) s oy (V)]
O sc u

I = Z/O H\I](SQ)(ELR)HE?SC)(HS)@)”(Dw)(SI)'\IJ(SB)HLéC)(HS’M)dUI

Among the terms I; the worst are those in which sy = s3 = 3, in which case s; = 0. Since try cannot
appear among our Ricci coefficients here, and ||¢| cee, < O, with C=C(Z° R, R)

/
H[%sd (Hi?’ﬁ))du

L, < C5'? / la(ZoR)|I?
0

All curvature terms ||U) (L, R) with s < 3 can be estimated according to lemmas 15.3

and 15.5 to derive,

Hﬁ%sc) (HOW)

< Ro+6YiC <O, s<3.

~

19O Rz, )

Therefore, estimating all remaining terms in /; we deduce,

~Y

Luu) < C8Y2 /0 (HQ(ELR)”; )(H((I,,E))—Ir||a(ELR)HE%SC)(H@,E))R)du'+5%R2
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The term I can be estimated in exactly the same manner. Since 0 < s; < 1 and 1 < s5 < 3 we have
2 < s3 < 3. This implies that the term (DW)% may be estimated along H,. With the exception of
the term a(DyR) these estimates are given in Lemma 15.3. Among those there are two anomalous
terms «(D3R) and (D, R). We then obtain

Ir(u,u)

AN

051/2/0 (||O‘(£LR)H2%SC>(HL9’”>+(C ~1 +1(0)5_5)HO‘(ELR)”cﬁsc)(Hyﬂ)))dU’

+ I0§3 4 ¢
< 051/2/ ||a(ELR)||i% )(H(O,E>)du'+z(0>5—%+(J§‘i (247)
0 sc u!

It remains to estimate I3. We note that, in the worst case, the term D can be written in the form

(DY) = (V) +try, -0+ 37 gl ylen)

S$11+s12=581

Observe that (Vi))* # (Vw, Vsw). Indeed V,w cannot occur, since ¢ € {x,n,1,w On the other
hand V3w cannot occur by signature considerations. Indeed in that case s; = sgn(Vsw) = 0, which
is ruled out since s; + s9 + s3 = 6 while s5 < 3 and s3 < 2.

Thus, since (V))* # (Vaw, Vsw) (for which we do not have EZ‘SC) estimates !), we derive,

(s1) ., \(s3) < s (s1) (s3)
” (D¢) v ||£?Sc) (Hi(?,l)) ~ 02 ” (qub) ||£4(1SC) (Hig,l)) || v ||£?sc)(H$’@)

+(5 ) |W(S“)H£?§c>

S11+S812=S1

<c

s 3 S 5
|t 12)H£(°§c) + 62 |4 I)HK‘EEC)) W s),|£<28C>(H1<L9,E))

Observe that in the last step we have used the E‘(l

5c) estimates for the first derivatives of the Ricci

coefficients ¢ € {x,n,n} and the null curvature components, and allowed for the worst possible
scenario in which (U(3) = a),
S S -1
|’<v¢)( 1)“54(1“)(1_[1(49&)) + ||\II( 3)||£‘(lsc)(H1(497Ll’)) S &) 4,
ot

) _1
Iz, ) 5 OO

As a consequence we derive,
M%@gc/nmgmmhwm¢w+c
0 sc u!
Combining the estimates for Iy, I, I3 we derive,

||(1(£4R)Hi% )(Hff””) ,S HOJ<£4R>HZ% )(Héo,@) -+ C(l + 51/2) /0 Ha(‘C‘LR)”E?SC)(HO}E)du/ + 051/2
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Therefore, in view of the anomalous character of ||a(LLR)| 2 (i)

r 2 < = 2 3
LRI, yom) S SNEaR, yom +O8
from which we infer that, for some C' = C(Z° R, R),
O PNALB) e oy S O N(LiR) s yom +CO2

< I+ s
On the other hand, in view of the definition of L R we have,
CY(ELR) = VLOC -+ Z (b(sl) . \IJ(SQ)
s1+s2=3

Hence,
HV4C¥H£% )(HS)’E)) SJ |’a(ZLR)H£% )(Hff&)) +CR0
Therefore we deduce,

Proposition 15.7. The following estimate holds true for sufficiently small 6 > 0, with a constant
C=CIZR,R),

IVaall,; <5210 4 C (248)

o (HE™)
15.8. Estimate for HV;),QHE? (- Applying corollary 14.4 to O = e3 and X =Y = Z = e3 we
derive,

[ Je@unl s [ je@unP+ [ (@ER: On) e e

Hg)’u) T D(u,u)

+ / D(La R) (637 €3, 63) (249)
D(u,u)

In view of the conservation of signature we can write schematically (we need to take into account
the signature associated to the integrals),

(Q[ZLR] - D) (es, e5,e3) = Z W) W [LR] - W) LR (250)
s1+s2+s3=1

D(L, R)(es, e3,e3) = Z \IJ(SQ)[ELR] . (w(sl) A(DW)3) 4 (D)) \Ij(ss)) (251)
s1+s2+s3=1

with Ricci coefficients 1 € {w,n,n, x}, null curvature components ¥ and labels sy, s2, s3 denoting
the signature of the corresponding component. We now need to be careful with terms which involve
try and Vstry. In (250) the only terms which contain try have the form try - |B(ZLR)|2 which we
write in the form B -

trx, - [B(LLR) + trx - [B(LLR)?
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In (251) the only terms which contains Vstry, must be of the form

Vstry - \D(Sz)(ELR) Sl Sg + s3 = 1.
Recall that,

1
Vstry = —?rf — 2wtry — |X |°
Thus, writing, try = tryx, + t&, we have schematically,
1
Vstry = —§trxé+tr&)%+w~d}
We have,
||04(5LR)|| 0y S NLLR)P, 0w+ P+ Pt Ps+ Ji+ T+ Js
Coey (Hu ™) L3,y (Hg ™)
with, Py, Py, P3 the terms corresponding to the terms in trx,,
p= Y & / IO ELR s o, IV ELR s i
so+s3=1
P, = Z 6 / | W©2) (L, R) ||£2 (O ||(D\1/)(53)||L2 )(ku))du
so+s3=1
po= Y b / IO BB oy 19y o i
so2+s3=1

and Ji, J, J3 the remaining terms with Ricci terms ¢ € {n,n, X },

ho= RS e, [V BB g, 1V By oyt

s1+s2+s3=1
Jy = §1/2 Z H¢(81)H£<"§C>/ H‘I’(SQ)(/:SR)H@ (g@!u))"l(D\I’)(S?’)Hy (ﬂ«;,u))dg’
s1+s2+s3=1 0 (sc) U/ (sc) u
Js = +Z_: 15—1/0 ||\I/(82)(£3R)||£(QSC)(E(;,1L))’(D¢)($1).\I/(Ss)HE%SC)(ﬂ;o/,u))dgl
S1+82+83=

It clearly suffices to estimate the principal terms P. Indeed the J terms can be treated exactly as in
the previous subsection?” . We have,

5 [CIBELRIIZ, i

According to Lemma (15.5) we have,

” <£ )H H(Ou)) S HV:SQHZ? )(ﬂ(ol,u))+E0+51/4C

2TRemark that in J, (DW)®) differ from Vsw, because W) € {w, 7,1, X}, and Vyw by signature considerations.
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In view of the Bianchi identities, for % <s<1,

V3B = diva-—2try-8—2w-3+

|3

Therefore,

|’ﬁ(ZLR)H22 0, S IVal?, ww, + Ro+674C
2, (1) 2,19

Consequently,

P(u,u) < 6 1/ HV&H ) + Rol(u,u'))du + C5/*

N / (u, u)du' + 6"/*C
Ps, P3 can be estimated exactly in the same manner. First, observe that in P, the terms of the form
(DW)2) obey the bounds,

(DO 0, S R(w, ) +o1C.

H(O u

This follows from the restriction s3 < 1. Slmllarly, for s <1

[V LLR) s oy S (LBl pyom, + R(u, ) +62C.
Therefore,
o [ ~ 2 /
Pww) 5 67 [CIa(ELRIR, o ds
+ ot /EQ(u,g')dg/ + 520
0
Similarly,

Plww) S 570 [ lalBa)ll g0 Ru )
0 sc) M
+ 51/Rz(u,g’)dg'+51/20.
0

Therefore using Lemma 15.5 we derive,
Proposition 15.9. The following estimate holds true for sufficiently small 6 > 0, with a constant
C=CIR,R),

_1 “ 1
V50l oy S IVsl%, o, +67 R0+ / Ru, w2l + 55C (252)
sc) \ U sc) == 0
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15.10. Estimates for the angular derivatives of R. Applying corollary 14.4 to the angular
momentum vectorfields O and X, Y, Z € {e3, es} we derive,

[ VR [ eGP 5 [ WERE [ (QIEoR) m(X.Y.2)
Hy H™ D(u,u)

w H’ISOJJ()

+ [ pomEY.2 (253)
D(u,u)
In view of the conservation of signature we can write schematically,
(QILoR] - m)(X,Y.Z) = try,- Y. W[LoR]- U)[LoR] (254)
So+83=2s

+ Z Pt . \11(82)[20}3} . \Ij(sf’))[ZOR]

51+s2+53=2s

with ¢ Ricci coefficients in {x,w,n,1, X, t?i, w}. Also, recalling that m = 7 + }Ltr(w)g,

D(O,R)(X,Y,Z) = Z \11(52)[20}%] . ((O)ﬂ-(sl) . (D\Ij)(s3) + (D (O)W)(sﬂ . q;(S3)) (255)

s1+s2+s3=2s

with @7 ) null components of the deformation tensor of O. Thus, for all s > %,

S 99(LoR)

[¥OLoR)2, yom, + [T (LoR)

2 2
H[:?sc)( HE%SC) (H(()U«H))

e [, is the integral in D(u, u) whose integrand is given by (254),
e [, is the integral in D(u,u) whose integrand is given by

Z \P(SZ)[EOR} - O (1) (D)),
S1+82+s3=2s
e /3 is the integral in D(u,u) whose integrand is given by

S UEZGR] - (DO ) L wl),

51+s2+53=2s

In what follows we make use of the estimates for the deformation tensors of the angular momentum
vectorfields established in theorem 13.14 O,

|7 HL‘(‘SC)(S) + Ol ) S C

()

Also all null components of the derivatives D (97, with the exception of (D3 ()7 )s,, verify the
estimates,

ICE te (256)

~Y
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Moreover,

(D3 7 )30 — V3Z||as) + || sup [V Z || 12s) S C (257)

(258)

The term I; can be easily estimated, since none of the curvature terms are anomalous. Indeed, in
view of lemma 15.5 we have, for all s > 1/2

1O Loz o) S IWOLoR) = Vol llyy oy + V0Tl r )
< Rlu,u)
while, for s = %,
qu(l/?)(ﬁoR)I\L@C)@g}v”) s Elwy

Consequently, for s > 1/2,

[1 5 Z/O ”\IJ(S)(EOR)HZ?SC)(HS/J&))CZU/—|—51/20

s>1

while for s = 1/2,

Lo Y6 /O I¥ Lo, g du+8"2C

s<2

Therefore,

L 5 Z/o H\II(S)(EOR)Hi%w)(H((l),u))du’+Z(51/0 Hq,(s)(ﬁoR)Hi? )(H(g,u))dg/+5l/20
o “ 5<2 sc)

s>1

(259)

Among the terms I, the only possible anomalies may be due to the case when s3 = 3, i.e. (DW)3) =
a(D4R) or in the easier cases (DW)©3) = a(D3R) and (D)) = B(D,R) (i.e. s3 =2). We denote
by I all terms in I5 except those which corresponds to these anomalous cases. For all other terms
we have either ||(DV) ) < Cor [[(DY) F0)y < C. Using also | Q7| <O

(s3) (s3)
e, e o

w

and,
H‘I’@”)(EAOR)\\g(sc)(Hgo»w) SO s >1
we derive,

Iy < §iC
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We now consider the terms I, which contain (DW)®3)a(D3R) and (DW¥)®) = B3(D,R) but not
a(D4R). In this case write, according to the Remark 15.4,

(DY) = G+ F),
HF(&%)HE% (o C, s3> 1,

N

)
||F(83)||£? )(ﬂ&oa“)) 5 C) 83 < 2.

where G = trx, - a. Clearly, the terms corresponding to F*3) can be estimated exactly as above.

To estimate the terms corresponding to G we make use of the L, (5) estimate, HGH[;EL () < Co i

(s¢)

Using also, || ©@n ch(; (s ) S C we obtain,

Ly < 6iC

It remains to estimate the terms in Io3 which contain a(D4R). The integrand, which contain a(D,R)
has the form,

Dy3 = Z ©)g 0. §2)(LoR) - a(DyR)
$1+82=25—3
This term is potentially dangerous ! In view of lemma (15.5) W2)(ZoR) differs from (Vo)) by
a lower order terms. It thus suffices to estimate,
Dy = Z O (1) (VW) . a( DyR)
S1+82=2s5—3
We also decompose
a(DsR) =Via+ Y ¢t . wl)
S3+54=3

where ¢(%3) ¢ {w,n,m}. This forces s4 < 2 and thus, since there are no anomalies we derive,

Therefore we can safely replace a(D4R) by V4o and thus it remains to estimate,

Dyy = ) Ot (Vo0)#) . Vya

S1+s2=25—3

Because of the anomaly of V4o the best we can by a straightforward estimate is to derive an estimate
of the form I3 < Z(® + C which is not acceptable. Because of this we are forced to integrate by
parts, Ignoring the boundary term [, Ol (51) . (VW) (52) . o, for a moment

/ 0) 1 (s1) . (Vo‘l’) 2) . V,a = — fD VO 0 (Vow)62) . o — fD Ol (51) . ¥ 4(VoW)2) - o
D
(260)



114 SERGIU KLAINERMAN AND IGOR RODNIANSKI

We write schematically, with ¢!/ € {n, n}

Vi(Vol)t? = V,Vo()t—3)
= VOV4(\I;)(82—%)+ Z \IJ(SS) '\If(84)—|— Z ¢(1/2)-\I](34)‘

s3+s4=s2+1 sq4=s2+1/2

We can therefore replace the integrand Dss by,

D23 = _D231_D232_D233_D234

Dozi = Z W (O) 1 (s1) . (VO\IJ>(32) - a
s1+s2=25—3

Dysy = Z O (1) .7 (V, w2ty
s1+s2=25—3

Dosy = Z (O) - (s1) . ( Z p(s3) \p(54)) CQ
s1+s2=25—-3 s3+s4=s2+1

Dosy = Z (O) - (s1) . ( Z o2 . \11(54)) -
s1+82=25—3 s4=s2+1/2

Accordingly we decompose Iy3 = I531 + Ia30 + o33 + Io34. Now,

1 .
Iy S 02|V, O ( 1)||E?sc>(s)”a“54

0 [T,

< sic
The terms I533 and Is34 are clearly lower order in ¢, we derive
Ipzs + Inzs S e
It remains to estimate I535 for which we need to perform another integration by parts. We write
/ O 1) . Yo (V,0E1/2) o = _/ Vo Or ) . (7, p6=1/2) .
D D
_ / O (1) . (7, 002+1/2) . Y
D

_ / O (1) (7,512 L (790, )a
D

By Bianchi, since sy +1/2 < 3,

1
||<V4‘P)(”“/2)||£(SC><H5M>) < |y<W)<S2+1/2>||£(SC)(H5M) +0210ll ez, W]z, s) < C.
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Therefore,
s so+1 1 s
|/ Vo O (1) (V4g,)( 2+3) cal £62]|Vo (0) ;- ( 1)”ﬁ?sc)(s)||a“£?sc>(5)
D
“ (52+l) !/

X/o I(vapy=r HE(SC)(HS/)’H))CZU
< §iC.

Also,

s so+1 1 " go41
[ Or e @ Voul £ / Vol |Vl

x| Om D] e ()
< 520,

The remaining integral in I35 is clearly lower order in §. For the boundary term in (260) we have,

| / ) (Vol)o2) o] < 63[[(Vol)o?| 2

1
(se) () I O ||L§SC)(S)||04||£§SC)(5) <diC.

We therefore deduce,
L < st (261)

Consider now 3. Ignoring powers of ¢, we have to estimate the integral [,(D ©O)r)(s1) QJ(SQ)(EOR) .
W(3) Recall the estimates

(D (O)W)(sl)Hz:;l () SO

for all components of (D (@7 )(1) with the exception of the term Ds (O)7 5, which corresponds to the
signature s; = 0. In this latter case we have,

1Ds O30 = VsZlles 9y SC. lIsupl(Ds O )salllez ) S C
In the case (D (7)) #£ Dy Oy, we have
S S w S¢ l — ¢ S
|/ VWS (LoR) - U] S 626 1/ (Vo). (g A

S S 1
x (D @) 1)||L4sc)(s [wss) et s < 01C,

where we considered the worst case in which ¥(**) = o and thus anomalous and (Vo)) has to be

estimated along H,, 0)

For the case we can replace, without loss of generality, (DV (©)7)1) by V3Z. Indeed the remaining
error term can be estimated exactly as above. In this case, since s; = 0, signature considerations
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dictate that s3 > 1. It follows from the conditions s; + s5 + 53 = 25, 59 € {5, 5 — %} and s > 1. This
implies that we may use the trace theorem along H,

||\11(53)||Tr o (H) S 540

where in fact §4 only occurs in the case W) = o, for all other terms the behavior in 6 is better. We
thus give the argument only for U(*3) = o, other cases are even easier. Recalling also lemma 15.5,

S ~ S 1 - “ S
| [ 9220 EoR) W S 517 [Ty it

s 1
x || sup |V3Z|||L§sc)(5) sup ||‘Ij( 3)||Tr(sc)(Hu) <61C,

Finally we observe that the only borderline terms, not resulting in positive powers of the parameter
¢ and arising from coupling to try, involve only 3, p,s and 8 components of curvature.

Combining all our estimates for I, I, I3 and using lemma 14.8 we derive,

s) (7 s—Ly, =
> (WO s gy + 19D LRy o) S 3 WO EoRgs o
1<s<5/2 (s) (el 1<s<2
+ Vi

More precisely, we easily check the following,
||04(£OR)H£?SC)(H§O,E)) + “5(£OR)H[;?SC)(H$M) S ||04(EOR)||£%SC)(H50&>) + 640
For s < 2 we have,

Z(qu(s)(,cOR)HE%SC)(HW)+y|\p<s_§>(coR)y|£%“)(H$,u)) > (e ,cOR)HﬁQ (H<ou))+5/4c

s<2 s<2

Using the estimates of lemma 15.5 we derive,

||VOZ||£(QSC)(H1(JO,LL)) + ||v,8||£?se)(HéO,u)) 5 ||VO[||£(QSC) (H7SO,LL)) + 51/40 (262)
For s < 2 we have,
1
ST s oy + IO Py o) S ST o) +574C (263)
s<2 5<2

We summarize the result above in the following.

Proposition 15.11. The following estimates hold for & sufficiently small and C = C(Z"), R, R).

> (vt ||£2 (o) + ||V ||£2 H(0u>)) < Ty + CoYA (264)

1<s<5/2
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Combining this proposition with propositions 15.9 and 15.7 we derive.

Ri+R, < To+CoYA (265)
Finally combining this with proposition 14.9 we derive,
R+R < Ty+Cs/* (266)

This ends the proof of our main theorem.

15.12. Proof of propositions 2.9 and 2.10. The proof of proposition 2.9 is an immediate conse-
quence of estimate (263) together with the initial assumptions derived in proposition 2.8. Indeed,
under initial assumptions (32) we derive,

5 (9N, + T DNy o) 5 e diic

s<2

which gives, for sufficiently small §, estimate (33).

We combine this result with proposition 11.12 to prove the following scale invariant version of propo-
sition 2.10 of the introduction.

Proposition 15.13. The solution ¢ of the problem V§3)¢ = Vn with trivial initial data satisfies
1 1
196l ez, s) < Cet + Co+.

REFERENCES

[Chr] D. Christodoulou, The Formation of Black Holes in General Relativity, Monographs in Mathematics, European
Mathematical Soc. 2009.

[Chr-K1] D. Christodoulou, S. Klainerman, The global nonlinear stability of he Minkowski space, Princeton mathemat-
ical series 41, 1993.

[K-Ni] S. Klainerman, F. Nicolo, The evolution problem in General Relativity, Progress in Mathematical Physics,
Birkhaiiser.

[K-R:causal] S. Klainerman, I. Rodnianski, Causal geometry of Einstein-Vacuum spacetimes with finite curvature fluz,
Inventiones Math., 159, 437-529 (2005).

[K-R:LP] S. Klainerman, I. Rodnianski, A geometric approach to the Littlewood-Paley theory, GAFA, 16, no. 1,
126-163.

[R-T] M. Reiterer, E. Trubowitz Strongly focused gravitational waves. preprint 2009, arXiv:0906.3812

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON NJ 08544

E-mail address:  seri@@math.princeton.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON NJ 08544

E-mail address:  irod@@math.princeton.edu



