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1. Introduction

1.1. Main Goals. In a recent important breakthrough D. Christodoulou [Chr] has solved a long
standing problem of General Relativity of evolutionary formation of trapped surfaces in the Einstein-
vacuum space-times. He has identified an open set of regular initial conditions on a finite outgoing
null hypersurface leading to a formation a trapped surface in the corresponding vacuum space-time
to the future of the initial outgoing hypersurface and another incoming null hypersurface with the
prescribed Minkowskian data. He also gave a version of the same result for data given on part of past
null infinity. His proof, which we outline below, is based on an inspired choice of the initial condition,
an ansatz which he calls short pulse, and a complex argument of propagation of estimates, consistent
with the ansatz, based, largely, on the methods used in the global stability of the Minkowski space
[Chr-Kl]. Once such estimates are established in a sufficiently large region of the space-time the
actual proof of the formation of a trapped surface is quite straightforward.

The goal of the present paper is to give a simpler proof by enlarging the admissible set of initial
conditions and, consistent with this, relaxing the corresponding propagation estimates just enough
that a trapped surface still forms. We also reduce the number of derivatives needed in the argument
from two derivatives of the curvature to just one. More importantly, the proof, which can be easily
localized with respect to angular sectors, has the potential for further developments. We prove in
fact another result, concerning the formation of pre-scarred surfaces, i.e surfaces whose outgoing
expansion is negative in an open angular sector. We only concentrate here on the finite problem, the
problem from past null infinity can be treated in the same fashion as in [Chr] once the finite problem
is well understood. The problem from past null infinity has been subsequently considered in a recent
preprint by Reiterer and Trubowitz, [R-T].

We start by providing the framework of double null foliations in which Christodoulou’s result is
formulated. We then present, in subsection 1.3, the heuristic argument for the formation of a trapped
surface. In subsection 1.4 we then introduce Christodolou’s short pulse ansatz and discuss the
propagation estimates which it entails.
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1.2. Double null foliations. We consider a region D = D(u∗, u∗) of a vacuum spacetime (M, g)
spanned by a double null foliation generated by the optical functions (u, u) increasing towards the
future, 0 ≤ u ≤ u∗ and 0 ≤ u ≤ u∗. We denote by Hu the outgoing null hypersurfaces generated by
the level surfaces of u and by Hu the incoming null hypersurfaces generated level hypersurfaces of u.

We write Su,u = Hu ∩Hu and denote by H
(u1,u2)
u , and H(u1,u2)

u the regions of these null hypersurfaces
defined by u1 ≤ u ≤ u2 and respectively u1 ≤ u ≤ u2. Let L,L be the geodesic vectorfields associated
to the two foliations and define,

1

2
Ω2 = −g(L,L)−1 (1)

Observe that the flat value1 of Ω is 1. As well known, our space-time slab D(u∗, u∗) is completely
determined (for small values of u∗, u∗) by data along the null, characteristic, hypersurfaces H0, H0

corresponding to u = 0, respectively u = 0. Following [Chr] we assume that our data is trivial along
H0, i.e. assume that H0 extends for u < 0 and the spacetime (M, g) is Minkowskian for u < 0 and
all values of u ≥ 0. Moreover we can construct our double null foliation such that Ω = 1 along H0,
i.e.,

Ω(0, u) = 1, 0 ≤ u ≤ u∗. (2)

Throughout this paper we work with the normalized null pair (e3, e4),

e3 = ΩL, e4 = ΩL, g(e3, e4) = −2.

Given a 2-surfaces S(u, u) and (ea)a=1,2 an arbitrary frame tangent to it we define define the Ricci
coefficients,

Γ(λ)(µ)(ν) = g(e(λ), De(ν)e(µ)), λ, µ, ν = 1, 2, 3, 4 (3)

These coefficients are completely determined by the following components,

χab = g(Dae4, eb), χ
ab

= g(Dae3, eb),

ηa = −1

2
g(D3ea, e4), η

a
= −1

2
g(D4ea, e3)

ω = −1

4
g(D4e3, e4), ω = −1

4
g(D3e4, e3),

ζa =
1

2
g(Dae4, e3)

(4)

where Da = De(a) . We also introduce the null curvature components,

αab = R(ea, e4, eb, e4), αab = R(ea, e3, eb, e3),

βa =
1

2
R(ea, e4, e3, e4), β

a
=

1

2
R(ea, e3, e3, e4),

ρ =
1

4
R(Le4, e3, e4, e3), σ =

1

4
∗R(Le4, e3, e4, e3)

(5)

1Note that our normalization for Ω differ from that of [K-Ni]
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Here ∗R denotes the Hodge dual of R. We denote by ∇ the induced covariant derivative operator
on S(u, u) and by ∇3, ∇4 the projections to S(u, u) of the covariant derivatives D3, D4, see precise
definitions in [K-Ni]. Observe that,

ω = −1

2
∇4(log Ω), ω = −1

2
∇3(log Ω),

ηa = ζa +∇a(log Ω), η
a

= −ζa +∇a(log Ω)
(6)

The connection coefficients Γ verify equations which have, very roughly, the form,

∇4Γ = R +∇Γ + Γ · Γ
∇3Γ = R +∇Γ + Γ · Γ (7)

Similarly the Bianchi identities for the null curvature components verify, also very roughly,

∇4R = ∇R + Γ ·R
∇3R = R + Γ ·R (8)

The precise form of these equations is given in the next section, see (47)–(50). Among these equations
we note the following two, which play an essential role in Christodoulou’s argument for the formation
of trapped surfaces.

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ (9)

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂ + η⊗̂η (10)

1.3. Heuristic argument. We start by making some important simplifying assumptions. As men-
tioned above we assume that our data is trivial along H0, i.e. assume that H0 extends for u < 0
and the spacetime (M, g) is Minkowskian for u < 0 and all values of u ≥ 0. We introduce a small
parameter δ > 0 and restrict the values of u to 0 ≤ u ≤ δ, i.e. u∗ = δ.

The colored region on the right repre-
sents the domain D(u, u), 0 ≤ u ≤ δ.
The same picture is represented, more
realistically on the left The lower red
region on the left is the flat portion of
H0, u = 0, while the upper red region,
corresponding to a large values of u, is
trapped starting with u = δ.
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We also make the following additional assumptions, assumed to hold in the entire slab D(u, δ). We
denote by r = r(u, u) the radius of the 2-surfaces S = S(u, u), i.e. |S(u, u)| = 4πr2.

• For small δ, u, u are comparable with their standard values in flat space, i.e. u ≈ t−r+r0
2

, u ≈
t+r−r0

2
. We also assume that Ω ≈ 1, dr

du
≈ −1.

• Assume that trχ is close to its value in flat space, i.e. trχ ≈ −2
r
.

• Assume that the term E = ∇⊗̂η + 2ωχ̂ − 1
2
trχχ̂ + η⊗̂η on the right hand side of equation

(10) is sufficiently small and can be neglected in a first approximation. Assume also that we
can neglect the term trχω on the right hand side of (9).

Given these assumptions we can rewrite (9),

d

du
trχ . −|χ̂|2

or, integrating,

trχ(u, u) . trχ(u, 0)−
∫ u

0

|χ̂|(u, u′)2du′ (11)

=
2

r(u, 0)
−
∫ u

0

|χ̂(u, u′)|2du′

Multiplying (10) by χ̂ we deduce,

d

du
|χ̂|2 + trχ|χ̂|2 = χ̂ · E

or, in view of our assumptions for trχ, and dr
du

d

du
(r2|χ̂|2) = r2

d

du
|χ̂|2 + 2r

dr

du
|χ̂|2 = r2|χ̂|2

(
− trχ+

2

r

dr

du

)
+ r2χ̂ · E

= r2|χ̂|2
(
− (trχ+

2

r
) +

2

r
(1 +

dr

du
)
)

+ r2χ̂ · E := F

i.e.

r2|χ̂|2(u, u) = r2(0, u)|χ̂|2(0, u) +

∫ u

0

F (u′, u)du′

Therefore, as
∫ δ
0
|F | is negligible in D, we deduce

r2|χ̂|2(u, u) ≈ r2(0, u)|χ̂|2(0, u)

We now freely prescribe χ̂ along the initial hypersurface H
(0,δ)
0 , i.e.

χ̂(0, u) = χ̂0(u) (12)

for some traceless 2 tensor χ̂0. We deduce,

|χ̂|2(u, u) ≈ r2(0, u)

r2(u, u)
|χ̂0|2(u)
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or, since |u| ≤ δ and r(u, u) = r0 + u− u,

|χ̂|2(u, u) ≈ r20
(r0 − u)2

|χ̂0|2(u)

Thus, returning to (11),

trχ(u, u) ≤ 2

r0 − u
− r20

(r0 − u)2

∫ u

0

|χ̂0|2(u′)du′ + error

Hence, for small δ, the necessary condition to have trχ(u, u) ≤ 0 is,

2(r0 − u)

r20
<

∫ δ

0

|χ̂0|2

Analyzing equation (9) along H0 we easily deduce that the condition for the initial hypersurface H0

not to contain trapped hypersurfaces is, ∫ δ

0

|χ̂0|2 <
2

r0

i.e. we are led to prescribe χ̂0 such that,

2(r0 − u)

r20
<

∫ δ

0

|χ̂0|2 <
2

r0
(13)

We thus expect, following Christodoulou, that trapped surfaces may form if (13) is verified.

1.4. Short pulse data. To prove such a result however we need to check that all the assumptions
we made above can be verified. To start with, the assumption (13) requires, in particular, an L∞

upper bound of the form,

|χ̂0| . δ−1/2

If we can show that such a bound persist in D then, in order to control the error terms F we need,
for some c > 0,

trχ+
2

r
= O(δc),

dr

du
+ 1 = O(δc), η = O(δ−1/2+c),

ω = O(δ−1+c), ∇η = O(δ−1/2+c). (14)

Other bounds will be however needed as we have to take into account all null structure equations.
We face, in particular, the difficulty that most null structure equations have curvature components
as sources. Thus we are obliged to derive bounds not just for all Ricci coefficients χ, ω, η, η, χ, ω but
also for all null curvature components α, β, ρ, σ, β, α. In his work [Chr] Christodoulou has been able
to derive such estimates starting with an ansatz (which he calls short pulse) for the initial data χ̂0.
More precisely he assumes, in addition to the triviality of the initial data along H0, that χ̂0 verifies,
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relative to coordinates u and transported coordinates ω along H0, (i.e. transported with respect to
d
du

),

χ̂0(u, ω) = δ−1/2f0(δ
−1u, ω) (15)

where f0 is a fixed traceless, symmetric S-tangent two tensor along H0. This ansatz is consistent with
the following more general condition, for sufficiently large number of derivatives N and sufficiently
small δ > 0.

δ1/2+k‖∇k
4∇mχ̂0‖L2(0,u) <∞, 0 ≤ k +m ≤ N, 0 ≤ u ≤ δ. (16)

Notation. Here ‖ · ‖L2(u,u) denotes the standard L2 norm for tensorfields on S(u, u). Whenever there
is no possible confusion we will also denote these norms by ‖·‖L2(S). We shall also denote by ‖·‖L2(H)

and ‖ · ‖L2(H) the standard L2 norms along the null hypersurfaces H = Hu and H = Hu.

Remark 1.5. In [Chr] Christodoulou also includes weights, depending on |u|, in his estimates. These
allow him to derive not only a local result but also one with data at past null infinity. In our work
here we only concentrate on the local result, for |u| . 1, and thus drop the weights.

Assumption (16), together with the null structure equations (7) and null Bianchi equations (8) leads
to the following estimates for the null curvature components, along the initial null hypersurface H0,

δ‖α‖L2(H0) + ‖β‖L2(H0) + δ−1/2‖(ρ, σ)‖L2(H0) + δ−3/2‖β‖L2(H0) < ∞
(17)

Consistent with (16), the angular derivatives of α, β, ρ, σ, β obey the same scaling as in (17) while
each ∇4 derivative costs an additional power of δ.

δ‖∇α‖L2(H0) + ‖∇β‖L2(H0) + δ−
1
2‖∇(ρ, σ)‖L2(H0) + δ−3/2‖∇β‖L2(H0) <∞,

δ2‖∇4α‖L2(H0) + δ‖∇4β‖L2(H0) + δ1/2‖∇4(ρ, σ)‖L2(H0) + δ−1/2‖∇4β‖L2(H0) <∞
(18)

Moreover one can derive estimates for the Ricci coefficients, in various norms, weighted by appro-
priated powers of δ. Note that if one were to neglect the quadratic terms in (8) than the expected
scaling behavior in δ would have been,

δ‖α‖L2(H0) + ‖β‖L2(H0) + δ−1‖(ρ, σ)‖L2(H0) + δ−2‖β‖L2(H0) < ∞

Most of the body of work in [Chr] is to prove that these estimates can be propagated in the entire
space-time region D(u∗, δ), with u∗ of size one and δ sufficiently small, and thus fulfill the necessary
conditions for the formation of a trapped surface along the lines of the heuristic argument presented
above. The proof of such estimates, which follows the main outline of the proof of stability of
Minkowski space, as in [Chr-Kl] and [K-Ni], requires a step by step analysis to make sure that all
estimates are consistent with the assigned powers of δ. This task is made particularly taxing in view
of the fact that there are many nonlinear interferences which have to be tracked precisely.
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1.6. Outline of Christodoulou’s propagation estimates. To see what this entails it pays to say
a few words about the strategy of the proof. As in [Chr-Kl] and [K-Ni] the centerpiece of the entire
proof consists in proving spacetime curvature estimates consistent with (17). In this case however
the primary attention has to be given to the stratification of the estimates for different curvature
components based on their δ-weights. This is done using the Bianchi identities,

D[εRαβ]γδ = 0,

the associated Bel-Robinson tensor Q and carefully chosen vectorfields X whose deformation tensors
(X)π depend only on the Ricci coefficients χ, ω, η, η, χ, ω. These vectorfields can be used either as
commutation vectorfields or multipliers. In the latter case we would have,

Dδ(QαβγδX
αY βZδ) = Q( (X)π, Y, Z) + . . . (19)

As multipliers X, Y, Z we can chose the vectorfields e3, e4. The choice X = Y = Z = e4 leads to,
after integration on D(u, u),

‖α‖2
L2(H

(0,u)
u )

+ ‖β‖2
L2(H

(0,u)
u )

= ‖α‖2
L2(H

(0,u)
0 )

+

∫ ∫
D(u,u)

3Q( (4)π, e4, e4) (20)

where π is the deformation tensor of e4. Since the initial data at H0 verifies (17) we write,

δ2
(
‖α‖2

L2(H
(0,u)
u )

+ ‖β‖2
L2(H

(0,u)
u )

)
= δ2‖α‖2

L2(H
(0,u)
0 )

+ 3δ2
∫ ∫

D(u,u)
Q( (4)π, e4, e4)

and expect to bound the double integral term on the right. One can derive similar identities for
all other possible choices of X, Y, Z among the set {e3, e4}. This allows one to estimate both the
L2(H) norms of α, β, ρ, σ, β and the L2(H) of β, ρ, σ, β, α, with appropriate δ weights, in terms

of corresponding δ-weighted L2(H0) norms of α, β, ρ, σ, β and spacetime integrals of Q( (4)π, eµ, eν)

and Q( (3)π, eµ, eν) with µ, ν = 3, 4. We can thus extend the initial estimates (17) to every null
hypersurface Hu in our slab provided that we can bound all the double integrals on the right hand
side of our integral identities. Now, both deformation tensors (4)π and (3)π can be expressed in
terms of our connection coefficients χ, ω, η, η, ω, χ. Since Q is quadratic in R, to be able to close
estimates for our null curvature components we need to derive sup-norm estimates for all our Ricci
coefficients. This leads us to the second pillar of the construction which is to derive estimates for Ricci
coefficients in terms of the null curvature components, with the help of the null structure equations
(7). Combining these equations with the constrained equations, on fixed 2 surfaces S(u, u), and the
null Bianchi identities we are lead to precise δ- weighted estimates of all Ricci coefficients in terms of
δ- weighted L2(H) and L2(H) norms of all null curvature components and their derivatives. Thus, in
a first approximation, the error terms in the above integral identities are quadratic in R and linear
in their first derivatives. Therefore to be able to close one needs:

(1) Derive higher derivative estimates for the curvature components.
(2) Make sure that all error terms can be controlled in terms of the principal terms, in the

corresponding energy inequality, or terms which have already been estimated at previous
steps.
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Note that 2) here seems counterintuitive in view of the large data character of the problem under
consideration. Indeed, typically, in such situations one cannot expect to control the nonlinear error
terms by the principal energy terms. The miracle here is that the error terms are either linear (in
the main energy terms), or they contain factors which have been already estimated in previous steps,
or are truly nonlinear, in which case they are small in powers of δ relative to the principal energy
terms. This is due to the structure of the error terms, reminiscent of the null condition, in which the
factors combine in such a way that the total weight in powers of δ is positive.

In his work Christodoulou derives estimates for the first two derivatives of the curvature tensor by
commuting the Bianchi identities with the vectorfields L, S = 1

2
(ue3 + ue4) and rotation vectorfields

O. This process leads to a proliferation of error terms. Moreover not all error terms which are
generated this way verify the following essential requirement, alluded above; that they lead to an
overall factor of δc, with a positive exponent c, and thus can be absorbed on the left, for sufficiently
small δ. Due to nonlinear interactions, Christodoulou has to tackle anomalous error terms which are
O(1) in δ. Yet he is able to show, by a careful step by step analysis, that all such terms are, indeed,
linear relative to terms which have already been estimated and thus only quadratic (i.e. linear in the
principal energy norm) relative to the remaining components. They can therefore be absorbed by a
standard Gronwall inequality. A similar phenomenon helps him to estimate, step by step, all Ricci
coefficients.

1.7. New initial conditions. As explained above the main purpose of this paper is to embed
the short-pulse ansatz of Christodoulou into a more general set of initial conditions, based on a
different underlying scaling. The new scaling, which we incorporate into our basic norms, allows
us to conceptualize the separation between the linear and nonlinear terms in the null Bianchi and
null structure equations and explain the favorable appearance of additional positive powers of δ
in the nonlinear error terms mentioned above. Though the initial conditions required to include
Christodoulou’s data do not quite satisfy this scaling, the generated anomalies are fewer and thus
much easier to track.

We start with the observation that a natural alternative to (15) which comes to mind, related to the
familiar parabolic scaling on null hyperplanes in Minkowski space, is

χ̂0(u, ω) = δ−1/2f0(δ
−1u, δ−1/2ω), (21)

This does not quite make sense in our framework of compact 2-surfaces S(u, u), unless of course one

is willing to consider the initial data χ̂0(u, ω) supported in the angular sector ω of size δ
1
2 . Such a

support assumption would be however in contradiction with the lower bound in (13) required to be
satisfied for each ω ∈ S2.

The following interpretation of (21) (compare with (16)) makes sense however.

δk+
m
2 ‖∇k

4∇mχ̂0‖L2(0,δ) <∞, 0 ≤ k +m ≤ N (22)
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Just as in the derivation of (17) we can use null structure equations (7) and null Bianchi equations
(8) to derive, from (22),

δ1/2‖α‖L2(H0) + ‖β‖L2(H0) + δ−1/2‖(ρ, σ)‖L2(H0) + δ−1‖β‖L2(H0) <∞
δ‖∇α‖L2(H0) + δ1/2‖∇β‖L2(H0) + ‖∇(ρ, σ)‖L2(H0) + δ−1/2‖∇β‖L2(H0) <∞,

δ3/2‖∇4α‖L2(H0) + δ‖∇4β‖L2(H0) + δ1/2‖∇4(ρ, σ)‖L2(H0) + ‖∇4β‖L2(H0) <∞
(23)

We refer to these conditions, consistent with the null parabolic scaling, as δ-coherent assumptions.
Observe that, unlike in the Christodoulou’s case, each ∇ derivative costs a δ−1/2. It turns out that
proving the propagation of such estimates can be done easily and systematically without the need of
the step by step procedure mentioned earlier. In fact one can show, in this case, that all error terms,
generated in the process of the energy estimates are either quadratic in the curvature and can be
easily taken care by Gronwall or, if cubic, they must come with a factor of δ1/2 and therefore can be
all absorbed for small values of δ.

The main problem with the ansatz (21), as with initial conditions (22), however, is that it is incon-
sistent with the formation of trapped surfaces requirements discussed above. One can only hope to
show that the expansion scalar trχ along Hu, at S(u, u), for some u ≈ 1, will become negative2 only
in a small angular sector of size δ1/2. This is because, consistent with (23), condition (13) may only
be satisfied in such a sector.

At this point we abandon the ansatz formulation of the characteristic initial data problem for the
Einstein-vacuum equations and replace with an hierarchy of bounds, which “interpolate” between
the regular δ-coherent assumptions (23) and the estimates (17)-(18) following from Christodoulou’s
short pulse ansatz.

At the level of curvature the new assumptions correspond to:

δ‖α‖L2(H0) + ‖β‖L2(H0) + δ−1/2‖(ρ, σ)‖L2(H0) + δ−1‖β‖L2(H0) <∞
δ‖∇α‖L2(H0) + δ1/2‖∇β‖L2(H0) + ‖∇(ρ, σ)‖L2(H0) + δ−1/2‖∇β‖L2(H0) <∞,

δ2‖∇4α‖L2(H0) + δ‖∇4β‖L2(H0) + δ1/2‖(∇4ρ,∇4σ)‖L2(H0) + ‖∇4β‖L2(H0) <∞
(24)

Observe that, by comparison with (23), the only anomalous terms are ‖α‖L2(H0) and ‖∇4α‖L2(H0).

In the next section we make precise our initial data assumptions, state the main results and explain
the strategy of the proof. We close the discussion here with a summary of our approach

(1) Replace the short pulse ansatz of Christodoulou with a larger class of data satisfying (24)
(2) Prove propagation of the curvature estimates consistent with (24) through the domain of

existence and show that these (weaker) estimates are sufficient for the existence result

2We could call such a region locally trapped, or a pre-scar
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(3) The propagation estimates involve only the L2 based norms of curvature and its first deriva-
tives but generate nonlinear terms involving both the Ricci coefficients and its first derivatives.
To close such estimates requires addressing two major difficulties
• Regularity problem: show that the L2 propagation curvature estimates are sufficient

to control the Ricci coefficients (in L∞) and its first and even second derivatives in
appropriate norms required by the nonlinear terms in the curvature estimates
• δ-consistency problem: show that the nonlinear terms are either effectively linear in

(curvature and its derivatives), and thus can be handled by the Gronwall inequality, or
contain a smallness coefficient generated by an additional power of the parameter δ. Our
approach, based on the weaker propagation estimates (24), is particularly suitable for
dealing with this problem in that a) it generates fewer borderline terms of the first kind
and b) it naturally lends itself to the introduction of a notion of scale-invariant norms
relative to which the structure of the nonlinear terms and their δ-smallness become
apparent and nearly universal.

(4) The propagation estimates consistent with (24), and the corresponding Ricci coefficient esti-
mates which it generate, are not strong enough to prove the formation of a trapped surface.
However, once such estimates have been proved in the entire domain D(u ≈ 1, u = δ) it is
straightforward to impose slightly stronger conditions on the initial data and show that they
lead to spacetimes which satisfy all the necessary conditions to implement, rigorously, the
informal argument presented above.

2. Main Results

2.1. Initial data assumptions. We define the initial data quantity,

I(0) = sup
0≤u≤δ

I(0)(u) (25)

where, with the notation convention in (16),

I(0)(u) = δ1/2‖χ̂0‖L∞ +
∑

0≤k≤2

δ1/2‖(δ∇4)
kχ̂0‖L2(0,u)

+
∑

0≤k≤1

∑
1≤m≤4

δ1/2‖(δ1/2∇)m−1(δ∇4)
k∇χ̂0‖L2(0,u)

Our main assumption, replacing Christodoulou’s ansatz, is

I(0) <∞ (26)

We show that, under this assumption and for sufficiently small δ > 0, the spacetime slab D(u, δ) can
be extended for values of u ≥ 1, with precise estimates for all Ricci coefficients of the double null
foliation and null components of the curvature tensor. We can then show, by a slight modification

of this assumption together with Christodoulou’s lower bound assumption on
∫ δ
0
|χ̂0|2 (see equations
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14, 15 in [Chr]), that a trapped surface must form in D(u ≈ 1, δ). As in the case of [Chr]) most of
the work is required to prove the semi global result concerning the double null foliation. Once this is
established the actual formation of trapped surfaces result is proved by making a slight modification
of the main assumption (26) and following the heuristic argument outlined below. In addition we
show that a small modification of the regular δ-coherence assumption leads to the formation of a
pre-scar.

2.2. Curvature norms. To give a precise formulation of our result we need to introduce the fol-
lowing norms.

R0(u, u) : = δ‖α‖
H

(0,u)
u

+ ‖β‖
H

(0,u)
u

+ δ−1/2‖(ρ, σ)‖
H

(0,u)
u

+ δ−1‖β‖
H

(0,u)
u

R1(u, u) : = δ‖∇α‖
H

(0,u)
u

+ δ1/2‖∇β‖
H

(0,u)
u

+ ‖∇(ρ, σ)‖
H

(0,u)
u

+ δ−1/2‖∇β‖
H

(0,u)
u

+ δ‖∇4α‖H(0,u)
u

(27)

R0(u, u) : = δ‖β‖
H

(0,u)
u

+ ‖(ρ, σ)‖
H

(0,u)
u

+ δ−1/2‖β‖
H

(0,u)
u

+ δ−1‖α‖
H

(0,u)
u

R1(u, u) : = δ‖∇β‖
H

(0,u)
u

+ δ1/2‖∇(ρ, σ)‖
H

(0,u)
u

+ ‖∇β‖
H

(0,u)
u

+ δ−1/2‖∇α‖
H

(0,u)
u

+ δ−1‖∇3α‖H(0,u)
u

We also set R0,R1 to be the supremum over u, u in our spacetime slab of R0(u, u) and respectively
R1(u, u) and similarly for the norms R. Also we write R = R0 +R1 and R = R0 +R1. Finally,
R(0) denotes the initial value for the norm R i.e.,

R(0) = sup
0≤u≤δ

(
R0(0, u) +R1(0, u)

)
Remark that the only ∇4 derivative appearing in the norms above is that of α. All other ∇4

derivatives can be deduced from the null Bianchi equations and thus do not need to be incorporated
in our norms. We denote the norms of a specific curvature component ψ by R0[ψ] and R1[ψ].

2.3. Ricci coefficient norms. : We introduce norms for the Ricci coefficients χ̂, trχ, ω, η, η, ω, χ̂

and t̃rχ = trχ− trχ
0
, with trχ

0
= − 4

u−u+2r0
the flat value of trχ along the initial hypersurface H0.
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For any S = S(u, u) we introduce norms (S)Os,p(u, u),

(S)O0,∞(u, u) = δ1/2
(
‖χ̂‖L∞(S) + ‖ω‖L∞(S)

)
+ ‖η‖L∞(S) + ‖η‖L∞(S)

+ δ−1/2
(
‖χ̂ ‖L∞(S) + ‖t̃rχ‖L∞(S) + ‖ω‖L∞(S)

)
(S)O0,4(u, u) = δ1/2‖χ̂‖L4(S) + δ1/4|ω‖L4(S) + δ−1/4

(
‖η‖L4(S) + ‖η‖L4(S)

)
+ δ−1/2‖χ̂ ‖L4(S) + δ−3/4

(
‖t̃rχ‖L4(S) + ‖ω‖L4(S)

)
(28)

(S)O1,4(u, u) = δ3/4
(
‖∇χ‖L4(S) + |ω‖L4(S)

)
+ δ1/4

(
‖∇η‖L4(S) + ‖∇η‖L4(S)

)
+ δ−1/4

(
‖∇χ‖L4(S) + ‖ω‖L4(S)

)
(S)O1,2(u, u) = δ1/2

(
‖∇χ‖L2(S) + |ω‖L4(S)

)
+ ‖∇η‖L2(S) + ‖∇η‖L2(S)

+ δ−1/2
(
‖∇χ‖L2(S) + ‖ω‖L2(S)

)
Also,

(H)O(u, u) = δ1/2
(
‖∇2χ‖

L2(H
(0,u)
u )

+ ‖∇2ω‖
L2(H

(0,u)
u )

)
+

(
‖∇2η‖

L2(H
(0,u)
u )

+ ‖∇2η‖
L2(H

(0,u)
u )

)
+ δ−1/2

(
‖∇2χ̂ ‖

L2(H
(0,u)
u )

+ ‖∇2ω‖
L2(H

(0,u)
u )

)
and,

(H)O(u, u) = δ1/2
(
‖∇2χ‖

L2(H
(0,u)
u )

+ ‖∇2ω‖
L2(H

(0,u)
u )

)
+

(
‖∇2η‖

L2(H
(0,u)
u )

+ ‖∇2η‖
L2(H

(0,u)
u )

)
+ δ−1/2

(
‖∇2χ̂ ‖

L2(H
(0,u)
u )

+ ‖∇2ω‖
L2(H

(0,u)
u )

)
We define the norms (S)O0,4,

(S)O1,2,
(S)O1,4,

(H)O, (H)O to be the supremum over all values of u, u
in our slab of the corresponding norms. Finally we set set total Ricci norm O,

O = (S)O0,∞ + (S)O0,4 + (S)O1,2 + (S)O1,4 + (H)O + (H)O

and by O(0) the corresponding norm of the initial hypersurface H0. We further differentiate between
the first order norms O[1] = (S)O0,4 + (S)O1,2 and second order ones, O[2] = (S)O1,4.

2.4. Main Theorems. We are now ready to state our main result. The first result follows from
analyzing assumption (25) on the initial hypersurface H0.

Proposition 2.5. In view of our initial assumption (25) we have, for sufficiently small δ > 0, along
H0,

R(0) +O(0) . I(0) (29)
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The proof of the proposition follows by analyzing the null structure and null Bianchi equations
restricted to the initial hypersurface H0, as in chapter 2 of [Chr]. In view of this result we may
replace assumption (25) with (29), as an initial data assumption. Alternatively we may assume only
that R(0) . I(0). It is not too hard to see, following roughly the same steps as in the proof of
proposition 2.5, that, for small δ, we would also have O(0) . I(0).

Theorem 2.6 (Main Theorem). Assume that R(0) . I(0) for an arbitrary constant I(0). Then, there
exists a sufficiently small δ > 0 such that,

R+R+O . I(0). (30)

Theorem 2.7. Assume that , in addition to (25), we also have, for 2 ≤ k ≤ 4

δ
1
2‖(δ

1
2∇)kχ̂0‖L2(0,u) ≤ ε (31)

for a sufficiently small parameter ε such that 0 < δ � ε. Assume also that χ̂0 verifies (13). Then,
for δ > 0 sufficiently small, a trapped surface must form in the slab D(u ≈ 1, δ).

Proof. We sketch below the proof of theorem 2.7.

Step 1. We reinterpret (31) in terms of the curvature norms according to the following:

Proposition 2.8. Under the smallness condition (31) the initial curvature norms satisfy, in addition
to the estimates of proposition 2.5,

δ1/2‖∇β‖
H

(0,δ)
0

+ ‖∇(ρ, σ)‖
H

(0,δ)
0

+ δ−1/2‖∇β‖
H

(0,δ)
0
≤ ε. (32)

The proof is standard and will be omitted.

Step 2. We show, see the end of section 15, that this condition can be propagated in the entire slab
D(u ≈ 1, δ),

Proposition 2.9. Under the assumptions (31) we have, uniformly in u . 1, u ≤ δ, for δ sufficiently
small,

δ1/2‖∇β‖
H

(0,u)
u

+ ‖∇(ρ, σ)‖
H

(0,u)
u

+ δ−1/2‖∇β‖
H

(0,u)
u
≤ ε.

δ1/2‖∇(ρ, σ)‖
H

(0,u)
u

+ ‖∇β‖
H

(0,u)
u

+ δ−1/2‖∇α‖
H

(0,u)
u
≤ ε.

(33)

Step 3. We return to the system (9)- (10),

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂ + η⊗̂η

responsible, as we have seen, for the formation of a trapped surface. Theorem 2.6 implies that
the terms ignored in our heuristic derivation are negligible. Specifically, the bounds |ωtrχ| . δ−

1
2 ,
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|ωχ̂|+ |trχχ̂ |+ |η⊗̂η| . 1 should be compared to the principle terms of size δ−1 and δ−
1
2 in the first

and the second equation respectively. We can also easily verify the other bounds in (14) with the
exception of that for ∇⊗̂η. The additional condition (31) is imposed in fact precisely in order to
assure that the linear term ∇⊗̂η in (10) is sufficiently small. To control this term we rely on the
following proposition.

Proposition 2.10. Under the assumptions of Theorem 2.7 the solution (3)φ of the problem ∇(3)
3 φ =

∇⊗̂η, with trivial initial data on H0, verifies,

|(3)φ| ≤ Cδ−1/2ε
1
4 (34)

The proof of proposition 2.10, which appear is section 15.12, depends on the arguments of section 11,
in particular proposition 11.12. The argument for the formation of a trapped surface then proceeds
as above with a renormalized quantity (χ̂−(3) φ) in place of χ̂. Note that in view of the estimate on
(3)φ the size of (χ̂−(3) φ) is comparable to that χ̂. An important comment in this regard, is that our
curvature propagation estimates does not allow us to control the L∞ norm of ∇⊗̂η, let alone prove
the bound stated in (14). This regularity problem, which is discussed in the two remarks below, is
resolved with the help of the renormalized estimates for the Ricci coefficients in section 11, of which
Proposition 2.10 is an important example. �

Remark 1. We remark that while a loss of derivatives occurs when passing from assumption (26)
to assumption R(0) . I(0) in the main theorem, no further derivative losses occurs in (30).
Remark 2. By contrast with [Chr], where two derivatives of the curvature and up to three deriva-
tives of the Ricci coefficients are needed, here we need only one derivative of the curvature and
two of the Ricci coefficients. This is due to our new refined estimates for the deformation tensor
of the angular momentum vectorfields O. As mentioned above these vectorfields are needed to de-
rive estimates for the angular derivatives of the null curvature components. These new estimates
for the deformation tensor of the angular momentum vectorfields O are based on the renormalized
estimates for the Ricci coefficients developed in Section 11. Together with the trace estimates for the
curvature components, which serve as a replacement for the failed H1(S) ⊂ L∞(S) embedding on a
2-dimensional surface S, proved in Section 12, they allow us to limit the degree of differentiability
required in the proof to the L2 norms of curvature and its first derivatives. Similar ideas related
to the gain of differentiability via renormalization and trace estimates were exploited in our earlier
work [K-R:causal].

Our next and final result concerns the formation of a pre-scar in an angular sector of size δ
1
2 .

Theorem 2.11. Let ε be a small parameter such that 0 < δ � ε. Assume that the initial data χ̂0

satisfies

δ1/2‖χ̂0‖L∞ +
∑

0≤k≤1

∑
0≤m≤4

ε‖(ε−1δ
1
2∇)m(δ∇4)

k χ̂0‖L2(0,u) <∞
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and that the lower bound in (13) is verified in angular sector ω ∈ Λ of size δ
1
2 . Then, for δ > 0

sufficiently small, a pre-scar must form in the slab D(u ≈ 1, δ), i.e. the expansion scalar trχ(u, u, ω)
becomes stricly negative for some values of u ≈ 1, u = δ and all ω ∈ Λ.

Remark. Theorem 2.11 corresponds to the initial data consistent with the ansatz

χ̂0(u, ω) = δ−
1
2f0(δ

−1u, δ−1/2ε ω)

and localized in an angular sector of size δ
1
2 ε−1. This should be compared with the data discussed

in (21). As in Theorem 2.7 additional smallness provided by the parameter ε is only needed to
guarantee the formation of a pre-scar but not required for the proof of the existence result. A direct
comparison shows that the data of Theorem 2.11 is significantly more regular than that of Theorems
2.6 and 2.7. In particular, it essentially corresponds to the δ-coherent assumptions, consistent with
the natural null parabolic scaling discussed in (23). Thus the proof of Theorem 2.11 is significantly
easier than that of our main result and will be omitted.

2.12. Strategy of the proof. We divide proof of the main theorem in three parts. In the first
part we derive estimates for the Ricci coefficients norms O in terms of the initial data I(0) and the
curvature norms R. More precisely we prove:

Theorem 2.13 (Theorem A). Assume that O(0) < ∞ and R < ∞. There exists a constant C
depending only on O(0) and R,R such that,

O . C(O(0),R,R). (35)

Moreover,

(S)O0,4[χ̂ ] . O(0) + C(I(0),R, R) δ1/4 (36)

We prove the theorem by a bootstrap argument. We start by assuming that there exists a sufficiently
large constant ∆0 such that,

(S)O0,∞ ≤ ∆0. (37)

Based on this assumption we show that, if δ is sufficiently small, estimate (35) also holds. This allows
us to derive a better estimate than (37).

In the second part we need to define angular momentum operators O and show that their deformation
tensors verify compatible estimates, stated in Theorem B, at the end of section 13 .

Finally in the last and main part we need to use the estimates of Theorems A and B to derive
estimates for the curvature norms R and thus end the proof of the main theorem.

Theorem 2.14 (Theorem C). There exists δ sufficiently small such that,

R+R . I0 (38)
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Theorem C is proved in sections 14 and 15.

2.15. Signature and Scaling. Our norms are intimately tied with a natural scaling which we
introduce below.

Signature. To every null curvature component α, β, ρ, σ, β, α, null Ricci coefficients components
χ, ζ, η, η, ω, ω, and metric γ we assign a signature according to the following rule:

sgn(φ) = 1 ·N4(φ) +
1

2
·Na(φ) + 0 ·N3(φ)− 1 (39)

where N4(φ), N3(φ), Na(φ) denote the number of times e4, respectively e3 and (ea)a=1,2, which appears
in the definition of φ. Thus,

sgn(α) = 2, sgn(β) = 1 + 1/2, sgn(ρ, σ) = 1, sgn(β) = 1/2, sgn(α) = 0.

Also,

sgn(χ) = sgn(ω) = 1, sgn(ζ, η, η) = 1/2, sgn(χ) = sgn(ω) = sgn(γ) = 0.

Consistent with this definition we have, for any given null component φ,

sgn(∇4φ) = 1 + sgn(φ), sgn(∇φ) =
1

2
+ sgn(φ), sgn(∇3φ) = sgn(φ).

Also, based on our convention,

sgn(φ1 · φ2) = sgn(φ1) + sgn(φ2).

Remark. All terms in a given null structure or null Bianchi identity (see equations (47)–(53))
have the same overall signature.

We now introduce a notion of scale for any quantity φ which has a signature sgn(φ), in particular for
our basic null curvature quantities α, β, ρ, σ, β, α and null Ricci coefficients components χ, ζ, η, η, ω, ω.
This scaling plays a fundamental role in our work.

Definition 2.16. For an arbitrary horizontal tensor-field φ, with a well defined signature sgn(φ),
we set:

sc(φ) = −sgn(φ) +
1

2
(40)

Observe that sc(∇Lφ) = sc(φ)− 1, sc(∇φ) = sc(φ)− 1
2
, sc(∇Lφ) = sc(φ). For a given product of two

horizontal tensor-fields we have,

sc(φ1 · φ2) = sc(φ1) + sc(φ2)−
1

2
(41)
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2.17. Scale invariant norms. For any horizontal tensor-field ψ with scale sc(ψ) we define the

following scale invariant norms along the null hypersurfaces H = H
(0,δ)
u and H = H(0,1)

u .

‖ψ‖L2
(sc)

(H) = δ−sc(ψ)−1‖ψ‖L2(H), ‖ψ‖L2
(sc)

(H) = δ−sc(ψ)−
1
2‖ψ‖L2(H)

(42)

We also define the scale invariant norms on the 2 surfaces S = Su,u,

‖ψ‖Lp
(sc)

(S) = δ−sc(ψ)−
1
p‖ψ‖Lp(S) (43)

In particular,

‖ψ‖L2
(sc)

(S) = δ−sc(ψ)−
1
2‖ψ‖L2(S), ‖ψ‖L∞

(sc)
(S) = δ−sc(ψ)‖ψ‖L∞(S)

Observe that we have,

‖ψ‖2
L2
(sc)

(H
(0,u)
u )

= δ−1
∫ u

0

‖ψ‖2L2
(sc)

(u,u′)du
′, ‖ψ‖2

L2
(sc)

(H
(0,u)
u )

=

∫ u

0

‖ψ‖2L2
(sc)

(u′,u)du
′ (44)

We denote the scale invariant L∞ norm in D by ‖ψ‖L∞
(sc)

.

Remark. Observe that the noms above are scale invariant if we take into account the scales of the
L2 noms along H and H, given by,

sc( ‖ ‖L2(H0,δ
u ) ) = 1, sc( ‖ ‖L2(H0,1

u ) ) =
1

2
, sc( ‖ ‖Lp(S) ) =

1

p
.

Moreover they are consistent to the following convention,

∇4 ∼ δ−1, ∇ ∼ δ−
1
2 , ∇3 ∼ 1

In view of (41) all standard product estimates in the usual Lp spaces translate into product estimates
in L(sc) spaces with a gain of δ1/2. Thus, for example,

‖ψ1 · ψ2‖L2
(sc)

(S) . δ1/2‖ψ1‖L∞
(sc)

(S) · ‖ψ2‖L2
(sc)

(S) (45)

or,

‖ψ1 · ψ2‖L2
(sc)

(H) . δ1/2‖ψ1‖L∞
(sc)

(H) · ‖ψ2‖L2
(sc)

(H) (46)

Remark 2.18. If f is a scalar function constant along the surfaces S(u, u) ⊂ D, we have

‖f · ψ‖Lp
(sc)

(S) . ‖ψ‖Lp
(sc)

(S)

or, if f is also bounded on H,

‖f · ψ‖L2
(sc)

(H) . ‖ψ‖L2
(sc)

(H)

This remark applies in particular to the constant trχ
0

= 4
2r0+u−u .
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We can reinterpret our main curvature and Ricci coefficient norms in light of the scale invariant
norms. Thus (27) can be rewritten in the form3,

R0(u, u) : = δ1/2‖α‖L2
(sc)

(H
(0,u)
u )

+ ‖(β, ρ, σ, β)‖L2
(sc)

(H
(0,u)
u )

R1(u, u) : = δ1/2‖∇4α‖L2
(sc)

(H
(0,u)
u )

+ ‖∇(α, β, ρ, σ, β)‖L2
(sc)

(H
(0,u))
u )

R0(u, u) : = δ1/2‖β‖L2
(sc)

(H
(u,0)
u )

+ ‖(ρ, σ, β, α)‖L2
(sc)

(H
(0,u)
u )

R1(u, u) : = ‖∇3α‖L2
(sc)

(H
(u,0)
u )

+ ‖∇(β, ρ, σ, β, α)‖L2
(sc)

(H
(0,u)
u )

Remark 2.19. All curvature norms are scale invariant except for the anomalous ‖α‖L2
(sc)

(H
(0,u)
u )

,

‖∇4α‖L2
(sc)

(H
(0,u)
u )

and ‖β‖L2
(sc)

(H
(u,0)
u )

. By abuse of language, in a given context, we refer to α, re-

spectively β, as anomalous.

To rectify the anomaly of α we introduce an additional scale-invariant norm

Rδ
0[α] := sup

δH⊂H
‖α‖L2

(sc)
(δH),

where δH is a piece of the hypersurface H = H0,δ
u obtained by evolving a disc Sδ ⊂ Su,0 of radius δ

1
2

along the integral curves of the vectorfield e4.

The Ricci coefficient norms (28) can be written,

(S)O0,∞(u, u) = ‖(χ̂, ω, η, η, t̃rχ, χ̂ , ω)‖L∞
(sc)

(S)

(S)O0,4(u, u) = δ1/4
(
‖χ̂‖L4

(sc)
(S) + ‖χ̂ ‖L4

(sc)
(S)

)
+ ‖(trχ, ω, η, η, t̃rχ, ω)‖L4

(sc)
(S)

(S)O1,4(u, u) = ‖∇(χ, ω, η, η, t̃rχ, χ̂ , ω)‖L4
(sc)

(S)

(S)O1,2(u, u) = ‖∇(χ, ω, η, η, t̃rχ, χ̂ , ω)‖L2
(sc)

(S)

(H)O(u, u) = ‖∇2(χ, ω, η, η, t̃rχ, χ̂ , ω)‖L2
(sc)

(H
(0,u)
u )

Remark 2.20. All quantities are scale invariant except for χ̂, χ̂ in the L4
(sc)(S) norm.

As before we complement the anomalous norms for χ̂, χ̂ by the local, non-anomalous, scale-invariant
norms

Oδ0[χ̂](u, u) = sup
δS⊂S
‖χ̂‖L4

(sc)
(δS), Oδ0[χ̂ ](u, u) = sup

δS⊂S
‖χ̂ ‖L4

(sc)
(δS),

where δS is a disk of radius δ
1
2 obtained by transporting from the initial data embedded in Su,0.

3We use the short hand notation ‖(β, ρ, σ, β)‖L2
(sc)

(H
(0,u)
u )

= ‖β‖L2
(sc)

(H
(0,u)
u )

+ ‖ρ‖L2
(sc)

(H
(0,u)
u )

+ ‖σ‖L2
(sc)

(H
(0,u)
u )

+ . . .
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3. Main equations. Preliminaries

3.1. Null structure equations. We recall the null structure equations (see section 3.1 in [K-Ni] or
[Chr].)

∇4χ = −χ · χ− 2ωχ− α
∇3χ = −χ · χ− 2ωχ− α
∇4η = −χ · (η − η)− β
∇3η = −χ · (η − η) + β

∇4ω = 2ωω +
3

4
|η − η|2 − 1

4
(η − η) · (η + η)− 1

8
|η + η|2 +

1

2
ρ

∇3ω = 2ωω +
3

4
|η − η|2 +

1

4
(η − η) · (η + η)− 1

8
|η + η|2 +

1

2
ρ

(47)

and the constraint equations

div χ̂ =
1

2
∇trχ− 1

2
(η − η) · (χ̂− 1

2
trχ)− β,

div χ̂ =
1

2
∇trχ+

1

2
(η − η) · (χ̂ − 1

2
trχ) + β

curl η = −curl η = σ + χ̂ ∧ χ̂

K = −ρ+
1

2
χ̂ · χ̂ − 1

4
trχ · trχ

(48)

with K the Gauss curvature of the surfaces S. The first two equation in (47) can also be written in
the form,

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ

∇4χ̂+ trχχ̂ = −2ωχ̂− α

∇3trχ+
1

2
(trχ)2 = −2ωtrχ− |χ̂ |2

∇3χ̂ + trχ χ̂ = −2ωχ̂ − α

(49)

Also, with ρ̌ = ρ− 1
2
χ̂ · χ̂ ,

∇4trχ+
1

2
trχtrχ = 2ωtrχ+ 2ρ̌+ 2div η + 2|η|2

∇3trχ+
1

2
trχtrχ = 2ωtrχ+ 2ρ̌+ 2div η + 2|η|2

(50)
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and4,

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂ + η⊗̂η

∇4χ̂ +
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂ − 1

2
trχχ̂+ η⊗̂η

(51)

Remark. The transport equations for ω and ω in (47) are obtained from the null structure equation,

∇4ω +∇3ω = ζ · (η − η)− η · η + 4ωω + ρ

and the commutation relation, for a scalar f (see proposition 4.8.1 in [K-Ni])

[∇3,∇4]f = −2ω∇3f + 2ω∇4f + 4ζ · ∇f (52)

applied to f = log Ω.

3.2. Null Bianchi. We record below the null Bianchi identities (Observe that we can eliminate
ζ = 1

2
(η − η) in the equations below),

∇3α +
1

2
trχα = ∇⊗̂β + 4ωα− 3(χ̂ρ+∗ χ̂σ) + (ζ + 4η)⊗̂β,

∇4β + 2trχβ = div α− 2ωβ + ηα,

∇3β + trχβ = ∇ρ+ 2ωβ +∗ ∇σ + 2χ̂ · β + 3(ηρ+∗ ησ),

∇4σ +
3

2
trχσ = −div ∗β +

1

2
χ̂ ·∗ α− ζ ·∗ β − 2η ·∗ β,

∇3σ +
3

2
trχσ = −div ∗β +

1

2
χ̂ ·∗ α− ζ ·∗ β − 2η ·∗ β,

∇4ρ+
3

2
trχρ = div β − 1

2
χ̂ · α + ζ · β + 2η · β,

∇3ρ+
3

2
trχρ = −div β − 1

2
χ̂ · α + ζ · β − 2η · β,

∇4β + trχβ = −∇ρ+∗ ∇σ + 2ωβ + 2χ̂ · β − 3(ηρ−∗ ησ),

∇3β + 2trχβ = −div α− 2ωβ + η · α,

∇4α +
1

2
trχα = −∇⊗̂β + 4ωα− 3(χ̂ ρ−∗ χ̂ σ) + (ζ − 4η)⊗̂β

(53)

We record below commutation formulae between ∇ and ∇4,∇3:

Lemma 3.3. For a scalar function f :

[∇4,∇]f =
1

2
(η + η)D4f − χ · ∇f (54)

[∇3,∇]f =
1

2
(η + η)D3f − χ · ∇f, (55)

4Recall the notation (u⊗̂v)ab = uavb + ubva − (u · v)δab.
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For a 1-form tangent to S:

[D4,∇a]Ub = −χac∇cUb+ ∈ac ∗βbUc +
1

2
(ηa + η

a
)D4Ub

− −χac ηb Uc + χab η · U

[D3,∇a]Ub = −χ
ac
∇cUb+ ∈ac ∗βbUc +

1

2
(ηa + η

a
)D3Ub

− χ
ac
ηb Uc + χ

ab
η · U

In particular,

[∇4, div ]U = −1

2
trχ div U − χ̂ · ∇U − β · U +

1

2
(η + η) · ∇4U

− η · χ̂ · U − 1

2
trχη · U + trχη · U

[∇3, div ]U = −1

2
trχ div U − χ̂ · ∇U + β · U +

1

2
(η + η) · ∇4U

− η · χ̂ · U − 1

2
trχη · U + trχη · U

3.4. Integral formulas. Given a scalar function f in D we have5,

d

du

∫
S(u,u)

f =

∫
S(u,u)

( df
du

+ Ωtrχf
)

=

∫
S(u,u)

Ω
(
e4(f) + trχf

)
d

du

∫
S(u,u)

f =

∫
S(u,u)

( df
du

+ Ωtrχf
)

=

∫
S(u,u)

Ω
(
e3(f) + trχf

)
As a consequence of these we deduce, for any horizontal tensorfield ψ,

‖ ψ‖2L2(S(u,u)) = ‖ψ‖2L2(S(u,0)) +

∫
H

(0,u)
u

2Ω
(
ψ · ∇4ψ +

1

2
trχ|ψ|2

)
‖ ψ‖2L2(S(u,u)) = ‖ψ‖2L2(S(0,u)) +

∫
H

(u,0)
u

2Ω
(
ψ · ∇3ψ +

1

2
trχ|ψ|2

) (56)

Proof. The first formula in (56) is derived as follows,

‖ ψ‖2L2(S(u,u)) = ‖ψ‖2L2(S(u,0)) +

∫ u

0

d

du

( ∫
S(u,u)

|ψ|2
)

= ‖ψ‖2L2(S(u,0)) +

∫
H

(0,u)
u

2Ω
(
ψ · ∇4ψ +

1

2
trχ|ψ|2

)
5see for example Lemma 3.1.3 in [K-Ni]
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The second formula is proved in the same manner. �

3.5. Hodge systems. We work with the following Hodge operators acting on the leaves S = S(u, u)
of our double null foliation.

(1) The operator D1 takes any 1-form F into the pairs of functions (div F , curl F )
(2) The operator D2 takes any S tangent symmetric, traceless tensor F into the S tangent one

form div F .
(3) The operator ?D1 takes the pair of scalar functions (ρ, σ) into the S-tangent 1-form6 −∇ρ+

∗∇σ.
(4) The operator ?D2 takes 1-forms F on S into the 2-covariant, symmetric, traceless tensors

−1
2
L̂Fγ with LFγ the traceless part of the Lie derivative of the metric γ relative to F , i.e.

(̂LFγ)ab = ∇bFa +∇aFb − (div F )γab.

The kernels of both D1 and D2 in L2(S) are trivial and that ?D1, resp. ?D2 are the L2 adjoints of
D1, respectively D2. The kernel of ?D1 consists of pairs of constant functions (ρ, σ) while that of
?D2 consists of the set of all conformal Killing vectorfields on S. In particular the L2- range of D1

consists of all pairs of functions ρ, σ on S with vanishing mean. The L2 range of D2 consists of all L2

integrable 1-forms on S which are orthogonal to the Lie algebra of all conformal Killing vectorfields
on S. Accordingly we shall consider the inverse operators D−11 and D−12 and implicitly assume that
they are defined on the L2 subspaces identified above.

Finally we record the following simple identities,

?D1 · D1 = −∆ +K, D1 · ?D1 = −∆ (57)

?D2 · D2 = −1

2
∆ +K, D2 · ?D2 = −1

2
(∆ +K) (58)

Proposition 3.6. Let (S, γ) be a compact manifold with Gauss curvature K.

i.) The following identity holds for vectorfields ψ on S:∫
S

(
|∇ψ|2 +K|ψ|2

)
=

∫
S

(
|div ψ|2 + |curl ψ|2

)
=

∫
S

|D1ψ|2 (59)

ii.) The following identity holds for symmetric, traceless, 2-tensorfields ψ on S:∫
S

(
|∇ψ|2 + 2K|ψ|2

)
= 2

∫
S

|div ψ|2 = 2

∫
S

|D2ψ|2 (60)

6Here ( ∗∇σ)a =∈ab ∇bσ.
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iii.) The following identity holds for pairs of functions (ρ, σ) on S:∫
S

(
|∇ρ|2 + |∇σ|2

)
=

∫
S

| − ∇ρ+ (∇σ)?|2 =

∫
S

| ?D1(ρ, σ)|2 (61)

iv.) The following identity holds for vectors ψ on S,∫
S

(
|∇ψ|2 −K|ψ|2

)
= 2

∫
S

| ?D2ψ|2 (62)

4. Preliminary estimates

As explained in the introduction the proof of Theorem A is based on the bootstrap assumption (37),
i.e.

(S)O0,∞ ≤ ∆0.

In this section we use this bootstrap to prove various preliminary results. In the following three
sections we then derive estimates for the Ricci coefficient norms (S)O0,4,

(S)O1,2 and (S)O1,4 respec-
tively.

4.1. Preliminary results. We prove here results which follows easily from our bootstrap assump-
tion. (S)O0,∞ ≤ ∆0. We first derive an estimate for Ω. To do this we use the definition of
ω = −1

2
∇3 log Ω = 1

2
Ω∇3(Ω)−1 = 1

2
d
du

(Ω)−1. Thus, since Ω−1 = 2 on H0,

‖Ω−1 − 2‖L∞(u,u) .
∫ u

0

‖ω‖L∞(u′,u)du
′ . δ1/2 (S)O0,∞[ω] . δ1/2∆0

Thus, if δ is sufficiently small we deduce that |Ω− 1
2
| is small and therefore,

1

4
≤ Ω ≤ 4. (63)

We now prove the following proposition.

Proposition 4.2. Under assumption (37) we have the following estimates for an arbitrary horizontal
tensor-field ψ,

‖ ψ‖L2(u,u) . ‖ψ‖L2(u,0) +

∫ u

0

‖∇4ψ‖L2(u,u′) du
′

‖ ψ‖L2(u,u) . ‖ψ‖L2(0,u) +

∫ u

0

‖∇3ψ‖L2(u′,u) du
′

(64)

More generally the same estimates hold in Lp(S) norms.
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Also,

‖ψ‖2L2(u,u) . ‖ψ‖2L2(u,0) + ‖ψ‖
L2(H

(0,u)
u )
‖∇4ψ‖L2(H

(0,u)
u )

‖ψ‖2L2(u,u) . ‖ψ‖2L2(0,u) + ‖ψ‖
L2(H

(0,u)
u )
‖∇4ψ‖L2(H

(0,u)
u )

(65)

Corollary 4.3. Under the same hypothesis,

‖ ψ‖L2
(sc)

(u,u) . ‖ψ‖L2
(sc)

(u,0) +

∫ u

0

δ−1‖∇4ψ‖L2
(sc)

(u,u′) du
′

‖ ψ‖L2
(sc)

(u,u) . ‖ψ‖L2
(sc)

(0,u) +

∫ u

0

‖∇3ψ‖L2
(sc)

(u′,u) du
′

(66)

and,

‖ψ‖2L2
(sc)

(u,u) . ‖ψ‖
2
L2
(sc)

(u,0) + ‖ψ‖L2
(sc)

(H
(0,u)
u )
‖∇4ψ‖L2

(sc)
(H

(0,u)
u )

‖ψ‖2L2
(sc)

(u,u) . ‖ψ‖
2
L2
(sc)

(0,u) + ‖ψ‖L2
(sc)

(H
(0,u)
u )
‖∇4ψ‖L2

(sc)
(H

(0,u)
u )

(67)

More generally, let S ′ ⊂ Su,u and S ′u′,u, S ′u,u′ are obtained by evolving S ′ along the null generators of
Hu, Hu respectively. Then

‖ ψ‖Lp
(sc)

(S′) . ‖ψ‖Lp
(sc)

(S′
u,0)

+

∫ u

0

δ−1‖∇4ψ +
1

p
trχψ‖Lp

(sc)
(S′
u,u′ )

du′

‖ ψ‖Lp
(sc)

(S′) . ‖ψ‖Lp
(sc)

(S′
0,u)

+

∫ u

0

‖∇3ψ +
1

p
trχψ‖Lp

(sc)
(S′
u′,u)

du′
(68)

Proof. The corollary follows immediately from the proposition and definition of the scale invariant
norms. The last statement of the corollary follows by applying (66) to the function χψ, where the
cut-off function χ is first defined on Su,u as the characteristic function of S ′ and then extended by
solving the transport equations ∇4χ = 0 and ∇3χ = 0.

To prove the proposition we first make use of (63) and (37),

‖trχ‖L∞ . ∆0δ
− 1

2

and deduce from the first equation in (56),

‖ ψ‖2L2(S(u,u)) . ‖ψ‖2L2(S(u,0)) +

∫ u

0

∫
S(u,u′)

|ψ | |∇4ψ +
1

2
trχψ|

. ‖ψ‖2L2(S(u,0)) +

∫ u

0

‖ψ‖L2(S)

(
‖∇4ψ‖L2(S) + ∆0δ

− 1
2‖ψ‖

L2(S)
)

. ‖ψ‖2L2(S(u,0)) +

∫ u

0

‖ψ‖L2(S)‖∇4ψ‖L2(S) + ∆0δ
−1/2

∫ u

0

‖ψ‖2L2(S)
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Thus, by Gronwall, since u ≤ δ,

‖ψ‖2L2(S(u,u)) . ‖ψ‖2L2(S(u,0)) +

∫ u

0

‖∇4ψ‖L2(u,u′) · ‖ψ‖L2(u,u′) du
′ (69)

from which we easily derive the ∇4 equations in both (64) and (65).

To prove the ∇3 estimates we need to take into account the anomalous character of trχ. From our

bootstrap assumption we deduce (recall that trχ
0

= − 4
u−u+2r0

is the flat value of trχ) ,

‖trχ− trχ
0
‖L∞ . ∆0δ

1/2

Thus,

‖ ψ‖2L2(S(u,u)) . ‖ψ‖2L2(S(0,u)) +

∫ u

0

∫
S(u′,u)

|ψ | |∇3ψ +
1

2
trχψ|

. ‖ψ‖2L2(S(0,u)) +

∫ u

0

‖ψ‖L2(S)

(
‖∇3ψ‖L2(S) + ∆0δ

1/2‖ψ‖L2(S)

)
+

∫ u

0

‖trχ
0
‖L∞‖ψ‖2L2(S)

. |ψ‖2L2(S(0,u)) +

∫ u

0

‖ψ‖L2(S)

(
‖∇3ψ‖L2(S) + (1 + ∆0δ

1/2)‖ψ‖L2(S)

)
Thus, using Gronwall and smallness of δ1/2∆0 we deduce,

‖ ψ‖2L2(S(u,u)) . ‖ψ‖2L2(S(0,u)) +

∫ u

0

‖ψ‖L2(S)‖∇3ψ‖L2(S) (70)

from which both (64) and (65) follow. �

We next prove an improved estimate for trχ.

Proposition 4.4. For δ1/2∆0 sufficiently small we have for all S = S(u, u),

‖trχ‖L∞(S) . ∆2
0 (71)

Proof. We recall that trχ verifies the transport equation,

∇4trχ = −1

2
(trχ)2 − |χ̂|2 − 2ωtrχ

or,

d

du
trχ = −Ω(

1

2
(trχ)2 + |χ̂|2 + 2ωtrχ

)
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Thus, since ‖χ, ω‖L∞ . δ−1/2∆0,

‖trχ‖L∞(u,u) .
∫ u

0

‖χ‖L∞(u,u′)

(
‖χ‖L∞(u,u′) + ‖ω‖L∞(u,u′)

)
du′

. ∆2
0 + δ1/2∆0.

�

4.5. Transported coordinates. We define systems of, local, transported coordinates along the null
hypersurfaces H and H. Staring with a local coordinate system θ = (θ1, θ2) on U ⊂ S(u, 0) ⊂ Hu

we parametrize any point along the null geodesics starting in U by the the corresponding coordinate
θ and affine parameter u. Similarly, starting with a local coordinate system θ = (θ1, θ2) on V ⊂
S(0, u) ⊂ Hu we parametrize any point along the null geodesics starting in V by the the corresponding
coordinate θ and affine parameter u. We denote the respective metric components by γab and γ

ab
.

Proposition 4.6. Let γ0ab denote the standard metric on S2. Then, for any 0 ≤ u ≤ 1 and 0 ≤ u ≤ δ

and sufficiently small δ
1
2 ∆0

|γab − γ0ab| ≤ δ
1
2 ∆0, |γ

ab
− γ0ab| ≤ δ

1
2 ∆0.

In addition, the transported coordinates verify

|∇3θ
a| . δ∆0, |∇θa| . 1

‖∇4θ
a| . δ∆0, |∇θa| . 1

for a = 1, 2. The Christoffel symbols Γabc and Γab, obey the scale invariant estimates7

‖Γabc‖L2
(sc)

(S) . O[1], ‖∂dΓabc‖L2
(sc)

(S) . O[2], (72)

‖Γabc‖L2(sc)(S) . O[1], ‖∂dΓabc‖L2(sc)(S) . O[2], (73)

Proof. We will only show the argument in the case of γab. In the transported coordinate system the
metric γab verifies

d

du
γab = 2Ωχab.

Therefore,

|γab − γ0ab| ≤ 2

∫ u

0

|χab| ≤ δ
1
2 ∆0,

where in the last inequality we used that |χab| ≤ |χ||γ−1| and ran a simple bootstrap argument.

The transported system of coordinates θa satisfies the system of equations

∇4θ
a = 0.

7we can attach signature to Γ and Γ sgn(Γ) = 1
2 , sgn(Γ) = 1

2
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Commuting these equations with ∇3 and taking into account the commutation formula (52) we
obtain

∇4(∇3θ
a) = 2ω∇3θ

a − 4ζ · ∇θa

Using the bootstrap assumptions (37), the inequality |∇θa| . 1 and the triviality of the data for
∇3θ

a we obtain that

|∇3θ
a| . δ∆0.

To verify that |∇θa| . 1 we commute the transport equation for θa with ∇ to obtain according to
(54)

∇4(∇θa) = −χ · ∇θa,
which together with the bootstrap assumption (37) gives the desired result.

To prove (72) we differentiate the transport equation for γab to obtain

d

du
(∂cγab) = 2∂cΩχab + 2Ω∂cχab.

Taking into account that

|∂cΩ| . |∇Ω| ≤ |η|+ |η|, |∂cχab| . |∇χ|+ |Γ||χ|

we derive

‖∂cγab‖L2(u,u) .
∫ u

0

(
‖η‖L4((u,u′) + ‖η‖L4(u,u′)

)
‖χ‖L4(u,u′)du

′

+

∫ u

0

(
‖∇χ‖L2(u,u′) + ‖Γ‖L2(u,u′)

)
‖χ‖L∞(u,u′)du

′

. δ
3
4

(S)O0,4[χ] (S)O0,4[η, η] + (S)O1,2[χ] + δ−
1
2 ∆0

∫ u

0

‖Γ‖L2(u,u′)du
′.

Thus, by Gronwall,

‖Γ‖L2(u,u) .
(S)O1,2 + δ3/4 (S)O2

0,4

The desired estimate for Γ follows by Gronwall. The second estimate of (72)can be derived by
an additional differentiation of the transport equation. The estimates (73) are proved in the same
manner. We omit the details. �

4.7. Estimates for Rδ
0[α]. Using the transported coordinates of the previous subsection we now

derive estimates for Rδ
0[α] norm of the anomalous curvature component α.

Proposition 4.8.

Rδ
0[α](u) . Rδ

0[α](0) +R
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Proof. Recall that, Rδ
0[α] := supδH⊂H ‖α‖L2(sc)(δH), where δH is the subset of Hu generated by trans-

porting a disk δS of radius δ
1
2 , embedded in the sphere Su,0, along the integral curves of the vectorfield

e4. We denote by δSu the intersection between δH and the level hypersurfaces of u and by δSu′,u the
sets obtained by transporting δSu along the integral curves of e3 According to (68)

‖ α‖L2
(sc)

(δSu) . ‖α‖L2(sc)(δS0,u) +

∫ u

0

‖∇3α +
1

2
trχα‖L2

(sc)
(δSu′,u)

du′

We note that (72) implies that δSu′,u are contained in the intersection of 2δHu′ and the level hyper-
surface of u. Therefore,

‖ α‖L2
(sc)

(δHu) . ‖α‖L2(sc)(2δH0) +

∫ u

0

‖∇3α +
1

2
trχα‖L2

(sc)
(2δHu′ )

du′

Using the equation for α

∇3α +
1

2
trχα = ∇⊗̂β + 4ωα− 3(χ̂ρ+∗ χ̂σ) + (ζ + 4η)⊗̂β

and the bootstrap assumptions (37) we obtain

‖∇3α +
1

2
trχα‖L2

(sc)
(2δHu′ )

≤ ‖∇3α +
1

2
trχα‖L2

(sc)
(Hu′ )

≤ ‖∇β‖L2
(sc)

(Hu′ )
+ δ

1
2

(S)O0,∞ · R0 . R+ δ
1
2 ∆0R0

It remains to observe that
‖α‖L2

(sc)
(2δH0) . R

δ
0[α](u = 0),

which follows from a simple covering argument. �

4.9. Calculus inequalities.

Proposition 4.10. Let (S, γ) be a compact 2-dimensional surface covered by local charts (disks) Ui
in which the metric γ satisfies

|γij − δij| ≤
1

2
.

Let d denote the minimum between 1 and the smallest radius of the disks Ui. Then for any p > 2

‖ψ‖L4(S) . ‖ψ‖
1
2

L2(S)‖∇ψ‖
1
2

L2(S) + d−
1
2‖ψ‖L2(S), (74)

‖ψ‖L∞(S) . ‖ψ‖
p
p+4

Lp(S)‖∇ψ‖
4
p+4

Lp(S) + d−
4
p+4‖ψ‖Lp(S). (75)

More generally,

‖ψ‖L4(Ui) . ‖ψ‖
1
2

L2(Ui)
‖∇ψ‖

1
2

L2(U ′
i)

+ d−
1
2‖ψ‖L2(U ′

i)
, (76)

‖ψ‖L∞(S) . sup
Ui

(
‖ψ‖

p
p+4

Lp(Ui)
‖∇ψ‖

4
p+4

Lp(U ′
i)

+ d−
4
p+4‖ψ‖Lp(U ′

i)

)
. (77)

The disk U ′i is a doubled version of Ui.
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We can combine the above proposition with Proposition 4.6 to obtain

Corollary 4.11. Let S = Su,u and Sδ ⊂ S denote a disk of radius δ
1
2 relative to either θ or θ

coordinate system. Then for any horizontal tensor ψ

‖ψ‖L4(S) . ‖ψ‖
1
2

L2(S)‖∇ψ‖
1
2

L2(S) + ‖ψ‖L2(S), (78)

‖ψ‖L∞(S) . ‖ψ‖
p
p+4

Lp(S)‖∇ψ‖
4
p+4

Lp(S) + ‖ψ‖Lp(S). (79)

and

‖ψ‖L4(Sδ) . δ
1
4‖∇ψ‖L2(S2δ) + δ−

1
4‖ψ‖L2(S2δ), (80)

‖ψ‖L∞(S) . sup
Sδ⊂S

(
δ

1
4‖∇ψ‖L4(S2δ) + δ−

1
4‖ψ‖L4(S2δ)

)
. (81)

Also, in the scale invariant norms

Corollary 4.12. Let S = Su,u and Sδ ⊂ S denote a disk of radius δ
1
2 relative to either θ or θ

coordinate system. Then for any horizontal tensor ψ

‖ψ‖L4
(sc)

(S) . ‖ψ‖
1
2

L2
(sc)

(S)
‖∇ψ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖ψ‖L2

(sc)
(S), (82)

‖ψ‖L∞
(sc)

(S) . ‖ψ‖
p
p+4

Lp
(sc)

(S)
‖∇ψ‖

4
p+4

Lp
(sc)

(S)
+ δ

1
p‖ψ‖Lp

(sc)
(S). (83)

and

‖ψ‖L4
(sc)

(Sδ) . ‖∇ψ‖L2(sc)(S2δ) + ‖ψ‖L2
(sc)

(S2δ), (84)

‖ψ‖L∞
(sc)

(S) . sup
Sδ⊂S

(
‖∇ψ‖L4

(sc)
(S2δ) + ‖ψ‖L4

(sc)
(S2δ)

)
. (85)

4.13. Codimension 1 trace formulas. We will use the L4(S) trace formulas8 along the null hy-
persurfaces H and H, see [Chr-Kl], [K-Ni], [K-R:LP].

Lemma 4.14. The following formulas hold true for any two sphere S = S(u, u) = H(u)∪H(u) and
any horizontal tensor ψ

‖ψ‖L4(S) .
(
‖ψ‖L2(H) + ‖∇ψ‖L2(H)

)1/2(‖ψ‖L2(H) + ‖∇4ψ‖L2(H)

)1/2
‖ψ‖L4(S) .

(
‖ψ‖L2(H) + ‖∇ψ‖L2(H)

)1/2(‖ψ‖L2(H) + ‖∇3ψ‖L2(H)

)1/2
Also, in scale invariant norms,

8Our bootstrap assumption are more than enough to verify the conditions of validity of these estimates.
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Proposition 4.15. The following formulas hold true for a fixed S = S(u, u) = H(u) ∩ H(u) ⊂ D
and any horizontal tensor ψ

‖ψ‖L4
(sc)

(S) .
(
δ1/2‖ψ‖L2

(sc)
(H) + ‖∇ψ‖L2

(sc)
(H)

)1/2(
δ1/2‖ψ‖L2

(sc)
(H) + ‖∇4ψ‖L2

(sc)
(H)

)1/2
‖ψ‖L4

(sc)
(S) .

(
δ1/2‖ψ‖L2

(sc)
(H) + ‖∇ψ‖L2

(sc)
(H)

)1/2(
δ1/2‖ψ‖L2

(sc)
(H) + ‖∇3ψ‖L2

(sc)
(H)

)1/2
4.16. Estimates for Hodge systems. Consider a Hodge system,

Dψ = F

with D one of the operators in section 3.5. In view of proposition 3.6,∫
S

|∇ψ|2 +

∫
S

K|ψ|2 . ‖F‖2L2(S)

where,

K = −ρ+
1

2
χ̂ · χ̂ − 1

4
trχtrχ

is the Gauss curvature of S. Hence,

‖∇ψ‖2L2(S) . ‖K‖L2(S)‖ψ‖2L4(S) + ‖F‖2L2(S)

Making use of the calculus inequality on S,

‖ψ‖2L4(S) . ‖∇ψ‖L2(S) ‖ψ‖L2(S)

we deduce,

‖∇ψ‖2L2(S) . ‖K‖L2(S)‖∇ψ‖L2(S) ‖ψ‖L2(S) + ‖F‖2L2(S)

and consequently,

‖∇ψ‖L2(S) . ‖K‖L2(S)‖ψ‖L2(S) + ‖F‖L2(S)

We state below the same result in scale invariant norms

Proposition 4.17. Let ψ verify the Hodge system

Dψ = F (86)

Then,

‖∇ψ‖L2
(sc)

(S) . δ1/2‖K‖L2
(sc)

(S)‖ψ‖L2
(sc)

(S) + ‖F‖L2
(sc)

(S) (87)

To obtain the second derivative estimates for the Hodge system Dψ = F we apply the operator D∗
and write the resulting equation schematically in the form

∆ψ = Kψ +D∗F.
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Multiplying the equation by ∆ψ, integrating over S and using that ‖D∗F‖L2(S) . ‖∇ψ‖L2(S) we
obtain

‖∆ψ‖L2(S) . ‖K‖L2(S)‖ψ‖L∞(S) + ‖∇F‖L2(S)

Using Böchner’s identity, see e.g. [K-R:LP],

‖∇2ψ‖L2(S) . ‖K‖L2(S)‖ψ‖L∞(S) + ‖K‖
1
2

L2(S)‖∇ψ‖L4(S) + ‖∆ψ‖L2(S). (88)

we then obtain

Proposition 4.18. Let ψ verify the Hodge system

Dψ = F (89)

Then,

‖∇2ψ‖L2
(sc)

(S) . δ
1
2‖K‖L2

(sc)
(S)‖ψ‖L∞(sc)(S) + δ

1
4‖K‖

1
2

L2
(sc)

(S)
‖∇ψ‖L4

(sc)
(S)

+ ‖∇F‖L2
(sc)

(S) (90)

5. (S)O0,4 and (S)O0,2 estimates

5.1. Estimates for χ, η, ω. The null Ricci coefficients χ, η and ω verify transport equations of the
form,

∇4ψ
(s) =

∑
s1+s2=s+1

ψ(s1) · ψ(s2) + Ψ(s+1) (91)

Here ψ(s) denotes an arbitrary Ricci coefficient component of signature s while Ψ(s) denotes a null
curvature component of signature s. In view of proposition 4.2 we have

‖ψ(s)‖L4
(sc)

(u,u) . ‖ψ(s)‖L4
(sc)

(u,0) +

∫ u

0

δ−1‖∇4ψ
(s)‖L4

(sc)
(u,u′)

To estimate ‖∇4ψ
(s)‖L4

(sc)
(u,u′) we make us of the scale invariant estimates

‖φ · ψ‖L4
(sc)

(S) . δ1/2‖φ‖L∞
(sc)

(S)‖ψ‖L4
(sc)

(S)

Hence,

‖∇4ψ
(s)‖L4

(sc)
(S) . ‖Ψ(s+1)‖L4

(sc)
(S) + δ

1
2

∑
s1+s2=s+1

‖ψ(s1)‖L∞
(sc)

(S)‖ψ(s2)‖L4
(sc)

(S)

At this point we remark that if all Ricci coefficient and curvature norms (S)O0,4,R0 were scale
invariant we would proceed in a straightforward manner as follows,

‖∇4ψ
(s)‖L4

(sc)
(S) . ‖Ψ(s+1)‖L4

(sc)
(S) + δ1/2 (S)O0,∞ · (S)O0,4

. ‖Ψ(s+1)‖L4
(sc)

(S) + δ1/2∆0 · (S)O0,4
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Hence

‖ψ(s)‖L4
(sc)

(u,u) . ‖ψ(s)‖L4
(sc)

(u,0) +

∫ u

0

δ−1‖Ψ(s+1)‖L4
(sc)

(u,u′) + δ1/2∆0 · (S)O0,4

. ‖ψ(s)‖L4
(sc)

(u,0) +R
1
2
0R

1
2
1 + δ

1
4R0 + δ1/2∆0 · (S)O0,4,

where in the last step we used the interpolation inequality (82) for the curvature Ψs+1. Thus, since
the initial data is trivial along u = 0,

‖(ω, η)‖L4
(sc)

(u,u) . R
1
2
0R

1
2
1 + δ

1
4R0 + δ1/2∆0 · (S)O0,4

We only have to be more careful with the cases when ‖Ψ(s+1)‖L4
(sc)

(S) is anomalous, i.e. Ψ = α, and

both ψ(s1), ψ(s2) are anomalous. The first situation ( but not second) appear only in the case of the
transport equation for χ̂ while the second appear only in the transport equation for trχ.

∇4χ̂+ trχχ̂ = −2ωχ̂− α

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ

Thus, for fixed u, we estimate with δSu denoting a disc of radius δ
1
2 transported from the data at

Su,0( recall also the triviality of the initial data on H0),

‖χ̂‖L4
(sc)

(δSu) .
∫ u

0

δ−1‖α‖L4
(sc)

(δSu,u′ )
du′ + δ1/2∆0 · (S)O0,4

Using (84) we obtain∫ u

0

δ−1‖α‖L4
(sc)

(δSu,u′ )
du′ . ‖α‖L2

(sc)
(2δH

(0,u)
u )

+ ‖∇α‖L2
(sc)

(2δH
(0,u)
u )

. Rδ
0[α] +R1[β]

Therefore,

‖χ̂‖L4
(sc)

(δSu) . ‖χ̂‖L4(sc)(δS0) +Rδ
0[α] +R1[α] + δ1/2∆0 · (S)O0,4

from which we derive both the scale invariant δ estimate for χ̂,
(S)Oδ0,4[χ̂] . Rδ

0[α] +R1[α] + δ1/2∆0 · (S)O0,4. (92)

We can also estimate directly the anomalous (S)O0,4[χ̂] from,

‖χ̂‖L4
(sc)

(Su) .
∫ u

0

δ−1‖α‖L4
(sc)

(δSu,u′ )
du′ + δ1/2∆0 · (S)O0,4

Using the scale invariant interpolation inequality (74) we deduce,

‖χ̂‖L4
(sc)

(Su) . ‖α‖1/2
L2
(sc)

(H
(0,u)
u

· ‖∇α‖1/2
L2
(sc)

(H
(0,u)
u

+ δ1/4‖α‖L2
(sc)

(H
(0,u)
u

+ δ1/2∆0 · (S)O0,4

Taking into account the anomalous character of R0[α] and the definition of (S)O0,4[χ̂], we deduce,

(S)O0,4[χ̂] . R0[α]1/2
(
R1[α] +R0[α]

)1/2
+ δ1/4∆0 · (S)O0,4 (93)
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On the other hand,

‖trχ‖L4
(sc)

(u,u) . ‖trχ‖L4
(sc)

(u,0) +

∫ u

0

δ−
1
2 ∆0‖trχ‖L4

(sc)
(u,u′)du

′

+ δ−
1
2 ∆0

∫ u

0

‖χ̂‖L4
(sc)

(u,u′)du
′ + δ1/2∆0 · (S)O0,4

. ‖trχ‖L4
(sc)

(u,0) + δ
1
4 ∆0

(S)O0,4

We summarize the results of the section in the following9.

Proposition 5.2. Under the bootstrap assumption (S)O0,∞ ≤ ∆0 and assuming that δ1/2∆0 is
sufficiently small we derive,

(S)O0,4[ω, η] . R0 +R
1
2
0R

1
2
1 + δ

1
4R0 + δ1/2∆0 · (S)O0,4

(S)O0,4[trχ] . 1 + δ
1
4 ∆0 · (S)O0,4,

(S)O0,4[χ̂] . R0[α]1/2
(
R1[α] +R0[α]

)1/2
+ δ1/4∆0 · (S)O0,4

Also,

Oδ0[χ̂] . R[1] + δ1/2∆0 · (S)O0,4

5.3. Estimates for χ, η, ω. The Ricci coefficients η, χ and ω verify equations of the form,

∇3ψ
(s) = −1

2
k trχψ(s) +

∑
s1+s2=s

ψ(s1) · ψ(s2) + Ψ(s)

with k a positive integer. Writing trχ = trχ
0

+ t̃rχ, with trχ
0

= − 4
u−u+2r0

, we derive

∇3ψ
(s) = −1

2
k trχ

0
ψ(s) +

∑
s1+s2=s

ψ(s1) · ψ(s2) + Ψ(s) (94)

In this case we observe that the curvature term Ψ(s) is never anomalous and the only time when both
ψ(s1) and ψ(s2) are anomalous is in the case of the transport equations for χ̂ and trχ. In all other
cases we can write, proceeding exactly as before,

‖ψ(s)‖L4
(sc)

(u,u) . ‖ψ(s)‖L4
(sc)

(0,u) +

∫ u

0

‖∇3ψ
(s)‖L4

(sc)
(u′,u)

and,

‖∇3ψ
(s)‖L4

(sc)
(u,u) . ‖ψ(s)‖L4

(sc)
(u,u) + ‖Ψ(s)‖L4

(sc)
(u,u) + δ1/2 (S)O0,∞ · (S)O0,4

9Recall the triviality of our initial conditions at u = 0.
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Thus, in these cases,

‖ψ(s)‖L4
(sc)

(u,u) . ‖ψ(s)‖L4
(sc)

(0,u) +

∫ u

0

‖Ψ(s)‖L4
(sc)

(u′,u) + δ1/2 (S)O0,∞ · (S)O0,4

. ‖ψ(s)‖L4
(sc)

(0,u) +R
1
2
0R

1
2
1 + δ

1
4R0 + δ1/2∆0 · (S)O0,4 (95)

Similarly,

‖ψ(s)‖L2
(sc)

(u,u) . ‖ψ(s)‖L2
(sc)

(0,u) +R0 + δ1/2∆0 · (S)O0,4 (96)

It thus only remains to estimate trχ, χ̂ . We first estimate Oδ0[χ] from the equation,

∇3χ̂ = −α + trχ
0
χ̂ − t̃rχ χ̂ − 2ωχ̂

Clearly, for fixed u

‖∇3χ̂ +
1

2
trχχ̂ ‖L4

(sc)
(δSu) . ‖α‖L4

(sc)
(δSu) + ‖χ̂ ‖L4

(sc)
(δSu) + δ1/2 (S)O0,∞ · (S)O0,4

and thus, after a standard application of the Gronwall inequality,

‖χ̂ ‖L4
(sc)

(δSu) . ‖χ̂ ‖L4
(sc)

(δS0) +

∫ u

0

‖α‖L4
(sc)

(δSu′ )

Taking into account the scale invariant interpolation inequality (82) we deduce,

‖χ̂ ‖L4
(sc)

(δSu) . ‖χ̂ ‖L4
(sc)

(δS0) +R
1
2
0 [α] · R

1
2
1 [α] + δ

1
4R0[α] + δ1/2∆0

(S)O0,4

or, since ‖χ̂ ‖L4
(sc)

(δS0) . O(0),

‖χ̂ ‖L4
(sc)

(δSu) . O(0) +R
1
2
0 [α]

(
R

1
2
1 [α] + δ

1
4R0[α]

)
+ δ1/2∆0

(S)O0,4 (97)

Proceeding in the same fashion,

‖χ̂ ‖L4
(sc)

(Su) . ‖χ̂ ‖L4
(sc)

(S0) +R
1
2
0 [α] · R

1
2
1 [α] + δ

1
4R0[α] + δ1/2∆0

(S)O0,4

Now, observe that the only anomaly on the right hand side is due to ‖χ̂ ‖L4
(sc)

(S0). In fact

‖χ̂ ‖L4
(sc)

(S0) . δ−1/4O(0) (98)

Thus,

(S)O0,4[χ̂ ] . O(0) + δ1/4R
1
2
0 [α] · R

1
2
1 [α] + δ

1
2R0 + δ3/4∆0

(S)O0,4 (99)

To estimate t̃rχ = trχ− trχ
0

we start with the equation

D3trχ+
1

2
(trχ)2 = −2ωtrχ− |χ̂ |2.
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Since, D3u = Ω−1, D3u = 0 we have, since trχ
0

= − 4
u−u+2r0

,

D3trχ0
= −Ω−1

1

4
trχ2

0

Hence, using t̃rχ = trχ− trχ
0
,

∇3t̃rχ+ trχ
0
· t̃rχ = − 1

2Ω
(Ω− 1

2
)trχ2

0
+ 2ωtrχ

0
− 2ωt̃rχ− |χ̂ |2 (100)

Now, taking into account the anomalous scaling of (S)O0,4[χ̂ ] and estimate, ‖Ω − 1
2
‖L2

(sc)
(S) .

‖ω‖L2
(sc)

(S) (which can be easily derived using the transport equation ∇3Ω = ω) we derive,

‖∇3t̃rχ‖L4
(sc)

(S) . ‖t̃rχ‖L4
(sc)

(S) + ‖ω‖L4
(sc)

(S) + δ
1
4

(S)O0,∞ · (S)O0,4.

from which,

‖t̃rχ‖L4
(sc)

(u,u) . ‖t̃rχ‖L4
(sc)

(0,u) +

∫ u

0

‖∇3t̃rχ‖L4
(sc)

(u′,u)

. ‖t̃rχ‖L4
(sc)

(0,u) +

∫ u

0

‖t̃rχ‖L4
(sc)

(u′,u)du
′

+

∫ u

0

‖ω‖L4
(sc)

(u′,u)du
′ + δ

1
4 ∆0 · (S)O0,4.

By Gronwall, and using the estimate for ω derived in the previous section,

‖t̃rχ‖L4
(sc)

(u,u) . ‖t̃rχ‖L4
(sc)

(0,u) +R
1
2
0R

1
2
1 + δ

1
4R0 + δ

1
4 ∆0 · (S)O0,4.

Thus,

(S)O0,4[t̃rχ] . O(0) +R0R1 + δ
1
4R0 + δ

1
4 ∆0 · (S)O0,4 (101)

We summarize the result of this subsection in the following

Proposition 5.4. We have, for sufficiently small δ,

(S)O0,4[η, ω] . O(0) +R0 +R
1
2
0R

1
2
1 + δ

1
4R0 + δ

1
2 ∆0 · (S)O0,4

(S)O0,4[χ̂ ] . O(0) + δ1/4R
1
2
0 · R

1
2
1 + δ

1
2R0 + δ3/4∆0

(S)O0,4

(S)O0,4[t̃rχ] . O(0) +R0R1 + δ
1
4R0 + δ

1
4 ∆0 · (S)O0,4

Also,

Oδ[χ̂ ] . O(0) +R
1
2
0R

1
2
1 + δ

1
4R0 + δ

1
2 ∆0 · (S)O0,4
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5.5. Summary of (S)O0,4 estimates. Putting together the results of the last two propositions we
deduce the following.

Proposition 5.6. There exists a constant C depending only on O(0) and R such that, if δ1/2∆0 is
sufficiently small, we have,

(S)O0,4 . C (102)

Moreover,

(S)O0,4[χ̂] . R0[α]1/2
(
R1[α] +R0[α]

)1/2
+ δ1/4C (103)

(S)O0,4[χ̂ ] . O(0) + δ1/4C (104)

5.7. (S)O0,2 estimates. The following estimates will also be needed.

Proposition 5.8. There exists a constant C depending only on O(0) and R such that, if δ1/2∆0 is
sufficiently small, we have,

(S)O0,2 . C (105)

Proof. These are similar but somewhat simpler, once we already have the (S)O0,4 estimates. Indeed,
starting with (91), (dropping indices for simplicity) we write as before,

‖ψ‖L2
(sc)

(u,u) . ‖ψ‖L2
(sc)

(u,0) +

∫ u

0

δ−1‖∇4ψ‖L2
(sc)

(u,u′)

and, assuming the worst case scenario when both terms in ψ · ψ are anomalous, i.e. both satisfy
‖ψ‖L4

(sc)
(S) . Cδ−1/4,

‖∇4ψ‖L2
(sc)

(S) . ‖Ψ‖L2
(sc)

(S) + δ
1
2‖ψ‖L4

(sc)
(S)‖ψ‖L4

(sc)
(S)

. ‖Ψ‖L2
(sc)

(S) + (S)O2
0,4

. ‖Ψ‖L2
(sc)

(S) + C2.

Thus,

‖ψ‖L2
(sc)

(u,u) . +

∫ u

0

δ−1‖Ψ‖L2
(sc)

(u,u′) + C2

. ‖Ψ‖L2
(sc)

(Hu) + C2

Ψ can only be the anomalous α in the case of the transport equation for χ̂. Thus,

‖(ω, η)‖L2
(sc)

(u,u) . R0 + C2

‖χ̂‖L2
(sc)

(u,u) . δ−1/2R0[α]

or, with a constant C = C(O(0),R,R),
(S)O0,2[trχ, χ̂, ω, η] . C
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The estimates for trχ, χ̂ , ω, η are proved in the same manner.

�

6. O1 estimates

6.1. General Strategy. To get the first and second derivative estimates for the Ricci coefficients
we cannot proceed as we did in the previous section. Following a path first pursued in [Chr-Kl]
and continued in [K-Ni], [K-R:causal] and [Chr] we introduce new quantities10 Θ(s), with signature
s, depending on first derivative of the Ricci coefficients and which verify transport equations of the
form11

∇4Θ
(s) = trχ

(
Θ(s) +∇ψ(s− 1

2
)
)

+
∑

s1+s2+
1
2
=s+1

ψ(s1)
(
∇ψ(s2) + Ψ(s2)

)
+

∑
s1+s2=s+1

trχ
0
· ψ(s1) · ψ(s2) +

∑
s1+s2+s3=s+1

ψ(s1) · ψ(s2) · ψ(s3)

(106)

∇3Θ
(s) = trχ

(
Θ(s) +∇ψ(s− 1

2
)
)

+
∑

s1+s2+
1
2
=s

ψ(s1)
(
∇ψ(s2) + Ψ(s2)

)
+

∑
s1+s2=s

trχ
0
· ψ(s1) · ψ(s2) +

∑
s1+s2+s3=s

ψ(s1) · ψ(s2) · ψ(s3)

(107)

Here ψ(s) are components of all the Ricci coefficients (trχ, χ̂, ω, η, η, t̃rχ, χ̂ ) with signature s, while

Ψ(s) are curvature components with signature s.

The main idea behind our strategy is to show that once we control the L2
(sc)(S) norms of these

quantities Θ we derive all O1 estimates by using the elliptic Hodge systems. The most general form
of such systems is given by

Dψ(s) = Θ(s+ 1
2
) + Ψ(s+ 1

2
) + trχ

0
· ψ(s+ 1

2
) +

∑
s1+s2=s+

1
2

ψ(s1)ψ(s2). (108)

where D is one of the Hodge systems of section 3.5. Observe also that both Hodge systems have
non- anomalous curvature source terms, β, respectively β and no quadratic anomalies in ψ (relative
to the O0 norm).

10Different components Θ appear in (106) and (107). It may in fact be more appropriate to call Θ the components
which appear on the left of the ∇4 equation and by Θ those appearing on the left of the ∇3 equations.

11We neglect to write possible constants in front of each term on the right of our equations
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6.2. Explicit Θ variables and Hodge systems. In this section we introduce explicit variables
Θ(s) and derive transport equations of the type (106), (107).

Transport-Hodge systems for χ, χ. First observe that the Codazzi equations

div χ̂ =
1

2
∇trχ− 1

2
(η − η) · (χ̂− 1

2
trχ)− β, (109)

div χ̂ =
1

2
∇trχ+

1

2
(η − η) · (χ̂ − 1

2
trχ) + β (110)

can be written as Hodge systems of type (108). with D the Hodge operator D2, discussed in section
3.5, and Θ = ∇trχ, resp. Θ = ∇trχ.

We now derive a ∇4 transport equation for ∇trχ. Using commutation formula, [∇4,∇]f = 1
2
(η +

η)D4f − χ · ∇f, we obtain,

∇4∇trχ = −∇trχtrχ− 2trχ∇ω − 2ω∇trχ− 2∇χ̂ · χ̂ (111)

+
1

2
(η + η)

(
− 1

2
(trχ)2 − 2ωtrχ− |χ̂|2

)
− χ · ∇trχ

which is clearly of the form (106) with no curvature terms present and no triple anomalies (relative
to the O0 norm, i.e. among the cubic terms at least one of the factors are not anomalous).

To derive a transport equation for ∇trχ we start with the transport equation,

∇3trχ = −1

2
(trχ)2 + F, F = −2ωtrχ− |χ̂ |2 = −2ωtrχ

0
− 2ωt̃rχ− |χ̂ |2

Using the commutator formula, [∇3,∇]f = −χ · ∇f + 1
2
(η + η)D3f we deduce,

∇3(∇trχ) = −χ̂ · ∇trχ− 3

2
trχ∇trχ−

(
∇+

1

2
(η + η)

)
F

Or, writing trχ = trχ
0

+ t̃rχ, we deduce,

∇3(∇trχ) = −χ̂ · ∇trχ− 3

2
trχ

0
∇trχ− 3

2
t̃rχ∇trχ−

(
∇+

1

2
(η + η)

)
F (112)

This is clearly a system of the form (107) with no curvature terms present and no anomalous cubic
terms.

Transport- Hodge systems for µ, µ,∇η,∇η. We start with equation

curl η = curl η = σ + χ̂ ∧ χ̂
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We derive equations for div η and div η by taking he divergence of the transport equations

∇4η = −1
2
trχ(η − η)− χ̂ · (η − η)− β

∇3η = −1
2
trχ(η − η)− χ̂ · (η − η) + β

Using commutation lemma (3.3) we derive,

∇4(div η) = div (−1

2
trχ(η − η)− χ̂ · (η − η)− β)

− 1

2
trχ div η − χ̂ · ∇η − η · β +

1

2
(η + η) · ∇4η

= −div β − 1

2
trχ(2div η − div η)− (η − η) ·

(1

2
∇trχ+ div χ̂)

− χ̂ · ∇(2η − η)− η · β +
1

2
(η + η) · ∇4η

Using the null Codazzi equation,

1

2
∇trχ+ div χ̂ = ∇trχ+

1

2
ζtrχ− β

we derive,

∇4(div η) = −div β − 1

2
trχ(2div η − div η)− χ̂ · ∇(2η − η)− (η − η) · ∇trχ

− η · β − 1

4
trχ(η − η)2 +

1

2
(η + η)

(
− 1

2
trχ(η − η)− χ̂ · (η − η)− β

)
= −div β − 1

2
trχ(2div η − div η)− χ̂ · ∇(2η − η)− (η − η) · ∇trχ

− 1

2
(3η + η) · β − 1

2
trχ(|η|2 − η · η)− 1

2
(η + η) · χ̂ · (η − η)

or,

∇4(div η) + trχdiv η = −div β +
1

2
trχdiv η − χ̂ · ∇(2η − η)− (η − η) · ∇trχ

− 1

2
(3η + η) · β − 1

2
trχ(|η|2 − η · η)− 1

2
(η + η) · χ̂ · (η − η)

On the other hand,

∇4ρ+
3

2
trχρ = div β − 1

2
χ̂ · α + ζ · β + 2η · β

Adding the two equations and setting,

µ = −div η − ρ
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we derive,

∇4µ+ trχµ = −1

2
trχdiv η + (η − η)∇trχ+ χ̂ · ∇(2η − η) +

1

2
χ̂ · α− (η − 3η) · β +

1

2
trχρ

+
1

2
trχ(|η|2 − η · η) +

1

2
(η + η) · χ̂ · (η − η)

Similarly, setting

µ = −div η − ρ
we derive,

∇3µ+ trχµ = −1

2
trχdiv η + (η − η)∇trχ+ χ̂ · ∇(2η − η) +

1

2
χ̂ · α− (η − 3η) · β +

1

2
trχρ

+
1

2
trχ(|η|2 − η · η) +

1

2
(η + η) · χ̂ · (η − η)

We summarize the results above in the following.

Lemma 6.3. The reduced mass aspect functions,

µ = −div η − ρ
µ = −div η − ρ

verify the transport equations,

∇4µ+ trχµ = −1

2
trχdiv η + (η − η)∇trχ+ χ̂ · ∇(2η − η) +

1

2
χ̂ · α− (η − 3η) · β +

1

2
trχρ

+
1

2
trχ(|η|2 − η · η) +

1

2
(η + η) · χ̂ · (η − η) (113)

∇3µ+ trχµ = −1

2
trχdiv η + (η − η)∇trχ+ χ̂ · ∇(2η − η) +

1

2
χ̂ · α− (η − 3η) · β +

1

2
trχρ

+
1

2
trχ(|η|2 − η · η) +

1

2
(η + η) · χ̂ · (η − η) (114)

Remark 6.4. Observe that our mass aspect functions differ from those of [Chr-Kl] or [K-Ni]. Thus,
in [K-Ni]), µ = −div η − ρ+ 1

2
χ̂ · χ̂ verifies (see equation 4.3.32 in [K-Ni]),

∇4µ+ trχµ = χ̂ · (∇⊗̂η) + (η − η) · (∇trχ+ trχζ) +
1

2
trχ
(
µ+ div (η − η)

)
− 1

4
trχ|χ̂|2 +

1

2
trχ(χ̂ · χ̂ + 2ρ− |η|2) + 2(η · χ̂ · η − η · β)

The reason we prefer our definition here is to avoid the presence of triple anomalous terms on the
right hand side of the transport equations for µ, µ.

We write (113) symbolically in the form,

∇4µ = ψ · (∇ψ + Ψg) + χ̂ · α + ψ · ψ · ψg (115)
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which is of the form (106), with ψg ∈ {trχ, χ̂, η, η, ω, ω, trχ} and Ψg ∈ {β, ρ, σ β}. We can also write,
in shorter form,

∇4µ = ψ · (∇ψ + Ψ) + ψ · ψ · ψg

and recall that ψ ·Ψ contains the more difficult term χ̂ · α anomalous in both ψ and Ψ.

We also rewrite (114) symbolically. In this case we have to keep track of the terms proportional to

trχ = trχ
0

+ t̃rχ. We thus write symbolically,

∇3µ = trχ
0
(∇ψ + µ) + ψ · (∇ψ + Ψg) + ψg · β + trχ

0
ψ · ψg + ψ · ψ · ψg

(116)

Here Ψg ∈ {ρ, σ, β, α}. Observe that at least one of the factors ψ in trχ
0
ψ · ψg and ψ · ψ · ψg can

be anomalous. Unlike in the case of ∇4µ equation, there are no terms of the form ψ · β with ψ also
anomalous (recall that β is anomalous for R0).

We combine the transport equations (115) and (116) with the Hodge systems,

div η = −µ− ρ (117)

curl η = σ − 1

2
χ̂ ∧ χ̂

and,

div η = −µ− ρ (118)

curl η = σ − 1

2
χ̂ ∧ χ̂ (119)

They are both systems of type (108). Note that the quadratic term χ̂ · χ̂ is anomalous with respect
to both factors.

Transport-Hodge systems for κ, κ,∇ω,∇ω. We look for transport equations for quantities connected
to ∇ω and ∇ω. Recall that

∇4ω =
1

2
ρ+ F (120)

F = 2ωω +
3

4
|η − η|2 − 1

4
(η − η) · (η + η)− 1

8
|η + η|2

and,

∇3ω =
1

2
ρ+ F (121)

F = 2ωω +
3

4
|η − η|2 +

1

4
(η − η) · (η + η)− 1

8
|η + η|2
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We introduce the auxiliary quantities ω† and ω† as follows.

∇4ω
† =

1

2
σ (122)

∇3ω
† =

1

2
σ (123)

with zero boundary conditions along H0, respectively H0. We introduce the pair of scalars < ω >=
(ω, ω†) and < ω >= (−ω, ω†) and apply the Hodge operator ?D1 ( see subsection 3.5),

?D1 < ω > = −∇ω + ∗∇ω†, ?D1 < ω >= ∇ω + ∗∇ω†.
Next we derive a ∇4 equation for < ω > and a ∇3 equation for < ω >. To do this we write the
commutation relation (55) in the form,

[∇4,∇]f = −1

2
trχ∇f − χ̂ · ∇f +

1

2
(η + η)D4f

[∇4,
∗∇]g = −1

2
trχ ∗∇g + χ̂ · ∗∇g +

1

2
(η∗ + η∗)D4g

Thus, for a pair of scalars (f, g),

[∇4,
?D1](f, g) = −1

2
trχ ?D1(f, g) + χ̂ · (∇f + ∗∇g)− 1

2
(η + η)∇4f +

1

2
(η∗ + η∗)D4g

Therefore,

∇4
?D1 < ω > = ?D1(ρ, σ)−∇F + [∇4,

?D1] < ω >

= ?D1(ρ, σ)−∇F − 1

2
trχ ?D1 < ω > +χ̂ · (∇ω + ∗∇ω†)

− 1

2
(η + η)(ρ+ F ) +

1

2
(η∗ + η∗)σ

On the other hand, we have the Bianchi equation,

D4β + trχβ = D∗1(ρ, σ) + 2ωβ + 2χ̂ · β − 3(ηρ−∗ ησ),

Thus,introducing the new horizontal vector,

κ := ?D1 < ω > −1

2
β = ?D1(ω, ω

†)− 1

2
β = −∇ω + ∗∇ω† − 1

2
β (124)

we deduce,

∇4κ = −trχ · κ− ωβ − χ̂ · β +
3

2
(ηρ− ∗ησ)− 1

2
(η + η)ρ+

1

2
(η∗ + η∗)σ

+ χ̂ · (∇ω + ∗∇ω†)−∇F − 1

2
(η + η)F (125)

Similarly we set,

κ := ?D1 < ω > −1

2
β = ?D1(−ω, ω†)−

1

2
β = ∇ω + ∗∇ω† − 1

2
β (126)
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and, using the Bianchi equations,

D3β + trχβ = D∗1(−ρ, σ) + 2ωβ + 2χ̂ · β + 3(ηρ+∗ ησ),

we derive,

∇3κ = −trχ · κ− ωβ − χ̂ · β +
3

2
(ηρ+ ∗ησ)− 1

2
(η + η)ρ+

1

2
(η∗ + η∗)σ

+ χ̂ · (−∇ω + ∗∇ω†) +∇F +
1

2
(η + η)F (127)

To estimate ∇ω we combine the ∇4 equation (125) with the Hodge system,

?D1(ω, ω
†) = κ+

1

2
β (128)

To estimate ∇ω we combine the ∇3 equation (127) with the Hodge system,

?D1(−ω, ω†) = κ+
1

2
β (129)

Clearly transport equations for κ and κ are of the form (106) and (107) provided that we extend the
set of Ricci coefficients ψ to also include the new scalars ω† and ω†. We observe that ω† has the same
signature as ω and ω† has the same signature as ω. Moreover ω†, ω† they satisfy equations similar
to those satisfied by ω, ω. Thus, for example, we can easily derive both L2

(sc) and L4
(sc) estimates for

them. Indeed, from (122) we easily derive,

‖ω†‖L2
(sc)

(u,u) .
∫ u

0

δ−1‖σ‖L2
(sc)

(u,u′)du
′ . R0[σ].

Similarly, from (123),

‖ω†‖L2
(sc)

(u,u) .
∫ u

0

‖σ‖L2
(sc)

(u′,u)du
′ . R0[σ]

It thus make perfect sense to extend the definition of the set of Ricci coefficients as well as the
definition of the norms (S)O∞, (S)O0,4,

(S)O1,2,
(S)O1,4 to include them. We thus also assume, from

now on, that the main bootstrap assumption (37) includes ω†, ω†.

Finally we observe that equations (125), (127) can be written in the form,

∇4κ = −trχ · κ+ ψ · (Ψg +∇ψ) + ψ · ψ · ψg
∇3κ = −trχ · κ+ ψ · (Ψg +∇ψ) + ψ · ψ · ψg

with Ψg ∈ {β, ρ, σ, β} and ψg ∈ {trχ, ω, ω†, η, η, ω, ω†, t̃rχ}. Since κ can be expressed in terms of

∇ω,∇ω† and β we can also write the first equation in the form

∇4κ = ψ · (Ψg +∇ψ) + ψ · ψ · ψg
The second equation can be written in the form,

∇3κ = −trχ
0
· κ+ ψ · (Ψg +∇ψ) + ψ · ψ · ψg (130)
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6.5. Main O1 estimates. We start by rewriting systems (106), (107) and (108) in short form,
dropping the reference to signature.

∇4Θ = ψ ·
(
∇ψ + Ψ

)
+ trχ

0
· ψ · ψg + ψ · ψ · ψg (131)

∇3Θ = trχ
0
· ∇ψ + ψ ·

(
∇ψ + Ψ

)
+ trχ

0
· ψ · ψg + ψ · ψ · ψg (132)

where ψg denotes an extended Ricci coefficient term (i.e. including ω†, ω† defined below.) which is
not anomalous in the (S)O0,4-norm.). Also,

Dψ = Θ + Ψ + trχ
0
· ψg + ψ · ψ. (133)

Remark 1. In reality equation (132) should also contain a term of the form trχ
0
Θ as seen in

(112), (116) and (130). We observe however that such terms can be easily eliminated by a standard
Gronwall inequality.

Remark 2. The curvature terms Ψ appearing on the right hand side of (131) belong to the admis-
sible12 set {α, β, ρ, σ, β}. Special attention needs to be given to terms of the form13 χ̂ · α.

Remark 3. The curvature terms Ψ appearing on the right hand side of (132) belong to the ad-
missible14 set {β, ρ, σ, β, α}. Special attention needs to be given to terms of the form ψ · β, since
R0[β] is anomalous. We observe however that among all possible terms of the form ψ · β, ψ is never
anomalous.

Remark 4. The curvature terms Ψ appearing on the right hand side of (133) belong to the set
{β, ρ, σ, β}.

Remark 5. ψg denotes an extended Ricci coefficient which is not anomalous in the O0 norm.
Whenever we write simply ψ we allow for the possibility that it may be anomalous. For example the
terms of the form ψ ·ψ in (133) may be both anomalous (as happens to be the case for the div -curl
systems for η, η, due to χ̂ · χ̂ ).

Remark 6. Due to the triviality of our initial data at u = 0 we have

‖Θ‖L2
(sc)

(u,0) = 0.

In view of the definition of the Θ we have,

‖Θ‖L2
(sc)

(0,u) . O(0) +R(0). (134)

We start deriving estimates for (131). As in the proof of the O0 estimates,

‖Θ‖L2
(sc)

(u,u) . ‖Θ‖L2
(sc)

(u,0) +

∫ u

0

δ−1‖∇4Θ‖L2
(sc)

(u,u′)

12This are the curvature components appearing in the main curvature norms R0,R1.
13such a term appear in the transport equation for µ.
14This are the curvature components appearing in the main curvature norms R0,R1.
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Recall that none of the L∞(sc)(S) norms of the Ricci coefficients ψ or the L2
(sc)(S) norms of their

derivatives ∇ψ are anomalous. Moreover,

‖ψg‖L4
(sc)

(S) + δ1/4‖ψg‖L4
(sc)

(S) .
(S)O0,4(S) . C

where C is the constant in proposition 5.6. Also,

‖ψ‖L∞
(sc)

(S) . δ1/2∆0, ‖∇ψ‖L2
(sc)

(S) .
(S)O1,2,

Now, according to (131), for δ1/2∆0 . 1,

‖∇4Θ‖L2
(sc)

(S) . ‖ψ ·Ψ‖L2
(sc)

(S) + δ1/2‖ψ‖L∞
(sc)

(S) · ‖∇ψ‖L2
(sc)

(S)

+ δ1/2‖ψ‖L4
(sc)

(S)‖ψg‖L4
(sc)

(S) + δ‖ψ‖L∞
(sc)

(S)‖ψ‖L4
(sc)

(S)‖ψg‖L4
(sc)

(S)

. ‖ψ ·Ψ‖L2
(sc)

(S) + δ1/2∆0‖∇ψ‖L2
(sc)

(S) + δ1/4C2

Recalling the triviality of the initial conditions at u = 0, we deduce,

‖Θ‖L2
(sc)

(u,u) .
∫ u

0

δ−1‖Θ‖L2
(sc)

(u,u′) du
′

. δ−1
∫ u

0

‖ψ ·Ψ‖L2
(sc)

(u,u′) du
′ + ∆0 δ

1/2 (S)O1,2 + δ1/4C2

Among the terms of the form ψ ·Ψ the most dangerous15 is χ̂ · α which is anomalous in both ψ and
Ψ. In this case, recalling estimate (102),

‖χ̂ ‖L4
(sc)

(S) . δ−1/4C

we deduce,

‖χ̂ · α‖L2
(sc)

(S) . δ1/2‖χ̂ ‖L4
(sc)

(S) · ‖α‖L4
(sc)

(S)

. δ1/4C

(
‖∇α‖1/2L2

(sc)
(S)
· ‖α‖1/2L2

(sc)
(S)

+ δ
1
4‖α‖L2

(sc)
(S)

)
All other terms are better in powers of δ, i.e.,

‖ψ ·Ψ‖L2
(sc)

(S) . δ1/4C

(
‖Ψ‖1/2L2

(sc)
(S)
· ‖∇Ψ‖1/2L2

(sc)
(S)

+ δ
1
4‖Ψ‖L2

(sc)
(S)

)

15This is the case for the ∇4 equation for µ.
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Therefore, recalling Remark 2 and the definition of the scale invariant norms L2
(sc)(Hu),

δ−1
∫ u

0

‖ψ ·Ψ‖L2
(sc)

(u,u′) du
′ . Cδ−3/4

∫ u

0

‖Ψ‖1/2L2
(sc)

(u,u′)
‖∇Ψ‖1/2L2

(sc)
(u,u′)

. Cδ−1/4
(∫ u

0

‖Ψ‖2L2
(sc)

(u,u′)du
′ ·
∫ u

0

‖∇Ψ‖2L2
(sc)

(u,u′)du
′
)1/2

. CR1/2
0 ·

(
R0 +R1

)1/2
We have thus established,

‖Θ‖L2
(sc)

(u,u) . δ1/2∆0 · (S)O1,2 + CR1/2
0 ·

(
R0 +R1

)1/2
+ δ1/4C2 (135)

We next estimate the Θ components which verify the ∇3 equation (132). The only terms which do
not appear in (131) are of the form, trχ

0
∇ψ. Thus, exactly as before,

‖∇3Θ‖L2
(sc)

(S) . ‖ψ ·Ψ‖L2
(sc)

(S) + (1 + δ1/2∆0)‖∇ψ‖L2
(sc)

(S) + δ1/4C2

and,

In view of Remark 3 Ψ ∈ {β, ρ, σ, β, α} and there are no double anomalous terms ψ · Ψ. Thus,
proceeding exactly as above,

‖Θ‖L2
(sc)

(u,u) . ‖Θ‖L2
(sc)

(u,0) +

∫ u

0

‖∇3Θ‖L2
(sc)

(u′,u)du
′

.
∫ u

0

‖∇ψ‖L2
(sc)

(u′,u) du
′ + δ1/2∆0 · (S)O1,2

+ Cδ1/4R1/2
0 (R1 +R0)

1/2 + C2δ1/4

Combining with (135) we deduce, for a constant C = C(O(0),R,R) and sufficiently small δ,

‖Θ‖L2
(sc)

(u,u) . C +

∫ u

0

‖∇ψ‖L2
(sc)

(u′,u)du
′ + δ

1
2 ∆0O1 (136)

It remains to discuss estimates for the Hodge systems (133). The following proposition will be needed.

Proposition 6.6. There exists a constant C = C(O(0),R,R) such that if δ is sufficiently small, the
following estimates hold true:

‖β, ρ, σ, β‖L2
(sc)

(S) . C (137)

‖K‖L2
(sc)

(S) . C (138)
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In view of proposition 4.17 we derive from (133),

‖∇ψ‖L2
(sc)

(S) . δ
1
4‖K‖

1
2

L2
(sc)

(S)
‖ψ‖L4

(sc)
(S) + ‖Θ‖L2

(sc)
(S)

+ ‖Ψ‖L2
(sc)

(S) + ‖ψg‖L2
(sc)

(S) + ‖ψ · ψ‖L2
(sc)

(S).

According to proposition 6.6, ‖K‖L2
(sc)

(S) . C. Thus even if the term‖ψ‖L2
(sc)

(S) multiplying ‖K‖L2
(sc)

(S)

is anomalous16, i.e. ‖ψ‖L4
(sc)

(u,u) . δ−1/4 (S)O0,4 . Cδ−1/4 we deduce, for some C = C(O(0), R,R),

δ
1
4‖K‖

1
2

L2
(sc)

(S)
‖ψ‖L4

(sc)
(S) . C

Also, since ‖Ψ‖L2
(sc)

(S) . C for Ψ ∈ {β, ρ, σ, β} and ‖ψg‖L2
(sc)

(S) . O0[ψg] . C we deduce,

‖∇ψ‖L2
(sc)

(S) . C + ‖Θ‖L2
(sc)

(S) + ‖ψ · ψ‖L2
(sc)

(S).

Among the remaining quadratic terms ‖ψ ·ψ‖L2
(sc)

(S) we can have terms such as χ̂ · χ̂ , in which both

factors are anomalous17 . For such terms

‖ψ · ψ‖L2
(sc)

(S) . δ
1
2‖ψ‖L4

(sc)
(S) · ‖ψ‖L4

(sc)
(S) . C2

Henceforth,

‖∇ψ‖L2
(sc)

(S) . C2 + ‖Θ‖L2
(sc)

(S)

Combining this with (136) we deduce,

‖∇ψ‖L2
(sc)

(Su,u) . C2 +

∫ u

0

‖∇ψ‖L2
(sc)

(Su′,u)
du′ + δ

1
2 ∆0O1

from which, by Gronwall,

‖∇ψ‖L2
(sc)

(Su,u) . C2 + δ
1
2 ∆0

(S)O1,2.

and thus
(S)O1,2 + ‖Θ‖L2

(sc)
(S) . C2

as desired. We summarize the results in the following

Proposition 6.7. Consider systems of the form (106), (107), (108) verifying the properties discussed
in the Remarks 1-5 below. There exists a constant C = C(O(0),R,R) such that,

‖Θ‖L2
(sc)

(S) + (S)O1,2 . C. (139)

16This situation occur only for the Hodge system div χ̂, see (109), since O0[χ̂] is anomalous.
17In fact χ̂ · χ̂ appears in the Hodge systems for η and η, see formulas (117) and (118).
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6.8. Curvature Estimates. In this subsection we prove proposition 6.6 concerning L2
(sc)(S) esti-

mates for the curvature components β, ρ, σ, β. We also provide estimates for α, α which will be
needed later. Recall the Bianchi identities,

∇4β + 2trχβ = div α− 2ωβ − (2ζ + η)α

∇4ρ+
3

2
trχρ = −div β +

1

2
χ̂ · α− ζ · β − 2η · β,

∇4σ +
3

2
trχσ = −div ∗β +

1

2
χ̂ ·∗ α− ζ ·∗ β − 2η ·∗ β,

∇4β + trχβ = −∇ρ+∗ ∇σ + 2ωβ + 2χ̂ · β − 3(ηρ−∗ ησ)

Thus β, ρ, σ, β verify equations of the form:

∇4Ψ
(s) = ∇Ψ(s+ 1

2
) +

∑
s1+s2=s+1

ψ(s1) ·Ψ(s2)

Among the curvature terms on the right we have to play special attention to multiples of the curvature
term α with signature 2. We write schematically,

∇4Ψg = ∇Ψ + ψ ·Ψ (140)

with Ψg ∈ {β, ρ, σ, β} while Ψ ∈ {α, β, ρ, σ, β}.

Thus,

‖∇4Ψg‖L2
(sc)

(S) . ‖∇Ψ‖L2
(sc)

(S) + ‖α · ψ‖L2
(sc)

(S) + δ1/2‖ψ‖L∞
(sc)
‖Ψg‖L2

(sc)
(S)

Now, as in the estimates for Θ in the previous section the worst case scenario estimate for ‖α·ψ‖L2
(sc)

(S),

for anomalous ψ, has the form

‖ψ · α‖L2
(sc)

(S) . Cδ
1
4

(
‖∇α‖1/2L2

(sc)
(S)
· ‖α‖1/2L2

(sc)
(S)

+ δ
1
4‖α‖L2

(sc)
(S)

)
We deduce,

‖∇4Ψg‖L2
(sc)

(S) . ‖∇Ψ‖L2
(sc)

(S) + δ
1
2 ∆0‖Ψg‖L2

(sc)
(S)

+ Cδ
1
4

(
‖∇α‖1/2L2

(sc)
(S)
· ‖α‖1/2L2

(sc)
(S)

+ δ
1
4‖α‖L2

(sc)
(S)

)
from which,

‖Ψg‖L2
(sc)

(u,u) . ‖Ψg‖L2
(sc)

(u,0) +R1 + δ
1
2 ∆0R0 + CR

1
2
0 [α] · R

1
2
1 [α] + CR0[α]

Thus, since the initial data ‖Ψg‖L2
(sc)

(u,0) is trivial

‖Ψg‖L2
(sc)

(u,u) . R1 + δ
1
2 ∆0R0 + CR

1
2
0 [α]R

1
2
1 [α] + CR0[α]
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or, with a new constant C = C(O(0),R,R),

‖Ψg‖L2
(sc)

(u,u) . C (141)

as desired.

It remains to estimate the L2
(sc)(S) norm of the Gauss curvature

K = −ρ+
1

2
χ̂ · χ̂ − 1

4
trχ · trχ = ρ+

1

2
χ̂ · χ̂ − 1

4
trχ · trχ

0
− 1

4
trχ · t̃rχ

Thus,

‖K‖L2
(sc)

(S) . ‖ρ‖L2
(sc)

(S) + δ1/2‖χ̂‖L4
(sc)

(S) · ‖χ̂ ‖L4
(sc)

(S)

+ ‖trχ‖L2
(sc)

+ δ1/2∆0‖t̃rχ‖L2
(sc)

. C + δ1/2∆0R0

from which the desired estimate follows.

‖K‖L2
(sc)

(S) . C(O(0),R,R)

as desired.

In the next proposition we derive estimates for the remaining curvature components.

Proposition 6.9. There exists a constant C = C(O(0),R,R) such that for δ
1
2 ∆0 sufficiently small

‖α‖L2
(sc)

(S) ≤ Cδ−
1
2 , ‖α‖L2

(sc)
(S) ≤ C

Proof. To prove the estimate for α we use the Bianchi equation for ∇3α, which can be written
schematically in the form

∇3α = trχ
0
· α + ψ · α +∇Ψ + ψ ·Ψ

with Ψ from the set not containing α. We therefore obtain

‖α‖L2
(sc)

(Su,u) . ‖α‖L2
(sc)

(S0,u) + (1 + δ
1
2 ∆0)

∫ u

0

‖α‖L2
(sc)

(Su′,u)
du′

+ R1 + δ
1
2 ∆0‖Ψ‖L2

(sc)
(Hu)

.

In the worst case when Ψ = β, which is anomalous, we have, ‖Ψ‖L2
(sc)

(Hu)
. δ−

1
2R0. Thus, by

Gronwall,

‖α‖L2
(sc)

(Su,u) . ‖α‖L2
(sc)

(S0,u) +R

Similarly, the equation for ∇4α has the form

∇4α = ∇Ψ + ψ ·Ψ,
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where the curvature term in ∇Ψ is not α and Ψ 6= α in the nonlinear term. Therefore, using the
triviality of initial data

‖α‖L2
(sc)

(u,u) . R1 + δ
1
2 ∆0

∫ u

0

(
‖α‖L2

(sc)
(u′,u) + ‖Ψg‖L2

(sc)
(u′,u))du

′

with Ψg ∈ ρ, σ, β. The result follows then easily by Gronwall and the L2
(sc)(H) curvature bounds for

Ψg. �

7. Second angular derivative estimates for the Ricci coefficients

To derive second angular derivative estimates for the Ricci coefficients we differentiate (106), (107)
and (108) with respect to ∇.

7.1. Basic equations. Based on the experience with the first derivative estimates we expect that
the ∇3 equation for ∇Θ is slightly more challenging as it contains a lot more trχ terms. Thus,
differentiating (132) we derive,

∇3∇Θ = trχ
0

(
∇Θ +∇Ψ +∇2ψ) + ψ ·

(
∇Θ +∇Ψ +∇2ψ) +∇ψ ·

(
Θ + Ψ +∇ψ

)
+ trχ

0
ψ · ∇ψ + ψ · ψ · ∇ψ + [∇3,∇]Θ

According to commutation formulae of lemma (3.3) we write symbolically,

[∇3,∇]Θ = trχ · ∇Θ + χ̂ · ∇Θ + Ψ ·Θ + trχ · ψ ·Θ + ψ · ψ ·Θ + ψ · ∇3Θ

= trχ
0
∇Θ + ψ · ∇Θ + Ψ ·Θ + trχ

0
· ψ ·Θ + ψ · ψ ·Θ + ψ · ∇3Θ

Hence,

∇3∇Θ = trχ
0

(
∇Θ +∇Ψ +∇2ψ) + ψ ·

(
∇Θ +∇Ψ +∇2ψ) +∇ψ ·

(
Θ + Ψ +∇ψ

)
+Θ ·Ψ + trχ

0

(
ψ · ∇ψ + ψ ·Θ) + ψ ·

(
ψ · ∇ψ + ψ ·Θ +∇3Θ)

Ignoring the term of the form trχ
0
∇Θ which can be easily eliminated by Gronwall, and observing

that Θ and ∇Θ on the left can be can be expressed in terms of ∇ψ and Ψ, respectively, ∇2ψ and
∇Ψ, we write,

∇3∇Θ = (trχ
0

+ ψ)(∇Ψ +∇2ψ) + trχ
0

(
ψ · ∇ψ + ψ ·Θ) +∇ψ ·

(
Ψ +∇ψ

)
+ Θ ·Ψ + ψ ·

(
ψ · ∇ψ + ψ ·Θ +∇3Θ)

= F1 + F2 + F3 + F4 + F5

(142)

Similarly,

∇4∇Θ = ψ ·
(
∇Ψ +∇2ψ) +∇ψ ·

(
Ψ +∇ψ

)
+ Θ ·Ψ + ψ · ψ · ∇ψ + [∇4,∇]Θ

and

[∇4,∇]Θ = ψ · ∇Θ + Ψ ·Θ + ψ · ψ ·Θ + ψ · ∇4Θ
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so that18

∇4∇Θ = ψ ·
(
∇Ψ +∇2ψ) +∇ψ ·

(
Ψ +∇ψ

)
+ ψ · (ψ · ∇ψ + ψ ·Θ +∇4Θ)

= G1 +G3 +G4 +G5

(143)

Equations (142),(143) will be combined with the differentiated Hodge system for ψ in (133):

D∗Dψ = D∗
(

Θ + Ψ + ψ · ψ + trχ
0
· ψ
)
, (144)

which can be schematically written in the form

∆ψ = Kψ +∇Θ +∇Ψ +∇ψ · ψ + trχ
0
· ∇ψ

7.2. Estimates for ∇Θ, ∇2ψ. We now collect estimates for the terms on the right hand side of the
transport equations (142),(143):

‖F1‖L2
(sc)

(S) . (1 + δ1/2∆0)
(
‖∇2ψ‖L2

(sc)
(S) + ‖∇Ψ‖L2

(sc)
(S)

)
‖F2‖L2

(sc)
(S) . δ1/2∆0(‖Θ‖L2

(sc)
(S) + ‖∇ψ‖L2

(sc)
(S))

‖F3‖L2
(sc)

(S) . δ1/2‖∇ψ‖L4
(sc)

(S) ·
(
‖∇ψ‖L4

(sc)
(S) + ‖Ψ‖L4

(sc)
(S)

)
‖F4‖L2

(sc)
(S) . δ1/2‖Θ‖L4

(sc)
(S) · ‖Ψ‖L4

(sc)
(S)

‖F5‖L2
(sc)

(S) . δ1/2∆0

(
δ

1
2 ∆0‖(∇ψ,Θ)‖L2

(sc)
(S) + ‖∇3Θ‖L2

(sc)
(S)

)
Similarly,

‖G1‖L2
(sc)

(S) . δ1/2∆0

(
‖∇Θ‖L2

(sc)
(S) + ‖∇2ψ‖L2

(sc)
(S) + ‖∇Ψ‖L2

(sc)
(S)

)
‖G3‖L2

(sc)
(S) . δ1/2‖∇ψ‖L4

(sc)
(S) ·

(
‖∇ψ‖L4

(sc)
(S) + ‖Ψ‖L4

(sc)
(S)

)
‖G4‖L2

(sc)
(S) . δ1/2‖Θ‖L4

(sc)
(S) · ‖Ψ‖L4

(sc)
(S)

‖G6‖L2
(sc)

(S) . δ1/2∆0 ·
(
δ

1
2 ∆0 · ‖(∇ψ,Θ)‖L2

(sc)
(S) + ‖∇4Θ‖L2

(sc)
(S)

)
We note that the curvature terms Ψ present in the F terms belong to the admissible set {β, ρ, σ, β, α}
while the curvature terms Ψ appearing in the G terms belong to the set {α, β, ρ, σ, β}. We also recall

that according to the (S)O1,2 estimates and their consequences proved in the previous section

‖∇ψ‖L2(S) + ‖Θ‖L2(S) + ‖∇4Θ‖L2(H) + ‖∇3Θ‖L2(H) ≤ C

18Observe that the structure of
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Using the L4 interpolation estimate from (82) which imply that

‖∇ψ‖L4
(sc)

(S) . ‖∇ψ‖
1
2

L2
(sc)

(S)
‖∇2ψ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖∇ψ‖L2

(sc)
(S) . C‖∇2ψ‖

1
2

L2
(sc)

(S)
+ δ

1
4C,

‖Θ‖L4
(sc)

(S) . ‖Θ‖
1
2

L2
(sc)

(S)
‖∇Θ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖Θ‖L2

(sc)
(S) . C‖∇Θ‖

1
2

L2
(sc)

(S)
+ δ

1
4C,

‖Ψ‖L4
(sc)

(S) . ‖Ψ‖
1
2

L2
(sc)

(S)
‖∇Ψ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖Ψ‖L2

(sc)
(S)

we obtain for δ
1
2 ∆0 sufficiently small

‖∇Θ‖L2
(sc)

(u,u) . ‖∇Θ‖L2
(sc)

(0,u) +

∫ u

0

‖∇3∇Θ‖L2
(sc)

(u′,u)du
′

. ‖∇Θ‖L2
(sc)

(0,u) + C

∫ u

0

(
‖∇2ψ‖L2

(sc)
+ ‖∇Ψ‖L2

(sc)

)
du′

+ δ
1
2C

∫ u

0

(
‖∇2ψ‖

1
2

L2
(sc)

(S)
‖Ψ‖

1
2

L2
(sc)

(S)
‖∇Ψ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖∇2ψ‖

1
2

L2
(sc)

(S)
‖Ψ‖

1
2

L2
(sc)

(S)

)
du′

+ δ
1
2C

∫ u

0

(
‖∇Θ‖

1
2

L2
(sc)

(S)
‖Ψ‖

1
2

L2
(sc)

(S)
‖∇Ψ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖∇Θ‖

1
2

L2
(sc)

(S)
‖Ψ‖L2

(sc)
(S)

)
du′ + δ

1
2C

We kept track of the terms containing ‖Ψ‖L2
(sc)

(S) as they may lead to the potentially anomalous

norm ‖Ψ‖L2
(sc)

(H) in the case of Ψ = β. However, even in that case

‖Ψ‖L2
(sc)

(H) . δ−
1
2R0

By Gronwall, and recalling the definition19 of R1

‖∇Θ‖L2
(sc)

(u,u) . ‖∇Θ‖L2
(sc)

(0,u) + C

∫ u

0

‖∇2ψ‖L2
(sc)

(u′,u)du
′ + CR1. (145)

In view of the estimates for the G terms we similarly obtain

‖∇Θ‖L2
(sc)

(u,u) . ‖∇Θ‖L2
(sc)

(u,0) + C

∫ u

0

‖∇2ψ‖L2
(sc)

(u,u′)du
′ + CR1. (146)

We now couple this with the second derivative estimates for the Hodge system

Dψ = Θ + Ψ + trχ
0
ψ + ψ · ψ.

Using Proposition 4.18 we deduce

‖∇2ψ‖L2
(sc)

(S) . δ
1
2‖K‖L2

(sc)
(S)‖ψ‖L∞(sc)(S) + δ

1
4‖K‖

1
2

L2
(sc)

(S)
‖∇ψ‖L4

(sc)
(S)

+ ‖∇Θ‖L2
(sc)

(S) + ‖∇Ψ‖L2
(sc)

(S) + ‖trχ
0
∇ψ‖L2

(sc)
(S) + ‖ψ · ∇ψ‖L2

(sc)
(S)

19note again that α does not appear among the Ψ’s
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By Proposition 6.6, ‖K‖L2
(sc)

(S) . C with a constant C = C(O(0),R,R). Therefore,

‖∇2ψ‖L2
(sc)

(S) . δ
1
2C∆0 + δ

1
4C

(
‖∇2ψ‖

1
2

L2
(sc)

(S)
‖∇ψ‖

1
2

L2
(sc)

(S)
+ δ

1
4‖∇ψ‖L2

(sc)
(S)

)
+ ‖∇Θ‖L2

(sc)
(S) + ‖∇Ψ‖L2

(sc)
(S) + ‖∇ψ‖L2

(sc)
(S) + δ

1
2C∆0‖∇ψ‖L2

(sc)
(S)

Using Cauchy-Schwarz and the boundedness of the (S)O1,2 norm we then obtain

‖∇2ψ‖L2
(sc)

(S) . C + ‖∇Θ‖L2
(sc)

(S) + ‖∇Ψ‖L2
(sc)

(S). (147)

We note that the curvature terms Ψ involved in the above inequality belong to the set {β, ρ, σ, β}.
In particular,

‖∇Ψ‖L2
(sc)

(H) . R1, ‖∇Ψ‖L2
(sc)

(H) . R1.

Thus, substituting the estimate for ‖∇2ψ‖L2
(sc)

(S) into (145) and (146) and using Gronwall we obtain

‖∇Θ‖L2
(sc)

(u,u) . ‖∇Θ‖L2
(sc)

(0,u) + CR1,

‖∇Θ‖L2
(sc)

(u,u) . ‖∇Θ‖L2
(sc)

(u,0) + CR1.

This, together with (147), in turn, implies

Proposition 7.3. There exists a constant C = C(O(0),R,R) such that all second derivatives ∇2ψ

of the Ricci coefficients ψ ∈ {trχ, χ̂, η, η, ω, ω, χ̂ , t̃rχ} and the first derivatives of the quantities Θ ∈
{∇trχ, div η + ρ, div η + ρ, ∇ω + ∗∇ω† − 1

2
β, −∇ω + ∗∇ω† − 1

2
β, ∇trχ} verify,

‖∇Θ‖L2
(sc)

(u,u) + ‖∇2ψ‖L2
(sc)

(Hu) + ‖∇2ψ‖L2
(sc)

(Hu) . C.

7.4. (S)O1,4 estimates. As a corollary of proposition 7.3, together with corollary 4.12 we also have,

Corollary 7.5. There exists a constant C = C(O(0),R,R) such that, for δ1/2∆0 sufficiently small,

(S)O1,4 . C. (148)

We end this section by deriving a slightly more refined estimate on the second angular derivatives of
η. These estimates are needed in the application to the problem of formation of a trapped surface.
We review the system of equations for η, written schematically it has the form

curl η = σ + ψ · ψ, div η = −µ− ρ,
∇4µ = ψ · (∇ψ + Θ + Ψ + ψ · ψ).

We note the absence of trχ
0

terms in this system. Applying D∗ to the Hodge system for η and
commuting the equation for µ with ∇ we obtain

∆η = ∇σ +∇ρ+∇µ+∇ψ · ψ +Kη,

∇4∇µ = ∇ψ · (∇ψ + Θ + Ψ + ψ · ψ) + ψ · (∇2ψ +∇Θ +∇Ψ +∇ψ · ψ)
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The absence of trχ
0

terms allows us to estimate ∇µ in terms of its (trivial) data on H0 and an error

term of size δ
1
2 . To show that we bound

‖∇ψ · (∇ψ + Θ + Ψ + ψ · ψ)‖L2
(sc)

(Hu)

. δ
1
2‖∇ψ‖L4

(sc)
(S)

(
‖∇ψ‖L4

(sc)
(S) + ‖Θ‖L4

(sc)
(S) + ‖Ψ‖L4

(sc)
(S) + δ

1
2‖ψ‖L∞

(sc)
‖∇ψ‖L4

(sc)
(S)

)
+ δ

1
2‖ψ‖L∞

(sc)

(
‖∇2ψ‖L2

(sc)
(Hu) + ‖∇Θ‖L2

(sc)
(Hu) + ‖∇Ψ‖L2

(sc)
(Hu) + δ

1
2‖ψ‖L∞

(sc)
‖∇ψ‖L2

(sc)
(Hu)

)
. δ

1
2C

In the final estimate the only dangerous term is ‖Ψ‖L4
(sc)

(S), which may be δ−
1
4 anomalous in the case

of Ψ = α. It is not difficult to check however that Ψ = α does not appear in this system but even if
it did the size of the error term would have been δ

1
4 instead of δ

1
2 . As a result of this estimate and

the trivial data for ∇µ we obtain

‖∇µ‖L2
(sc)

(S) . δ
1
2C.

To estimate η we remember that K = ρ+ trχ
0
· ψg + ψ · ψ. Therefore,

‖∆η‖L2
(sc)

(Hu) . ‖∇ρ‖L2(sc)(Hu) + ‖∇σ‖L2
(sc)

(Hu) + ‖∇µ‖L2
(sc)

(Hu)

+ δ
1
2‖ψ‖L∞

(sc)

(
‖∇ψ‖L2

(sc)
(Hu) + ‖ρ‖L2

(sc)
(Hu) + ‖ψg‖L2

(sc)
(Hu) + δ

1
2‖ψ‖L∞

(sc)
· ‖ψ‖L2

(sc)
(Hu)

)
. ‖∇ρ‖L2

(sc)
(Hu) + ‖∇σ‖L2

(sc)
(Hu) + δ

1
2C.

Using the Böchner identity we obtain

‖∇2η‖L2
(sc)

(Hu) . ‖∆η‖L2(sc)(Hu) + δ
1
2‖K‖L2

(sc)
(Hu)‖ψ‖L∞(sc) + δ

1
4‖K‖

1
2

L2
(sc)

(Hu)
‖∇ψ‖L4

(sc)
(S)

. ‖∇ρ‖L2
(sc)

(Hu) + ‖∇σ‖L2
(sc)

(Hu) + δ
1
4C.

The same estimates also hold along the Hu hypersurfaces.

We summarize this in a proposition.

Proposition 7.6. The Ricci coefficient η verifies the estimate

‖∇2η‖L2
(sc)

(Hu) . ‖∇ρ‖L2(sc)(Hu) + ‖∇σ‖L2
(sc)

(Hu) + δ
1
4C,

‖∇2η‖L2
(sc)

(Hu)
. ‖∇ρ‖L2

(sc)
(Hu)

+ ‖∇σ‖L2
(sc)

(Hu)
+ δ

1
4C.

8. Remaining first and second derivative estimates

In the previous sections we have derived estimates on the first and second angular derivatives of the
Ricci coefficients. In this section examine their ∇3, ∇4, ∇∇4 and ∇∇3 derivatives.
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8.1. Direct ∇3,∇4 estimates. These are derived directly from the null structure equations (see
section 3.1).

Proposition 8.2. There exists a constant C = C(O(0),R,R) such that for δ
1
2 ∆0 sufficiently small

and any S = Su,u

‖∇4trχ‖L2
(sc)

(S) + ‖∇4η‖L2
(sc)

(S) + ‖∇4ω‖L2
(sc)

(S) + ‖∇4trχ‖L2
(sc)

(S) ≤ C,

‖∇3t̃rχ‖L2
(sc)

(S) + ‖∇3η‖L2
(sc)

(S) + ‖∇3ω‖L2
(sc)

(S) + ‖∇3trχ‖L2
(sc)

(S) ≤ C,

‖∇4χ̂‖L2
(sc)

(S) + ‖∇4χ̂ ‖L2
(sc)

(S) + ‖∇3χ̂‖L2
(sc)

(S) + ‖∇3χ̂ ‖L2
(sc)

(S) ≤ C δ−
1
2 .

Remark. Note the anomalous estimates of the last line. The anomaly of ∇4χ̂ is due to the curvature
term α in the second equation in (49). The anomaly of ∇3χ̂ is due to the term trχ · χ̂ in the fourth
equation in (49) . The anomalies for ∇3χ̂ and ∇4χ̂ are explained by the presence of trχχ̂ in both
equations of (50).

Proof. The claimed estimates follow directly from all the estimates derived so far. We need the full
set of ‖Ψ‖L2(S) estimates for all null curvature components Ψ which were derived in propositions 6.6

and 6.9. We also need to make use of the (S)O0,2 estimates of proposition 5.8. As an example we
prove the estimate for ∇4χ̂ in more detail. We start with ∇4χ̂ = −trχχ̂− 2ωχ̂− α which we write
in the form,

∇4χ̂ = ψg · χ̂+ α

As a result,

‖∇4χ̂‖L2
(sc)

(S) . ‖ψg · χ̂‖L2
(sc)

(S) + ‖α‖L2
(sc)

(S)

. δ1/2‖ψg‖L4
(sc)

(S) · ‖χ̂‖L4
(sc)

+ ‖α‖L2
(sc)

(S)

. δ1/4 (S)O2
0,4 + Cδ−1/2 . Cδ−1/2

as desired. Similarly we write,

∇3χ̂ = trχ
0
· ψb + ψg · ψb +∇ψ + Ψg,

with ψg, Ψg non- anomalous and ψb anomalous. Hence,

‖∇3χ̂‖L2
(sc)

(S) . ‖ψb‖L2
(sc)

(S) + ‖ψg‖L4
(sc)

(S) · ‖ψ‖L4
(sc)

(S) + ‖∇ψ‖L2
(sc)

(S) + ‖Ψg‖L2
(sc)

(S)

. δ−1/2C + δ−1/4C2 + C

More generally, all of our null structure equations have the form

∇4ψ = trχ
0
· ψ + ψ · ψ +∇ψ + Ψ,

∇3ψ = trχ
0
· ψ + ψ · ψ +∇ψ + Ψ,

and one can easily see that the only anomalies occur for ∇3,∇4 of χ, χ̂ . �
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8.3. Estimates for ∇3η,∇4η,∇3ω,∇4ω. The above proposition does not address the fate of∇3η,∇4η,∇3ω
and ∇4ω derivatives which do not appear in the null structure equations. These can be estimated
by commuting the valid transport equations for these quantities with the desired derivative.

Proposition 8.4. There exists a constant C = C(O(0),R,R) such that for δ
1
2 ∆0 sufficiently small

‖∇4η‖L2
(sc)

(S) + ‖∇4ω‖L2
(sc)

(S) + ‖∇3η‖L2
(sc)

(S) + ‖∇3ω‖L2
(sc)

(S) ≤ C.

Proof. As all the arguments are similar we will only derive the estimate for ∇4η. Commuting the
transport equation

∇3η = −1

2
trχ(η − η)− χ̂ · (η − η) + β

with ∇4 (according to Lemma 3.3) we obtain

∇3(∇4η) = −1

2
∇4trχ(η − η)− 1

2
trχ∇4(η − η)

− ∇4χ · (η − η)− χ · ∇4(η − η) +∇4β

− 2(η − η) · ∇η + 2ω∇4η − 2ω∇3η − 2(ηaηb − ηbηa− ∈ab σ)η
b

which we write symbolically,

∇3(∇4η) = trχ
0
· (∇4ψg +∇4η + ψ · ψg) + ψ · (∇4ψ +∇4η)

+ ψ · (∇ψ + Ψg + ψ · ψg) +∇4β

Remark. In the above expression, ∇4ψ denotes quantities already controlled according to the
previous proposition and, among them, ∇4ψg denote those which are not anomalous. Also Ψg is
a curvature component different from α. Furthermore we can eliminate ∇4β according to the null
Bianchi equations

∇4β + trχβ = −∇ρ+∗ ∇σ + 2ωβ + 2χ̂ · β − 3(ηρ−∗ ησ)

Thus,

∇3(∇4η) = trχ
0
· (∇4ψg +∇4η + ψ · ψg) + ψ · (∇4ψ +∇4η)

+ ψ · (∇ψ + Ψg + ψ · ψg) +∇Ψg.

Therefore,

‖∇3(∇4η)‖L2
(sc)

(S) . (1 + δ1/2∆0)‖∇4η‖L2
(sc)

(S) + ‖∇4ψg‖L2
(sc)

(S) + δ1/2∆0|∇4ψ‖L2
(sc)

(S)

+ ‖ψ‖L∞
(sc)

(S)

(
‖ψg‖L2

(sc)
(S) + ‖∇ψ‖L2

(sc)
(S) + ‖Ψg‖L2

(sc)
(S)

)
+ ‖∇Ψg‖L2

(sc)
(S)

. (1 + δ1/2∆0)‖∇4η‖L2
(sc)

(S) + ‖∇Ψg‖L2
(sc)

(S) + C
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Therefore,

‖∇4η‖L2
(sc)

(u,u) . ‖∇4η‖L2
(sc)

(S(0,u) +

∫ u

0

‖∇3∇4η‖L2
(sc)

(u′,u)du
′

. ‖∇4η‖L2
(sc)

(0,u) + (1 + δ
1
2 ∆0)

∫ u

0

‖∇4η‖L2
(sc)

(u′,u)du
′

+

∫ u

0

‖∇Ψg‖L(sc)(u′,u)du
′ + C

. O(0) + (1 + δ
1
2 ∆0)

∫ u

0

‖∇4η‖L2
(sc)

(u′,u)du
′ +R1 + C

Thus by Gronwall,

‖∇4η‖L2
(sc)

(u,u) . O(0) + C.

�

8.5. Direct angular derivative estimates. Here we derive angular derivative estimates for all the
quantities which appear in proposition 8.2. We shall first prove the following:

Lemma 8.6. If δ1/2∆0 is small we have with a constant C = C(O(0),R,R), for all Ricci coefficients
ψ,

‖[∇4,∇]ψ‖L2
(sc)

(S) . C

‖[∇4,∇]ψ‖L2
(sc)

(S) . C

As a corollary we also have,

‖[∇4,∇]ψ‖L2
(sc)

(H) + ‖[∇4,∇]ψ‖L2
(sc)

(H) . C,

‖[∇3,∇]ψ‖L2
(sc)

(H) + ‖[∇3,∇]ψ‖L2
(sc)

(H) . C

Proof. We write,

[∇4,∇]ψ = ψ · ∇ψ + β · ψ + ψg∇4ψ,

[∇3,∇]ψ = trχ
0
· ∇ψ + ψ · ∇ψ + β · ψ + ψg∇3ψ,

Hence, in view of the previous estimates (S)O1,2 . C, ‖β‖L2
(sc)

(S) . C and the possibly anomalous

estimate ‖∇4ψ‖L2
(sc)

(S) . Cδ−1/2, we derive,

‖[∇4,∇]ψ‖L2
(sc)

(S) . δ
1
2 ∆0

(
‖∇ψ‖L2

(sc)
(S) + ‖β‖L2

(sc)
(S) + ‖∇4ψ‖L2

(sc)
(S)

)
. C
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Similarly,

‖[∇3,∇]ψ‖L2
(sc)

(S) . (1 + δ1/2∆0)‖∇ψ‖L2
(sc)

(S)

+ δ
1
2 ∆0

(
‖β‖L2

(sc)
(S) + ‖∇3ψ‖L2

(sc)
(S)

)
. C.

from which the estimates of the lemma quickly follow by integration. �

Proposition 8.7. There exists a constant C = C(O(0), R, R) such that for δ
1
2 ∆0 sufficiently small

‖∇∇4χ‖L2
(sc)

(H) + ‖∇∇4η‖L2
(sc)

(H) + ‖∇∇4ω‖L2
(sc)

(H) + ‖∇∇4χ‖L2
(sc)

(H) ≤ C,

‖∇∇4trχ‖L2
(sc)

(H) + ‖∇∇4η‖L2
(sc)

(H) + ‖∇∇4ω‖L2
(sc)

(H) + ‖∇∇4χ‖L2
(sc)

(H) ≤ C,

‖∇∇3χ‖L2
(sc)

(H) + ‖∇∇3η‖L2
(sc)

(H) + ‖∇∇3ω‖L2
(sc)

(H) + ‖∇∇3χ‖L2
(sc)

(H) ≤ C,

‖∇∇3t̃rχ‖L2
(sc)

(H) + ‖∇∇3η‖L2
(sc)

(H) + ‖∇∇3ω‖L2
(sc)

(H) + ‖∇∇3χ‖L2
(sc)

(H) ≤ C

Remark 8.8. Note the absence of anomalies. This is analogous to the situation with (S)O1,2 estimates:
additional ∇ derivatives eliminate the anomalies due α and Ricci coefficients χ̂, χ̂ .

Remark 8.9. The quantities ∇∇4χ̂ and ∇∇3χ̂ are controlled only along H and H respectively. This
is due to the absence of the corresponding estimates for ∇α and ∇α along H and H respectively.

Remark 8.10. As a consequence of the Lemma above the same estimates hold true if we reverse the
order of differentiation.

Proof. Consider the ∇4 transport equations verified by ψ ∈ {trχ, χ̂, ω, η, t̃rχ, χ̂ }
∇4ψ = trχ

0
· ψ + ψ · ψ +∇ψ + Ψ4,

with curvature components Ψ4 ∈ {α, β, ρ, σ}. Clearly,

‖∇∇4ψ‖L2
(sc)

(H) .
(
‖∇2ψ‖L2

(sc)
(H) + ‖∇Ψ4‖L2

(sc)
(H)

)
+ (1 + δ

1
2 )‖∇ψ‖L2

(sc)
(H)

. C.

Also, along H,

‖∇∇4ψ‖L2
(sc)

(H) .
(
‖∇2ψ‖L2

(sc)
(H) + ‖∇Ψ4‖L2

(sc)
(H)

)
+ (1 + δ

1
2 )‖∇ψ‖|L2

(sc)
(H)

. C

provided that Ψ4 6= α, (i.e. the original ψ on the left is not χ̂).

On the other hand the ∇3 transport equations verified by ψ ∈ {trχ, χ̂, η, t̃rχ, χ̂ , ω} are of the form,

∇3ψ = trχ
0
· ψ + ψ · ψ +∇ψ + Ψ3,

with the curvature components Ψ3 ∈ {ρ, σ, β, α}. The corresponding estimates follow precisely in
the same manner. �
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8.11. Estimates for ∇∇3η,∇∇4η,∇∇3ω, ∇∇4ω. In this subsection we prove the following:

Proposition 8.12. There exists a constant C = C(O(0),R,R) such that

‖∇∇4η‖L2
(sc)

(H) + ‖∇∇3η‖L2
(sc)

(H) + ‖∇∇4η‖L2
(sc)

(H) + ‖∇∇3η‖L2
(sc)

(H) ≤ C,

Remark 8.13. Together with the previous proposition, this proposition allows us to control all angu-
lar derivatives of all ∇3,∇4 derivatives of all the Ricci coefficients trχ, χ̂, ω, η, η, t̃rχ, χ̂ , ω (in some

L2
(sc)(H) or L2

(sc)(H) or both) except for ∇∇4ω and ∇∇3ω.

Proof. To control ∇∇3η,∇∇4η we make use of lemma 6.3. Recall that reduced mass aspect functions
µ and µ verify equations of the form,

∇4µ = ψ ·
(
∇trχ+∇ψ + Ψ4

)
+ ψ · ψ · ψg

∇3µ = trχ
0
·
(
∇trχ+∇ψ

)
+ ψ ·

(
∇trχ+∇ψ + Ψ3

)
(149)

+ trχ
0
· ψ · ψg + ψ · ψ · ψg

which are to be coupled with the Hodge systems of the form

D(η, η) = (µ, µ) + ρ+ σ + ψ · ψ. (150)

Here Ψ4 = {αβ, ρ, σ} and Ψ3 = {α, β, ρ, σ}.

Remark. We note absence of the Ricci coefficients ω, ω among the ψ variables in the above equations,
in particular among the terms of the form ∇ψ. This fact is very important in view of the lack
of estimates for ∇∇4ω and ∇∇3ω. Equally important is the absence of the terms trχ

0
· ψ with

ψ = {χ̂, χ̂ } in equation (149). Such terms would lead to an unmanageable double anomaly.

To estimate ∇∇4η we need to commute the above equations for η, µ with ∇4. Making use of lemma
3.3 we derive,

∇3(∇4µ) = ∇4trχ0
·
(
∇trχ+∇ψ

)
+ trχ

0
·
(
∇4∇trχ+∇4∇ψ

)
+ ψ · ∇µ

+ ∇4ψ ·
(
∇trχ+∇ψ + Ψ3

)
+ ψ ·

(
∇4∇trχ+∇4∇ψ +∇4Ψ3 +∇4η

)
+ ∇4trχ0

· ψ · ψg + trχ
0
· ∇4ψ · ψ +∇4ψ · ψ · ψ + ω∇4µ+ ω∇3µ

D(∇4η) = ∇4µ+∇4(ρ, σ) + ψ · (∇4ψ +∇η + Ψ4)

Proceeding as many times before, we write,

‖∇4µ‖L2
(sc)

(u,u) . ‖∇4µ‖L2
(sc)

(0,u) +

∫ u

0

‖∇3∇4µ‖L2
(sc)

(u′,u)
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and (with H(u, u) = H0,u
u )∫ u

0

‖∇3∇4µ‖L2
(sc)

(u′, u)du
′ .

∫ u

0

‖∇4∇ψ‖L2
(sc)

(u′, u)du
′ +

∫ u

0

‖ω∇4µ‖L2
(sc)

(u′,u))du
′

+ ‖∇4ψ ·Ψ3‖L2
(sc)

(H(u,u)) + ‖∇4ψ · ∇ψ‖L2
(sc)

(H(u,u))

+ ‖ψ · ∇4ψ‖L2
(sc)

(H(u,u)) + ‖ψ · ∇4Ψ3‖L2
(sc)

(H)(u,u)

+ ‖ψ · ∇µ‖L2
(sc)

(H(u,u)) + ‖ω∇3µ‖L2
(sc)

(H(u,u))....

We have kept on the right only the most problematic terms. We now write,

‖∇4ψ ·Ψ3‖L2
(sc)

(H) . δ1/2‖∇4ψ‖L4
(sc)

(H) · ‖Ψ3‖L4
(sc)

(H)

Using the interpolation estimates of corollary 4.12,

‖∇4ψ‖L4
(sc)

(H) . ‖∇∇4ψ‖
1
2

L2
(sc)

(H)
‖∇4ψ‖

1
2

L4
(sc)

(H)
+ δ

1
4‖∇4ψ‖L2

(sc)
(H)

‖Ψ3‖L4
(sc)

(H) . ‖∇Ψ3‖
1
2

L2
(sc)

(H)
‖Ψ3‖

1
2

L2
(sc)

(H)
+ δ

1
4‖Ψ3‖L2

(sc)
(H)

Taking into account the possible anomaly of ‖∇4ψ‖L2
(sc)

(S) (recalling also that ψ here differs from

ω, ω !) we deduce,

‖∇4ψ‖L4
(sc)

(H) . Cδ−1/4 ‖Ψ3‖L4
(sc)

(H) . C

Therefore,

‖∇4ψ ·Ψ3‖L2
(sc)

(H) . Cδ1/4.

Similarly, taking into account the estimates for (S)O1,4 of corollary 7.5,

‖∇4ψ · ∇ψ‖L2
(sc)

(H) . δ1/2‖∇4ψ‖L4
(sc)

(H) · ‖∇ψ‖L4
(sc)

(H) . Cδ1/4

To estimate ‖ψ∇4Ψ3‖L2
(sc)

(H) we write, using the Bianchi equations,

∇4Ψ3 = ∇Ψg + ψ ·Ψ + ω ·Ψ,

where ∇Ψg ∈ {∇β,∇ρ,∇σ,∇β}. Recalling the estimate ‖Ψ‖L2
(sc)

(H) . Cδ−1/2 encountered before

and ‖∇Ψg‖L2
(sc)

(H) . R,

‖ψ · ∇4Ψ3‖L2
(sc)

(H) . δ
1
2‖ψ‖L∞

(sc)
(H)

(
‖∇Ψg‖L2

(sc)
(H) + ‖Ψ‖L2

(sc)
(H)

)
. C

The term ‖∇4ψ · ψ‖L2
(sc)

(H) may contain a double anomaly. We estimate it as follows:

‖∇4ψ · ψ‖L2
(sc)

(H) . δ1/2‖ψ‖L∞
(sc)
‖∇4ψ‖L2

(sc)
(H) . C
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All other terms in L2
(sc)(H) can be estimated in the same manner to derive,

‖∇4µ‖L2
(sc)

(u,u) . ‖∇4µ‖L2
(sc)

(0,u) +

∫ u

0

‖∇4µ‖L2
(sc)

(u′,u)du
′

+

∫ u

0

‖∇4∇ψ‖L2
(sc)

(u′,u)du
′ + C

or, by Gronwall,

‖∇4µ‖L2
(sc)

(u,u) . ‖∇4µ‖L2
(sc)

(0,u) +

∫ u

0

‖∇4∇ψ‖L2
(sc)

(u′,u)du
′ + C

Now, ∫ u

0

‖∇4∇ψ‖L2
(sc)

(u′,u)du
′ .
∫ u

0

‖∇4∇η‖L2
(sc)

(u′,u)du
′ + ‖∇4∇ψg‖L2

(sc)
(H(u,u))

where ψg ∈ {trχ, χ̂, η, χ̂ , t̃rχ}. Thus, in view of the estimates of proposition 8.7 and commutator
lemma 8.5, ∫ u

0

‖∇4∇ψ‖L2
(sc)

(u′,u)du
′ .
∫ u

0

‖∇∇4η‖L2
(sc)

(u′,u)du
′ + C

and therefore,

‖∇4µ‖L2
(sc)

(u,u) . ‖∇4µ‖L2
(sc)

(0,u) +

∫ u

0

‖∇∇4η‖L2
(sc)

(u′,u)du
′ + C (151)

Using the elliptic estimates of proposition 4.17 applied to the Hodge system for ∇4ψ we derive,

‖∇∇4η‖L2
(sc)

(S) . ‖∇4µ‖L2
(sc)

(S) + ‖∇4(ρ, σ)‖L2
(sc)

(S)

+ δ
1
2 ∆0

(
‖∇4ψ‖L2

(sc)
(S) + ‖∇ψ‖L2

(sc)
(S) + ‖Ψ4‖L2

(sc)
(S)

)
Now,

∇4(ρ, σ) = ∇β + ψ ·Ψ4 + ω ·Ψ4,

with Ψ4 ∈ {α, β, ρ, σ}, Now,

‖∇4(ρ, σ)‖L2
(sc)

(S) . ‖∇β‖L2
(sc)

(S) + δ
1
2 ∆0‖Ψ4‖L2

(sc)
(S),

In the particular case when Ψ4 = α, (recall that α component is not allowed in the definition of the
curvature norms R) we recall (see proposition 6.9) the estimate ‖α‖L2

(sc)
(S) . δ−1/2C. Therefore, in

all cases,

‖Ψ‖L2
(sc)

(S) . Cδ−1/2

and consequently,

‖∇4(ρ, σ)‖L2
(sc)

(S) . ‖∇β‖L2
(sc)

(S) + C
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with C = C(O(0),R, R). Therefore,

‖∇∇4η‖L2
(sc)

(S) . ‖∇4µ‖L2
(sc)

(S) + ‖∇β‖L2
(sc)

(S) + C (152)

Integrating,∫ u

0

‖∇∇4η‖L2
(sc)

(u′,u)du
′ .

∫ u

0

‖∇4µ‖L2
(sc)

(u′,u)du
′ +

∫ u

0

‖∇β‖L2
(sc)

(u′,u)du
′ + C

.
∫ u

0

‖∇4µ‖L2
(sc)

(u′,u)du
′ +R+ C.

i.e., ∫ u

0

‖∇∇4η‖L2
(sc)

(u′,u)du
′ .
∫ u

0

‖∇4µ‖L2
(sc)

(u′,u)du
′ + C. (153)

Therefore, combining with (151) and applying Gronwall again, we deduce,

‖∇4µ‖L2
(sc)

(u,u) . ‖∇4µ‖L2
(sc)

(0,u) + C

It is easy to check on the initial hypersurface H0,

‖∇4µ‖L2
(sc)

(0,u) . O(0).

On the other hand, returning to (152), we deduce

‖∇∇4η‖L2
(sc)

(S) . C + ‖∇β‖L2
(sc)

(S).

Hence,

‖∇∇4η‖L2
(sc)

(H) + ‖∇∇4η‖L2
(sc)

(H) . C

as desired.

The remaining estimate

‖∇∇3η‖L2
(sc)

(H) + ‖∇∇3η‖L2
(sc)

(H)

is proved in exactly the same manner. �

9. O∞ estimates and proof of Theorem A

In this section we combine the estimates obtained so far to derive L∞ estimates for all our Ricci
coefficients and thus verify the bootstrap assumption (37). This would also allow us to conclude the
proof of theorem A 2.13. To achieve this we combine the (S)O0,4,O1,2,

(H)O, (H)O and the remaining
second derivative estimates with the interpolation results of Proposition 4.15. We will only require
results before and culminating with Proposition 8.7. In particular it does need the estimates of
Proposition 8.12.



TRAPPED SURFACES 63

For the Ricci coefficients ψ ∈ {trχ, χ̂, η, ω} we make use of the interpolation estimate of Proposition
4.15 together with (S)O1,2 + (H)O . C and ‖∇4∇ψ‖L2

(sc)
(H) . C of Proposition 8.7 in the previous

section, to derive

‖∇ψ‖L4
(sc)

(S) .
(
δ1/2‖∇ψ‖L2

(sc)
(H) + ‖∇2ψ‖L2

(sc)
(H)

)1/2
·
(
δ1/2‖∇ψ‖L2

(sc)
(H) + ‖∇4∇ψ‖L2

(sc)
(H)

)1/2
. C

Similarly, for ψ ∈ {t̃rχ, χ̂ , η, ω}, using the estimates (S)O1,2+
(H)O . C and estimate ‖∇3∇ψ‖L2

(sc)
(H) .

C of Proposition 8.7 in the previous section

‖∇ψ‖L4
(sc)

(S) .
(
δ1/2‖∇ψ‖L2

(sc)
(H) + ‖∇2ψ‖L2

(sc)
(H)

)1/2
·
(
δ1/2‖∇ψ‖L2

(sc)
(H) + ‖∇3∇ψ‖L2

(sc)
(H)

)1/2
. C

Next, for the non-anomalous coefficients ψ ∈ {trχ, η, η, ω, ω, t̃rχ} we use the interpolation inequality

‖ψ‖L∞
(sc)

(S) . ‖∇ψ‖
1
2

L4
(sc)

(S)
‖ψ‖

1
2

L4
(sc)

(S)
+ δ

1
4‖ψ‖L4

(sc)
(S),

which leads to the desired estimate,

‖ψ‖L∞
(sc)

(S) . C.

In the anomalous case of ψ = {χ̂, χ̂ } we use the interpolation inequality (85)

‖ψ‖L∞
(sc)

(S) . sup
δS

(
‖∇ψ‖L4

(sc)
(S) + ‖ψ‖L4

(sc)
(δS)

)
,

which gives

‖ψ‖L∞
(sc)

(S) . C.

as desired. We deduce,

Proposition 9.1. There exists a constant C = C(O(0)),R, R) such that, for δ1/2∆0 sufficiently
small we have,

(S)O0,∞ . C. (154)

In particular, choosing ∆0 ≈ C, and δ > 0 sufficiently small, depending only on C we dispense of
the bootstrap assumption and derive the conclusion of Theorem A.
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10. L4
(sc)(S) estimates for curvature and the first derivatives of the Ricci

coefficients

In this section we establish L4
(sc)(S) estimates for all first derivatives of the Ricci coefficients ψ. In

the previous section we have already established such estimates for ∇ψ. The Ricci coefficients satisfy
the structure equations

∇4ψ = trχ
0
· ψ + ψ · ψ +∇ψ + Ψ,

∇3ψ = trχ
0
· ψ + ψ · ψ +∇ψ + Ψ.

We note that the double anomalous terms trχ
0
· χ̂ and trχ

0
· χ̂ appear only in the ∇4χ̂ , ∇3χ̂ and

∇3χ̂ equations. Similarly the anomalous α curvature component only appears in the ∇4χ̂ equation.

For the remaining equations we estimate

‖∇4ψ‖L4
(sc)

(S) . ‖ψ‖L4
(sc)

(S) + δ
1
2‖ψ‖L∞

(sc)
(S)‖ψ‖L4

(sc)
(S) + ‖∇ψ‖L4

(sc)
(S) + ‖Ψ‖L4

(sc)
(S)

. O0,4 + δ
1
4O0,∞O0,4 +O1,4 + ‖Ψ‖L4

(sc)
(S),

where the δ
1
4 takes into account a potential anomaly of the ‖ψ‖L4

(sc)
(S) term. To estimate ‖Ψ‖L4

(sc)
(S)

we use the interpolation estimates

‖Ψ‖L4
(sc)

(S) .
(
δ

1
2‖Ψ‖L2

(sc)
(H) + ‖∇Ψ‖L2

(sc)
(H)

) 1
2
(
δ

1
2‖Ψ‖L2

(sc)
(H) + ‖∇4Ψ‖L2

(sc)
(H)

) 1
2
,

‖Ψ‖L4
(sc)

(S) .
(
δ

1
2‖Ψ‖L2

(sc)
(H) + ‖∇Ψ‖L2

(sc)
(H)

) 1
2
(
δ

1
2‖Ψ‖L2

(sc)
(H) + ‖∇3Ψ‖L2

(sc)
(H)

) 1
2

Each of the null curvature components Ψ satisfies either ∇4 or ∇3 equation. These equations can be
written schematically in the form

∇4Ψ
(s) = ∇Ψ(s+ 1

2
) +

∑
s1+s2=s+1

ψ(s1) ·Ψ(s2),

∇3Ψ
(s) = ∇Ψ(s− 1

2
) + trχ

0
·Ψs +

∑
s1+s2=s

ψ(s1) ·Ψ(s2)

Let us consider the ∇3 equation since the presence of the trχ
0

makes it more difficult to handle. We
estimate

‖∇3Ψ
(s)‖L2

(sc)
(H) . ‖∇Ψ(s− 1

2
)‖L2

(sc)
(H) + ‖Ψs‖L2

(sc)
(H) + δ

1
2

∑
s1+s2=s

‖ψ(s1)‖L∞
(sc)
‖Ψ(s2)‖L2

(sc)
(H)

Note that the terms ‖Ψs‖L2
(sc)

(H) and ‖Ψs2‖L2
(sc)

(H) are anomalous only for s = s2 = 2, that is in the

case of the estimate for α. We summarize these estimates in the following

Lemma 10.1. For a constant C = C(I,O,R,R) and Ψ ∈ {β, ρ, σ, β, α}

δ
1
4‖α‖L4

(sc)
(S) + ‖Ψ‖L4

(sc)
(S) ≤ C
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Combining this result with ∇4ψ and ∇3ψ equations, as described above, gives us the

‖∇4ψ‖L4
(sc)

(S) + ‖∇3ψ‖L4
(sc)

(S) ≤ C

estimates for those derivatives, with the exception of ψ = χ̂, χ̂ . On the other hand, the anomalies
present in their respective equations lead to the anomalous estimates

‖∇4χ̂‖L4
(sc)

(S) + ‖∇3χ̂‖L4
(sc)

(S) + ‖∇4χ̂ ‖L4
(sc)

(S) + ‖∇3χ̂ ‖L4
(sc)

(S) ≤ Cδ−
1
4

It remains to estimate ∇3η,∇4η,∇3ω,∇4ω which do not satisfy direct equations. We argue as in
sections 8.3 and 8.11. Using the interpolation estimates stated in the beginning of this section and
the bounds

‖∇∇3η‖L2
(sc)

(H) + ‖∇4∇3η‖L2
(sc)

(H) ≤ C,

‖∇∇4η‖L2
(sc)

(H) + ‖∇3∇4η‖L2
(sc)

(H) ≤ C

of sections 8.3 and 8.11, we obtain the desired L4
(sc)(S) estimates for ∇3η and ∇4η. However, we can

not obtain the corresponding estimates for ∇4ω and ∇3ω. We summarize the second main result of
this section.

Lemma 10.2.

‖∇ψ‖L4
(sc)

(S) + ‖∇3,4η‖L4
(sc)

(S) + ‖∇3,4η‖L4
(sc)

(S) + ‖∇4ω‖L4
(sc)

(S) + ‖∇3ω‖L4
(sc)

(S) ≤ C,

‖∇4χ̂‖L4
(sc)

(S) + ‖∇3χ̂‖L4
(sc)

(S) + ‖∇4χ̂ ‖L4
(sc)

(S) + ‖∇3χ̂ ‖L4
(sc)

(S) ≤ Cδ−
1
4

11. Renormalized estimates

11.1. Trace theorems. The results of this section rely on sharp trace theorems which we discuss
below. We introduce the following new norms for an S tangent tensor φ with scale sc(φ) along

H = H
(0,u)
u , relative to the transported coordinates (u, θ) of proposition 4.6:

‖φ‖Tr(sc)(H) = δ−sc(φ)−
1
2

(
sup

θ∈S(u,0)

∫ u

0

|φ(u, u′, θ)|2du′
)1/2

Also, along H = H(0,u)
u relative to the transported coordinates (u, θ) of proposition 4.6

‖φ‖Tr(sc)(H) = δ−sc(φ)
(

sup
θ∈S(u,0)

∫ u

0

|φ(u′, u, θ)|2du′
)1/2



66 SERGIU KLAINERMAN AND IGOR RODNIANSKI

Proposition 11.2. For any horizontal tensor φ along H = H
(0,u)
u ,

‖∇4φ‖Tr (sc)(H) .
(
‖∇2

4φ‖L2(sc)(H) + ‖φ‖L2
(sc)

(H) + δ
1
2C(‖φ‖L∞

(sc)
+ ‖∇4φ‖L4

(sc)
(S))
) 1

2

×
(
‖∇2φ‖L2

(sc)
(H) + δ

1
2C(‖φ‖L∞

(sc)
+ ‖∇φ‖L4

(sc)
(S))
) 1

2

+ ‖∇4∇φ‖L2
(sc)

(H) + δ
1
2C(‖φ‖L∞

(sc)
+ ‖∇φ‖L4

(sc)
(S)) + ‖∇φ‖L2

(sc)
(H)

(155)

where C is a constant which depends on O(0),R,R.

Also, for any horizontal tensor φ along H = H
(u,0)
u , and a similar constant C,

‖∇3φ‖Tr (sc)(H) .
(
‖∇2

3φ‖L2(sc)(H) + ‖φ‖L2
(sc)

(H) + δ
1
2C(‖φ‖L∞

(sc)
+ ‖∇3φ‖L4

(sc)
(S))
) 1

2

×
(
‖∇2φ‖L2

(sc)
(H) + δ

1
2C(‖φ‖L∞

(sc)
+ ‖∇φ‖L4

(sc)
(S))
) 1

2

+ ‖∇3∇φ‖L2
(sc)

(H) + δ
1
2C(‖φ‖L∞

(sc)
+ ‖∇φ‖L4

(sc)
(S)) + ‖∇φ‖L2

(sc)
(H)

(156)

The proof relies on the classical (euclidean) trace inequality formulated in (u, θ) or (u, θ) coordinates

Lemma 11.3. For any scalar function φ along H = H
(0,u)
u , supported in a coordinate chart, we have( ∫ u

0

|∂uφ(u, u′, θ)|2du′
)1/2

.
(
‖∂2uφ‖L2(H) + δ2‖φ‖L2(H)

)1/2 · ‖∂2θφ‖1/2L2(H)

+ ‖∂θ∂uφ‖L2(H) + δ‖∂θφ‖L2(H) (157)

For any scalar function φ along H = H(0,u)
u , supported in a neighborhood patch,

(

∫ u

0

|∂uφ(u′, u, θ)|2du′)1/2 .
(
‖∂2uφ‖L2(H) + ‖∂2uφ‖L2(H)

)1/2 · ‖∂2θφ‖1/2L2(H)

+ ‖∂θ∂uφ‖L2(H) + ‖∂θφ‖L2(H) (158)

In scale invariant norms we have,

‖∂uφ‖Tr(sc)(H) .
(
‖∂2uφ‖L2(sc)(H) + ‖φ‖L2

(sc)
(H)

)1/2 · ‖∂2θφ‖1/2L2
(sc)

(H)

+ ‖∂θ∂uφ‖L2
(sc)

(H) + ‖∂θφ‖L2
(sc)

(H)

and,

‖∂uφ‖Tr(sc)(H) .
(
‖∂2uφ‖L2(sc)(H) + ‖φ‖L2

(sc)
(H)

)1/2 · ‖∂2θφ‖1/2L2
(sc)

(H)

+ ‖∂θ∂uφ‖L2
(sc)

(H) + ‖∂θφ‖L2
(sc)

(H)
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Proof. We start by making the additional assumption that φ(u, θ) is compactly supported for u′ ∈
(0, u).

Integrating by parts in θ = (θ1, θ2),∣∣ ∫ u

0

|∂uφ(u, θ)|2
∣∣ =

∣∣ ∫ ∞
θ1

∫ ∞
θ2

dθ1dθ2 ∂θ1 ∂θ2

∫
∂uφ(u′, θ) · ∂uφ(u′, θ)du′

∣∣
.

∫
D

∣∣∂θ1∂θ2 ∫ u

0

∂uφ(u′, θ) · ∂uφ(u′, θ)du′
∣∣ dθ1dθ2

.
∫
D

∣∣ ∫ u

0

∂θ1∂θ2∂uφ(u, θ) · ∂uφ(u, θ)du
∣∣dθ

+

∫
D

∫ u

0

∣∣∂θ∂uφ(u, θ)
∣∣2du′dθ

Now, integrating by parts in u,∫ u

0

∂θ1∂θ2∂uφ(u′, θ) · ∂uφ(u′, θ)du′ = −
∫ u

0

∂θ1∂θ2φ(u′, θ) · ∂2uφ(u′, θ)

Hence, ∫ u

0

|∂uφ(u, θ)|2 . ‖∂2θφ‖L2(H) · ‖∂2uφ‖L2(H) + ‖∂θ∂uφ‖2L2(H). (159)

To remove our additional assumption concerning the compact support in (0, u) we simply extend
the original φ to −δ ≤ u ≤ 2δ such that all norms on the right hand side of (157), on the extended
interval, are bounded by a constant multiple of the same norms restricted to the original interval
(0, u). We then apply a cut-off to make the extended φ compactly supported in the interval (−δ, 2δ)
and finally use (159) in the extended interval to get the desired result. The proof of (158) is exactly
the same. The scale version of these estimates is immediate. �

We now pass to the proof of proposition 11.2. It suffices to prove (155), the proof of (156) is exactly
the same.

One can easily pass from the coordinate dependent form of the trace inequalities to a covariant form
with the help of the estimates of proposition 4.6.

According to that proposition we have, for C = C(O(0),R,R),

‖Γ‖L2
(sc)

(S) + ‖∇Γ‖L2
(sc)

(S) . C

Thus,

∇4φa = Ω−1∂uφa − χabφb
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As a consequence, along H = Hu,

‖∇4φ‖Tr(sc)(H) . ‖∂uφ‖Tr(sc)(H) + δ1/2‖χ‖L∞
(sc)
‖φ‖L∞

(sc)

. ‖∂uφ‖Tr(sc)(H) + Cδ1/2‖φ‖L∞
(sc)

Also, schematically, ignoring factors of Ω (which are bounded in L∞), we have with ψ ∈ {χ, ω},

∇2
4φ = ∂2uφ+ ψ · ∂uφ+ α · φ+ ψ · ψ · φ

Thus, in view of our estimates for the Ricci coefficients ψ, we have

‖∂2uφ‖L2(sc)(H) . ‖∇2
4φ‖L2(sc)(H) + δ1/2‖ψ‖L∞

(sc)
· ‖∇4φ‖L2

(sc)
(H)

+ δ1/2‖φ‖L∞
(sc)

(
‖α‖L2

(sc)
(H) + ‖ψ‖2L∞

(sc)

)
. ‖∇2

4φ‖L2(sc)(H) + Cδ1/2
(
‖∇4φ‖L2

(sc)
(H) + ‖φ‖L∞

(sc)

)
We next note that for a horizontal tensor we can convert ∂θ into a covariant ∇ derivative according
to the formula ∂θ = ∇+ Γ. Therefore,

‖∂θφa‖L2
(sc)

(S) . ‖∇φ‖L2
(sc)

(S) + δ1/2‖Γ‖L2
(sc)

(S)‖φ‖L∞(sc)
. ‖∇φ‖L2

(sc)
(S) + δ1/2C‖φ‖L∞

(sc)

and,

‖∂2θφa‖L2(sc)(S) . ‖∇2φ‖L2
(sc)

(S) + δ1/2‖∂Γ‖L2
(sc)

(S)‖φ‖L∞(sc) + δ1/2‖Γ‖L4
(sc)

(S)‖∇φ‖L4
(sc)

(S)

. ‖∇2φ‖L2
(sc)

(S) + δ1/2C
(
‖φ‖L∞

(sc)
+ ‖∇φ‖L4

(sc)
(S)

)
Also,

‖∂θ∂uφa‖L2
(sc)

(S) . ‖∇∇4φ‖L2(S) + δ1/2‖∂Γ‖L2(S)‖φ‖L∞ + δ1/2‖Γ‖L4(S)‖∇4φ‖L4(S)

. ‖∇∇4φ‖L2
(sc)

(S) + δ1/2C
(
‖φ‖L∞

(sc)
+ ‖∇4φ‖L4

(sc)
(S)

)
According , to the the scale invariant estimate of lemma 11.3,

‖∂uφ‖Tr(sc)(H) .
(
‖∂2uφ‖L2(sc)(H) + ‖φ‖L2

(sc)
(H)

)1/2 · ‖∂2θφ‖1/2L2
(sc)

(H)

+ ‖∂θ∂uφ‖L2
(sc)

(H) + ‖∂θφ‖L2
(sc)

(H)

Combining this with the previous estimates we obtain the desired result, which can be clearly ex-
tended to any φ along Hu, not necessarily restricted to a coordinate patch, by a simple partition
of unity argument. This proves the desired estimate (155). Estimate (156) is proved in exactly the
same manner.
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11.4. Estimate for the trace norms of ∇χ, ∇χ. Our main goal in this subsection is to derive
estimates for the trace norms ‖∇χ‖Tr(sc)(H) and ‖∇χ‖Tr(sc)(H). In view of proposition 11.2 we could
achieve this goal if we could write ∇χ̂ = ∇4φ and ∇χ̂ = ∇3φ where φ, respectively φ are such that
the norms on the right hand side of (155), respectively (156), are finite. We prove the following
proposition.

Proposition 11.5. Consider the following transport equations along H = Hu, respectively H = Hu

∇4φ = ∇χ̂, φ(0, u) = 0 (160)

and

∇3φ = ∇χ̂ , φ(0, u) = 0 (161)

(1) Solution φ of (160) verifies the estimates,

‖φ‖L2
(sc)

(S) + ‖φ‖L4
(sc)

(S) + ‖∇φ‖L2
(sc)

(S) + ‖∇4φ‖L2
(sc)

(S) . C (162)

‖∇∇4φ‖L2
(sc)

(H) + ‖∇2
4φ‖L2(sc)(H) . C (163)

with a constant C = C(O(0),R,R). Moreover,

‖∇2φ‖L2
(sc)

(H) . ‖∇3trχ‖L2
(sc)

(H) + C (164)

As a consequence (see calculus inequalities of subsection 4.9) we also have,

‖φ‖L∞
(sc)
. ‖∇3trχ‖L2

(sc)
(H) + C (165)

and as a consequence of the trace estimate (155),

‖∇4φ‖Tr(sc)(H) . ‖∇3trχ‖L2
(sc)

(H) + C (166)

(2) Solution φ of (161) verifies the estimates,

‖φ‖L2
(sc)

(S) + ‖φ‖L4
(sc)

(S) + ‖∇φ‖L2
(sc)

(S) + ‖∇4φ‖L2
(sc)

(S) . C (167)

‖∇∇3φ‖L2
(sc)

(H) + ‖∇2
3φ‖L2(sc)(H) . C (168)

with a constant C = C(O(0),R,R). Moreover,

‖∇2φ‖L2
(sc)

(H) . ‖∇3trχ‖L2
(sc)

(H) + C (169)

As a consequence (see calculus inequalities of subsection 4.9) we also have,

‖φ‖L∞
(sc)
. ‖∇3trχ‖L2

(sc)
(H) + C (170)

and as a consequence of the trace estimate (155),

‖∇3φ‖Tr(sc)(H) . ‖∇3trχ‖L2
(sc)

(H) + C (171)
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Proof. Estimates (162)-(163) and respectively (167)-(168) follow easily from (160), respectively (161)
in view of our estimates for χ̂, respectively χ̂ , and their first two derivatives derived in the previous
sections. The second ∇ derivative estimates are subtle; they require a non-trivial renormalization
procedure, nothing less than another series miracles. As always we expect the estimates for φ to be

somewhat more demanding in view of the presence of trχ = trχ0 +t̃rχ. We shall thus concentrate on
them in what follows. No other anomalies occur at this high level of differentiability. The idea is to
derive first a transport equation for ∆φ and hope somehow that the principal term on the right, i.e.
∇∆χ̂ , can be re-expressed a ∇4 derivative of another quantity depending only on two derivatives of
a Ricci coefficient. We write,

∇3∆φ = ∆∇χ̂ + [∇3,∆]φ

Now, recalling commutation lemma 3.3, we write schematically (we eliminate β using the Codazzi
equation)

[∇3,∇]φ = χ · ∇φ+∇ψ3 · φ+ ψ3 · ∇3φ+ χ · ψ3 · φ
[∇3,∇2]φ = χ · ∇2φ+∇ψ3 · (∇φ+∇3φ) +∇2ψ3 · φ+ ψ3 · ∇∇3φ+∇(χ̂ · ψ3 · φ)

+ ψ3 · ∇3∇φ+ χ̂ · ψ3 · ∇φ

where ψ3 ∈ {t̃rχ, χ̂ , η, η}.

Hence, using our estimates for ψ3 as well as the estimates (167)-(168) for φ we can write,

[∇3,∆]φ = trχ
0
∇2φ+ χ̂ · ∇2φ+ Errφ (172)

‖Errφ‖L2
(sc)

(H) . Cδ1/2
(
C + ‖∇2φ‖L2

(sc)
(H)

)
(173)

Indeed, we have, for example,

‖∇2ψ3 · φ‖L2
(sc)

(H) . δ1/2‖φ‖L∞
(sc)
‖∇2ψ3‖L2

(sc)
(H) . δ1/2C‖φ‖L∞

(sc)

. Cδ1/2
(
‖∇2φ‖L2

(sc)
(H) + ‖∇∇3φ‖L2

(sc)
(H) + ‖φ‖L2

(sc)
(H)

)
. Cδ1/2‖∇2φ‖L2

(sc)
(H) + C2δ1/2.

Consequently,

∇3∆φ = ∆∇χ̂ + trχ
0
∇2φ+ χ̂ · ∇2φ+ Errφ (174)

Since,

[∆,∇]φ = K∇φ+∇K · φ

we have,

‖[∆,∇]φ‖L2
(sc)

(H) . ‖K‖L4
(sc)

(H) · ‖∇φ‖Lsc4(H) + ‖∇K‖L2
(sc)

(H)‖φ‖L∞(sc)
. Cδ1/2‖∇2φ‖L2

(sc)
(H) + C2δ1/2
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Hence, also,

∇3∆φ = ∆∇χ̂ + trχ
0
∇2φ+ χ̂ · ∇2φ+ Errφ (175)

‖E‖L2
(sc)

(H) . Cδ1/2
(
C + ‖∇2φ‖L2

(sc)
(H)

)
Now, according to the Codazzi equations,

D2χ̂ = −β − 1
2
∇trχ+ trχψ3 + ψ4 · ψ3

Thus,
?D2D2χ̂ = ?D2β − 1

2
?D2∇trχ+ ?D2(trχψ3 + ψ3 · ψ3)

or, making use of (58),

−1

2
∆χ̂ +Kχ̂ = ?D2β −

1

2
?D2∇trχ+ ?D2(trχψ3 + ψ3 · ψ3).

Thus, differentiating once more,

∇∆χ̂ = ∇2β +∇3trχ+K∇χ̂ + Err (176)

Err = ∇K · χ̂ + trχ∇2ψ3 +∇2(ψ3 · ψ3)

Here, and in what follows, Err denotes an error term of the form,

‖Err‖L2
(sc)

(H) . C

On the other hand we recall the structure equation,

∇3η = β + χ · (η − η)

Thus, commuting, and writing as before,

[∇3,∇]η = χ · ∇η +∇ψ3 · η + ψ3 · ∇3η + χ · ψ3 · η
[∇3,∇2]η = χ · ∇2η +∇ψ3 · (∇η +∇3η) +∇2ψ3 · η + ψ3 · ∇∇3η +∇(χ̂ · ψ3 · η)

+ ψ3 · ∇3∇η + χ̂ · ψ3 · ∇η
Observe that,

‖[∇3,∇]η‖L2
(sc)

(H) . C

and consequently,

∇2β = ∇3(∇2η) + Err (177)

Err = ∇2
(
χ · (η − η)

)
+ [∇3,∇2]η

Clearly,

‖Err‖L2
(sc)

(H) . C (178)

Therefore, we deduce,

∇∆χ̂ = −∇3(∇2η) +∇3trχ+K∇χ̂ + Err
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Commuting ∇ with ∆ again,

∆∇χ̂ = ∇∆χ̂ +K∇χ̂ +∇Kχ̂
Hence, since ∇χ̂ = ∇3φ,

∆∇χ̂ = ∇3(∇2η) +∇3trχ+K∇3φ+ Err (179)

Back to (175) we rewrite,

∇3∆φ = −∇3(∇2η) +∇3trχ+ trχ
0
· ∇2φ+K · ∇+ 3φ+ Errφ

‖Errφ‖L2
(sc)

(H) . C
(
1 + δ1/2‖∇2φ‖L2

(sc)
(H)

)
which we could rewrite in the form,

∇3

(
∆φ+∇2η −Kφ) = ∇3trχ+ trχ

0
· ∇2φ−∇3K · φ+ Errφ (180)

Recall that K = ρ− 1
4
trχtrχ− 1

2
χ̂ · χ̂ . Hence, we easily find,

‖∇3K‖L2
(sc)

(H) . C

Thus,

‖∇3

(
∆φ+∇2η −Kχ̂ )‖L2

(sc)
(u,u) . ‖∇3trχ‖L2

(sc)
(u,u) + |∇2φ‖L2

(sc)
(u,u)

+ ‖Errφ‖L2
(sc)

(u,u)

i.e.,

‖∆φ‖L2
(sc)

(u,u) . ‖∇2η‖L2
(sc)

(u,u) + Cδ1/2‖K‖L2
(sc)

(u,u) + ‖∇3trχ‖L2
(sc)

(H)

+ (1 + δ1/2C)

∫ u

0

‖∇2φ‖L2
(sc)

(u′,u)du
′ + ‖E1‖L2

(sc)
(H)

Now, using the elliptic estimates discussed in subsection 4.16, we have and our estimates for K, we
deduce

‖∇2φ‖L2
(sc)

(S) . ‖∆φ‖L2
(sc)

(S) (181)

+ δ1/2
(
‖∇K‖L2

(sc)
(S)‖φ‖L∞(sc)(S) + ‖K‖L4

(sc)
(S)‖∇φ‖L4

(sc)
(S)

)
. ‖∆φ‖L2

(sc)
(S) + δ1/2

(
‖φ‖L∞

(sc)
(S) + ‖∇φ‖L4

(sc)
(S)

)
. ‖∆φ‖L2

(sc)
(S) + δ1/2

(
C + ‖∇2φ‖L2

(sc)
(H)

)
Thus,

‖∇2φ‖L2
(sc)

(u,u) . ‖∇2η‖L2
(sc)

(u,u) + Cδ1/2‖K‖L2
(sc)

(u,u) + ‖∇3trχ‖L2
(sc)

(H)

+ (1 + δ1/2C)

∫ u

0

‖∇2φ‖L2
(sc)

(u′,u)du
′

+ C(1 + δ1/2)‖∇2φ‖L2
(sc)

(H)
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Using Gronwall,

‖∇2φ‖L2
(sc)

(u,u) . ‖∇2η‖L2
(sc)

(u,u) + Cδ1/2‖K‖L2
(sc)

(u,u) + ‖∇3trχ‖L2
(sc)

(H) (182)

+ C(1 + δ1/2)‖∇2φ‖L2
(sc)

(H)

Integrating we deduce, for Cδ1/2 sufficiently small,

‖∇2φ‖L2
(sc)

(H) . C + ‖∇3trχ‖L2
(sc)

(H)

as desired. �

To close the estimates of proposition 11.5 it remains to estimate ‖∇3trχ‖L2
(sc)

(H) and ‖∇3trχ‖L2
(sc)

(H).

To achieve this we start with the transport equation for trχ,

∇3(trχ) = −1

2
trχ2 − |χ̂ |2 − 2ωχ̂

which we rewrite in the form,

∇4(trχ
′) = −1

2
Ω−1trχ2 − Ω−1|χ̂ |2

trχ′ = Ω−1trχ

The plan is to derive a transport equation for the quantity ∆∇trχ′. We make use of the following
commutation formulae, written schematically, for an arbitrary scalar f verifying the equation ∇3f =
F ,

∇3(∇f) = ∇F + χ · ∇f + ψ3 · F
∇3(∇2f) = ∇

(
∇F + χ · ∇f + ψ3 · F ) + χ · ∇2f + β · ∇f + ψ3 · ∇3(∇f)

= ∇2F + ψ3 · ∇F +∇ψ3 · F + χ · ∇2f +∇χ · ∇f
+ ψ3 · ∇3(∇f) + χ̂ · ψ3 · ∇f

∇3(∇3f) = ∇3F + ψ3 · ∇2F +∇ψ3 · ∇F +∇2ψ3 · F
+ χ · ∇3f +∇χ · ∇2f +∇2χ · ∇f
+ ∇

(
ψ3∇3(∇f) + χ̂ · ψ3 · ∇f

)
+ β · ∇2f + ψ3 · ∇3(∇2f)

or,

∇3(∇3f) = ∇3F + ψ3 · ∇2F +∇ψ3 · ∇F +∇2ψ3 · F
+ χ · ∇3f +∇χ · ∇2f +∇2χ · ∇f
+ ψ3 · ∇3(∇2f) +∇ψ3 · ∇3(∇f) + ψ3[∇,∇3](∇f) +∇(χ̂ · ψ3 · ∇f)
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Applying the calculations above to f = Ω−1trχ, F = −1
2
Ω−1trχ2 − Ω−1|χ|2 and using ∇(Ω−1) =

−Ω−2∇Ω = −1
2
Ω−2(η − η) we derive, omitting factors of Ω which are bounded in L∞,

∇4(∆∇trχ′) = χ̂ ·∆∇χ̂ + χ · ∇3trχ+∇χ̂ · ∇2χ̂ +∇χ · ∇2trχ+ F

F = trχ
0

(
ψ3 · ∇2ψ3 +∇ψ3 · ∇ψ3 + ψ3 · ψ3 · ∇ψ3)

+ ψ3 · ψ3 · ∇2ψ3 + ψ3 · ∇ψ3 · ∇ψ3 + ψ3 · ψ3 · ψ3 · ∇ψ3

Making use of our estimates for ψ3 we easily derive, with a constant C = C(O(0)),R,R),

‖F‖L2
(sc)

(H) . δ1/2C

Thus,

∇3(∆∇trχ′) = χ̂ ·∆∇χ̂ + χ · ∇3trχ+∇χ̂ · ∇2χ̂ +∇χ · ∇2trχ+ F1 (183)

‖F1‖L2
(sc)

(H) . δ1/2C

Observe that neither the principal term χ̂ · ∇∆χ̂ or the lower order term ∇χ̂ · ∇2χ̂ appear to

satisfy an L2
(sc)(H) estimate. The principal terms seems particularly nasty since we can’t possible

expect to estimate three derivatives of χ̂ using norms which involve only one derivative of curvature
components. Clearly another renormalization is needed. In fact we make use of equation (174) which
we write in the form,

∆∇χ̂ = ∇3∆φ− trχ
0
∇2φ− χ̂ · ∇2φ− E

We can thus replace the dangerous term ∆∇χ̂ in (183) and obtain,

∇3(∆∇trχ′) = χ̂ · ∇3∆φ+ χ · ∇3trχ+∇χ̂ · ∇2χ̂ +∇χ · ∇2trχ+ F2

F2 = F1 − (trχ
0
∇2φ− χ̂ · ∇2φ− E) · χ̂

In view of our estimates for φ we have,

‖F2‖L2
(sc)

(H) . Cδ1/2(1 + δ1/2C)‖∇2φ‖L2
(sc)

(H)

Now, recalling also the definition of φ,

∇3(∆∇trχ′ − χ̂ ·∆φ) = −∇3χ̂ ·∆φ+ trχ
0
∇3trχ+ ψ3 · ∇3trχ+∇3φ · ∇2χ

+ ∇trχ · ∇2trχ+ F2
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Hence,

‖∆∇trχ′‖L2
(sc)

(u,u) . ‖∆∇trχ′‖L2
(sc)

(0,u) + Cδ1/2‖χ̂ ‖L∞
(sc)
· ‖∆φ‖L2

(sc)
(u,u)

+ (1 + Cδ1/2)

∫ u

0

‖∇3trχ‖L2
(sc)

(u′,u)du
′

+ Cδ1/2‖∇3χ̂ ‖Tr(sc)(H) · ‖∆φ‖L2
(sc)

(H)

+ δ1/2‖∇3φ‖Tr(sc)(H) · ‖∇2χ‖L2
(sc)

(H)

+ δ1/2‖∇trχ‖L∞
(sc)
· ‖∇2trχ‖L2

(sc)
(H)

+ ‖F2‖L2
(sc)

(H)

Using the calculus inequalities of subsection 4.9 and our estimates for ∇2∇3trχ,

‖∇trχ‖L∞
(sc)
. C + ‖∇3trχ‖L(sc)(H)

Also, in view of the trace estimate (171),

‖∇3φ‖Tr(sc)(H) . C + ‖∇3trχ‖L(sc)(H)

Hence,

‖∆∇trχ′‖L2
(sc)

(u,u) . ‖∆∇trχ′‖L2
(sc)

(0,u) + Cδ1/2‖∇2φ‖L2
(sc)

(u,u)

+ (1 + Cδ1/2)

∫ u

0

‖∇3trχ‖L2
(sc)

(u′,u)du
′

+ Cδ1/2‖∇3χ̂ ‖Tr(sc)(H) · ‖∆φ‖L2
(sc)

(H)

+ Cδ1/2‖∇3trχ‖L2
(sc)

(H) + C2δ1/2

Now,

‖∆∇trχ′‖L2
(sc)

(u,u) . ‖∆∇trχ‖L2
(sc)

(u,u) + δ1/2C
(
‖∇2ω‖L2

(sc)
(u,u) + Cδ1/2

)
Now, using the elliptic estimates discussed in subsection 4.16, we have and our estimates for K, we
deduce

‖∇3trχ‖L2
(sc)

(S) . ‖∆trχ‖L2
(sc)

(S)

+ δ1/2
(
‖∇K‖L2

(sc)
(S)‖∇trχ‖L∞

(sc)
(S) + ‖K‖L4

(sc)
(S)‖∇2trχ‖L4

(sc)
(S)

)
. ‖∆∇trχ‖L2

(sc)
(S) + δ1/2

(
‖∇trχ‖L∞

(sc)
(S) + ‖∇2trχ‖L4

(sc)
(S)

)
. ‖∆∇trχ‖L2

(sc)
(S) + δ1/2

(
C + ‖∇3trχ‖L2

(sc)
(H)

)
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Hence, after using Gronwall,

‖∇3trχ‖L2
(sc)

(u,u) . ‖∇3trχ‖L2
(sc)

(0,u) + Cδ1/2
(
‖∇2ω‖L2

(sc)
(u,u) + ‖∇2φ‖L2

(sc)
(u,u)

)
+ Cδ1/2‖∇3χ̂ ‖Tr(sc)(H) · ‖∆φ‖L2

(sc)
(H)

+ Cδ1/2‖∇3trχ‖L2
(sc)

(H) + C2δ1/2

Thus, after integration,

‖∇3trχ‖2L2
(sc)

(H(0,u) . C2 + C2δ

∫ u

0

‖∇3χ̂ ‖2Tr(sc)(H(0,u′ )
· ‖∆φ‖2L2

(sc)
(H(0,u′))

du′

(184)

It remains to estimate the trace norm ‖∇3χ̂ ‖Tr(sc)(H(0,u′ ). We claim the following,

Lemma 11.6. There exists a constant C depending only on O(0),R,R as well as ‖∇3α‖L2
(sc)

(H) such

that,

‖∇3χ̂ ‖Tr(sc)(H) . Cδ−1/2. (185)

Proof. in view of the trace estimate (156), we have for H = H(0,u′),

‖∇3χ‖Tr(sc)(H) . ‖∇2
3χ̂ ‖L2(sc)(H) + ‖∇∇3χ̂ ‖L2

(sc)
(H)

+ ‖∇2χ̂ ‖L2
(sc)

(H) + ‖χ̂ ‖L2
(sc)

(H) + Cδ1/2‖χ̂ ‖L∞
(sc)

Observe that,

‖∇3χ̂ ‖L2
(sc)

(H) + ‖χ̂ ‖L2
(sc)

(H) . Cδ−1/2

We claim also that,

‖∇2
3χ̂ ‖L2(sc)(H) . Cδ−1/2 + ‖∇3α‖L2

(sc)
(H).

Indeed, differentiating,

∇3χ̂ = −α− trχχ̂ − 2ω χ̂

Thus,

∇2
3χ̂ = −∇3α−∇3trχ · χ̂ − trχ · ∇3χ̂ − 2∇3ω · χ̂ − ω · ∇3χ̂

Hence,

‖∇2
3χ̂ ‖L2(sc)(H) . ‖∇3α‖L2

(sc)
(H) + ‖χ̂ ‖L2

(sc)
(H) + Cδ1/2

(
‖∇3ω‖L2

(sc)
(H) +∇3χ̂ ‖L2

(sc)
(H)

)
. Cδ−1/2 + ‖∇3α‖L2

(sc)
(H)

which completes the proof of our estimate. �
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Returning to (184), we have with a constant C depending on O(0),R,R, as well as ‖∇3α‖L2
(sc)

(H)),

‖∇3trχ‖2L2
(sc)

(H(0,u) . C2 + C2

∫ u

0

‖∇2φ‖2L2
(sc)

(H(0,u′))
du′

. C2
(
1 +

∫ u

0

‖∇3trχ‖2L2
(sc)

(H(0,u′))
du′
)

Thus, applying Gronwall once more we derive,

‖∇3trχ‖2L2
(sc)

(H(0,u) . C2

This finishes the proof of the second part of the following.

Proposition 11.7. The following estimates hold true with a constant C depending on O(0),R,R as
well as supu ‖∇4α‖L2

(sc)
(Hu) and supu ‖∇3α‖L2

(sc)
(Hu)

(1) We have along H = Hu,

‖∇3trχ‖L2
(sc)

(H) + ‖∇trχ‖L∞
(sc)
. C

sup
S
‖∇χ̂‖L4

(sc)
(S) + ‖∇χ̂‖Tr(sc)(H) . C.

(2) We have along H = Hu,

‖∇3trχ‖L2
(sc)

(H) + ‖∇trχ‖L∞
(sc)
. C

sup
S
‖∇χ̂ ‖L4

(sc)
(S) + ‖∇χ̂ ‖Tr(sc)(H) . C.

11.8. Estimates for the trace norms of ∇η,∇η. As in the previous subsection we need a series of
renormalization. The proof follows, however, the same outline as above. We first prove the following,

Proposition 11.9. Consider the following transport equations along H = Hu, respectively H = Hu

∇4
(4)φ = ∇η, (4)φ(0, u) = 0 (186)

∇4
(4)φ = ∇η (4)φ(0, u) = 0 (187)

and

∇3
(3)φ = ∇η, (3)φ(0, u) = 0 (188)

∇3
(3)φ = ∇η, (3)φ(0, u) = 0 (189)

(1) Solutions φ = ( (4)φ, (4)φ) of (186) -(187) verify the estimates,

‖φ‖L2
(sc)

(S) + ‖φ‖L4
(sc)

(S) + ‖∇φ‖L2
(sc)

(S) + ‖∇4φ‖L2
(sc)

(S) . C (190)

‖∇∇4φ‖L2
(sc)

(H) + ‖∇2
4φ‖L2(sc)(H) . C (191)
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with a constant C = C(O(0),R,R). Moreover,

‖∇2φ‖L2
(sc)

(H) . ‖∇2µ‖L2
(sc)

(H) + C (192)

As a consequence (see calculus inequalities of subsection 4.9) we also have,

‖φ‖L∞
(sc)
. ‖∇2µ‖L2

(sc)
(H) + C (193)

and as a consequence of the trace estimate (155),

‖∇4φ‖Tr(sc)(H) . ‖∇2µ‖L2
(sc)

(H) + C (194)

(2) Solutions φ = ( (3)φ, (3)φ) of (188), (189) verify the estimates,

‖φ‖L2
(sc)

(S) + ‖φ‖L4
(sc)

(S) + ‖∇φ‖L2
(sc)

(S) + ‖∇3φ‖L2
(sc)

(S) . C (195)

‖∇∇3φ‖L2
(sc)

(H) + ‖∇2
3φ‖L2(sc)(H) . C (196)

with a constant C = C(O(0),R,R). Moreover,

‖∇2( (3)φ, (3)φ)‖L2
(sc)

(H) . ‖∇2µ‖L2
(sc)

(H) + C (197)

As a consequence (see calculus inequalities of subsection 4.9) we also have,

‖( (3)φ, (3)φ)‖L∞
(sc)
. ‖∇2µ‖L2

(sc)
(H) + C (198)

and as a consequence of the trace estimate (156),

‖∇3(
(3)φ, (3)φ)‖Tr(sc)(H) . ‖∇2µ‖L2

(sc)
(H) + C (199)

Proof. We start with

∇3
(3)φ = η, ∇3

(3)φ = η

Commuting both equations with ∆ and proceeding exactly as in the derivation of (175) we derive

∇3 ∆ (3)φ = ∇∆η + trχ
0
∇2 (3)φ+ χ̂ · ∇2 (3)φ+ E (200)

∇3 ∆ (3)φ = ∇∆η + trχ
0
∇2 (3)φ+ χ̂ · ∇2 (3)φ+ E (201)

‖E‖L2
(sc)

(H) . Cδ1/2
(
C + ‖∇2 (3)φ‖L2

(sc)
(H)

)
‖E‖L2

(sc)
(H) . Cδ1/2

(
C + ‖∇2 (3)φ‖L2

(sc)
(H)

)
Recall that, see (117), (118),

div η = −µ− ρ, curl η = σ − 1

2
χ̂ ∧ χ̂

div η = −µ− ρ, curl η = σ − 1

2
χ̂ ∧ χ̂
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i.e., schematically,

?D1D1η = ?D1(−µ− ρ, σ − χ̂ ∧ χ̂ )
?D1D1η = ?D1(−µ− ρ, σ − χ̂ ∧ χ̂ )

Prceeding as in the derivation of (176) we find, schematically,

∇∆η = ∇2µ+∇2(ρ, σ) + F1

∇∆η = ∇2µ+∇2(ρ, σ) + F1

‖F1‖L2
(sc)

(H) . C

We now make use of the equations, see equations (121) and (123),

∇3ω =
1

2
ρ+ 2ωω +

3

4
|η − η|2 +

1

4
(η − η) · (η + η)− 1

8
|η + η|2

∇3ω
† =

1

2
σ

Proceeding now exactly as in the derivation of (177) and (178), we deduce,

∇2(ρ, σ) = ∇3∇2(ω, ω†) + F2

‖F2‖L2
(sc)

(H) . C.

Therefore, just as before for the derivation of ∇∆χ̂, schematically,

∇∆η = ∇3∇2(ω, ω†) +∇2µ+ F (202)

∇∆η = ∇3∇2(ω, ω†) +∇2µ+ F (203)

‖F, F‖L(sc)(H) . C.

Thus, back to (200) and (201) we deduce (just as in (180)

∇3

(
(∆ (3)φ−∇2(ω, ω†)

)
= ∇2µ+ trχ

0
∇2 (3)φ+ χ̂ · ∇2 (3)φ+ E (204)

‖E‖L2
(sc)

(H) . C
(
1 + δ1/2‖∇2 (3)φ‖L2

(sc)
(H)

)
and,

∇3

(
(∆ (3)φ−∇2(ω, ω†)

)
= ∇2µ+ trχ

0
∇2 (3)φ+ χ̂ · ∇2 (3)φ+ E (205)

‖E‖L2
(sc)

(H) . C
(
1 + δ1/2‖∇2 (3)φ‖L2

(sc)
(H)

)
We then proceed with elliptic L2

(sc) estimates, exactly as in (181) and, after using also Gronwall, we

find (as in (182))

‖∇2 (3)φ‖L2
(sc)

(u,u) . ‖∇2(ω, ω†)‖L2
(sc)

(u,u) +

∫ u

0

‖∇2µ‖L2
(sc)

(u′,u)du
′ (206)

+ C(1 + δ1/2)‖∇2 (3)φ‖L2
(sc)

(H)
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and

‖∇2 (3)φ‖L2
(sc)

(u,u) . ‖∇2(ω, ω†)‖L2
(sc)

(u,u) +

∫ u

0

‖∇2µ‖L2
(sc)

(u′,u)du
′ (207)

+ C(1 + δ1/2)‖∇2 (3)φ‖L2
(sc)

(H)

Integrating we deduce, for Cδ1/2 sufficiently small,

‖∇2 (3)φ‖L2
(sc)

(H) . C + ‖∇2µ‖L2
(sc)

(H)

‖∇2 (3)φ‖L2
(sc)

(H) . C + ‖∇2µ‖L2
(sc)

(H)

as desired. �

It remains to estimate ‖∇2µ‖L2
(sc)

(H) and ‖∇2µ‖L2
(sc)

(H). As before we treat only the estimate for the

slightly more difficult case of µ. In view of the proof of the previous proposition we have (neglecting
signs and constants, as before),

∇∆η = ∇3 ∆ (3)φ+ trχ
0
∇2 (3)φ+ χ̂ · ∇2 (3)φ+ E (208)

∇∆η = trχ
0
∇2 (3)φ+ χ̂ · ∇2 (3)φ+ E (209)

‖E‖L2
(sc)

(H) . Cδ1/2
(
C + ‖∇2 (3)φ‖L2

(sc)
(H)

)
‖E‖L2

(sc)
(H) . Cδ1/2

(
C + ‖∇2 (3)φ‖L2

(sc)
(H)

)
We start with the transport equation (114),

∇3µ+ trχµ = −1

2
trχdiv η + (η − η)∇trχ

+ χ̂ · ∇(2η − η) +
1

2
χ̂ · α− (η − 3η) · β +

1

2
trχρ

+
1

2
trχ(|η|2 − η · η) +

1

2
(η + η) · χ̂ · (η − η)

Commuting with the laplacean, we derive

∇3∆µ = χ̂ ·∆∇(η + η) + trχ∆div η + (∇η +∇η) · ∇2χ̂ + trχ∆µ

+ (∇2η +∇2η) · ∇χ̂ +
1

2
χ̂ ·∆α− (η − 3η) ·∆β +

1

2
trχ∆ρ

+ Err

Here, and in what follows, Err denotes any term which allows a bound of the form,

‖Err‖L2
(sc)

(H) . C (210)
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Using equation, ∇3χ̂ = −α− trχ
0
χ̂ + ψ3 · ψ3 we write,

∆α = −∇3∆χ̂ + Err.

Using equation, ∇3η = β + χ · (η − η) we can write

4/ β = ∇3∆η + Err

Using equation ∇3ω = 1
2
ρ+ ψ · ψ we can write

∆ρ = 2∇3∆ω + Err

Therefore we can write,

∇3∆µ = χ̂ · ∇3∆( (3)φ+ (3)φ) + trχ∇3∆( (3)φ+ (3)φ)

+ ∇3(
(3)φ+ (3)φ) · ∇2χ̂ +∇2(η + η) · ∇χ̂

+ trχ∇3∆ω + (η + η)∇3∆η + χ̂ · ∇3∆χ̂ + Errφ

with Errφ verifying,

‖Errφ‖L2
(sc)

(H) . C
(
1 + ‖∇2( (3)φ+ (3)φ)‖L2

(sc)
(H)

)
. C

(
1 + ‖∇2µ‖L2

(sc)
(H)

)
Therefore, introducing the renormalized quantity

µ/ = µ− χ ·∆( (3)φ+ (3)φ)− trχ ·∆ω − (η + η) ·∆η − χ̂ ·∆χ̂ (211)

we have,

∇3µ/ = −∇3χ ·∆( (3)φ+ (3)φ+ χ̂ )−∇3trχ ·∆( (3)φ+ (3)φ)

+ ∇3(
(3)φ+ (3)φ) · ∇2χ̂ +∇2(η + η) · ∇χ̂

+ ∇3trχ ·∆ω +∇3(η + η) ·∆η + Errφ

Consequently,

‖µ/‖L2
(sc)

(u,u) . δ1/2‖∇3χ̂ ‖Tr(sc)(H) · ‖∇2( (3)φ+ (3)φ+ χ̂ )‖L2
(sc)

(H)

+ δ1/2‖∇3(
(3)φ+ (3)φ)‖Tr(sc)(H) · ‖∇2( (3)φ+ (3)φ)‖L2

(sc)
(H)

+ δ1/2‖∇3(η + η)‖Tr(sc)(H) · ‖∇2η‖L2
(sc)

(H)

+ δ1/2‖∇χ̂ ‖Tr(sc)(H) · ‖∇2(η + η)‖L2
(sc)

(H) + Errφ

We recall from the previous subsection, see lemma 11.6, that

‖∇3χ̂ ‖Tr(sc)(H) . Cδ−1/2

with a constant C depending only on O(0),R,R as well as ‖∇3α‖L2
(sc)

(H). Also, from the previous

section, we have (see proposition 11.7)

‖∇χ̂ ‖Tr(sc)(H) . C
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Also, in view of (199),

‖∇3(
(3)φ, (3)φ)‖Tr(sc)(H) . ‖∇2µ‖L2

(sc)
(H) + C

Also, we can easily show, with the help of the trace estimates of proposition 11.2 and our Ricci
coefficient estimates,

‖∇3(η, η)‖L2
(sc)

(H) . C

Consequently,

‖µ/‖L2
(sc)

(u,u) . ‖µ/‖L2
(sc)

(0,u) + (1 + Cδ1/2‖∇2µ‖L2
(sc)

(H)

On the other hand,

‖µ/‖L2
(sc)

(u,u) . ‖∆µ‖L2
(sc)

(u,u) + ‖∇2ω‖L2
(sc)

(u,u) + Cδ1/2‖∇2η‖L2
(sc)

(u,u)

+ Cδ1/2‖∇2χ̂ ‖L2
(sc)

(u,u)

Hence,

‖∆µ‖L2
(sc)

(u,u) . ‖µ/‖L2
(sc)

(0,u) + ‖∇2ω‖L2
(sc)

(u,u) + Cδ1/2‖∇2η‖L2
(sc)

(u,u)

+ ‖∇2µ‖L2
(sc)

(H) + Cδ1/2‖∇2µ‖L2
(sc)

(H)

We can now proceed precisely as in the last part of the proof of proposition 11.7 to deduce, after
applying elliptic estimates and integrating,

‖∇2µ‖L2
(sc)

(H
(0,u)
u )

. O(0) + (1 + Cδ1/2)

∫ u

0

‖∇2µ‖L2
(sc)

(H
(0,u′)
u )

du′ + C

from which the desired estimate follows. We have thus proved the second part of the following:

Proposition 11.10. The following estimates hold true with a constant C depending on O(0),R,R
as well as supu ‖∇4α‖L2

(sc)
(Hu) and supu ‖∇3α‖L2

(sc)
(Hu)

.

(1) We have along H = Hu,

‖∇(η, η)‖Tr(sc)(H) . C

(2) We have along H = Hu,

‖∇(η, η)‖Tr(sc)(H) . C

(3) Also,

sup
S
‖∇(η, η)‖L4

(sc)
(S) . C
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11.11. Refined estimate for (3)φ. We end this section by establishing a more refined estimate on
(3)φ. This estimate is needed in the argument for the formation of a trapped surface described in our
introduction. We examine the equation

∇3
(3)φ = ∇η.

Commuting with ∇ we obtain

∇3∇ (3)φ = (trχ
0

+ ψ) · ∇ (3)φ+ (Ψ + ψ · ψ) (3)φ+∇2η

Taking into account triviality of the data for ∇ (3)φ, non-anomalous estimates for Ψ appearing in
this equation, and Gronwall we obtain

‖∇ (3)φ‖L2
(sc)

(S) . ‖∇2η‖L2
(sc)

(Hu)
+ δ

1
2C.

Using Proposition 7.6 we obtain

‖∇ (3)φ‖L2
(sc)

(S) . ‖∇ρ‖L2
(sc)

(Hu)
+ ‖∇σ‖L2

(sc)
(Hu)

+ δ
1
4C.

Combining with the interpolation estimates

‖(3)φ‖L∞
(sc)

(S) . ‖(3)φ‖
1
2

L4
(sc)

(S)
‖∇(3)φ‖

1
2

L4
(sc)

(S)
+ δ

1
4‖(3)φ‖L4

(sc)
(S),

‖∇(3)φ‖L4
(sc)

(S) . ‖∇(3)φ‖
1
2

L2
(sc)

(S)
‖∇2((3)φ)‖

1
2

L2
(sc)

(S)
+ δ

1
4‖∇(3)φ‖L2

(sc)
(S)

we conclude

Proposition 11.12. The solution (3)φ of the problem ∇3
(3)φ = ∇η with trivial initial data satisfies

‖(3)φ‖L∞
(sc)

(S) . C
(
‖∇ρ‖L2

(sc)
(Hu)

+ ‖∇σ‖L2
(sc)

(Hu)

) 1
4

+ Cδ
1
8 .

12. Trace estimates for curvature

Proposition 12.1. Under the assumptions of the finiteness of the norms R and R, which include
‖∇3α‖L2

(sc)
(Hu)

and the anomalous norm ‖∇4α‖L2
(sc)

(Hu) we have

‖α‖Tr sc(H) ≤ δ−
1
4C,

‖(β, ρ, σ)‖Tr sc(H) ≤ C,

‖(ρ, σ, β)‖Tr sc(H) ≤ C,

‖α‖Tr sc(H) ≤ δ−
1
4C

The proof is based on the application of the trace inequalities of Proposition 11.2 and the null
structure equations (47), (49)-(51). According to these the curvature components Ψ4 = {α, β, ρ, σ}
can be expressed in the form

Ψ4 = ∇4φ4 + φ · φ,



84 SERGIU KLAINERMAN AND IGOR RODNIANSKI

while Ψ3 = {ρ, σ, β, α} can be represented as

Ψ3 = ∇3φ3 + trχ
0
· ψ + φ · φ,

with20 φ4 ∈ {χ̂, η, < ω >} and φ3 ∈ {χ̂ , η, < ω >}.

Therefore,

‖Ψ4‖Tr sc(H) . ‖∇4φ4‖Tr sc(H) + δ
1
2‖φ‖2L∞

(sc)
,

‖Ψ3‖Tr sc(H) . ‖∇3φ3‖Tr sc(H) + (1 + δ
1
2‖φ‖L∞

(sc)
)‖φ‖L∞

(sc)
.

By Proposition 11.2

‖∇4φ4‖Tr (sc)(H) .
(
‖∇2

4φ4‖L2
(sc)

(H) + ‖φ4‖L2
(sc)

(H) + δ
1
2C(‖φ4‖L∞

(sc)
+ ‖∇4φ4‖L4

(sc)
(S))
) 1

2

×
(
‖∇2φ4‖L2

(sc)
(H) + δ

1
2C(‖φ4‖L∞

(sc)
+ ‖∇φ4‖L4

(sc)
(S))
) 1

2

+ ‖∇4∇φ4‖L2
(sc)

(H) + δ
1
2C(‖φ4‖L∞

(sc)
+ ‖∇4φ4‖L4

(sc)
(S)) + ‖∇φ4‖L2

(sc)
(H)

‖∇3φ3‖Tr (sc)(H) .
(
‖∇2

3φ3‖L2
(sc)

(H) + ‖φ3‖L2
(sc)

(H) + δ
1
2C(‖φ3‖L∞

(sc)
+ ‖∇3φ3‖L4

(sc)
(S))
) 1

2

×
(
‖∇2φ3‖L2

(sc)
(H) + δ

1
2C(‖φ3‖L∞

(sc)
+ ‖∇φ3‖L4

(sc)
(S))
) 1

2

+ ‖∇3∇φ3‖L2
(sc)

(H) + δ
1
2C(‖φ3‖L∞

(sc)
+ ‖∇3φ3‖L4

(sc)
(S)) + ‖∇φ3‖L2

(sc)
(H)

We observe that all the involved norms with the exception of ‖∇2
4φ4‖L2

(sc)
(H) and ‖∇2

3φ3‖L2
(sc)

(H) have

been already estimated.

Recall that the derivatives with no estimates are the L4
(sc)(S) norms of ∇4ω,∇3ω and either L2

(sc)(H)

and L2
(sc)(H) norms of ∇∇4ω and ∇∇3ω, while ∇∇4χ̂ and ∇∇3χ̂ are controlled only along H and

H respectively. Finally, the L2
(sc)(S) and L4

(sc)(S) estimates for χ̂, χ̂ , ∇3,4χ̂, ∇3,4χ̂ are δ−
1
2 and δ−

1
4

anomalous. Therefore, for φ4 = χ̂, i.e. Ψ4 = α

‖∇4χ̂‖Tr (sc)(H) . C(‖∇2
4χ̂‖L2(sc)(H) + Cδ−

1
2 )

1
2 + C,

for φ3 = χ̂ , i.e. Ψ3 = α

‖∇3χ̂ ‖Tr (sc)(H) . C(‖∇2
3χ̂ ‖L2(sc)(H) + Cδ−

1
2 )

1
2 + C.

The remaining φ4, φ3 satisfy

‖∇4φ4‖Tr (sc)(H) . C(‖∇2
4φ4‖L2

(sc)
(H) + C)

1
2 + C,

‖∇3φ3‖Tr (sc)(H) . C(‖∇2
4φ3‖L2

(sc)
(H) + C)

1
2 + C.

20Recall that < ω >= (ω, ω†) and < ω >= (−ω, ω†), see (122) and (123).
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We now express

∇2
4φ4 = ∇4Ψ4 +∇4φ · φ,
∇2

3φ3 = ∇3Ψ3 +∇3φ · ψ.

Therefore,

‖∇2
4φ4‖L2

(sc)
(H) . ‖∇4Ψ4‖L2

(sc)
(H) + δ

1
2‖∇4φ‖L2

(sc)
(H)‖φ‖L∞(sc) . ‖∇4Ψ4‖L2

(sc)
(H) + C,

‖∇2
3φ3‖L2

(sc)
(H) . ‖∇3Ψ3‖L2

(sc)
(H) + δ

1
2‖∇3φ‖L2

(sc)
(H)‖φ‖L∞(sc) . ‖∇4Ψ4‖L2

(sc)
(H) + C,

where we took into account possible δ−
1
2 anomalies of ‖∇4φ‖L2

(sc)
(H) and ‖∇3φ‖L2

(sc)
(H). These imme-

diately yield the desired trace estimates for α and α. For the remaining components Ψ4,Ψ3 we may
express from Bianchi

∇4Ψ4 = ∇Ψ4 + φ ·Ψ,
∇3Ψ3 = ∇Ψ3 + trχ

0
·Ψ + φ ·Ψ,

where Ψ4 ∈ {α, β} and Ψ3 ∈ {α, β}. Therefore,

‖∇4Ψ4‖L2
(sc)

(H) . ‖∇Ψ4‖L2
(sc)

(H) + δ
1
2‖φ‖L∞

(sc)
‖Ψ‖L2

(sc)
(H) . R+ C,

‖∇3Ψ3‖L2
(sc)

(H) . ‖∇Ψ3‖L2
(sc)

(H) + (1 + δ
1
2‖φ‖L∞

(sc)
)‖Ψ‖L2

(sc)
(H) . R+ C.

In the last step we have to be careful to avoid the double anomalous term trχ
0
· α. Its appearance

is prohibited by the signature considerations, according to which

1 ≥ sgn(∇3Ψ3) = sgn(trχ
0
· α) = 2.

13. Estimates for the Rotation Vectorfields

We define the algebra of rotation vectorfields (i)O obeying the commutation relations

[(i)O,(j)O] =∈ijk (k)O,

obtained by parallel transport of the standard rotation vectorfields on S2 = Su,0 ⊂ Hu,0 along the
integral curves of e4. Suppressing the index (i) we obtain that

∇4Ob = χbcOc.

Commuting with ∇ and ∇3 we obtain

∇4(∇O) = χ · ∇O + β ·O +∇χ ·O + χ · η ·O,
∇4(∇3O) = (η − η) · ∇O + (χ+ ω)∇3O + σ ·O + (ω · χ+ η · η) ·O +∇3χ ·O
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The only non-trivial components of the deformation tensor παβ = 1
2
(∇αOβ +∇βOα) are given below:

π34 = −2(η + η)aOa,

πab =
1

2
(∇aOb +∇bOa),

π3a =
1

2
(∇3Oa − χabOb) :=

1

2
Za.

13.1. Estimates for H,Z. The quantity Z verifies the following transport equation21, written
schematically,

∇4Z = ∇(η + η) ·O + (η − η) · ∇O + ωZ + (σ + ρ) ·O + (η − η) · (η + η) ·O
Let Hab = ∇aOb denote the non-symmetrized derivative of O. Then,

∇4H = χ ·H + β ·O +∇χ ·O + χ · η ·O
We now rewrite these equations schematically in the form

∇4Z = ∇ψ34 ·O + ψ34 ·H + (χ+ ω)Z + Ψg ·O + ψ34 · ψ34 ·O,
∇4H = ψ ·H + (Θ4 +∇ψ4) ·O + ψ · ψ34 ·O.

(212)

Here ψ34 ∈ {η, η}, Ψg ∈ {ρ, σ}. In what follows ψ34 will be treated either as a ψ3 or a ψ4 quan-
tity, depending on the situation. The quantities, H and Z can be assigned signature and scaling,
(consistent with those for the Ricci coefficients and curvature components) according to.

sgn(H)− 1

2
= sc(H) = 0, sgn(Z)− 1

2
= sc(Z) = −1

2
. (213)

In view of equations (212) we derive, by integration,

‖Z‖L∞
(sc)
. ‖∇ψ4‖Tr(sc) + ‖Ψg‖Tr(sc) + δ

1
2‖ψ‖L∞

(sc)
(‖ψ‖L∞

(sc)
+ ‖H‖L∞

(sc)
+ ‖Z‖L∞

(sc)
)

Thus, according to the trace estimates of proposition 11.10 for ψ4 ∈ {η, η} and proposition 12.1 for
Ψg we derive,

‖Z‖L∞
(sc)
. C + δ

1
2C(‖H‖L∞

(sc)
+ ‖Z‖L∞

(sc)
)

Similarly,

‖H‖L∞
(sc)
. ‖∇ψ4‖Tr(sc) + ‖Θ4‖L∞

(sc)
+ δ

1
2‖ψ‖2L∞

(sc)
(‖ψ‖L∞

(sc)
+ ‖H‖L∞

(sc)
)

. C + δ
1
2C(C + ‖H‖L∞

(sc)
),

Therefore we have proved22 the following.

21Note the absence of χ and ω.
22Note the triviality of the data for Z on H0. Otherwise the term χ ·O in the definition of Z might have caused an

L∞(sc) anomaly. The data for H however is not trivial. Initially ‖H‖L∞ ∼ 1, which means that while it is anomalous

in L2
(sc)(S) it is not in L∞(sc).
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Proposition 13.2. The quantities Z and H verify the estimates

‖H‖L∞
(sc)

+ ‖Z‖L∞
(sc)
. C,

with a constant C = C(I(0),R[1],R[1]).

We add a small remark concerning the symmetrized ∇ derivatives of O.

Proposition 13.3. Let H ′ab := ∇aOb +∇aOb = Hab +Hba. Then in addition to all the estimates for
H, H ′ also enjoys a non-anomalous L2

(sc)(S) estimate

‖H ′‖L2
(sc)

(S) . C.

Similarly,

‖Z‖L2
(sc)

(S) . C.

The result follows easily from the transport equation for H ′, which is virtually the same as for H, and
crucially, triviality of the initial data for Hs. The claim for Z follows from the same considerations.

13.4. L2
(sc)(S) estimates for ∇H,∇Z. We prove below the following,

Proposition 13.5. The following estimates hold true with C = C(I(0),R,R),

‖∇H‖L2
(sc)

(S) + ‖∇Z‖L2
(sc)

(S) . C,

‖∇4∇H‖L2
(sc)

(H) + ‖∇4∇Z‖L2
(sc)

(H) . C

Proof. We first commute the transport equations for H and Z with ∇.

∇4(∇H) = ψ · ∇H +∇ψ ·H + (∇Θ4 +∇2ψ4) ·O + (Θ4 + Ψg) ·H
+ ψ · ∇ψ ·O + ψ34 · ∇4H + ψ · ψg ·H,

∇4(∇Z) = ∇2ψ34 ·O + (∇ψ + Ψg) · (H + Z) + ψ · (∇H +∇Z) +∇Ψg ·O
+ ψ · ∇ψ ·O + ψ · ψ · (H + Z) + ψ34∇4Z
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The term ∇Ψg is in fact ∇(σ + ρ). The estimate for ∇H follows immediately from the following:

‖ψ · ∇H‖L2
(sc)

(H) . δ
1
2‖ψ‖L∞

(sc)
‖∇H‖L2

(sc)
(H) . δ

1
2C‖∇H‖L2

(sc)
(H)

‖∇ψ ·H‖L2
(sc)

(H) . δ
1
2‖H‖L∞

(sc)
‖∇ψ‖L2

(sc)
(H) . δ

1
2C

‖∇Θ ·O‖L2
(sc)

(H) . ‖∇Θ‖L2
(sc)

(H) . C

‖∇2ψ ·O‖L2
(sc)

(H) . ‖∇2ψ‖L2
(sc)

(H) . C

‖(Θ + Ψg) ·H‖L2
(sc)

(H) . δ
1
2‖H‖L∞

(sc)
(‖Θ‖L2

(sc)
(H) + ‖Ψg‖L2

(sc)
(H)) . δ

1
2C

‖ψ · ∇ψ ·O‖L2
(sc)

(H) . δ
1
2‖ψ‖L∞

(sc)
‖∇ψ‖L2

(sc)
(H) . δ

1
2C

‖ψ · ψg ·H‖L2
(sc)

(H) . δ‖ψ‖L∞
(sc)
‖H‖L∞

(sc)
‖ψg‖L2

(sc)
(H) . δC,

‖ψ · ∇4H‖L2
(sc)

(H) . δ
1
2‖ψ‖L∞

(sc)
‖∇4H‖L2

(sc)
(H) . δ

1
2C.

The estimates for ∇Z are proved in exactly the same manner. �

13.6. L4
(sc)(S) estimates for ∇H,∇Z. The results of the previous proposition can be strengthened

to give the following,

Proposition 13.7. The following hold true,

‖∇H‖L4
(sc)

(S) + ‖∇Z‖L4
(sc)

(S) . C

Proof. The arguments can be followed almost verbatim, as in the last proposition, with the exception
of the analysis of the two terms:

∇2ψ34 ·O, ∇Ψg ·O = ∇(σ + ρ) ·O

We recall that ψ34 = {η, η} and according to Proposition 11.9 we can write,

∇ψ43 = ∇4φ

with φ satisfying the estimates

‖∇2φ‖L2
(sc)

(H) + ‖∇2φ‖L2
(sc)

(H) + ‖∇φ‖L2
(sc)

(S) + ‖φ‖L2
(sc)

(S) ≤ C,

‖∇4φ‖L2
(sc)

(S) + ‖∇4∇φ4‖L2
(sc)

(S) + ‖φ‖L∞
(sc)

+ ‖∇φ‖L4
(sc)

(S) . C

We now the write

∇2ψ43 ·O = ∇4(∇φ ·O)−∇φ · χ ·O − [∇4,∇]φ ·O
= ∇4(∇φ ·O) + χ · ∇φ ·O + Ψg · φ ·O + ψ · ∇ψ ·O + ψ · ψ · φ ·O
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We estimate

δ−1
∫ u

0

‖∇φ · χ ·O‖L4
(sc)

(Su,u)du . δ
1
2 sup

u
‖∇φ‖L4

(sc)
(Su,u)‖χ‖L∞(sc) . δ

1
2C,

δ−1
∫ u

0

‖Ψg · φ ·O‖L4
(sc)

(Su,u)du . δ
1
2

(
‖∇Ψg‖

1
2

L2
(sc)

(H)
‖Ψg‖

1
2

L2
(sc)

(H)
+ δ

1
4‖Ψg‖L2

(sc)
(H)

)
‖φ‖L∞

(sc)
. δ

1
2C,

δ−1
∫ u

0

‖∇ψ · ψ ·O‖L4
(sc)

(Su,u)du . δ
1
2 sup

u
‖∇ψ‖L4

(sc)
(Su,u)‖ψ‖L∞(sc) . δ

1
2C,

δ−1
∫ u

0

‖ψ · ψ · φ ·O‖L4
(sc)

(Su,u)du . δ sup
u
‖φ‖L4

(sc)
(Su,u)‖ψ‖

2
L∞
(sc)
. δC.

On the other hand, the null structure equations give for < ω >= (ω, ω†)

∇4 < ω >= (ρ, σ) + ψg · ψg.
As a result,

∇(ρ, σ)·O = ∇4(∇< ω >·O)+(ψ · ∇ψ + χ · ∇ < ω > +Ψg· < ω > +ψg ·Ψg + ψ · ψg · (< ω > +ψg))·O
We can estimate

δ−1
∫ u

0

‖∇ < ω > ·χ ·O‖L4
(sc)

(Su,u)du . δ
1
2 sup

u
‖∇ < ω > ‖L4

(sc)
(Su,u)‖χ‖L∞(sc) . δ

1
2C,

δ−1
∫ u

0

‖Ψg · ψ ·O‖L4
(sc)

(Su,u)du . δ
1
2

(
‖∇Ψg‖

1
2

L2
(sc)

(H)
‖Ψg‖

1
2

L2
(sc)

(H)
+ δ

1
4‖Ψg‖L2

(sc)
(H)

)
‖ψ‖L∞

(sc)
. δ

1
2C,

δ−1
∫ u

0

‖∇ψ · ψ ·O‖L4
(sc)

(Su,u)du . δ
1
2 sup

u
‖∇ψ‖L4

(sc)
(Su,u)‖ψ‖L∞(sc) . δ

1
2C,

δ−1
∫ u

0

‖ψ · ψ · (< ω > +ψg) ·O‖L4
(sc)

(Su,u)du . δ sup
u′≤u
‖ < ω > +ψg‖L4

(sc)
(Su,u′ )

‖ψ‖2L∞
(sc)
. δC.

These allow us to conclude that,

δ−1
∫ u

0

‖∇4 [(∇H,∇Z)−∇φ ·O −∇ < ω > ·O] ‖L4
(sc)

(Su,u′ )
du′′ . δ

1
2 sup
u′≤u
‖(∇H,∇Z)‖L4

(sc)
(Su,u′ )

+ δ
1
2C.

Making use of the L4
(sc)(S) bounds on both ∇φ and ∇ < ω > we finally obtain the estimate

δ−1
∫ u
0
‖∇4(∇H,∇Z)‖L4

(sc)
(Su,u′ )

du′ . δ
1
2 supu′≤u ‖(∇H,∇Z)‖L4

(sc)
(Su,u′ )

+ Cδ1/2, from which the con-

clusion of the proposition easily follows. �

13.8. Estimates for ∇3Z. We now examine the equation for ∇3Z.

∇4(∇3Z) = ∇3∇ψ34 +∇ψ34 · Z +∇ψ34 · χ+∇3ψ34 ·H + ψ34 · ∇3H

+ (∇3χ+∇3ω) · Z + ω · ∇3Z

+∇3Ψg ·O + (ρ+ σ) · Z + Ψg · χ+∇3ψ34 · ψ34 + ψ34 · ψ34 · Z + ψ34 · ψ34 · χ,
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To estimate the right hand side of this equation we will need to use the first and second deriva-
tive estimates for ψ of Propositions 8.2,8.4,8.7 and 8.12, keeping in mind possible anomalies of χ,
∇4χ̂,∇3χ̂,∇3χ̂ , the relationship

∇3(ρ+ σ) = ∇β + (trχ
0

+ ψ) ·Ψ,

given by the null Bianchi identities and the L2
(sc)(S) curvature estimate23 ‖Ψ‖L2

(sc)
(S) ≤ C of Propo-

sitions 6.6 and 6.9. Thus,

‖∇3∇ψ34‖L2
(sc)

(H) . C,

‖∇ψ · Z‖L2
(sc)

(H) . δ
1
2‖Z‖L∞

(sc)
‖∇ψ‖L2

(sc)
(H) . δ

1
2C,

‖∇ψ · χ‖L2
(sc)

(H) . δ
1
2‖χ‖L∞

(sc)
‖∇ψ‖L2

(sc)
(H) . C,

‖∇3ψ34 ·H‖L2
(sc)

(H) . δ
1
2‖H‖L∞

(sc)
‖∇3ψ34‖L2

(sc)
(H) . δ

1
2C,

‖ψ · ∇3H‖L2
(sc)

(H) . δ
1
2‖ψ‖L∞

(sc)
‖∇3H‖L2

(sc)
(H) . δ

1
2C‖∇3H‖L2

(sc)
(H),

‖∇3ω · Z‖L2
(sc)

(H) . δ
1
2‖Z‖L∞

(sc)
‖∇3ω‖L2

(sc)
(H) . δ

1
2C,

‖∇3χ · Z‖L2
(sc)

(H) . δ
1
2‖Z‖L∞

(sc)
‖∇3χ‖L2

(sc)
(H) . C,

‖ω · ∇3Z‖L2
(sc)

(H) . δ
1
2‖ω‖L∞

(sc)
‖∇3Z‖L2

(sc)
(H) . δ

1
2C‖∇3Z‖L2

(sc)
(H),

‖∇3(ρ+ σ)‖L2
(sc)

(H) . ‖∇β‖L2
(sc)

(H) + ‖(trχ
0

+ ψ) ·Ψ‖L2
(sc)

(H) . R1 + C,

‖Ψg · Z‖L2
(sc)

(H) . δ
1
2‖Z‖L∞

(sc)
‖Ψg‖L2

(sc)
(H) . δ

1
2C,

‖Ψg · χ‖L2
(sc)

(H) . δ
1
2‖χ‖L∞

(sc)
‖Ψg‖L2

(sc)
(H) . C,

‖∇3ψ34 · ψ‖L2
(sc)

(H) . δ
1
2‖ψ‖L∞

(sc)
‖∇3ψ34‖L2

(sc)
(H) . δ

1
2C,

‖ψ · ψ · Z‖L2
(sc)

(H) . δ‖Z‖L∞
(sc)
‖ψ‖L∞

(sc)
‖ψ‖L2

(sc)
(H) . δ

1
2C,

‖ψ · ψ34 · χ‖L2
(sc)

(H) . δ‖χ‖L∞
(sc)
‖ψ‖L∞

(sc)
‖ψg‖L2

(sc)
(H) . δ

1
2C

13.9. Estimates for ‖∇3H‖L2
(sc)

(H). The only quantity still requiring an estimate is ‖∇3H‖L2
(sc)

(H).

We use the relation24

∇3H = ∇3∇O = ∇∇3O + [∇,∇3]O = ∇Z +∇χ ·O + β ·O + ψ34 · Z + ψ34 · χ ·O

23Note that Ψ in the nonlinear term may contain an α component but not the anomalous α term.
24Note a crucial cancellation of an anomalous term χ ·H.
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Therefore,

‖∇3H‖L2
(sc)

(S) . ‖∇Z‖L2
(sc)

(S) + ‖∇χ‖L2
(sc)

(S) + ‖Ψg‖L2
(sc)

(S) + δ
1
2‖ψ34‖L2

(sc)
(S)‖Z‖L∞(sc)

+ δ
1
2‖χ‖L∞

(sc)
‖ψ34‖L2

(sc)
(S) . ‖∇Z‖L2

(sc)
(S) + C

This immediately implies the bounds

‖∇3H‖L2
(sc)

(S) + ‖∇3Z‖L2
(sc)

(S) + ‖∇4∇3Z‖L2
(sc)

(H) . C.

A similar argument allows us to immediately strengthen the ‖∇3H‖L2
(sc)

(S) estimate (unlike the one

for ∇3Z) to the L4
(sc)(S) norm

‖∇3H‖L4
(sc)

(S) ≤ C

Furthermore,

∇4∇3H = ∇4∇Z +∇4∇χ ·O +∇χ · χ ·O +∇4β ·O + Ψg · χ ·O +∇4ψ34 · Z
+ ψ34 · ∇4Z +∇4ψ34 · χ ·O + ψ34 · ∇4χ ·O + ψ34 · χ · χ ·O

We once again remind the reader of the possible anomalies for χ̂, χ̂ in L2
(sc)(S), double anomaly for

trχ in L2
(sc)(S) and a simple anomaly in L∞(sc), anomalies for ∇4χ̂ and ∇3χ̂ . We estimate

‖∇4∇Z‖L2
(sc)

(H) . C,

‖∇4∇χ‖L2
(sc)

(H) . C,

‖∇χ · χ‖L2
(sc)

(H) . δ
1
2‖χ‖L∞

(sc)
‖∇χ‖L2

(sc)
(H) . δ

1
2C,

‖∇4β‖L2
(sc)

(H) . ‖∇Ψg‖L2
(sc)

(H) + ‖ψ ·Ψg‖L2
(sc)

(H) . R1 + δ
1
2C,

‖Ψg · χ‖L2
(sc)

(H) . δ
1
2‖χ‖L∞

(sc)
‖Ψg‖sc2(H) . δ

1
2C,

‖∇4ψ34 · χ‖L2
(sc)

(H) . δ
1
2‖χ‖L∞

(sc)
‖∇4ψ34‖L2

(sc)
(H) . C,

‖ψ34 · ∇4χ‖L2
(sc)

(H) . δ
1
2‖ψ‖L∞

(sc)
‖∇4χ‖L2

(sc)
(H) . δ

1
2C,

‖ψ34 · χ · χ‖L2
(sc)

(H) . δ‖χ‖L∞
(sc)
‖χ‖L∞

(sc)
‖ψ34‖L2

(sc)
(H) . δ

1
2C.

As a result we now established the following

Proposition 13.10. There exists a constant C = C(O[2],O∞,R[1],R[1]) such that

‖∇3H‖L2
(sc)

(S) + ‖∇3Z‖L2
(sc)

(S) + ‖∇4∇3Z‖L2
(sc)

(H) + ‖∇4∇3H‖L2
(sc)

(H) . C.
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13.11. Derivatives of the deformation tensor. We now compute the derivatives of the deforma-
tion tensor Dπ.

D4π44 = 0, D4π34 = −2∇4(η + η) ·O − 2(η + η) · χ ·O,

D4π33 =
1

4
η · Z, D4π3a =

1

2
∇4Z + η · (η + η)− 1

2
η ·Hs, D4π4a = 0, D4πab = ∇4H

s,

D3π44 = 0, D3π34 = −2∇3(η + η) ·O − 2(η + η) · (Z − χ ·O)− 1

4
η · Z,

D3π33 = 0, D3π3a =
1

2
∇3Z, D3π4a = −η · (η + η)− 1

2
η ·Hs, D3πab = ∇3H

s +
1

4
η · Z,

Dcπ44 = 0, Dcπ34 = −2∇(η + η) ·O − 2(η + η) ·Hs − 1

2
χ · Z,

Dcπ33 = −1

2
χ · Z, Dcπ3a =

1

2
∇Z − χ ·Hs − 2χ(η + η) ·O,

Dcπ4a = −χ ·Hs − 2χ(η + η) ·O, Dcπab = ∇Hs − χ · Z,
Based on the results of the previous section we then easily deduce the following result

Proposition 13.12. There exists a constant C = C(O[2],O∞,R[1],R[1]) such that

‖Dπ‖L2
(sc)

(S) . C

The only potentially problematic term is χ ·Hs, which can be estimated as follows:

‖χ ·Hs‖L2
(sc)

(S) . δ
1
2‖χ‖L∞

(sc)
‖Hs‖L2

(sc)
. C.

It is precisely this term that requires a non-anomalous L2
(sc)(S) estimate for Hs, which incidentally

does not hold for the non-symmetrized derivative H.

13.13. Theorem B. We are now ready to state the main result of this section, mentioned in the
introduction.

Theorem 13.14 (Theorem B). The deformation tensors (O)π of the angular momentum operators
O verify the following estimates, with a constant C = C(I(0),R,R),

‖ (O)π ‖L4
(sc)

(S) + ‖ (O)π ‖L∞
(sc)

(S) . C (214)

Also all null components of the derivatives D (O)π , with the exception of (D3
(O)π )3a, verify the

estimates,

‖D (O)π ‖L4
(sc)

(S) . C (215)

Moreover,

‖(D3
(O)π )3a −∇3Z‖L4(S) + ‖ sup

u
∇3Z‖L2(S) . C (216)
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14. Curvature estimates I.

In this section, in all the remaining sections of the paper C denotes a constant which depends on
the initial data I0 all the curvature norms R,R, including ‖∇4α‖L2

(sc)
(H

(0,u)
u )

and ‖∇3α‖L2
(sc)

(H
(0,u)
u )

.

Using the results of the previous sections we assume that the norms O of the Ricci coefficients are
bounded by C.

14.1. Preliminaries. Let W be a Weyl tensorfield, with ∗W its Hodge dual verifying the Bianchi
equations with sources

DivW = J, Div ∗W = J∗ (217)

where J, ∗J are Weyl currents, i.e.

J[αβγ] = 0, Jαβγ = −Jαγδ, gβγJβγδ = 0.

and J∗αβγ = 1
2
Jαµν ∈µνβγ the right Hodge dual of J . Following the definitions of [Chr-Kl] we let Q[W ]

be the Bel-Robinson tensor of W . As proved there we have,

Proposition 14.2. Assume W verifies (217). Given vectorfields X, Y, Z and P [W ] = P [W ](X, Y, Z)
defined by P [W ]α := Q[W ]αβγδX

βY γZδ we have,

Div (P [W ]) = DivQ[W ](X, Y, Z) +
1

2
(Q[W ] · π)(X, Y, Z) (218)

where,

(Q[W ] · π)(X, Y, Z) : = Q[W ]( (X)π, Y, Z) +Q[W ]( (Y )π ,X, Z)

+ Q[W ]( (Z)π ,X, Y )

Thus, integrating on our fundamental domain D = D(u, u),∫
Hu

Q[W ](L,X, Y, Z) +

∫
Hu

Q[W ]X, Y, Z, (L)

=

∫
H0

Q[W ](L,X, Y, Z) +

∫
H0

]Q[W ](X, Y, Z, L)

+

∫ ∫
D(u,u)

DivQ[W ](X, Y, Z) +
1

2

∫ ∫
D(u,u)

Q[W ] · π(X, Y, Z)

In the particular case when W is the curvature tensor R (and thus J = J∗ = 0), recalling that the
initial data on H 0 vanishes, we have
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Corollary 14.3. The following identity holds on our fundamental domain D(u, u),∫
Hu

Q[R](L,X, Y, Z) +

∫
Hu

Q[R](X, Y, Z, L) =

∫
H0

Q[R](L,X, Y, Z)

+
1

2

∫ ∫
D(u,u)

Q[R] · π(X, Y, Z)

On the other hand, given a vectorfield O, we have

Div (L̂OR) = J(O,R), Div ( ∗L̂OR) = J∗(O,R). (219)

where J(O,R) is a Weyl current (calculated below in lemma 14.5) and L̂OR denotes the modified Lie

derivative of the curvature tensor R, i.e. (following [Chr-Kl]), L̂OR = LOR− 1
8
tr (O)π R− 1

2
(O)π̂ ·R

and,

( (O)π̂ ·R)αβγδ = (O)π̂ µ
αWµβγδ + (O)π̂ µ

βWαµγδ + (O)π̂ µ
γWαβµδ + (O)π̂ µ

δWαβγµ

with (O)π̂ is the traceless part of (O)π , i.e. (O)π = (O)π̂ + 1
4
tr (O)π g. Observe that L̂OR is also a Weyl

field and that the modified Lie derivative commutes with the Hodge dual, i.e.,L̂O( ∗R ) = ∗L̂OR.
The following corollary of proposition 14.2 and proposition 7.1.1 in [Chr-Kl].

Corollary 14.4. Let O be a vectorfield defined in our fundamental domain D(u, u), tangent to H 0.
Then, with Hu = Hu([0, u]),∫

Hu

Q[L̂OR](L,X, Y, Z) +

∫
Hu

Q[L̂OR](X, Y, Z, L) =

∫
H0

Q[L̂OR](L,X, Y, Z)

+
1

2

∫ ∫
D(u,u)

Q[L̂OR] · π̂(X, Y, Z) +

∫ ∫
D(u,u)

D(R,O)(X, Y, Z)

where, D(O,R) := DivQ[L̂OR] is given by the formula,

D(O,R)βγδ = (L̂OR)β
µ
δ
νJ(O,R)µγν + (L̂OR)β

µ
γ
νJ(O,R)µδν

+ ∗(L̂OR)β
µ
γ
ν J∗(O,R)µδν + ∗(L̂OR)β

µ
γ
ν J∗(O,R)µδν

The Weyl current J(O,R) is given by the following commutation formula, see proposition 7.1.2 and
in [Chr-Kl],

Lemma 14.5. We have,

Div (L̂OR) = J(O;R) := J1(O;R) + J2(O;R) + J3(O;R) (220)
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J1(O,R)βγδ =
1

2
(O)π̂ µνDνRµβγδ

J2(O,R)βγδ =
1

2
(O)pλR

λ
βγδ

J3(O,R)βγδ =
1

2

(
(O)qαβλR

αλ
γδ + (O)qαγλR

α
β
λ
δ + (O)qαδλR

α
βγ

λ
)

where, (O)pγ = Dα( (O)π̂ αγ).
(O)q = Dβ

(O)π̂ γα −Dγ
(O)π̂ βα − 1

3
( (O)pγ gαβ − (O)pβ gαγ)

In the remaining part of this section we should establish estimates for the norms R0 and R0. We
start with α.

14.6. Estimate for α. We apply corollary 14.3 to X = Y = Z = e4 to derive,∫
H

(0,u)
u

|α|2 +

∫
H

(0,u)
u

|β|2 .
∫
H

(0,u)
0

|α|2 +

∫
D(u,u)

(Q[R] · (4)π)(e4, e4, e4) (221)

Based on conservation of signature we write schematically,

(Q[R] · (4)π)(e4, e4, e4) =
∑

s1+s2+s3=4

φ(s1) ·Ψ(s2) ·Ψ(s3) (222)

with Ricci coefficients φ ∈ {χ, ω, η, η, ω}, null curvature components Ψ and labels s1, s2, s3 denoting
the signature of the corresponding component. In scale invariant norms we have,

‖α‖2
L2
(sc)

(H
(0,u)
u )

+ ‖β‖2
L2
(sc)

(H
(0,u)
u )

. ‖α‖2
L2
(sc)

(H
(0,u)
0 )

+ I

with,

I = δ1/2
∑

s1+s2+s3=4

‖φ(s1)‖L∞
(sc)

∫ u

0

‖Ψ(s2)‖L2
(sc)

(H
(0,u)

u′ )
· ‖Ψ(s3)‖L2

(sc)
(H

(0,u)

u′ )
du′

By far the worst term occur when s2 = s3 = 2 and s1 = 0. Observe also that, since the signature of a
Ricci coefficient φ(s1) may not exceed s1 = 1, neither s2 or s3 can be zero, i.e. α cannot occur among
the curvature terms on the right. Using our estimates, ‖φ(s1)‖L∞

(sc)
. C, with C = C(I0,R,R) we

deduce,

‖α‖2
L2
(sc)

(H
(0,u)
u )

+ ‖β‖2
L2
(sc)

(H
(0,u)
u )

. ‖α‖2
L2
(sc)

(H
(0,u)
0 )

+ Cδ1/2‖α‖2
L2
(sc)

(H
(0,u)
u )

+ CR0δ
1/2‖α‖L2

(sc)
(H

(0,u)
u )

+ Cδ1/2R2
0

Therefore, recalling the anomalous character of R0[α], R0[β] we deduce,

R0[α] +R0[β] . I0 + Cδ3/4R0 (223)



96 SERGIU KLAINERMAN AND IGOR RODNIANSKI

14.7. Remaining estimates. We follow the procedure outlined in the introduction. Define the
energy quantities,

Q0(u, u) = δ2
∫
H (0,u)
u

Q[R](e4, e4, e4, e4) +

∫
H (0,u)
u

Q[R](e3, e4, e4, e4) (224)

+ δ−1
∫
H (0,u)
u

Q[R](e3, e3, e4, e4) + δ−2
∫
H (0,u)
u

Q[R](e3, e3, e3, e4)

Q
0
(u, u) = δ2

∫
H (0,u)

u

Q[R](e4, e4, e4, e3) +

∫
H (0,u)

u

Q[R](e4, e4, e3, e3) (225)

+ δ−1
∫
H (0,u)

u

Q[R](e4, e3, e3, e3) + δ−2
∫
H (0,u)

u

Q[R](e3, e3, e3, e3)

According to corollary (14.3), for all possible choices of the vectorfields X, Y, Z in the set {e4, e3} we
are led to the identity,

Q0(u, u) +Q
0
(u, u) ≈ Q0(0, u) + E0(u, u) (226)

where,

E0(u, u) = δ2
∫ ∫

D(u,u)
Q[R]( (4)π, e4, e4)

+

∫ ∫
D(u,u)

Q[R]( (4)π, e3, e4) +

∫ ∫
D(u,u)

Q[R]( (3)π, e4, e4)

+ δ−1
∫ ∫

D(u,u)
Q[R]( (4)π, e3, e3) + δ−1

∫ ∫
D(u,u)

Q[R]( (3)π, e4, e3)

+ δ−2
∫ ∫

D(u,u)
Q[R]( (3)π, e3, e3)

with (4)π, (3)π the deformation tensors of e4, e3. Every term appearing in the above integrands linear
in (4)π or (3)π and quadratic with respect to R. Also all components of (4)π can be expressed
in terms of our Ricci coefficients χ, ω, η, η, ω. In fact one can easily check the following, (4)π44 =
(4)π4a = 0, (4)π34 = g(D3e4, e4) + g(D4e4, e3) = 4ω, (4)π33 = 2g(D3e4, e3) = −8ω, (4)πab = 2χab,
(4)πa3 = g(Dae4, e3) + g(D3e4, ea) = 2ζa + 2ηa. A similar formula holds for (3)π, with χ replaced by
χ. Observe, in particular, that the term trχ can only occur in connection to (3)π. Thus, all terms
appearing in the E integrand are of the form,

φ ·Ψ1 ·Ψ2

with φ one of the Ricci coefficients and Ψ1,Ψ2 null curvature components. Consider first the contribu-
tion to Q0 of the anomalous terms δ2

∫
H (0,u)
u

Q[R](e4, e4, e4, e4)+ δ2
∫
H (0,u)

u
Q[R](e4, e4, e4, e3) obtained

in (19) in the case X = Y = Z = e4. Since Q[R](e4, e4, e4, e4) = |α|2 and Q[R](e4, e4, e4, e3) = |β|2
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we derive,

‖α‖2
L2(H

(0,u)
u )

+ ‖β‖2
L2(H

(0,u)
u )

≈ ‖α‖2
L2(H

(0,u)
0 )

+ E01(u, u)

E01(u, u) ≈
∫ ∫

D(u,u)
Q( (4)π, e4, e4)

Since all terms of the form φ · Ψ1 · Ψ2 have the same overall signature 4. Thus, it is easy to derive
the scale invariant norms estimate,

‖α‖2
L2
(sc)

(H
(0,u)
u )

+ ‖β‖2
L2
(sc)

(H
(0,u)
u )

. ‖α‖2
L2
(sc)

(H
(0,u)
0 )

+ E01

and,

E01 . δ1/2‖φ‖L∞
(sc)

∫ u

0

‖Ψ1‖L2
(sc)

(H
(0,u′)
u )
‖Ψ2‖L2

(sc)
(H

(0,u′)
u )

(227)

The gain of δ1/2 is a reflection of the product estimates of type (46). Now, the only null curvature

component which is anomalous with respect to the scale invariant norms L2
(sc)(H

(0,u)
u ) is α. On the

other hand the only Ricci coefficient which is anomalous in L∞(sc) is trχ. Indeed we have to decompose

trχ = t̃rχ + trχ
0
, where trχ

0
is the flat value of trχ

0
and therefore independent of δ. This leads to

a loss of δ1/2 in the corresponding estimates. Now, since trχ cannot appear among the components

of (4)π, we can lose at most a power of δ on the right hand side of (227), which occurs only when
Ψ1 = Ψ2 = α. Fortunately the terms on the left of our integral inequality are also anomalous with
respect to the same power of δ. Therefore, since ‖φ‖L∞

(sc)
. C, with C = C(I0,R,R) we derive

R2
0[α] +R2

0[β] . (I(0))2 + δ1/2 · CR2
0.

Therefore, for small δ > 0, we derive the bound,

R0[α] +R0[β] . I(0) + δ1/4C(R,R). (228)

with C a universal constant depending only on the curvature norms R,R. We would like to show
that all other error terms can be estimated in the same fashion, i.e. we would like to prove an
estimate of the form,

R0 +R0 . I(0) + δ1/4C(R,R). (229)

Assuming that a similar estimate holds for R1 +R1 we would thus conclude, for sufficiently small
δ > 0,

R+R . I0. (230)

To prove (229) we observe that all remaining terms in (226) are scale invariant (i.e. they have the
correct powers of δ). In estimating the corresponding error terms, appearing on the right hand side,
we only have to be mindful of those which contain trχ and α. All other terms can be estimated
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by δ1/2p(R,R) exactly as above. It is easy to check that all terms involving trχ can only appear

through (3)π̂34. Thus, it is easy to see that all such terms are of the form,

Q3444
(3)π̂34 ≈ −|β|2trχ

Q3434
(3)π̂34 ≈ −(ρ2 + σ2)trχ

Q3433
(3)π̂34 = −|β|2trχ

Thus, since trχ = t̃rχ + trχ
0
, we easily deduce that all error terms containing trχ can be estimated

by,

δ−1
∫ u

0

Q0(u, u
′)du′ + δ1/2C(R,R).

It is easy to check that the integral term can be absorbed on the left by a Gronwall type inequality.
It thus remains to consider only the terms linear25 in ‖α‖L(sc)(H(0,u)

u )
which we have already estimated

above. These lead to error terms with no excess powers of δ, which could be potentially dangerous.
In fact we have to be a little more careful, because we would get an estimate of the form,

R0 +R0 . I(0) + C(R,R)

which is useless for large curvature norms R,R. To avoid this problem we need to refine our use
of the (S)O0,∞ norms. We observe that among all terms φ · Ψ1 · Ψ2 linear in α we can get better
estimates for all, except those which contain a Ricci component φ which is anomalous in L4

(sc)(S).

All other terms gain a power of δ1/4. Indeed the corresponding error terms in E1 can be estimated
by26,

δ1/2‖φ‖L4
(sc)

(u,u) · ‖Ψ‖L2
(sc)

(H
(0,u)
u
· ‖∇α‖1/2

L(sc)(H
(0,u)
u )
· ‖α‖1/2

L(sc)(H
(0,u)
u )

. δ1/4 (S)O0,4 · R0 · R0[α]1/2 · R1[α]1/2.

Denoting by Eg all such error terms we thus have,

|Eg| . δ1/4C(R,R)

It remains to check the terms linear in α for which the Ricci coefficient is anomalous in the L4
(sc)

norm, i.e. terms for which φ is either χ̂ or χ̂ . It is easy to check that there are no terms linear in α
which contain χ̂ and thus we only have to consider terms of the form χ̂ · α ·Ψ, which we denote by

Eb. Since ‖χ̂ ‖L4
(sc)

(u,u) loses a power of δ1/4 we now have,

δ1/2‖χ̂ ‖L4
(sc)

(u,u) · ‖Ψ‖L2
(sc)

(H
(0,u)
u
· ‖∇α‖1/2

L(sc)(H
(0,u)
u )
· ‖α‖1/2

L(sc)(H
(0,u)
u )

. (S)O0,4[χ̂ ] · R0 · R0[α]1/2 · R1[α]1/2

Since we are left with no positive power of δ we must now be mindful of the fact that the estimates
for (S)O0,4 depend at least linearly on the curvature norms R,R, in which case Eb is super-quadratic

25By signature considerations there can be no terms quadratic in α
26It follows from the Gagliardo-Nirenberg inequality ‖α‖2L4(u,u) . ‖∇α‖L2(u,u)‖α‖L2(u,u)
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in R,R. We can however trace back the δ1/4 loss of ‖χ̂ ‖L4
(sc)

(u,u) to initial data, i.e. upon a careful

inspection we find, see estimate (36) of theorem A,

‖χ̂ ‖L4
(sc)

(u,u) . δ−1/4I(0) + C(R,R) (231)

Thus,

Eb . I(0) · R0 · R0[α]1/2 · R1[α]1/2 + δ1/4C(R,R)

The above considerations lead us to conclude, back to (226),

R0 +R0 . I(0) + cR0[α]1/2 · R1[α]1/2 + δ1/8C(R,R). (232)

with c = c(I(0)) a constant depending only on the initial data.

Remark In the analysis above we have not considered the possibility that, among the terms in the
integrands of E0 we can have terms of the form φ · Ψ1 · Ψ2 with at least one of the curvature term
being the null component α, which cannot be estimated along Hu. Among these terms only those
containing trχ lead to terms which are O(1) in δ. These can be treated by using H which leads to
estimates of the form,

Q0(u, u) +Q
0
(u, u) . I20 +

( ∫ u

0

Q0(u
′, u)du′ + δ−1

∫ u

0

Q
0
(u, u′)du′

)
+ Cδ1/2

with C = C(I(0),R,R). The final estimate would follow from the following: lemma below(which
can be easily proved by the method of continuity).

Lemma 14.8. Let f(x, y), g(x, y) be positive functions defined in the rectangle, 0 ≤ x ≤ x0, 0 ≤ y ≤
y0 which verify the inequality,

f(x, y) + g(x, y) . J + a

∫ x

0

f(x′, y)dx′ + b

∫ y

0

g(x, y′)dy′

for some nonnegative constants a, b and J . Then, for all 0 ≤ x ≤ x0, 0 ≤ y ≤ y0,

f(x, y), g(x, y) . Jeax+by

We summarize the results of this section in the following.

Proposition 14.9. The following estimate hold true with constants C = C(I(0),R,R), c = c(I(0)))
and δ sufficiently small,

R0[α] +R0[β] . I(0) + Cδ3/4

R0 +R0 . I(0) + c(I(0))R1/2 + δ1/8C.
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15. Curvature estimates II.

We shall now estimate the first derivative of the null curvature components appearing in R1,R1.
We apply (14.4) for the angular momentum vectorfields O as well as for the vectorfields L,L. We
prefer to work here with the vectorfields L,L instead of e4, e3, as in the previous section, because
their deformation tensors do not include ω, respectively ω. This will make a difference in this section
because we don’t have good estimates for ∇4ω and ∇3ω which would appear among the derivatives
of (4)π and (3)π. On the other hand, since e3, e4 differ from L,L only by the bounded factor Ω no
other estimates will be affected.

15.1. Deformation tensors of the vectorfields L and L. Below we list the components of Lπαβ
and Lπαβ.

Lπ44 = 0, Lπ43 = 0, Lπ33 = −2Ω−1ω,
Lπ4a = 0, Lπ3a = Ω−1(ηa + ζa) + Ω−1∇a log Ω, Lπab = Ω−1χab

Lπ33 = 0, Lπ43 = 0, Lπ33 = −2Ω−1ω,
Lπ3a = 0, Lπ4a = Ω−1(η

a
+ ζa) + Ω−1∇a log Ω, Lπab = Ω−1χ

ab

We start first with a sequence of lemmas:

15.2. Preliminaries. Given a vectorfield X we decompose both L̂XR and DXR into their null

components α(L̂XR), β(L̂XR), . . . α(L̂XR) and α(DXR), β(DXR), . . . α(DXR). We consider these
decompositions fo the vectorfields (note our discussion above concerning X = L,L and ea, a = 1, 2.
In the spirit of our discussion above we write e4 and e3 instead of L,L. In the following lemma we
estimate the null components of DXR, for X = e3, e4, ea, in terms of R, R.

Lemma 15.3. Denoting Ru and Ru the restriction of the norms R and R to the interval [0, u] and

[0, u] respectively, we have with C = C(O(0),R,R), the following anomalous estimates,

δ
1
2‖α(D3R)‖L2

(sc)
(H

(0,u)
u )

+ δ
1
2‖β(DaR)‖L2

(sc)
(H

(0,u)
u )

. I(0) + δ
1
4C,

We also have the regular estimates,

‖α(DaR)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(D3R)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(D4R)‖L2
(sc)

(H
(0,u)
u )

+ ‖(ρ, σ)(D4R)‖L2
(sc)

(H
(0,u)
u )

+ ‖(ρ, σ)(D3R)‖L2
(sc)

(H
(0,u)
u )

+ ‖(ρ, σ)(DaR)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(D4R)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(DaR)‖L2
(sc)

(H
(0,u)
u )

+ ‖α(D4R)‖L2
(sc)

(H
(0,u)
u )

. Ru + δ
1
4C
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and

‖β(D3R)‖L2
(sc)

(H
(0,u)
u )

+ ‖(ρ, σ)(D4R)‖L2
(sc)

(H
(0,u)
u )

+ ‖(ρ, σ)(D3R)‖L2
(sc)

(H
(0,u)
u )

+ ‖(ρ, σ)(D4R)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(D4R)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(D3R)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(DaR)‖L2
(sc)

(H
(0,u)
u )

+ ‖α(D4R)‖L2
(sc)

(H
(0,u)
u )

+ ‖α(DaR)‖L2
(sc)

(H
(0,u)
u )

. Ru + δ
1
4C

Remark 15.4. We note the special nature of the anomalies in α(D3R) and β(DaR). Specifically, we
can show that both terms can be written in the form G + F with G = trχ

0
· α and F obeying the

estimate
‖F‖L2

(sc)
(H

(0,u)
u )

+ ‖F‖L2
(sc)

(H
(0,u)
u )
≤ C.

Proof. Let Ψ(s)(DXR) denote the null components of DXR and φ(s) Ricci curvature components of
signature s. Then, for X = L,L, e1, e2, recalling that sgn(X) = 1, 1/2, 0 for X = L, ea, L, we write,

Ψ(s)(DXR) = ∇XΨ(s) +
∑

s1+s2=s+sgn(X)

φ(s1) ·Ψ(s2) (233)

Ignoring possible anomalies we write,

‖Ψ(s)(DXR)‖L2
(sc)

(H
(0,u)
u )

. ‖∇XΨ(s)(R)‖L2
(sc)

(H
(0,u)
u )

+ δ1/2 (S)O0,∞ · R0

. ‖∇XΨ(s)(R)‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/2

‖Ψ(s)(DXR)‖L2
(sc)

(H
(0,u)
u )
. ‖∇XΨ(s)(R)‖L2

(sc)
(H

(0,u)
u )

+ δ1/2 (S)O0,∞ · R0

. ‖∇XΨ(s)(R)‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/2

(234)

We only have to pay special attention to the case when φ(s1) = trχ and Ψ(s2) = α. If s2 = 2, i.e.

Ψ(s2) = α then s1 can be 1, 1/2 and 0. The case s1 = 1 occur only if X = e4, which is not covered by
the lemma. The case s2 = 2, s1 = 1/2 is regular. Indeed, in that case s+ sgn(X) = 5/2. Thus either
s = 2, X = ea or s = 3/2, X = L. In both cases we simply estimate the worst quadratic term, on
the right hand side of (233), with s2 = 2, by

‖φ · α‖L2
(sc)

(H
(0,u)
u )

. δ
1
2‖φ‖L4

(sc)u,u

‖α‖L4
(sc)u,u

. δ
1
2

(S)O0,4[φ]‖α‖
1
2

L2
(sc)u,u

‖∇α‖
1
2

L2
(sc)u,u

. δ
1
4

(S)O0,4[φ] · R0[α]
1
2 · R1[α]

1
2 . Cδ1/4.

The principal term is either ∇α in the first case or ∇Lβ in the second. In the second situation, using
the null Bianchi identities, (proceeding as above with the term of the form φ · α),

‖∇Lβ‖L2
(sc)

(H
(0,u)
u )

. ‖∇α‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/4

In the case (s2 = 2, s1 = 0) trχ can appear among the quadratic terms on the right. In that case
s+ sgn(X) = 2. The s = 2 and X = L corresponds to the anomalous estimate for α(DLR). In that
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case the estimate is,

‖α(DLR)‖L2
(sc)

(H
(0,u)
u )

. ‖∇Lα‖L2
(sc)

(H
(0,u)
u )

+ (1 + δ1/2C)‖α‖L2
(sc)

(H(0,u) + δ1/2C

Also, in view of the Bianchi identities, (53),

‖∇Lα‖L2
(sc)

(H
(0,u)
u )

. ‖∇β‖L2
(sc)

(H
(0,u)
u )

+ ‖α‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/2

Hence, in view of our estimate for α in the previous section

δ1/2‖α(DLR)‖L2
(sc)

(H
(0,u)
u )

. δ1/2‖∇Lα‖L2
(sc)

(H
(0,u)
u )

+ (1 + δ1/2C)δ1/2‖α‖L2
(sc)

(H(0,u)

. I(0) + δ1/4C

as desired. We need also to consider the case s2 = 2, s1 = 0, s = 3/2 and X = ea. Then, due to the
term trχ

0
· α on the right hand side of (233) we have,

‖β(DaR)‖L2
(sc)

(H
(0,u)
u )

. ‖∇β‖L2
(sc)

(H
(0,u)
u )

+ ‖α‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/4

Thus,

δ1/2‖β(DaR)‖L2
(sc)

(H
(0,u)
u )

. I(0) + Cδ1/4

as which is the second anomalous estimate.

It remains to consider the cases s2 < 2, s1 = 0. In the worst case, when a quadratic term on the
right hand side of (233) is of the form trχ

0
·Ψ(s2) we make the following correction to estimate (234),

‖Ψ(s)(DXR)‖L2
(sc)

(H
(0,u)
u )

. ‖∇XΨ(s)(R)‖L2
(sc)

(H
(0,u)
u )

+ ‖Ψ(s2)‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/4

. ‖∇XΨ(s)(R)‖L2
(sc)

(H
(0,u)
u )

+Ru + Cδ1/4

‖Ψ(s)(DXR)‖L2
(sc)

(H
(0,u)
u )
. ‖∇XΨ(s)(R)‖L2

(sc)
(H

(0,u)
u )

+ ‖Ψ(s2)‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/4

. ‖∇XΨ(s)(R)‖L2
(sc)

(H
(0,u)
u )

+Ru + Cδ1/4

These imply the regular estimates of the Lemma for the case X = ea. For the cases X = L,L we
can express ∇XΨ(s)(R) using the Bianchi identities,

∇3Ψ
(s) = ∇Ψ(s− 1

2
) +

∑
s1+s2=s

φ(s1) ·Ψ(s2), 0 < s < 2

∇4Ψ
(s) = ∇Ψ(s+ 1

2
) +

∑
s1+s2=s+1

φ(s1) ·Ψ(s2), 0 ≤ s < 2.

The worst quadratic terms which can appear on the right are of the form trχ ·Ψ(s) with s < 2 which
can be easily estimated. We thus derive all the regular estimates of the Lemma. �
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Lemma 15.5. The following estimates for the Lie derivatives L̂XR, with respect to hold true X =
{L,L,O}.

‖α(L̂LR)−∇Lα‖L2
(sc)

(H
(0,u)
u )

. C (235)

δ1/2‖α(L̂LR)−∇Lα‖L2
(sc)

(H
(0,u)
u )

. R0 + Cδ3/4 (236)

Also,

‖Ψ(s)(L̂LR)− (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4, 1 ≤ s ≤ 5/2, (237)

‖Ψ(s)(L̂LR)− (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. R0 + Cδ1/4, 1 ≤ s ≤ 3/2 (238)

‖Ψ(s)(L̂LR)− (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. R0 + Cδ1/4, s ≤ 1/2. (239)

For X = O we have the estimates.

‖Ψ(s)(L̂OR)− (∇OΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4, 1 ≤ s ≤ 5/2 (240)

‖Ψ(s)(L̂OR)− (∇OΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4, 1/2 ≤ s ≤ 2. (241)

Proof. We will make use of the regular L∞(sc) estimates for Ricci coefficients φ ∈ {χ, ω, η, η, χ̂ , t̃rχ, ω}.
We also make use of the following estimates for ∇O and (O)π .

We write, recalling the definition of the Lie derivative and with E denoting the set e1, e2, e3, e4,

Ψ(s)(LXR) = X(Ψ(s))−
∑

s1+s2=s

∑
Y ∈E

([X, Y ])(s1)Ψ(s2)

= L/X(Ψ(s))−
∑

s1+s2=s

∑
Y ∈E

(([X, Y ])(s1))⊥ ·Ψ(s2)
(242)

Here L/X(Ψ(s)) denotes the projection of the Lie derivative on the S(u, u) surfaces and [X, Y ]⊥ the
orthogonal component of [X, Y ] i.e.,

[X, Y ]⊥ = −1

2
g([X, Y ], e3)e4 −

1

2
g([X, Y ], e4)e3

Consider first the case when X = L,L. In that case [X, Y ]⊥ depends only on the regular Ricci
coefficients ω, η, η, ω Therefore, taking into account the worst possible case when α appear among



104 SERGIU KLAINERMAN AND IGOR RODNIANSKI

the quadratic terms (in which case we appeal to L4
(sc) estimates), we derive,

‖Ψ(s)(LLR)− (L/ LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4, 1 ≤ s ≤ 3

‖Ψ(s)(LLR)− (L/ LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4, 1 ≤ s ≤ 2.

‖Ψ(s)(LLR)− (L/ LΨ)(s)‖L2
(sc)

(H
(0,u)
u )
. Cδ1/4, 0 ≤ s ≤ 1/2.

(243)

On the other hand, schematically,

L/ LΨ(s) = ∇LΨ(s) +
∑

s1+s2=1+s

φ(s1) ·Ψ(s2)

with φ(s1) ∈ {χ, η, η}. In the particular case s = 3 we can have a double anomaly of the form, χ · α.
In that case,

‖L/ Lα−∇Lα‖L2
(sc)

(H
(0,u)
u )

. Cδ
1
2‖α‖L2

(sc)
(H

(0,u)
u )

+ Cδ1/2

Therefore, ‖L/ Lα−∇Lα‖L2
(sc)

(H
(0,u)
u )

. C, from which, combining with (243),

‖α(LLR)−∇Lα‖L2
(sc)

(H
(0,u)
u )

. C

Recalling the definition of L̂LR we deduce,

δ1/2‖α(L̂LR)−∇Lα‖L2
(sc)

(H
(0,u)
u )

. C

as desired.

We now consider all other cases, 1 ≤ s ≤ 5/2. Since there are no double anomalies, we deduce,
(using L4

(sc)(S) estimates for the term containing α)

‖L/ LΨ(s) − (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4

Hence, combining with (243),

‖Ψ(s)(LLR)− (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4

Recalling the definition of Ψ(s)(LLR) we deduce,

‖Ψ(s)(L̂LR)− (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4, 1 ≤ s ≤ 5/2.

as desired.

We now consider the estimates for L. We have,

L/ LΨ(s) = ∇LΨ(s) + trχ
0
Ψ(s) +

∑
s1+s2=s

φ(s1) ·Ψ(s2)
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with φ(s1) ∈ {η, η, χ̂ , t̃rχ}. Observe that the worst terms trχ
0
· α can only appear for s = 2. In that

case,

‖L/ Lα−∇Lα‖L2
(sc)

(H
(0,u)
u )

. ‖α‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/4 . δ−1/2R0 + Cδ1/4

Thus, combining with (243),

δ1/2‖α(LLR)−∇Lα‖L2
(sc)

(H
(0,u)
u )

. R0 + Cδ3/4

Finally, recalling the definition of α(L̂LR) we deduce, δ1/2‖α(L̂LR)−∇Lα‖L2
(sc)

(H
(0,u)
u )

. R0 + Cδ3/4

as desired.

In all other cases, 1 ≤ s ≤ 3
2

we have,

‖L/ LΨ(s) − (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. ‖Ψ(s)‖L2
(sc)

(H
(0,u)
u )

+ Cδ1/4

. R0 + Cδ1/4

Hence, combining with (243) and recalling the definition of L̂ we deduce,

‖Ψ(s)(L̂LR)− (∇LΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. R0 + Cδ1/4

as desired.

We now consider the case when X = O. In view of (242),

‖Ψ(s)(LOR)− (L/ OΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4

Indeed the projections of [O, e4], [O, e3] on e3, e4 depend only on O and the Ricci coefficients ω, η, η, ω

while [O, ea], a = 1, 2 are tangent to S(u, u). On the other hand, L/ OΨ(s) differs from (∇OΨ)(s) by
terms quadratic in ∇O and Ψ. We recall that we have ‖∇O‖L∞

(sc)
. C, i.e. they are regular in the

supremum norm. Thus, as before,

‖L/ OΨ(s) − (∇OΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4.

Combining this with the estimate above and recalling the definition of L̂OR as well as the estimates
‖ (O)π ‖L∞

(sc)
. C we derive, for all s ≥ 1/2.

‖Ψ(s)(L̂OR)− (∇OΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4

Similarly we prove, for s ≤ 3/2

‖Ψ(s)(L̂OR)− (∇OΨ)(s)‖L2
(sc)

(H
(0,u)
u )

. Cδ1/4

�
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15.6. Estimate for ‖∇4α‖L2
(sc)

(H). It is important to observe throughout this section that the de-

formation tensors (L)π of L does not contain ω and (L)π of L does not contain either ω.

We apply corollary 14.4 to O = L and X = Y = Z = e4. and derive∫
H

(0,u)
u

|α(L̂LR)|2 .
∫
H

(0,u)
0

|α(L̂LR)|2 +

∫
D(u,u)

(Q[L̂LR] · (4)π)(e4, e4, e4)

+

∫
D(u,u)

D(L,R)(e4, e4, e4) (244)

In view of the conservation of signature we can write schematically,

(Q[L̂LR] · (4)π)(e4, e4, e4) =
∑

s1+s2+s3=6

φ(s1) ·Ψ(s2)[L̂4R] ·Ψ(s3)[L̂4R] (245)

D(L,R)(e4, e4, e4) =
∑

s1+s2+s3=6

Ψ(s2)[L̂4R] ·
(
ψ(s1) · (DΨ)(s3) + (Dψ)(s1) ·Ψ(s3)

)
(246)

with Ricci coefficients φ ∈ {χ, ω, η, η, ω}, ψ ∈ {χ, η, η, ω} null curvature components Ψ and labels
s1, s2, s3 denoting the signature of the corresponding component. Thus,

‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)
u )

. ‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)
0 )

+ I1 + I2 + I3

with

I1 = δ1/2
∑
‖φ(s1)‖L∞

(sc)

∫ u

0

‖Ψ(s2)(L̂LR)‖L2
(sc)

(H
(0,u)

u′ )
· ‖Ψ(s3)(L̂4R)‖L2

(sc)
(H

(0,u)

u′ )
du′

I2 = δ1/2
∑
‖ψ(s1)‖L∞

(sc)

∫ u

0

‖Ψ(s2)(L̂LR)‖L2
(sc)

(H
(0,u)

u′ )
· ‖(DΨ)(s3)‖L2

(sc)
(H

(0,u)

u′ )
du′

I3 =
∑∫ u

0

‖Ψ(s2)(L̂LR)‖L2
(sc)

(H
(0,u)

u′ )
‖(Dψ)(s1) ·Ψ(s3)‖L2

(sc)
(H

(0,u)

u′ )
du′

Among the terms I1 the worst are those in which s2 = s3 = 3, in which case s1 = 0. Since trχ cannot

appear among our Ricci coefficients here, and ‖φ‖L∞
(sc)
. C, with C = C(I0,R,R)

I11 . Cδ1/2
∫ u

0

‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)

u′ )
du′

All curvature terms ‖Ψ(s)(L̂LR)‖L2
(sc)

(H
(0,u)
u )

with s < 3 can be estimated according to lemmas 15.3

and 15.5 to derive,

‖Ψ(s)[L̂LR]‖L2
(sc)

(Hu) . R0 + δ1/4C . C, s < 3.

Therefore, estimating all remaining terms in I1 we deduce,

I1(u, u) . Cδ1/2
∫ u

0

(
‖α(L̂LR)‖2

L2
(sc)

(H
(0,u)

u′ )
+ ‖α(L̂LR)‖L2

(sc)
(H

(0,u)

u′ )
R
)
du′ + δ

1
2R2
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The term I2 can be estimated in exactly the same manner. Since 0 ≤ s1 ≤ 1 and 1 ≤ s2 ≤ 3 we have
2 ≤ s3 ≤ 3. This implies that the term (DΨ)s3 may be estimated along Hu. With the exception of
the term α(DLR) these estimates are given in Lemma 15.3. Among those there are two anomalous
terms α(D3R) and β(DaR). We then obtain

I2(u, u) . Cδ1/2
∫ u

0

(
‖α(L̂LR)‖2

L2
(sc)

(H
(0,u)

u′ )
+ (Cδ−

1
4 + I(0)δ−

1
2 )‖α(L̂LR)‖L2

(sc)
(H

(0,u)

u′ )

)
du′

+ I(0)δ−
1
2 + Cδ−

1
4

. Cδ1/2
∫ u

0

‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)

u′ )
du′ + I(0)δ−

1
2 + Cδ−

1
4 (247)

It remains to estimate I3. We note that, in the worst case, the term Dψ can be written in the form

(Dψ)(s1) = (∇ψ)s1 + trχ
0
· ψ(s1) +

∑
s11+s12=s1

ψ(s11) · ψ(s12).

Observe that (∇ψ)s1 6= (∇4ω,∇3ω). Indeed ∇4ω cannot occur, since ψ(s1) ∈ {χ, η, η, ω On the other
hand ∇3ω cannot occur by signature considerations. Indeed in that case s1 = sgn(∇3ω) = 0, which
is ruled out since s1 + s2 + s3 = 6 while s2 ≤ 3 and s3 ≤ 2.

Thus, since (∇ψ)s1 6= (∇4ω,∇3ω) (for which we do not have L4
(sc) estimates !), we derive,

‖(Dψ)(s1) ·Ψ(s3)‖L2
(sc)

(H
(0,u)

u′ )
. δ

1
2‖(∇ψ)(s1)‖L4

(sc)
(H

(0,u)

u′ )
‖Ψ(s3)‖L4

(sc)
(H

(0,u)

u′ )

+

(
δ

∑
s11+s12=s1

‖ψ(s11)‖L∞
(sc)
‖φ(s12)‖L∞

(sc)
+ δ

1
2‖ψ(s1)‖L∞

(sc)

)
‖Ψ(s3)‖L2

(sc)
(H

(0,u)

u′ )

. C.

Observe that in the last step we have used the L4
(sc) estimates for the first derivatives of the Ricci

coefficients ψ ∈ {χ, η, η} and the null curvature components, and allowed for the worst possible

scenario in which (Ψ(s3) = α),

‖(∇ψ)(s1)‖L4
(sc)

(H
(0,u)

u′ )
+ ‖Ψ(s3)‖L4

(sc)
(H

(0,u)

u′ )
≤ Cδ−

1
4 ,

‖Ψ(s3)‖L2
(sc)

(H
(0,u)

u′ )
. Cδ−

1
2

As a consequence we derive,

I3(u, u) . C

∫ u

0

‖α(L̂4R)‖L2
(sc)

(H
(0,u)

u′ )
du′ + C

Combining the estimates for I1, I2, I3 we derive,

‖α(L̂4R)‖2
L2
(sc)

(H
(0,u)
u )

. ‖α(L̂4R)‖2
L2
(sc)

(H
(0,u)
0 )

+ C
(
1 + δ1/2

) ∫ u

0

‖α(L̂4R)‖L2
(sc)

(H
0,u)

u′
du′ + Cδ1/2
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Therefore, in view of the anomalous character of ‖α(L̂LR)‖L2
(sc)

(Hu),

δ‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)
u )

. δ‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)
0 )

+ Cδ
3
2

from which we infer that, for some C = C(I0,R,R),

δ1/2‖α(L̂LR)‖L2
(sc)

(H
(0,u)
u )

. δ1/2‖α(L̂LR)‖L2
(sc)

(H
(0,u)
0 )

+ Cδ1/2

. I0 + Cδ1/2

On the other hand, in view of the definition of L̂LR we have,

α(L̂LR) = ∇Lα +
∑

s1+s2=3

φ(s1) ·Ψ(s2)

Hence,

‖∇4α‖L2
(sc)

(H
(0,u)
u )

. ‖α(L̂LR)‖L2
(sc)

(H
(0,u)
u )

+ CR0

Therefore we deduce,

Proposition 15.7. The following estimate holds true for sufficiently small δ > 0, with a constant
C = C(I0,R,R),

‖∇4α‖L2
(sc)

(H
(0,u)
u )

. δ−1/2I0 + C. (248)

15.8. Estimate for ‖∇3α‖L2
(sc)

(H). Applying corollary 14.4 to O = e3 and X = Y = Z = e3 we

derive, ∫
H

(0,u)
u

|α(L̂LR)|2 .
∫
H

(0,u)
0

|α(L̂LR)|2 +

∫
D(u,u)

(Q[L̂LR] · (3)π)(e3, e3, e3)

+

∫
D(u,u)

D(L,R)(e3, e3, e3) (249)

In view of the conservation of signature we can write schematically (we need to take into account
the signature associated to the integrals),

(Q[L̂LR] · (4)π)(e3, e3, e3) =
∑

s1+s2+s3=1

ψ(s1) ·Ψ(s2)[L̂3R] ·Ψ(s3)[L̂3R] (250)

D(L,R)(e3, e3, e3) =
∑

s1+s2+s3=1

Ψ(s2)[L̂LR] ·
(
ψ(s1) · (DΨ)(s3) + (Dψ)(s1) ·Ψ(s3)

)
(251)

with Ricci coefficients ψ ∈ {ω, η, η, χ}, null curvature components Ψ and labels s1, s2, s3 denoting
the signature of the corresponding component. We now need to be careful with terms which involve

trχ and ∇3trχ. In (250) the only terms which contain trχ have the form trχ · |β(L̂LR)|2 which we
write in the form

trχ
0
· |β(L̂LR)|2 + t̃rχ · |β(L̂LR)|2
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In (251) the only terms which contains ∇3trχ, must be of the form

∇3trχ ·Ψ(s2)(L̂LR) ·Ψ(s3), s2 + s3 = 1.

Recall that,

∇3trχ = −1

2
trχ2 − 2ωtrχ− |χ̂ |2

Thus, writing, trχ = trχ
0

+ t̃rχ, we have schematically,

∇3trχ = −1

2
trχ2

0
+ trχ

0
ψg + ψ · ψ

We have,

‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)
u )

. ‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)
0 )

+ P1 + P2 + P3 + J1 + J2 + J3

with, P1, P2, P3 the terms corresponding to the terms in trχ
0
,

P1 =
∑

s2+s3=1

δ−1
∫ u

0

‖Ψ(s2)(L̂LR)‖L2
(sc)

(H
(0,u)

u′ )
· ‖Ψ(s3)(L̂LR)‖L2

(sc)
(H

(0,u)

u′ )
du′

P2 =
∑

s2+s3=1

δ−1
∫ u

0

‖Ψ(s2)(L̂LR)‖L2
(sc)

(H
(0,u)

u′ )
· ‖(DΨ)(s3)‖L2

(sc)
(H

(0,u)

u′ )
du′

P3 =
∑

s2+s3=1

δ−1
∫ u

0

‖Ψ(s2)(L̂3R)‖L2
(sc)

(H
(0,u)

u′ )
· ‖Ψ(s3)‖L2

(sc)
(H

(0,u)

u′ )
du′

and J1, J2, J3 the remaining terms with Ricci terms ψ ∈ {η, η, χ̂ },

J1 = δ−1/2
∑

s1+s2+s3=1

‖ψ(s1)‖L∞
(sc)

∫ u

0

‖Ψ(s2)(L̂3R)‖L2
(sc)

(H
(0,u)

u′ )
· ‖Ψ(s3)(L̂3R)‖L2

(sc)
(H

(0,u)

u′ )
du′

J2 = δ−1/2
∑

s1+s2+s3=1

‖ψ(s1)‖L∞
(sc)

∫ u

0

‖Ψ(s2)(L̂3R)‖L2
(sc)

(H
(0,u)

u′ )
· ‖(DΨ)(s3)‖L2

(sc)
(H

(0,u)

u′ )
du′

J3 =
∑

s1+s2+s3=1

δ−1
∫ u

0

‖Ψ(s2)(L̂3R)‖L2
(sc)

(H
(0,u)

u′ )
‖(Dψ)(s1) ·Ψ(s3)‖L2

(sc)
(H

(0,u)

u′ )
du′

It clearly suffices to estimate the principal terms P . Indeed the J terms can be treated exactly as in
the previous subsection27 . We have,

P1 . δ−1
∫ u

0

‖β(L̂LR)‖2
L2
(sc)

(H
(0,u)

u′ )
du′

According to Lemma (15.5) we have,

‖β(L̂LR)‖2
L2
(sc)

(H
(0,u)

u′ )
. ‖∇3β‖2L2

(sc)
(H

(0,u)

u′ )
+R0 + δ1/4C

27Remark that in J2 (DΨ)(3) differ from ∇3ω, because Ψ(s3) ∈ {ω, η, η, χ}, and ∇4ω by signature considerations.
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In view of the Bianchi identities, for 1
2
≤ s ≤ 1,

∇3β = div α− 2trχ · β − 2ω · β + η · α

Therefore,

‖β(L̂LR)‖2
L2
(sc)

(H
(0,u)

u′ )
. ‖∇α‖2

L2
(sc)

(H
(0,u)

u′ )
+R0 + δ1/4C

Consequently,

P1(u, u) . δ−1
∫ u

0

(
‖∇α‖2

L2
(sc)

(H
(0,u)

u′ )
+R0(u, u

′)
)
du′ + Cδ1/4

. δ−1
∫ u

0

R2(u, u′)du′ + δ1/4C

P2, P3 can be estimated exactly in the same manner. First, observe that in P2 the terms of the form
(DΨ)(s3) obey the bounds,

‖(DΨ)(s3)‖L2
(sc)

(H
(0,u)

u′ )
. R(u, u′) + δ

1
4C.

This follows from the restriction s3 ≤ 1. Similarly, for s2 ≤ 1

‖Ψ(s2)(L̂LR)‖L2
(sc)

(H
(0,u)

u′ )
. ‖α(L̂LR)‖L2

(sc)
(H

(0,u)

u′ )
+R(u, u′) + δ

1
2C.

Therefore,

P2(u, u) . δ−1
∫ u

0

‖α(L̂LR)‖2
L2
(sc)

(H
(0,u)

u′ )
du′

+ δ−1
∫ u

0

R2(u, u′)du′ + δ1/2C

Similarly,

P3(u, u) . δ−1
∫ u

0

‖α(L̂3R)‖L2
(sc)

(H
(0,u)

u′ )
R(u, u′)du′

+ δ−1
∫ u

0

R2(u, u′)du′ + δ1/2C.

Therefore using Lemma 15.5 we derive,

Proposition 15.9. The following estimate holds true for sufficiently small δ > 0, with a constant
C = C(I0,R,R),

‖∇3α‖2L2
(sc)

(H
(0,u)
u )

. ‖∇3α‖2L2
(sc)

(H
(0,u)
0 )

+ δ−
1
2R0 +

∫ u

0

R(u, u′)2du′ + δ
1
4C (252)
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15.10. Estimates for the angular derivatives of R. Applying corollary 14.4 to the angular
momentum vectorfields O and X, Y, Z ∈ {e3, e4} we derive,∫
H

(0,u)
u

|Ψ(s)(L̂OR)|2 +

∫
H

(0,u)
u

|Ψ(s− 1
2
)(L̂OR)|2 .

∫
H

(0,u)
0

|Ψ(s)(L̂OR)|2 +

∫
D(u,u)

(Q[L̂OR] · π)(X, Y, Z)

+

∫
D(u,u)

D(O,R)(X, Y, Z) (253)

In view of the conservation of signature we can write schematically,

(Q[L̂OR] · π)(X, Y, Z) = trχ
0
·
∑

s2+s3=2s

Ψ(s2)[L̂OR] ·Ψ(s3)[L̂OR] (254)

+
∑

s1+s2+s3=2s

φ(s1) ·Ψ(s2)[L̂OR] ·Ψ(s3)[L̂OR]

with φ Ricci coefficients in {χ, ω, η, η, χ̂ , t̃rχ, ω}. Also, recalling that π = π̂ + 1
4
tr(π)g,

D(O,R)(X, Y, Z) =
∑

s1+s2+s3=2s

Ψ(s2)[L̂OR] ·
(
(O)π (s1) · (DΨ)(s3) + (D (O)π )(s1) ·Ψ(s3)

)
(255)

with (O)π (s) null components of the deformation tensor of O. Thus, for all s > 1
2
,

‖Ψ(s)(L̂OR)‖2
L2
(sc)

(H
(0,u)
u )

+ ‖Ψ(s− 1
2
)(L̂OR)‖2

L2
(sc)

(H
(0,u)
u )

. ‖Ψ(s)(L̂OR)‖2
L2
(sc)

(H
(0,u)
0 )

+ I1 + I2 + I3

• I1 is the integral in D(u, u) whose integrand is given by (254),
• I2 is the integral in D(u, u) whose integrand is given by∑

s1+s2+s3=2s

Ψ(s2)[L̂OR] · (O)π (s1) · (DΨ)(s3).

• I3 is the integral in D(u, u) whose integrand is given by∑
s1+s2+s3=2s

Ψ(s2)[L̂OR] · (D (O)π )(s1) ·Ψ(s3).

In what follows we make use of the estimates for the deformation tensors of the angular momentum
vectorfields established in theorem 13.14 O,

‖ (O)π ‖L4
(sc)

(S) + ‖ (O)π ‖L∞
(sc)

(S) . C

Also all null components of the derivatives D (O)π , with the exception of (D3
(O)π )3a, verify the

estimates,

‖D (O)π ‖L4
(sc)

(S) . C (256)
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Moreover,

‖(D3
(O)π )3a −∇3Z‖L4(S) + ‖ sup

u
|∇3Z|‖L2(S) . C (257)

(258)

The term I1 can be easily estimated, since none of the curvature terms are anomalous. Indeed, in
view of lemma 15.5 we have, for all s > 1/2

‖Ψ(s)(L̂OR)‖L2
(sc)

(H
(0,u)
u )

. ‖Ψ(s)(L̂OR)−∇OΨ(s)‖L2
(sc)

(H
(0,u)
u )

+ ‖∇OΨ(s)‖L2
(sc)

(H
(0,u)
u )

. R(u, u)

while, for s = 1
2
,

‖Ψ(1/2)(L̂OR)‖L2
(sc)

(H
(0,u)
u )

. R(u, u)

Consequently, for s > 1/2,

I1 .
∑
s≥1

∫ u

0

‖Ψ(s)(L̂OR)‖2
L2
(sc)

(H
(0,u)

u′ )
du′ + δ1/2C

while for s = 1/2,

I1 .
∑
s≤2

δ−1
∫ u

0

‖Ψ(s)(L̂OR)‖2
L2
(sc)

(H
(0,u)

u′ )
du+ δ1/2C

Therefore,

I1 .
∑
s≥1

∫ u

0

‖Ψ(s)(L̂OR)‖2
L2
(sc)

(H
(0,u)

u′ )
du′ +

∑
s≤2

δ−1
∫ u

0

‖Ψ(s)(L̂OR)‖2
L2
(sc)

(H
(0,u)

u′ )
du′ + δ1/2C

(259)

Among the terms I2 the only possible anomalies may be due to the case when s3 = 3, i.e. (DΨ)(s3) =
α(D4R) or in the easier cases (DΨ)(s3) = α(D3R) and (DΨ)(s3) = β(DaR) (i.e. s3 = 2). We denote
by I21 all terms in I2 except those which corresponds to these anomalous cases. For all other terms
we have either ‖(DΨ)(s3)‖L2

(sc)
(H

(0,u)

u′ )
. C or ‖(DΨ)(s3)‖L2

(sc)
(H

(0,u)

u′ )
. C. Using also ‖ (O)π ‖L∞

(sc)
. C

and,

‖Ψ(s2)(L̂OR)‖L(sc)(H(0,u)
u )

. C, s2 ≥ 1

‖Ψ(s2)(L̂OR)‖L2
(sc)

(H
(0,u)
u )

. C, s2 ≤ 2

we derive,

I21 . δ
1
4C
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We now consider the terms I22 which contain (DΨ)(s3)α(D3R) and (DΨ)(s3) = β(DaR) but not
α(D4R). In this case write, according to the Remark 15.4,

(DΨ)(s3) = G+ F (s3),

‖F (s3)‖L2
(sc)

(H
(0,u)
u )

. C, s3 > 1,

‖F (s3)‖L2
(sc)

(H
(0,u)
u )

. C, s3 < 2.

where G = trχ
0
· α. Clearly, the terms corresponding to F (s3) can be estimated exactly as above.

To estimate the terms corresponding to G we make use of the L4
(sc)(S) estimate, ‖G‖L4

(sc)
(S) ≤ Cδ−

1
4 .

Using also, ‖ (O)π ‖L4
(sc)

(S) . C we obtain,

I22 . δ
1
4C

It remains to estimate the terms in I23 which contain α(D4R). The integrand, which contain α(D4R)
has the form,

D23 =
∑

s1+s2=2s−3

(O)π (s1) ·Ψ(s2)(L̂OR) · α(D4R)

This term is potentially dangerous ! In view of lemma (15.5) Ψ(s2)(L̂OR) differs from (∇OΨ)(s2) by
a lower order terms. It thus suffices to estimate,

D23 ≡
∑

s1+s2=2s−3

(O)π (s1) · (∇OΨ)(s2) · α(D4R)

We also decompose

α(D4R) = ∇4α +
∑

s3+s4=3

φ(s3) ·Ψ(s4)

where φ(s3) ∈ {ω, η, η}. This forces s4 < 2 and thus, since there are no anomalies we derive,

‖α(D4R)−∇4α‖L2
(sc)

(H
(0,u)
u )

. Cδ1/2

Therefore we can safely replace α(D4R) by ∇4α and thus it remains to estimate,

D23 ≡
∑

s1+s2=2s−3

(O)π (s1) · (∇OΨ)(s2) · ∇4α

Because of the anomaly of ∇4α the best we can by a straightforward estimate is to derive an estimate
of the form I23 . I(0) + C which is not acceptable. Because of this we are forced to integrate by
parts, Ignoring the boundary term

∫
Hu

(O)π (s1) · (∇OΨ)(s2) · α, for a moment∫
D

(O)π (s1) · (∇OΨ)(s2) · ∇4α = −
∫
D∇4

(O)π (s1) · (∇OΨ)(s2) · α−
∫
D

(O)π (s1) · ∇4(∇OΨ)(s2) · α

(260)
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We write schematically, with φ(1/2) ∈ {η, η}

∇4(∇OΨ)(s2) = ∇4∇O(Ψ)(s2−
1
2
)

= ∇O∇4(Ψ)(s2−
1
2
) +

∑
s3+s4=s2+1

Ψ(s3) ·Ψ(s4) +
∑

s4=s2+1/2

φ(1/2) ·Ψ(s4).

We can therefore replace the integrand D23 by,

D23 ≡ −D231 −D232 −D233 −D234

D231 =
∑

s1+s2=2s−3

∇4
(O)π (s1) · (∇OΨ)(s2) · α

D232 =
∑

s1+s2=2s−3

(O)π (s1) · ∇O(∇4Ψ
(s2+1/2)) · α

D233 =
∑

s1+s2=2s−3

(O)π (s1) ·
( ∑
s3+s4=s2+1

Ψ(s3) ·Ψ(s4)
)
· α

D234 =
∑

s1+s2=2s−3

(O)π (s1) ·
( ∑
s4=s2+1/2

φ(1/2) ·Ψ(s4)
)
· α

Accordingly we decompose I23 ≡ I231 + I232 + I233 + I234. Now,

I231 . δ
1
2‖∇4

(O)π (s1)‖L4
(sc)

(S)‖α‖L4
(sc)

(S) · δ−1
∫ u

0

‖(∇OΨ)(s2)‖L(sc)(H(0,u)

u′ )
du′

. δ
1
4C.

The terms I233 and I234 are clearly lower order in δ, we derive

I233 + I234 . δ
1
2C

It remains to estimate I232 for which we need to perform another integration by parts. We write∫
D

(O)π (s1) · ∇O(∇4Ψ
(s2+1/2)) · α = −

∫
D
∇O

(O)π (s1) · (∇4Ψ
(s2+1/2)) · α

−
∫
D

(O)π (s1) · (∇4Ψ
(s2+1/2)) · ∇Oα

−
∫
D

(O)π (s1) · (∇4Ψ
(s2+1/2)) · (∇aOa)α

By Bianchi, since s2 + 1/2 < 3,

‖(∇4Ψ)(s2+1/2)‖L(sc)(H(0,u)
u )

. ‖(∇Ψ)(s2+1/2)‖L(sc)(H(0,u)
u )

+ δ
1
2‖φ‖L∞

(sc)
‖Ψ‖L2

(sc)
(S) ≤ C.
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Therefore,

|
∫
D
∇O

(O)π (s1) · (∇4Ψ)(s2+
1
2
) · α| . δ

1
2‖∇O

(O)π (s1)‖L4
(sc)

(S)‖α‖L4
(sc)

(S)

×
∫ u

0

‖(∇4Ψ)(s2+
1
2
)‖L(sc)(H(0,u)

u′ )
du′

. δ
1
4C.

Also,

|
∫
D

(O)π (s1) · (∇4Ψ)(s2+
1
2
) · ∇Oα| . δ

1
2

∫ u

0

‖∇Oα‖L(sc)(H(0,u)

u′ )
‖(∇4Ψ)(s2+

1
2
)‖L(sc)(H(0,u)

u′ )
du′

× ‖ (O)π (s1)‖L∞
(sc)

(S)

. δ
1
2C.

The remaining integral in I232 is clearly lower order in δ. For the boundary term in (260) we have,

|
∫
Hu

(O)π (s1) · (∇OΨ)(s2) · α| . δ
1
2‖(∇OΨ)(s2)‖L2

(sc)
(Hu)
· ‖ (O)π ‖L4

(sc)
(S)‖α‖L4

(sc)
(S) ≤ δ

1
4C.

We therefore deduce,

I2 . Cδ1/4 (261)

Consider now I3. Ignoring powers of δ, we have to estimate the integral
∫
D(D (O)π )(s1) ·Ψ(s2)(L̂OR) ·

Ψ(s3). Recall the estimates

‖(D (O)π )(s1)‖L4
(sc)

(S) . C

for all components of (D (O)π )(s1) with the exception of the term D3
(O)π 3a which corresponds to the

signature s1 = 0. In this latter case we have,

‖D3
(O)π 3a −∇3Z‖L4

(sc)
(S) . C, ‖ sup

u
|(D3

(O)π )3a|‖L2
(sc)

(S) . C

In the case (D (O)π )(s1) 6= D3
(O)π 3a, we have

|
∫
D

(D (O)π )(s1) ·Ψ(s2)(L̂OR) ·Ψ(s3)| . δ
1
2 δ−1

∫ u

0

‖(∇OΨ)(s2)‖L(sc)(H(0,u)

u′ )
du′·

× ‖(D (O)π )(s1)‖L4
(sc)

(S)‖Ψ(s3)‖L4
(sc)

(S) ≤ δ
1
4C,

where we considered the worst case in which Ψ(s3) = α and thus anomalous and (∇OΨ)(s2) has to be

estimated along H
(0,u)
u′ .

For the case we can replace, without loss of generality, (D∇ (O)π )(s1) by ∇3Z. Indeed the remaining
error term can be estimated exactly as above. In this case, since s1 = 0, signature considerations
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dictate that s3 ≥ 1. It follows from the conditions s1 + s2 + s3 = 2s, s2 ∈ {s, s− 1
2
} and s ≥ 1. This

implies that we may use the trace theorem along Hu

‖Ψ(s3)‖Tr (sc)(H) . δ
1
4C,

where in fact δ
1
4 only occurs in the case Ψ(s3) = α, for all other terms the behavior in δ is better. We

thus give the argument only for Ψ(s3) = α, other cases are even easier. Recalling also lemma 15.5,

|
∫
D
∇3Z ·Ψ(s2)(L̂OR) ·Ψ(s3)| . δ

1
2 δ−1

∫ u

0

‖(∇OΨ)(s2)‖L(sc)(H(0,u)

u′ )
du′·

× ‖ sup
u
|∇3Z|‖L2

(sc)
(S) sup

u
‖Ψ(s3)‖Tr (sc)(Hu) ≤ δ

1
4C,

Finally we observe that the only borderline terms, not resulting in positive powers of the parameter
δ and arising from coupling to trχ, involve only β, ρ, σ and β components of curvature.

Combining all our estimates for I, I2, I3 and using lemma 14.8 we derive,∑
1≤s≤5/2

(
‖Ψ(s)(L̂OR)‖L2

(sc)
(H

(0,u)
u )

+ ‖Ψ(s− 1
2
)(L̂OR)‖L2

(sc)
(H

(0,u)
u )

)
.

∑
1≤s≤2

‖Ψ(s)(L̂OR)‖L2
(sc)

(H
(0,u)
0 )

+ δ1/4C

More precisely, we easily check the following,

‖α(L̂OR)‖L2
(sc)

(H
(0,u)
u )

+ ‖β(L̂OR)‖L2
(sc)

(H
(0,u)
u )

. ‖α(L̂OR)‖L2
(sc)

(H
(0,u)
u )

+ δ1/4C

For s ≤ 2 we have,∑
s≤2

(
‖Ψ(s)(L̂OR)‖L2

(sc)
(H

(0,u)
u )

+ ‖Ψ(s− 1
2
)(L̂OR)‖L2

(sc)
(H

(0,u)
u )

)
.

∑
s≤2

‖Ψ(s)(L̂OR)‖L2
(sc)

(H
(0,u)
u )

+ δ1/4C

Using the estimates of lemma 15.5 we derive,

‖∇α‖L2
(sc)

(H
(0,u)
u )

+ ‖∇β‖L2
(sc)

(H
(0,u)
u )

. ‖∇α‖L2
(sc)

(H
(0,u)
u )

+ δ1/4C (262)

For s ≤ 2 we have,∑
s≤2

(
‖(∇Ψ)(s)‖L2

(sc)
(H

(0,u)
u )

+ ‖(∇Ψ)(s−
1
2
)‖L2

(sc)
(H

(0,u)
u )

)
.

∑
s≤2

‖(∇Ψ)(s)‖L2
(sc)

(H
(0,u)
u )

+ δ1/4C (263)

We summarize the result above in the following.

Proposition 15.11. The following estimates hold for δ sufficiently small and C = C(I(0),R,R).∑
1≤s≤5/2

(
∇‖Ψ(s)‖L2

(sc)
(H

(0,u)
u )

+ ‖∇Ψ(s− 1
2
)‖L2

(sc)
(H

(0,u)
u )

)
. I0 + Cδ1/4 (264)
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Combining this proposition with propositions 15.9 and 15.7 we derive.

R1 +R1 . I0 + Cδ1/4 (265)

Finally combining this with proposition 14.9 we derive,

R+R ≤ I0 + Cδ1/4 (266)

This ends the proof of our main theorem.

15.12. Proof of propositions 2.9 and 2.10. The proof of proposition 2.9 is an immediate conse-
quence of estimate (263) together with the initial assumptions derived in proposition 2.8. Indeed,
under initial assumptions (32) we derive,∑

s≤2

(
‖(∇Ψ)(s)‖L2

(sc)
(H

(0,u)
u )

+ ‖(∇Ψ)(s−
1
2
)‖L2

(sc)
(H

(0,u)
u )

)
. ε+ δ1/4C

which gives, for sufficiently small δ, estimate (33).

We combine this result with proposition 11.12 to prove the following scale invariant version of propo-
sition 2.10 of the introduction.

Proposition 15.13. The solution (3)φ of the problem ∇(3)
3 φ = ∇η with trivial initial data satisfies

‖(3)φ‖L∞
(sc)

(S) ≤ Cε
1
4 + Cδ

1
8 .
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