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Summary

This memoir contains an overview of the proof of the bounded L? curvature conjecture.
More precisely we show that the time of existence of a classical solution to the Einstein-
vacuum equations depends only on the L?-norm of the curvature and a lower bound
of the volume radius of the corresponding initial data set. We note that though the
result is not optimal with respect to the standard scaling of the Einstein equations, it
is nevertheless critical with respect to another, more subtle, scaling tied to its causal
geometry. Indeed, L? bounds on the curvature is the minimum requirement necessary
to obtain lower bounds on the radius of injectivity of causal boundaries. We note also
that, while the first nontrivial improvements for well posedness for quasilinear hyperbolic
systems in spacetime dimensions greater than 1+ 1 (based on Strichartz estimates) were
obtained in [2], [3], [49], [50], [19] and optimized in [20], [36], the result we present here
is the first in which the full structure of the quasilinear hyperbolic system, not just its
principal part, plays a crucial role.

The entire proof of the conjecture is contained in the following sequence of papers

S. Klainerman, I. Rodnianski, J. Szeftel, The bounded L* curvature conjecture. arXiv:1204.1767,
91 pp. This is the main part of the series in which the proof is completed based on the
results of the papers below.

J. Szeftel, Parametriz for wave equations on a rough background I: reqularity of the phase
at initial time. arXw:1204.1768, 145 pp.

J. Szeftel, Parametriz for wave equations on a rough background II: control of the parametriz
at initial time. arXi:1204.1769, 84 pp.

J. Szeftel, Parametriz for wave equations on a rough background III: space-time regularity
of the phase. arXiv:1204.1770, 276 pp.

J. Szeftel, Parametrix for wave equations on a rough background IV: Control of the error
term. arXw:1204.1771, 284 pp.
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CHAPTER 1

Introduction

1.1. General Introduction

We present a summary of our proof of the bounded L2-curvature conjecture in General
Relativity. According to the conjecture the time of existence of a classical solution to
the Einstein-vacuum equations depends only on the L2norm of the curvature and a
lower bound of the volume radius of the corresponding initial data set. At a deep level
the L? curvature conjecture concerns the relationship between the curvature tensor and
the causal geometry of an Einstein vacuum space-time. Thus, though the result is not
optimal with respect to the standard scaling of the Einstein equations, it is nevertheless
critical with respect to a different scaling, which we call null scaling, tied to its causal
properties. More precisely, L? curvature bounds are strictly necessary to obtain lower
bounds on the radius of injectivity of causal boundaries. These lower bounds turn out
to be crucial for the construction of parametrices and derivation of bilinear and trilinear
spacetime estimates for solutions to scalar wave equations. We note also that, while
the first nontrivial improvements for well posedness for quasilinear hyperbolic systems in
spacetime dimensions greater than 1 + 1 (based on Strichartz estimates) were obtained
in [2], [3], [49], [50], [19] and optimized in [20], [36], the result we present here is the
first in which the full structure of the quasilinear hyperbolic system, not just its principal
part, plays a crucial role.

1.1.1. Initial value problem. We consider the Einstein vacuum equations (EVE),
Ric,s = 0 (1.1)

where Ric,g denotes the Ricci curvature tensor of a four dimensional Lorentzian space
time (M, g). An initial data set for (1.1) consists of a three dimensional 3-surface 3
together with a Riemannian metric g and a symmetric 2-tensor k verifying the constraint
equations,

ijij - Vitrk: = 0, (1 2)

Rgcar — [K|? + (trk)?* = 0, '
where the covariant derivative V is defined with respect to the metric g, Ry.. is the
scalar curvature of g, and trk is the trace of k with respect to the metric g. In this work
we restrict ourselves to asymptotically flat initial data sets with one end. For a given
initial data set the Cauchy problem consists in finding a metric g satisfying (1.1) and an
embedding of ¥y in M such that the metric induced by g on 3, coincides with g and the
2-tensor k is the second fundamental form of the hypersurface ¥y C M. The first local

1



2 1. INTRODUCTION

existence and uniqueness result for (EVE) was established by Y.C. Bruhat, see [5], with
the help of wave coordinates which allowed her to cast the Einstein vacuum equations in
the form of a system of nonlinear wave equations to which one can apply! the standard
theory of nonlinear hyperbolic systems. The optimal, classical? result states the following,

THEOREM 1.1 (Classical local existence [12] [14]). Let (Xo, g, k) be an initial data
set for the Finstein vacuum equations (1.1). Assume that 3 can be covered by a locally
finite system of coordinate charts, related to each other by C diffeomorphisms, such that
(9, k) € Hj;(30) x Hipo'(S0) with s > 3. Then there exists a unique® (up to an isom-

etry) globally hyperbolic development (M, g), verifying (1.1), for which 3¢ is a Cauchy
hypersurface*.

1.1.2. Bounded L? curvature conjecture. The classical exponents s > 5/2 are
clearly not optimal. By straightforward scaling considerations one might expect to make
sense of the initial value problem for s > s. = 3/2, with s, the natural scaling exponent for
L? based Sobolev norms. Note that for s = s, = 3/2 a local in time existence result, for
sufficiently small data, would be equivalent to a global result. More precisely any smooth
initial data, small in the corresponding critical norm, would be globally smooth. Such
a well-posedness (WP) result would be thus comparable with the so called e- regularity
results for nonlinear elliptic and parabolic problems, which play such a fundamental role in
the global regularity properties of general solutions. For quasilinear hyperbolic problems
critical WP results have only been established in the case of 1 + 1 dimensional systems,
or spherically symmetric solutions of higher dimensional problems, in which case the L2-
Sobolev norms can be replaced by bounded variation (BV) type norms®. A particularly
important example of this type is the critical BV well-posedness result established by
Christodoulou for spherically symmetric solutions of the Einstein equations coupled with a
scalar field, see [7]. The result played a crucial role in his celebrated work on Weak Cosmic
Censorship for the same model, see [8]. As well known, unfortunately, the BV-norms are
completely inadequate in higher dimensions; the only norms which can propagate the
regularity properties of the data are necessarily L? based.

The quest for optimal well-posedness in higher dimensions has been one of the major
themes in non-linear hyperbolic PDE’s in the last twenty years. Major advances have
been made in the particular case of semi-linear wave equations. In the case of geometric

IThe original proof in [5] relied on representation formulas, following an approach pioneered by
Sobolev, see [37].

2Based only on energy estimates and classical Sobolev inequalities.

3The original proof in [12], [14] actually requires one more derivative for the uniqueness. The fact
that uniqueness holds at the same level of regularity than the existence has been obtained in [33]

4That is any past directed, in-extendable causal curve in M intersects .

SRecall that the entire theory of shock waves for 1+1 systems of conservation laws is based on BV
norms, which are critical with respect to the scaling of the equations. Note also that these BV norms
are not, typically, conserved and that Glimm’s famous existence result [13] can be interpreted as a global
well posedness result for initial data with small BV norms.
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wave equations such as Wave Maps and Yang-Mills, which possess a well understood null
structure, well-posedness holds true for all exponents larger than the corresponding crit-
ical exponent. For example, in the case of Wave Maps defined from the Minkowski space
R™™! to a complete Riemannian manifold, the critical scaling exponents is s, = n/2 and
well-posedness is known to hold all the way down to s, for all dimensions n > 2. This
critical well-posedness result, for s = n/2, plays a fundamental role in the recent, large
data, global results of [47], [40], [41] and [28] for 2 4+ 1 dimensional wave maps.

The role played by critical exponents for quasi-linear equations is much less under-
stood. The first well posedness results, on any (higher dimensional) quasilinear hyperbolic
system, which go beyond the classical Sobolev exponents, obtained in [2], [3], and [49],
[50] and [19], do not take into account the specific (null) structure of the equations. Yet
the presence of such structure was crucial in the derivation of the optimal results men-
tioned above, for geometric semilinear equations. In the case of the Einstein equations it
is not at all clear what such structure should be, if there is one at all. Indeed, the only
specific structural condition, known for (EVE), discovered in [30] under the name of the
weak null condition, is not at all adequate for improved well posedness results, see remark
1.3. It is known however, see [29], that without such a structure one cannot have well
posedeness for exponents® s < 2. Yet (EVE) are of fundamental importance and as such
it is not unreasonable to expect that such a structure must exist.

Even assuming such a structure, a result of well-posedness for the Einstein equations
at, or near, the critical regularity s. = 3/2 is not only completely out of reach but may in
fact be wrong. This is due to the presence of a different scaling connected to the geometry
of boundaries of causal domains. It is because of this more subtle scaling that we need
at least L2-bounds for the curvature to derive a lower bound on the radius of injectivity
of null hypersurfaces and thus control their local regularity properties. This imposes a
crucial obstacle to well posedness below s = 2. Indeed, as we will show in the next
subsection, any such result would require, crucially, bilinear and even trillinear estimates
for solutions to wave equations of the form [g¢ = F. Such estimates, however, depend
on Fourier integral representations, with a phase function u which solves the eikonal
equation g*?d,udsu = 0. Thus the much needed bilinear estimates depend, ultimately,
on the regularity properties of the level hypersurfaces of the phase u which are, of course,
null. The catastrophic breakdown of the regularity of these null hypersurfaces, in the
absence of a lower bound for the injectivity radius, would make these Fourier integral
representations entirely useless.

These considerations lead one to conclude that, the following conjecture, proposed
in [18], is most probably sharp in so far as the minimal number of derivatives in L? is
concerned:

Conjecture [Bounded L? Curvature Conjecture (BCC)| The Einstein- vacuum equa-
tions admit local Cauchy developments for initial data sets (Xq, g, k) with locally finite L*

6Note that the dimension here is n = 3.
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curvature and locally finite L* norm of the first covariant derivatives of k.

REMARK 1.2. [t is important to emphasize here that the conjecture should be primarily
interpreted as a continuation argument for the Einstein equations; that is the space-time
constructed by evolution from smooth data can be smoothly continued, together with a time
foliation, as long as the curvature of the foliation and the first covariant derivatives of its
second fundamental form remain L*- bounded on the leaves of the foliation. In particular
the conjecture implies the break-down criterion previously obtained in [26] and improved
in [31], [52]. According to that criterion a vacuum space-time, endowed with a constant
mean curvature (CMC) foliation ¥y, can be extended, together with the foliation, as long
as the LEL>(3;) norm of the deformation tensor of the future unit normal to the foliation
remains bounded. It is straightforward to see, by standard energy estimates, that this
condition implies bounds for the L L?(3%;) norm of the space-time curvature from which
one can deriwe bounds for the induced curvature tensor R and the first derivatives of the
second fundamental form k. Thus, if we can ensure that the time of existence of a space-
time foliated by ¥, depends only on the L? norms of R and first covariant derivatives of
k, we can extend the space-time indefinitely.

1.1.3. Brief history. The conjecture has its roots in the remarkable developments
of the last twenty years centered around the issue of optimal well-posedness for semilinear
wave equations. The case of the Einstein equations turns out to be a lot more complicated
due to the quasilinear character of the equations. To make the discussion more tangible it
is worthwhile to recall the form of the Einstein vacuum equations in the wave gauge. As-
suming given coordinates =%, verifying Ogz® = 0, the metric coefficients gos = g(0a, 0p),
with respect to these coordinates, verify the system of quasilinear wave equations,

gwjauauga,é’ = Faﬂ (97 59) (13)

where F,5 are quadratic functions of dg, i.e. the derivatives of g with respect to the
coordinates z. In a first approximation we may compare (1.3) with the semilinear wave
equation,

O¢ = F(¢,09) (1.4)

with F' quadratic in d¢. Using standard energy estimates, one can prove an estimate,
roughly, of the form:

16 S 16(0) . exp (cs / H&b(r)r\m) |

The classical exponent s > 3/2 + 1 arises simply from the Sobolev embedding of H",
r > 3/2 into L. To go beyond the classical exponent, see [34], one has to replace

"As we shall see, from the precise theorem stated below, other weaker conditions, such as a lower
bound on the volume radius, are needed.
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Sobolev inequalities with Strichartz estimates of, roughly, the following type,

(Anwwﬂﬁmm)”iSCOmammms+A”Ebhmmﬁ>

where € > 0 can be chosen arbitrarily small. This leads to a gain of 1/2 derivatives, i.e.
we can prove well-posedness for equations of type (1.4) for any exponent s > 2.

The same type of improvement in the case of quasilinear equations requires a highly
non-trivial extension of such estimates for wave operators with non-smooth coefficients.
The first improved regularity results for quasilinear wave equations of the type,

9" ()0.0,¢ = F(¢,00) (1.5)

with g"(¢) a non-linear perturbation of the Minkowski metric m**, are due to [2], [3],
and [49], [50] and [19]. The best known results for equations of type (1.3) were obtained
in [20] and [36]. According to them one can lower the Sobolev exponent s > 5/2 in
Theorem 1.1 to s > 2. It turns out, see [29], that these results are sharp in the general
class of quasilinear wave equations of type (1.3). To do better one needs to take into
account the special structure of the Einstein equations and rely on a class of estimates
which go beyond Strichartz, namely the so called bilinear estimates®.

In the case of semilinear wave equations, such as Wave Maps, Maxwell-Klein-Gordon
and Yang-Mills, the first results which make use of bilinear estimates go back to [15],
[16], [17]. In the particular case of the Maxwell-Klein-Gordon and Yang-Mills equation
the main observation was that, after the choice of a special gauge (Coulomb gauge), the
most dangerous nonlinear terms exhibit a special, null structure for which one can apply
the bilinear estimates derived in [15]. With the help of these estimates one was able
to derive a well posedness result, in the flat Minkowski space R!'*3, for the exponent
s =8, +1/2 =1, where s. = 1/2 is the critical Sobolev exponent in that case®.

To carry out a similar program in the case of the Einstein equations one would need,
at the very least, the following crucial ingredients:

A. Provide a coordinate condition, relative to which the Einstein vacuum equations
verifies an appropriate version of the null condition.

B. Provide an appropriate geometric framework for deriving bilinear estimates for
the null quadratic terms appearing in the previous step.

C. Construct an effective progressive wave representation ®p (parametriz) for solu-
tions to the scalar linear wave equation Ugp = I, derive appropriate bounds for
both the parametriz and the corresponding error term E = F — Ug®p and use
them to derive the desired bilinear estimates.

8Note that no such result, i.e. well-posedness for s = 2, is presently known for either scalar equations
of the form (1.5) or systems of the form (1.3).
9This corresponds precisely to the s = 2 exponent in the case of the Einstein-vacuum equations
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As it turns out, the proof of several bilinear estimates of Step B reduces to the proof
of sharp L*(M) Strichartz estimates for a localized version of the parametrix of step C.
Thus we will also need the following fourth ingredient.

D. Prove sharp L*(M) Strichartz estimates for a localized version of the parametriz
of step C.

Note that the last three steps need to be implemented using only hypothetical L2
bounds for the space-time curvature tensor, consistent with the conjectured result. To
start with, it is not at all clear what should be the correct coordinate condition, or even
if there is one for that matter.

REMARK 1.3. As mentioned above, the only known structural condition related to
the classical null condition, called the weak null condition, tied to wave coordinates, fails
the test. Indeed, the following simple system in Minkowski space verifies the weak null
condition and yet, according to [29], it is ill posed for s = 2.

Op=0, =do-Ag.

Coordinate conditions, such as spatial harmonic'®, also do not seem to work.

We rely instead on a Coulomb type condition, for orthonormal frames, adapted to a
maximal foliation. Such a gauge condition appears naturally if we adopt a Yang-Mills
description of the Einstein field equations using Cartan’s formalism of moving frames®!,
see [6]. It is important to note nevertheless that it is not at all a priori clear that such
a choice would do the job. Indeed, the null form nature of the Yang-Mills equations in
the Coulomb gauge is only revealed once we commute the resulting equations with the
projection operator P on the divergence free vectorfields. Such an operation is natural
in that case, since P commutes with the flat d’Alembertian. In the case of the Einstein
equations, however, the corresponding commutator term [[Jg, P] generates'? a whole host
of new terms and it is quite a miracle that they can all be treated by an extended version
of bilinear estimates. At an even more fundamental level, the flat Yang-Mills equations
possess natural energy estimates based on the time symmetry of the Minkowski space.
There are no such timelike Killing vectorfield in curved space. We have to rely instead
on the future unit normal to the maximal foliation >; whose deformation tensor is non-
trivial. This leads to another class of nonlinear terms which have to be treated by a novel
trilinear estimate.

We will make more comments concerning the implementations of all four ingredients
later on, in the section 1.2.4.

10\ aximal foliation together with spatial harmonic coordinates on the leaves of the foliation would
be the coordinate condition closest in spirit to the Coulomb gauge.

H'We would like to thank L. Anderson for pointing out to us the possibility of using such a formalism
as a potential bridge to [16] .

I2Note also that additional error terms are generated by projecting the equations on the components
of the frame.
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REMARK 1.4. In addition to the ingredients mentioned above, we also need a mecha-
nism of reducing the proof of the conjecture to small data, in an appropriate sense. Indeed,
even in the flat case, the Coulomb gauge condition cannot be globally imposed for large
data. In fact [17] relied on a cumbersome technical device based on local Coulomb gauges,
defined on domain of dependence of small balls. Here we rely instead on a variant of the
gluing construction of [10], [11], see section 1.2.3.

1.2. Statement of the main results

1.2.1. Maximal foliations. In this section, we recall some well-known facts about
maximal foliations (see for example the introduction in [9]). We assume the space-time
(M, g) to be foliated by the level surfaces 3; of a time function ¢. Let T denote the unit
normal to ¥, and let k the the second fundamental form of ¥, i.e. kg = —g(D. T, e),
where e,,a = 1,2, 3 denotes an arbitrary frame on »; and D,7" = D., 7. We assume that
the Y; foliation is maximal, i.e. we have:

trgk =0 (1.6)

where ¢ is the induced metric on ;. The constraint equations on 3, for a maximal
foliation are given by:

V%a =0, (1.7)
where V denotes the induced covariant derivative on 3, and
Raear = |k (1.8)

Also, we denote by n the lapse of the t-foliation, i.e. n=? = —g(Dt, Dt). n satisfies the
following elliptic equation on X;:

An = nlk|*. (1.9)
Finally, we recall the structure equations of the maximal foliation:
Voka = Raovo — 1V Vin — kacks (1.10)
Vakbe = Vipkae = Reoab (1.11)
and:
Rap — kack® s = Raono- (1.12)

1.2.2. Main Theorem. We recall below the definition of the volume radius on a
general Riemannian manifold M.

DEFINITION 1.5. Let B,(p) denote the geodesic ball of center p and radius r. The
volume radius Ty (p, ) at a point p € M and scales < r is defined by
| B (p)|

Tvol (pa T) = rl’gfr 73 3
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with | B,| the volume of B, relative to the metric on M. The volume radius r,o(M,r) of
M on scales < 1 is the infimum of 1, (p,r) over all points p € M.

Our main result is the following:

THEOREM 1.6 (Main theorem). Let (M, g) an asymptotically flat solution to the Ein-
stein vacuum equations (1.1) together with a maximal foliation by space-like hypersur-
faces Xy defined as level hypersurfaces of a time function t. Assume that the initial slice
(X0,9,k) 1s such that the Ricci curvature Ric € L*(3,), Vk € L*(%y), and ¥y has a
strictly positive volume radius on scales < 1, i.e. Tyo(X0,1) > 0. Then,

(1) L? regularity. There exists a time
T = T(|| Ricll2(so), |Vl L2(20), Twot (20, 1)) > 0
and a constant
C = C(||Ric]| L2(z0), [VEl L2(50), 00 (20, 1)) > 0

such that the following control holds on 0 <t <T':
. 1
HRHL‘[’&T]LQ(Et) <C, HVkHL‘[’&T]LQ(Et) <C and O%ItliTTvol(Zb 1) > rok
wgher regularity. Within the same time interval as in part we also have
2) High larity. Within th ' ‘ [ as 1 1 lso h
the higher derivative estimates™,

Y IDRee, 2 < Cm Y [Hv<i>mc\|L2(Eo)+ IVOVE| 250 | (1.13)

lor|<m li|<m

where C,,, depends only on the previous C and m.

REMARK 1.7. Since the core of the main theorem s local in nature we do not need to
be very precise here with our asymptotic flatness assumption. We may thus assume the
existence of a coordinate system at infinity, relative to which the metric has two derivatives
bounded in L?, with appropriate asymptotic decay. Note that such bounds could be deduced
from weighted L? bounds assumptions for Ric and Vk.

REMARK 1.8. Note that the dependence on || Ric||12(s), [|VE| L2(zo) in the main theo-
rem can be replaced by dependence on [|R||12(s,) where R denotes the space-time curvature
tensor'. Indeed this follows from the following well known L? estimate (see section 8 in
26] ).

1
/|Vk|2+—|k]4§/ R (1.14)
Eo 4 Z0

and the Gauss equation relating Ric to R.

13Assuming that the initial has more regularity so that the right-hand side of (1.13) makes sense.
4Here and in what follows the notations R,R will stand for the Riemann curvature tensors of ¥
and M, while Ric, Ric and Rg.q;, Rscar Will denote the corresponding Ricci and scalar curvatures.
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1.2.3. Reduction to small initial data. We first need an appropriate covering of
Yo by harmonic coordinates. This is obtained using the following general result based on
Cheeger-Gromov convergence of Riemannian manifolds.

THEOREM 1.9 ([1] or Theorem 5.4 in [32]). Given ¢; > 0,co > 0,¢3 > 0, there
exists ro > 0 such that any 3-dimensional, complete, Riemannian manifold (M, g) with
| Ricl|r2(ary < 1 and volume radius at scales < 1 bounded from below by cs, i.e. Ty (M, 1) >
co, verifies the following property:

FEvery geodesic ball B.(p) with p € M and v < ro admils a system of harmonic
coordinates x = (x1, xe, x3) relative to which we have

(]_ + 03)_1(57;]‘ S gij S (1 —+ Cg)(gij, (115)

and

r/ 10%g:;1*V/|g|dx < cs. (1.16)
Br(p)

We consider € > 0 which will be chosen as a small universal constant. We apply
theorem 1.9 to the Riemannian manifold Yy. Then, there exists a constant:

Ty = TO(HR’iCHLQ(Eo)a |’v1€HL2(ZO),Tvol(20, 1),5) >0

such that every geodesic ball B,(p) with p € ¥y and r < ry admits a system of harmonic
coordinates x = (1, e, x3) relative to which we have:

(1 + 8)7151']' < Gij < (1 + 5)5ij>

, / 9Pg, 1 /Iglde < e.
BT(P)

Now, by the asymptotic flatness of ¥, the complement of its end can be covered
by the union of a finite number of geodesic balls of radius rg, where the number Ny of
geodesic balls required only depends on ry. In particular, it is therefore enough to obtain
the control of R, k and 7,(3;, 1) of Theorem 1.6 when one restricts to the domain of
dependence of one such ball. Let us denote this ball by B, . Next, we rescale the metric
of this geodesic ball by:

and

2 2

£ £
ga(t,x) = g(At, A\x), A = min , , mog | > 0.
Bl TV R

Let’ Ry, k) and Bﬁ‘o be the rescaled versions of R, k and B,,. Then, in view of our choice
for A\, we have:

1R 2283, ) = VARl 2(8,) < &
[VEllz2y) = VAIVE 2G5, <&,

15Gince in what follows there is no danger to confuse the Ricci curvature Ric with the scalar curvature
R we use the short hand R to denote the full curvature tensor Ric.
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Ae
10°9: 12253,y = VAP lacs,,) <4/ <

Note that B} is the rescaled version of B,,. Thus, it is a geodesic ball for g, of radius
2> % > 1. Now, considering g, on 0 <t < 1 is equivalent to considering g on 0 <t < \.
Thus, since 19, Ny and A depend only on || R|| r2(s), || V| £2(550)s Tvet (0, 1) and €, Theorem
1.6 is equivalent to the following theorem:

and

THEOREM 1.10 (Main theorem, version 2). Let (M, g) an asymptotically flat solution
to the Finstein vacuum equations (1.1) together with a mazimal foliation by space-like
hypersurfaces ¥, defined as level hypersurfaces of a time function t. Let B a geodesic ball
of radius one in Xg, and let D its domain of dependence. Assume that the initial slice
(30, g, k) is such that:

| Rl z2s) <&, VK2 <€ and roa(B,1) >

N | —

Let By = DN, the slice of D at time t. Then:

(1) L? regularity. There exists a small universal constant €y > 0 such that if
0 < e < ey, then the following control holds on 0 <t < 1:

28 S € ||VE|re 128y S € and mf Tvol(Bt; 1) >

IR] 2 -

»bln—

[0,1]

(2) Higher regularity. The following bounds hold on 0 <t < 1:
Y DR sy S Y IV Ricl| 25 + VO VE] 125 (1.17)

laj<m li|<m

Notation: In the statement of Theorem 1.10, and in the rest of the paper, the notation
fi < fo for two real positive scalars fi, fo means that there exists a universal constant
C > 0 such that:

fi <Cfa.

Theorem 1.10 is not yet in a suitable form for our proof since some of our constructions
will be global in space and may not be carried out on a subregion B of ¥,. Thus, we
glue a smooth asymptotically flat solution of the constraint equations (1.2) outside of B,
where the gluing takes place in an annulus just outside B. This can be achieved using the
construction in [10], [11]. We finally get an asymptotically flat solution to the constraint
equations, defined everywhere on ¥, which agrees with our original data set (X, g, k)
inside B. We still denote this data set by (X¢, g, k). It satisfies the bounds:

1
||R||L2(Eg) < 26 ||Vl€||L2 o) < 28 and TI}OZ(E(b 1) Z_l
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REMARK 1.11. Notice that the gluing process in [10]-[11] requires the kernel of a
certain linearized operator to be trivial. This s achieved by conveniently choosing the
asymptotically flat solution to (1.2) that is glued outside of B to our original data set.
This choice is always possible since the metrics for which the kernel is nontrivial are non
generic (see [4]).

REMARK 1.12. Assuming only L* bounds on R and Vk is not enough to carry out the
construction in the above mentioned results. However, the problem solved there remains
subcritical at our desired level of reqularity and thus we believe that a closer look at the
construction in [10]-[11], or an alternative construction, should be able to provide the
desired result. This is an open problem.

REMARK 1.13. Since H/{:H%l(zo) < ||Ric||z2 we deduce that ||k||r2m) S €Y% on the
geodesic ball B of radius one. Furthermore, asymptotic flatness is compatible with a decay
of |x|72 at infinity, and in particular with k in L*(Xy). So we may assume that the gluing
process is such that the resulting k satisfies:

1kl L2(s0) S €

~

Finally, we have reduced Theorem 1.6 to the case of a small initial data set:

THEOREM 1.14 (Main theorem, version 3). Let (M, g) an asymptotically flat solution
to the Einstein vacuum equations (1.1) together with a mazximal foliation by space-like
hypersurfaces Y; defined as level hypersurfaces of a time function t. Assume that the
initial slice (3o, g, k) is such that:

1
HRHLQ(EO) S g, HkHLQ(EO) =+ HVkHLQ(EO) S 19 and Tvol(zo, 1) Z 5
Then:

(1) L? regularity. There erists a small universal constant €9 > 0 such that if
0 < e < gg, the following control holds on 0 <t < 1:

| =

IRz 20 S & [kl 20 + IV L, 2200 S € and Oiglg;?”voz(zta 1) >

(2) Higher regularity. The following control holds on 0 <t < 1:
Y IDIReg 2w S Y IV Ricl 2wy + VOV r2(sy)- (1.18)

lo|<m li|<m

The rest of this paper is devoted to the proof of Theorem 1.14.

1.2.4. Strategy of the proof. The proof of Theorem 1.14 consists of four steps.

Step A (Yang-Mills formalism) We first cast the Einstein-vacuum equations in a
Yang-Mills form. This relies on the Cartan formalism of moving frames. The idea is to
give up on a choice of coordinates and instead express the Einstein vacuum equations in
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terms of the connection 1-forms associated to moving orthonormal frames, i.e. vectorfields
€q, Which verify,

g(eom 65) = Mg = dlag(_la L, 17 1)

The connection 1-forms (they are to be interpreted as 1-forms with respect to the external
index p with values in the Lie algebra of so(3, 1)), defined by the formulas,

(A)ap = g(Dyes, ea) (1.19)
verify the equations,
D"F,, + [A",F,,] =0 (1.20)
where, denoting (F,,)as := Raguw,
(Fuw)ap = (DuA, —DyA, — [ALAY]) o (1.21)

In other words we can interpret the curvature tensor as the curvature of the so(3, 1)-valued
connection 1-form A. Note also that the covariant derivatives are taken only with respect
to the external indices p,v and do not affect the internal indices o, 3. We can rewrite
(1.20) in the form,

OgA, — D,(D"A,) = J,(A,DA) (1.22)
where,
J, = D“([A#,A,,D - [AuaFuV]-

Observe that the equations (1.20)-(1.21) look just like the Yang-Mills equations on a
fixed Lorentzian manifold (M,g) except, of course, that in our case A and g are not
independent but rather connected by (1.19), reflecting the quasilinear structure of the
Einstein equations. Just as in the case of [15], which establishes the well-posedness of
the Yang-Mills equation in Minkowski space in the energy norm (i.e. s = 1), we rely in
an essential manner on a Coulomb type gauge condition. More precisely, we take ey to
be the future unit normal to the ¥; foliation and choose e, ey, e3 an orthonormal basis
to X4, in such a way that we have, essentially (see precise discussion in section 2.1.2),
div A = V'A; = 0, where A is the spatial component of A. It turns out that A, satisfies
an elliptic equation while each component A; = g(A,e¢;), i = 1,2, 3 verifies an equation
of the form,

with l.o.t. denoting nonlinear terms which can be treated by more elementary techniques
(including non sharp Strichartz estimates).

Step B (Bilinear and trilinear estimates) To eliminate 0;(JyAp) in (1.23), we need
to project (1.23) onto divergence free vectorfields with the help of a non-local operator
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which we denote by P. In the case of the flat Yang-Mills equations, treated in [15], this
leads to an equation of the form,

where both terms on the right can be handled by bilinear estimates. In our case we
encounter however three fundamental differences with the flat situation of [15].

e To start with the operator P does not commute with Lg. It turns out, fortunately,
that the terms generated by commutation can still be estimated by an extended
class of bilinear estimates which includes contractions with the curvature tensor,
see section 2.2.5.

e All energy estimates used in [15] are based on the standard timelike Killing
vectorfield 9. In our case the corresponding vectorfield ey = T ( the future unit
normal to ¥;) is not Killing. This leads to another class of trilinear error terms
which we discuss in sections 2.5 and 2.2.5.

e The main difference with [15] is that we now need bilinear and trilinear estimates
for solutions of wave equations on background metrics which possess only limited
regularity.

This last item is a major problem, both conceptually and technically. On the conceptual
side we need to rely on a more geometric proof of bilinear estimates based on a plane
wave representation formula!® for solutions of scalar wave equations,

g = 0.

The proof of the bilinear estimates rests on the representation formula'”

os(t, ) = /S 2 /0 " it “ult) FOw)N2dAdw (1.24)

where f represents schematically the initial data'®, and where “u is a solution of the

eikonal equation!?,

g%0, “uds “u =0, (1.25)

with appropriate initial conditions on ¥y and dw the area element of the standard sphere
in R3.

16We follow the proof of the bilinear estimates outlined in [21] which differs substantially from that
of [15] and is reminiscent of the null frame space strategy used by Tataru in his fundamental paper [48].

17(1.24) actually corresponds to the representation formula for a half-wave. The full representation
formula corresponds to the sum of two half-waves (see section 2.7)

18Here f is in fact at the level of the Fourier transform of the initial data and the norm ||Af]| L2 (R3)
corresponds, roughly, to the H' norm of the data, .

1910 the flat Minkowski space “u(t,z) =t + 1z - w.
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REMARK 1.15. Note that (1.24) is a parametriz for a scalar wave equation. The lack
of a good parametrixz for a covariant wave equation forces us to develop a strategy based on
writing the main equation in components relative to a frame, i.e. instead of dealing with
the tensorial wave equation (1.22) directly, we consider the system of scalar wave equations
(1.23). Unlike the flat case, this “scalarization” procedure produces several terms which
are potentially dangerous, and it is fortunate, as in yet another manifestation of a hidden
null structure of the Finstein equations, that they can still be controlled by the use of an
extended® class of bilinear estimates.

Step C (Control of the parametrix) To prove the bilinear and trilinear estimates of
Step B, we need in particular to control the parametrix at initial time (i.e. restricted to
the initial slice %)

o(0,2) = / / e u02) £(N)A2d\dw (1.26)
s2 Jo
and the error term corresponding to (1.24)
Ef(t,z) = Ogos(t, ) = / / e et (O, “u) f(Aw) A3 dAdw (1.27)
s2 Jo

i.e. ¢ is an exact solution of Lg¢ = 0 only in flat space in which case [g “u = 0. This
requires the following four sub steps

C1 Make an appropriate choice for the equation satisfied by “u(0,x) on %y, and
control the geometry of the foliation of Xy by the level surfaces of “u(0,x).

C2 Prove that the parametriz att = 0 given by (1.26) is bounded in L(L*(R3), L*(2Z))
using the estimates for “u(0,z) obtained in C1.

C3 Control the geometry of the foliation of M given by the level hypersurfaces of
“u.

C4 Prove that the error term (1.27) satisfies the estimate | Ef|| 2om) < C|Af]| 22
using the estimates for “u and Og “u proved in C3.

To achieve Step C3 and Step C4, we need, at the very least, to control Ug “u in L,
This issue was first addressed in the sequence of papers [22]-[24] where an L* bound
for Og “u was established, depending only on the L? norm of the curvature flux along
null hypersurfaces. The proof required an interplay between both geometric and analytic
techniques and had all the appearances of being sharp, i.e. we don’t expect an L* bound
for Og “u which requires bounds on less than two derivatives in L? for the metric®!.

To obtain the L? bound for the Fourier integral operator E defined in (1.27), we need,
of course, to go beyond uniform estimates for (g “u. The classical L? bounds for Fourier
integral operators of the form (1.27) are not at all economical in terms of the number of
integration by parts which are needed. In our case the total number of such integration

20involvimg contractions between the Riemann curvature tensor and derivatives of solutions of scalar

wave equations.
21classically, this requires, at the very least, the control of R in L™
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by parts is limited by the regularity properties of the function Og “u. To get an L? bound
for the parametrix at initial time (1.26) and the error term (1.27) within such restrictive
regularity properties we need, in particular:

e In Step C1 and Step C3, a precise control of derivatives of “u and [g “u with
respect to both w as well as with respect to various directional derivatives®?. To
get optimal control we need, in particular, a very careful construction of the initial
condition for “u on ¥y and then sharp space-time estimates of Ricci coefficients,
and their derivatives, associated to the foliation induced by “u.

e In Step C2 and Step C4, a careful decompositions of the Fourier integral oper-
ators (1.26) and (1.27) in both A and w, similar to the first and second dyadic
decomposition in harmonic analysis, see [39], as well as a third decomposition,
which in the case of (1.27) is done with respect to the space-time variables relying
on the geometric Littlewood-Paley theory developed in [24].

Below, we make further comments on Steps C1-C4:

(1) The choice of u(0,x,w) on ¥g in Step CI. Let us note that the typical choice
u(0,z,w) = x - w in a given coordinate system would not work for us, since we
don’t have enough control on the regularity of a given coordinate system within
our framework. Instead, we need to find a geometric definition of u(0,z,w). A
natural choice would be

Ugu = 0 on X

which by a simple computation turns out to be the following simple variant of
the minimal surface equation?

Vu Vu Vu
div | — )=k — 22 on X

Unfortunately, this choice does not allow us to have enough control of the deriva-
tives of u in the normal direction to the level surfaces of u. This forces us to look
for an alternate equation for u:

Vu 1 Vu Vu
div | — ) =1 — 4+ k[ =, —— o.
“’(rw) v © (\w’rw) o S0

This equation turns out to be parabolic in the normal direction to the level
surfaces of u, and allows us to obtain the desired regularity in Step C1. A closer
inspection reveals its relation to the mean curvature flow on .

(2) How to achieve Step C3. The regularity obtained in Step C1, together with
null transport equations tied to the eikonal equation, elliptic systems of Hodge
type, the geometric Littlewood-Paley theory of [24], sharp trace theorems, and

22Tauking into account the different behavior in tangential and transversal directions with respect to
the level surfaces of “u.
231 the time symmetric case k = 0, this is exactly the minimal surface equation
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an extensive use of the structure of the Einstein equations, allows us to propagate
the regularity on Y, to the space-time, thus achieving Step C3.

The regularity with respect to w in Steps C1 and C3. The regularity with respect
to o for u is clearly limited as a consequence of the fact that we only assume L?
bounds on R. On the other hand, R is independent of the parameter w, and one
might infer that u is smooth with respect to w. Surprisingly, this is not at all
the case. Indeed, the regularity in = obtained for w in Steps C1 and C3 is better
in directions tangent to the level hypersurfaces of u. Now, the w derivatives of
the tangential directions have non zero normal components. Thus, when differ-
entiating the structure equations with respect to w, tangential derivatives to the
level surfaces of u are transformed to non tangential derivatives which in turn
severely limits the regularity in w obtained in Steps C1 and C3.

How to achieve Steps C2 and C4. The classical arguments for proving L? bounds
for Fourier operators are based either on a T'T™ argument, or a T*1 argument,
which requires several integration by parts either with respect to x for T*T),
of with respect to (A\,w) for TT*. Both methods would fail by far within the
regularity for u obtained in Step C1 and Step C3. This forces us to design a
method which allows to take advantage both of the regularity in  and w. This
is achieved using in particular the following ingredients:

e geometric integrations by parts taking full advantage of the better regularity
properties in directions tangent to the level hypersurfaces of u,

e the standard first and second dyadic decomposition in frequency space, with
respect to both size and angle (see [39]), an additional decomposition in
physical space relying on the geometric Littlewood-Paley projections of [24]
for Step C4, as well as another decomposition involving frequency and angle
for Step C2.

Even with these precautions, at several places in the proof, one encounters log-
divergences which have to be tackled by ad-hoc techniques, taking full advantage
of the structure of the Einstein equations.

Step D (Sharp L*(M) Strichartz estimates) Recall that the parametrix constructed

in Step

C needs also to be used to prove sharp L*(M) Strichartz estimates. Indeed

the proof of several bilinear estimates of Step B reduces to the proof of sharp L*(M)
Strichartz estimates for the parametrix (1.24) with X localized in a dyadic shell.
More precisely, let 7 > 0, and let ) a smooth function on R3 supported in

1
- < < 2.
5 <lel<

Let ¢ ; the parametrix (1.24) with a additional frequency localization A ~ 27

ori(t,x) = /S 2 /0 e @) (279N f (Aw) N2dAdw. (1.28)
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We will need the sharp®! L*(M) Strichartz estimate
l' s
[6rill sy S 221927 A fllo@s)- (1.29)

The standard procedure for proving® (1.29) is based on a TT* argument which reduces
it to an L estimate for an oscillatory integral with a phase involving “w. This is then
achieved by the method of stationary phase which requires quite a few integrations by
parts. In fact the standard argument would require, at the very least?®, that the phase
function u = “u verifies,

Oypu € L™, 0;,0%u € L™, (1.30)
This level of regularity is, unfortunately, incompatible with the regularity properties of
solutions to our eikonal equation (1.25). In fact, based on the estimates for “u derived
in step C3, we are only allowed to assume

(%xu € LOO, awawu e L™, (131)

We are thus forced to follow an alternative approach®’ to the stationary phase method
inspired by [35] and [36] .

REMARK 1.16. Note that apart from the results of Chapter 2 which require the pro-
jection of various tensors on a frame, the computations and estimates in all the other
chapters are covariant.

1.2.5. Structure of the paper. In Chapter 2, we perform Step A and Step B,
i.e. we recast the Einstein equations as a quasilinear Yang-Mills type system, we prove
bilinear estimates, and we reduce the proof of Theorem 1.14 to Step C and Step D. Next,
we perform Step C on the control of the plane wave parametrix (1.24). More precisely, in
Chapter 3, we perform Step C4 on the control of the error term (1.27). Next, in Chapter
4, we perform Step C3 on the space-time control of the optical function “u. Then, in
Chapter 5, we perform Step C2 on the control of the parametrix at initial time (1.26). In
Chapter 6, we perform Step C1 on the control of the optical function “u on the initial
slice ¥y. Finally, in Chapter 7, we prove sharp L*(M) Strichartz estimates localized in
frequency which corresponds to Step D.

REMARK 1.17. Chapter 2 summarizes the results obtained in [27]). Chapter 3 sum-
marizes the results obtained in [45]. Chapter 4 summarizes the results obtained in [44].
Chapter 5 summarizes the results obtained in [43]. Chapter 6 summarizes the results
obtained in [42]. Finally, Chapter 7, summarizes the results obtained in [46].

24Note in particular that the corresponding estimate in the flat case is sharp.

25Note that the procedure we describe would prove not only (1.29) but the full range of mixed
Strichartz estimates.

26The regularity (1.30) is necessary to make sense of the change of variables involved in the stationary
phase method.

2TWe refer to the approach based on the overlap estimates for wave packets derived in [35] and [36]
in the context of Strichartz estimates respectively for C!! and H?*¢ metrics. Note however that our
approach does not require a wave packet decomposition.
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REMARK 1.18. The structure of this overview is such that each part motivates the next
one. In particular, Chapter 2 relies on the control of the parametriz (1.24) (see Theorem
2.27 in Chapter 2), and thus motivates Chapters 3, 4, 5 and 6 which precisely deal with
the control of that parametriz. Next, in order to control the error term (1.27) in Chapter
3, we rely on estimates for the optical function “u, which motivates Chapter J where
these estimates are proved. In turn, the space-time estimates for “wu in Chapter 4 are
obtained in particular using transport equations, and we need the corresponding control
for “wu on the initial slice X, which motivates Chapter 6. Finally, in order to control the
parametriz at initial time (1.26) in Chapter 5, we rely on estimates for the function “u
on Yo, which motivates again Chapter 6. Finally, Chapter 2 also relies on sharp L*(M)
Strichartz estimates localized in frequency (see Proposition 2.32 in Chapter 2), and thus
motivates Chapter 7.

1.2.6. Conclusion. Though this result does not achieve the crucial goal of finding
a scale invariant well-posedness criterion in GR, it is clearly optimal in terms of all cur-
rently available ideas and techniques. Indeed, within our current understanding, a better
result would require enhanced bilinear estimates, which in turn would rely heavily on
parametrices. On the other hand, parametrices are based on solutions to the eikonal
equation whose control requires, at least, L? bounds for the curvature tensor, as can be
seen in many instances in our work. Thus, if we are to ultimately find a scale invariant
well-posedness criterion, it is clear that an entirely new circle of ideas is needed. Such
a goal is clearly of fundamental importance not just to GR, but also to any physically
relevant quasilinear hyperbolic system.
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so many have participated. We would like to single out the contributions of those who
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work [8] on the weak cosmic censorship conjecture had a direct motivating role on our
program, starting with a series of papers of the first author and M. Machedon, in which
spacetime bilinear estimates were first introduced and used to take advantage of the null
structure of geometric semilinear equations such as Wave Maps and Yang-Mills. The
works of Bahouri- Chemin [2]-[3] and D.Tataru [50] were the first to go below the clas-
sical Sobolev exponent s = 5/2, for any quasilinear system in higher dimensions. This
was, at the time, a major psychological and technical breakthrough which opened the
way for future developments. Another major breakthrough of the period, with direct
influence on our approach to bilinear estimates in curved spacetimes, is D. Tataru’s work
[48] on critical well posedness for Wave Maps, in which null frame spaces were first in-
troduced. His joint work with H. Smith [36] which, together with [20] is the first to
reach optimal well-posedness without bilinear estimates, has also influenced our approach
on parametrices and Strichartz estimates. The authors would also like to acknowledge
fruitful conversations with L. Anderson, and J. Sterbenz.



CHAPTER 2

Einstein vacuum equations as a Yang-Mills gauge theory

Recall Steps A, B, C and D introduced in section 1.2.4. In this chapter, we perform
Step A and Step B, i.e. we recast the Einstein equations as a quasilinear Yang-Mills type
system and we prove bilinear estimates. This allows us to reduce the proof of Theorem
1.14 to Step C and Step D. Here, we only outline the main ideas, and we refer to [27] for
the details.

2.1. Yang-Mills formalism

2.1.1. Cartan formalism. Consider an Einstein vacuum space-time (M,g). We
denote the covariant differentiation by D. Let e, be an orthonormal frame on M, i.e.
g(ea, €5) = mys = diag(—1,1,...,1).
Consistent with the Cartan formalism we define the connection 1 form,
(A)as(X) = g(Dxeg, eq) (2.1)
where X is an arbitrary vectorfield in T'(M). Observe that,
(A)as(X) = —(A)sa(X)

i.e. the 1 -form A, dz" takes values in the Lie algebra of SO(1,3). We separate the
internal indices «, 8 from the external indices p according to the following notation.

(Ap)ag = (A)ap(0,) = g(Dyues, €a) (2:2)
The Riemann curvature tensor is defined by R(X,Y, U, V) = g(X, [DUDV —DyDy—
D[Uy]YD with X, Y, U,V arbitrary vectorfields in 7'(M). Thus, taking U = 0,,V = 0,,
coordinate vector-fields,
R(eas€5:0u:00) = 0u(As)ap = 0u(Ap)ap + (As)a M(A)s — (Au)a (A (2.3)
Defining the Lie bracket,
([Aw AV])a,B = (Au)a ! (AV)W - (All>a ! (Au)vﬂ (2‘4>
we obtain:
Raﬂul/ = 8M(AV)OLB - 8V(Au)a6 - ([Aua Ay])aﬁa
or, since d,(A,) —0,(A,) =D,A, —D,A,
(Ful/)ocﬁ = Raﬁ;w = (DMAV - DVAM - [AM’ AV])ag' (2‘5>
where interpret F is the curvature of the connection A.

19
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The usual covariant derivative of the Riemann curvature tensor can be expressed as
follows:

D,Ros = (A)DUFW =D,F,, +[A,,F,)] (2.6)

where we denote by D the covariant derivative on the corresponding vector bundle.
More precisely if U = U is any k-tensor on M with values on the Lie algebra of
SO(3,1),

H1K2 - Hk

(AD,U =D,U + [A,,U]. (2.7)

REMARK 2.1. Recall that in (A, )as, o, 5 are called the internal indices, while p are
called the external indices. Now, the internal indices are mostly irrelevant in our work.
Thus, from now on, we will drop them, except for rare instances where we will need to
distinguish between internal indices of the type ij and internal indices of the type 0.

The Bianchi identities for Rqg,, take the form
AD,F,, + “D,F,, + “D,F,, = 0. (2.8)

As it is well known the Einstein vacuum equations Rqg = 0 imply D#*Rg,, = 0. Thus,
in view of equation (2.6),

0=®D"F,, = D"F,, + [A* F,,) (2.9)
or, in view of (2.5) and the vanishing of the Ricci curvature of g,.
0OA, -D,(D*A,) =17, (2.10)
where
J, = DA, A)) — [AFul. (2.11)

Using again the vanishing of the Ricci curvature it is easy to check,
D"J, =0. (2.12)

Finally we recall the general formula of transition between two different orthonormal
frames e, and e, on M, related by,

€a = Ole,

where m,g = OgO% m.s, i.e. O is a smooth map from M to the Lorentz group O(3,1).
In other words, raising and lowering indices with respect to m,

0,0 = ¢ (2.13)
Now, (;&H)QB = g(D,es, €,). Therefore,
(:&u)aﬂ = Ogog(Au)ﬂ + 5u(03) 06/3 Mg (2-14)
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2.1.2. Compatible frames. Recall that our space-time is assumed to be foliated
by the level surfaces ¥, of a time function ¢, which are maximal, i.e. denoting by k the
second fundamental form of ¥; we have,

tryk = 0 (2.15)

where g is the induced metric on ;. Let us choose ey = T', the future unit normal to
the 3, foliation, and e(;), ¢ = 1,2,3 an orthonormal frame tangent to ¥,. We call this a
frame compatible with our ¥, foliation. We consider the connection coefficients (2.2) with
respect to this frame. Thus, in particular, denoting by Ay, respectively A;, the temporal
and spatial components of A,

(A)oi = —n'Vin  i=1,2,3 (2.17)

where n denotes the lapse of the t-foliation, i.e. n™2 = —g(Dt,Dt). With this notation
we note that,

Vikij = Vi(ki)j + kin(A); " = VH(A)oj + kin(Ar); "

where, as before, the notation V;(k;); or V'(4;)o;, is meant to suggest that the covariant
differentiation affects only the external index i. Recalling from (1.7) that k verifies the
constraint equations,

V'k;; =0,
we derive,

Besides the choice of eg we are still free to make a choice for the spatial elements of the
frame eq, €5, e3. In other words we consider frame transformations which keep e fixed, i.e
transformations of the type,

€ = ng e;
with O in the orthogonal group O(3). We now have, according to (2.14),
(An)ij = OFOL(Ap) i + 0m(OF) O}
or, schematically,
A, = 04,07+ (9,0)07" (2.19)

formula in which we understand that only the spatial internal indices are involved. We
shall use this freedom later to exhibit a frame ey, es, e3 such that the corresponding con-
nection A satisfies the coulomb gauge condition V!(4;);; = 0 (see Lemma 2.6).
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2.1.3. Notations. We use greek indices to denote general indices on M which do
not refer to the particular frame (e, ey, €2, e3). The letters a, b, ¢, d will be used to denote
general indices on ¥; which do not refer to the particular frame (eq, es,e3). Finally, the
letters 4, j,{,m,n will only denote indices relative to the frame (eq, ez, e3). Also, recall
that D denotes the covariant derivative on M, while V denotes the induced covariant
derivative on ¥;. Furthermore, & will always refer to the derivative of a scalar quantity
relative to one component of the frame (eq, e, es,e3), while 9 will always refer to the
derivative of a scalar quantity relative to one component of the the frame (e, s, €3), so
that @ = (0p,0). For example, 0A may be any term of the form 0;(A4;), dy(A) may be
any term of the form 0y(A;), 0(Ap) may be any term of the form 0;(Aj), and OA =
(0A,8(Ag)) = (00(Ap),0(Ao), 0o(A),0(A)). Note that we use brackets such as (A;) to
emphasize that we are dealing with su(3, 1) objects. Often, however, we will simply drop
them.

We introduce the curl operator curl defined for any su(3, 1)-valued triplet (wy,ws,ws)
of functions on >, as follows:

(curlw); =€; 0;(wy), (2.20)

where €, is fully antisymmetric and such that €,93= 1. We also introduce the divergence
operator div defined for any su(3,1)-valued tensor A on ¥, as follows:

div A = V(A)) = 0'(4;) + A (2.21)

REMARK 2.2. The term A? in (2.21) corresponds to a quadratic expression in compo-
nents of A, where the particular indices do not matter. In the rest of this part, we will
adopt this schematic notation for lower order terms (e.g. terms of the type A? and A3)
where the particular indices do not matter.

Finally, JA, and [JA; will always be understood as [(Ag) and (A4;), while (OA),

refers to the tensorial wave equation. Also, AAy will always refer to A(Ap).

REMARK 2.3. Since 0y and 0; are not coordinate derivatives, note that the commuta-
tors [0;,0o] and [0;,0)] do not vanish. In fact we have, schematically,

for any scalar function ¢ on M.

2.1.4. Main equations for (Ag, A). Using the conventions above one can prove the
following proposition.

ProPOSITION 2.4. Consider an orthonormal frame e, compatible with a maximal
¥, foliation of the space-time M with connection coefficients A, defined by (2.2), their
decomposition A = (Ag, A) relative to the same frame e, and Coulomb- like condition on
the frame,

div A = A2
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In such a frame the Finstein-vacuum equations take the form,
AAy = AJA+ AI(Ap) + A®, (2.23)

OA; + 0,(00A0) = AID;A; + AT A; + AgDA + AB(Ag) + A®. (2.24)

REMARK 2.5. [t is extremely important to our strategy that we have reduced the co-
variant wave equation (2.10) to the system of scalar equations (2.23) (2.24) (see remark
1.15).

2.2. Strategy of the proof of the main Theorem

In this section, we discuss the strategy of the proof of the main theorem after reduction
to small initial data, i.e. Theorem 1.14.

2.2.1. The Uhlenbeck type lemma. In order to exhibit a frame ey, ey, e3 such that
together with eq = T we obtain a connection A satisfying our Coulomb type gauge on
the slice ¥, we will need the following result in the spirit of the Uhlenbeck lemma [51].

LEMMA 2.6. Let (M, g) a 3 dimensional Riemannian asymptotically flat manifold. Let
R denote its curvature tensor and 1y, (M, 1) its volume radius on scales < 1. Let A a
connection on M corresponding to an orthonormal frame. Assume the following bounds:

”AHLQ(M) —+ HVAHLQ(M) + HRHLQ(M) < 1) and Tvol(M7 1) >

Y

N

where § > 0 is a small enough constant. Assume also that A and VA belong to L*(M).
Then, there is another connection A on M satisfying he Coulomb like gauge condition,
and such that

1Al 20y + IV Al 20y <6
Furthermore, if V2A belongs to L*(M), then V2A belongs to L*>(M).

The proof of Lemma 2.6 is a straightforward adaptation, in a simpler situation, of
[51].

2.2.2. Classical local existence. We rely on the following standard well-posedness
result for the Cauchy problem for the Einstein equations (1.1) in the maximal foliation.

THEOREM 2.7 (Well-posedness for the Einstein equation in the maximal foliation).
Let (X0,9,k) be asymptotically flat and satisfying the constraint equations (1.2), with
Ric, VRic, k, Vk and V?k in L*(3g), and r,,(20,1) > 0. Then, there exists a unique
asymptotically flat solution (M, g) to the Einstein vacuum equations (1.1) corresponding
to this initial data set, together with a maximal foliation by space-like hypersurfaces
defined as level hypersurfaces of a time function t. Furthermore, there exists a time

T. = T.(|IVY Ric|| 25,0 <1 < 1, VDR 12(20),0 < § < 2,7001(Z0,1)) > 0
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such that the maximal foliation exists for on 0 < t < T, with a corresponding control in
Ly 1 L*(24) for Ric, VRic, k, Vk and V°k.

Theorem 2.7 requires two more derivatives both for R and k with respect to the main
Theorem 1.6. Its proof is standard and relies solely on energy estimates (as opposed
to Strichartz or bilinear estimates). We refer the reader to [9] chapter 10 for a related
statement.

REMARK 2.8. In the proof of our main theorem the result above will be used only as
an extension tool (see steps 1 and 3 below), only for very tiny values of the time interval.

2.2.3. Weakly regular null hypersurfaces. We shall be working with null hyper
surfaces in M verifying a set of reasonable assumptions, described below. These as-
sumptions will be easily verified by the level hyper surfaces H, solutions u of the eikonal
equation gh”0,0, = 0 discussed in section 2.7. The regularity of the eikonal equation is
studied in detail in [44] (see also Chapter 4).

DEFINITION 2.9. Let H be a null hypersurface with future null normal L verifying
g(L,T) = —1. Let also N = L —T. We denote by ¥V the induced connection along the
2-surfaces H N Y. We say that H is weakly reqular provided that,

IDL|[L330) + DN || 1360y S 1, (2.25)
and the following Sobolev embedding holds for any scalar function f on H.:
1 lzsae S IV lleze0 + L) 2200 + 1 l2g0- (2.26)

2.2.4. Main bootstrap assumptions. Let M > 1 a large enough constant to be
chosen later in terms only of universal constants. By choosing € > 0 sufficiently small, we
can also ensure Me is small enough. From now on, we assume the following bootstrap
assumptions hold true on a fixed interval [0,7%], for some 0 < T* < 1. Note that H
denotes an arbitrary weakly regular null hypersurface with future normal L, normalized
by the condition g(L,T) = —1.

e Bootstrap curvature assumptions
IRz r2(s,) < Me. (2.27)
Also,
IR - L2z < Me, (2.28)

where R- L denotes any component of R such that at least one index is contracted
with L.

e Bootstrap assumptions for the connection We also assume that there exist A =
(Ag, A) verifying our Coulomb type condition on [0, 7*] , such that,

[AllLeoresy) + 10AllLeer2syy + | All 2L sy < Me, (2.29)
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and:

[ Aol Lser2(s) + 10 Aol oo 25y + | Aol L2 poo () + 1[0 Aol o3 (s

+]|08 Ao || < Me. (2.30)

3
LL2(S0)

REMARK 2.10. Together with the estimates in [44] (see section 4.4 in that paper, and
also section 4.2.3), the bootstrap assumption (2.27) yields:

1Bl g2y + IVE o L2z, S Me. (2.31)
Furthermore, the bootstrap assumption (2.28) together with the estimates in [44] (see
section 4.2 in that paper, and also section 4.2.2) yields:

1
irgf Tpot (2, 1) > 7 (2.32)

In addition we make the following bilinear estimates assumptions for A and R.:

e Bilinear assumptions I. Assume,
470, All 2y S M7 (2:83)

Also, let B = (—A) tcurl A (see (2.62) and the accompanying explanations).
Then, we have:

|A90,(8B) | ) S M2, (2.34)
and:
IR. jod Bllr2my S M7, (2.35)
Finally, for any weakly regular null hypersurface H and any smooth scalar func-
tion ¢ on M,
1.0 pll2am) S M?e S%pHVchLz(H), (2.36)
and
|A70;0]| L2 a) S MPe sup|[ ¥l (2.37)

where the supremum is taken over all null hypersurfaces H.
e Bilinear assumptions II. We assume,

1(=2)72(Qis (A, )l r2ny S M2, (2.38)

where the bilinear form );; is given by Q;;(¢,¢) = 0;¢0;¢—0;¢0;). Furthermore,
we also have:

1(=A)"2 (D(ANDA) || 2y S MPe, (2.39)



26 2. EINSTEIN VACUUM EQUATIONS AS A YANG-MILLS GAUGE THEORY

e Non-sharp Strichartz assumption
[All 27z S M?e. (2.40)
and, for B = (—A) tcurl A, (see (2.62) and the accompanying explanations).
10B||2L7s) S M?e. (2.41)

REMARK 2.11. Note that the Strichartz estimate for ||Allj2p7(s,) is far from being
sharp. Nevertheless, this estimate will be sufficient for the proof as it will only be used to
deal with lower order terms.

Finally we also need a trilinear bootstrap assumption. For this we need to introduce
the Bell Robinson tensor,

Quprs = Ra* 7 Rarso + "Ra*v7 "Rprso (2.42)
o Trilinear bootstrap assumption. We assume the following,
/ Qijrskeley| < M'e. (2.43)
M

Let us conclude this section by remarking that the bootstrap assumptions are verified
for a sufficiently small final value T™.

PROPOSITION 2.12. The above bootstrap assumptions are verified on 0 < t < T for
a sufficiently small T* > 0.

The only challenge in the proof of Proposition 2.12 is to show the existence of the
desired connection A using in particular the Uhlenbeck type Lemma 2.6. All other esti-
mates follow trivially from our initial bounds and the local existence theorem above, for
sufficiently small 7. We refer to Proposition 4.6 in [27].

2.2.5. Proof of the bounded L? curvature conjecture. In the following two
propositions, we state the improvement of our bootstrap assumptions.

PROPOSITION 2.13. Let us assume that all bootstrap assumptions of the previous sec-
tion hold for 0 < t < T*. If ¢ > 0 is sufficiently small, then the following improved
estimates hold true on 0 < ¢ <T™:

IR[|zger2m) S+ M?es + M, (2.44)
IR L2y S e+ M2 + M2, (2.45)
3
1Al o2 + 10Aillerais,) S €+ MPe? + MPe?, (2.46)

[ Aoll g r2(sy) + [0 Aol Lo r2(s) + | Aol L2200 (1)

3
HIOAoll g ramey + 10040l o3y S € M?e> + M°<*, (2.47)
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PROPOSITION 2.14. Let us assume that all bootstrap assumptions of the previous sec-
tion hold for 0 < t < T*. If ¢ > 0 is sufficiently small, then the following improved
estimates hold true on 0 < ¢ <T™:

|40, All 2y S M2, (2.48)
1470,(B) | 2uny S M€, (2.49)
and
IR..;00 Bl r2omy S M?e. (2.50)
Also, for any scalar function ¢ on M, we have:
k.0 ¢l L2(pny S Me sg{pnwnm, (2.51)
and
147056l L2(pm) < Me SUD|[Voll2(r). (2.52)
where the supremum is taken over all null hypersurfaces H. Finally, we have:
_1
1(=2)72(Qus(A, A2y S M2, (2.53)
||(—A)_%(8Al8lA)||Lz(M) < MEE2 (2.54)
HAHL§L7(Zt) S Me, (2.55)
10B| 27z S Me. (2.56)
and
’ / Qijrskeded| < M3ES, (2.57)
M

The proof of Proposition 2.13 is postponed to section 2.6, while the proof of Proposition
2.14 is postponed to section 2.8. We also need a proposition on the propagation of higher
regularity.

PROPOSITION 2.15. Let us assume that the estimates corresponding to all bootstrap
assumptions of the previous section hold for 0 < t < T* with a universal constant M.
Then for any t € [0,T*) and for ¢ > 0 sufficiently small, the following propagation of
higher reqularity holds:

IDR| g r2(s5) < 2 (|Ric| 250y + IV Ric] 12(s0) + 1Kl L2(s0) + VRN 22050) + VK| L2(50)) -

The proof of Proposition 2.15 follows along the same lines as the proof Proposition
2.13 and Proposition 2.14, and we refer to [27] for its proof. Next, let us show how
Propositions 2.12, 2.13, 2.14 and 2.15 imply our main theorem 1.14. We proceed, by the
standard bootstrap method , along the following steps:
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Step 1. We show that all bootstrap assumptions are verified for a sufficiently small final
value 1.

Step2. Assuming that all bootstrap assumptions hold for fixed values of 0 < 7" < 1 and
M sufficiently large we show that, for € > 0 sufficiently small, we may improve
on the constant M in our bootstrap assumptions.

Step 3. Using the estimates derived in step 2 we can extend the time of existence T™ to
T* + § such that all the bootstrap assumptions remain true.

Now, Step 1 follows from Proposition 2.12. Step 2 follows from Proposition 2.13
and Proposition 2.14. In view of Step 2, the estimates corresponding to all bootstrap
assumptions of the previous section hold for 0 < ¢t < T™ with a universal constant M.
Thus the conclusion of Proposition 2.15 holds, and arguing as in the proof of Proposition
2.12, we obtain Step 3. Thus, the bootstrap assumptions hold on 0 <t < 1 for a universal
constant M. In particular, this yields together with (2.31):

||R||L§°L2(Et) 5 ¢ and ||k||L§OL2(Et) 5 e for all 0 <t< 1. (258)

In view of (2.32), we also obtain the following control on the volume radius:
1

Oggil Tvol(zt, 1) Z Z__l (259)
Furthermore, Proposition 2.15 yields the following propagation of higher regularity
Y IDR|eg 2 < Cm Y (2.60)
la|<m [i|<m
bigg[[| VO Ric| L2 (s + ||V(i)Vk||L2(Eo)} (2.61)

where (), only depends on m.

REMARK 2.16. Note that Proposition 2.15 only yields the case m = 1 in (2.60).
The fact that (2.60) also holds for higher derivatives m > 2 follows from the standard
propagation of reqularity for the classical local existence result of Theorem 2.7 and the
bound (2.60) with m =1 coming from Proposition 2.15.

Finally, (2.58), the control on the volume radius (2.59) and the propagation of higher
regularity (2.60) yield the conclusion of Theorem 1.14. Together with the reduction to
small initial data performed in section 1.2.3, this concludes the proof of the main Theorem
1.6.

The rest of the chapter deals with the proofs of propositions 2.13 and 2.14. The core
of the proofs is to control A, the spatial part of the connection A. As explained in the
introduction we need to project our equation for the spatial components A onto divergence
free vectorfields. This is needed for two reasons, to eliminate the term 0;(9yAg) on the left
hand side of (2.24) and to obtain, on the right hand side, terms which exhibit the crucial
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null structure we need to implement our proof. Rather than work with the projection P,
which is too complicated, we introduce instead the new variable,

B = (—A)curl (A) (2.62)

for which we derive a suitable wave equation. Since we have (see Lemma 2.20) A =
curl (B) 4 l.o.t it suffices to obtain estimates for B which lead us to an improvement of
the bootstrap assumption (2.29) on A. In section 2.4, we derive space-time estimates for
(1B and its derivatives. Proposition 2.13, which does not require a parametrix represen-
tation, is proved in 2.6. Proposition 2.14 is proved in sections 2.8 and 2.9 based on the
representation formula of theorem 2.30 derived in section 2.7.

2.3. Simple consequences of the bootstrap assumptions

2.3.1. Sobolev embeddings and elliptic estimates on ;. The bootstrap as-
sumption (2.27) on R and the estimate for k& (2.31) together with the estimates in [44]
(see section 4.4 in that paper) yield the following lapse estimates:

I — 1| ooy + V2| oo ry + 1V20l oo 250y + 1V200] Lo 135 (2.63)

+IV(on)l| =2y + V0] ey T IV2(00(n)) Me,

; Doyt S
L&L2( LRL2(S,) ™~

where V denotes the induced covariant derivative on ;.

REMARK 2.17. Recall from (2.17) that (A¢)o; = —n~*Vin. Thus, the estimates (2.63)
forn could in principle be deduced from the bootstrap assumptions (2.30) for Ag. However,
notice that Vn € L>®(M) in view of (2.63), while Ay is only in L?L>(%;) according to
(2.30). This improvement for the components (Ao)o; of Ao will turn out to be crucial (see
remark 2.24). Its proof is given in section 4.4 of [44] (see also the discussion in section

4.2.3).

Next, we record the following Sobolev embeddings and elliptic estimates on ¥, derived
under the assumptions (2.28) and (2.27) in [44] (see sections 3.5 and 4.2 in that paper).

LEMMA 2.18 (Calculus inequalities on ¥;). Assume that the assumptions (2.28) and
(2.27) hold, and assume that the volume radius at scales < 1 on ¥ is bounded from below
by a universal constant. Then, the Sobolev embedding on ¥ holds for any tensor F

1 F[ ey S IV L2z, (2.64)

Also, we define the operator (—A)’% acting on tensors on X as:

3 —L +Oo7'_% T T
(—A) F_FG%A U(r)Fr,

4

where I is the Gamma function, and where U(T)F is defined using the heat flow on ¥:

(8, — AYU(r)F =0, U(0)F = F.
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We have the following Bochner estimates:

IV (=A) 72| 2y S 1 and [[VA(=A) Y| c@emy S 1, (2.65)

where L(L*(%;)) denotes the set of bounded linear operators on L*(3;). (2.65) together
with the Sobolev embedding (2.64) yields:

1(=2) "% Fllzsy S 1P

(2.66)

LO Zt)

2.3.2. Elliptic estimates for B. Here we record simple estimates for B, based the
bootstrap assumptions (2.29) (2.30) for A and Ay and standard elliptic estimates such as
the Bochner and Sobolev inequalities on 3, see (2.65) and (2.66).

PROPOSITION 2.19. Let B; = (—A)~(curl (A);). Then, we have, for each component
of B:

10B|| 1o r2(52) + 107 Bl 2o r25,) + 1000 B) || oo 125y S Me. (2.67)

2.3.3. Decomposition for A. Recall that B = (—A)~(curl (A)). We indicate
below how to recover A from B:

LEMMA 2.20. We have the following estimate:
A=curl(B)+ FE
where E satisfies:

I10E| e pacssy + 107 E] gy T 1By S M7,

LoL3
ProOF. We have, symbolically,
A= (=A)"reurl (curl (A) + (—=A) 1 (AGA + A%).
from which,

A = curl (B) — (=A) YA, curl |B + (=A) "1 (A0A + A?)

The rest of the proof uses elliptic estimates on YJ;, the bootstrap assumptions for A and
R, and the bootstrap assumption (2.40). We refer to [27] for the details. O

2.4. Estimates for OB

We outline the proof of two important propositions concerning estimates for Ccurl A
and OB, with B = A~ curl (A). The proofs makes use of the special structure of various
bilinear expressions and thus is based not only on the bootstrap assumptions for Ay, A,
k and R but also some of our bilinear bootstrap assumptions.

We record first the following straightforward commutation lemma, see [27].
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LEMMA 2.21. Let ¢ a so(3,1) scalar function on M. We have, schematically,

9;(0¢) — O(9;(4)) = 2(AY);* 00,6 + 0o(Ag) 09 + A8¢. (2.68)
We also have:
[0, Al¢ = —4k™V,Vi(009) + 4n~ ' VynVy(8o(0o)) — 2Vok™ Vo Ved  (2.69)
+ FY8% + F® a9,

FO = 9A)+ A?
F® = 08A,+ AdA + A®,

where V, and V, denote induced covariant derivatives on X; applied to the scalars ¢, Oy

and 0y(0p®).

The estimates for Ccurl A and (OB are given by the following propositions.

PROPOSITION 2.22. We have

Z” “20(curl Ay | 2oy S M2, (2.70)

PROPOSITION 2.23 (Estimates for OOB). The components B; = (—A)"(curl (A);)
verify the following estimate,

w

> (I0Bi| 2 + 100Bi]| 120) < M2, (2.71)

i=1

We also have,

3
Z”aoaoBiHB(M) S Me. (2.72)

The proof of Proposition 2.22 and Proposition 2.23 are similar in spirit. We give below
a short outline of the proof of Proposition 2.23 which is slightly more difficult.

PROOF. In what follows we outline the main steps in the proof of space-time estimates
(2.70), (2.71) for OB and 93 B. We have:

O(Bi) = [0, (=8) " (curl (A):) + (=A)" (O(curl (A):))

= —(~A) (O, A(-A) Neurl (A);) + (~A) " (D(curl (4),))
= —(=A)7'[O,A(By) + (—A) " (O(curl (A),)).

Thus, using the L? boundedness of d(—A)"/? and result of proposition 2.22, we obtain:

100(B) 2y S 1(=A)"2[0, Al(By) | sz + M2, (2.73)

~Y
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It remains to estimate ||(—A)~z [0, Al(B;)||L2(m)- We rely on the commutator formula
(2.69) to write,

[O0,A]B = —4k®V,Vy(0B) + 4n"'VynVy(0o(0o B)) — 2Vok™V,V,B (2.74)
+ FY9’B + FPaB
FO = 8(4) + A2,
F@ = 08(Ag) + AOA + A3,
with B any component (B;), [ = 1,2,3. It is easy to check that,

1F M Lo 13(s0) +HF(2)HLOOL2 s S Me,

We write,

1(=A)~2[0, Al(B) |l 2wy S Nu+ Ny + Ns + Ny (2.75)

Ni = [[(=A) "2 [E"V, Vi (9o (B1))] | 2
Ny = [|(=2) "2 [0~ VynVy(36(9o(B)))ll 2o
Ny = [[(=A) "2 [Vok Vo Vi (B)]l L2y

Ny = [[FV oo 135010 (Bi) | 2oy + 1P OB || ooy

1L (s))
Using the estimates (2.67) we easily infer that
Ny < M2 (2.76)
To estimate Ny we proceed as follows, using the constraint equations (1.7) for k,
KV V(00(B)) = Valk®V4(00(By))]

Together with the Bochner inequality on ¥; (2.65) and the bilinear assumption (2.34) ,
we obtain:

Ny S [[E285(00(B)ll 2y S M. (2.77)
To estimate Ny we write,
nilvbnvb«)@(ao(Bl))) = Vb[nflvbn(%(@g(Bl))] — (nilAn — n*ZIVn|2)(90(80(Bl)).

Together with the estimates (2.63) for the lapse n and the Sobolev embedding on ¥,
(2.66), this yields:

Ny S I 'Vndo (0o (Bo)) || 2oy + [[(n ™' An — n=2[Vn|?)80(90(By)) ||
S (IVallee + In7 ' An — 072 Vn? || e acs,)) 100(80(B) || 2wy
S Me||0o(0o(Br)) || 2 (m)- (2.78)

REMARK 2.24. Note that there is no room in the estimate (2.78). Indeed the sharp
estimate ||Vn| ey S Me given by (2.63) is crucial as emphasized in remark 2.17.

L2L5 )
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Finally, we consider N3. Recall from (1.10) that the second fundamental form satisfies
the following equation:

VQ]{?ab = Eab — n_lvavbn — kackb ¢ = ab + I.O.t. (279)

where E is the 2-tensor on ¥, defined as Eq, = Ryp0. In view of the estimates (2.31) for
k and (2.63) for n,

| Lot ||psers(sy) S ||V2n||L;>°L3(Et) + ||k||%gom(zt) S Me.

~

Thus instead of estimating Vok®V,V,B in the definition of N3 it suffices to estimate the
term

E*V,VyB = V.(E®V,B) - V,E"V,B

Using the maximal foliation assumption, the Bianchi identities and the symmetries of R,
we can write, schematically, V*E,, = AR and therefore, together with the bootstrap
assumptions (2.29) for A and (2.30) for Ay, and the bootstrap assumption (2.27) for R
yields:

[V Ea| ) S A e ros IR || Lo r2s,) S M2 (2.80)

~Y

oL (s,
We thus have,

Vokay = Vo(EV,B) + lo.t.
Now, in view of the bilinear assumption (2.35),

(=AY (BN B) ey S | Roaos Vo Bl 2y S MP€?

~Y

Hence, putting all the above together we infer that,

N3 S M382.
Together with (2.75), (2.77), (2.78) and (2.76), we derive,
H&DBHLQ(M) S M3e* + M&‘Ha()(a()B)”LQ(M) (281)

To close the estimate for |0 B||12(uq) it remains to control the right-hand side of (2.81).
This is achieved relying in particular on the following formula

90(0yB) = —OB+ AB +n"'Vn - VB.

2.5. Energy estimate for the wave equation on a curved background

Recall that eg = T', the future unit normal to the 3, foliation. Let 7 be the deformation
tensor of e, that is the symmetric 2-tensor on M defined as:

Taf = DQTB + DBTa-
In view of the definition of the second fundamental form k and the lapse n, we have:

Tab = —2kap, Tao = Toa = n_lvanu moo = 0. (282>
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In what follows H denotes an arbitrary weakly regular null hypersurface! with future
normal L verifying g(L,T) = —1. We denote by YV the induced connection on the 2-
surfaces H N ;.

LEMMA 2.25. Let F' a scalar function on M, and let ¢g and ¢, two scalar functions
on Yg. Let ¢ the solution of the following wave equation on M:

Lp = F,
{ ¢|Zo = ¢0> 80(¢)‘20 = gbl_ (283)

Let &, &, denote the energy quantities,
Eold] = 08| rpor2) + S%P(||W¢||L2(H) + 1 L(9)[ £2(30))

&gl = 1009 L2z + 100(009) | L2y + Sup (IV(90)ll 220y + 1 L(0)l| 2 30))

where the supremum is taken over all weakly regular null hypersurfaces H (satisfying
assumptions (2.25) and (2.26)). The following estimates hold true, provided that e M? is
sufficiently small,

& X IVoollrzsy) + 101llz2(so) + [ F [ L20my,s (2.84)
&1 S IVl + IVl + IV FI| L2 (2.85)
PRrROOF. We introduce the energy momentum tensor ),z on M given by:
1
Qaﬁ - Qaﬁ [(ﬁ] = aa(baﬁ(b - §ga,3 (gw}au(ﬁaz/qb) .
In view of the equation (2.83) satisfied by ¢, we have:
D*Qap = FOs¢.
Now, consider the divergence of the 1-tensor P, = Qageg = Qwo,
1
DP, = Fdyp + §Qam“5,

where 7 is the deformation tensor of ey. Integrating over well-chosen regions of M, we
easily obtain:

& < ||V¢o||iz<zo>+||¢1||22@0>+] /M Fao¢dM\+' /M@amaﬁdM\ (2.86)

< V0l + 61 am + 1 Fllzzcuo 100l conn + ] /M Qaw“ﬁd/\/l‘ .

Next, we deal with the last term in the right-hand side of (2.86). In view of (2.82)
and our maximal foliation assumption, we have:

/ Qopm®PdM = =2 / Do ®Op Ok dM + / n V0,00 ddM.
M M

lie. it satisfies assumptions (2.25) and (2.26)
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Together with the bilinear bootstrap assumptions (2.36) and the estimates (2.63) for the
lapse n, this yields:

'/MQawaﬁdM’ S ke 00ll2an |0l 200y + V7| oo (a1 L2 )

S b (supl ¥l a0 ) 1961 + M0 sqag

which together with (2.86) concludes the proof of the (2.84). Though more technical the
proof of (2.85) follows the same ideas, and we refer to [27] for the details. O

2.6. Improvement of the bootstrap assumptions (part 1)

In this section, we discuss the proof of Proposition 2.13. More precisely, we derive
estimates for R, Ay and A which allow us to improve the basic bootstrap assumptions

(2.27), (2.28), (2.29) and (2.30).

2.6.1. Curvature estimates. We derive the curvature estimates using the Bell-
Robinson tensor,

Qapvs = Ra* 7 Rprse + Ra™77 *Rprso
Let
P, = Qaﬁwgeg egel.

Then, we have:

D°P, = 3Qup 7 ede), (2.87)
where 7 is the deformation tensor of eg. We introduce the Riemannian metric,

hag = gap + 2(€0)aleo)s (2.88)
and use it to define the following space-time norm for tensors U:

U = Uayeoa Usy oo B2 -+ hOR%

Given two space-time tensors U,V we denote by U - V' a given contraction between the
two tensors and by |U - V| the norm of the contraction according to the above definition.

Let H be a weakly regular null hypersurface with future normal L, g(L,T) = —1.
Integrating (2.87) on a well-chosen, causal, space-time region, we have:

\R|2+/ R-LP S IR Zzs) + ‘/ QuansmPeled| < & + ‘/ QuprgmPeld
3t H ™ »

We need to estimate the term in the right-hand side of the previous inequality. Note that
since moo = 0, mo; = n~'V;n, and m;; = kyj, the bootstrap assumption (2.27) for R, and
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the estimates (2.63) for n yield:

/Z|R‘2—|—/H|R.L|2 < e +an||Loo||R||LooL2 (=) ‘/ Qzﬂgk:”t?oeo

S e ‘/ Qw%k 6060

The term in the right-hand side of the previous inequality is dangerous. Schematically
it has the form ‘ / M kRZ} . Typically this term is estimated by:

‘/ kR?

which requires a Strichartz estimate for k& which is false even in flat space. It is for this
reason that we need the trilinear bootstrap assumption (2.43). Using it we derive,

|kHL2L°° %t) ||R||L°°L2(Et)

IR/|? +/ R-L*? < &4 M*, (2.89)
St H
which, for small €, improves the bootstrap assumptions (2.27) and (2.28).

2.6.2. Improvement of the bootstrap assumption for Aj. Recall (2.23)
AAg = AOA + ADA, + A (2.90)

Then, using (2.90), elliptic estimates on ¥;, and commuting (2.90) with 0, in order to
control 0; Ay, we are able to obtain the improved estimate (2.47) (see [27] for the details).

2.6.3. Improvement of the bootstrap assumption for A. Using the estimates
for OB, derived in Lemma 2.23, the estimates for B on the initial slice Y, and the energy
estimate (2.85) derived in Lemma 2.25, we have:

||82B||L?°L2(Zt) 5 €+ M2€2. (291)
Using then (2.91) with Lemma 2.20, we obtain:
||8A||L?°L2(Et) 5 ||OQB||L?OL2(E75) + ||8E||L§°L2(Et) 5 9 ‘|‘ MQEQ. (292)

which proves corresponding estimate in (2.46).
To estimate JyA. we recall that, dy(A;) = 9;(Ao) + Ry,... Thus, we have:

100A] L2,y S 10Ao e r2(sy) + IR || Lo r2(s0),

which together with the improved estimates for R and A yields:

M\C/J

||80AHL°°L2(E¢) < €+ (M&T) (293)
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2.7. Parametrix for the wave equation

Let uy two families, indexed by w € S?, of scalar functions on the space-time M
satisfying the Eikonal equation for each w € S?. We also denote “uy(t,z) = us(t,r,w).
We have the freedom of choosing “u. on the initial slice ¥y, and in order for the results
in [43], [45] to apply, we need to initialize “us on ¥, as in [42] (see also Chapter 6).

Let H «,, denote the corresponding null level hypersurfaces. Let “L, its normal.
“ L is null, and we fix it by imposing g( “L4,T) = —1. Let the vectorfield tangent to
Y “N4 be defined such as to satisfy:

“Li=4T+ “Ny..

We pick (“eq)a, A = 1,2 vectorfields in ¥; such that together with “NL we obtain
an orthonormal basis of ;. Finally, we denote by Y. derivatives in the directions
( w6i>A, A= 1,2

REMARK 2.26. Note that H «,. satisfy assumptions (2.25) and (2.26) from the results
in [44] (see Theorem 2.15 and section 3.4 in that paper).

For any pair of functions fi on R3, we define the following scalar function on M:

O[fe, f](t,x) = / / e Turta) £ (Aw)N2dAdw + / / e Tu=2) £ (N A2dNdw.
sz Jo sz Jo

We appeal to the following result from [43] [45] (see also Chapters 3 and 5):

THEOREM 2.27. Let ¢y and ¢y two scalar functions on ¥g. Then, there is a unique
pair of functions (fy, f—) such that:

s [Nz = o and (Y[ f+, f-])]s, = o1.

Furthermore, fi satisfy the following estimates:

[Mfrllze@s) + A =lz2@s) S IV @ollL2isg) + 1011 2(50)
and:
I fillzagray + 1IN f= 22wy S 1V o0llz2(m0) + 1V 1| z250)-
Finally, O f1, f_] satisfies the following estimates:

1OY[fes -2y S Me(IVollz2zo) + 101l 22(20))
and:
1000 f+, f-l2omy S Me([[ V2ol im0y + [V 1l 22(5))-

REMARK 2.28. The existence of fi and the first two estimates of Theorem 2.27 are
proved in [43] (see also Chapter 5), while the last two estimates in Theorem 2.27 are
proved in [45] (see also Chapter 3).
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We associate to any pair of functions ¢, ¢; on Xy the function U,,,[¢o, ¢1] defined for

(t,x) € M as:
\Dom[¢0a¢1] = q/)[f—i-af—]

where (fy, f_) is defined in view of Theorem 2.27 as the unique pair of functions associated
to (¢o, ¢1). In particular, we obtain:

A ll2@sy + A= ll2@sy S IV oollzase) + |01l 22(20),
[N fill ey + 1N =Nl 2eey S V200l 2oy + 1V 01| L2(50)

1OV o (b0, D1l L2vy) S Me([[Veollzzcse) + |1 llz2(s0))s (2.94)

and:

100% o (60, d1lll 2ty S Me(IVbollL2(s) + 1VErllL2(50))- (2.95)

Next, let “*uy two families, indexed by w € S? and s € R, of scalar functions on
the space-time M satisfying the Eikonal equation for each w € S? and s € R. We have
the freedom of choosing “*uy on the slice 3, and in order for the results in [43] [45] to
apply, we need to initialize “*u on X, as in [42]. Note that the families “uL correspond
to “*u with the choice s = 0. For any pair of functions fi on R?, and for any s € R, we
define the following scalar function on M:

Vsl fo, f-](t, 2, 5) = / / e e () £ (N A2 dNdw+ / / e Tu=() £ (NI AZdNdw.
sz Jo sz Jo
We have the following straightforward corollary of Theorem 2.27:

COROLLARY 2.29. Let s € R. Let ¢g and ¢1 two scalar functions on ¥s. Then, there
is a unique pair of functions (fy, f—) such that:

¢s[f+,f—] 5 — ¢0 and 8ﬂ(ws[f+>f*])

Furthermore, fi satisfy the following estimates:

M llz2@s) + A=l z2@s) S IV o2z, + |01l 22(m.)

s :(bl-

and:
IA2 il 2 sy + IV f-llz@sy S 1IV¢ollzs,) + IV ]l 2cs.)-
Finally, Ois[f+, f-] satisfies the following estimates:
18U 4, [l 2omy S Me([[Vollr2s,) + 91l r2s,)),

and:
10005 [ f+, f-)l 2oy S Me([VP0oll 125, + V1l r2(s.)-
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Next, for any s € R, we associate to any function F' on X the function V(t,s)F
defined for (¢,x) € M as:

qj(tv S)F - ws[f—&-a f—](t)
where (f, f_) is defined in view of Corollary 2.29 as the unique pair of functions associated
to the choice (¢g, 1) = (0, F'). In particular, we obtain:

A llz2@e) + A= ll2@e) S [1F 2,
IV Fellzzms) + 1A f-llr2me) S IV [|e2s,),
1O (E, s)F 2y S Mel|Fllrzs,), (2.96)
and:
100 (¢, 5)Fll 2y S Mel| VFl2cs). (2.97)
Now, we are in position to construct an exact parametrix for the wave equation (2.83):

THEOREM 2.30 (Representation formula). Let F' a scalar function on M, and let ¢
and @1 two scalar functions on ¥o. Let ¢ the solution of the wave equation (2.83) on
M. Then, there is a sequence ¢9), j >0, of scalar functions approzimations of ¢ and a
sequence FU), § >0, of scalar functions on M, with of the form:

t
O =W, [0, ¢1] + / U(t,s)F9(s,.)ds, F9=F
0
and for all 7 > 1:
¢
oY :/ (t,s)FY(s,.)ds,
0
such that,
+o0o
o= oV,
7=0
and such that oY) and FY) satisfy the following estimates:
1069 | L1250 + 1 F D20y S (MY ([IV ol z2(m0) + 1011l 2m0) + 1F Il 220

and:

10069 oo 25y + 1OF D[ 2ty S (M) (|IV2doll12(50) + IV 1| 2(20) + 1OF | £2(00))4
PROOF. Let us define:

t
FO = F and ¢© = 0, [¢o, 6] + / U(t,s)FO(s,.)ds.
0
Then, we define iteratively for j > 1:

t
FO = —O¢l=Y 4 FU-Y and ¢W) = / W(t,s)FY(s,.)ds.
0
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The proof follows from the estimates (2.94), (2.95), (2.96) and (2.97), together with the
energy estimates for the wave equation of Lemma 2.25. We refer to [27] for the details. [

2.8. Improvement of the bootstrap assumptions (part 2)

The goal of this section and next section is to prove Proposition 2.14. This requires
in particular to write B using the representation formula of Theorem 2.30. In this sec-
tion we derive the improved bilinear estimate (2.48), (2.49), (2.50), (2.51) and (2.52) of
Proposition 2.14. We also derive the improved trilinear estimate (2.57).

2.8.1. Improvement of the bilinear bootstrap assumptions I. In this section,
we give the main ideas on the how we derive the improved bilinear estimate (2.48), (2.49),
(2.50), (2.51) and (2.52) of Proposition 2.14. These bilinear estimates all involve the norm
in L?(M) of quantities of the type:

C(U,99),

where C(U, 0¢) denotes a contraction with respect to one index between a tensor U and
0¢, with ¢ being a scalar function which is solution to the wave equation (2.83) with F) ¢
and ¢, satisfying the estimate:

V2ol L2cs0) + IVl L2s0) + 10F || L2000y S M.

In particular, we may use the parametrix constructed in Lemma 2.30 for ¢:

+o00
o= o,
=0
with: t
(b(O) = \Ilom[(b(b(ﬁl] +/ \P(tu S)F(Sa .)dS,
0
and for all 7 > 1:
t
oV :/ U(t,s)FU) (s, )ds.
0

Thus, we need to estimate the norm in L?(M) of contractions of quantities of the type:

+too g
C(U, O Banl60, 1))+ / C(U, O(W(t, 5)F9(s,.)))ds.

After using the definition of W,,, and W(t,s), and the estimates for F() provided by
Lemma 2.30, this reduces to estimating:

/ / C(U, 0(e™ “u+E2))) £ (Aw)N2dAdw + / / C(U, d(e™ " =t2)) £ (Aw)N2ddw,

s2 Jo s2 Jo

where fi in view of Theorem 2.27 and the estimates for F, ¢g and ¢, satisfies:
||)‘2f:|:||L2(R3) SJ M€.
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Since both half waves parametrices are estimated in the same way, the bilinear estimates
(2.33), (2.34), (2.35), (2.36) and (2.37) all estimate the norm in L*(M) of contractions of
quantities of the type:

/ / C(U, d(e™ ““&2))) f(Aw) N2d A dw,
s2Jo

where f satisfies:
1IN fll L2y S Me. (2.98)

Furthermore we observe that 9;(e™* “*) = iXe"* “*9;( “u), and that the gradient of “u
on ¥, is given by: V(“u) = “b!'“N, with “b = |V(“u)|~! is the null lapse, and
YN = ‘g iZ\ is the unit normal to H «, MY, along ;. Thus, the bilinear estimates (2.33),
(2.34), (2.35), (2.36) and (2.37) all reduce to L?(M )-estimates of expressions of the form:

e, f] = /S 2 /0 e ulte) wpmle @ N F(Aw) AP dAdw, (2.99)

where f satisfies (2.98). To estimate €[U, f] we follow the strategy of [21].
1€[U, f] ||L2(M) (2.100)

+o00
/ “b=1C(U, “N) ( / A “ulta) f(/\w))\?’d/\)
S2 0

S LI em O, Nl 260

N

dw
L2(M)

dw

2
L%,

S (sl 0 s ) (suplle@: “Mlls e ) ([ 1970030
weS? weS? S2

S (SUPH wb_l”LOO(M)) (suégHC(U, wN)HLO:gum(H wu)> H/\szL?(Rif),
we

weS?

+oo
‘/ €i/\ wu(t’x)f()\W))\SdA
0

Now, since “u has been initialized on Yy as in [42], and satisfies the Eikonal equation
on M, the results in [44] (see Theorem 2.15 in that paper, and also (4.42)) under the
assumption of Theorem 1.14 imply:

sup || “b~ | e rn) S 1
wEeS?

Together with the fact that f satisfies (2.98), and with (2.100), we finally obtain:

’ / / e ulte) wp=le( @ N F(Aw) AP dAdw
S22 Jo

< - (supncw, wmnmumwu)) |

weS?

(2.101)

L2 (M)
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It remains to estimate the right-hand side of (2.101) for the contractions appearing in the
bilinear estimates (2.33), (2.34), (2.35), (2.36) and (2.37). Since all the estimates in the
proof will be uniform in w, we drop the index w to ease the notations.

REMARK 2.31. In the proof of bilinear estimates (2.48), (2.49), (2.50), (2.51) and
(2.52), the tensor U appearing in the expression C(U, N) is either R or derivatives of
solutions ¢ of a a scalar wave equation. In view of the bootstrap assumption (2.28) for the
curvature fluz, as well as the first energy estimate for the wave equation in Lemma 2.25,
we can control ||C(U, N)||per2(31,) as long as we can show that C(U, N) can be expressed’

in terms of, R - L, Y¢ and L(¢).

2.8.1.1. Proof of (2.48). Since A = curl (B)+ E in view of Lemma 2.20 and bootstrap
assumption (2.29), we have:

1490, (A) 2wy S Ceurl (B0, (A) ey + Bl gooe |04 2y (2:102)
< eurl (B)Y0;(A) | zxun + M2

~

To estimate ||(curl (B))?0;(A)||2(m) we write, (curl (B))?0;(A) =€jmn Om(Bn)0;(A). We
are now ready to apply the representation theorem 2.30 to B. Indeed, according to Lemma
2.23, and proposition 2.19, we have

OB = F, |0F || 200y S M (2.103)
18B(0)|z2(s) + 10*B(0)12(5) + 10(00B(O) 2z S Me.

We are thus in a position to apply the reduction discussed in the subsection above
and reduce our desired bilinear estimate to an estimate for,

C(UN) = E€jm Npd;(A)

Now, we decompose 0; on the orthonormal frame N, f4, A = 1,2 of 3;, where we recall
that fa, A = 1,2 denotes an orthonormal basis of H, N ;. We have schematically:

0; =N;,N+YV, (2.104)
where YV denotes derivatives which are tangent to H, N %;. Thus, we have:
€jm- Nim0j(A) =€jm. NinN;On(A) + V(A) = V(A),

where we used the antisymmetry of €;,,. in the last equality. Therefore, we obtain in this
case:

IC(U, Nl e 2ty S IV (A Lo £2 24,

2In other words, our goal is to check that the term C(U, N) does not involve the dangerous terms of
the type o and L¢, where L is the vectorfield defined as L = 2T — L, and « is the two tensor on ¥; NH,,
defined by ayp =Rra LB-
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It remains to estimate ||V(A)|| roor2(3,). Since A = curl (B) 4+ E we have, using Lemma
2.20 again, followed by Proposition 2.23 and Lemma 2.25:

IV 22y S NIVOB) | Leer2n) + IVE) | Lee 230

S VOB |20, + 10 || Lo La(s) + H82E||L?OL%@)
S V(OB per2p,) + Me,
< Me.
Therefore,
1A70; (A2 S (eurl (B))Y05(A)l| 2wy + M?e* S M*e?,
as desired.

2.8.1.2. Proof of (2.49). The proof of (2.49) is similar to the one of (2.48) in view of
Lemma 2.20.
2.8.1.3. Proof of (2.50). Since B satisfies a wave equation in view of Lemma 2.23, the
quantity C(U, N) is in this case?,
1

C(U,N) = NjRoj.. = RON-- = §RLL--

which together with the bootstrap assumption for the curvature flux (2.28) improves the
bilinear estimate (2.35).

2.8.1.4. Proof of (2.51). We have k;. = A7 and A = curl (B) + E in view of Lemma
2.20. Arguing as in (2.102), we reduce the proof to the estimate of:

I(curl BY 06| 2(am)

Then, the proof proceeds as the one of (2.48).
2.8.1.5. Proof of (2.52). The proof of (2.52) proceeds as in (2.51).

2.8.2. Improvement of the trilinear estimate. In this section, we shall derive the
improved trilinear estimate (2.57). To estimate the trilinear quantity | [, , Qijssk”eje] .
we first write, according to Lemma 2.20, A = curl (B) + E by. Arguing as in (2.102), we
reduce the proof of (2.57) to an estimate for:

/Qﬂg (curl (B));ed

Making use of the wave equation (2.103) for B we argue as in the beginning of section
2.8.1 to reduce the proof to an estimate of the following:

/ / / e ety wp=l(eo U NLLQ; ) fFOw) AP dAdwd M
M JS2J0

where f satisfies:

[N fll2rey S Me.

3Use also L =T+ N, L =T — N and the symmetries of R
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Arguing exactly as in (2.100) (2.101), we can estimate the latter integral by the quantity
sup,esz||€jm- Nm@j---[l12, 113, Me. In other words,

/ ngk” 60 60
M

Next, we estimate the right-hand side of (2.105). Since all the estimates in the proof
will be uniform in w, we drop the index w to ease the notations. The formula (2.42) for
the Bell-Robinson tensor @) yields:

Q;. = R;* - R\ +dual

< SupHGJm NuQj 12, 113 wyMe + MO, (2.105)

1 1
= _éRjL“R“L" — §RjL~R~L~ +RjA..R.A.. + dual,

where we used the frame L, L, f4, A = 1,2 in the last equality. Thus, we have schemati-
cally:
Ejm. NmQ] = R(R - L+ Ejm- NijAA.)
Decomposing e; with respect to the orthonormal frame N, fg, B = 1,2, we note that:

Ejm. NijA.. =€ jm. NijRNA..+ Ejm- (fB)ijRBA.. =Rga..

On the other hand, decomposing Rpg4.. further and using the symmetries of R, one easily
checks that Rpg4.. must contain at least one L so that it is of the type R - L. Thus, we
have schematically:

Ejm NmQj... = R(R - L). (2.106)
Thus, in view of (2.105), making use of the bootstrap assumptions (2.27) on R and (2.28)
on the curvature flux, we deduce,

/dekz ejey| < (Me)® + Me|RRL|r20130.)

~Y

(Me)? + Me||R|| 2oa) IR L Lo 22 (31

S
< M3&3

In other words,

S (Me)?, (2.107)

’/ chsk e060

which yields the desired improvement of the trilinear estimate (2.43).

2.9. Improvement of the bootstrap assumptions (part 3)

In this section, we conclude the proof of Proposition 2.14. More precisely, we give the
main ideas in the improvement of the bilinear bootstrap assumptions II. We start with a
discussion of the sharp L*(M)- Strichartz estimate.
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2.9.1. The sharp Strichartz L*(M) estimate. To a function f on R3 and a family
“u indexed by w € S? of scalar functions on the space-time M satisfying the Eikonal
equation for each w € S?, we associate a half wave parametrix:

/ / e Ut £ AW)N2dAdw.
Sz Jo

Let an integer p and a smooth cut-off function ¢ on (0, +00) supported in a shell. We
call a half wave parametrix localized at frequencies of size A ~ 2P the following Fourier
integral operator:

// e Ut (27P ) F(Aw) A2d A dw.
sz Jo

We have the following L*(M) Strichartz estimates localized in frequency for a half wave
parametrix which are proved in [46] (see also Chapter 7):

PROPOSITION 2.32 (Corollary 2.8 in [46)). Let f a function on R?, let p € N, and let
W a smooth function on (0,+00) compactly supported in the shell 1/2 < X\ < 2. Let “u a
family indexed by w € S* of scalar functions on the space-time M satisfying the Eikonal
equation for each w € S* and initialized on the initial slice X as in [42]. Let ¢, the scalar
function on M defined by the following oscillatory integral:

op(t,7) = /S 2 /0 h e Ut (27PX) f(Aw) A2d A dw.

Then, we have the following L*(M) Strichartz estimates for ¢,:

Ippllany S 22 [(277N) fllr2es. (2.108)
3p _

100pllamy S 27 10(277A) fll L2 (ee), (2.109)
5p _

120l sy S 22 1027PN) fll 2y (2.110)

Note that this Strichartz estimate is sharp.

2.9.2. Improvement of the non sharp Strichartz estimates. Here, we derive
the improved non sharp Strichartz estimates (2.55) and (2.56). In view of Lemma 2.20,
(2.55) easily follows from (2.56), so we focus on the later improved estimate.

COROLLARY 2.33. B satisfies the following Strichartz estimate:
108|207z, S Me.

PROOF. Recall (2.103) which allows us to apply the representation formula of Theorem
2.30 to B. By a straightforward reduction the proof then reduces to the following non-
sharp Strichartz estimate for a half wave parametrix:

a( / / eWu(t@f(Aw)AQdAdw)
sz Jo

Then, the proof of Corollary 2.33 follows in particular from the sharp Strichartz estimate
of Proposition 2.32. We refer to [27] for the details. O

SN fll r2msy- (2.111)
LZL7(%y)
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2.9.3. Improvement of the bilinear bootstrap assumptions II. In this section,
we sketch the proofs of the improved bilinear estimates (2.53) and (2.54) of Proposition
2.14. Based on the decomposition A = curl (B) + E of Lemma 2.20 it is easy to show
that that the proof of the bilinear estimates (2.38) and (2.39) reduces to:

I(=2)"2(Qi(0B,0B))||2(my S M*e*. (2.112)

Decomposing B according to Theorem 2.30,

1(=2)72(Qi5(9B,0B))| 12 <ZH AV HQu (6™, 6N 2re. (2113)

m,n=0

Thus it suffices to prove for all m,n > 0:

1(=2)72(Qis (6™, 6™ Nl 2agy S (Me)™ (Me)™+, (2.114)

The estimates in (2.114) are analogous for all m,n, so it suffices to prove (2.114) in the
case (m,n) = (0,0). In view of the definition of ¢(*), the estimates for B on the initial
slice g, estimate (2.71) for 00B, and the definition of U,,, and ¥(¢,s), (2.114) reduces
to the following bilinear estimate for half wave parametrices:

|27 @Qiten. 00|, YA PPV P (2.115)

M)

br = / / e D) £ (W) N2dAdw.
sz Jo

We then decompose fi, fo with respect to frequency and reduce the desired estimate to
L*(M) Strichartz estimate localized in frequency of Proposition 2.32, see details in [27].
This concludes the proof of Proposition 2.14.

with,



CHAPTER 3

Control of the error term

In this chapter, we consider the Fourier integral operator E given by (1.27) in which
corresponds to the error term of a plane wave type parametrix. Recall that F is given by:

+oo
Ef(t,x) = / / eMtrIT y(t, 2, w) f W) N3 dAdw, (t,z) € M,
s2 Jo

where u(.,.,w) is a solution to the eikonal equation g*’d,udsu = 0 on M such that
u(0, z,w) ~ x-w when |z] = 400 on ¥, (see section 3.1.1). The goal of this chapter is to
outline the main ideas allowing us to obtain the control for the error term FE in [45].

3.1. Geometric set-up and main results

3.1.1. Geometry of the foliation of M by wu. Recall that u is a solution to the
eikonal equation g**d,udsu = 0 on M depending on a extra parameter w € S The level
hypersufaces u(t, z,w) = u of the optical function u are denoted by H,. Let L’ denote
the space-time gradient of u, i.e.:

L' = —g“%03ud,. (3.1)
Using the fact that u satisfies the eikonal equation, we obtain:
D, L =0, (3.2)

which implies that L’ is the geodesic null generator of H,,.

We foliate the space-time M by space-like hypersurfaces ¥; defined as level hypersur-
faces of a time function ¢ and we denote by T' the unit, future oriented, normal to ¥;. We
have:

T(u) = £|Vul

where |[Vu|? = 327 |e;(u)|? relative to an orthonormal frame e; on %,. Since the sign of
T(u) is irrelevant, we choose by convention:

T(u) = |Vul. (3.3)
We denote by P, the surfaces of intersection between ¥, and H,,.
DEFINITION 3.1 (Canonical null pair).

L=bl=T+N, L=2T-L=T-N (3.4)

47
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where L' is the space-time gradient of u (3.1), b is the lapse of the null foliation (or shortly
null lapse)

bl=—< I T>=T(u), (3.5)

and N 1s a unit normal, along ¥, to the surfaces P;,. OSince u satisfies the eikonal
equation g*?d,udgu = 0 on M, this yields L'(u) = 0 and thus L(u) = 0. In view of the
definition of L and (3.3), we obtain:

Vu

DEFINITION 3.2. A null frame ey, ez, e3,e4 at a point p € P,,, consists, in addition to
the null pair es = L,eq = L, of arbitrary orthonormal vectors ey, ey tangent to P, ,.

DEFINITION 3.3 (Second fundamental form). Let ey, ea, e3,e4 be a null frame on P,
as above. The second fundamental form on P,, associated to our canonical null pair is
given by

XaB =< Daey,ep > .

We decompose x into its trace and traceless component.

AB ~ 1
rx =87 XAB, XAB = XAB — §t7XgAB-

Recall that try satisfies a transport equation called the Raychaudhuri equation:
1 ~
L(trx) + 5 (trx)” = =[X° + - (3.7)

(see precise equation in (4.19)).
We conclude this section with the identification of the symbol Ugu of the error term.
We have (see for example [44] for a proof):

Ogu = b~ 'try. (3.8)

Thus, we may rewrite the error term E as:
“+o00
Ef(t, ) :/ / M2t g w)trx(t, 2, w) F(Aw) A3 dAdw. (3.9)
s2 Jo

3.1.2. Some norms. We define some norms on H. For any 1 < p < 400 and for
any tensor £’ on H,, we have:

1
1 P
HFHLp(HuF( |af !Flpdut,u> ,
0 Py

where dji;,, denotes the area element of P, ,,.
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Let 2’ a coordinate system on F,. By transporting this coordinate system along the
null geodesics generated by L, we obtain a coordinate system (¢, z’) of H. We define the

following norms:
1
1 2
Pl = sw ([ i)
® x'EPoyu 0

HF”L2,L§° = || sup |F<t7$/))’
@ 0<t<1

L2(Py )

3.1.3. Estimates for the space-time foliation. In this section, we collect the
estimates that are needed to follow the discussion of the control of the error term contained
in this chapter. An outline of the proof of these estimates will be given in Chapter 4 (see
[44] for the complete proof).

We start with the regularity in (¢, ) of the lapse b and the second fundamental for x.
We need:

[t o) + IV Xl o 2 + 110 = Ll oo () + 1V Ol ze 2y + XN 2o 22 + (VXN e 22030 S €
(3.10)

REMARK 3.4. In this section, all estimates hold for any w € S* with the constant
in the right-hand side being independent of w. Thus, one may take the supremum in w
everywhere. To ease the notations, we do not explicitly write down this supremum.

We also need an estimate for two derivatives of try with respect to Vy
IV NP (V300 2o,y S €20 + 2 u(u), (3.11)

where p in a function satisfying:

el 2wy S e
Next, we consider the regularity with respect to w. We have:
[0l Loy S &, (3.12)
IN(t,z,w) — N(t,z,0')| ~ |w — |, V(t,z) € M,w,w € S? (3.13)
and
10N Loy S 1. (3.14)
Furthermore, we have the following decomposition for X:
X = X1+ X, (3.15)

where x; and x; are two symmetric traceless P, ,-tangent 2-tensors satisfying in particular,
for any 2 < p < 4-00:

||X1||L5L;7 + 10uxz2llpo- 34, S & (3.16)

REMARK 3.5. The point of decomposition (3.15) is that x1 has a better reqularity with

respect to (t,z) than X, while xo has a better reqularity with respect to w than Y (see
explanation in section 4.4.1).
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Finally, we need to compare quantities evaluated at two angles w and v in S* satisfying
lw — v| < 27%. We have the following decomposition for N(t,z,w) — N(t,z,v):
25 (N(t,2,w) — N(t,2,v)) = Fi (t,2,v) + Fj(t, 2,0, v) (3.17)
where the tensor 7 does not depend on w and satisfies:
IF || S 1,
and the tensor FY satisfies:
1F N 2y S 272

Here L°L*(H,) is defined with respect to u = u(t,z,w). We also have the following
decomposition for try:

trx(t,w) = It 2,0) + F(t 7w, 0) (3.18)
where the scalar f/ does not depend on w and satisfies:
1Al S,

and where the scalar fJ satisfies:
1A 20y S €272,
3.1.4. Main result. The main result of this chapter is the following.

THEOREM 3.6. Let u be a function on M x S? satisfying suitable assumptions (we
refer to [45] for the complete set of assumptions, and to section 3.1.3 for some typical
assumptions). Let E the Fourier integral operator with phase u(t,z,w) and symbol Ogu:

+o00
Ef(t,x):// eMETOE=(t g W)ty (t, o, w) f(Aw) N3 dAdw. (3.19)
s2 Jo

Then, E satisfies the estimate:

|Efllz2omy S ellAfllzees)- (3.20)

3.1.5. Geometric Littlewood-Paley projections on the 2-surfaces P, ,. Through-
out the paper, we will use the geometric Littlewood-Paley projections on 2-surfaces (P,
in our case) constructed in [24]. In that paper, the following properties are proved

THEOREM 3.7. The LP-projections P; verify the following properties:
i) LP-boundedness  For any 1 < p < oo, and any interval I C Z,

1P Py S I | Loy (3.21)
ii)  Bessel inequality

Y B Flzap) S 1F e,
J
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ii1) Finite band property For any 1 < p < co.

I8P, Pl S 29)F (3.22)
1PiF ey S 272\ AF | Le(p,)-

In addition, the L? estimates
IV P Fl| 2P, )
1P F | L2(p,)
hold together with the dual estimate
1BV 2y S 2Nl r2p)
iv) ~ Weak Bernstein inequality For any 2 < p < oo
2y,
1P Fllopy S U797 4 D) Fll2(p,0),
[PcoF \lopny S I L2(p)

21| F | t2(py)
n tu 3.23
29|V F || o (3:23)

AXYAN

together with the dual estimates
_2y;
1P Flz2py S Y727 + DIF -
[1P<oFllz2p) S N F | p,
3.2. Control of the error term

3.2.1. The basic computation. We start the proof of Theorem 3.6 with the fol-
lowing instructive computation:

+oo
Ef|lr2om < b(t,z,w) try(t, z,w e F(Aw)N2dX dw
(M)
s2 0 N L2 (M)
S/ 16(t, z,w) " trx(t, 2, w) || e £2(300) / M F AN N dw
s2 0 L2
< || N £ 2,
(3.24)

where we have used Plancherel with respect to A, Cauchy-Schwarz with respect to w, the
estimates (3.10) for b and try. (3.24) misses the conclusion (3.20) of Theorem 3.6 by a
power of A. Now, assume for a moment that we may replace a power of A by a derivative
on b(t,z,w) Mtry(t,z,w). Then, the same computation yields:

/ /+OO V(b(t, z,w) try(t, 2, w))e™™ f(Aw) AdAdw
s2Jo

L2 (M)

o (3.25)

L

+oo
/ e F(Aw)AZdA
0

S N
SQ

S 5H)‘f”L2(R3)7
where we used the fact that
||V(b(t,x,w)_ltrx(t,x,w))||LgoLz(Hu) <e (3.26)
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in view of (3.10). Note that the estimate provided by (3.25) is consistent with the control
of the error term (3.20). This suggests a strategy which consists in making integrations
by parts to trade powers of A against derivatives of the symbol b(t, z,w) *try(t, ,w).

3.2.2. Structure of the proof of Theorem 3.6. The proof of Theorem 3.6 pro-
ceeds in three steps. We first localize in frequencies of size A ~ 2/. We then localize the
angle w in patches on the sphere S? of diameter 277/2. Finally, we estimate the diagonal
terms.

3.2.2.1. Step 1: decomposition in frequency. For the first step, we introduce ¢ and ¥
two smooth compactly supported functions on R such that:

p(\) + > (277X =1forall A €R. (3.27)
>0
We use (3.27) to decompose Ef as follows:
Ef(t.x) =Y Ejf(t.x), (3.28)
j>—1
where for 7 > 0:
“+o0o
Eif(t,x) = / / eMUb(t, 2, w) My (t, 2, W)Y (27N fF(Aw) N2dAdw, (3.29)
s2 Jo
and
+oo
E_if(t,x) :/ / eNUb(t, z,w) Mty (t, 2, w)e(N) FAw) N2dAdw. (3.30)
s2 Jo

This decomposition is classical and is known as the first dyadic decomposition (see [39]).
The goal of this first step is to prove the following proposition:

PROPOSITION 3.8. The decomposition (3.28) satisfies an almost orthogonality prop-
erty, from which it follows that:

1Ef 20y S D NE T2y + €21 F 172y (3.31)

j>—1

A discussion of the proof of Proposition 3.8 is postponed to section 3.3.
3.2.2.2. Step 2: decomposition in angle. Proposition 3.8 enables us to estimate || ; f|| z2(m)
instead of || Ef||r2(m). The analog of computation (3.24) for || £ f||z2(m) yields:

1E; 2 < elMp(2770) fllzae) S €2 10277 N fll 2, (3.32)

which misses the wanted estimate by a power of 2/. We thus need to perform a second
dyadic decomposition (see [39]). We introduce a smooth partition of unity on the sphere
S

Zn;(w) =1 forall w e §% (3.33)

vell
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where I is a lattice on S? of size 2_%, where the support of 77 is a patch on S? of diameter
~ 27972, We use (3.33) to decompose E;f as follows:

Eif(t,x) =Y E/f(t@), (3.34)

vell

where:
+oo
EYf(t, x) :/ / ei’\“b(t,x,w)_ltrx(t,x,w)¢(Z_j/\)n;(w)f()\w))\Qd)\dw. (3.35)
s2 Jo

We also define:
1 = I Fll ey, 5 = N gy, 32 0 (3.36)

v = @7 N7 (@) fll2@s), 2 0, v €T,

ey = > v =D > (5™ (3.37)

j>—1 j>—1verl

which satisfy:

The goal of this second step is to prove the following proposition:

PROPOSITION 3.9. The decomposition (3.34) satisfies an almost orthogonality prop-
erty, from which it follows that

HEij%?(M) N ZHE}/JCH%?(M) +e%y7. (3.38)

vel

A discussion of the proof of Proposition 3.9 is postponed to section 3.5.

3.2.2.3. Step 3: control of the diagonal term. Proposition 3.9 allows us to estimate
| £ fll2(amy instead of [|Ejf||z2(ar). The analog of computation (3.24) for [|EY f||r2(m)
yields:

1E5 fll2m) (3.39)
+00
< ”b(ta L, W)_ltrX(ta x>w)||LfL°L2(Hu) / eMuw(Q_]/\)n;(w)f()\w))\QdA dw
S2 0 L2
< 2y /vol(supp () A (277 M)nj () £l ey
< ey,

where the term 4 /vol(supp(7})) comes from the fact that we apply Cauchy-Schwarz in w.

Note that we have used in (3.39) the fact that the support of 77 is 2 dimensional and has

diameter 277/2 so that:
\/vol(supp(n5)) S 27912, (3.40)

Now, (3.39) still misses the wanted estimate by a power of 2//2. Nevertheless, using more
refined techniques, we are able to estimate the diagonal term:
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PROPOSITION 3.10. The diagonal term EY f satisfies the following estimate:

1S fll2omy S €7y - (3.41)
A discussion of the proof of Proposition 3.10 is postponed to section 3.4.

REMARK 3.11. Note that Proposition 3.9 together with Proposition 3.10 yields the
estimate:

1E; fll 2y S €5 (3.42)

Now, since the proof of Proposition 3.9 and the proof of Proposition 3.10 do not depend on
the proof of Proposition 3.8, we are allowed to use the conclusion of Proposition 3.9 and
Proposition 3.10 in the proof of Proposition 3.8. In particular, the estimate (3.42) will be
used for the proof of Proposition 3.8. In the same spirit, since the proof of Proposition
3.10 does not depend on the proof of Proposition 3.9, we are allowed to use the conclusion
of Proposition 3.10 in the proof of Proposition 3.9.

Convention. In the rest of this chapter, we will use several integration by parts. In
turn, these integration by parts will each generate a large number of terms. For the sake
of simplicity, we will only discuss few typical terms. We will constantly use the notation
7+ ...7 in various identities and estimates in order to refer to the additional terms. That
is not to say that these additional terms are lower order or estimated in the same way, but
simply that the typical terms that we exhibit allow for a simple exposition of the main
ideas of the proof. We refer the reader to [45] for a complete proof which contains the
control of the typical terms discussed here as well as the numerous additional terms.

3.2.2.4. Proof of Theorem 3.6. Proposition 3.8, 3.9 and 3.10 immediately yield the
proof of Theorem 3.6. Indeed, (3.31), (3.37), (3.38) and (3.41) imply:

IEfZ 200 S D NE fl2mn + €0 F 72
j>-1

S Z Z\|E;f||%2(/\/1) +ée? Z 77+ N f 7

J>1ver i>—1 3.43)

S D P+ ) i+l I

2]‘2—% vel j=-1
Se Hf||L2(R3)7

which is the conclusion of Theorem 3.6.

The rest of this chapter is dedicated to a discussion of the proof of Propositions 3.8,
3.9 and 3.10. The details of the proofs being very involved, we only give a very sketchy
summary of the main ideas. We refer the reader to [45] for the details.
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3.3. Almost orthogonality in frequency
We have to prove (3.31):

1EfZ2a0y S D IE T2y + 21 F I ray- (3.44)

j=-1

This will result from the following inequality using Shur’s Lemma:
‘/ E;f(t, x)Ekf(t,x)d/\/l‘ < e297 55y, for | — k| > 2. (3.45)
M
In turn, (3.45) will follow from integrations by parts in wu.

3.3.1. A first integration by parts. From now on, we focus on proving (3.45). We
may assume j > k + 3. We have:

/ E; f(t,2)Epf(t, z)dM (3.46)

+oo +oo
/ / / / (/ z)\u—i)\/u’b(t; x’w>_1trX(t7x’w)b(x7w/)_ltrx(t,x,w’)d/\/[)
S2 s2

FOWAZY(27FN) F VW) (X)) 2dAdwd N dw'

We consider the coordinate system (¢, u, z’) on M, and we would like to integrate by
parts with respect to 9, in (3.46). Since Vu = b"'N and Vu' = Y~ 'N’, we have:

ez')\u—i)\’u’ _ ¢ 8u(ei)\u—i)\/u’>

— , 3.47
A= XNLg(N,N) (3.47)

where we use the notation u for u(t, z,w), b for b(t, x,w), N for N(t,z,w), v for u(t, z,w’),
b for b(t, z,w’") and N’ for N(x,w’). We will also use the notation try for try(¢,z,w) and
trx’ for trx(t,z,w’). Using (3.47), we obtain:

L, o b9t T ey
/ 67)\u—2)\ n bb/d./\/l = / ez)\u—z)\ u iX rx dM
M M A= Nyg(N,N)

o b ey Dy (B My
‘l"l/ ez)\u—z)\u rX,b( r>/()dM_|_’
M A= Nyg(N, N')

(3.48)

where the additional terms in (3.48) arise when 0, falls on the volume element of M or
on the denominator in the right-hand side of (3.47). Note that:

Nb
PN

b

N 1
NN <—=|=| <= 1
9( )_)\b’ 2+O(6)<,
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where we used the estimate (3.10) satisfied by b and ¢’ and the fact that ;7 > k + 3 so that
N < A\/2. Thus, we may expand the fraction in (3.48):

>\/b (N N/)
)\—)\’b NN ZA< ) (3.49)

REMARK 3.12. The expansion (3.49) generates quantities of the type

/ m (279N F(Aw) (27T N)PAZdN.
0

where p € Z. For simplicity, we omit the index p and denote them by

+oo
Fj(u) = / ep (279N f(Aw) A2d. (3.50)
0

since they are essentially equivalent. Note that Plancherel yields:

1Fjlze, < 127X fOw) Al r2@e) S 279;. (3.51)
Also, using Cauchy-Schwarz in X\, we have
|Eillzz e < 280N O 2 S 2735 (3.52)
(3.46), (3.48) and (3.49) imply:
[ B oBTE M (3.53)
M

_ 2j/ </ VNtrXFj(u)dw> </ b’ltrx’Fk(u')dw’)d./\/l
M \Js? §?

v [ ([wevswa) - ([ w00 Res)am
M S2? §2

where we only kept the first term in the expansion (3.49) in order to simplify the exposi-
tion®.

REMARK 3.13. The second term in the right-hand side of (3.53) is easier because the
deriwative falls on the low frequency term. This is why we estimate this term directly while
the other term requires a more elaborate treatment which is explained in section 3.3.2.

We estimate the second term in the right-hand side of (3.53). We have:

277 /M ( /S 2 trxNFj(u)dw) : ( /S 2V(b"ltrx’)Fk(u’)dw’>dM‘ (3.54)

/ try NV Fj(u)dw
S2

< 27 V(' ey ) () dw!

L2(M) L2(M)

Inote that in the last term in the right-hand side of (3.53), we wrote V. (b’ 'try’) as N- V(b 'try’)
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We have the following analog of (3.42):

Indeed, one can show that the symbol try satisfies regularity assumptions which are at
least as good as b~ 'try (see [44], and also section 6.1.5), so that the proof of (3.42) may
adapted in a straightforward manner to obtain (3.55).

Next, we consider the second term in the right-hand side of (3.54). Then proceeding
as in the basic computation (3.24), and using the estimate (3.26), we obtain

LA (M)

/ trx N Fj(u)dw
S2

V(O ey ) F () d!
S2

S ellMp @A) fllre@s) S €28 (3.56)
L2(M)

Together with (3.54) and (3.55), we finally obtain:

9 /M ( /S 2 trxNFj(u)dw> - ( SQV(b’ltrX’)Fk(u’)dw/)dM

which is consistent with (3.45).

<27 Ry, (3.57)

REMARK 3.14. Estimating the first term in the right-hand side of (3.53) in the same
way would only yield:

Qj/ ( VNterj(u)dw> (/ b’ltrx’Fk(u’)dw’)dM
M \Js? 52

which is not sufficient to obtain (3.45).

5 827j7k7 (358)

3.3.2. A more precise estimate. In this section, we estimate the first term the
right-hand side of (3.53). Using the geometric Littlewood-Paley projections on the 2-
surfaces P, ,,, we decompose V ytry as:

Vntry = PS#(VNtrx) + P>#(VNtrx).

In turn, this yields a decomposition for the first term in the right-hand side of (3.53):

2_j/ ( VNterj(u)dw) (/ b’_ltrx’Fk(u’)dw’> dM = A; + As, (3.59)
M \Js? §2
where:
A =2 / / P ox (Vtrx) Fy (w)de ) Bof(E, 2)dM,
M \Js2 §

(3.60)
A2:2_j/ /P<j+k(VNtrX)Fj(u)dw Erf(t,x)dM.
M \Js2 ~ 72
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We first estimate the easier term A;. The definition of P, implies P, = 2-2AP;, and
thus

P i (Vytty) = ) F(Vntry)

itk
>4

= Z 272 AP (V ytry),

1>tk
2
which yields the following decomposition for A;:

Al = Z Al,l (361)
where A, is given by:

ag-z [ ( / Mthrxm(u)dw) B )M,

Integrating by parts A on P, and using the fact that YF; _(u) = 0, we obtain:

Ay = i /S 2 /t u ( /P VATV f(t,x)b)dut,u> Fy(u)du dt deo + - - -

where the additional term corresponds to the case where the derivative falls on the volume
element of M. Next, we apply Cauchy-Schwartz to the integral on M and obtain:

Ayl < Q_j_Zl/||Y7PI(VNUX)FJ‘(U)||L2(M)||Y7Ek||L2(M)dw (3.62)
§2
< g /SQHWWrx)HLW(Hu)H@(u)HLaWEkuLzW)dw
< gt / 19 w0 ae ooy | ) 2 1V Bl ey e
SQ

< g2t /2"Fj<u)|‘L%”VEk“LQ(M)dw’
S

where we used the finite band property for P, and the estimates (3.10) for try. In view
of (3.62), we also need to estimate ||V Ey||r2(rr). We have:

+oo
VE.f(t,z) = / / eV (b M) (27FN) f (Aw) A2 dAdw
§2J0 +oo (3.63)
+i2" b Hry Vu (2750 (278 X) f (Aw) A2 d A dw.
sz Jo
Using the basic computation (3.24) for the first term together with the estimate (3.26), and
(3.42) for the second term together with the fact that tryL satisfies the same regularity
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assumptions than b~ !try, we obtain:

IVEg |2 S e25. (3.64)
(3.62), (3.51), and (3.64) yield:

|Av| S €227 ey
Together with (3.61), this yields:

j—k
Al S | D 27 ety S %27 (3.65)

1>1tk
which is consistent with (3.45).

3.3.3. A second integration by parts in u. To estimate Ay, we perform a second
integration by parts relying again on (3.47). This leads to:

—QJ/ VNP< r(Vntry)F ( )Ekf(t x)dM + - (3.66)
M JSS? B

where we only keep the worst term, which is the one containing two derivatives of try. It
is at this stage that we need the estimate (3.11) for VyP(V ntry) which we recall now.
We have:
IV 3BT x|,y S €2+ 22p1(u), (3.67)
where p in a function satisfying:
il 2@y S €
In view of the estimate (3.67), we have:

HVN (VNtrx)‘

S VNE(Vyt
o) S > VNPV ntrx) 2,

I<itk

< Y @+ 27 p(uw)
I<Itk

< 52#+2#u(u).

In view of (3.66), this yields after applying Cauchy-Schwartz:

4] % 2Bl | \

2_2j€’}/k/

S?

Y itk

9 zym(gz : /2HFj(u | dw + 255 /||M||L2 | (u )||Loodw>
S

S 2y

HVN VNUX)H F;(u)

v dw+---  (3.68)

L3

N

(25 4+ 2" () ()|

dw + - - -
2

A\



60 3. CONTROL OF THE ERROR TERM

where we used (3.42) for Ej f, Cauchy-Schwarz in w, and the estimates (3.51) and (3.52)
for Fj(u).

3.3.4. End of the proof of Proposition 3.8. In view of (3.53), (3.57), (3.59),
(3.65) and (3.68), we obtain:

‘/ Ejf(t,x)Ekf(t,x)d/\/l‘ < 522_@%% for |[j — k| > 2. (3.69)
M
Finally, (3.69) together with Shur’s Lemma yields:
IEf 2 S D IE; FlIT2an + €21 F 1172 eo)- (3.70)
j>—1

This concludes the proof of Proposition 3.8.

3.4. Control of the diagonal term

Since the orthogonality argument in angle is the core of this chapter, we choose to
deal first with the control of the diagonal term in this section. We will then proceed with
the orthogonality argument in angle in the rest of the chapter.

In order to control the diagonal term, we have to prove (3.41):

1ES fllz2omy S €75 - (3.71)

Recall that EY is given by:
B f(t,x) = /§2 b (t, x, w)trx (¢, @, w) Fj (u)n! (w)dw, (3.72)

where F)j(u) is defined by:
Fj(u) = /O m e (27IN) fF(Aw) A2dA. (3.73)

The proof of the estimate (3.71) will proceed in four steps:
Step 1. We first consider a decomposition roughly of the type:

EYf(t,2) = b\ (¢, 2, v)trx(t, 2, ) ( /S 2 Fj(u)n;’(w)dw> L

so that we have to prove estimate (3.71) with b~ try replaced by 1.
Step 2. That estimate is obtained by considering the transport equation along L,:

L ([ Bogeas) =

Step 3. A certain term in the transport equation of Step 2 needs to be estimated using
an energy estimate for the wave equation.
Step 4. We conclude the proof using the estimates obtained in Step 2 and Step 3.
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3.4.1. Step 1: freezing the w dependance in b~'try. In view of the estimate
(3.12) for 9,,b, the estimate (3.10) for b, and the decomposition (3.18) for try, we have:

b (¢, @, w)irx(t w,w) = [ ,v) + 3tz v,w), (3.74)
where f7 only depends on (¢, z, ) and satisfies:
1Al S e, (3.75)

and where f] satisfies:

1f3] LooL2(Ha) S 275, (3.76)
with u = u(.,w). (3.74) yields the following decomposition for the diagonal term:

B fta) = i) [ B+ [ Bt @i,

SQ

which implies:

157 (. 2)[| gy (3.77)

Fy(u)nf (w)dw
L2(M)

SZ

[ B

where we used in the last inequality the estimates (3.75) and (3.76), Cauchy-Schwarz in
w, the size of the patch, and the estimate (3.51) for F}(u).

S ANz ‘

[ B o 7 )

< ¢

~

+ 755
L2(M)

REMARK 3.15. The point of the decomposition (3.74) is to allow us to replace in the
diagonal term (3.72) the symbol b~ try with 1. An obvious way to achieve this is to write
the following decomposition:

b rx(t, z,w) = bt (t, o, v) + (b My (t o, w) — by (¢, 1, v)). (3.78)

(t,
The first term clearly satisfies (3.75) in view of the estimate (3.10) for b and try. On
the other hand, we obtain in [44] (see also (4.49)) the estimate O, trxy € LS°L*(H,) which
together with the estimate (3.12) for 0,b yields:

10, (0~ trx) || Loe r23a) S € (3.79)

Now, we have:

1
bt ow) — b () = @) [0 ), w)do
0

which together with (3.79) is not enough to conclude since L°L*(H.,) and L° L*(H,,)
are not comparable. We refer the reader to [44] where the decomposition (3.74) as well
as several others are proved (see also the discussion in section 4.5).

The following proposition allows us to estimate the right-hand side of (3.77).
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PROPOSITION 3.16. We have the following bound:

/SQ Fj(u)nj (w)dw < vy (3.80)

~ 1]

L2 . L%

Uy ,Ty

REMARK 3.17. In order to control the diagonal term, it suffices to have a bound of
the L*(M) norm for the left-hand side of (3.80). The improvement to a bound for the
L2 L° norm will be crucial when proving the almost orthogonality in angle.

Uy, Ty

Assuming the result of the proposition, estimates (3.80) and (3.77) yield:
|27t o S 25
which together with (3.72) and (3.77) implies:

127 fllzom S €7y

which is the wanted estimate (3.71). This concludes the proof of Proposition 3.10.

3.4.2. Step 2: A transport equation in the L, direction. We still need to prove
Proposition 3.16. Note that it suffices to show:

o ([ )

Now, since the space-time gradient of u is given by b~1L, we have:
L ([ Amgeas) =2 [ 17t(Le0, L0 B s
where F; has been defined in (3.50). In view of (3.82), we have:
L ( /S 2 Fj(u)n;<w)dw) (3.82)

2967t x,v) /s? g(L(t,r,w), L(t,x,v)) F}(u)n; (w)dw

< 7. (3.81)

~ 17

L2 (M)

+27 /SQ(b_l(t,x,w) — b Yt,z,v))g(L(t,x,w), L(t, V))Fj(u)n}’(w)dw.
Next, we estimate the second term in the right-hand side of (3.82). We have:
g(L(t, z,w), L(t, , y)) — g(N(t,z,w) — N(t,z,0), N(t,z,0) — N(t,z,v)).  (3.83)
Thus, the estimate (3.14) for 0,N and the size of the patch yields:
lg(L(t, 2, w), L(t, 2, )l S 277, (3.84)
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which implies:

/S2 (bt w) — b Nt 2, v)g(L(t, v, w), L(t, , V))F’j(u)n;-’(w)dw (3.85)

L2(M)
S S2||b’1(1t7 ,w) = b7 (t, 2, )l raoun) I8 (L(E @, w), Lt 2, v)) || 2o || F3 ()| 23] (w)dw

< 277eys,

~Y

where we used in the last inequality (3.84), the estimate (3.12) for d,b, Cauchy-Schwarz
in w, the size of the patch, and (3.51) for Fj(u). (3.82) together with (3.85) and the
estimate (3.12) for 0,b yields:

|2 ([ o)

<2

(3.86)

LA (M)

/82 g(L(t,x,w), L(t, z, ’/))Fj(u)ﬁ}/(w)dw

+e7;.
LA (M)

Next, we estimate the right-hand side of (3.86). Using (3.83), the decomposition (3.17)
for N — N’ and arguing as in (3.77), we obtain:

/ g(L(t, z.w), L{t, 2, ) Fy(upWdw| < / W — V) Fyu) (@)do||  +2797.
5? L2(M) 52 L2(M)
Together with (3.86), this implies:
'LV ( / Fj(U)nf(W)dw) s\ / @@ — ) PR @ds|  +1t. (387)
52 2mvy s L2(M)

Finally, we need to estimate the first term in the right-hand side of (3.87). We will
rely on the energy estimate for the wave equation.

3.4.3. Step3: The energy estimate for the wave equation. Recall from (3.8)
that:

Ugu = b~ try.

Thus, we have:

O, ( / (- u>2Fj<u>n;<w>dw) - / 7ttt @, w) (25 (@ — )2 () (w)d.

(3.88)
Arguing as in (3.77), we may replace b~ try by 1:

Wl

bt z, w)trx (¢, o, w)(2
S2

[ @42 R )

(w = v))*F;(u)n; (w)dw

LA (M)

< ¢

~Y

+ &7y
L2 (M)
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which together with (3.88) implies:

o ([ - vrm )
s < [e o

Let ¢ be the scalar function in the left-hand side of (3.88), i.e.:

(3.89)

LA (M)

s,

(w = v))* Fj(u)nf (w)dw

6= | (o= v Eu) )

Then, using the energy estimate for the wave equation (2.86) we obtain:

IDlZerowy S N1V, Mizgy) + 1TH(0, )25y + 1060l L2 D L2an

/ Qaﬂwaﬁd/\/t‘ , (3.90)
M
where 7 is the deformation tensor of T’
TaB = DaTg -+ D@Ta.
and Qo3 on M is the energy momentum tensor associated to ¢
1
Qaﬁ = Qa,@ [¢] = aa¢a,3¢ - Egaﬂ (gwjaﬂ¢ay¢) .

The control of the parametrix at initial time in [43] (see also Chapter 5) yields
V0, Mr2(20) + 1T 90, )l z2m0) S 75 - (3.91)

Next, we consider the last term in the right-hand side of (3.90). From the maximal
foliation assumption, 7 is traceless, so that

Qasm™ = 70,0030
B 22j//WNN'(w—V)Q(W'—V)QFJ(U)FJ'(Ul)”;(w)”;(w/)dew/
s2 Js2

Using (3.14), one obtains

+

Qaﬁﬂaﬁ - 22j7TNVNV¢2 4

and thus
Qapm’ ~ 7y, n, (D) + - - . (3.92)
It turns out that we have a trace estimate for 7y, n, (see details in [45]):
||7TNVNV||L3° oL Se
which together with (3.92) implies
1Quim™ oy S w12 ID6l e IDGlauy  (3:98)

< 5||D¢HL3V L ||D¢||L2(M)-

,T
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Finally, (3.89)-(3.93) implies
Do z2(a1) S €l|De|| 2

Uy ,Ty

4
Lge +/Yj7

which is equivalent to

[ @w-vrRage)| el [ @Ho- PR o,
s2 L2(M) s? Li e, IE°
(3.94)
In view of (3.94) and (3.87), we obtain:
o ([ mogew)| s [ eie-nrnwrea -
s2 L2(M) 2 L3y o LE®
and thus:
| B S
SZ L%u,IuL?o
which is the desired estimate (3.80).
3.5. Almost orthogonality in angle
We have to prove (3.38):
1B FlF 2y S D IES FllF 2o + 275 (3.95)
vel
This will result from an estimate for:
/M B f(t,x)EY f(t,x)dM|. (3.96)

Let us introduce integration by parts first with respect to tangential directions, and
then with respect to L.

3.5.1. Integration by parts.
3.5.1.1. Integration by parts in tangential directions. By definition of Y, we have Yh =
Vh — (Vyh)N for any function h on ¥;. In particular, we have ¥(u) = 0 and V(u') =
V'N'— b 'g(N',N)N. Now, since g(N’ — g(N,N')N,N') =1 — g(N’,N)? and Vo' =
VY IN', we deduce:
. N 72 . o
eI — NN — (N, NN, V) Vv gvann (€M) (3.97)
it
V(=g (N7, ) st
where we have used the fact that N’ — g(N, N')N is a tangent vector with respect of the
level surfaces of u. We consider an oscillatory integral of the following form:

/M / B F ) F 0 ) () M,

i)\ufi/\’u’)

€ )
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where h is a scalar function on M. Integrating by parts once using (3.97) yields:
[ ] ba BB @ @) dedsam
M JS2xS?
. 4
= —i27/ ———((N' —g(N,N)N)(h) + - - -
2 [ e Y - NN B )
XFj(u)F}(u')n;(w)n;f, (W) dwdw'd M,
where we only kept the term where the derivative falls on h, and neglected for the sim-

plicity of the exposition the terms when the derivative falls on the denominator of the
right-hand side of (3.97) or on the volume element of M. In view of (3.13), we have:

N —g(N,N)N ~N' =N~ |w—u|~|v=1], (3.98)

and:
g(N— N N-N)
2

1—-g(N,N') = |2, (3.99)

~lw—W P~y -

and we thus obtain:

/M /S - h(t, ) Fj(u) F;(u)n! (w)n? (w') dwde'dM (3.100)

. 1 / ) ) N v o ’ , o
N 22j|1/ — V| /M /82xs2 VY (h)Fj(u) Fj(u )77j (W)T]j (W) dwdw'dM + )

REMARK 3.18. In the formula (3.100), we neglect two types of terms for the simplicity
of the exposition. First, we neglect the term when the derivative falls on the denominator
of the right-hand side of (3.97) or on the volume element of M. Next, make the following
approximation:

N’ —g(N,N")N 1
1—g(N,N")? 2y — V|
In the actual proof, we use (3.99) to derive the following expansion:

1 - 1 5 N—N, \*/ N =N, \* 3,101
1—g(N,N)2 [N, — N, @ \IN, —N,| N, —N,|) | ‘

,q>0

for some explicit real coefficients cpq such that the series

E Y
Cpgl™Y

p,g>0

has radius of convergence 1. Then, (3.100) corresponds to the first term in the expansion
(3.101) with the additional simplification which consists in replacing |N, — N,/ | with |[v—1/|
again in view of (3.99). While these approximations greatly simplify the exposition, they
still allow us to exhibit typical terms in the proof of the almost orthogonality in angle.
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3.5.1.2. Integration by parts in L. Next, we also introduce integrations by parts with
respect to L. Since L(u) = 0 and L(v') = V' 'g(L, L'), we have:

iIAu—i\ u’ it/ iIAu—i\ u’
e NeL. L) (e ) ( )

We consider an oscillatory integral of the following form:

/ / Bt ) Fy(u) By (o) () (o) deodid dM,
M JS2xS?

where h is a scalar function on M. Integrating by parts once using (3.97) yields:

[ [ e p @ ) dedsam
M JS2ZxS?

0 v VFi(u e
= iz [ [ )+ B F 0 ) () M,

where we only kept the term where the derivative falls on h, and neglected for the sim-
plicity of the exposition the term when the derivative falls on the denominator of the
right-hand side of (3.102) or on the volume element. Using the fact that:

g(L,L') = —1+g(N,N') (3.103)

together with (3.99), and keeping only the first term in the expansion (3.101), with the
additional simplification which consists in replacing | N, — N,,| with |v — /|, we obtain:

[ nens@E g i 100

. 1 ) y
- Zm /M /S2><S2 b/L<h)F}'(U>F1J'(u/)77j (W)nj (Wdwdw'dM + - - - .

3.5.2. Presence of a log-loss. Let us explain why proceeding directly by integration
by parts in (3.96) results in a log-loss. Let us define &;,,, as:

S = [ BB T DM
M
We have:

+o0 +o0 o 1
]I/l/ / / / (/ iIAu—i\ u bfltrxb/— trxld/\/l)
S2xS2?

X1 (w )77] (W2 N TIN) F(Aw) f (N )NENZdAIN dwdw'.

We integrate by parts tangentially using (3.100). Consider the term where the tangential
derivative falls on try, which is of the form:

+oo +o0
iIdu—iNu' 3 —1 —1 /
b tryb try'd
23|y — V/’ /S‘2><SQ / / (/ W X X M)

X0 (w )7]] (W)WY IN) f(w) f (N )NN2dAIN dwdw'.
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Since LYtry is the only derivative of Ytry for which we have an estimate, our next
integration by parts must be with respect to L, that is we use (3.104). Consider the term
where the L derivative falls on try’, which is of the form:

22j|y Sy o /s2x§2 /+°0 /+°° (/ Z)‘“_"’\/“/b_lvcrxb'1L(trx’)d./\/l) (3.105)
xni (w)n; (w (WYX TIN) FAw) fFNW)NN2dAIN dwdw'.
Now, note in view of (3.103), (3.99) and the estimate (3.14) for 0, NV, that:
g(L, L") ~ [v—']*, g(L,€}y) = g(L—L',¢,) ~ [v—v'| and g(L, L') = —2+g(L, L") ~ —2.
Thus, decomposing L on the frame L', N’, ¢/,, we obtain:
LD+ |v—V|V+v—V|N. (3.106)
Together with (3.105), we finally obtain the sum of three terms:

gjyy’ (3107)
= g]yu[]+gjuu +€]V1/

+o00 +oo
- 223 |V — 7//|3 /S2><S2 / / </ e b_lvtrXbllL/(trX/>dM)

x5 (w )m( YE2INYERIN) fFOw) F N )NENZ AN dwde’

+oo +oo
iIdu—iNu' 71— -1
T A A A O A LoV {0 0Y)

(W)t (W)Y NY(279N) fw) fF(Nw ) AN AN dwdw’

+o00o +0o0
z)\u—i)\’u’b—l t blle/ tr)d
223|V—V|/Sz 52/0 / (/ VTX (l"X)M

(W) (W27 N (27IN) f(w) FNW)AZN2dAdN dwdw'.

We consider the second term in the right-hand side of (3.107) which is of the form:

1 — 12
R (/S bV () (“’)dw)

X (/ b’_IVtrx’Fj(u')n;’/(w')dw/) dM.
S2
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We claim that such a term leads to a log-loss. Indeed, we have:

&2
1 . ) . y
N I—TT /b 1y7terj(u)77j(w)dw ‘/ % 1y7'trX/Fj(U')77j (W) dw'
22|y — V2 || Je2 2(m) l1Js? L2(M)
]' —1 v
S g (LI P o )
([T B @l )4
SQ
1 —1 v
S g (L1 = I¥ o 15 @l e )
(L D P o 1)l )
S
2vAaY
< RENE (3.108)

(28 |y —v/|)?
where we used in the last inequality Cauchy-Schwartz in w and w’ which gains the square

root of the volume of the patch, the estimates (3.10) for b and try, and the estimate (3.51)
for F;(u) and Fj(u'). This leads to a log-loss since we have:

1 .
Indeed, note that +/ runs on a lattice on S? of basic size 277/2 so that (3.109) corresponds
to the sum |
2. g
122, 1<1|<29/2

3.5.3. Strategy of the proof of Proposition 3.9. Let us explain informally the
strategy of the proof. As we noticed in the previous section, the second term in (3.107)
contains a log-loss. Let us start by showing that the first and the third term in the
right-hand side of (3.107) do not contain a log-loss.

3.5.3.1. Control of the first term in the right-hand side of (3.107). We have

1 -1 v
Eiwwll] = W/M (/szb Vtrx Fj(u)n; (w)dw)
X (/ b’_lL’(trx’)Fj(u’)n;/(w’)dw’) dM.
S2
In view of the Raychaudhuri equation (3.7), we have:

L(tey) = =X+
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where we keep only the worst term. Thus, we obtain
1 -1 v —11~r2 v
Eolll = g [ ([ an @) ([0 RERW Was ) an

Let us decompose:

VIR = b XX+ R — b ), (3.110)
and let us assume for the moment that we can control the second term in (3.110). Then,
we are led to control:

—1 v v -1 JAVRZ ] /
% 3 / / b XV F (u)n) (w)dw ) b, X / F(u )Y (W)dw' ) dM.
27y =V Ja \Us2 52

We have:
1

ﬁ/ (/ bltherj(u)n;(w)dw) b X (/ Fj(u’)n;-’l(w')dw’) d./\/l’
2 ‘V — vV | M S2 S2

1 R , A y
S WP /Sab XWX () (w)deo b X /Sz Fy(u')nf (w')dw’
L2(M) L2(M)
1 e 3}
S 2%y — /|3 (/Ssz XYVtexEj(w) || 22 aym) (w)dw)
<l o | [ B @]
vyl 2 l’le, too
67}” . R )
S 22y — /P /s2”b [ 2o (A [IX N 2o 22 WX | o 22 1 (w) || 22 (@) dew
g2
> — (3.111)

(28 —v/|)®
where we used the estimate (3.10) for try, ¥ and b, the estimate (3.80), Cauchy-Schwartz

in w, the size of the patch, and the estimate (3.51) for F;(u). Note that the right-hand
side of (3.111) does not contain a log-loss since:

1
———
sup E/ @72 — o) S L. (3.112)

REMARK 3.19. While the estimate obtained in (3.111) is correct, one has to modify
slightly the method leading to it. Indeed, X does not have enough reqularity with respect to
w to be able to handle the second term in the decomposition (3.110). The way to overcome
this is to make use of the decomposition (3.15) for X:

X = X1+ Xe

Then, we exploit the fact that, in view of the estimate (3.16), x1 has better reqularity than
X with respect to (t,x), while x2 has better reqularity than X with respect to w. We refer
to [45] for more details.
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3.5.3.2. Control of the third term in the right-hand side of (3.107). We have

Sl = g [ ([T o)
« ( /S N (w’)dw’) M.

Now, we have:

1 -1 v 1= npre rp o NV /
m/y{(/sj) Wterj(u)nj(w)dw) (/S2b Nty Fj(u')n; (w)dw)d./\/l‘

1 _ /

S o b_IWterj(u)njV(w)dw v lN'trxle(u')n;’ (W)dw'

23'”"" L2(M) L2(M)
< o ( / I Ve ) )

([ N E O )

SQ
1 _ v

S smm—or (LI IVl 15 @)l ) )

(L e IV g N ) )0

=5

< , (3.113)

27 (22|V—V’|)

where we used in the last inequality Cauchy-Schwartz in w and w’ which gains the square
root of the volume of the patch, the estimates (3.10) for b and try, and the estimate (3.51)
for F;(u) and Fj(u'). Note that the right-hand side of (3.113) does not contain a log-loss
since we have:

upz <1 (3.114)
2(22 |V — )

3.5.3.3. A decomposition for EY f. To remove the log-loss exhibited in (3.108) (3.109),
we rely on a decomposition of try using the geometric Littlewood-Paley projections P;.
We have:

trx = P<ja(try) + Z Ptry
>5/2

which in turn yields the following decomposition for E f:

=Y EVf(t ), (3.115)

125/2
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where:
v, - v J
E; ‘f(t,x) = /s2 b(t, x,w) Ptrx(t, z,w) Fj(u)n} (w)dw, VI > 3 (3.116)

and:
E]l."j/Qf(t, T) = /s2 b(t, x,w)’lpgj/gtrx(t, X, w)Fj(u)n;-’(w)dw. (3.117)

In order to prove almost orthogonality in angle, i.e. (3.95), we will estimate:

Z/MEf’lf(t,x)Ef/’mf(t,x)dM - (3.118)
lm

3.5.3.4. The mechanism to remove the log-loss. In order to explain the mechanism
which allows us to remove the log-loss, let us assume for convenience that m < [ in
(3.118). Then, notice first from (3.107), (3.109), (3.112) and (3.114) that the only term
in the right-hand side of (3.107) which contains a log-loss is the second one, i.e the term
which contains only tangential derivatives. In order to remove the log-loss, our goal will be
to always put more tangential derivatives on the lowest frequency, i.e. P, trx’ (as opposed
to the higher frequency Pjtry). This is achieved as follows (see [45] for the details):

(1) Integrate by parts with respect to L using (3.104).

(2) One term corresponds to the case where the L derivative falls on the largest
frequency Ptry, while the other term corresponds to the case where L falls on
the lowest frequency P,,try’. For the second term, decompose the L derivative
on the frame L', N’ ¢/, as in (3.106).

(3) Notice that the terms involving L, L' or N’ are estimated in the spirit of (3.111)
and (3.113), and should in principle contain no log-loss in view of (3.112) and
(3.114).

(4) Finally, the last term is the one containing the ¥ derivative. This term is the
only one which contains the log-loss exhibited in (3.109). Now, we have achieved
our goal since after integration by parts, the tangential derivative fell on P, try’
which is the lowest frequency.

REMARK 3.20. Due to the decomposition (3.115), we now not only need to obtain
summability in (v,1'"), but also in (I,m). This creates additional difficulties, in particular
when estimating the terms &;, /(1] and &;,,/(3] in (3.107). We refer to [45] for more
detaails.



CHAPTER 4

Control of the space-time foliation

The goal of this chapter is to prove the estimates on the control of the space-time
foliation by the optical function u which are needed for the proof of Theorem 3.6 (see
section 3.1.3), i.e. for the control of the error term. Here, we outline the main ideas and
we refer to [44] for the details.

4.1. Geometric set-up and main results

4.1.1. Geometry of the foliation of M by u. Recall from section 1.2.1 that the
space-time M is foliated by space-like hypersurfaces 3, defined as level hypersurfaces of a
time function ¢, where 7" denotes the unit, future oriented, normal to >; and & its second
fundamental form. Recall also that u is a solution to the eikonal equation g*?d,udsu = 0
on M depending on a extra parameter w € S?. The level hypersufaces u(t, r,w) = u of
the optical function u are denoted by H,. Let L’ denote the space-time gradient of u, i.e.:

L' = —g*?95ud,. (4.1)
Using the fact that u satisfies the eikonal equation, we obtain:
D, L' =0, (4.2)

which implies that L’ is the geodesic null generator of H,,.
We have:
T(u) = £|Vul
where |Vul?> = 327 |e;(u)|? relative to an orthonormal frame e; on Y. Since the sign of
T(u) is irrelevant, we choose by convention:

T(u) = |Vul. (4.3)
We denote by P, the surfaces of intersection between Y, and H,. They play a funda-

mental role in our discussion.

DEFINITION 4.1 (Canonical null pair).
L=bl'=T+N, L=2T-L=T-N (4.4)

where L' is the space-time gradient of u (4.1), b is the lapse of the null foliation (or shortly
null lapse)
bl=—< I T>=T(u), (4.5)

73



74 4. CONTROL OF THE SPACE-TIME FOLIATION

and N 1s a unit normal, along ¥4, to the surfaces P,,. Since u satisfies the eikonal
equation g*?d,udgu = 0 on M, this yields L'(u) = 0 and thus L(u) = 0. In view of the
definition of L and (4.3), we obtain:

Vu

N=-——",
|Vl

(4.6)

REMARK 4.2. u is prescribed on ¥y as in [42]. For any (0,z) on ¥y, L is defined as
L =T+ N where T is the unit normal to ¥y at (0,z) and N = —=Vu/|Vu| at (0,z), and
b is defined as b=' = |Vu|. Let k.(t) denote the null geodesic parametrized by t and such
that k,(0) = (0,z) and k',(0) = b~'L. Then, we claim that

K (t) = b(ky(t)) ™ Ly, ¢y for all t. (4.7)

xT

Indeed, L' = b='L is the geodesic null generator of H, (see (4.2)).

DEFINITION 4.3. A null frame ey, es, e3,e4 at a point p € P,,, consists, in addition to
the null pair es = L,ey = L, of arbitrary orthonormal vectors ey, ey tangent to P,,,.

DEFINITION 4.4 (Ricci coefficients). Let ey, eq, €3, €4 be a null frame on Py, as above.
The following tensors on Sy,

XaB =< Dyey,ep >, =< Dyes, e >, (4.8)

XAB

1 1
CA:§<D364,6A >7 QA:§ <D4637€A >7

1
§A:§<D363,€A>.

are called the Ricci coefficients associated to our canonical null pair.
We decompose x and x into their trace and traceless components.

trx = g"xan, trx = g""x (4.9)

~ 1 . 1
XAB = XaAB = 5UX8AB, X5 = Xap ~ 51"X845; (4.10)

DEFINITION 4.5. The null components of the curvature tensor R of the space-time
metric g are given by:

1
Qgp = R(L,€a,L,€b), ﬁa = §R(€a,L, La L)a (411)
1 1
P = ZLR(L?L’ L7 L)7 o= Z*R(La La L7L) (412>
1
éa = §R(€a, L7 La L) ; Qo = R( La €a, L? eb) (413>

where *R. denotes the Hodge dual of R.

Observe that all tensors defined above are F, ,-tangent.
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REMARK 4.6. Note that « is the only null component which does not contain a con-
traction of R with L. With the notation of Chapter 2 (see for instance (2.28)), we have:

R-L= ((1/,67p,0-,é)-

DEFINITION 4.7. We decompose the symmetric traceless 2 tensor k into the scalar 6,
the P, ,-tangent 1-form €, and the P, ,-tangent symmetric 2-tensor n as follows:

kNN =0
kAN — €A (414)
kap = naB-

The following Ricci equations can be easily derived from the definition of T', the fact
that L' is geodesic (4.2), and the definition (4.8) of the Ricci coefficients (see [9] p. 171):

Dyes = xapep — €aéu, Daes = x ,zeB + €aes,
D464 = —364, D463 = 2£A6A +363, (415)
Dsey = 2Caea + (0 +n"'Vyn)ey, Djes =26 ea — (0 + n~'Vyn)es,
Dyeq = Viea +C e, Dseq = Vsea + Caes + & e,
1 1
Dpea = Ypea + SXAB €3+ 5X yp €4

where, Y3, ¥, denote the projection on P, of D3 and Dy, ¥ denotes the induced covariant
derivative on P, and 9, € are defined by:

0=06-n"'N(n),es=es —n 'Vyn. (4.16)
Also,
X,p = —XaB — 2kap,
4= —€a, (4.17)

§,=¢€at n~'Van — Ca.

4.1.2. Null structure equations. Below we write down our main structure equa-
tions (see [9] chapter 7 or [44] for a proof).
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PROPOSITION 4.8. The components try, X, ¢ and the lapse b verify the following equa-
tions':

L(b) = —bé, (4.18)
() + 5 () = IR = By, (1.19)
VX + trxX = —0X — «, (4.20)
Via + 3 (r)Ca = (0 + (a)as — 5 tryea — Ba.. (1.21)

REMARK 4.9. Fquation (4.19) is known as the Raychaudhuri equation in the relativity
literature.

To obtain estimates for x, we may use the transport equations (4.19) (4.20). However,
this does not allow us to get enough regularity. Instead, we follow [9] [20] [22] and
consider (4.19) for try together with an elliptic system of Hodge type for X.

PROPOSITION 4.10. The expression (djvx)a = YEXap verifies the following equation:

(dfvX)a + Xapep = %(VAWX +eatrx) — Ba. (4.22)

See [9] chapter 7 or [44] for a proof.
Finally, we consider the control of ( and Ltry. To this end, we follow again [20] [22]:
we derive an elliptic system of Hodge type for ¢ and a transport equation for Ltry.

PROPOSITION 4.11. We have:

L(try) + %tm_(trx =2dji + (0 +n~'Vyn)try — X - X +2¢ - ¢+ 2p. (4.23)

Also, the expressions dj¢ = VP(p and cufll =P Y 1(p verify the following equations:
djv¢ = %(M%tm@ﬂ?i—?\dz) - P (4.24)

cufl¢ = —%)? AX +o, (4.25)

where for F,G symmetric traceless P, ,-tangent 2-tensors, we denote by F' N\ G the tensor
FANGap =€ FacGpe. Finally, setting,

p= L(try) — (0 + n~'Vn)try (4.26)
Lwhich can be interpreted as transport equations along the null geodesics generated by L. Indeed

observe that if a P, ,-tangent tensor II satisfies the homogeneous equation V4II = 0 then II is parallel
transported along null geodesics.



4.1. GEOMETRIC SET-UP AND MAIN RESULTS 77
we find
L{) + trpn = 2(C = ) - Viry — 2 - (VB¢ + (B¢ - %)
— trx (2div< +20-CH4e=¢) nT V=200 +n"'Vn)+4p  (4.97)
- %trxtm_(—l— 2|e[* + 3|X]* +4x -7 — 2|n_1N(n)|2).
See [20] or [44] for a proof.

4.1.3. Commutation formulas. We have the following useful commutation formu-
las (see [9] p. 159):

LEMMA 4.12. Let Uy be an m-covariant tensor tangent to the surfaces P, ,. Then,

VeYilUa — Vi¥VsUs = xBcVoUa—n"'VenVila (4.28)
+ Z(XAZ-BEC’ — XBC€a,— €a,c “BB)U4, 0.a,0s

VeVsUa = VsVeUa = XuoVeUa—€,ValUa = b Vpb¥WsUa + Y (—xa,8E,,

+ xBcS, = X, 500 T Xpolat €ac B ¢, (429)

VsVaUa = VaVsUs = —0V3Ua+ (6 +n""Van)ValUa + 2(Cs — € ;) VBUa (4.30)
+ 230 o= (bt Eac W, ca

4.1.4. Bianchi identities. In view of the formulas on p. 161 of [9], the Bianchi
equations for «, 3, p, 0, B are:

Vi(6) = difa—35+ (2~ -a (4.31)
Yi(B8) = Yo+ (Vo) +28-B+ (@ +n 'Vyn)B+&-a+3((p+ (o) (4.32)
Lip) = A~ 3R -a+ (e~ 2) -5 (4.33)
L(p) = ~difB— 5% a+2f+(e—2)f (4.34
L(e) = —cuflf+ %X*a +(—e+28)*8 (4.35)
L(o) = —cwflf— g% —2%"5+ (e~ 20)°F (4.36)

Ye(B) = —Vp+ (Vo) +2x-B+058—3(¢p— (o) (4.37)
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4.1.5. Main results. We introduce the L? curvature flux R relative to the time
foliation:
2 2 2 2 2 2
R = <HaHL2(Hu) + 1Bz + 12172000 + ol 220200y + Hﬁ”L?(Hu)) : (4.38)

In view of Remark 4.6, we have R = ||[R-L||12(3,). Thus, the we may rewrite the bootstrap
assumptions of Chapter 2 on R as:

Rz 2z, < Me, supR < Me.

-

To ease the notations, we drop the bootstrap constant M:

IR Ler2(z) <& supR <e. (4.39)

The goal of this part is to control the geometry of the null hypersurfaces H, of u up to
time ¢t = 1 when only assuming the smallness assumption (4.39).

REMARK 4.13. In the rest of the chapter, all inequalities, except the ones of Theorem
4.16 below, hold for any u with the constant in the right-hand side being independent of
u. Thus, one may take the supremum in u in these inequalities. To ease the notations,
we do not explicitly write down the supremum in u in these estimates.

u is a solution to the eikonal equation g*?9,udsu = 0 on M depending on a extra
parameter w € S%. Now, for u to be uniquely defined, we need to prescribe it on ¥
(i.e. at ¢ = 0). This issue has been settled in [42] (see also Chapter 6). From now on,
we assume that u is the solution to the eikonal equation g®?d,udsu = 0 on M which is
prescribed on ¥y as in [42].

REMARK 4.14. In the rest of the chapter, all inequalities hold for any w € S? with the
constant in the right-hand side being independent of w. Thus, one may take the supremum
i w everywhere. To ease the notations, we do not explicitly write down this supremum.

We define some norms on H,. For any 1 < p < +o00 and for any tensor F' on H,, we

have:
1
1 P
| Fll ey = ( / dt / !Flpdut,u) |
0 Pt,u

where dji;,, denotes the area element of P, ,. We also introduce the following norms:
NU(F) = [[Fllzziey + 1V E L2 + IV |22 30),
No(F) = NMi(F) + IV Fl 2oy + IV VLF 234, -

Let 2’ a coordinate system on Fp,. By transporting this coordinate system along the
null geodesics generated by L, we obtain a coordinate system (¢, z’) of H. We define the

following norms:
1
1 2
| F|[Loorz = sup (/ |F(t,$’)|2dt) 7
* z'€Py 0
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1Pz, 10 =

sup |F'(t, "))l
0<t<1 L2(Po.)

The following theorem investigates the regularity of u with respect to (¢, z):

THEOREM 4.15. Assume that u is the solution to the eikonal equation g*?d,udgu = 0
on M such that u is prescribed on ¥y as in [42]. Assume also that the estimate (4.39)
is satisfied. Then, null geodesics generating H, do not have conjugate points and distinct
null geodesics do not intersect. Furthermore, the following estimates are satisfied:

I — 1 p + ||VnHL;>°L§, + |W2n||L;>OL§, + [|[VDrn[ 2, S,

2, S (4.40)
Ni(k) + 1V el 2oy + | LO 223y + [Ell L zz + 0]l sz S e (4.41)

16 = 1[zoe +Na(b) + | LO)[| 2,150 S €, (4.42)

el + 19l e + 1 Ltrliz, o S e, (4.43)

XMl 22,250 + NL(X) + 1V LX] 2200 S € (4.44)

||<||Li,Lt°° +M(C) Se ( )

We introduce the family of intrinsic Littlewood-Paley projections P; which have been

constructed in [24] using the heat flow on the surfaces P;, (see also section 3.1.5). This
allows us to state our second theorem which investigates the regularity of L Ltry and

V(.

THEOREM 4.16. Assume that u is the solution to the eikonal equation g**d,udzu = 0
on M such that u is prescribed on 3o as in [42]. Assume also that the assumption (4.39)
is satisfied. Then, there exists a function X in L*(R) such that for all j > 0, we have:

I1P; L Ltrx|| 2y S 2% + 28 A(u), (4.46)

and

1BV L(O 200 S € +272A(w). (4.47)
The following theorem investigates the regularity with respect to the parameter w € S2.

THEOREM 4.17. Assume that u is the solution to the eikonal equation g*?d,udgu = 0
on M such that u is prescribed on ¥g as in [42]. Assume also that the estimate (4.39) is
satisfied. Then, we have the following estimates:

[0uN][L <1, (4.48)
IDOLN 12,130 + [|0ubll + 1¥OLbll 12,100 + 100Xl 12, e + 10uCllr2, 000 S (4.49)
Furthermore, we have the following decomposition for X:
X = X1+ X2 (4.50)
where x1 and x2 are two symmetric traceless P, ,-tangent 2-tensors satisfying:

M) +IV xallzzge) H10uxa e r2, #N1(x2) + IV LXell 20 + 100Xl Loz, S € (4.51)
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and for any 2 < p < +o0, we have:
Ixallzres + 10uxall oo 100Xl o 0, + 1¥W X2l L2000 S &5 (4.52)
where for any real number a, a_ = a — ¢ for any 6 > 0.

REMARK 4.18. Notice from (4.51) that x1 and x2 have at least the same regularity as
X- Now, the point of the decomposition (4.50) is that both x1 and xo have better reqularity
properties than X. Indeed, in view of (4.52), x1 has better reqularity with respect to (t,x)
while xo has better reqularity with respect to w.

Next, the following theorem contains estimates for second order derivatives with re-
spect to w.

THEOREM 4.19. Assume that u is the solution to the eikonal equation g*?0,udsu = 0
on M such that u is prescribed on Xg as in [42]. Assume also that the estimate (4.39) is
satisfied. Then, we have the following estimates:

”ao%NHLQ/Lfo <1 (4.53)
IVEI(OEN) |2, S & (4.54)
HPJVLH((?ZN)”LfLi, + HPJ'H<82X)HL§°L5, + HPJH@ZC)HLQ’L; S e, (4.55)

where p is any real number such that 2 < p < +o0o, and where I1 denotes the projection
on P, -tangent tensors.

Finally, we need to compare quantities evaluated at two angles w and v. The following
decompositions are used in sections 3.4 and 3.5

THEOREM 4.20. Let w and v in S? such that |w — v| < 275, Letu = u(.,w), N =
N(.,,w) and N, = N(.,v). For any j > 0, we have the following decomposition for N—N,,:

25(N — N,) = F/ + FJ (4.56)
where the tensor F! does not depend on w and satisfies:
“P’l]HL"o 5 L,

and where the tensor FJ satisfies:

1F N ooy S 272
We also have following decomposition for try:
try = fl + f3 (4.57)
where the scalar flj does not depend on w and satisfies:
11 Sce,

and where the scalar fg satisfies:

13 o2y S €273,
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Let us conclude this section by mentioning several ingredients of [44] that have been
omitted here for the sake of simplicity:

e estimates for the transport equations along L, and the elliptic systems of Hodge
type on P, ,, involved in the null structure equations

embeddings on H,,, >; and P,

geometric Littlewood-Paley projections and Besov spaces on ¥,

control of the Gauss curvature of P,

Bochner inequalities on > and P,

estimates for various commutator terms of the type: [Dr, Y], [D, V|, [Dz, Fjl,
Dy, P, ..

2. Regularity of the foliation with respect to (¢, x)

In this section, we outline the main ideas of the proof of Theorem 4.15. We assume
the following bootstrap assumptions:

I = e+ I = Ui < 55 (4.58)

I nllerz, + 1920 ggesz, + [VDrnlgess, + No(B) + 1| L0z e < Do, (4:59)
N(k) + ¥ sell 200 + 1D 1l + el + I8llz < Do, (4.60)
It + [Vt e + | Ltrxl e < D (4.61)

€122 152 + N3 () + IV £l 20, < D (4.62)

€112, + M3 (€) < D=, (4.63)

where D > 0 is a large enough constant. We will improve on these estimates.

4.2.1. Non intersection of null geodesics on H,. The control we obtain on the
geometric quantities associated to our foliation is only valid as long as there are no con-
jugate points and null geodesics do not intersect. The goal of this section is to prove that
this holds at least until ¢ = 1. In addition to the bound (4.39) on the curvature tensor R
of g, we make the following regularity assumption on g. There exists a coordinate chart
such that

lgllozmy < M, (4.64)

where M is a very large constant.

REMARK 4.21. The assumption (4.64) is only used to prove the absence of caustic and
that null geodesics do not intersect at least until t = 1, which is a qualitative property. On

the other hand, we only rely on the bound (4.39) on R to prove the various quantitative
bounds of Theorems 4.15, 4.16, 4.17 and 4.19.

For (0,z) in ¥, recall the definition in Remark 4.2 of the null geodesic k. (t). For all
0<t<1,let &;: ¥ — %, defined by ®,(0,2) = k,(t). We have ®¢(0,z) = (0,z) on 3.
We define ty > 0 as the supremum of 0 < ¢ < 1 such that &, is bijective from ¥y to ;.
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REMARK 4.22. As long as 0 < t < ty, there are no conjugate points and no distinct
null geodesic intersections. Thus, we may assume that the u-foliation exists and satisfies
the bounds (4.58)-(4.63) given by the bootstrap assumptions. Furthermore, we may assume
the identity (4.7) for the null geodesics k. (t).

Our goal is to show that we have in fact ¢, = 1. We proceed in three steps (see [44]
for the details):

Step 1. As noticed in Remark 4.22, the L* bound for try given by (4.61) holds for
0 <t < to. Furthermore, using the Raychaudhuri equation (4.19) and the bound
(4.64), we obtain the existence of a constant 6 > 0 depending on M such that
the L bound for try given by (4.61) holds for 0 < t < tg + 6. This control for
try allows us to prove that there are no conjugate points on 0 <t < tg + 9.

Step 2. Next, we prove that ¥, = U, P, for 0 <t < ¢, 4+ where 6 > 0 is a constant
depending on M. This requires the bound (4.64), and the control it induces on
forward and backward light cones for small time intervals with a size depending
on M.

Step 3. Assume now that 0 < ty < 1. In view of Step 1 and Step 2, the only thing that
can go wrong at t =ty is that two distinct null geodesics intersect in 3;,. Assume
by contradiction that this is indeed the case so that there exists (0,z1) # (0, 22)
two points in 3y such that x,, (ty) = K, (to) = (to, o). Since

/i;.j (t) = b(ﬁ$j(t))_1L’{xj(t)7 J — 172,

in view of Remark 4.2, the regularity of b and L yields &, (to) = &, (to). From the

classical uniqueness result for ODEs, we deduce that k., (t) = k4, (t) for all ¢. In

particular, taking ¢t = 0, we obtain (0,z1) = (0, z2) which yields a contradiction.
Finally, Steps 1, 2 and 3, yield ¢y > 1. In particular, we have:

On 0 <t <1, there are no conjugate points and no intersection of distinct
null geodesics. In particular, u exists on 0 < ¢ < 1 and the bootstrap (4.65)
assumptions (4.58)-(4.63) hold. Furthermore, ¥, = U, P;,, for all 0 <t < 1.

4.2.2. Lower bound on the volume radius of ;. In this section, we prove the
lower bound on the volume radius of 3; given by the estimate (2.32). We use the global
coordinate system 2’ = (2',2?) on P, which has been constructed in [42] (see also
Proposition 6.13). Transporting this coordinate system along the null geodesics generated

by L, we obtain a coordinate system 2’ of P,,, which in particular satisfies
(1- OE)IEP < 1ap(p)E*e? < (1 +0(e))[€%,  wniformly for all p € Py, (4.66)

where v is the metric induces by g on P,,,. We denote by 2’ this global coordinate system
on P ,.

Next, we obtain a global coordinate system on ¥, as follows. First, recall from (4.65)
that Y, = UPF,, so that u is defined on ;. To any p € X;, we associate the coordinates
(u(p),«’'(p)) where u(p) is the value of the optical function u at p, and z'(p) are the
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coordinate of p in the coordinate system of P, ,. In this coordinate system, the metric g,
on Y, (i.e. the restriction of g on ¥,;) takes the following form:

g = < 8_2 g ) , (4.67)

where 7 is the induced metric on P, ,. Together with the estimate (4.58) for b and (4.66)
for v, we obtain the following lower bound on the volume radius of ¥; at scales < 1:

1

Tvol(zh 1) Z 17 (468)

which is the estimate (2.32).

4.2.3. Estimates for the second fundamental form k£ and the lapse n. We
first estimate k on X;. k satisfies the following symmetric Hodge system on >;:

curlkij = *le,jT“TV7
Viky =0, (4.69)
trk = 0,

where curlky; = $(€l™ Vikn+ € Vikn;) and trk = g¥k;;. Using an elliptic estimate
for the Hodge system (4.69), we easily obtain:

IVE[ L2z S € (4.70)
Recall from (1.9) that the lapse n satisfies the following elliptic equation on ¥;:
An = |k[*n. (4.71)

Using (4.71) and (4.70), together with elliptic estimates on ¥;, we improve the estimate
for n in the bootstrap assumptions (4.58) (4.59). We also prove the following estimate
which is needed for the estimate (2.63)

IVl S e (4.72)

Using (4.71) and (4.70) together with the Sobolev embedding on the three dimensional
riemannian manifold Y; yields An € L°L3(3;). Together with elliptic estimates, this
implies V?n € L°L*(3;), and thus Vn misses to be in L>®(M) by a log divergence.
However, one can overcome this loss by exploiting the Besov improvement with respect to
the Sobolev embedding on ;. This requires to introduce a geometric Littlewood-Paley
theory on ¥;2. We refer the reader to section 4.4 in [44] for the details.

Finally, we estimate k on H,. To this end, we use the decomposition of k (4.14) in
0,€ and n, and obtain a Hodge system for ¢, ¢ and 1 on H,. This allows us to derive the
following estimate

Ni(k) S Ni(n) +Ni(e) + Mi(0) S e (4.73)

2Note that we use a geometric construction based on the heat flow on ; since we don’t have enough
regularity for the metric in order to use a coordinate dependent Littlewood-Paley decomposition
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Deriving an estimate for 7'(d) and Yre, together with (4.73), then yields

ID Lol Lee 2y + 1V L€l oo r202n) S € (4.74)

4.2.4. Time foliation versus geodesic foliation. While we work with a time foli-
ation, we recall that the estimates corresponding to the bootstrap assumptions on y and
¢ have already been proved in the context of a geodesic foliation in [22] [24] [23]. One
may reprove these estimates by adapting the proofs to the context of a time foliation.
However, this would be rather lengthy and we suggest a more elegant solution which con-
sists in translating certain estimates from the geodesic foliation to the time foliation, and
in obtaining directly the rest of the estimates. More precisely, we wish to obtain the L>
bound from try, and the trace bounds for ¥ and { by exploiting the corresponding esti-
mates in the geodesic foliation. We will obtain the trace bounds for 6 and e by reducing
to estimates in the geodesic foliation in section 4.2.5. Finally, these trace bounds and the
null structure equations will allow us to get all the remaining estimates in section 4.2.6.
We start by recalling some of the results obtained in the context of the geodesic foliation
in [22] [24] [23].

4.2.4.1. The case of the geodesic foliation. Recall that L' = —g®?9zud, is the geodesic
null generator of H,,. Let s denote its affine parameter, i.e. L'(s ) = 1. We denote by P,
the level surfaces of s in H,,.

DEFINITION 4.23. A null frame €, €, eg, eﬁl at a point p € Py, consists, in addition to
= L', of arbitrary orthonormal vectors €, e}, tangent to P and the unique vectorfield
63 = L’ satisfying the relations:

g(eh, e)) = =2, gley, e5) =0, gley, e)) =0, ges, e5) = 0.

DEFINITION 4.24 (Ricci coefficients in the geodesic foliation). Let €, ¢}, €5, ¢} be a
null frame on P, as above. The following tensors on P,

X'ap <D/e4,eB> Xyp =< De €5, € >,

4.
<1,4 <D/64,63> ( 75)
are called the Ricci coefficients associated to the geodesic foliation.
We decompose X' and x' into their trace and traceless components.
A A

try’ = g Xap, try' = g""xX, (4.76)
~ 1 N 1
Xap = Xap = 5iX'8as, Xy = X,y — 50X '8an: (4.77)
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DEFINITION 4.25. The null components of the curvature tensor R of the space-time
metric g in the geodesic foliation are given by:

1
a, = R(L,e, L e), B = §R(€;,L', L’,L/), (4.78)
1 1
p/ = ZR< L,> Lla L/7 Ll) ) OJ = Z_l *R< Lla L/a Lla L/) (479)
1

—a ’ a; L, eb) (480)

B, = SR(L L LL),  aly=R(L.e
where *R denotes the Hodge dual of R.
We now recall the main estimates obtained in [22] [24] [23]. We have:

[trx (| oo ) + X 22,200 + ¢ N 22,000 S € (4.81)

and
XMz, 20 + N (X) + M (() S e, (4.82)
where the norm N is given by
NIUE) = 1 Fllz2ge,) + IV Fllzzee) + 1V F 2o

REMARK 4.26. Note that the norm L*(H.,) does not depend on the particular foliation.
Now, this is also the case for the trace norm L2, L°. Indeed, recall the definition of the
null geodesic Kk, in Remark 4.2. Then, we have:

||F||LOOL2 = sup / |F (k. (t))|*dt = sup / |F(ka(s)*n 07 ds ~ || F 170 12

(0,2)€%0 (0,2)E%0 v
where we used the fact that % =n"'b"! and the fact that nb ~ 1 by the bootstrap assump-
tion (4.58).

In the next section, we will obtain the estimates corresponding to (4.81) in the time
foliation. For now, we conclude this section by recalling the definition and some properties
of the Besov spaces constructed in [22] [24] [23]. For P -tangent tensors F' on H,,
0 <a <1, we introduce the Besov norms:

|Fllge = Y 2 sup. |PF|2pr,) + sup H oFllz2(pL)s (4.83)
>0 0<s<

IFllpe = > 2 PP |20, + 1P F |l 22034, (4.84)
7>0

where P} are the geometric Littlewood-Paley projections on the 2-surfaces P; . Using the
deﬁn1t1on of these Besov spaces, we have (see [22] [24] [23])

||X/HB/O S/ E. (485)
Furthermore, we have for scalar functions on H, (see [22] section 5):
(4.86)

I fll ooy S
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Finally, we have the following version of the sharp classical trace theorem (see Corollary
4.21 in [44] for a proof).

PROPOSITION 4.27. Assume F is an P, -tangent tensor which admits a decomposition
of the form, Y'F = AV P+ E. Then,

1Fll L2 S NI(F) + N{(P)([[All L + IV All 2, 1o + 1V Allz2, 1) + [ Ellpro. (4.87)

Y
1‘, S

4.2.4.2. Estimates in the time foliation. In this section, we obtain the L* bound for
try, and the trace bounds for ¥ and ¢ by relying on the corresponding estimates in
the geodesic foliation (4.81). We start by establishing the relation between the Ricci
coefficients in the time and in the geodesic foliation. Recall from (4.4) that L = bL'.
Since (e1,e2) and (€], €}) are both orthonormal vectors in the tangent space of H, which
are both orthogonal to L, we may chose these vectors such that there is a tensor F” on
P}, satisfying:
€p = 624 + FALI, A= 1,2
We then easily express L in the frame (L', L, €/y). Finally, we have the following relations:
L=bl,
ea=¢€y+ L A=12 (4.88)
L=b"'L+2b"'Fiey + b7 |’ L.
Next, using the definition (4.8) and (4.75) of the Ricci coefficients respectively in the
time and geodesic foliation, and the identities (4.88), we easily obtain

X = by, trx = by, X =X, Ca = Ci + XacFe- (4.89)
(4.89) together with the bootstrap assumption (4.58) and the estimate (4.81) yields:
[Erx]| oo (32) < ||b||L°o(HAu/)||t1"X/||Loo(Hu) Se
HX”L;‘}L% < (16l e ey X HLi,LgO Se (4.90)
ICl sz S NI I Ess 2 + X s 2 [ F" Ml oe S € 4 €[l ]| o,

where we have used the fact that the trace norms L2 L$° and L2 L are equivalent by
Remark 4.26.

In view of the trace estimate for ¢ given by (4.90), we need to estimate || F’||p~. To
this end, we estimate Y'F’. Using the definition (4.8) of x and (4.75) of X/, and the
identities (4.88), we obtain: B B

1
8(De, I, ) = =5 Xy

_|_ SN

where we only kept the main term. Together with the estimate for x’ (4.85), this yields
IV'F'||go < De

which together with (4.86) implies:

[F"|| 1 < De. (4.91)
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In particular, (4.90) and (4.91) imply:
||C||L;?L§ Se (4.92)

Note that (4.90) and (4.92) are improvements of the corresponding estimates in the boot-
strap assumptions (4.61)-(4.63).

4.2.5. Trace norm bounds for 0 and € The goal of this section is to improve the
estimate for ||0|| o2 and ||€]| ;2 given by the bootstrap assumption (4.60), where ¢ and

€ are defined in (4.16). Let us first define k;; and kpa:

kJLL = —g(DLT, L), kLA = —g(DLT, €A)7 A= ]_,2 (493)
Then, using in particular the definition (4.16), we have:
g = kLL and €pq = kLA' (494)

We also define krr, and ks 4:
kL’L’ = —g(DLIT, L/>7 kL/A = —g<DLIT7 614), A = 1, 2. (495)

Then, the relations (4.88) between L,ej, ey and L', €], €}, together with the definitions
(4.93) and (4.95) yield:

krr = b*kpp and kpg = bkpa + bF\kpip. (4.96)
Thus, (4.94) and (4.96) imply:
H8||Lg?Lf S 0kpillresre S kpwllzos e (4.97)

[Ellzerz S bkrallrosee + 10Fskvwllisre S ko llrsiz + 1kpallzes 2

where we used the bootstrap assumption (4.58), the L> bound for F” (4.91) and Remark
4.26.

In view of (4.97), it is enough to bound the trace norms ||kr/p/ || ror2 and ||kpal| Lo 2.
To this end, we would like to apply the trace estimate (4.87), which requires to show that
Y'kr and YV'kr 4 admit a decomposition of the form, AV, P + E. We only discuss the
estimate for kr/, and we refer the reader to [44] for ki 4. We have:

Wé;‘kalL/ = —De%g(DL/T, L/) = _g(De%DL’T7 L/) — g(DL/TY7 DekL/)'

Introducing the commutator term [D , D], and decomposing the corresponding com-
ponent of R, we obtain

VL kun = —b Fyaly 4+ (4.98)
where we only kept a typical term for simplicity. Relying on the Bianchi identities, the
following decomposition for o’ was obtained in [22]:

o = Vu(P)+E, (4.99)

where P = D';' ', and
N{(P) + ||E||po Se. (4.100)
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Together with (4.98), we obtain a decomposition of the following form
V'kp = AV P+ Er, (4.101)
where
[AullLoe + IV Arllz2, 00 + VL Arll 2, 10 + NT(PL) + [|Erl[po S e (4.102)
Using (4.101), (4.102) and the trace estimate (4.87), we deduce
HkL'L'HLgng Se,

which together with (4.97) allows us to improve the estimate for HSHNM% and [[€[| oo 2
given by the bootstrap assumption (4.60).

4.2.6. Remaining estimates for try, Y, ¢ and b. In order to improve the re-
maining estimates in the bootstrap assumptions (4.58)-(4.63), we use the null structure
equation of section 4.1.2, which consists of transport equations along L and Hodge sys-
tems on P, ,. We refer the reader to section 4.8 in [44], where using the L* bound of try,
the trace estimates for ,d and €, and the estimates for the lapse n, we easily obtain the
remaining estimates. Thus, there exists a universal constant D > 0 such that (4.58)-(4.63)
hold. This yields (4.40)-(4.45) which concludes the proof of Theorem 4.15.

4.3. An estimate for LLtry

In this section, we outline the main ideas of the proof of Theorem 4.16. Let 1 = b L(p).
Then, we first derive a transport equation for yu;, and a Hodge system for ¥ (. For
simplicity, we only discuss the transport equation for p;. We differentiate the transport
equation (4.27) satisfied by p with respect to L and multiply it by nb. We also use
commutator formulas of section 4.1.3, the Bianchi identity (4.34) for p, the curvature
bound (4.39) and the estimates (4.40)-(4.45) obtained in Theorem 4.15. We obtain

nL(m) + ntryn = —26mY 4 (C) - Viry — 2bng - (W@@wo+b-lvbwo+2w®c)

+2ntrxbn Wi - Y L(C) + dif(F) + fa,
where the tensor F; and the scalar fy satisfy
1F1 [ r20,) + 1ol i) S e
This yields:

4o (4.103)

1P(p) || 20y S 22 Mu)e + 27¢ + '
L2 (Hu)

([ onx- (739 (0

Here, the term 27¢ comes from the estimate for F} and f, together with Bernstein and

the finite band property for P;, and the term 22 \(u)e comes from the initial data term
for the transport equation - i.e. p; at t = 0 which is estimated in [42] - together with
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Bernstein for P;. We have only kept one typical term in the right-hand side of (4.103) for
the sake of simplicity.
In view of the desired estimate (4.47), we are bootstrapping an estimate of the type

1BV (Ol 20 S De + D272 ()

for some large enough bootstrap constant D, and where \ is a function in L*(R). Thus,
estimating directly the term in the right-hand side of (4.103) would yield an upper bound
of the type

Z 2j27‘q;”%§1)%(2)’ where fylgl) € ¢*(N) and 71(2) € (*(N) (4.104)
Lq
which is not summable. Instead, we rely on the following decomposition for bn:
V(bnX) = VarP + E (4.105)
where P, E/ are P, ,-tangent tensors, and P, E satisfy:
N(P) + [[Elpo S &

REMARK 4.28. A similar decomposition has been proved in the geodesic foliation in
[22], and adapted to the time foliation in the spirit of section 4.2.4. In order to obtain
(4.105), we use the fact that the proof in the geodesic foliation relies on a specific structure
of certain commutators and of the Bianchi identities, which can be recovered in the time
foliation. We refer to [44] for the details.

Using the decomposition(4.105), we decompose the term in the right-hand side of
(4.103) in a sum of two terms which are estimated as follows (see [44] for the details):

e For the term involving Y, P, we integrate by parts in Y, ., and consider the
term where the L derivative falls on V (. Differentiating the transport equation
(4.21) satisfied by ¢ with respect to Y, commutators formula, and the Bianchi
identity (4.32), we obtain

WnLWL§ = WnLDO(é) 4.

for some elliptic operator of order 0 D° on P;,. We then integrate by parts the
L derivatives, and obtain for this term an upper bound of the type

2NUP)Bllc2geny + -+

Then, using the estimate for P and the the curvature bound (4.39) for /3, this is
enough to bound the term involving Y, P in the right-hand side of (4.103).

e For the term involving F, we we rely on the Besov improvement for E, and we
derive an upper bound of the form

Z 2]-2_'?\7;1)%(2)’ where ’y(gl) € (*(N) and 71(2) € (*°(N),
l,q

which is summable unlike (4.104). This is enough to bound the term involving
E in the right-hand side of (4.103).
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REMARK 4.29. The reader may wonder why the estimate for LLtry is not better than
L? with respect to the variable t - instead of L™ as one should expect since we rely on a
transport equation for the corresponding quantity . The reason is that boundary terms
arise from several integration by parts in Y, in the course of the proof. The point is that
we do not have better estimates than L? with respect to the variable t for these terms.

4.4. Regularity of the foliation with respect to w

4.4.1. First order derivatives with respect to w. In this section, we outline the
main ideas of the proof of Theorem 4.17. Let us first explain how to control J,try.
Differentiating the Raychaudhuri equation (4.19) with respect to w, we obtain

L(Outryx) = [L, OpJtrx + - - - .
Now, we have
[L,0,]try = —0,N(try) = =Yg, ntrx

where we used the fact that g(/NV, N) = 1, which differentiated with respect to w implies
that 0,N is a vectorfield tangent to F;,. Thus, we obtain

L(O,try) = =V, ntry + - -
which together with the estimate (4.43) for YVtry immediately yields
10utrxllr2, e S €.
REMARK 4.30. In view of the commutator
L, 0,] = =Voun,
a derivative with respect to w has essentially the same regularity as a YV-deriwvative.

The estimates in (4.48) and (4.49) are obtained in the same way, i.e. by differentiating
the ricci equations (4.15) and the transport equations (4.18) (4.19) (4.20) and (4.21)
with respect to w, computing the commutators [0, D] and [0, V1], and estimating the
corresponding transport equations (see [44] for the details).

Next, let us explain how to derive the decomposition (4.50) for y:

X = X1+ X2

where x; and 2 are two symmetric traceless P, ,-tangent 2-tensors satisfying the estimates
(4.51) and (4.52). Recall the Codazzi type equation (4.22) satisfied by X:

1
AR = SV =+
This is an elliptic system on F;,,, and we may write formally

1
X = 5D Wiy~ DB+,
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where D! is a pseudodifferential operator of order -1 on P, ,,. This allows us to define x;
and xs as
X1 = %D_1Y7trx +.--and yo = —D7'B.

The estimate (4.51) corresponds to the estimate (4.44) for ¥ and is prove similarly, so we
focus on the estimate (4.52). For the sake of clarity, we only explain why, compared to ¥,
X1 has better regularity with respect to (¢, x) while xo has better regularity with respect
to w, which is the point of the decomposition (4.50) (see Remark 4.18). Indeed, since
the estimate (4.43) for try is better than the estimate (4.44) for Y, and since YD ! is a
pseudodifferential operator of order 0 on P, ,, we are able to obtain better regularity in
(t,x) for x; compared to X. Next, we focus on y2. Now, note that the curvature tensor R
does not depend on w. Thus, when differentiating 8 with respect to w, the w derivative
falls on the frame (L, L,e4), and we obtain schematically

0. =(a+p+0)o,N.

In particular, we have

10uB Lee 22y S 10N [ zoo (]| oo L2300y + 12Nl Lo L2340y + 1ol 2o L2(200)) S €,

where we used the curvature bound (4.39) for «, p and o, and the estimate (4.48) for 9, V.
Thus, 0,5 has the same regularity with respect to (¢,z) than . In view of the definition
of x2, we obtain that 0,2 has essentially the same regularity as y», while the estimate
(4.49) for 0,X looses one Y-derivative with respect to the estimate (4.44) for . Thus,
the regularity of yo with respect to w is better than the corresponding regularity for .

4.4.2. Second order derivatives with respect to w. In this section, we outline
the main ideas of the proof of Theorem 4.19. We focus on the estimate (4.55) for 92¢
which is typical. Differentiating twice with respect to w the transport equation (4.21) for
¢, and computing the commutator [V, 2], we obtain

Vi (I(92¢)) = —x - TH(02¢) + V(F) + Fy+ -+, (4.106)
where the P, ,-tangent tensors [ and Fh satisfy
[E1 220,y + ([ F2ll, 2 S &

We first get rid of the first term in the right-hand side of (4.106) which is troublesome.
To this end, we use the following lemma.

LEMMA 4.31. Let v denotes the metric induced by g on P,,. Let M the P, ,-tangent
2-tensor defined as the solution of the following transport equation:

ViMap = Macxcr, Map = vap on Py, (4.107)

Then, M ap satisfies the following estimate:

[M =z + [[VM]|g0 S €. (4.108)
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Using the transport equation (4.106) for TI(0*¢) and the transport equation (4.107),
for M allows us to get rid of the troublesome term y - II(92(¢):
V(M -11(35¢) = V(M - F1) = V(M) - Fi + M- Fy + -

Together with the finite band property and the Bernstein inequality for P;, the estimates
for F} and Fy, and the estimate (4.108) for M, we obtain for M - TI(0*() the estimate
corresponding to (4.55). Then, we obtain the wanted estimate (4.55) for I1(92¢) by
proving that the estimate (4.108) for M is enough to ensure that the multiplication by
M~ preserves the estimate (4.55).

4.5. Additional decompositions

In this section, we outline the main ideas of the proof of Theorem 4.20. We need to
compare N and try at two different angles w and v. The basic tool is the following lemma.

LEMMA 4.32. Let w and ' in S?. Let u = u(t,z,w) and v’ = u(t,z,'). Then, for
any tensor I, we have:

4

i 1 ut|w—w’|
HF“Lz‘,’L?(Hu/) S F [z 2 ) Hw—w'|3 IIFszoLz(Hu) (SUP (/ HDFHZLz(Hf)dT))

In order to compare the norms L L*(H,/) and L°L*(H,), we need coordinate sys-
tems. We define ®,, : 3, — R? defined by:

D, (¢, ) == u(t, z,w)w + dyu(t, z,w). (4.109)

Then we claim that @, is a global C' diffeomorphism from ¥; to R* and therefore
provides a global coordinate system on ¥, (see Proposition 6.6 for a related result on ).
Next, we prove that

I / / (@)L () Pdydt. (4.110)

This formula allows us to compare the norms L% L*(H,/) and L°L*(H,). In turn, one

needs to evaluate
|F (P WP = [F( @y (W)

In particular, we need to estimate

19 [ (W) ] -

We refer the reader to [44] for details on the proof of Lemma 4.32.
Using Lemma 4.32 as well as commutator estimates for [D, P] among others, we may
prove the following corollary.

COROLLARY 4.33. Let f a scalar function and w,w' in S®. Then, for any | > 0, we
have:

_ F
1P f ez, S 27+ lw — @/ 12272) (I fll g 20wy + DS Nl L2
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and
1 P<tfllzosr23,.)

1 1 1 1
< <1+|w—w'|222>||f||wmu>+|w—w’|4||f||zw2(%u)

ut|w—w’
(SUPZ/ ||P (nL(f ))||%2(HT)+||Pq(bN(f))||%2(yT>)dT)

We also need the following non sharp commutator lemma.

1
1

LEMMA 4.34. Let f a scalar function and w,w’ in S®. Then, for any | > 0, we have:
10, P<il fllzos 22034,y S (DSl ger2(30)-

Using Corollary 4.33 and Lemma 4.34 together with the estimates (4.43) and (4.49)
for try and the fact that |w —v| < 272, we are able to prove the decomposition (4.57) for

try.
Next, we consider N — N,,. We have

23(N — N,) = BN (., w")dw" (25 (w — 1)),
[w,v]

where [w,v] denotes the arc of S$? joining w and v. Since |w — v| < 272, we want to
proceed as for the decomposition of try. More precisely, we want to use Corollary 4.33
and Lemma 4.34 together with the estimates (4.48), (4.49), (4.53), (4.54) and (4.55) for
0,N, in order to prove the decomposition (4.56) for N — N,,. Now, unlike try which is a
scalar, 0, N is a tensor. Since Corollary 4.33 and Lemma 4.34 only apply to scalars, we
need one last ingredient to prove the decomposition (4.56) for N — N, and conclude the
proof of Theorem 4.20. Namely we need to scalarize 0,/N using a basis of the tangent
space of ¥; which does not depend on w. We refer to [44] for the details.






CHAPTER 5

Construction and control of the parametrix at initial time

In this chapter, and the next one, we will only consider the leave Y of the foliation
3 of M, and we denote it by ¥ for simplicity. Recall the plane wave type parametrix

given by (1.26)*
/ / e D) (NN dw
s2 Jo

where u(.,.,w) is a solution to the eikonal equation g®?d,udsu = 0 on M such that
u(0,z,w) ~ z -w when |z| — 400 on 3. The goal of this chapter is to outline the main
ideas allowing us to obtain the control for that parametrix restricted to 3 in [45].

5.1. Geometric set-up and main results

5.1.1. Presentation of the parametrix. In this section, we construct a parametrix
for the following homogeneous wave equation:

Ogp = 0 on M,
{ (/bé = ¢o, T(®))5 = ¢1, (5.1)

where ¢g and ¢; are two given functions on ¥ and T is the future oriented unit normal
to X in the space-time M.

We recall the plane wave representation of the solution of the flat wave equation. This
corresponds to the case where g is the Minkowski metric. (5.1) becomes:

{ O¢ =0 on R'™3, 652
(b(O? ) = 92507 at¢(0, ) = ¢1 on R3. :
The plane wave representation of the solution ¢ of (5.2) is given by:
400 A\
/ / TR (F o) + 22 “’)) d\duw
i (5.3)

giltraw)A <]—"¢ (Ow) — 280w (blA(M)) d\dw,

sz Jo
where F denotes the Fourier transform on R3.

We would like to construct a parametrix in the curved case similar to (5.3). We
introduce two solutions u4 of the eikonal equation

g 0aurdpus = 0 on M, (5.4)

IThis is actually a half wave parametrix. See (5.6) below for the full parametrix

95
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such that:
T(us) = F|Vus| = Fai' on ¥, (5.5)

where V is the covariant derivative on Y associated to the metric g induced by g on X,
| - | is the length associated to g for vectorfields on 3, and a4 is the lapse of uy on 3. We
look for a parametrix for (5.1) of the form:

S(t,x) = Sufult, ) + S_f_(t,2), (5.6)

where
—+00
Syfi(t,z) = / / e tew) £ (Aw)N2dAdw. (5.7)
S2Jo

In the next two sections, we specify the parametrix (5.6) by prescribing us on ¥ and by
making our choice for fi explicit.

5.1.1.1. Prescription of uy and u— on ¥. (5.4) and (5.5) are not enough to define uy
in a unique manner. Indeed, we still need to prescribe u4 on Y. To motivate our choice,
we need to introduce some geometric objects connected to uy. Let Ni the vectorfield on

>’ defined by:

Vui
Ny = —— =a.Vuy, 5.8
+ \Vui] at+ Vuyg (5.8)
and L. the vectorfield on M which is given on Y by:
L:t = aigo‘ﬂaauiag = ai(—T(ui)T + VU;Q =47+ Ni. (59)

Let P, = {2 € ¥/us(z) = us} denote the level surfaces of uy in ¥. Since Ny is the
unit normal to P, ., the second fundamental form of P,  in X is given by:

0i(ed, et) = g(DeﬁNi,eﬁ), A B=1,2, (5.10)

where (ef, e3) is an arbitrary orthonormal frame of TP,,. Let

Ho, ={(t,z) € M/ us(t,z) =us}

denote the null level hypersurfaces of uy in M. Since L, is null and orthogonal to P,
in ‘H,_ , the null second fundamental form x4 is given on P,, by:

X+(€4,e5) = g(D,x Le,e), A, B =1,2. (5.11)

Taking the trace in (5.10) and (5.11), and using (5.9) and the fact that k is the second
fundamental form of ¥, we obtain:

trys = £trk + tr,. (5.12)

Note that tryk = trk + kny, where tr, denotes the trace for 2-tensors on Y. In view of the
maximal foliation assumption (1.6), we have tryk = 0. Together with (5.12), this yields:

trxs = Fhn,n, + troL. (5.13)
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Now, in [44] (see also Theorem 4.15), we prove that trys belongs to L>(M) using a
transport equation (the Raychaudhuri equation, see (4.19)) provided that it belongs to
L*>(X) at t = 0. Thus, one needs the following estimate

try+ € L2(X%), (5.14)
which in view of (5.13) is equivalent to:
Fhnon, +trhy € L2(X). (5.15)
We construct in [42] (see also Chapter 6) a function u(z,w) on ¥ x S? such that
—knn +trf € L=(3). (5.16)
Note that —u(z, —w) satisfies:
kyn + trf € L>(X). (5.17)
Thus, in view of (5.15), (5.16) and (5.17), we initialize uy on X by:
u, (0,2, w) = u(z,w) and u_(0,z,w) = —u(z, —w) for (r,w) € ¥ x S (5.18)

REMARK 5.1. Note that in the particular case where k = 0 - the so-called time sym-
metric case-, we may take

uy (0,7,w) = u_(0,7,w) = u(z,w) for (z,w) €Y x S%
In particular, we have uy(0,z,w) = u_(0,2,w) = z - w in the flat case.

5.1.1.2. The choice of f. and f_. Having defined u., we still need to define fi in the
parametrix (5.6). According to (5.1), the half wave parametrix S; and S_ should satisfy

on X
{ S+f+(0,l‘) + S_f_(O,ZE) = QbO(x), (5 19)
T(S+f:)(0,2) + T(S-f-)(0,2) = ¢ (). '

Let us introduce the following operators acting on functions of R3:

“+00
M, f(z) = / / eFAu@E) £(N A2 dNdw (5.20)
s2 /o

and .

O flz) = / / M) 41 ) F(Aw) A2dAdw, (5.21)
s2Jo

where a(z,w) = |Vu(z,w)|™! is the lapse of u. Using (5.5), the definition of Sy in (5.6),
(5.18), the definition (5.20) of M, and the definition (5.21) of @1, we may rewrite (5.19)

as:
Myfy+M_f_ = ¢,
{ QLML) — Q_(A) = idh. (5.22)

The goal of this chapter will be to show that there exist a unique (f,, f_) satisfying (5.22),
and that (f,, f_) satisfies the following estimate:

IA -l z2sy + M= 2@s) S Vo2 + 1|01 26y (5.23)
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REMARK 5.2. In the case of the flat wave equation (5.2), we have (2, g, k) = (R3,6,0),
us(t,z,w) = Ft+ 2 - w, u(z,w) = x-w and a(z,w) = 1. In particular, the operators
M. and Q< defined respectively by (5.20) and (5.21) all coincide with the inverse Fourier
transform. Then, the system (5.22) admits the following solutions:

o) = 5 (Fonnw) £ ZA2 )

which clearly satisfy the estimate (5.23).

5.1.2. Geometric set-up. We define the lapse a(z,w) = |[Vu(z,w)|™, and the unit
vector N such that Vu(x,w) = a(x,w) ' N(z,w). We also define the level surfaces P, =
{z /u(z,w) = u} so that N is the normal to P,.

For 1 < p,q < +o00, we define the spaces L L1(P,) using the norm

1/p
HFHLﬁLq(Pu) = (/”F”iq(Pu)du> :

We assume that 1/2 < a(z) < 2forallz € ¥ (see (5.24) below) so that LE LP(P,) coincides
with LP(X) for all 1 < p < +o00. We denote by « the metric induced by g on P,, and by
Y the induced covariant derivative.

Before stating precisely the main results of this chapter, we first record the regularity
obtained for the phase u(x,w) constructed in [42] (see also Chapter 6).

-t

5.1.3. Regularity assumptions on the phase u(x,w). In this section, we collect
the estimates for the phase u(x,w) of our Fourier integral operators that are needed to
follow the discussion of the control of the parametrix at initial time contained in this
chapter. An outline of the proof of these estimates will be given in Chapter 6 (see [42]
for the complete proof).

We start with the regularity in x of the lapse a. We need:

HvaHLﬁ’LQ(Pu) + Ha — 1”Loo(2) + ”anHL%E) ,S £. (5.24)

We also need a decomposition for Vya. For all j > 0, there are scalar functions a{ and
a’ such that?:

Va = af + a} where [|af |2y S 2772, (03]l peer2(p S €

. | : 5.25
and [ Vel ocs) + bl gomn) S 2% (5:25)
Next, we consider the regularity with respect to w. We have:
Hawa”LQ(E) + HV@WQHLQ(E) S, g, (526)
105al| ooy S 1 for some 0 < o < 1, (5.27)
where (5.27) should be understood in the Holder sense,
10, || oo sy S 1, (5.28)

2we choose ) = P.;/5(Vya) and al = P<;/5(Vya), and then obtain (5.25) using (5.24) and an

estimate for V%a (see [42] for the details)
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and
10l e ) S 1. (5.29)

We will need the following global change of Varlable on . Let w € S%. Let ¢, : ¥ — R3
defined by:

Ou(z) == u(r,w)w + dyu(z,w). (5.30)
Then ¢, is a bijection, and the determinant of its Jacobian satisfies the following estimate:
|| det(Jacoy,)| — 1| ez S €. (5.31)

Finally, we can compare u(x,w) with a phase linear in w. Let v € S? and ¢, the map
defined in (5.30). Then, we have:

UJ(I?C‘)) - ¢V<I> W= O<€|w - V|2)7
Opu(z,w) — Oy(ou(x) - w) = O(e|lw — v|), (5.32)
Oou(z,w) — 05(¢u(x) - w) = O(e).

REMARK 5.3. In (5.24)-(5.32), all inequalities hold for any w € S* with the constant
in the right-hand side being independent of w. Thus, one may take the supremum in w
everywhere. To ease the notations, we do not explicitly write down this supremum.

REMARK 5.4. In the case of the flat wave equation (5.2), we have (3,g) = (R3,4),
ulr,w) =x-w,a=1, N =w and ¢, = Idgs. Thus, (5.24)-(5.32) are clearly satisfied
with € = 0.

REMARK 5.5. Recall that the lapse a is at the level of one deriwvative of u with respect
to x. Thus, we obtain from (5.24) that some components of V3u are in L*(X). Note that
this is not true for all components since (5.25) does not allow us to control Via in L*(3).
In fact, (5.25) is consistent with 3/2 derivatives of a with respect to N in L.

5.1.4. Main results. We first state a result of boundedness on L? for Fourier integral
operators with phase u(z,w).

THEOREM 5.6. Let u be a function on ¥ x S? satisfying suitable assumptions (we
refer to [43] for the complete set of assumptions, and to section 5.1.3 for some typical
assumptions). Let U the Fourier integral operator with phase u(x,w) and symbol b(x,w):

+o00
Uf(z) = / / @D, w) f(Aw) A2dAdw. (5.33)
S2
Let D > 0. We assume furthermore that b(z,w) satisfies:
1Bl ooy + IVl e r2(p,) + 1V VO] 22(s) < D, (5.34)
10wl 225y + IVObl 25y S D, (5.35)

and
Vb = b} + b where ||b]|r2m) S 27 2D, ||b]\|LooL2(p) <D,
and |V 0| racs) + 03]l 22 poo () S 23
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Then, U is bounded on L* and satisfies the estimate:

1U fllz2s) < DI fllz2es)- (5.37)

REMARK 5.7. We intend to apply Theorem 5.6 to the Fourier integral operators M
and Q+ introduced in section 5.1.1.2 whose symbol are respectively 1 and a=t. Thus, our
assumptions on the reqularity of the symbol b(x,w) are consistent with the assumptions

on the regularity of a(x,w) given by (5.24)-(5.29).

REMARK 5.8. Under the additional assumption (5.32) on u, and under some restric-
tions on the constant D appearing in (5.34), (5.35), and (5.36), we may prove the opposite
of (5.37):

[ fllze@sy S U fllz2es)

(see Proposition 5.19). This will be a magjor ingredient in the proof of Theorem 5.9 below,
and in particular of (5.41).

Recall the definition of the Fourier integral operators M, and () introduced in section
5.1.1.2:

+o0
My f(z) = / / eFM@ED) £ONG)AZd N dw, (5.38)
Sz Jo
and

Qif(z) = /S 2 /0 m eFAu@E) g (1 40) L F(Aw) N2d A dw. (5.39)

The following theorem is the main result of this chapter.

THEOREM 5.9. Let u be a function on ¥ x S? satisfying suitable assumptions (we
refer to [43] for the complete set of assumptions, and to section 5.1.3 for some typical
assumptions). Then, there exist a unique (fy, f-) satisfying:

My fr+M_f_ = ¢y,
{ oo = (5.40)

Furthermore, (fy, f_) satisfies the following estimate:

IAfEllzo@sy + 1A=l z2@s) S IV oll2m) + (|01l 2¢s)- (5.41)

Proving the estimates (5.37) and (5.41) for the Fourier integral operators U, M.
and Q)+ will require taking several integrations by parts. The main difficulty in proving
Theorem 5.6 and Theorem 5.9 will be to perform these integrations by parts within the
very low level of regularity for the phase u(z,w) given by (5.24)-(5.32) and for the symbol
b(z,w) given by (5.34) (5.35) (5.36). The proof will rely both on harmonic analysis
decompositions and the geometry of the foliation of > by u. Theorem 5.6 will be reviewed
in section 5.2 and Theorem 5.9 will be reviewed in section 5.3.
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5.2. Control of Fourier integral operators

5.2.1. Structure of the proof of Theorem 5.6. The proof of Theorem 5.6 pro-
ceeds in three steps. We first localize in frequencies of size A ~ 2. We then localize the
angle w in patches on the sphere S? of diameter 277/2. Finally, we estimate the diagonal
terms.

REMARK 5.10. Note that the structure of the proof is analogous to the one on the
control of the error term in Chapter 8 (see section 3.2.2). However, the proof each step
(almost orthogonality in frequency, almost orthogonality in angle, and control of the diag-
onal term) is different, more particularly the last two steps.

5.2.1.1. Step 1: decomposition in frequency. For the first step, we introduce ¢ and ¥
two smooth compactly supported functions on R such that:

(N + > (27N =1forall A eR. (5.42)

>0

We use (5.42) to decompose U f as follows:

Uf(x) = Z Uyf (@), (5.43)
where for j > 0: )
U f(x) = /S 2 /0 - N (a, w) (27 N) f dw) A 2ddw, (5.44)
and
U_1f(z) = /S 2 /0 +OO eb(2, w)e(N) fFAw)N2dAdw. (5.45)

The goal of this first step is to prove the following proposition:

PROPOSITION 5.11. The decomposition (5.43) satisfies an almost orthogonality prop-
erty:
U FZ2y S DU Flliagsy + D21 N2 geey- (5.46)

j=-1

The proof of Proposition 5.11 is postponed to section 5.2.2.

5.2.1.2. Step 2: decomposition in angle. Proposition 5.11 allows us to estimate ||U; f|| 2
instead of ||U f||12(x). We perform a second dyadic decomposition. We introduce a smooth
partition of unity on the sphere S%:

Zn;(w) =1forallwe S$? (5.47)

vell
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where I is a lattice on S? of size 2_%, where the support of 77 is a patch on S? of diameter
~ 2792 We use (5.47) to decompose U, f as follows:

Uf(z) => Ul f(x), (5.48)
vel
where:
+o0o
Uy f(x) :/ / e““b(a:,w)¢(2_j)\)n}’(w)f()\w))\zd)\dw. (5.49)
s2 Jo

We also define:

1 = o) fllz@sy, v = 197N fllz2@s), 5 > 0, (5.50)

P)/; = ’W(Q_])\)??;(W)fHLZ(R% j > 07 Ve Fa

1A sy = D =D > ()% (5.51)

j>-1 j>—1vel

which satisfy:

The goal of this second step is to prove the following proposition:

PROPOSITION 5.12. The decomposition (5.48) satisfies an almost orthogonality prop-
erty:
102wy S D _IU7 fllzas) + D™ (5.52)
vell
The proof of Proposition 5.12 is postponed to section 5.2.3.

5.2.1.3. Step 3: control of the diagonal term. Proposition 5.12 allows us to estimate
|U7 fllz2(s) instead of ||U; f||z2(x)- The diagonal term is estimated as follows.

PROPOSITION 5.13. The diagonal term U} f satisfies the following estimate:
U fllrzcs) S Dy - (5.53)

The proof of Proposition 5.13 is postponed to section 5.2.4.
5.2.1.4. Proof of Theorem 5.6. Proposition 5.11, 5.12 and 5.13 immediately yield the
proof of Theorem 5.6. Indeed, (5.46), (5.51), (5.52) and (5.53) imply:

||Uf||%2(z) N Z ||Ujf||%2(z) + D2Hf”%2(R3)

j>—1

SO N NUL o) + DD A3+ D2 f 1132 es)

j>1ver i>—1 (5.54)

SD*Y Y (P HD* Y A+ DAl e

j>—1ver j>-1
2
S D ”fH%Q(Ri*’)a
which is the conclusion of Theorem 5.6.

The remainder of section 5.2 is dedicated to the proof of Proposition 5.11, 5.12 and
5.13.
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5.2.2. Proof of Proposition 5.11 (almost orthogonality in frequency). We
have to prove (5.46):

U fll72m) S Z 1U; 725y + DI 12 gsy- (5.55)
Jj=—1
This will result from the following inequality using Shur’s Lemma:

_kl

/ Ujf(x)ka(x)dE' < D22_UT%-% for |[j — k| > 2. (5.56)
s

We consider a coordinate system (u,z’) on ¥ where 2’ denotes a coordinate system
on P,, and we would like to integrate by parts with respect to 0,. Since Vu = ¢~ ' N and
Vi = "N, we have:

,l: : N/,
— a eMu—z)\u 7 5.57
A—=XNEg(N,N’) ul ) ( )

ez’)\u—i)\/u’

where we use the notation u for u(z,w), a for a(z,w), N for N(z,w), v’ for u(x,w’), a’ for
a(z,w') and N’ for N(z,w’). Then, the proof of (5.56) is analogous to the proof of (3.45),
so we skip it for the sake of simplicity. Let us just say that, as for the proof of (3.45),
most terms require one integration by parts using (5.57) and the estimate (5.34) for b (as
in section 3.3.1), while one term requires a second integration by parts using (5.57) and
the decomposition (5.36) for Vb (as in sections 3.3.2 and 3.3.3).

5.2.3. Proof of Proposition 5.12 (almost orthogonality in angle). We have to
prove (5.52):
||Ujf||%2(2) S Z||Uff||%2(z) + D5, (5.58)

vel

5.2.3.1. Presence of a log-loss. Integrating by parts twice in [, UY f(z)UY' f(z)d%
would ultimately imply:

lv— 1| #0. (5.59)

/E Uj”f(w)U;f’f(x)dZ‘ <

This yields to a log-loss since we have:
1 .

REMARK 5.14. Recall that there is an analogous log-loss in the almost orthogonality
argument in angle for the error term (see section 3.5.2). In section 3.5, we removed the
log-loss in particular by using integration by parts with respect to the null vectorfield L.
On the other hand, we work here on X which is Riemannian, so there is no equivalent
of the null vectorfield L. Instead, we will use a second decomposition in X (see section
5.2.3.2). Note that such a strategy can not be used to control the error term (see Remark

5.16).
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To avoid the log-loss present in (5.59), we will instead derive the following inequality:

DnynyV/ DQ’YV’VV,
, - < 37 R
/EUJ f(z)U f(x)d3| < 2ial2(23/2]y) — p|)E—a + (202 — V|)3

lv—=v'|#0, (5.61)

where a > 0. Indeed, since S? is 2 dimensional and 1 < 29/2|v — /| < 20/2 for v,/ € T
and v # 1/, we have:

1

and
1

" 2 T )

5 < Oy < tooVa > 0. (5.63)

Thus, (5.61), (5.62) and (5.63) together with Shur’s Lemma imply (5.58).

5.2.3.2. A second decomposition in frequency. To avoid the log-loss present in (5.59),
we do a second decomposition in frequency. A belongs to the interval [277! 27%1] which
we decompose in intervals [j:

[271 2] = U I, where diam([;,) ~ 27|v — /|, (5.64)
1<k<jy—v/|~>

Let ¢y a partition of unity of the interval [2771, 277! associated to the I;’s. We decompose
Uy f as follows:

Uif)= Y,  U*f(), (5.65)

1<k<ly—v'|~=

where:
+oo
U f () = /S / MDY (2N (W) SN FOw)N2dAdw.  (5.66)
2Jo

REMARK 5.15. The point of this additional decomposition is to exploit the volume in
A. Indeed, after performing Cauchy-Schwarz in A\, we obtain

VI ~ 28y — /|2
which displays the crucial gain |v — V|2 .
We also define:
A = @I @SN e, § 2 0. v €T <k <y — /[ (567

which satisfy:

W)= > (H (5.68)

1<k<lv—v/|~
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5.2.3.3. The two key estimates. We will prove the following two estimates:
2 vk Vi 2 vk Vi
T : D™
v,k vk < J J
/EUj f()U; f(:v)dE‘ ~ 20/2(2i2|y — VI|)2—e + (22| — /|3 (5.69)
for v —V|#0,1<k<|v—1]"

and o
v,k vk < J J
/EUj f(x)Uj f(z)dE| < ke — k/[20/200-40) (23/2];) — /) 1+4a’ (5.70)

for [v —vV|#£0, 1<k K <|v—V|k#£K.

(5.69) and (5.70) imply:

/E UY f(x)de‘ (5.71)

< D / Ut f (ot f(x)dE‘ ) / Ut () UL f(a)ds
1<k<|y—v!|—a V2 1<k#k' <|p—v!|—a 1V >
2 vk Vk 2 vk Vk
D D T et e
~ 2]&/2(2]/2|V _ V/’)Zfa (23/2’y _ V/D3

1<k<|y—v/|~ 1<k<|y—v/|~«

2 vk VK
> -
2(1—4a . o
1<k#k/ <|v—v'|~@ |k — k7|22 740 (20/2]1 — pr]) i
D2y D2y

< — : + — ,
~ 2]&/2(2]/2|V_V/D27o¢ (23/2|V—I//’)3
where we have used (5.68) and the fact that we may choose 0 < av < 1/5, together with

the fact that:
w Y

—l|—
1<k<|v—1/| a1§k1§|y_yl‘—a7k/¢k

Since (5.71) yields the wanted estimate (5.61), we are left with proving (5.69) and (5.70).
The discussion in the following section will be very informal for the sake of simplicity. We
refer to [43] for the details.

5.2.3.4. Proof of (5.69). The estimate (5.69) will result of two integrations by parts
with respect to tangential derivatives (in the spirit of section 3.5.1.1). Let us consider
for instance the case where the two tangential derivatives fall on the symbol b of U]'-”k f
defined in (5.66). This yields a term of the form

/S A ( /0 T 270 e () f(Aw)AQd)\) 0! (w)dw. (5.73)

Then, in view of the estimate (5.34) for b, we have in particular Y20 € L?(X) which will
force us to estimate the A integral in (5.73) in L$°. To this end, we do Cauchy-Schwarz

7] < allog(lv — V') (5.72)
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and obtain in particular the square root of the diameter of I;. Due to (5.64), we thus
gain an additional factor of |v — /|* with respect to (5.59), which yields (5.69).

REMARK 5.16. Here, the log-loss is removed by exploiting the size of the diameter
of I,. This is possible since we estimate the \ integral of (5.73) in LS° using Cauchy
Schwartz. In turn, this is a consequence of our estimate for Y?b in L*(X). This explains
why this method cannot be used to remove the log-loss of the error term in Chapter 3.
Indeed, our estimates for the space-time foliation in Chapter 4 are typically of the type
LL?(H,), so that the integral in X is estimated in L2 using Plancherel. In turn, this
does not allow us to see the size of the localization in X\, so that a second decomposition
in frequency of the type (5.65) would be useless in that case.

5.2.3.5. Proof of (5.70). Note that we not only need to gain summability in (v, ') for
this term, but also in (k, k'). This is achieved through the presence of the additional gain
k — k' in the right-hand side of (5.70). The estimate (5.70) will result of two integrations
by parts, one with respect to the normal derivative /V, and one with respect to tangential
derivatives. We obtain a term analogous to (5.73)

oo, —7 2 v
; YV b ( /0 (27T N dr(N) f(Aw) A d)\) n (w)dw. (5.74)

In view of the estimate (5.34) for b, we have in particular YV b € L?(X). Thus, the
log-loss of the summation in (v,7) is removed as in the previous section, in particular
using the size of the diameter of I;. Note also that the gain k — &’ in the right-hand side
of (5.70) comes from the integration by parts in N. Indeed, we use
ei)\u—i)\’u' _ ia

A= XNZg(N,N)
Now, since A € Iy, A € I}y, we have in view of (5.64), the assumption (5.27) for 0%a, and
the assumption (5.28) for 0,N

V (e, (5.75)

a , N
A — X;g(N, N ~ |k =K |27y — V|,
which yields the gain k£ — k" in the right-hand side of (5.70).

5.2.4. Proof of Proposition 5.13 (control of the diagonal term). We have to
prove (5.53):
|U fllzes) < Dy (5.76)

Recall that U} is given by:
U/ f(z) = /S2 bE}(u)n; (w)dw, (5.77)
where Fj(u) is defined by:

Fj(u) = /O m e (27IN) fF(Aw) A2dA. (5.78)
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We decompose U} in the sum of two terms:

U7 (@) = W) [ Flmls+ [ (ble.w) = b ) Pty )

Then, using in particular the assumption (5.34) for b and the assumption (5.35) for 9,0,

we obtain
[ B
SQ

In order to estimate the right-hand side of (5.79), we use the following proposition.

U7 fllzsy S D + DyY. (5.79)

L2 (%)

PROPOSITION 5.17. We have the following bound:
’ /S2 Fj(u)n}’(w)dw

The proof of Proposition 5.17 is postponed to the next section. Finally, (5.79) and
(5.80) yield the wanted estimate (5.76) which concludes the proof of Proposition 5.13
5.2.4.1. Proof of Proposition 5.17. Recall that [, F;j(u) 1} (w)dw is given by:

~Y

L2(%)

S (5.80)

/ Fy(u)n) (w dw—/SQ /+0o P27 Nl (w) f(Aw) N dAdw. (5.81)

Relying on the classical TT* argument, (5.80) is equivalent to proving the boundedness
on L*(X) of the operator whose kernel K is given by:

+o0o
K(z,y) = / / eNulr) =A@y (27T Nt (w) N2 dAdw, T,y € 3. (5.82)
s2 Jo
The decay satisfied by this kernel is stated in the following proposition.

PROPOSITION 5.18. The kernel K defined in (5.82) satisfies the following decay esti-

mate for all x,y in X:
2J
K (2, y)| <

(1 + [P |ulz, v) = uly, v)] = 220uu(z,v) = Ouly,v)I])*
23

(5.83)

U+ 2P0z, v) — duly, V)P

The proof of Proposition 5.18 is postponed to section 5.2.4.2. In the rest of this section,
we show how (5.83) implies Proposition 5.17. According to Schur’s Lemma, the operator
whose kernel is K is bounded on L?*(X) provided we can prove the following bound:

sup/ |K (z,y)|dy < 400, sup/ | K (z,y)|dx < 4o0. (5.84)
€Y yeX

Due to the symmetry of K in z,y, the two bounds in (5.84) are obtained in the same
way. We focus on establishing the first bound. Using in particular (5.83) and the global
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change of variable on ¥ given by (5.30)%, we are able to obtain:

2J 2J
/ K (e, y)ldy < / : dy,  (585)
> R3

L [y - v = 22[y'[])? (1 + 2072]y'[)> =

where y = y-v+1vy' and 3 - v = 0. Making the change of variable y — z where 2z is defined
by z-v =2/y-v and 2’ = 2//%y in the right-hand side of (5.85), and remarking that z - v
is one dimensional, and 2’ is two dimensional, we obtain:

dz
K(x,y dyg/ <1 5.86
/z’ @S [ T = 7P 7P (5.86)

(5.86) implies the first bound in (5.84). K being symmetric with respect to x,y, the
second bound in (5.84) is also true. Thus, the operator whose kernel is K is bounded on
L*(X) which concludes the proof of Proposition 5.17.

5.2.4.2. Proof of Proposition 5.18. Recall the definition of K:

“+oo
K(z,y) = / / ei)‘“(w’w)_i)‘“(y’w)w(2_j)\)n;7(w)>\2d)\dw, T,y € X, (5.87)
s2 Jo
We need to prove that K satisfies the following decay estimate for all x,y in X:

K@)l S 2
2, y)| S : ‘

(0 + 127Tul, ) — uly, ) = 2700, 0) = Ol (559

27 '

X , :
(1 + 2/2|0u(z,v) — duuly, v)|)?

For the sake of simplicity, let us just describe the general strategy of the proof of Propo-

sition 5.18. In view of the regularity for u(x,w) with respect to w provided by (5.24) and

(5.26)-(5.29), we have

lu(z,w)| + |Opu(z, w)| + |02u(z,w)| + |Pu(r,w)| <1+ 2], Vo € 2, Vw € §*. (5.89)

This regularity allows us to integrate by part three times with respect to w, while we may
integrate as much as we want with respect to A. The estimate (5.88) is then obtained after
performing in (5.87) three integrations by parts with respect to w and two integrations
by parts with respect to A.

5.3. Control of the parametrix at initial time

In this section, we discuss the proof of Theorem 5.9. To this end, we first show that
the Fourier integral operator U of Theorem 5.6 almost preserves the L? norm provided
we make additional assumptions on its symbol. We then use this observation to prove
the estimate (5.41). Finally, we conclude the proof of Theorem 5.9 by establishing the
existence and uniqueness of (f, f_) solution of the system (5.40).

3using also the bound on the Jacobian (5.31)
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5.3.1. A refinement of Theorem 5.6. In Theorem 5.6, we have proved that the
Fourier integral operator U with phase v and symbol b is bounded on L*(3) provided u
satisfies (5.24), (5.26)-(5.29) and (5.30)-(5.31), and the symbol b satisfies (5.34) (5.35).
We now would like to prove that U satisfies the following bound from below:

[ fllz2re) S NUfllezs), (5.90)
provided u also satisfies (5.32) and under additional assumptions on the symbol b. This

is the aim of the following proposition.

PROPOSITION 5.19. Let u be a function on 3 x S? satisfying suitable assumptions (we
refer to [43] for the complete set of assumptions, and to section 5.1.3 for some typical
assumptions). Let U the Fourier integral operator with phase u(x,w) and symbol b(x,w):

+oo
Uf(z) = / / @D, w) f(Aw) A2dAdw. (5.91)
sz Jo
We assume furthermore that b(x,w) satisfies:
HawbHL2(E) + HV@wbHLz(E) S 1, (592)
16— 1| ooy + IVl Lo r2p,) + IV VOl 2wy S &, (5.93)

and
Vb= b{ + b; where ”%HL%E) § 2_%5, ”b%HLgOL?(Pu) ,S £
and |V bl 2y + 103l e (e, S 22¢.

Then, U is bounded on L? and satisfies the estimate:
[ fllzesy S NUfllrzcs)- (5.95)

REMARK 5.20. Notice that the only difference in the assumptions with respect to The-
orem 5.0 lies in the fact that u also satisfies (5.32) and in the constant D which has been
replaced by 1 in (5.92) and by ¢ in (5.93) (5.94).

The proof of Proposition 5.19 uses the decomposition in frequency and angle of the
operator U introduced in section 5.2. In order to control the diagonal term in a third step
(see next section), we have to modify slightly the size of the support of our partition of
unity 7% on S* introduced in (5.47). Let 0 > 0 such that:

0<+Ve<xd<<l. (5.96)

We now require that the support of 7% is a patch on S§? of diameter ~ §279/2. With this
modification, the assumptions for b in Proposition 5.19, and by carefully tracking the size
of the various terms in the almost orthogonality argument in frequency and angle, and
the control of the diagonal term, we obtain

U = > > / S F@)SF@)AE + 0 (55 +0) I [Faanys  (5:9)

=<2 |v—v/|<262-3/2
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where the operator 57 is defined on 3 by:

+o0
) = / / e (27I N )Y (w) f(Aw) A dAdw. (5.98)
2 Jo
Recall (5.30)-(5.31) which states that the map ¢, : ¥ — R? defined by:
ou(x) == u(z,v)v + d,u(x,v), (5.99)

is a bijection, such that the determinant of its Jacobian satisfies the following estimate:
|| det(Jace, )| — 1| peoirn) Se. (5.100)

Let us note F~! the inverse Fourier transform on R3. We introduce the operator gj” on

Y. defined by:
Sy f(x) = F @7y f)(u(x) = /R3 P27 N (w) f(Aw)APdAdw.  (5.101)

The following proposition shows that the term [, S¥ f(x )S” f(z)d¥ is close to the term

Jy 871 (@) f(2)dS.

PROPOSITION 5.21. We have the following bound:

1S%f =S¢ fllzes) S 627! (5.102)

The proof of Proposition 5.21 relies on the classical 7T argument, and the comparison
between u(x,w) and ¢,(x) - w provided by (5.32) (see [43] for the details). Now, (5.97)
and (5.102) yield:

AR SID SR ]

|7—-U<2 |v—v'|<262-3/2

(2)dS + O (52 ) 1120y (5.103)

Making the change of variable y = ¢,(z) in fz Y f(x)dY and using (5.100) and
(5.101) implies:

> /S” (z)dS

|7=1<2 |v—v!|<262-3/2

- Y X [ FeepwF ey D

li—1]<2 - A= iz /R (5.104)

+O() (e
- Z > [ e ) )R @ Oy

|] <2 jy— I/"<252 a2 IR

+O@)I 72 @)
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where we have used the fact that F~! is an isomorphism on L?*(R3) in the last equality
of (5.104). Now, we have:

2 X Ay@”WMWMW@ﬂwmvwwwwmaM,@ma

7 =<2 [p—v|<2629/2

which together with (5.103) and (5.104) yields:

€ 1
101wy = 17 acesy + O (55 +82) 11 e (5.106)
Choosing 02 and £5~2 small enough, we deduce from (5.106):
[ fllz2®e) S NU fllezs), (5.107)

which is the wanted estimate. This conclude the proof of Proposition 5.19.

5.3.2. Proof of Theorem 5.9. The symbol of the Fourier integral operators M, and
Q- are respectively given by 1 and a(x, £w)~!. Thus, they clearly satisfy the assumptions
of Proposition 5.19. Relying on Proposition 5.19, we are then able to prove the estimate
(5.41). We refer to [43] for the details.

The uniqueness of (f5, f_) solution of the system (5.40) is an immediate consequence of
the estimate (5.41), so there only remains to prove the existence of (f, f-) to conclude the
proof of Theorem 5.9. Recall that the phase u(x,w) of our Fourier integral operators has
been constructed in [42] (see also Chapter 6) on ¥ x S? under the assumption that (3, g, k)
satisfies the following bounds consistent with the bounded L? curvature conjecture:

IRl 2m) <&, |[VEl2m) <, (5.108)

where the fact that we may take € > 0 small comes from a reduction to the small data
case. (X, g, k) also satisfies the constraint equations and the maximal foliation assumption

ijij — O,
R= |/<;|2, (5.109)
Trk = 0.
We introduce two sets V and W:
V ={(3, g, k) such that (5.108) and (5.109) are satisfied}, (5.110)

and

W ={ (3,g9,k) € V such that (f, f-) solution of (5.40) exist for all (¢g, ¢1)
such that Vo € L*(X) and ¢ € L*(X)}.
(5.111)
Not first that W is not empty since (2, g, k) = (R3,,0) belongs to W in view of Remark
5.2. We then show that V' is connected and W is both open and closed in V for a suitable
topology (see [43] for the details). We infer W = V. This proves the existence of (f,, f_)
solution of (5.40) and concludes the proof of Theorem 5.9.






CHAPTER 6

Control of the foliation at initial time

In this chapter, we will only consider u(t,z,w) and ¥; at ¢t = 0. Thus, for simplicity,
we denote in the rest of this chapter w(0,x,w) by u(x,w) and Xy by X. The goal of this
chapter is to prove the estimates on the control of the foliation of ¥ by u(x,w) which
are needed for the proof of Theorem 5.9 (see section 5.1.3), i.e. for the control of the
parametrix at initial time. The estimates obtained for w(z,w) in this chapter must also
be consistent with the control on M for u(t,z,w) obtained in Chapter 4 (see section
4.1.5). Here, we outline the main ideas and we refer to [42] for the details.

6.1. Geometric set-up and main results

6.1.1. Reduction to small data. Recall from section 1.2.3 that we have reduced
ourselves to an asymptotically flat initial data set (X, g, k) solution to the constraint
equations which satisfies the bounds

IRl z2s) <€, [[VE|2m) <, (6.1)

and is smooth outside of a small neighborhood U. In order to construct u(x,w) satisfying
the asymptotic behavior u(z,w) ~ x-w when |z| = 400 on X, we need to modify (X, g, k)
outside of U. We can glue it in a trivial way to (R?,§,0) so that the new initial data set is
still smooth outside of U, satisfies (6.1), and coincides with (R3,4,0) outside of a slightly
larger neighborhood. We still denote this initial data set (X, g, k). Of course, (X, g,k)
does not satisfies the constraint equations in the annulus where the gluing takes place.
However, for the construction of u(z,w), we only require (X, g, k) to satisfy the constraint
equations in U. Outside of U, (3, g, k) is smooth, so things are much easier.

6.1.2. Geometry of the foliation of > by a scalar function u. We define the
lapse a = |Vu|™!, and the unit vector N such that Vu = a ' N. We also define the level
surfaces P,, = {x /u = ug} so that N is the normal to P,. The second fundamental form
0 of P, is defined by

0(X,Y)=g(VxN,Y) (6.2)
with X, Y arbitrary vectorfields tangent to the u-foliation P, of ¥ and where V denotes

the covariant differentiation with respect to g. We denote by trf the trace of 0, i.e.
trd = 64B0,45 where 045 are the components of 6 relative to an orthonormal frame

(€a)a=12 on P,.

113
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6.1.3. Structure equations of the foliation of > by a scalar function u. We
recall some of the structure equations of the foliation of ¥ by a scalar function v which
will be needed for the discussion of the main result of this chapter (see [9] for a proof).

PROPOSITION 6.1. The orthonormal frame frame N,ea, A = 1,2 of ¥ satisfies the
following system:

{ VaN = 0apep, (6.3)

VN = —a"'Va.
Also, the lapse a satisfies the following equation
a_IA(a) = —thTe - |(9‘2 + RNN7 (64)

where A is the Laplace-Beltrami for the metric v on P, induced by g. Finally, the second
fundamental form 0 satisfies the following Codazzi equation

WBQAB = WAtTﬁ—i-RNA. (65)

6.1.4. Choice of u(z,w). We look for u(x,w) satisfying the three following condi-
tions:

(a) u(z,w) ~ x.w when || = 400 on X

(b) The regularity of u(z,w) with respect to x and w is consistent with the reqularity
of u(t, x,w) with respect to (t,x) and w obtained in Chapter 4 (see section 4.1.5).
In particular, we have trf) — kxy € L®(X) (see the discussion in section 5.1.1.1)

(c) u(x,w) has as enough regularity in x and w to control the parametriz at initial
time, i.e. to obtain the conclusion of Theorem 5.9

where the initial data set (X, g, k) satisfies

ijij - O,
R = kP, (6.6)
trgk =0,

in U (see section 6.1.1), and where R and Vk are in L?(X) and satisfy the smallness
assumption (6.1).

In order to motivate our choice of u(x,w), we investigate the regularity of the lapse a,
which by (6.4) satisfies the following equation:

G_IA(G/) = —thI‘Q - ’9’2 — RNN- (67)

Since R is in L*(X), (6.7) implies that a has at most two derivatives in L?*(3). Thus,
u(r,w) has at most three derivatives with respect to z in L?(X). This is not enough to
satisfy (c). In fact, the classical 7T argument (see for example [39]) relies on integrations
by parts in  and would require at least one more derivative since > has dimension 3.

Alternatively, we could try to use the T'T™ argument which relies on integrations by
parts in w. Indeed, R being independent of w, one would expect the regularity of u(x,w)
with respect to w to be better. Differentiating (6.7) with respect to w, we obtain:

a 'A(0.a) =2V Vna + -+, (6.8)
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where the term on the right-hand side comes from the commutator [J,,, A (see section 6.4).
Thus, obtaining an estimate for d,a from (6.8) requires to control Vya. Unfortunately,
(6.7) seems to give control of tangential derivatives of a only. This is where the specific
choice of u(x,w) comes into play.

Having in mind the equation of minimal surfaces (i.e. trf = 0), condition (b) suggest
the choice trf — kyy = 0. Unfortunately, this equation together with (6.7) does not
provide any control of Vya. We might propose as a second natural guess to take instead
trd — kyny = Vya. Plugging in (6.7) yields an elliptic equation for a: Via + a 'Aa) =
—|0]* — Vykny — Ryy. This allows us to control V%a in L?(X). However, trf — kyy =
Vna, and Vya is at most in H'(X) which does not embed in L>*(X) - since X has
dimension 3 - so that condition (b) is not satisfied. To sum up, the first guess tr0—kyy = 0
satisfies (b), but not (c), whereas the second guess trf — kxyy = Vya might satisfy (c),
but does not satisfy (b).

The correct choice is the intermediate one

trd — kNN =1-—a. (69)

We will see in section 6.2 that a — 1 belongs to L®(X) so that (b) is satisfied. Also,
plugging (6.9) in (6.7) yields the parabolic equation:

VNa—a“A(a) = "9|2+VNI€NN+RNN- (610)

This will allow us to control normal derivatives of a. In turn, we will control derivatives of
a with respect to w using (6.8). Ultimately, we will prove enough regularity with respect
to both x and w, such that (c) is satisfied.

6.1.5. Main results. For 1 < p,q < +o0, we define the spaces L L?(P,) for tensors

F on X using the norm:
1/p
1F |25 2acp,) = (/||F||iq(Pu>d“> :

REMARK 6.2. In the rest of the paper, all inequalities hold for any w € S* with the
constant in the right-hand side being independent of w. Thus, one may take the supremum
i w everywhere. To ease the notations, we do not explicitly write down this supremum.

We first state a result of existence and regularity with respect to x for w.

THEOREM 6.3. Let (X, g, k) chosen as in section 6.1.1. There exists a scalar function
uw on X X S? satisfying assumption (a) and such that:

la = Uzer2p,) + IValloerep,) + lla = Llzes) + |V Val 12s) S e,
[0 — kx| + VOl o) S e,

where P,, a, N and 0 are associated to u as in section 6.1.2.

(6.11)

Notice that condition (b) is included in (6.11). In order to state our second result, we
introduce fractional Sobolev spaces H°(P,) on the surfaces P, for any b € R (see [42] for
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their precise definition). We have the following estimate for V4-a, and improved estimate
for Vya.

THEOREM 6.4. Let (X,g,k) chosen as in section 6.1.1. Let u the scalar function on
Y x S? constructed in theorem 6.3, and let P,, a and N be associated to u as in section

6.1.2. We have:
IV nallperap, + [ Viall  <e. (6.12)

L2H™3(P,) ™~
The third theorem investigates the regularity of u with respect to w:

THEOREM 6.5. Let (X,g,k) chosen as in section 6.1.1. Let u the scalar function on
Y x S? constructed in theorem 6.3, and let P,, a, N and 0 be associated to u as in section

6.1.2. We have:
10wall oo 2y + 1 V0wal e r2py) + V2 0wal 2(s) + IV nOaall

L3H3 (P.) 6.13
HIV30utll gy + V0Bl 20 <. 10Nl ey < 1 (6.13)
102l 3 1y + 1020 e g+ 1980yt )+ IV S 2
Ha NHLOO 1
and
1%l e 2 < 1. (6.15)

lon

6.1.6. Additional results. The followmg proposition establishes the existence of a
global coordinate system on .

PROPOSITION 6.6. Let w € S%. Let ¢, : ¥ — R3 defined by:
Ou(x) == u(r,w)w + dyu(z,w). (6.16)
Then ¢, is a bijection, and the determinant of its Jacobian satisfies the following estimate:
Il det(Jacs,)| = Le(s) S < (6.17)
Below, we state several additional estimates. We start with a first proposition.

PROPOSITION 6.7. Let (X, ¢, k) chosen as in section 6.1.1. Let u the scalar function
on ¥ x S? constructed in theorem 6.3. Let v € S* and ¢, the map defined in (6.16). Then,
we have for all x € ¥ and w € S?

u(z,w) — gzﬁ,,(x) w = 0(e|lw —v]?),
Opu(z,w) — 0oy (x) - w) = O(e|lw — v|), (6.18)
Pu(r,w) — 92(¢u(x) - w) = Oe).

Using the geometric Littlewood Paley projections P; on P, constructed in [24] (see
section 3.1.5) together with the estimates for Vya in (6.11), and the estimate for V3a in
(6.12), we obtain the following proposition:
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PROPOSITION 6.8. Let (X, g, k) chosen as in section 6.1.1. Let u the scalar function
on X x S? constructed in theorem 6.3, and let a and N be associated to u as in section
6.1.2. For all j > 0, there are scalar functions aj and al such that:

Vna = a] + d), where ||a{HL2(E) < 27%¢ and HVNa%HLz(Z) < 2ic. (6.19)

REMARK 6.9. Recall from section 6.1.4 that we do not have enough regularity in x
to apply the T*T method. Alternatively, we could try the TT* method which relies on
integration by parts in w. But 93u € L*>°(X) is also not enough and we would need at least
one more derivative in w. Nevertheless, using the reqularity in x and w obtained for u in
the present and the previous section, we are able to control the parametriz at initial time
(see Chapter 5).

Let us conclude this section by mentioning several ingredients of [42] that have been
omitted here for the sake of simplicity, and that have to be proved by relying on low
regularity assumptions for u which are consistent with the results stated in this section
and the previous one:

estimates for the parabolic operator (Vy —a 'A)

estimates for # and N

product estimates in the Sobolev spaces H(P,)

embeddings on ¥ and P,

a control of the Gauss curvature of P,

Bochner inequalities on P,

estimates for various commutator terms of the type: [V, V], [V, P}, ...

The rest of this chapter is as follows. In section 6.2, we discuss the proof of Theorem
6.3. In section 6.3, we discuss the proof of Theorem 6.4. In section 6.4, we discuss
the proof of Theorem 6.5. In section 6.5, we discuss the proof of Proposition 6.13 and
Proposition 6.6. Finally, Proposition 6.7 and Proposition 6.8 are discussed in section 6.6.

6.2. Construction of the foliation and regularity with respect to =

In this section, we discuss the proof of Theorem 6.3. By section 6.1.1, we may assume
that (X, g, k) coincides with (R?,6,0) outside of a compact, say |z| > 1. Notice that in
|z| > 1 and for all w € S?, the scalar function z.w satisfies the equation (6.9) and the
estimate (6.11), since a = 1,0 = 0 and N = w in this region. Thus, we would like to
construct a function u solution of (6.9) satisfying (6.11) in a region containing |z| < 2
and to glue it to z.w in 1 < |z| < 2. Now, (6.9) is of parabolic type - see (6.10) - where
u plays the role of time. For each fixed w € S?, we start with u = —2 on 7 -w = —2.
Then, we propagate with the parabolic equation (6.10), coupled with the equation for 6
(6.5), to the strip S = {x € ¥ such that — 2 < u(z,w) < 2}. This strip covers the entire
region |z| < 1, and we then glue u to = - w outside of |x| < 1 (see section 6.2.2). In the
next section, we prove a priori estimates consistent with the estimate (6.11) and valid on
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—2 < u < 2 for the solution u of:

trd —kyy =1—a, on —2 < u <2, (6.20)
where v is initialized on x.w = —2 by:
u(r,w) =—2on r.w = —2. (6.21)

Note that the first equation of (6.25), (6.21) and the fact that (g, k,>) coincides with
(6,0, R3) for |z| > 2 yields:

VP(a—1)=0,VP0=0, VP(N —w)=0forall pe Nonu=—-2. (6.22)

6.2.1. A priori estimates for lower order derivatives. Let (3, g, k) chosen as in
section 6.1.1. In particular, we assume:

IVEl 2wy + | Rl z2s) < €. (6.23)

Let u a scalar function on ¥ x S?, and let P,, a, N and 6 be associated to u as in section
6.1.2. Assume that u satisfies the additional equation (6.9), which we recall below together
with (6.3) and (6.4):

VaN = 04pep,
6.24
{ VN = ~Vlog(a), (6:24)
and
trH—k:NNzl—a,
6.25
{ VNCL—CL_IA(CL) = |9’2+VN]<7NN+RNN- ( )

In this section, we establish a priori estimates for a, N and 6 corresponding to (6.11) in
the region S of ¥ between P_5 and P, (ie. S = {2/ —2 < u(z,w) < 2}) where u is
initialized on x.w = —2 by (6.21). In particular, we have (6.22), so that the subsequent
integrations by parts will not create boundary terms at u = —2.

For the sake of simplicity, let us just discuss the estimate (6.11) for the lapse a. We
rewrite the second equation of (6.25) as:

(Vy —a*A)(a—1) =h, (6.26)
where h is given by:
h=Vykyy+ Rynv—+---. (6.27)
Using in particular (6.23), we obtain:
12llz2m) S e

Together with (6.26) and an L? parabolic estimate for the operator (Vy — a™tA), we
obtain
la =z rapy + 1Vall g rap,) + I Vnall s + [V2all 2y S e (6.28)
In order to obtain estimates for YV ya and V%a, we differentiate the second equation
of (6.25) by Vy:

(VN—a_lﬁ)VNa: V?VkNN—FVNRNN—f-"' s (629)
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where we only kept two typical terms. Note that V% kyy and VyRyy are dangerous
terms which cannot be estimated directly. We first need to trade a V derivative with
a Y derivative using Bianchi identities and the constraints equations. We use the twice-
contracted Bianchi identity on X

- 1
In particular, using also the constraint equations (6.6), we have

VNRyy = —VaRan + Vi |k
Also, the constraint equations (6.6) yield

Vikny = —=VNVakay + = —=VaVnkay + - .
Together with (6.29), we obtain
(Vy —a *A)Vya = dig(H) + hy, (6.31)
where
H=-Vykn—RxN, (6.32)

and h, satisfies

Using the smallness assumption (6.23) and the definition of H (6.32), we have
[H |2y S e (6.34)

which together with (6.33), (6.31), and an L? parabolic estimate for the operator (Vy —
a 'A), yields

||vNa||L;.oL2(pu) + ”WVNCL“LQ(E) 5 . (6.35)
Finally, (6.28) and (6.35) yield the wanted estimate (6.11).

6.2.2. End of the proof of Theorem 6.3. We briefly sketch the rest of the proof
of Theorem 6.3, and we refer to [42] for the details. In (6.28) and (6.35), we have obtained
a priori estimates consistent with the estimate (6.11) and valid on —2 < u < 2 for the
solution u of (6.20). Then, we also prove on —2 < u < 2 a priori estimates for higher
derivatives of the solution u of (6.20). We then use the existence of u solution to':

(6.36)

tr —kyy=1—a, ona<u<a+T,
U= qonu=a,

where —2 < a < 2, u is smooth, and 7" > 0 is small enough. Together with the a priori
estimates, this allows us to control the solution of (6.36) on —2+ kT < u < —2+ (k+1)T
uniformly with respect to & = 0,...,[4/7] in order to obtain a solution u of (6.20) on
—2 < u < 2. Finally, we conclude the proof of Theorem 6.3 by showing how to glue the

Lthis local existence result could be proved either using a Nash Moser procedure or a combination of
Cauchy-Kowalewska and enhanced a priori estimates for all derivatives
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solution u of (6.20) to z.w in 1 < |z| < 2 in order to obtain a solution on ¥ satisfying
(6.11).

6.3. Estimates for Vya and V3a

In this section, we discuss the proof of Theorem 6.4. Recall the decomposition (6.31),
(6.32), and the estimate (6.33). We introduce the scalar functions on S a; and as solutions
of:

(Vn —a 'Aa; =hyon S, a;(-2,.) =0, (6.37)
and:
(Vn —a 'Aay = dif(H) on S, as(—2,.) =0, (6.38)
which yields, in view of (6.31) and (6.22), the decomposition:
Vya = ay + as. (6.39)

The idea behind the decomposition (6.39) is to take advantage of the better regularity
of hy for a; (see (6.33) compared to (6.34)), and to use the structure of dif(H) to obtain
a useful equation for Vyas. Indeed, in view of the equation (6.38) satisfied by ay, Vyas
satisfies:

(Vi —a™ ' A)(Vnaz) = Vi (dif(H)) + -+, (6.40)
and using in particular the twice-contracted Bianchi identity on X, the constraint equa-
tions in the maximal foliation (6.6), and (6.40), we obtain

(Vy — a *A)Vyay = difdif(Hy) + dif(Ha) + hg + -+ -, (6.41)

where the tensors Hy, H, and the scalar hy satisfy

[H1l[z2s) + [1Hall 5 g )+ R2llgs) S e

These ideas allow us to derive the following two propositions (see [42] for the detailed
proof of these propositions).

PROPOSITION 6.10. Let ay be the solution of (6.37), where hy satisfies (6.33). Then,
we have:

larllzzerap,) S e (6.42)
and:
> 279 P(Vna)l[fas) S €% (6.43)

Jj=0
PROPOSITION 6.11. Let ay be the solution of (6.38), where H is defined in (6.32).
Then, we have:
lazllLeeacp) S € (6.44)
and:
j_‘igHPj(VNaz)Hm(Z) Se. (6.45)
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In view of the decomposition (6.39) for V ya, the estimates (6.42) (6.43) for a;, and
the estimates (6.44) (6.45) for as, we immediately obtain the estimate (6.12) for Vya and
V%a. This concludes the proof of Theorem 6.4.

6.4. Regularity of the foliation with respect to w

Let u(z,w) the function constructed in section 6.2. In this section, we discuss the
proof of Theorem 6.5 which deals with the control of the derivatives with respect to w
of the foliation of ¥ provided by u(x,w). Recall that (X, g, k) coincides with (R3,6,0) in
|z| > 2. Also, u(x,w) coincides with x.w in |z] > 2, and so a =1, N = w and § = 0
in this region. Thus, u clearly satisfies the estimates of Theorem 6.5 in |z| > 2 and it is
enough to control the derivatives with respect to w of the function u(z,w) solution to:

{trQ—k:NNzl—a, on —2<u<?2, (6.46)

u(,,w) =—-2on r.w= -2,
in the strip S = {z/ — 2 <u < 2}.
6.4.1. First order derivatives with respect to w. The goal of this section is to

prove (6.13). For the sake of simplicity, we only outline of the proof of the estimate for
J,a. Differentiating the second equation of (6.25) with respect to w, we obtain:

(Vy —a 'A)d,a =2YVya+ 2Rno,n + - (6.47)

where the first term on the right-hand side comes from the commutator [0, A] (see [42]).
Since YV ya and R are in L%*(X) respectively by (6.11) and (6.23), we obtain using in
particular an L? parabolic estimate for the operator (Vy —a™'A)

) +IVP0uall 2 Se. (6.48)
Next, we differentiate (6.47) with respect to V. We obtain:

HVNawCL||L2(E)

(VN — a’lﬁ)VNawa = ZWV?VCL + QVNRNawN + e (649)

The term VyRys,n may be treated using the contracted Bianchi identity for R - as we
did for VyRyy in section 6.2.1 - and turns out to be in L2H~*(P,). On the other hand,
in view of the estimate (6.12) for V%a, YVZa belongs to L2H~2(P,). We obtain using
in particular a refined parabolic estimate for the operator (Vy —a™'A)

IV nOLal| T Va.al <e. (6.50)

L2H? (P, L2H 3 (P,) ~

Finally, by interpolation between (6.48) and (6.50), we obtain d,a in L°H3(P,) which
embeds in L>(X) since P, has dimension 2. Together with (6.48) and (6.50), we obtain
the estimate corresponding to d,a in (6.13).
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6.4.2. Second order derivatives with respect to w. The goal of this section is
to prove (6.14). For the sake of simplicity, we only outline of the proof of the estimate for
02a. Differentiating the equation (6.47) for d,a with respect to w, we obtain:

(VN - a_lﬁ)é?f}a = 2V?VCL + WVNGwa + 2R8wNawN + - (651)

where the first two terms on the right-hand side come respectively from the commutators
0., V] and [0, A]. Since R is in L2() by (6.23), VZa is in L2H~2(P,) by (6. 12), and
VnO,a is in LiH%(Pu) by (6.13), the right-hand side of (6.51) belongs to L2H "~ 2(P,).
Using in particular estimates for the parabolic operator (Vy —a™!A), we deduce

102all —i— 102all —|— |V NO2all < e, (6.52)

L2H7 LOOHQ L2H™ gP)N

which is the estimate corresponding to Gf)a in (6.14).

REMARK 6.12. Note that we may not differentiate the equation (6.51) for 0*a with
respect to V. Indeed, the term V Ry, no,n has no structure: unlike Ryy and Ryg,n
which were involved in the equation for a and d,a, Ry, no,n does not contain any contrac-
tion with N since O,N 1is tangent to P,. Thus, unlike VNyRnxN and YV nRyo, N, we can
not write Vy R, no,N aS a tangential derivative using the contracted Bianchi identities
for R. Consequently, we can not obtain any estimate for V3a.02a.

6.4.3. Third order derivatives with respect to w. The goal of this section is to
prove (6.15). Recall that div(N) = trf, N = Vu/|Vu|, a = 1/|Vu| and trf = 1 —a+kyn,
so that:

Vu 1
d 1-—- k 6.53
() =1 o (059
Differentiating (6.53) three times with respect to w yields:
(Vy —a *A)Pu =Y log(a) + - - - . (6.54)

Using in particular (6.54), the estimate (6.14) for 92a and refined parabolic estimates for
the operator (Vy — a™tA) we obtain

10 el + IV 0ul S L

3
L2H? LXH?2(P,) L2H§ P,) ™~

Now, since Pu € LH %(Pu) and P, is 2-dimensional, we obtain that d2u belongs to
Ly (Z), which is the desired estimate (6.15).

loc

6.5. A global coordinate system on P, and X

The goal of this section is to discuss the proof of Proposition 6.6. We start by con-
structing a global coordinate system on P,.
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6.5.1. A global coordinate system on P,. We have the following proposition
PROPOSITION 6.13. Let w € S%. Let ®, : P, — T,,S? defined by:
O, (z) = Oyu(z,w), (6.55)

where T,,S? is the tangent space to S* at w. Then ®, is a global C* diffeomorphism from
P, to T,,S?.

For the sake of simplicity, we only briefly sketch the proof. We start by showing that
®,, is a local C! diffeomorphism. We have

o ( 9(0,N,0,N) g(0yN,9,N) >

T .
(Jac®,)" Jac®, = 9(0pN,0,N)  g(0sN,04N)

where (,1)) denotes the usual spherical coordinates on S?. Using the estimates (6.11)
and (6.13), we are able to derive the following estimate

|(Jac®,)" Jac®, — ||~ S €, (6.56)
so that ®, is a C" local diffeomorphism. In turn, this yields:
|| det(Jac®y)| — 1| 1e(x) S €. (6.57)

It remains to show that &, is onto and one-to-one. The proof relies on the estimate
(6.56) for the Jacobian of @, the fact that u coincides with z.w in the region |z| > 2 and
geometric considerations on the level sets of d,u and dyu. We refer to [42] for the details.

6.5.2. Proof of Proposition 6.6. Let w € S%. Recall the definition (6.16) of ¢,, :
Y — R
Ow(z) == u(r,w)w + dyu(r,w) = u(z,w)w + D, (z),

where @, has been defined in Proposition 6.13. The fact that ¢, is a bijection is an easy
consequence of the fact that ®, is a bijection for all u. Then, it remains to prove (6.17).
We are able to obtain

(Jaco,,)T Jach,, = a2
1 —0, log( ) —0y log(a)
x [ —0,log(a) (0, log(a))* + g(d,N,d,N) J,1og(a)dy log(a) + g(0yN, 0,N)
~0,log(a) 0, log(a)d log(a) + g(OuN, O,N)  (04l0g(@) + g(DuN, Oy N}

Taking the determinant yields:

det((Jace, )" Jaco,) = a~* det((Jacd, )" Jacd,,), (6.58)
which together with (6.56) and the estimate (6.11) for a implies:
|det((Jach,) " Jach,) — 1| ze) S e (6.59)

(6.59) yields (6.17). This concludes the proof of Proposition 6.6.
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6.6. Additional estimates

The proof of Proposition 6.7 and Proposition 6.8 follow from the estimates of Theorem
6.3, Theorem 6.4, and Theorem 6.5 using also for some estimates the fact that u coincides
with z.w in the region |r| > 2 or the properties of the Littlewood-Paley projections P;.
For the sake of simplicity, we skip these proofs and refer the reader to [42] for the details.



CHAPTER 7

The Strichartz estimates

Recall Steps A, B, C and D introduced in section 1.2.4. In this chapter, we perform
Step D, i.e. we prove Proposition 2.32. More precisely, let 7 > 0, and let ) a smooth
function on R? supported in

S<l<2

Let ; the parametrix (1.24) with an additional frequency localization A ~ 27

Mu(t:cw 2
i(t, ) /82/ TN fFAw) A\ dMdw, (7.1)

where u(.,.,w) is a solution to the eikonal equation g*?9,udsu = 0 which depends on
an extra parameter w € S%. Assume that the space-time M is foliated by space-like
hypersurfaces ¥; defined as level hypersurfaces of a time function ¢. Let (p, g, r) such that
p,q > 2, q < 400, and

1 1 1 3 1 3
—+-<,r==—-=-—-- .
poq 2 2 p q
In this chapter, we outline the proof of the following sharp' Strichartz estimates
lesllee,  ramy S 27102770 fll 2. (7.2)

[0,1]
The proof of Proposition 2.32 will then be a simple consequence of (7.2) with the choice
p=q=4

REMARK 7.1. Even though we only need L*(M) Strichartz estimates - which corre-
sponds to p = q =4 in (7.2) - to prove Proposition 2.32, it turns out that this particular
case is not easier to prove than the general case.

7.1. Assumptions on the phase u(t,r,w) and main results

7.1.1. Time foliation on M. We foliate the space-time M by space-like hypersur-
faces ¥; defined as level hypersurfaces of a time function t. We assume 0 < t < 1 so
that

M= ] = (7.3)

INote in particular that the corresponding estimates in the flat case are sharp.

125
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We denote by T the unit, future oriented, normal to ¥;. We also define the lapse n as
n~t=T(t). (7.4)

Note that we have the following identity between the volume element of M and the
volume element corresponding to the induced metric on ¥,

AM = nds, dt. (7.5)

We will assume the following assumption on n
1
g Sn<2 (7.6)

which together with (7.5) yields
dM ~ d¥; dt. (7.7)

REMARK 7.2. The assumption (7.6) is very mild. In particular, it is compatible with
the estimates for n derived in [44] (see also (4.40)).

7.1.2. Geometry of the foliation generated by u on M. Recall that u is a
solution to the eikonal equation g*?d,udsu = 0 on M depending on an extra parameter
w € S?. The level hypersufaces u(t, r,w) = u of the optical function u are denoted by H,,.
Let L' denote the space-time gradient of u, i.e.:

L' = g*05u0,. (7.8)
Using the fact that u satisfies the eikonal equation, we obtain:
D, L' =0, (7.9)
which implies that L’ is the geodesic null generator of H,,.
We have:
T(u) = £|Vul

where |Vul?> = 327 |e;(u)|? relative to an orthonormal frame e; on Y. Since the sign of
T'(u) is irrelevant, we choose by convention:

T(u) = —|Vul (7.10)
so that u corresponds to —t + x - w in the flat case.
Let
L=bL'=T+N, (7.11)

where L' is the space-time gradient of u (7.8), b is the lapse of the null foliation (or shortly
null lapse)

bl=—< LT >=-T(u), (7.12)
and N is a unit vectorfield given by
Vu
= . 7.13

Note that we have the following identities.
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LEMMA 7.3.
L(u) =0, L(Oyu) =0 (7.14)
and

g(N,0,N) = 0. (7.15)

The proof is elementary and can be found in [46].

7.1.3. Regularity assumptions for u(¢,z,w). We now state our assumptions for
the phase u(t, x,w). These assumptions are compatible with the regularity obtained for
the function u(t, z,w) constructed in [44] (see also (4.42), (4.48), (4.49)). Let 0 <e < 1
a small enough universal constant. b and N satisfy

1= 1| Lo + |0l S €. (7.16)
18(0uN, OuN) — L1 S & (7.17)
IN(.,w) = N(., )| = |w—«|(1+O()). (7.18)

REMARK 7.4. In the flat case, we have M = (R'™3 m), where m is the Minkowski
metric, u(t,x,w) = —t+z-w,b=1, N=w and L = 0, + w - 0,. Thus, the assumptions
(7.16) (7.17) (7.18) are clearly satisfied with e = 0.

REMARK 7.5. In terms of the regularity of u(t,z,w), the assumptions (7.16) (7.17)
correspond to

Vu e L>® and VO,u € L™
which 1s very weak. In particular, the classical proof for obtaining Strichartz estimates for

the wave equation relies on the stationary phase for an oscillatory integral involving u as
a phase, and typically requires at the least one more derivative for u (see Remark 7.11).

7.1.4. A global coordinate system on Y. For all 0 <t < 1, and for all w € S?,
(u(t, z,w), dyu(t,r,w)) is a global coordinate system on ¥;. Furthermore, the volume
element is under control in the sense that in this coordinate system, we have

< /detg <2 (7.19)

where ¢ is the induced metric on ¥;, and where det g denotes the determinant of the
matrix of the coefficients of g.

N | —

REMARK 7.6. In the flat case, we have ¥y = {t} x R® and u(t,r,w) = —t + - w so
that (u(t,z,w), O, u(t, z,w)) is clearly a global coordinate system on ¥; and detg = 1 in
this case. These assumptions are also satisfied by the function u(t,z,w) constructed in
[44].
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7.1.5. Main results. We next state the main result of this chapter concerning gen-
eral Strichartz inequalities in mixed space-time norms of the form Lf ., L%(%;) defined as

follows,
1Pl s = ([ 170 M)

THEOREM 7.7. Let (p,q) such that p,q > 2, ¢ < +00, and
1 1 1
+-<:.
poq 2

[0,1]

Let r defined by

2 p q
Then, the parametriz localized at frequency j defined in (7.1) satisfies under the as-
sumptions (7.6), (7.16), (7.17), (7.18) and the assumptions in section 7.1.4 the following
Strichartz inequalities

leillzs  pay S 271027 N) fllzea). (7.20)

[0,1]

Proposition 2.32 - which corresponds to Corollary 2.8 in [46] - is then a simple conse-
quence of Theorem 7.7, see [46] for the details.

The rest of the chapter is organized as follows. In section 7.2, we use the standard
TT* argument to reduce the proof of Theorem 7.7 to an upper bound on the kernel K of
a certain operator. This kernel is an oscillatory integral with a phase ¢. In section 7.3,
we prove the upper bound on the kernel K provided we have a suitable lower bound on
¢. Finally, in section 7.4, we prove the lower bound for ¢ used in section 7.3.

7.2. Proof of the Strichartz estimates
The goal of this section is to prove Theorem 7.7. We start with the following remark.

REMARK 7.8. Fizing a global system of coordinates x = (x', 22 23) in 3y, such as
the one described in section 7.1.4, we note in view of (7.19) that (7.20) is equivalent
with the same inequality where the norm L1(X;) on the left-hand side is replaced by the
corresponding euclidean norm in the given coordinates. More precisely we can assume

from now on that
. 1
1 g q
HFHLfo GLA(S) = </ ( \F(t,x)lqda:) dt)
0 RS

which we will denote by a slight abuse of notation by
11 e

0.1] Lq(]R3) .

Note also that in the (t,z) coordinates M = [0,1] x R3.
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For convenience, let us introduce the operator T} acting on functions f € L*(R?),

T;f(t,x) = / / et (279 )) F(Aw) A2 dAdw. (7.21)
sz Jo
Note in particular that
Tif = ¢; (7.22)
where ¢ is the parametrix localized at frequency 27 defined in (7.1). To prove Theorem
7.7, we rely on the standard TT* argument for the Fourier integral operator (7.21). Note
that the operator T takes real valued functions & on M to complex valued functions on
R3
* _ —J —iAu(s,y,w
Trh(Aw) = P(279X) /M e~ MY D (s y)dsdy.

Therefore, the operator U; := T;T} is given by the formula,
Uh(t,z) = /S 2 / b / eihulbaw)=idulsyw)y, (979 X\)2h(s, y) \2d\dwdsdy.
Note, in view of Remark 7.8 and (7.22), that (7.20) is equivalent to the following estimate
03 2o S 29 Mol (7.2

where p' (resp. ¢') is the conjugate exponent to p (resp. ¢). Observe that,

Ujh< ) / / / z)\27u 272—]0.1) ZAQ]“(EQ%“)¢(A)2h(S >)\2d/\dwdsdy
o 2

with 2/ M = [0, 27] x R? relative to the rescaled variables (s,y). Thus, setting,

Wt x) / / / V(G w)—ixu( . 2 w)w()\)%(s,y))?d)\dwdsdy
SQ
we have

T » sy
Uh<2 = ) = 279 Ahy(t,x), hy(s,y) :h(§,§>.

We easily infer that (7.23) is equivalent to the estimate,

[ARN e pamsy S NP o Lo sy (7.24)
[0,27] 0,257 (B?)
We introduce the kernel K of A
S2

REMARK 7.9. In the flat case, we have u(t,z,w) = —t + x - w so that

; t
T [ = = -
2 u(zj,zj,w> u(t,z,w).
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In particular, K is independent of j

K(t, T, S, y) _ / / ei/\u(t,x,w)—i)\u(s,y,w)¢()\)2)\2d)\dw.
sz Jo
We have the following proposition.

PROPOSITION 7.10. The kernel K of the operator A satisfies the dispersive estimates,
| < . V(t,x) € 22 M, V(s,y) € 22 M. (7.26)
-8

The proof of Proposition 7.10 is postponed to section 7.3. We now conclude the proof
of Theorem 7.7. (7.24) follows from (7.26) using interpolation and the Hardy-Littlewood
inequality according to the standard procedure, see for example [38] and [39]. Finally, in
view of the discussion above, (7.24) yields (7.23) which in turn implies (7.20) in view of
(7.22). This concludes the proof of Theorem 7.7.

7.3. Upper bound on the kernel K

The goal of this section is to prove Proposition 7.10. Let ¢ the scalar function on
M x M x S? defined as
qﬁ(t,x,s,y,w) - u(t,a:,w) —U(S,y,W). (727)

In view of (7.25), we may rewrite K as

K(t,z,s,y) / / 29553755 ) \2dAduw.
S2

After integrating by parts twice in A, and using the size of the support of v, this yields

1
K(t,z,s,y §/ dw. 7.28
Kol S [ s (7.25)

577977 27 27

The next section is dedicated to the obtention of a lower bound on |¢| which will allow
us to deduce (7.26) from (7.28).

REMARK 7.11. It is at this stage that we depart from the standard strategy for proving
Strichartz estimates. Indeed, the usual method consists in using the stationary phase
method to derive (7.26). To this end, one considers the neighborhood in S* of stationary
points wo, i.e. such that O,¢),_, = 0. One then needs an identity of the type

¢=(s—t)A(w—wp) - (w—wp) + 0 ((s — t)(w — wo)?) (7.29)

for w in the neighborhood of wy and for some 3 x 3 invertible matriz A. (7.29) then allows
to perform a change of variables in w which ultimately leads to (7.26). In particular, the
standard method requires at the least® 8; ,0%u € L* just to derive (7.29).

20ne also needs to take care of the contribution to K of the angles w € S? corresponding to the
exterior of the neighborhood of stationary points which may increase the needed regularity.
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Our assumptions correspond only to 0y ,0,u € L. Thus, in order to obtain (7.26), we
instead integrate by parts in X to obtain (7.28), and then look for a suitable lower bound
on |@|. In particular, we obtain lower bounds of the following type (see details in Lemma
7.19)

6] 2 |s — tllw — wol? (7.30)
for w in the neighborhood of some wy € S®. The fundamental observation is that, as it
turns out, the inequality (7.30) requires less regqularity than the equality (7.29).

7.3.1. The key lemma. Let (¢,7) and (s,y) in M, and let w € S In this section,
we obtain a lower bound on ¢(¢,z, s,y,w). We may assume

0<t<s<1.

DEFINITION 7.12. For any w € S? and o0 € R, let v,(c) denote the null geodesic
parametrized by the time function and with initial data

7.(0) = (t,2), v.,(0) = b~ (¢, 7, w)L(t, ,w).
DEFINITION 7.13. Let us define the subset S of ¥ as

S=J{wus-1} (7.31)

wes?
We also define for all (s, z) € X
m(s,z) = ngz((u(s, z,w) — u(t, z,w)). (7.32)
we

We have the following lemma characterizing the zeros of m (see [46] for a proof).
LEmMMA 7.14. We have
S={peX /m(p) =0}
Next, we define the following two subsets of >
Aii = {p € 5/ m(p) <0}, Aeer = {p € X5/ m(p) > 0}. (7.33)
Note in view of Lemma 7.14 that
Ys=SUApm U A (7.34)

REMARK 7.15. In the flat case, the picture is the following:

(1) The null geodesics® v, span the light cone from (t,x). In particular, the null
geodesics 7y, do not intersect except at (t,x).

(2) S is the intersection® of the forward light cone from (t,x) with {s} x R3.

(3) Aint and Ay correspond respectively to the interior and the exterior of S.

3which are straight lines in this case
15 s a sphere in this case
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Note that we do not need to prove these statements in our case. This is fortunate since
these statements - while probably true in our general setting - would be delicate to establish
(see for instance [25] for a proof of (1) on a space-time (M, g) with limited regularity).

Next, we introduce some further notations. First, we denote by mg the value of m at
(s,y), i.e.
mo = max(u(s, y,w) — u(t, z,w)). (7.35)

wes?

We also denote by wy an angle in S* where the maximum in (7.35) is achieved, i.e.
mo = u(s,y,wo) — u(t, z,wp). (7.36)

REMARK 7.16. In the flat case, wy is unique and corresponds to the angle of the
projection of (s,y) on S. Again, while this may be also true in our general setting, we do
not need to prove this statement in our case.

Note that if (s,y) € Aeut, the function u(s,y,w) — u(t,r,w) may change sign as w
varies on S?. We define

D={weS*/ult,z,w) =u(s,y,w)} (7.37)
The following lemma gives a precise description of D (see [46] for a proof).

LEMMA 7.17. Let (s,y) € Aewt- Let D defined as in (7.37). Let (0,¢) denote the
spherical coordinates with axis wy. Then, there exists a C* 2m-periodic function

6, :[0,2m) — (0, )
such that in the coordinate system (0,¢), D is parametrized by
D={0=0,(p), 0 < ¢ <2r}.

REMARK 7.18. In the flat case, recall that u(t,r,w) = —t + x - w. In this case, one
easily checks that D 1is a circle of axis wy on the sphere S which is generated by the tangents
to S through y (see figure 1).

Let w € S?. According to Lemma 7.17, the great half circle on S? originating at wy
and containing w intersects D at a fixed point w;. Let 6 and 0, respectively denote the
positive angles between wy and w (resp. wy and wy).

In order to obtain a lower bound for |¢|, we will argue differently according to whether
(s,y) belongs to the region S, A or Aeyy.

LEMMA 7.19 (Key lemma). |¢| satisfies the following lower bounds
(1) If (s,y) € S, we have

1
lo(t, z, 8,9y, w)| > Z|t—s||w—w0|2. (7.38)
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FIGURE 1. Representation of D in the flat case

(2) If (s,y) € Aint, we have

1
lo(t, x, s, y,w)| > §|t—us—w0 2, (7.39)
(3) If (s,y) € Aexr and 01 < 0 < m, we have
1
lo(t, z, s, y,w)| > Z|t—us—w1 2, (7.40)
(4) If (s,y) € Aexr and 0 < 0 < 0, we have
1 —cos(6 — 6y)
t > 7.41
|¢( 7%373/7W)| ~ \/ 1— 008(91) mo ( )

The proof of Lemma 7.19 is postponed to section 7.4.

REMARK 7.20. The proof of Lemma 7.19 is inspired by the overlap estimates for wave
packets derived in [35] and [36] in the context of Strichartz estimates respectively for C
and H**¢ metrics. Note however that the estimates in these papers rely heavily on a direct
comparison of various quantities with the corresponding ones in the flat case. Such direct
comparisons do not hold in our framework. Here, the closeness to the flat case manifests
itself in the small constant € in the right-hand side of (7.16), (7.17) and (7.18), and in
the existence of the global coordinates systems of section 7.1.4.

7.3.2. Proof of Proposition 7.10. Recall that we need to show that the kernel K
defined in (7.25) satisfies the upper bound (7.26). To this end, we will use the estimate
(7.28) for K together with the estimates provided by Lemma 7.19. We argue differently
according according to whether (s,y) belongs to S, A, or Aeu.

If (s,y) belongs to S, we have the lower bound (7.38) for |¢|

1
|¢(t,$, S, va)| > th - S||w - w0’27
where wy € S? is an angle satisfying (7.36). Then, we deduce

t 1
qb( L2 yw>‘21|t—s||w—w02.

J - = = Z
207217217 217
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Together with (7.28), this yields

dw
Kt z,s,y)| < .
AL xsy)‘w/gzl—i-]t—sﬂw—wo]‘*

Using the spherical coordinates (6, ¢) with axis wg, we obtain
" sin(6)do
K(t < .
Ktz 59) 5 /0 11 [t — s]2(1 — cos(h))?

Performing the change of variables

z = |t —s|(1 —cos(h))

/+oo dZ
!t— |

V(t,z) € 2 M, v( ;’J>es (7.42)

we obtain

[K(t 2,089 S

This implies
1

K(t <
Ktas.9)] Sy

which is the desired estimate.
The estimates corresponding to the cases where (s,y) belongs to A;,; or A, are
similar (see [46] for the details). This concludes the proof of Proposition 7.10.

7.4. Lower bound for |¢|

The goal of this section is to prove Lemma 7.19. The main ingredients of the proof are
already present in the flat case. Thus, to simplify the exposition, we will prove Lemma
7.19 for the phase function u = —t + x - w of the flat case. We will then explain what are
the modifications in the general case (see Remark 7.22). We refer to [46] for the proof in
the general case.

7.4.1. A lower bound for |¢| when (s,y) € S (proof of (7.38)). In view of the
definition of my in (7.35) and wy in (7.36), we have in the flat case

u(t,r,w) = —t+x-w, wy = ﬁ, mo=—(s—1t)+ |y — z|. (7.43)
If (s,y) € S, we have |y — x| = s — t. Together with (7.43), this yields
u(s,y,w) —u(t,r,w) = —s+t+(y—z) w
= —(s—t)+(s—t)wp - w
1
= —5(3 —t)|w — wol? (7.44)

which is the desired estimate (7.38).
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7.4.2. A lower bound for |¢| when (s,y) € A,y (proof of (7.39)). (7.43) yields
U(S,y,(d) - u(t,x,w) = —(8 — t) + (y — x) W
= —(s—t)+|y—z|lw-wo
1
= —(s=D+ly—z| = glz —yllw —wol* (7.45)

Now, if |z —y| < (s — t) we have,
3 1
u(57y7w)_u(t7x7w) < _Zl(s_t)"i_Z(

On the other hand, if |z —y| > 1(s — ¢)

1 1
s — t)§|w —wol* < —5(3 —t).

1 1
u(s,y,w) —u(t,r,w) < —§|x —y||w — wo|* < _Z(S —t)|w — wol?.
Thus, in both cases,

1 1
u(s,y,w) - u(t,x,w) < —§|ZE - y||w _w0|2 < _Z(S - t)|w — Wo 2

which is the desired estimate (7.39).

7.4.3. A lower bound for |¢p| when (s,y) € A..: (proof of (7.40) (7.41)). (7.43)
yields

us,y,w) —ult,r,w) = —(s=1)+(y—2)- w
= —(s=1)+]|z—ylw-wo
= —%(s—t)|w—wo| + mow - wo. (7.46)

Recall that we have defined the set D by
D = {we S /ult,r,w) = uls, y,w)}.

Also, for fixed wy,w we defined w; € D to lie on the same plane great circle of S? as wy, w.
Clearly, since wy € D, and in view of (7.43), (7.46) and the definition of D, we have

(s —1)

Wy Wy = —— (747)
|z =yl
Fix now wy; € D and let z = 7, (s — ), i.e.
z=x+ (s —t)w € S. (7.48)

Note that in view of the definition of D,
(y - Z) tW1 = _(8 - t) + (y - l’) tW1 = u(87y7w1> - U(t,x,wl) =0.
Hence, with the notation

Yo=Y — %
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we obtain
vp - wy = 0. (7.49)
Now, we have
u(s,y,w) —u(t,z,w) = u(s,y,w)—u(s,zw)+u(s, z,w) — ut,z,w)

= v -wu(s,z,w)—u(t,zr,w)
= vy (w—wy)+uls zw) —ultz,w). (7.50)

Note that since z € S we can apply the estimate obtained in section 7.4.1. Since the
maximum in m(s, z) is attained at w = w;, we have

1
u(s, z,w) —u(t, r,w) = —5(3 —t)|w — wi]? (7.51)
and we infer that,
1
u(s,y,w) —u(t,z,w) = —5(3 —t)jw — wi]? + vy - (w— wy). (7.52)

Recall that we have also denoted by 6 and 6, the positive angles between wy, w and
respectively wp, wy. If §; < 6 < 7w - which corresponds to v - (w —w;) < 0 - we have in
view of (7.52)

1
u(s,y,w) —u(t,z,w) < —5(8 —t)|w — wy]? (7.53)
which is the desired estimate (7.40).
The delicate case is when 0 < # < 6; which corresponds to
vo - (w—wq) > 0. (7.54)

In the rest of the proof, we assume (7.54), and we focus on the remaining estimate (7.41).
In view of the definition of wy and (7.52), we have

—(s—t)+lr—yl = uls,y,wo)—ult,z,wo)
= —%(s —t)|wo — w1 |* + g - (wp — wy).
Thus,
my=—(s—t)+ |z —yl = —%(s — ) |wo — w1 > + v - (wWo — wy). (7.55)
Since mgy > 0 we deduce,
Vo - (wp —wr) > 0. (7.56)

Let «, oy be the positive angles between v and (w—wy) and, respectively vy and (wp—wy).
In view of (7.54) and (7.56) we infer that

0<a,a; <m/2. (7.57)
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figreg3ter.pdf
F1GURE 2. Definition of the angles #; and o,

FI1GURE 3. Definition of the angles # and «

Also, in view of (7.47) we have,

0< 01 < 7T/2
Simple considerations on angles imply® (see figure 2),
01 = 20(1. (758)
Therefore,
1 0
mo = —5(5 — t)|wo — wi|? + |2 — y||wo — w1 cos (51)
and

mo + (s — t)wo — w1 ?

= 7.59
ool lwg — w1 | cos (%1) (7.59)
Using the same type of argument® as in (7.58) we also deduce (see figure 3)
0, — 6
o= — (7.60)

Therefore, according to (7.52), (7.59) and (7.60), we obtain

SLet 1 the angle defined on figure 2. Then 2¢; + 61 = 7, and ¢1 + a1 = 5. Hence 61 = 204
Let ¢ the angle defined on figure 3. Then 2¢ 4 [6; — 0] = 7, and ¢ + a = 5. Hence |01 — 0] = 2
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1 p—
u(s, y,w) —u(t,z,w) = _§(S—t)|w—w1|2+|vo||u)—u)1|coS (012 0)
|w — wy| cos (£52) 1
N +5(s = t)lw — wiA(w), (7.61
oo — ] cos (&) "0 T gle Tl mealdw). (761

where A(w) is given by

Alw) = —|w — wq| + lwo — wi]- (7.62)

We have the following lemma (see [46] for a proof).
LEMMA 7.21. For all 0 < 0 < 6, we have

A(w) > 0. (7.63)
Back to (7.61), we thus derive,

|w — wyq]| cos (912_9)

01

u(s,y,w) —ult,z,w) >
( ) ( ) |wo — wi| cos (2)

mo.

Using our angle restriction
7
0<g< 91 < 5,

we deduce

2 _
u(o..0) — ult ) > Y2zl

(7.64)

il 0.
2 |w0 — (,L)ll
Since 0 is the angle between w and wy, and 6 is the angle between w; and wy, we have

lw — wi| = V24/1 = cos(fy — 0), |wr — wo| = V24/1 — cos(6y). (7.65)

In view of (7.65), we can rewrite (7.64) in the form,

1 — cos(6 — 6y)
1 — cos(6y)

o(t, z,5,y,w) 2 m0\/ (7.66)
which is the desired estimate (7.41). This concludes the proof of Lemma 7.19 in the flat
case.

REMARK 7.22. Let us indicate how to prove Lemma 7.19 in the general case. The
whole point is to realize that the only estimates for which the precise reqularity of u matters
are the ones corresponding to (7.44), (7.45), (7.46), (7.50) and (7.51). Indeed, once this
has been achieved, the rest of the argument is then essentially the one of the flat case.

Now, to prove the estimates corresponding to (7.44), (7.45), (7.46), (7.50) and (7.51)
in the general case, one needs the following two additional ingredients (see [46] for the

details):
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(1) These estimates are obtained by using the following standard identity

u(n(1),w) = u(n(0),w) + / &(Looy, 17 (0))do, (7.67)

where n is a curve in M, and where L denotes the space-time gradient of wu.
It turns out that one may chose suitable curves’ n allowing us to deduce from
(7.67) the estimates corresponding to (7.44), (7.45), (7.46), (7.50) and (7.51)
under our assumptions (7.16), (7.17) and (7.18). This changes the constants in
the inequalities due to the presence of additional O(g) terms, but does not change
the nature of the estimates for ¢ > 0 small enough.

(2) The above mentioned curves n start on S, and a crucial point is to check that
such curves end up exactly at (s,y). To this end, one uses the global coordinate
system (u(t, x,wy), O u(t,z,wy)) of section 7.1.4 on Xy for a well-chosen angle
wo € S?, which allows us to identify (s,y) as the unique point p on X, such that

u(p, Wo) = U(SJJMO) and &ﬂ(P; Wo) = awu(sa y,w(J)‘

"In the flat case, the corresponding curves n are straight lines.
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