Myths, Facts and Dreams in General Relativity

Sergiu Klainerman Princeton university

November, 2010

Sergiu Klainerman Myths, Facts and Dreams in General Relativity

白 ト イヨト イヨト

・ロン ・回と ・ヨン・

Э

Analysts prove superfluous existence results.

伺下 イヨト イヨト

3

- Analysts prove superfluous existence results.
- Minkowski space is stable, as a consequence of the positive mass theorem.

- Analysts prove superfluous existence results.
- Minkowski space is stable, as a consequence of the positive mass theorem.
- Uniqueness of Kerr among stationary, vacuum, solutions is a well established fact, i.e. a **theorem**(no hair).

- Analysts prove superfluous existence results.
- Minkowski space is stable, as a consequence of the positive mass theorem.
- Uniqueness of Kerr among stationary, vacuum, solutions is a well established fact, i.e. a **theorem**(no hair).
- The Kerr black hole family is **known** to be stable.

- Analysts prove superfluous existence results.
- Minkowski space is stable, as a consequence of the positive mass theorem.
- Uniqueness of Kerr among stationary, vacuum, solutions is a well established fact, i.e. a **theorem**(no hair).
- The Kerr black hole family is **known** to be stable.
- Penrose singularity theorem is a ... singularity theorem.

- Analysts prove superfluous existence results.
- Minkowski space is stable, as a consequence of the positive mass theorem.
- Uniqueness of Kerr among stationary, vacuum, solutions is a well established fact, i.e. a **theorem**(no hair).
- The Kerr black hole family is **known** to be stable.
- Penrose singularity theorem is a ... singularity theorem.
- A good concept of local or quasi-local mass is needed, to understand how trapped surfaces form.

- Analysts prove superfluous existence results.
- Minkowski space is stable, as a consequence of the positive mass theorem.
- Uniqueness of Kerr among stationary, vacuum, solutions is a well established fact, i.e. a **theorem**(no hair).
- The Kerr black hole family is **known** to be stable.
- Penrose singularity theorem is a ... singularity theorem.
- A good concept of local or quasi-local mass is needed, to understand how trapped surfaces form.
- **Ø** Black holes cannot form **in vacuum**, i.e. absence of matter.

Theorem[Bruhat-Geroch] Any **sufficiently smooth** initial data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ admits a unique, *Ricci flat*, MFGHD.

伺い イヨト イヨト

3

Theorem[Bruhat-Geroch] Any **sufficiently smooth** initial data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ admits a unique, *Ricci flat*, MFGHD.

• Precise mathematical formulation of GR as **deterministic**, i.e. a predictive theory, with **finite speed** of propagation.

伺 と く き と く き と

Theorem[Bruhat-Geroch] Any **sufficiently smooth** initial data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ admits a unique, *Ricci flat*, MFGHD.

- Precise mathematical formulation of GR as **deterministic**, i.e. a predictive theory, with **finite speed** of propagation.
- Hyperbolic character of the equations-via **gauge fixing**. (Einstein, Hilbert, DeDonder, Darmois, Lichnerowitz, Leray)

伺 と く き と く き と

Theorem[Bruhat-Geroch] Any **sufficiently smooth** initial data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ admits a unique, *Ricci flat*, MFGHD.

- Precise mathematical formulation of GR as **deterministic**, i.e. a predictive theory, with **finite speed** of propagation.
- Hyperbolic character of the equations-via **gauge fixing**. (Einstein, Hilbert, DeDonder, Darmois, Lichnerowitz, Leray)
- Required 3 deep innovations of the early last century (Schauder, Petrowski, Sobolev, Friedrich, Leray....)

Theorem[Bruhat-Geroch] Any **sufficiently smooth** initial data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ admits a unique, *Ricci flat*, MFGHD.

- Precise mathematical formulation of GR as **deterministic**, i.e. a predictive theory, with **finite speed** of propagation.
- Hyperbolic character of the equations-via **gauge fixing**. (Einstein, Hilbert, DeDonder, Darmois, Lichnerowitz, Leray)
- Required 3 deep innovations of the early last century (Schauder, Petrowski, Sobolev, Friedrich, Leray....)
 - Introduction of non-physical energy norms
 - Sobolev inequalities
 - Functional analytic setting for proving existence

(1) マン・ション・

Theorem[Bruhat-Geroch] Any **sufficiently smooth** initial data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ admits a unique, *Ricci flat*, MFGHD.

- Precise mathematical formulation of GR as **deterministic**, i.e. a predictive theory, with **finite speed** of propagation.
- Hyperbolic character of the equations-via **gauge fixing**. (Einstein, Hilbert, DeDonder, Darmois, Lichnerowitz, Leray)
- Required 3 deep innovations of the early last century (Schauder, Petrowski, Sobolev, Friedrich, Leray....)
 - Introduction of non-physical energy norms
 - Sobolev inequalities
 - Functional analytic setting for proving existence
- Provides a framework for the main conjectures in GR.

(本間) (本語) (本語)

BIG DREAMS

Conjecture(SCC) MFGHD of complete, **generic** initial data sets are in-extendible (i.e. they can only terminate in true curvature singularities).

ヨット イヨット イヨッ

BIG DREAMS

Conjecture(SCC) MFGHD of complete, **generic** initial data sets are in-extendible (i.e. they can only terminate in true curvature singularities).

Conjecture(WCC) MFGHD of complete, **asymptotically flat**, **generic**, initial data sets cannot have naked singularities (i.e. singularities are either hidden by black holes, and thus cannot influence distant observers, or are unstable.

BIG DREAMS

Conjecture(SCC) MFGHD of complete, **generic** initial data sets are in-extendible (i.e. they can only terminate in true curvature singularities).

Conjecture(WCC) MFGHD of complete, **asymptotically flat**, **generic**, initial data sets cannot have naked singularities (i.e. singularities are either hidden by black holes, and thus cannot influence distant observers, or are unstable.

Conjecture(FSC) MFGHD of complete, **asymptotically flat**, **generic**, initial data sets have maximal future developments which look, asymptotically, in any finite region of space, as a member of the Kerr family $\mathcal{K}(a, m)$, $0 \le a < m$.

・ 同 ト ・ ヨ ト ・ ヨ ト

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Rotating Black Holes; Kerr Solutions $\mathcal{K}(a, m)$

▲ 御 ▶ → モ ● ▶

- < ≣ →

Э

Smaller Dreams

Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$, is unique among stationary, asymptotically flat vacuum solutions.

伺下 イヨト イヨト

Smaller Dreams

Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$, is unique among stationary, asymptotically flat vacuum solutions.

Conjecture[BH Stability] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$, is stable under small perturbations

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Smaller Dreams

Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$, is unique among stationary, asymptotically flat vacuum solutions.

Conjecture[BH Stability] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$, is stable under small perturbations

Conjecture[BCC.] The Bruhat-Geroch theorem holds true for initial data with bounded curvature in L^2 of the initial hypersurface.

高 とう ヨン うまと

Breakdown Criteria

Theorem [KI-Rodnianski, Wang] Any spacetime (\mathcal{M}, g) endowed with a maximal, space-like foliation Σ_t can be smoothly continued, beyond $t = t_*$ as long as the second fundamental form k and lapse n of the foliation verify the scale invariant condition

$$\int_0^{t_*} \big(\|k(t)\|_{L^{\infty}(\Sigma_t)} + \|\nabla n(t)\|_{L^{\infty}(\Sigma_t)} \big) dt < \infty$$

- Require uniform bounds for the curvature tensor *R* using a geometric parametrix formula.
- To be operative the parametrix requires a uniform lower bound for the radius of injectivity of null backward light cones.

・ 回 と ・ ヨ と ・ モ と

2. Positive Mass and Stability of Minkowski space.

Theorem [Schoen-Yau, Witten] The ADM mass of a **AF** data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ is non-negative; it vanishes if and only if data set is is flat.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

2. Positive Mass and Stability of Minkowski space.

Theorem [Schoen-Yau, Witten] The ADM mass of a **AF** data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ is non-negative; it vanishes if and only if data set is is flat.

Theorem [Christodoulou-KI] Any sufficiently small AF data set admits a unique, complete, MGHD (\mathcal{M}, g) which approaches the flat, Minkowski, space along all causal null geodesics.

伺 と く き と く き と

2. Positive Mass and Stability of Minkowski space.

Theorem [Schoen-Yau, Witten] The ADM mass of a **AF** data set $(\Sigma_{(0)}, g_{(0)}, k_{(0)})$ is non-negative; it vanishes if and only if data set is is flat.

Theorem [Christodoulou-KI] Any sufficiently small AF data set admits a unique, complete, MGHD (\mathcal{M}, g) which approaches the flat, Minkowski, space along all causal null geodesics.

Fact: Despite misleading statements to the contrary the second theorem does not follow from the first. New stability results do not even require a finite ADM mass !

伺下 イヨト イヨト

・ロト ・日本 ・モト ・モト

Э

 Heuristic idea: perturbations radiate and decay sufficiently fast (just fast enough !)

- Heuristic idea: perturbations radiate and decay **sufficiently** fast (just fast enough !)
- Require four important PDE advances of late last century:

- Heuristic idea: perturbations radiate and decay **sufficiently** fast (just fast enough !)
- Require four important PDE advances of late last century:
 - Vectorfield approach to get decay; approximate symmetries.

- Heuristic idea: perturbations radiate and decay sufficiently fast (just fast enough !)
- Require four important PDE advances of late last century:
 - Vectorfield approach to get decay; approximate symmetries.
 - Generalized energy estimates.

- Heuristic idea: perturbations radiate and decay sufficiently fast (just fast enough !)
- Require four important PDE advances of late last century:
 - Vectorfield approach to get decay; approximate symmetries.
 - Generalized energy estimates.
 - Null condition.

- Heuristic idea: perturbations radiate and decay sufficiently fast (just fast enough !)
- Require four important PDE advances of late last century:
 - Vectorfield approach to get decay; approximate symmetries.
 - Generalized energy estimates.
 - Null condition.
 - Complex boot-strap argument.

- Heuristic idea: perturbations radiate and decay sufficiently fast (just fast enough !)
- Require four important PDE advances of late last century:
 - Vectorfield approach to get decay; approximate symmetries.
 - Generalized energy estimates.
 - Null condition.
 - Complex boot-strap argument.

Proof gives a rigorous definitions of null infinity, Bondi mass, news function, Penrose diagram. Laws of gravitational radiation.

・ 同 ト ・ ヨ ト ・ ヨ ト

3. Is uniqueness of Kerr an established theorem ?

Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$ is unique among stationary, asymptotically flat vacuum solutions.
Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$ is unique among stationary, asymptotically flat vacuum solutions.

Fact. Despite common belief this is not yet a theorem!

Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$ is unique among stationary, asymptotically flat vacuum solutions.

Fact. Despite common belief this is not yet a theorem!

Theorem[Carter-Robinson] Conjecture holds true if space-time is also **axially symmetric**.

Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$ is unique among stationary, asymptotically flat vacuum solutions.

Fact. Despite common belief this is not yet a theorem!

Theorem[Carter-Robinson] Conjecture holds true if space-time is also **axially symmetric**.

Theorem[Hawking] If space-time is **real analytic** then it is also axially symmetric, i.e. Kerr

Conjecture[BH Uniqueness] The family of Kerr solutions $\mathcal{K}(a, m)$, $0 \le a \le m$ is unique among stationary, asymptotically flat vacuum solutions.

Fact. Despite common belief this is not yet a theorem!

Theorem[Carter-Robinson] Conjecture holds true if space-time is also **axially symmetric**.

Theorem[Hawking] If space-time is **real analytic** then it is also axially symmetric, i.e. Kerr

Fact. Analyticity is not at all a reasonable assumption.

1. $\mathcal{N} \cup \underline{\mathcal{N}}$ Horizon, i.e. boundaries of past and future null infinity.

∃ >

A ■

1. $\mathcal{N} \cup \underline{\mathcal{N}}$ Horizon, i.e. boundaries of past and future null infinity. 2. Stationary Killing vectorfield \mathcal{T} is tangent to $\mathcal{N} \cup \underline{\mathcal{N}}$.

- 1. $\mathcal{N}\cup\underline{\mathcal{N}}$ Horizon, i.e. boundaries of past and future null infinity.
- **2.** Stationary Killing vectorfield T is tangent to $\mathcal{N} \cup \underline{\mathcal{N}}$.
- **3.** $\exists K$, Killing of infinite order on \mathcal{N} , commuting with T.

- 1. $\mathcal{N} \cup \underline{\mathcal{N}}$ Horizon, i.e. boundaries of past and future null infinity.
- **2.** Stationary Killing vectorfield T is tangent to $\mathcal{N} \cup \underline{\mathcal{N}}$.
- **3.** $\exists K$, Killing of infinite order on \mathcal{N} , commuting with T.
- **4.** Extend K by analyticity, [T, K] = 0.

- 1. $\mathcal{N} \cup \underline{\mathcal{N}}$ Horizon, i.e. boundaries of past and future null infinity.
- **2.** Stationary Killing vectorfield T is tangent to $\mathcal{N} \cup \underline{\mathcal{N}}$.
- **3.** $\exists K$, Killing of infinite order on \mathcal{N} , commuting with T.
- **4.** Extend K by analyticity, [T, K] = 0.
- 5. Deduce axi-symetry and apply Carter-Robinson

Theorem 1. [Alexakis- lonescu-KI(2009)] 1.) If $(S, N, \underline{N}) \subset M$ is nonexpanding, there exists a local Killing v-field K, tangent to its null generators

同 と く き と く き と

Theorem 1. [Alexakis- Ionescu-KI(2009)] 1.) If $(S, N, \underline{N}) \subset M$ is nonexpanding, there exists a local Killing v-field K, tangent to its null generators 2.) If there exists another Killing v-field T tangent to $N \cup \underline{N}$, then M is locally axially symmetric.

白 と く ヨ と く ヨ と

Theorem 1. [Alexakis- Ionescu-KI(2009)] 1.) If $(S, N, \underline{N}) \subset M$ is nonexpanding, there exists a local Killing v-field K, tangent to its null generators 2.) If there exists another Killing v-field T tangent to $N \cup \underline{N}$, then M is locally axially symmetric.

Fact. Bifurcate horizon (i.e. **nondegenerate**) is essential. Are degenerate stationary black holes unique ?

伺 とう きょう とう とう

3

Main ideas.

- Pseudo-convexity condition holds near the bifurcate horizon. Geometric Carleman estimates.
- No trapped null geodesics orthogonal to T in Kerr.

Main ideas.

- Pseudo-convexity condition holds near the bifurcate horizon. Geometric Carleman estimates.
- No trapped null geodesics orthogonal to T in Kerr.

Fact. Mechanism for a general uniqueness result remains unknown.

Main ideas.

- Pseudo-convexity condition holds near the bifurcate horizon. Geometric Carleman estimates.
- No trapped null geodesics orthogonal to T in Kerr.

Fact. Mechanism for a general uniqueness result remains unknown.

Is there a non-linear version of the Holmgren's uniqueness theorem?

ヨット イヨット イヨッ

After the global stability result of Christodoulou-KI, we understand that stability can be established as long as perturbations off a fixed background decay fast enough.

伺下 イヨト イヨト

э

After the global stability result of Christodoulou-KI, we understand that stability can be established as long as perturbations off a fixed background decay fast enough.

Myth. Physicists (Wheeler, Price, Carter, Teukolski, Whiting....) have shown that black holes are linearly stable, using separation of variables.

After the global stability result of Christodoulou-KI, we understand that stability can be established as long as perturbations off a fixed background decay fast enough.

Myth. Physicists (Wheeler, Price, Carter, Teukolski, Whiting....) have shown that black holes are linearly stable, using separation of variables.

Fact. The method of separation of variables has led **only** to an **unsuccessful search for instabilities**. It gives no insight on the main difficulties:

After the global stability result of Christodoulou-KI, we understand that stability can be established as long as perturbations off a fixed background decay fast enough.

Myth. Physicists (Wheeler, Price, Carter, Teukolski, Whiting....) have shown that black holes are linearly stable, using separation of variables.

Fact. The method of separation of variables has led **only** to an **unsuccessful search for instabilities**. It gives no insight on the main difficulties:

trapped null geodesics,

After the global stability result of Christodoulou-KI, we understand that stability can be established as long as perturbations off a fixed background decay fast enough.

Myth. Physicists (Wheeler, Price, Carter, Teukolski, Whiting....) have shown that black holes are linearly stable, using separation of variables.

Fact. The method of separation of variables has led **only** to an **unsuccessful search for instabilities**. It gives no insight on the main difficulties:

- trapped null geodesics,
- Super-radiance.

向下 イヨト イヨト

After the global stability result of Christodoulou-KI, we understand that stability can be established as long as perturbations off a fixed background decay fast enough.

Myth. Physicists (Wheeler, Price, Carter, Teukolski, Whiting....) have shown that black holes are linearly stable, using separation of variables.

Fact. The method of separation of variables has led **only** to an **unsuccessful search for instabilities**. It gives no insight on the main difficulties:

- trapped null geodesics,
- **2** super-radiance.
- degeneracy of the horizon.

白 とう きょう うちょう

э

MAIN IDEAS

• Red shift vectorfield, defined near horizon

ヨット イヨット イヨッ

MAIN IDEAS

- Red shift vectorfield, defined near horizon
- Modified Morawetz vectorfield, to deal with the trapped region

ヨット イヨット イヨッ

MAIN IDEAS

- Red shift vectorfield, defined near horizon
- Modified Morawetz vectorfield, to deal with the trapped region
- Decompose into super-radiant and sub-radiant frequencies or commute with the Carter tensor

向下 イヨト イヨト

MAIN IDEAS

- Red shift vectorfield, defined near horizon
- Modified Morawetz vectorfield, to deal with the trapped region
- Decompose into super-radiant and sub-radiant frequencies or commute with the Carter tensor
- Patching of non-causal vectorfields

向下 イヨト イヨト

Theorem[Penrose] MFGHD of non-compact initial data set cannot be future null **geodesically complete** if it contains a **trapped** surface.

- E - N

Theorem[Penrose] MFGHD of non-compact initial data set cannot be future null **geodesically complete** if it contains a **trapped** surface.

Warning. It is not a singularity theorem!

Theorem[Penrose] MFGHD of non-compact initial data set cannot be future null **geodesically complete** if it contains a **trapped** surface. **Warning.** It is not a singularity theorem!

Question. Can trapped surfaces form in evolution ?

ヨット イヨット イヨッ

Theorem[Penrose] MFGHD of non-compact initial data set cannot be future null **geodesically complete** if it contains a **trapped** surface. **Warning.** It is not a singularity theorem!

Question. Can trapped surfaces form in evolution ?

Fact. Spherically symmetric space-times possess a positive, monotonic, quantity (**Hawking mass** or **quasi-local mass**). It allows to prove, in many cases, formation of trapped surfaces.

Theorem[Penrose] MFGHD of non-compact initial data set cannot be future null **geodesically complete** if it contains a **trapped** surface. **Warning.** It is not a singularity theorem!

Question. Can trapped surfaces form in evolution ?

Fact. Spherically symmetric space-times possess a positive, monotonic, quantity (**Hawking mass** or **quasi-local mass**). It allows to prove, in many cases, formation of trapped surfaces.

Hope. Such a quantity must exist for general asymptotically flat space-times.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fact: Trapped surfaces can form, in **vacuum**, and the proof does not require a **quasi-local mass** quantity.

▲圖▶ ▲屋▶ ▲屋▶

Э

Fact: Trapped surfaces can form, in **vacuum**, and the proof does not require a **quasi-local mass** quantity.

Theorem[Chr. 2008] Specify regular, **characteristic**, initial data, in **vacuum**, and show that its future development must contain a trapped surface

Proof. Combines the global methods used in the proof of stability of the Minkowski space with a novel ansatz on the data, which distinguishes between large and small components, relative to a small parameter δ . Requires a lower bound on the initial data, **uniform** in all directions.

直 とう きょう うちょう

Proof. Combines the global methods used in the proof of stability of the Minkowski space with a novel ansatz on the data, which distinguishes between large and small components, relative to a small parameter δ . Requires a lower bound on the initial data, **uniform** in all directions.

KI-Rodnianski (2010) Introduce a different scaling, allowing localizations in angular sectors, which vastly simplifies the proof while providing a stronger result. Lower bound is only uniform in **most** directions.

向下 イヨト イヨト