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MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



MYTHS (Common Misconceptions)

1 Analysts prove superfluous existence results.

2 Minkowski space is stable, as a consequence of the positive
mass theorem.

3 Uniqueness of Kerr among stationary, vacuum, solutions is a
well established fact, i.e. a theorem(no hair).

4 The Kerr black hole family is known to be stable.

5 Penrose singularity theorem is a . . . singularity theorem.

6 A good concept of local or quasi-local mass is needed, to
understand how trapped surfaces form.

7 Black holes cannot form in vacuum, i.e. absence of matter.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



1. Are Existence and Uniqueness Results Superfluous ?

Theorem[Bruhat-Geroch] Any sufficiently smooth initial data
set (Σ(0), g(0), k(0)) admits a unique, Ricci flat, MFGHD.

Precise mathematical formulation of GR as deterministic, i.e.
a predictive theory, with finite speed of propagation.

Hyperbolic character of the equations-via gauge fixing.
(Einstein, Hilbert, DeDonder, Darmois, Lichnerowitz, Leray)

Required 3 deep innovations of the early last century
(Schauder, Petrowski, Sobolev, Friedrich, Leray....)

Introduction of non-physical energy norms
Sobolev inequalities
Functional analytic setting for proving existence

Provides a framework for the main conjectures in GR.
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BIG DREAMS

Conjecture(SCC) MFGHD of complete, generic initial data sets
are in-extendible (i.e. they can only terminate in true curvature
singularities).

Conjecture(WCC) MFGHD of complete, asymptotically flat,
generic, initial data sets cannot have naked singularities (i.e.
singularities are either hidden by black holes, and thus cannot
influence distant observers, or are unstable.

Conjecture(FSC) MFGHD of complete, asymptotically flat,
generic, initial data sets have maximal future developments which
look, asymptotically, in any finite region of space, as a member of
the Kerr family K(a,m), 0 ≤ a < m.
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−(1− 2m

r
)dt2 + (1− 2m

r
)−1dr 2 + r 2dσ2

S2

Black Hole r < 2m
Horizon r = 2m
Exterior domain r > 2m
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Rotating Black Holes; Kerr Solutions K(a,m)
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Smaller Dreams

Conjecture[BH Uniqueness] The family of Kerr solutions
K(a,m), 0 ≤ a ≤ m, is unique among stationary, asymptotically
flat vacuum solutions.

Conjecture[BH Stability] The family of Kerr solutions K(a,m),
0 ≤ a ≤ m, is stable under small perturbations

Conjecture[BCC.] The Bruhat-Geroch theorem holds true for
initial data with bounded curvature in L2 of the initial hypersurface.
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Breakdown Criteria

Theorem [Kl-Rodnianski, Wang] Any spacetime (M, g) endowed
with a maximal, space-like foliation Σt can be smoothly continued,
beyond t = t∗ as long as the second fundamental form k and lapse
n of the foliation verify the scale invariant condition∫ t∗

0

(
‖k(t)‖L∞(Σt) + ‖∇n(t)‖L∞(Σt)

)
dt <∞

Require uniform bounds for the curvature tensor R using a
geometric parametrix formula.

To be operative the parametrix requires a uniform lower bound
for the radius of injectivity of null backward light cones.
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2. Positive Mass and Stability of Minkowski space.

Theorem [Schoen-Yau, Witten] The ADM mass of a AF data set
(Σ(0), g(0), k(0)) is non-negative; it vanishes if and only if data set
is is flat.

Theorem [Christodoulou-Kl] Any sufficiently small AF data set
admits a unique, complete, MGHD (M, g) which approaches the
flat, Minkowski, space along all causal null geodesics.

Fact: Despite misleading statements to the contrary the second
theorem does not follow from the first. New stability results do not
even require a finite ADM mass !
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2. Why is Minkowski space stable ?

Heuristic idea: perturbations radiate and decay sufficiently
fast (just fast enough !)

Require four important PDE advances of late last century:

Vectorfield approach to get decay; approximate symmetries.
Generalized energy estimates.
Null condition.
Complex boot-strap argument.

Proof gives a rigorous definitions of null infinity, Bondi mass, news
function, Penrose diagram. Laws of gravitational radiation.
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3. Is uniqueness of Kerr an established theorem ?

Conjecture[BH Uniqueness] The family of Kerr solutions K(a,m),
0 ≤ a ≤ m is unique among stationary, asymptotically flat vacuum
solutions.

Fact. Despite common belief this is not yet a theorem!

Theorem[Carter-Robinson] Conjecture holds true if space-time is
also axially symmetric.

Theorem[Hawking] If space-time is real analytic then it is also
axially symmetric, i.e. Kerr

Fact. Analyticity is not at all a reasonable assumption.
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HAWKING ARGUMENT

1. N ∪N Horizon, i.e. boundaries of past and future null infinity.

2. Stationary Killing vectorfield T is tangent to N ∪N .
3. ∃K , Killing of infinite order on N , commuting with T .
4. Extend K by analyticity, [T ,K ] = 0.
5. Deduce axi-symetry and apply Carter-Robinson

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



HAWKING ARGUMENT

1. N ∪N Horizon, i.e. boundaries of past and future null infinity.
2. Stationary Killing vectorfield T is tangent to N ∪N .

3. ∃K , Killing of infinite order on N , commuting with T .
4. Extend K by analyticity, [T ,K ] = 0.
5. Deduce axi-symetry and apply Carter-Robinson

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



HAWKING ARGUMENT

1. N ∪N Horizon, i.e. boundaries of past and future null infinity.
2. Stationary Killing vectorfield T is tangent to N ∪N .
3. ∃K , Killing of infinite order on N , commuting with T .

4. Extend K by analyticity, [T ,K ] = 0.
5. Deduce axi-symetry and apply Carter-Robinson

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



HAWKING ARGUMENT

1. N ∪N Horizon, i.e. boundaries of past and future null infinity.
2. Stationary Killing vectorfield T is tangent to N ∪N .
3. ∃K , Killing of infinite order on N , commuting with T .
4. Extend K by analyticity, [T ,K ] = 0.

5. Deduce axi-symetry and apply Carter-Robinson

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



HAWKING ARGUMENT

1. N ∪N Horizon, i.e. boundaries of past and future null infinity.
2. Stationary Killing vectorfield T is tangent to N ∪N .
3. ∃K , Killing of infinite order on N , commuting with T .
4. Extend K by analyticity, [T ,K ] = 0.
5. Deduce axi-symetry and apply Carter-Robinson

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



Theorem 1.[Alexakis- Ionescu-Kl(2009)]
1.) If (S ,N ,N ) ⊂M is nonexpanding, there exists a local
Killing v-field K , tangent to its null generators

2.) If there exists another Killing v-field T tangent to N ∪N ,
then M is locally axially symmetric.

Fact. Bifurcate horizon (i.e. nondegenerate) is essential. Are
degenerate stationary black holes unique ?
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Theorem 2.[Alexakis- Ionescu-Kl(2009)]
DOC of a regular, AF, stationary, non-degenerate, vacuum black
hole with a small Mars -Simon tensor S is axially symmetric, i.e.
a Kerr solution.

Main ideas.

Pseudo-convexity condition holds near the bifurcate horizon.
Geometric Carleman estimates.

No trapped null geodesics orthogonal to T in Kerr.

Fact. Mechanism for a general uniqueness result remains unknown.

Is there a non-linear version of the Holmgren’s uniqueness theorem?
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4. Stability of black holes

After the global stability result of Christodoulou-Kl, we understand
that stability can be established as long as perturbations off a fixed
background decay fast enough.

Myth. Physicists (Wheeler, Price, Carter, Teukolski, Whiting....)
have shown that black holes are linearly stable, using separation of
variables.

Fact. The method of separation of variables has led only to an
unsuccessful search for instabilities. It gives no insight on the
main difficulties:

1 trapped null geodesics,

2 super-radiance.

3 degeneracy of the horizon.
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2 super-radiance.

3 degeneracy of the horizon.
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Fact. These difficulties have been, recently, overcome by
mathematicians, using a substantial extension of the vector-field
method. (Soffer-Blue, Blue-Sterbenz, Dafermos- Rodnianski,
Tataru-Tohaneanu, Blue-Anderson).

MAIN IDEAS

Red shift vectorfield, defined near horizon

Modified Morawetz vectorfield, to deal with the trapped region

Decompose into super-radiant and sub-radiant frequencies or
commute with the Carter tensor

Patching of non-causal vectorfields
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5. Trapped Surfaces

Theorem[Penrose] MFGHD of non-compact initial data set
cannot be future null geodesically complete if it contains a
trapped surface.

Warning. It is not a singularity theorem!

Question. Can trapped surfaces form in evolution ?

Fact. Spherically symmetric space-times possess a positive,
monotonic, quantity (Hawking mass or quasi-local mass). It
allows to prove, in many cases, formation of trapped surfaces.

Hope. Such a quantity must exist for general asymptotically flat
space-times.
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Fact: Trapped surfaces can form, in vacuum, and the proof does
not require a quasi-local mass quantity.

Theorem[Chr. 2008] Specify regular, characteristic, initial data,
in vacuum, and show that its future development must contain a
trapped surface
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Proof. Combines the global methods used in the proof of stability
of the Minkowski space with a novel ansatz on the data, which
distinguishes between large and small components, relative to a
small parameter δ. Requires a lower bound on the initial data,
uniform in all directions.

Kl-Rodnianski (2010) Introduce a different scaling, allowing
localizations in angular sectors, which vastly simplifies the proof
while providing a stronger result. Lower bound is only uniform in
most directions.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity



Proof. Combines the global methods used in the proof of stability
of the Minkowski space with a novel ansatz on the data, which
distinguishes between large and small components, relative to a
small parameter δ. Requires a lower bound on the initial data,
uniform in all directions.

Kl-Rodnianski (2010) Introduce a different scaling, allowing
localizations in angular sectors, which vastly simplifies the proof
while providing a stronger result. Lower bound is only uniform in
most directions.

Sergiu Klainerman Myths, Facts and Dreams in General Relativity


