PROBLEMS IN PDE II

- FIRST ORDER EQTS.
- CAUCHY PROBLEM. CHARACTERISTIC SURFACES
- CAUCHY-KOWALEWSKY
- ILL POSED AND WELL POSED PROB-LEMS
- REGULARITY OR BREAK-DOWN. SCAL-ING

FIRST CLASSIFICATION

- ORDER
- LINEAR AND NONLINEAR
- SEMILINEAR, QUASILINEAR, FULLY NON-LINEAR
- HOMOGENEITY

LINEAR: Laplace, Wave, Heat, Schrödinger, Maxwell

SEMILINEAR: Yang-Mills

QUASILINEAR: Minimal surfaces, Compressible and incompressible Euler, Einstein field equations, MHD.

FULLY NONLINEAR: Monge - Ampere

FIRST ORDER EQTS.

LINEAR: $a : \mathbb{R}^d \longrightarrow \mathbb{R}^d$, $a : \mathbb{R}^d \longrightarrow \mathbb{R}$ $a^i(x)\partial_i u(x) = f(x)$. CHARACTERISTIC SYSTEM

$$\frac{dx^{i}}{ds} = a^{i}(x(s)), \qquad i = 1, \dots d$$

METHOD OF CHARACTERSITICS
$$\frac{d}{ds}u(x(s)) = f(x(s))$$

PROPAGATION PROPERTIES

QUASILINEAR: $a^1, a^2 \dots a^d, f : \mathbb{R}^d \longrightarrow \mathbb{R}$ $a^i(x, u(x))\partial_i u(x) = f(x, u(x))$

3

BURGER EQUATION

 $\partial_t u + u \partial_x u = 0, \qquad u(0, x) = u_0(x)$ CHARACTERISTIC EQUATION $\frac{dx}{ds} = u(s, x(s)), \qquad x(0) = x_0$ CHARACTERISTIC METHOD $\frac{d}{ds}u(s, x(s)) = 0$ HENCE $u(s, x(s)) = u_0(x_0).$

HOW DO YOU CONTINUE ?

$$u(s, x_0 + su_0(x_0)) = u_0(x_0)$$

BREAK-DOWN OF SOLUTIONS

INITIAL VALUE PR. FOR ODE'S

 $A(x, u(x))\partial_x u = F(x, u(x)), \quad u(x_0) = u_0$ RECURSIVELY,

$$u = u_0 + (x - x_0)u_1 + \frac{1}{2}(x - x_0)^2u_2 + \dots$$

NONCHARACTERISTIC CONDITION

 $\det A(x_0, u_0) \neq 0.$

CAUCHY- KOWALEWSKY If noncharacteristic condition is verified there exists a unique solution defined in a vicinity of x_0 .

FUNDAMENTAL THEOREM OF ODE Need only noncharacteristic condition and A, F locally Lipschitz

PICARD ITERATION

$$\partial_x u_{(n)}(x) = A^{-1} F(x, u_{(n-1)}(x)),$$

$$u_{(n-1)}(x_0) = u_0$$

INITIAL VALUE PR. FOR PDE'S

 $A^{i}(x, u(x))\partial_{i}u(x) = F(x, u(x)); \quad u|_{\mathcal{H}} = u_{0}$

DEFINITION. I. V. P, is non-characteristic at x_0 of \mathcal{H} , if we can determine all other higher partial derivatives of u at x_0 , uniquely, in terms of the data.

CHARACTERISTIC SURFACES Characteristic at every point

SCALAR CASE $u = u(x), x = (x^1, x^2),$

$$\sum_{i=1}^{2} a^{i}(x, u(x))\partial_{i}u(x) = f(x, u(x)),$$

CHARACTERISTIC SYSTEM

$$\frac{dx^i}{ds} = a^i(x^1(s), x^2(s)), \quad i = 1, 2$$

characteristic curves \iff characteristic

 $A^{i}(x, u(x))\partial_{i}u(x) = F(x, u(x)), \ u|_{\mathcal{H}} = u_{0}$ $\mathcal{H} \text{ regular hypersurface with normal } N$

NON-CHARACTERISTIC CONDITION:

$$\sum_{i=1}^{n} a^{i}(x_{0}, u_{0}(x_{0})) N_{i}(x_{0}) \neq 0$$

SECOND ORDER EQUATIONS

.1

$$\sum_{i,j=1}^{d} a^{ij}(x)\partial_i\partial_j u = f(x, u(x), \partial u(x))$$

NON-CHARACTERISTIC CONDITION:

$$\sum_{i,j=1}^{a} a^{ij}(x_0) n_i(x_0) n_j(x_0) \neq 0.$$

PROPOSITION Assume ellipticity condition

$$a^{ij}(x)\xi_i\xi_j > 0, \quad \forall \xi \in \mathbb{R}^d, \quad \forall x \in \mathbb{R}^d$$

Then no surface in \mathbb{R}^d can be characteristic. **EXAMPLE.** Laplace and minimal surface equations.

EXAMPLE. $\Box u = f$

PROPOSITION. All hypersurf. $\psi(t, x) = 0$,

$$(\partial_t \psi)^2 = \sum_{i=1}^d (\partial_i \psi)^2,$$

are characteristic.

EXAMPLES.

$$\psi_{+}(t,x) = (t-t_{0}) + |x-x_{0}|$$

$$\psi_{-}(t,x) = (t-t_{0}) - |x-x_{0}|$$

GENERAL WAVE EQUATIONS

$$a^{00}(t,x)\partial_t^2 u - \sum_{i,j} a^{ij}(t,x)\partial_i\partial_j u = 0,$$

CHARACTERISTICS

$$a^{00}(\partial_t\psi)^2 = \sum_{i,j} a^{ij}\partial_i\psi\partial_j\psi.$$

8

CAUCHY-KOWALEWSKY

THEOREM[Cauchy-Kowalevsky] If the coefficients, the hypersurface \mathcal{H} and initial conditions are real analytic and if \mathcal{H} is non-characteristic at x_0 , there exists locally, near x_0 , a unique real analytic solution.

ILL POSED PROBLEMS

DEFINITION. A given problem for a PDE is said to be well posed if both existence and uniqueness of solutions can be established for arbitrary data which belong to a specified large space of functions, which includes the class of smooth functions. Moreover the solutions must depend continuously on the data

STANDARD CLASSIFICATION

ELLIPTIC A linear, or quasi-linear, $N \times N$ system with no characteristic hyper-surfaces is called elliptic.

The well posed problems are *boundary value problems*.

HEURISTIC PRINCIPLE: Classical solutions of elliptic equations with smooth (or real analytic) coefficients in a regular domain D are smooth (or real analytic), in the interior of D, independent of how smooth are the boundary conditions.

HYPERBOLIC Have a "full set" of characteristic surfaces along which singularities propagate.

PARABOLIC

DISPERSIVE