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Abstract. We prove the existence of a Hawking Killing vector-field in a full neighbor-
hood of a local, regular, bifurcate, non-expanding horizon embedded in a smooth vacuum
Einstein manifold. The result extends a previous result of Friedrich, Rácz and Wald, see
[13, Proposition B.1], which was limited to the domain of dependence of the bifurcate
horizon. So far, the existence of a Killing vector-field in a full neighborhood has been
proved only under the restrictive assumption of analyticity of the space-time. Using this
result we provide the first unconditional proof that a stationary black hole solution must
posess an additional, rotational Killing field in an open neighborhood of the event hori-
zon. This work is accompanied by a second paper, where we prove a uniqueness result
for smooth stationary black hole solutions which are close (in a very precise, geometric
sense) to the Kerr family of solutions, for arbitrary 0 < a < m.
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1. Introduction

It is widely expected1 that the domains of outer communications of regular, stationary,
four dimensional, vacuum black hole solutions are isometrically diffeomorphic to those of
the Kerr black holes. Due to gravitational radiation, general, asymptotically flat, dynamic
solutions of the Einstein-vacuum equations ought to settle down, asymptotically, into a
stationary regime. Thus the conjecture, if true, would characterize all possible asymptotic

1See reviews by B. Carter [7] and P. Chusciel [9] for a history and review of the current status of the
conjecture.
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states of the general vacuum evolution. A similar scenario is supposed to hold true in the
presence of matter.

So far the conjecture is known to be true2 if, besides reasonable geometric and physical
conditions, one assumes that the space-time metric in the domain of outer communi-
cations is real analytic. This last assumption is particularly restrictive, since there is
apriori no reason that general stationary solutions of the Einstein field equations should
be analytic in the ergoregion, i.e. the region where the stationary Killing vector-field
becomes space-like. The strategy of the well known proof starts with the observation,
due to Hawking, that the event horizon of a general stationary metric is non-expanding
and the stationary Killing field must be tangent to it. Specializing to the future event
horizon Hawking [14] (see also [18]) proved the existence of a non-vanishing vector-field
K tangent to the null generators of the horizon and Killing to any order along it. Under
the assumption of real analyticity of the space-time metric one can prove, by a Cauchy-
Kowalewski type argument (see [14] and the rigorous argument in [10]), that the Hawking
Killing vector-field K can be extended to a neighborhood of the entire domain of outer
communications. Therefore, it follows that the spacetime (M,g) is not just stationary
but also axi-symmetric, at least in the case when the stationary vector-field does not
coincide with K (i.e. in the case of rotating horizon). To derive uniqueness, one then
appeals to the theorem of Carter and Robinson3 which shows that the exterior region of a
regular, stationary, axi-symmetric vacuum black hole must be isometrically diffeomorphic
to a Kerr exterior of mass M and angular momentum a < M . The proof of this result
originally obtained by Carter [5] and Robinson [23], has been strengthened and extended
by many authors, notably Mazur [22], Bunting [4], Weinstein [27]; the most recent and
complete account, which fills in various gaps in the previous literature is the recent paper
of Chrusciel and Costa [12].

In this paper we present the first unconditional proof of the existence of the Hawking
vector-field in a small neighborhood of the event horizon, with no recourse to analyticity.
As we explain in the next subsection, our main new idea, is to use unique continuation
arguments, based on Carleman estimates, for solutions of the vacuum Einstein equations
in a neighborhood of the bifurcation sphere. Based on such arguments we are able to
extend the Hawking vector-field, from the causal future and past of the bifurcation sphere,
to a small neighborhood of it in the domain of outer communications. We also state (in
Theorem 1.3 below, which is proven in [2]) an important application to the black hole
uniqueness problem. Though, for the moment, the result of [2] is only perturbative (it
applies only to stationary black holes that are “close” to one of the Kerr family of solutions,
in a very precise, geometric, sense) we strongly believe that the unconditional local results
and methods of this paper will provide a vital ingredient in any future attempt to prove
the full black hole uniqueness conjecture (with no closeness condition).

2By combining results of Hawking [14], Carter [5], and Robinson [23], see also the recent work of
Chrusciel-Costa [12].

3This second step does not require analyticity.
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1.1. Statement of main results. Let (M,g) to be a smooth4 vacuum Einstein space-
time. Let S be an embedded spacelike 2-sphere in M and let N ,N be the null boundaries
of the causal set of S, i.e. the union of the causal future and past of S. We fix O to be a
small neighborhood of S such that both N ,N are regular, achronal, null hypersurfaces in
O spanned by null geodesic generators orthogonal to S. We say that the triplet (S,N ,N )
forms a local, regular, bifurcate, non-expanding horizon in O if both N ,N are non-
expanding null hypersurfaces (see definition 2.1) in O. Our main result is the following:

Theorem 1.1. Given a local, regular, bifurcate5 (S, N , N ) in a smooth, vacuum Einstein
space-time (O,g), there exists an open neighborhood O′ ⊆ O of S and a non-trivial Killing
vector-field K in O′, which is tangent to the null generators of N and N . In other words,
every local, regular, bifurcate, non-expanding horizon is a Killing bifurcate horizon.

It is already known, see [13], that such a Killing vector-field exists in a small neighbor-
hood of S intersected with the domain of dependence of N ∪N . The extension of K to
a full neighborhood of S has been known to hold only under the restrictive additional as-
sumption of analyticity of the space-time (see [14], [18], [13]). The novelty of our theorem
is the existence of Hawking’s Killing vector-field K in a full neighborhood of the 2-sphere
S, without making any analyticity assumption. The assumption that the non-expanding
horizon in Theorem 1.1 is bifurcate is essential for the proof; this assumption is consistent
with the application to our global result.

In applications to our global result we also need the following:

Theorem 1.2. Assume that (S, N , N ) is a local, regular, bifurcate, non-expanding hori-
zon in a vacuum Einstein space-time (O,g) which possesses a Killing vector-field T tan-
gent to N∪N and not identically vanishing on S. Then, there exists an open neighborhood
O′ ⊆ O of S and a non-trivial rotational Killing vector-field Z in O′ which commutes with
T. Moreover we can construct a regular double null foliation6 (u, u) in O′ ⊆ O, with u = 0
on N and u = 0 on N , such that Z leaves invariant the 2-surfaces Su,u on which u, u are
constant.

A related version of the first part of our result was known only in the special case when
the space-time is analytic7. In view of theorem 1.1, there exists a Hawking vector-field
K, in a full neighborhood of S. One can easily show that it must commute with T. We
then show that there exist constants λ0 and t0 > 0 such that

Z = T + λ0K (1.1)

4M is assumed to be a connected, oriented, C∞ 4-dimensional manifold without boundary.
5Hawking’s original rigidity theorem relies instead on a non-degeneracy assumption. We note however

that the two assumptions are in fact related, see [24].
6That is gαβDαuDβu = gαβDαuDβu = 0 and gαβDαuDβu nowhere vanishing.
7Hawking’s rigidity theorem, see [14], asserts that, under some global causality, asymptotic flatness

and connectivity assumptions, a stationary, rotating, non-degenerate, real analytic spacetime must be
axially symmetric.
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is a rotation with period t0. The main constants λ0 and t0 can be determined on the
bifurcation sphere S. While this first part of theorem 1.2 can, in principle, be recovered
from theorem 1.1 using existing results in the literature, the second, more precise version
of the result seems new to us. This precise version, as well as all the other complementary
results proved in section 4, is important in our main application below.

We remark that the two theorems presented below are general, local, results which we
expect to play a crucial role in a future, general, classification of stationary8, smooth,
vacuum, black holes. For the moment, however, the only global result we can prove is the
following perturbative one.

Theorem 1.3. Any regular stationary black-hole solution of the vacuum Einstein equa-
tions, which is a perturbation of a Kerr solution K(a,m) with 0 < a < m is in fact the
Kerr solution.

A precise version of the result9, together with its proof, can be found in [2]. The
perturbation condition is expressed geometrically by assuming that the Mars-Simon tensor
S of the stationary space-time (see [21] and [16] ) is sufficiently small. The proof of
theorem 1.3 uses theorems 1.1 and 1.2 as a first step. We start by defining the Killing
fields K,Z in a neighborhood of S and then extend them to the entire space-time by
using the level sets of a canonically defined function y. We show that these level sets
are conditionally pseudo-convex, as in [16], as long as the the Mars-Simon tensor S is
sufficiently small. Once K and Z are extended to the entire space-time, the proof then
follows by appealing to the well known results of Carter [5] and Robinson [23], see also the
more complete account of [12]. One could remark here that the methods of the present
paper would suffice to derive this theorem if one were to restrict attention to stationary
black hole solutions which are perturbations of a Kerr solution K(a,m) with a << m,
since in that case our construction provides a rotational Killing vector field in the entire
ergoregion, which can then be extended to the entire domain of outer communications by
analyticity. However, the stronger methods that we introduce in [2] cover the full range
of perturbations of all Kerr solutions and give an explicit bound on the closeness in terms
of the natural Mars-Simon tensor.

1.2. Main Ideas. We recall that a Killing vector-field K in a vacuum Einstein space-time
must verify the covariant wave equation

�gK = 0. (1.2)

The main idea in [13] was to construct K as a solution to (1.2) with appropriate, charac-
teristic, boundary conditions onN∪N . As known, the characteristic initial value problem

8As known the existence of the Hawking vector-field plays a fundamental role in the classification
theory of stationary black holes (see [14] or [12] and references therein for a more complete treatment of
the problem).

9For pedagogical reasons we thought it preferable to publish the general, very satisfactory, local results
of theorems 1.1 -1.2 separately from the result of theorem 1.3, which we expect to improve in the future.
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is well posed in the domain of dependence of N ∪N but ill posed in its complement. To
avoid this fundamental difficulty we rely instead on a completely different strategy10. The
main idea, which allows us to avoid using (1.2) or some other system of PDE’s in the ill
posed region, is to first construct K in the domain of dependence of N ∪N as a solution
to (1.2), extend K by Lie dragging along the null geodesics transversal to N , consider its
associated flow Ψt, and show that, for small |t|, the pull back metric Ψ∗tg must coincide
with g, in view of the fact they they are both solutions of the Einstein vacuum equations
and coincide on N ∪N . To implement this idea we need to prove a uniqueness result for
two Einstein vacuum metrics g, g′ which coincide on N ∪N . The precise result is given
in our crucial theorem11 3.3.

At the heart of the problem is the issue of fixing a gauge. Given the equations Ric(g) =
0, Ric(g′) = 0, and the Carleman estimates in [16] for the wave operator, an obvious such
gauge choice would be the wave gauge �gx

α = 0; this choice would lead to a system
of wave equations for the components of the two metrics g, g′ in the given coordinate
system. Unfortunately such a coordinate system would have to be constructed starting
with data on N ∪N which requires one to solve the same ill posed problem.

We circumvent this difficulty by starting from the schematic identities,

�gR = R ∗R, �g′R
′ = R′ ∗R′

with R ∗R, R′ ∗R′ quadratic expressions in the curvatures R,R′ of the Einstein vacuum
metrics g,g′. Subtracting the two equations we derive,

�g(R−R′) +
(
�g −�g′

)
R′ = (R−R′) ∗ (R + R′).

We would like to rely on the uniqueness properties of covariant wave equations, as in [16],
[17], but this is not possible due to the presence of the term

(
�g − �g′

)
R′ which forces

us to consider equations for g−g′ (and its first and second derivatives) expressed relative
to an appropriate choice of a gauge condition. Instead of relying solely on coordinate
conditions12 we complement these by a pair of geometrically constructed frames v, v′

(using parallel transport with respect to g and g′ along certain null geodesics which
emanate from N and are common to both metrics g,g′) and derive ODE’s for their
difference dv = v′ − v, as well as the difference dΓ = Γ′ − Γ between their connection
coefficients, with source terms in dR = R′ −R. In this way we derive a system of wave
equations in dR coupled with ODE’s in dv, dΓ and their partial derivatives ∂dv, ∂dΓ with
respect to our fixed coordinate system. Since ODE’s are clearly well posed it is natural to
expect that the uniqueness results for covariant wave equations derived in [16], [17] can

10 Such strategy is known, see for example [13, Remark B.1], as an alternative to the use of the wave
equation (1.2), in the domain of dependence of N ∪N . We show here that the strategy can also be used
in the ill posed region of the complement of the domain of dependence

11A first version of this result was proved by one of the authors in [1]. The version we give here is
more precise and the proof much simpler.

12Note that the original construction in [1] relies only on a system of coordinates which introduces
many additional difficulties.
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be extended to such coupled system; indeed we deduce that dR = 0, and hence dΓ = 0 so
dv = 0 in a full neighborhood of S, which implies that the metrics g,g′ agree there. The
precise result is stated and proved in Lemma 3.4.

In section 2 we construct a canonical null frame which will be used throughout the
paper. We use the non-expanding condition to derive the main null structure equations
along N and N , and construct the Hawking vector-field K in the domain of dependence
of N ∪ N (see Proposition B.1 in [13]). In section 3, we show how to extend K to a
full neighborhood of S. We also show that the extension must be locally time-like in the
complement of the domain of dependence of N ∪N , see Proposition 3.5. In section 4 we
prove Theorem 1.2. We first show that if T is another smooth Killing vector-field, tangent
to N ∪N , then it must commute with K in a full neighborhood of S. We then construct a
rotational Killing vector-field Z as a linear combination of T and K. As explained above
we also show that Z leaves both u and u invariant. We also show that if σµ is the Ernst
1-form associated with T then Zµσµ = 0. These additional results, in the presence of the
(stationary) Killing vector-field T, are important in the proof of theorem 1.3 in [2].

Acknowledgements: We would like to thank P. Chrusciel, M. Dafermos and R.
Wald for helpful discussions and suggestions.

2. Preliminaries

We restrict our attention to an open neighborhood O of S in which N ,N are regular,
achronal, null hypersurfaces, spanned by null geodesic generators orthogonal to S. During
the proof of our main theorem and their consequences we will keep restricting our attention
to smaller and smaller neighborhoods of S; for simplicity of notation we keep denoting
such neighborhoods of S by O.

We define two optical functions u, u in a neighborhood of S as follows. We first fix a
smooth future-directed null pair (L, L) along S, satisfying

g(L,L) = g(L, L) = 0, g(L, L) = −1, (2.1)

such that L is tangent to N and L is tangent to N . In a small neighborhood of S,
we extend L (resp. L) along the null geodesic generators of N (resp. N ) by parallel
transport, i.e. DLL = 0 (resp. DL L = 0). We define the function u (resp. u) along
N (resp. N ) by setting u = u = 0 on S and solving L(u) = 1 (resp. L(u) = 1). Let
Su (resp. Su) be the level surfaces of u (resp. u) along N (resp. N ). We define L
at every point of N (resp. L at every point of N ) as the unique, future directed null
vector-field orthogonal to the surface Su (resp. Su) passing through that point and such
that g(L, L) = −1. We now define the null hypersurface N u to be the congruence of null
geodesics initiating on Su ⊂ N in the direction of L. Similarly we define Nu to be the
congruence of null geodesics initiating on Su ⊂ N in the direction of L. Both congruences
are well defined in a sufficiently small neighborhood of S in O, which (according to our
convention) we continue to call O. The null hypersurfaces N u (resp. Nu) are the level
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sets of a function u (resp u) vanishing on N (resp. N ). By construction

L = −gµν∂µu∂ν , L = −gµν∂µu∂ν . (2.2)

In particular, the functions u, u are both null optical functions, i.e.

gµν∂µu∂νu = g(L,L) = 0 and gµν∂µu ∂νu = g(L, L) = 0. (2.3)

We define,

Ω = gµν∂µu ∂νu = g(L, L).

By construction Ω = −1 on (N ∪ N ) ∩ O, but Ω is not necessarily equal to −1 in O.
Choosing O small enough, we may assume however that Ω ∈ [−3/2,−1/2] in O.

To summarize, we can find two smooth optical functions u, u : O→ R such that,

N ∩O = {p ∈ O : u(p) = 0}, N ∩O = {p ∈ O : u(p) = 0}. (2.4)

and,

Ω ∈ [−3/2,−1/2] in O. (2.5)

Moreover, by construction (with L, L defined by (2.2)) we have,

L(u) = 1 on N , L(u) = 1 on N .
Using the null pair L,L introduced in (2.1), (2.2) we fix an associated null frame e1, e2, e3 =
L, e4 = L such that g(ea, ea) = 1, g(e1, e2) = g(e4, ea) = g(e3, ea) = 0, a = 1, 2. At every
point p in in O, e1, e2 form an orthonormal frame along the 2-surface Su,u passing through
p. We denote by ∇ the induced covariant derivative operator on Su,u. Given a horizontal
vector-field X, i.e. X tangent to the 2-surfaces Su,u at every point in O, we denote by
∇3X, ∇4X the projections of De3 and De4 to Su,u. Recall the definition of the null second
fundamental forms

χab = g(DeaL, eb), χ
ab

= g(Dea L, eb)

and the torsion

ζa = g(DeaL, L).

Definition 2.1. We say that N is non-expanding if tr χ = 0 on N . Similarly N is
non-expanding if tr χ = 0 on N . The bifurcate horizon (S,N ,N ) is called non-expanding
if both N ,N are non-expanding.

The assumption that the surfaces N and N are non-expanding implies, according to
the Raychaudhuri equation,

χ = 0 on N ∩O and χ = 0 on N ∩O. (2.6)

In addition, since the vectors e1, e2 are tangent to (N ∪ N ) ∩ O and g(L, L) = −1 on
(N ∪N ) ∩O, we have ζa = −g(Dea L,L) on (N ∪N ) ∩O. Finally, it is known that the
following components of the curvature tensor R vanish on N and N ,

R4a4b = R434b = 0 on N and R3a3b = R343b = 0 on N , a, b = 1, 2. (2.7)
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Let, see [8], [20], αab = R4a4b, βa = Ra434, ρ = R3434, σ = ∗R3434, βa = Ra334 and

αab = Ra3b3 denote the null components of R. Thus, in view of (2.7) the only non-
vanishing null components of R on S are ρ and σ. Since [ea, e4](u) = 0 on N ∩ O, it
follows that g([ea, e4], e3) = 0 on N ∩O. Using DLL = 0, (2.6), and the definitions, we
derive, on N ∩O,

De4e4 = 0, Deae4 = −ζae4, De4e3 = −
2∑

a=1

ζbeb, De4ea = ∇e4ea − ζae4,

Deae3 =
2∑
b=1

χ
ab
eb + ζae3, Deaeb = ∇eaeb + χ

ab
e4.

(2.8)

Lemma 2.2. The null structure equations along N (see13 Proposition 3.1.3 in [20]) reduce
to

∇4ζ = 0, curl ζ = σ, L(tr χ) + div ζ − |ζ|2 = ρ. (2.9)

Also, if X is an horizontal vector,

[∇4,∇a]Xb = 0.

As a consequence we also have

∇4(div ζ) = 0. (2.10)

Proof of Lemma 2.2. Indeed,

g(D4Da L, e4)− g(DaD4 L, e4) = R(ea, e4, e3, e4) = βa

and, using (2.8), g(DaD4 L, e4) = L4;4a = 0, g(D4Da L, e4) = L4;a4 = −∇4ζa. Hence,
since β vanishes along N , we deduce ∇4ζ = 0. Also,

g(D4Db L, ea)− g(DbD4 L, ea) = R(ea, e3, e4, eb) =
1

2
γab ρ−

1

2
∈ab σ

and, g(D4Db L, ea) = La;b4 = ∇4χab − 2ζaζb, g(DbD4 L, ea) = La;4b = −∇bζa − ζaζb.
Hence,

∇4χab − ζaζb + ∂bζa =
1

2
ρ γab −

1

2
σ ∈ab .

Taking the symmetric part we derive, ∇4tr χ − |ζ|2 + div ζ = ρ while taking the an-
tisymmetric part yields, curl ζ = σ as desired. To check the commutation formula we

13The discrepancy with the corresponding formula is due to the different normalization for L, i.e.
g(L, L) = −1 instead of g(L, L) = −2 .
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write,

D4DaXb = e4(DaXb)−DD4eaXb −DaXD4eb

= e4(∇bXa)−D∇4eaXb + ζaD4Xb −DaX∇4ea + ζbDaX4

= ∇4∇aXb + ζa∇4Xb

DaD4Xb = ea(D4Xb)−DDae4Xb −D4XDaeb

= ea(D4Xb)−D∇ae4Xb + ζaD4Xb −D4X∇aeb
= ∇a∇4Xb + ζa∇4Xb

Therefore,

[D4,Da]Xb = [∇4,∇a]Xb.

On the other hand, [D4,Da]Xb = Ra4cbX
c = 0 in view of the vanishing of β and the

Einstein equations. �

We define the following four regions I++, I−−, I+− and I−+:

I++ = {p ∈ O : u(p) ≥ 0 and u(p) ≥ 0}, I−− = {p ∈ O : u(p) ≤ 0 and u(p) ≤ 0},
I+− = {p ∈ O : u(p) ≥ 0 and u(p) ≤ 0}, I−+ = {p ∈ O : u(p) ≤ 0 and u(p) ≥ 0}.

(2.11)

Clearly I++, I−− coincide with the causal and future and past sets of S in O. We construct
first the Killing vector-field K in the causal region I++ ∪ I−−.

Proposition 2.3. Under the assumptions of Theorem 1.1, there is a small neighborhood
O of S and a smooth Killing vector-field K in O ∩

(
I++ ∪ I−−

)
such that

K = uL− uL on (N ∪N ) ∩O. (2.12)

Moreover, in the region O ∩ (I++ ∪ I−−) where K is defined, [L,K] = −L.

This proposition, which depends on the main assumption that the surfaces N and N
are non-expanding, is well known, see [13, Proposition B.1]. For the sake of completeness,
we provide its proof in Appendix B.

3. Extension of the Hawking vector-field to a full neighborhood

In the previous section we have defined our Hawking vector-field K in a neighborhood
O of S intersected with I++ ∪ I−−. To extend K in the exterior region I+− ∪ I−+ we
cannot rely on solving the wave equation (B.1); the characteristic initial value problem
is ill posed in that region. We need to rely instead on a completely different strategy,
sketched in the introduction. We extend K by Lie dragging it relative to L and show
that, for small |t|, Ψ∗tg must coincide with g, where Ψt = Ψt,K is the flow generated by
K. We show that both metrics coincide on N ∪N and, since they both verify the vacuum
Einstein equations, we prove that the must coincide in a full neighborhood of S.

To implement this strategy we first define the vector-field K ′ by setting K ′ = uL on
N ∩O and solving the ordinary differential equation [L,K ′] = −L. The vector-field K ′
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is well-defined and smooth in a small neighborhood of S (since L 6= 0 on S) and coincides
with K in I++ ∪ I−− in O. Thus K := K ′ defines the desired extension. This proves the
following.

Lemma 3.1. There exists a smooth extension of the vector-field K (defined in Proposition
2.3) to an open neighborhood O of S such that

[L,K] = −L in O. (3.1)

It remains to prove that K is indeed our desired Killing vector-field. For |t| sufficiently
small, we define, in a small neighborhood of S, the map Ψt = Ψt,K obtained by flowing a
parameter distance t along the integral curves of K. Let

gt = Ψ∗t (g).

The Lorentz metrics gt are well-defined in a small neighborhood of S, for |t| sufficiently
small. To show that K is Killing we need to show that in fact gt = g. Since K is tangent
to (N ∪N )∩O and is Killing in I++∪ I−−, we infer that gt = g in a small neighborhood
of S intersected with I++ ∪ I−−. In view of the definition of K (see (3.1)),

d

dt
Ψ∗t L = lim

h→0

Ψ∗t−h L−Ψ∗t L

−h
= −Ψ∗t

(
lim
h→0

Ψ∗−h L−Ψ∗0 L

h

)
= −Ψ∗t (LK L) = −Ψ∗t L.

We infer that,

Ψ∗t L = e−t L.

Now, given arbitrary vector-fields X, Y , we have Dt
XtY t = Ψ∗t (DXY ) where Dt denotes

the covariant derivative induced by the metric gt = Ψ∗tg and X t = Ψ∗tX, Y t = Ψ∗tY . In,
particular 0 = Dt

Lt
Lt = e−2tDt

L L. This proves the following.

Lemma 3.2. Assume K is a smooth vector-field verifying (3.1) and Dt the covariant
derivative induced by the metric gt = Ψ∗tg. Then,

Dt
L L = 0 in a small neighborhood of S.

To summarize we have a family of metrics gt which verify the Einstein vacuum equations
Ric(gt) = 0, gt = g in a small neighborhood of S intersected with I++ ∪ I−−, and such
that Dt

L L = 0. Without loss of generality we may assume that both relations hold in
O. Thus Theorem 1.1 is an immediate consequence of the following:

Theorem 3.3. Assume g′ is a smooth Lorentz metric on O, such that (O,g′) is a smooth
Einstein vacuum space-time. Assume that

g′ = g in (I++ ∪ I−−) ∩O and D′L L = 0 in O,

where D′ denotes the covariant derivative induced by the metric g′. Then g′ = g in a
small neighborhood O′ ⊂ O of S.
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Proof of Theorem 3.3. It suffices to prove the proposition in a neighborhood O(x0) of a
point x0 in S in which we can introduce a fixed coordinate system xα. Without loss of
generality we may assume that

gij(x0) = diag(−1, 1, 1, 1), sup
x∈O(x0)

6∑
j=0

|∂jg(x)| ≤ A, (3.2)

with |∂jg| denoting the sum of the absolute values of all partial derivatives of order j for
all components of g in the given coordinate system. We may also assume, for the optical
functions u, u introduced in section 2,

sup
x∈O(x0)

(|∂ju(x)|+ |∂ju(x)|) ≤ C1 = C1(A) for j = 0, . . . , 4. (3.3)

In the rest of the proof we will keep restricting to smaller and smaller neighborhoods of
x0; for simplicity of notation we keep denoting such neighborhoods by O(x0).

Consider now our old null frame ṽ(1) = e1, ṽ(2) = e2, ṽ(3) = L, ṽ(4) = L on N ∩O(x0)
and define the vector-fields v(1), v(2), v(3), v(4) = L and v′(1), v

′
(2), v

′
(3), v

′
(4) = L by

parallel transport along L:

DLv(a) = 0 and v(a) = ṽa on N ∩O(x0);

D′Lv
′
(a) = 0 and v′(a) = ṽa on N ∩O(x0).

The vector-fields v(a) and v′(a) are well-defined and smooth in O(x0). Let g(a)(b) =
g(v(a), v(b)), g′(a)(b) = g′(v′(a), v

′
(b)). The identities DLv(a) = D′Lv

′
(a) = 0 show that

L(g(a)(b)) = L(g′(a)(b)) = 0. Since g(a)(b) = g′(a)(b) along N it follows that

g(a)(b) = g′(a)(b) := h(a)(b) and L(h(a)(b)) = 0 in O(x0). (3.4)

For a, b, c = 1, . . . 4 let

Γ(a)(b)(c) = g(v(a),Dv(c)v(b)), Γ′(a)(b)(c) = g′(v′(a),D
′
v′(c)

v′(b)),

(dΓ)(a)(b)(c) = Γ′(a)(b)(c) − Γ(a)(b)(c).

For a, b, c, d = 1, . . . , 4 let

R(a)(b)(c)(d) = R(v(a), v(b), v(c), v(d)), R′(a)(b)(c)(d) = R′(v′(a), v
′
(b), v

′
(c), v

′
(d)),

(dR)(a)(b)(c)(d) = R′(a)(b)(c)(d) −R(a)(b)(c)(d).

Clearly, Γ(a)(b)(4) = Γ′(a)(b)(4) = 0. Note that all quantities g(a)(b),Γ(a)(b)(c), R(a)(b)(c)(d)

are now scalar-valued functions over O(x0). They arise by evaluating the corresponding
tensors against the vectors v(a), v(b), v(c), v(d). We use now the definition of the Riemann
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curvature tensor to find a system of equations for L[(dΓ)(a)(b)(c)]. We have

R(a)(b)(c)(d) = g(v(a),Dv(c)(Dv(d)v(b))−Dv(d)(Dv(c)v(b))−D[v(c),v(d)]v(b))

= g(v(a),Dv(c)(g
(m)(n)Γ(m)(b)(d)v(n)))− g(v(a),Dv(d)(g

(m)(n)Γ(m)(b)(c)v(n)))

+ g(m)(n)Γ(a)(b)(n)(Γ(m)(c)(d) − Γ(m)(d)(c))

= v(c)(Γ(a)(b)(d))− v(d)(Γ(a)(b)(c)) + g(m)(n)Γ(a)(b)(n)(Γ(m)(c)(d) − Γ(m)(d)(c))

+ g(a)(n)[Γ(m)(b)(d)v(c)(g
(m)(n))− Γ(m)(b)(c)v(d)(g

(m)(n))]

+ g(m)(n)(Γ(m)(b)(d)Γ(a)(n)(c) − Γ(m)(b)(c)Γ(a)(n)(d)).

We set d = 4 and use Γ(a)(b)(4) = v(4)(g
(a)(b)) = 0 and g(a)(b) = h(a)(b); the result is

L(Γ(a)(b)(c)) = −h(m)(n)Γ(a)(b)(n)Γ(m)(4)(c) −R(a)(b)(c)(4).

Similarly,
L(Γ′(a)(b)(c)) = −h(m)(n)Γ′(a)(b)(n)Γ

′
(m)(4)(c) −R′(a)(b)(c)(4).

We subtract these two identities to derive

L[(dΓ)(a)(b)(c))] = (1)F
(d)(e)(f)
(a)(b)(c) (dΓ)(d)(e)(f) − (dR)(a)(b)(c)(4) (3.5)

for some smooth function (1)F . This can be written schematically in the form

L(dΓ) =M∞(dΓ) +M∞(dR). (3.6)

We will use such schematic equations for simplicity of notation14.
For a, b, c = 1, . . . , 4 and α = 0, . . . , 3 we define

(∂dΓ)α(a)(b)(c) = ∂α[(dΓ)(a)(b)(c)];

(∂dR)α(a)(b)(c)(d) = ∂α[(dR)(a)(b)(c)(d)],

where ∂α are the coordinate vector-fields relative to our local coordinates in O(x0). By
differentiating (3.6),

L(∂dΓ) =M∞(dΓ) +M∞(∂dΓ) +M∞(dR) +M∞(∂dR). (3.7)

Assume now that

v(a) = vα(a)∂α, v′(a) = v′
α
(a)∂α,

v′(a) − v(a) = (dv)α(a)∂α, (dv)α(a) = v′
α
(a) − vα(a),

are the representations of the vectors v(a), v
′
(a), and v′(a) − v(a) in our coordinate frame

{∂α}α=0,...,3. Since [v(4), v(b)] = −Dv(b)v(4) = −Γ(c)
(4)(b)v(c), we have

vα(4)∂α(vβ(b))− v
α
(b)∂α(vβ(4)) = −Γ(a)(4)(b)v

β
(c)g

(a)(c).

Similarly,

vα(4)∂α(v′
β
(b))− v

′α
(b)∂α(vβ(4)) = −Γ′(a)(4)(b)v

′β
(c)g

′(a)(c).

14In general, given B = (B1, . . . BL) : O(x0)→ RL we letM∞(B) : O(x0)→ RL′
denote vector-valued

functions of the form M∞(B)l′ =
∑L
l=1A

l
l′Bl, where the coefficients All′ are smooth on O(x0).
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We subtract these two identities to conclude that, schematically,

L(dv) =M∞(dΓ) +M∞(dv). (3.8)

As before, we define

(∂dv)βα(b) = ∂α[(dv)β(b)].

By differentiating (3.8) we have

L(∂dv) =M∞(dΓ) +M∞(∂dΓ) +M∞(dv) +M∞(∂dv). (3.9)

Finally, we derive a wave equation for dR. We start from the identity

(�gR)(a)(b)(c)(d) − (�g′R
′)(a)(b)(c)(d) =M∞(dR),

which follows from the standard wave equations satisfied by R and R′ and the fact that
g(m)(n) = g′(m)(n) = h(m)(n). We also have

D(m)R(a)(b)(c)(d) −D′(m)R
′
(a)(b)(c)(d)

=M∞(dv) +M∞(dΓ) +M∞(dR) +M∞(∂dR).

It follows from the last two equations that

g(m)(n)v(n)(v(m)(R(a)(b)(c)(d)))− g′
(m)(n)

v′(n)(v
′
(m)(R

′
(a)(b)(c)(d)))

=M∞(dv) +M∞(dΓ) +M∞(∂dΓ) +M∞(dR) +M∞(∂dR).

Since g(m)(n) = g′(m)(n) it follows that

g(m)(n)v(n)(v(m)((dR)(a)(b)(c)(d)))

=M∞(dv) +M∞(∂dv) +M∞(dΓ) +M∞(∂dΓ) +M∞(dR) +M∞(∂dR).

Thus

�g(dR) =M∞(dv)+M∞(∂dv)+M∞(dΓ)+M∞(∂dΓ)+M∞(dR)+M∞(∂dR). (3.10)

This is our main wave equation.
We collect now equations (3.6), (3.7), (3.8), (3.9), and (3.10):

L(dΓ) =M∞(dΓ) +M∞(dR);

L(∂dΓ) =M∞(dΓ) +M∞(∂dΓ) +M∞(dR) +M∞(∂dR);

L(dv) =M∞(dv) +M∞(dΓ);

L(∂dv) =M∞(dv) +M∞(∂dv) +M∞(dΓ) +M∞(∂dΓ);

�g(dR) =M∞(dv) +M∞(∂dv) +M∞(dΓ) +M∞(∂dΓ) +M∞(dR) +M∞(∂dR).
(3.11)

This is our main system of equations. Since g = g′ in I++∪ I−−, it follows easily that the
functions dΓ, ∂dΓ, dv, ∂dv and dR vanish also in I++ ∪ I−−. Therefore, the proposition
follows from Lemma 3.4 below. �
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Lemma 3.4. Assume Gi, Hj : O(x0) → R are smooth functions, i = 1, . . . , I, j =
1, . . . , J . Let G = (G1, . . . , GI), H = (H1, . . . , HJ), ∂G = (∂0G1, . . . , ∂4GI) and assume
that in O(x0), {

�gG =M∞(G) +M∞(∂G) +M∞(H);

L(H) =M∞(G) +M∞(∂G) +M∞(H).
(3.12)

Assume that G = 0 and H = 0 on (N ∪ N ) ∩O(x0). Then, there exists a small neigh-
borhood O′(x0) ⊂ O(x0) of x0 such that G = 0 and H = 0 in

(
I+− ∪ I−+

)
∩O′(x0).

Unique continuation theorems of this type in the case H = 0 were proved by two
of the authors in [16] and [17], using Carleman estimates. It is not hard to adapt the
proofs, using similar Carleman estimates, to the general case; we provide all the details
in appendix A. This completes the proof of Theorem 1.1.

We show now that the Killing vector-field K is timelike, in a quantitative sense, in a
small neighborhood of S in the complement of I++ ∪ I−−.

Proposition 3.5. Let K be the Killing vector-field, constructed above, in a neighborhood
O of S. Then there is a neighborhood O′ ⊂ O of S such that

g(K,K) ≤ uu in (I+− ∪ I−+) ∩O′. (3.13)

In particular, the vector-field K is timelike in the set O′ \ (I++ ∪ I−−).

Proof of Proposition 3.5. Since K is a Killing vector-field in O, we have

�g(KβKβ) = 2Dα(KβDαKβ) = 2DαKβDαKβ = −4 on S. (3.14)

Indeed, �gK = 0 and it follows from (B.3) that 2DαKβDαKβ = 4D3K4D3K4 = −4 on
S. Since KβK

β = 0 on (N ∪N ) ∩O (see (2.12)), we have KβK
β = uuf on O for some

smooth function f : O → R. Using (3.14) on S and the fact that u = u = 0 on S, we
derive

−4 = DαDα(uuf) = 2fDαuDαu = −2f L(u)L(u) = −2f.

Thus f = 2 on S, and the bound (3.13) follows for a sufficiently small O′. �

4. Further results in the presence of a symmetry

The goal of this section is to prove Theorem 1.2. So far we have constructed a smooth
Killing vector-field K defined in an open set O such that K = uL− uL on (N ∪N )∩O.

Assume in this section that the space-time (O,g) admits a smooth Killing vector-field
T, which is tangent to the null hypersurfaces N and N . We do not assume in this
section that T does not vanish identically on S; however, the rotational Killing vector-
field Z = T + λ0K constructed in Proposition 4.2 is non-trivial if and only if T does not
vanish identically on S.

We recall several definitions (see [16, Section 4] for a longer discussion and proofs of
some identities). In O we define the 2-form Fαβ = DαTβ and the complex valued 2-form,

Fαβ = Fαβ + i ∗Fαβ = Fαβ + (i/2)∈αβµνFµν , (4.1)
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where ∈ denotes the volume form in O. Let F2 = FαβFαβ. We define also the Ernst
1-form

σµ = 2TαFαµ = Dµ(−TαTα)− i ∈µβγδ TβDγTδ. (4.2)

It is easy to check that, in O 
Dµσν −Dνσµ = 0;

Dµσµ = −F2;

σµσ
µ = g(T,T)F2.

(4.3)

Proposition 4.1. There is an open set O′ ⊆ O, S ⊆ O′ such that

[T,K] = 0 in O′. (4.4)

In addition, if σµ = 2TαFαµ is the Ernst 1-form associated to T (see (4.2)), then

Kµσµ = 0 in O′. (4.5)

Proof of Proposition 4.1. We show first that

[T,K] = 0 on (N ∪N ) ∩O. (4.6)

By symmetry, it suffices to check that [T,K] = 0 on N ∩O. We first observe that [T, L]
is proportional to L. Indeed, since the null second fundamental form of N is symmetric
and T is both Killing and tangent to N , we have for every X ∈ T (N ),

g([T, L], X) = g(DTL,X)− g(DLT, X) = g(DTL,X) + g(DXT, L)

= g(DTL,X)− g(T,DXL) = χ(T, X)− χ(X,T) = 0.

Consequently [T, L] must be proportional to L, i.e. [T, L] = fL. Since DLL = 0 and T
commutes with covariant derivatives we derive,

0 = LT(DLL) = DLTLL+ DL(LTL)

= DfLL+ DL(fL) = L(f)L.

Therefore
[T, L] = fL and L(f) = 0 on N ∩O. (4.7)

On the other hand, in view of the definition of u we have T(L(u))−L(T(u)) = fL(u).
Hence,

L(fu+ T(u)) = 0.

Since T is tangent to S and u = 0 on S, we deduce that fu+ T(u) vanishes on S, thus

Tu+ fu = 0, on N ∩O.

Now, [T, uL] = T(u)L + u[T, L] =
(
T(u) + fu

)
L = 0. The identity (4.6) follows since

K = uL on N ∩O.
Let V = [T,K] = LTK on O. Since �gK = 0 and T is Killing, we derive, after

commuting covariant and Lie derivatives,

0 = LT(�gK) = �g(LTK) = �gV.
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Since V vanishes on (N ∪N )∩O, it follows that V vanishes in (I++∪I−−)∩O′, for some
smaller neighborhood O′ of S. (due to the well-posedness of the characteristic initial-
value problem); it also follows that V vanishes in (I+−∪ I−+)∩O′ using Lemma 3.4 with
H = 0. This completes the proof of (4.4).

We prove now the identity (4.5). Since K and T commute we observe that LKF = 0
in O. Moreover, using the first identity in (4.3),

Dα(Kµσµ) = DαK
µσµ + KµDµσα = LK(σα) = 2LK(TβFβα) = 0.

The identity (4.5) follows since K vanishes on S. �

To complete the proof of Theorem 1.2 it suffices to prove the following:

Proposition 4.2. There is a constant λ0 ∈ R and an open neighborhood O′ ⊆ O of S
such that the vector-field

Z = T + λ0K

has periodic orbits in O′. In other words, there is t0 > 0 such that Ψt0,Z = Id in O′.
Moreover there exists a choice of a null pair (L, L) such that, in O′,

g(Z, L) = g(Z, L) = 0, [Z, L] = [Z, L] = 0, (4.8)

and
g(T, L) = −λ0u, g(T, L) = λ0u, [T, L] = λ0L, [T, L] = −λ0 L. (4.9)

Observe that the main constants λ0 and t0 can be determined on the bifurcation sphere
S. We show below that Proposition 4.2 follows from the following lemma.

Lemma 4.3. There is a constant t0 > 0 such that Ψt0,T = Id in S. In addition, there is
a constant λ0 ∈ R and a choice of the null pair (L,L) along S (satisfying (2.1)) such that

[T, L] = λ0L and [T, L] = −λ0L on S. (4.10)

Proof of Proposition 4.2. Assuming Lemma 4.3, the main identities we need to prove are

g(T, L) = λ0u along N , g(T, L) = −λ0u along N . (4.11)

Indeed, assume that the first identity in (4.11) holds. Since

L(g(T, L)− λ0u) = g(DLT, L) + g(T,DL L)− λ0 L(u) = 0,

it follows that g(T, L) = λ0u in O′′, for some open set O′′, S ⊆ O′′. Thus, in O′′,

LT Lα = −LT(Dαu) = −Dα(TβDβu) = Dα(λ0u) = λ0Dαu = −λ0 Lα,
therefore [T, L] = −λ0 L in O′′. Moreover, the first identity in (4.11) and the fact that
K = uL along N show that

g(Z, L) = g(T, L) + λ0g(K, L) = λ0u− λ0u = 0 along N .
The same arguments as before show that g(Z, L) = 0 and [Z, L] = 0 in O′′. To summa-
rize, the first identity in (4.11) shows that

g(T, L) = λ0u, [T, L] = −λ0 L, g(Z, L) = 0, [Z, L] = 0
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in an open set O′′ containing S. The other four identities in (4.8) and (4.9) follow in the
same way from the second identity in (4.11). Finally, the identity Ψt0,Z = Id holds in an
open set containing S because it holds on S (the first part of Lemma 4.3) and we have
established the commutation identities [Z, L] = [Z, L] = 0.

It remains to prove the identities (4.11). By symmetry, it suffices to prove the first
identity,

g(T, L) = λ0u along N . (4.12)

Since T is tangent to N , we have g(T,DL L) = −g(DTL, L) along N (using (2.8)). It
follows from (4.7) and (4.10) that [T, L] = λ0L along N . Thus, along N ,

L(g(T, L)) = g(DLT, L) + g(T,DL L) = g(DLT, L)− g(DTL, L) = λ0.

The identity (4.12) follows since g(T, L) = 0 on S. This completes the proof of the
proposition. �

Proof of Lemma 4.3. The existence of the period t0 is a standard fact concerning Killing
vector-fields on the sphere15. In particular all nontrivial orbits of S are compact and
diffeomorphic to S1. To prove (4.10), in view of (4.7) it suffices to prove that there is
λ0 ∈ R and a choice of the null pair (L, L) on S such that

g([T, L], L) = −λ0, g([T, L], L) = λ0 on S.

Both identities are equivalent to

Tα LβDαLβ − Lα LβDαTβ = −λ0,
which is equivalent to

λ0 = F43 − g(ζ,T).

We thus have to show that there exist a choice of the null pair e4 = L, e3 = L along S
such that the scalar function below is constant along S,

H := F43 − g(ζ,T). (4.13)

Under a scaling transformation e′4 = fe4, e
′
3 = f−1e3 the torsion ζ changes according to

the formula,

ζ ′ = ζ −∇ log f.

Therefore, in the new frame,

H ′ = F4′3′ − g(ζ ′,T) = F43 − g(ζ,T) + T(log f) = H + T(log f).

Consequently, we are led to look for a function f such that H + T(log f) is a constant.

Taking Ĥ to be the average of H along the integral curves of T and solving the equation

T(log f) = −H + Ĥ, (4.14)

it only remains to prove that Ĥ is constant along S.

15If T ≡ 0 on S then any value of t0 > 0 is suitable. In this case, the conclusion of Proposition 4.2 is
that T + λ0K ≡ 0 in O′ for some λ0 ∈ R.
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Since T is Killing we must have,

DαDβTγ = T λRλαβγ. (4.15)

Using (4.15) and the formulas (2.8) on S we derive,

TλRλa43 = DaD4T3 = ea(D4T3) = ea(F43).

Thus, since T is tangent to S and TbRba43 = TbRab34 = Tb ∈ab σ (recall that σ =
∗R3434, Rab34 =∈ab σ)

ea(F43) = TbRba43 = Tb ∈ab σ. (4.16)

In particular, the function H defined in (4.13) is constant on S if T ≡ 0 on S. Thus we
may assume in the rest of the proof that the set Λ = {p ∈ S : Tp = 0} is finite.

On the other hand, writing ∇aζb −∇bζa =∈ab curl ζ,

eag(ζ,T) = ∇aζbT
b + ζb∇aTb = (∇aζb −∇bζa)T

b + ζb∇aTb +∇Tζa

= ∈ab curl ζTb + ζb∇aTb +∇Tζa.

Recall that the torsion ζ verifies the equation,

curl ζ = σ. (4.17)

Therefore,

eag(ζ,T) = ∈ab Tb σ + ζb∇aTb +∇Tζa. (4.18)

Since H = F43 − ζ ·T we deduce,

ea(H) = −ζb∇aTb −∇Tζa. (4.19)

Consider the orthonormal frame e1, e2 on S \ Λ,

e1 = X−1T, X2 = g(T,T).

Since e1(X) = 0 and e1 = X−1T, we have

∇Te2 = −F12e1.

We claim that, with respect to this local frame,

∇2(H) = −T(ζ2). (4.20)

Indeed,

∇2(H) = −ζ1∇2T1 − ζ2∇2T2 − g(∇Tζ, e2)

= −ζ1F21 −Tg(ζ, e2) + g(ζ,∇Te2)

= −Tg(ζ, e2)− ζ1F21 − ζ1F12

= −T(ζ2).

We now fix a a non-trivial orbit γ0 of T in S \ Λ. Consider the geodesics initiating on
γ0 and perpendicular to it and φ the corresponding affine parameter. More precisely we
choose a vector V on γ0 such that g(V, V ) = 1 and extend it by parallel transport along
the geodesics perpendicular to γ0. Then choose φ such that V (φ) = 1 and φ = 0 on γ0.
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This defines a system of coordinates t, φ in a neighborhood U of γ0, such that ∂t = T ,
∇∂φ∂φ = 0 in U and g(∂t, ∂φ) = 0, g(∂φ, ∂φ) = 1 on Γ0. Since ∂t is Killing we must have
X2 = −g(∂t, ∂t) and g(∂φ, ∂φ) independent of t. Moreover,

∂φg(∂t, ∂φ) = g(∇∂φ∂t, ∂φ) + g(∂t,∇∂φ∂φ) = g(∇∂t∂φ, ∂φ) =
1

2
∂tg(∂φ, ∂φ) = 0.

Hence, since g(∂t, ∂φ) = 0 on Γ0 we infer that g(∂t, ∂φ) = 0 in U . Similarly,

∂φg(∂φ, ∂φ) = 2g(∇∂φ∂φ, ∂φ) = 0

and therefore, g(∂φ, ∂φ) = 1 in U . Thus, in U , the metric g takes the form,

dφ2 +X2(φ)dt2. (4.21)

Therefore, with T = ∂t, e2 = ∂φ, we deduce from (4.20), everywhere in U ,

∂φH = −∂tg(ζ, ∂φ). (4.22)

Thus, integrating in t and in view of the fact that the orbits of ∂t are closed, we infer that
Ĥ is constant along S, as desired. �

Appendix A. Proof of Lemma 3.4

We will use a Carleman estimate proved by two of the authors in [16, Section 3], which
we recall below. Let O(x0) a coordinate neighborhood of a point x0 ∈ S and coordinates
xα as in (3.2). We denote by Br = Br(x0), the set of points p ∈ O(x0) whose coordinates
x = xα verify |x − x0| ≤ r, relative to the standard euclidean norm in O(x0). Consider
two vector-fields V = V α∂α,W = Wα∂α on O(x0) which verify, that,

sup
x∈O(x0)

4∑
j=0

(|∂jV (x)|+ |∂jW (x)|) ≤ A, (A.1)

where A is a large constant (as in (3.2)), and |∂jV (x)| denotes the sum of the absolute
values of all partial derivatives of order j of all components of V in our given coordinate
system. When j = 1 we write simply |∂V (x)|.

Definition A.1. A family of weights hε : Bε10 → R+, ε ∈ (0, ε1), ε1 ≤ A−1, will be called
V -conditional pseudo-convex if for any ε ∈ (0, ε1)

hε(x0) = ε, sup
x∈Bε10

4∑
j=1

εj|∂jhε(x)| ≤ ε/ε1, |V (hε)(x0)| ≤ ε10, (A.2)

Dαhε(x0)D
βhε(x0)(DαhεDβhε − εDαDβhε)(x0) ≥ ε21, (A.3)

and there is µ ∈ [−ε−11 , ε−11 ] such that for all vectors X = Xα∂α at x0

ε21[(X
1)2 + (X2)2 + (X3)2 + (X4)2]

≤ XαXβ(µgαβ −DαDβhε)(x0) + ε−2(|XαVα(x0)|2 + |XαDαhε(x0)|2).
(A.4)
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A function eε : Bε10 → R will be called a negligible perturbation if

sup
x∈Bε10

|∂jeε(x)| ≤ ε10 for j = 0, . . . , 4. (A.5)

Our main Carleman estimate, see [16, Section 3], is the following:

Lemma A.2. Assume ε1 ≤ A−1, {hε}ε∈(0,ε1) is a V -conditional pseudo-convex family,
and eε is a negligible perturbation for any ε ∈ (0, ε1]. Then there is ε ∈ (0, ε1) sufficiently

small (depending only on ε1) and C̃ε sufficiently large such that for any λ ≥ C̃ε and any
φ ∈ C∞0 (Bε10)

λ‖e−λfεφ‖L2 + ‖e−λfε|∂φ| ‖L2 ≤ C̃ελ
−1/2‖e−λfε �gφ‖L2 + ε−6‖e−λfεV (φ)‖L2 , (A.6)

where fε = ln(hε + eε).

We will only use this Carleman estimate with V = 0. In this case the pseudo-convexity
condition in Definition A.1 is a special case of Hörmander’s pseudo-convexity condition
[15, Chapter 28]. We also need a Carleman estimate to exploit the ODE’s in (3.12).

Lemma A.3. Assume ε ≤ A−1 is sufficiently small, eε is a negligible perturbation, and
hε : Bε10 → R+ satisfies

hε(x0) = ε, sup
x∈Bε10

2∑
j=1

εj|∂jhε(x)| ≤ 1, |W (hε)(x0)| ≥ 1. (A.7)

Then there is C̃ε sufficiently large such that for any λ ≥ C̃ε and any φ ∈ C∞0 (Bε10)

‖e−λfεφ‖L2 ≤ 4λ−1‖e−λfεW (φ)‖L2 , (A.8)

where fε = ln(hε + eε).

Proof of Lemma A.3. Clearly, we may assume that φ is real-valued and let ψ = e−λfεφ ∈
C∞0 (Bε10). We have to prove that

‖ψ‖L2 ≤ 4‖λ−1W (ψ) +W (fε)ψ‖L2 . (A.9)

By integration by parts,∫
Bε10

[λ−1W (ψ) +W (fε)ψ] ·W (fε)ψ dµ

=

∫
Bε10

[W (fε)ψ]2 dµ− (2λ)−1
∫
Bε10

ψ2 ·Dα(W (fε)W
α)dµ.

In view of (A.7) and the assumption (A.1)

|W (fε)| ≥ 1 and |Dα(W (fε)W
α)| ≤ C̃ε in Bε10 ,

provided that ε is sufficiently small. Thus, for λ sufficiently large,∫
Bε10

[λ−1W (ψ) +W (fε)ψ] ·W (fε)ψ dµ ≥
1

2

∫
Bε10

[W (fε)ψ]2 dµ,
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and the bound (A.9) follows. �

Proof of Lemma 3.4. It suffices to prove that G = 0 and H = 0 in I+−c̃ , for some c̃
sufficiently small. We fix x0 ∈ S and set

hε = ε−1(u+ ε)(−u+ ε) and eε = ε10Nx0 , (A.10)

where u, u are the optical functions defined in section 2 and Nx0(x) = |x − x0|2 =∑
α=0,1,2,3 |xα − xα0 |2, the square of the standard euclidean norm.

It is clear that eε is a negligible perturbation, in the sense of (A.5), for ε sufficiently
small. Also, it is clear that hε verifies the condition (A.7), for ε sufficiently small and
W = 2L.

We show now that there is ε1 = ε1(A) sufficiently small such that the family of weights
{hε}ε∈(0,ε1) is 0-conditional pseudo-convex, in the sense of Definition A.1. Condition (A.2)
is clearly satisfied, in view of the definition and (3.3). To verify conditions (A.3) and
(A.4), we compute, in the frame e1, e2, e3, e4 defined in section 2,

e1(hε) = e2(hε) = 0, e3(hε) = −Ω(1− ε−1u), e4(hε) = Ω(1 + ε−1u) (A.11)

in Bε10(x0), and

(D2hε)ab = O(1), (D2hε)3a = O(1), (D2hε)4a = O(1), a, b = 1, 2,

(D2hε)33 = O(1), (D2hε)44 = O(1), (D2hε)34 = −Ω2ε−1 +O(1)
(A.12)

in Bε10(x0), where O(1) denotes various functions on Bε10(x0) with absolute value bounded
by constants that depends only on A. Thus

Dαhε(x0)D
βhε(x0)(DαhεDβhε − εDαDβhε)(x0) = 2 + εO(1).

This proves (A.3) if ε1 is sufficiently small. Similarly, if X = Xαeα then, with µ = ε
−1/2
1

we compute

XαXβ(µgαβ −DαDβhε)(x0) + ε−2|XαDαhε(x0)|2

= µ((X1)2 + (X2)2) + 2(ε−1 − µ)X3X4 + ε−2(X3 −X4)2 +O(1)
4∑

α=1

(Xα)2

≥ (µ/2)((X1)2 + (X2)2) + (ε−1/2)((X3)2 + (X4)2),

provided that ε1 is sufficiently small. This completes the proof of (A.4).
It follows from the Carleman estimates in Lemmas A.2 and A.3 that there is ε = ε(A) ∈

(0, c) (where c is the constant in Lemma 3.4) and a constant C̃ = C̃(A) ≥ 1 such that

λ‖e−λfεφ‖L2 + ‖e−λfε|∂φ| ‖L2 ≤ C̃λ−1/2‖e−λfε �gφ‖L2 ;

‖e−λfεφ‖L2 ≤ C̃λ−1‖e−λfεL(φ)‖L2 ,
(A.13)

for any φ ∈ C∞0 (Bε10(x0)) and any λ ≥ C̃, where fε = ln(hε + eε). Let η : R → [0, 1]
denote a smooth function supported in [1/2,∞) and equal to 1 in [3/4,∞). For δ ∈ (0, 1],
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i = 1, . . . , I, j = 1, . . . J we define,

Gδ,ε
i = Gi · 1I+−c · η(−uu/δ) ·

(
1− η(Nx0/ε20)

)
= Gi · η̃δ,ε

Hδ,ε
j = Hj · 1I+−c · η(−uu/δ) ·

(
1− η(Nx0/ε20)

)
= Hj · η̃δ,ε.

(A.14)

Clearly, Gδ,ε
i , H

δ,ε
j ∈ C∞0 (Bε10(x0) ∩ E). We would like to apply the inequalities in (A.13)

to the functions Gδ,ε
i , H

δ,ε
j , and then let δ → 0 and λ→∞ (in this order).

Using the definition (A.14), we have

�gG
δ,ε
i = η̃δ,ε ·�gGi + 2DαGi ·Dαη̃δ,ε +Gi ·�gη̃δ,ε;

L(Hδ,ε
j ) = η̃δ,ε · L(Hj) +Hj · L(η̃δ,ε).

Using the Carleman inequalities (A.13), for any i = 1, . . . , I, j = 1, . . . , J we have

λ · ‖e−λfε · η̃δ,εGi‖L2 + ‖e−λfε · η̃δ,ε|∂1Gi| ‖L2 ≤ C̃λ−1/2 · ‖e−λfε · η̃δ,ε�gGi‖L2

+ C̃
[
‖e−λfε ·DαGiD

αη̃δ,ε‖L2 + ‖e−λfε ·Gi(|�gη̃δ,ε|+ |∂1η̃δ,ε|)‖L2

] (A.15)

and

‖e−λfε · η̃δ,εHj‖L2 ≤ C̃λ−1‖e−λfε · η̃δ,εL(Hj)‖L2 + C̃λ−1‖e−λfε ·HjL(η̃δ,ε)‖L2 , (A.16)

for any λ ≥ C̃. Using the main identities (3.12), in Bε10(x0) we estimate pointwise

|�gGi| ≤M
I∑
l=1

(
|∂1Gl|+ |Gl|

)
+M

J∑
m=1

|Hj|,

|L(Hj)| ≤M
I∑
l=1

(
|∂1Gl|+ |Gl|

)
+M

J∑
m=1

|Hj|,

(A.17)

for some large constant M . We add inequalities (A.15) and (A.16) over i, j. The key
observation is that, in view of (A.17), the first terms in the right-hand sides of (A.15)
and (A.16) can be absorbed into the left-hand sides for λ sufficiently large. Thus, for any
λ sufficiently large and δ ∈ (0, 1],

λ
I∑
i=1

‖e−λfε · η̃δ,εGi‖L2 +
J∑
j=1

‖e−λfε · η̃δ,εHj‖L2 ≤ C̃λ−1
J∑
j=1

‖e−λfε ·Hj|∂η̃δ,ε|‖L2

+ C̃
I∑
i=1

[
‖e−λfε ·DαGiD

αη̃δ,ε‖L2 + ‖e−λfε ·Gi(|�gη̃δ,ε|+ |∂η̃δ,ε|)‖L2

]
.

(A.18)

We let now δ → 0 and λ→∞, as in [16, Section 6], to conclude that 1Bε40 (x0)∩I+− Gi = 0
and 1Bε40 (x0)∩I+− Hj = 0. The main ingredient needed for this limiting procedure is the
inequality

inf
Bε40 (x0)∩I

+−
c

e−λfε ≥ eλ/C̃ sup
{x∈Bε10 (x0)∩I

+−
c :Nx0≥ε20/2}

e−λfε ,
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which follows easily from the definition (A.10). The lemma follows. �

Appendix B. Proof of Proposition 2.3

Following [13] we construct the smooth vector-field K as the solution to the character-
istic initial-value problem,

�gK = 0, K = uL− uL on (N ∪N ) ∩O. (B.1)

As well known, see [25], the characteristic initial value problem for wave equations of type
(B.2) is well posed. Thus the vector-field K is well-defined and smooth in the domain of
dependence of N ∪N in O. Let παβ = (K)παβ = DαKβ + DβKα. We have to prove that
π = 0 in a neighborhood of S intersected to I++ ∪ I−−. It follows from (B.1), using the
Bianchi identities and the Einstein vacuum equations, that π verifies the covariant wave
equation,

�gπαβ = 2Rµ
αβ

νπµν . (B.2)

In view of the standard uniqueness result for characteristic initial value problems, see
[25], the statement of the proposition reduces to showing that π = 0 on (N ∪ N ) ∩ O.
By symmetry, it suffices to prove that π = 0 on N ∩ O. The proof relies on our main
hypothesis, that the surfaces N and N are non-expanding.

Since K = uL on N ∩O is tangent to the null generators of N , it follows that

D4K3 = −1, D4K4 = DaK4 = D4Ka = DaKb = 0, a, b = 1, 2. (B.3)

Thus, on N ∩O

π44 = πa4 = πab = 0 a, b = 1, 2. (B.4)

To prove that the remaining components of π vanish we use the wave equation �gK = 0,
which gives

D3D4Kµ + D4D3Kµ =
2∑

a=1

DaDaKµ on N ∩O.

Since D3D4Kµ −D4D3Kµ = R34µνK
ν on N ∩O (using (2.7)), we derive

2D4D3Kµ =
2∑

a=1

DaDaKµ −R34µνK
ν , µ = 1, 2, 3, 4, on N ∩O. (B.5)

We set first µ = 4. It follows from (B.3) that D4D3K4 = 0. In addition, D3K4 = 1 on
S (the analogue of the first identity in (B.3) along the hypersurface N ). Using (2.8) and
(B.3), D4D3K4 = L(D3K4). Thus D3K4 = 1 on N , which implies

π34 = 0 on N . (B.6)

We use now the equation (B.5) with µ = a ∈ {1, 2} to calculate Pa := πa3 along N . It
follows from (B.3) and (2.7) that DaDbKc = 0, a, b, c = 1, 2, and R34aνK

ν = 0 on N . A
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simple computation shows that DaK3 = uζa, thus Pa = D3Ka + uζa. Thus, using (2.8),
D3K4 = 1, and DbKc = 0 on N , we derive

0 = Kb;34 = e4(Kb;3)−KDe4eb;e3
−Keb;De4e3

= e4(Pb − uζb)−K∇4eb;e3 + ζbKe4;e3

= ∇4(Pb − uζb) + ζb = ∇4Pb − u∇4ζb.

Thus

∇4Pa = u∇4ζa on N .

On the other hand, along N , ζ verifies the transport equation,

∇4ζa = −Ra434 = 0.

Therefore, along N ,

∇4Pa = 0.

Since Pa = πa3 = 0 on S it follows that

πa3 = 0 on N . (B.7)

Similarly, denoting Q = π33 = 2D3K3, we have, according to (B.5) with µ = 3,

D4D3K3 =
1

2

( 2∑
a=1

DaDaK3 − ρu
)
, ρ = R3434. (B.8)

Now, since we already now that π3b vanishes on N ,

K3;34 = e4(K3;3)−KDe4e3;e3
−Ke3;De4e3

=
1

2
e4(Q) +

2∑
b=1

ζbπ3b =
1

2
e4(Q). (B.9)

On the other hand, using (2.8), K3;4 = −1, Ka;b = 0, and K3;a = uζa,

K3;ab = eb(K3;a)−Ke3;Deb
ea −KDeb

e3;ea

= ∂b(uζa)− χbaK3;4 − ζbK3;a

= ∂b(uζa) + χ
ba
− uζaζb,

thus
2∑

a=1

DaDaK3 = u(div ζ − |ζ|2) + tr χ. (B.10)

Therefore, equation (B.8) takes the form

L(Q) = tr χ+ u(div ζ − |ζ|2 − ρ). (B.11)

On the other hand we have the following structure equation on N ,

L(tr χ) + div ζ − |ζ|2 − ρ = 0. (B.12)
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Thus, differentiating (B.11) with respect to L and applying (B.12) we derive,

L(L(Q)) = L(tr χ) + (div ζ − |ζ|2 − ρ) + uL(div ζ − |ζ|2 − ρ)

= −div ζ + |ζ|2 + ρ+ (div ζ − |ζ|2 − ρ) + uL(div ζ − |ζ|2 − ρ).

Using null structure equations, it is not hard to check that

L(div ζ) = L(|ζ|2) = L(ρ) = 0 along N . (B.13)

Indeed, the last identity follows from (2.7) and [20, Proposition 3.2.4]. The identity
L(|ζ|2) = 0 follows from the transport equation ∇4ζa = 0. Therefore,

L(L(Q)) = 0 along N .
Since L(Q) = 0 on S (using again(B.11) restricted to S where both tr χ and u vanish),
we infer that L(Q) = 0 along N . Since Q = 0 on S we conclude that Q = 0 along N as
desired. Thus π33 = 0, as desired.

To prove the second part of the proposition, [L,K] = −L in a neighborhood of S in
I++ ∪ I−−, we notice first that g(K, L) = −u on N since K = uL− uL on N . Since

L(g(K, L) + u) = g(DLK, L) + g(K,DL L) = 0,

it follows that g(K, L) = −u in a neighborhood of S in I++ ∪ I−−. Thus, in this
neighborhood, K(u) = u. Therefore, since K is Killing,

LK Lα = −LK(Dαu) = −Dα(KβDβu) = −Dαu = Lα,

as desired.
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