ON THE GLOBAL REGULARITY OF WAVE MAPS IN THE
CRITICAL SOBOLEV NORM

SERGIU KLAINERMAN AND IGOR RODNIANSKI

ABSTRACT. We extend the recent result of T.Tao [6] to wave maps defined
from the Minkowski space R**1, n > 5, to a target manifold N’ which pos-
sesses a “bounded parallelizable” structure. This is the case of Lie groups,
homogeneous spaces as well as the hyperbolic spaces HY. General compact
Riemannian manifolds can be imbedded as totally geodesic submanifolds in
bounded parallelizable manifolds, see [1], and therefore are also covered, in
principle, by our result. Compactness of the target manifold, which seemed to
play an important role in [6], turns out however to play no role in our discus-
sion. Our proof follows closely that of [6] and is based, in particular, on its
remarkable microlocal gauge renormalization idea.

1. INTRODUCTION

Let ¢ : R"" — (N, h) with (V,h) a Riemannian manifold of dimension
N. Here R""' denotes the standard Minkowski space endowed with the metric
m = diag(—1,1,...,1). We denote by V the Levi-Civitta connection on TN, the
tangent bundle of A/, and by V the induced connection on ¢*(TN). Recall that
the pull-back bundle ¢*(TN) =U__pn+1 {2} x Ty(,)\ is a vector bundle over the

Minkowski space R"™!. The induced metric on ¢*(T'N) is defined by

<V,W >= V(@) W' (8(2)) < €ases >n
where V = V(¢(z)) eq, W = WP(¢p(z)) e are sections of ¢*(T'N) and e, is a frame
of vectorfields on /. The induced connection V is defined according to the rule

VxV =V4.xV

where X € T(R"™) and V € ¢*(TN). A map ¢:R"™" — (N, h) is said to be
a wave map if
MV, ¢+ (0a) = 0.

In local coordinates y/,I = 1,...,N on N the wave maps equation takes the
familiar form

80" +Th 0507 0,65KmP7 = 0. (1)

where T' - are the Christoffel coefficients of the Levi-Civitta connection V on N
and ¢!, I =1,...,N the components of the map ¢ in local coordinates on N.
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Let e, = eéaiyf be an orthonormal frame of vectorfields and w® = w¢dy! be the
corresponding dual basis of 1-forms w®(e;) = d. Since h(eq,es) = dap We infer that

hry =Y, wiw§. Define,

e = widad! (2)
where ¢! are the components of the map ¢ relative to the local coordinates y! on A
Clearly, 0,¢' = el¢?. Given a function F on N we write 0, F(¢) = B%,F(d))aa ¢! =
aor F(9)ejol = Fa(¢)¢l where F g = eq(F).

We easily check that the functions ¢% =< 0,9, e, > associated to a wave map
¢ verify! the following divergence-curl system,

Bp0% — 0adf = Cj. 60 65 (3)

06 = —Th.ohosm® ()

where, C7. and I'y, are respectively the structure and connection coefficients of the
frame,

les,ec] = Cheeq
Ve e = Ifeaq
In view of the formula [ep,e.] = V¢, e. — Ve ep we infer that,

a _ 1a a
Cbc_Fbc_ ch-

Since the frame e, is orthonormal we have '}, =< V., e.; e, >= — < e.; Ve, €4 >
and therefore

gc == ga' (5)
Also,

1
gc = 5 (Cgc + Cgc + C;b) .

Definition: We say that a Riemannian manifold N has a “ bounded parallelizable”
structure if there exists an orthonormal frame (e,)N_, on N relative to which the
structure coefficients Cy, and their frame derivatives Cy. ;4 4, 4, are uniformly
bounded on N

Remark 1.1. There are plenty of examples of bounded parallelizable manifolds. To
start with on any Lie group we can construct an orthonormal basis of left invariant
vectorfields e, relative to which the structure constants Cf, are constant®. The
constant negative curvature manifolds HY, N > 2 are bounded parallelizable.
Moreover H?, i.e. the hyperbolic plane, is a Lie group, see the relevant discussion in
section 3.1 of [1]. In addition any compact Riemannian manifold can be embedded
as a totally geodesic submanifold in a bounded parallelizable Riemannian manifold,
see [1].

LOur description of wave maps expressed relative to an ortonormal frame follows closely that of
[1]. A similar formalism has been used earlier by Helein [2] in his well known work on 2-dimensional
weak harmonic maps

2We refer to these as “constant parallelizable”.
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Proposition 1.2. Let N be a Riemannian manifold and ¢ : R"™ — N a wave
map. The 1-forms ¢% =< On¢,e, > verify the equations, (3),(4) as well as the
system of wave equations,

0b = —2R, - 0"®+E (6)

with ® = (¢%), R, = (Rf,)Yy—y and Rf, = T%¢f. The components of E = (E%)
are homogeneous polynomial of degree three relative to the components of ® = (¢2)
with coefficients depending only on the structure functions Cy. and their derivatives
Che,q with respect to the frame.

Remark 1.3. It is essential to remark that the matrices R, are antisymmetric i.e.
b
Z,u = _Ra,u (7)

This is an immediate consequence of (5). This shows that the well known “Helein
trick” of antisymmetrizing the form of the wave maps equations in the particular
case when N is a standard sphere, a trick which plays a fundamental role in [6], is
due in fact to a general feature of the connection coefficients on any Riemannian
manifold, expressed relative to orthonormal frames.

Proof:

Differentiating (3) and using (4) we derive:
07005 = —0a(li. ¢y 0 m) + 0% (Cy. 9, 45)

b ( T}, (0adh) 6, — T 618065, ) + Ci( 9,60 ¢>5)
LR Gh(0%65) — 0a(TL) ol L mt + 8°(CL) o, 65

Serting A%, =~ (U5, (904 65+ T3, 6,(9065 )~ Ci. (9,08 05 ) and wsing (3

we write

TR ( & (000, + Ol g6 65 + T 61 (B, + Can 1)

R (0 ¢5)
- ( o 4 TY - C&) G50, 6%, + m T, (Cfnm%ﬁaﬁi ; 0;n¢g”¢ﬁ¢z)
or since Fl?c + ng — C',‘fc = Fl?c + ng — (Fgc — ng) = Qng,
AL = oD 60,6, + m T (c:’nnaswwi ; crnmwwz)
Therefore,
0%050% = —2mM %50, + mTL, (%mwm ; cmmw’;)
O g (TE g ) — TS 4 o G+ Gy 1, 65

Finally we write
O = ~20%, 65 Dy + B3
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where E = E2 denote the terms above which are cubic in ® = (¢%) with coefficients
depending only on the structure functions Cy, and their derivatives Cj, ; with
respect to the frame. This is precisely the equation (6). [ |

We study the evolution of wave maps subject to the initial value problem

$(0) = ¢, 9:9(0) =¥ = Ygea (8)
¢ is an arbitrary smooth map defined from R"™ with values in A" and ¢ = ¢je, and
arbitrary smooth map from R"*! to TN. Let P¢ =< 0y, eq >.

Definition 1.4. We shall say that the initial data ¢[0] = (p,7)) belongs to the
Sobolev space H°(R™), resp. H?(R"), if all components ¢?, ¥¢ belong to the
space H*~1(R"), resp. H*~1(R"). We write

1600015 = 5= (otllgems + 1 s )

a,t

and similarly for ||¢[0]|| .

We are now ready to state our main theorem.

Main Theorem Let N be a Riemannian manifold endowed with a bounded par-
allelizable structure. Assume n > 5 and that the initial data ¢[0] = (v, ¢ = Ple,)
is in H® for some § < s. We make also the critical smallness assumption:

1601l 55 <¢

Then the wave map ¢ with initial data @[0] can be uniquely continued in H® norm
globally in time.

Our theorem provides an extension of the result in [6] from the case when the
target manifold is a standard sphere to that of bounded, parallelizable manifolds.
The restriction on the dimension, n > 5, is the same as in [6]; this allows us to
rely only on Strichartz estimates. The dimensional restriction, for the case of the
standard sphere, was removed in [7] with the additional help of bilinear estimates?,
H*? spaces, and the refined methods of [8]. Even in light of [7] the extension of
our result to two dimensions does not seem to be straightforward?.

The proof of the Main Theorem relies on a local well-posedness result in H*®,
s > 5. We state the precise result below:

Theorem 1.5. Assume that the initial data $[0] € H*(R"™) for some s > 5o > 5.
There exists a T > 0, depending only on the size of ||¢[0]|| g0, and a unique solution
¢ of the system (3) ,(4) defined on the slab [0,T] x R" verifying,

Ig[tll s < Cll[0]]] =

or allt €[0,T] an a constant depending only on T and s, sp — % and n.
for all 0,T dC d di l T and 5 and

3These were used to take advantage of the presence of the special null quadratic form Qo(u,v) =
m®B 9, udyv in the special expression of wave maps to the standard sphere used in [6], [7].

4This is due to the fact that one needs to treat other other types of null quadratic forms than
Qo. Also, the fact that we use a wave equation, see (6), in ® corresponding to the first derivatives
of the map rather than the map itself, adds additional complications.



Strictly speaking such a sharp local existence result for div-curl systems of
type (3), (4) does not exist in the literature. Nevertheless we are confident that the
methods discussed in [4] in connection to a special model problem related to (3),(4)(
see also [3]) do apply®. A proof of this fact will appear elsewhere. Alternatively
we can avoid Theorem 1.5 and rely instead on the known sharp local existence
result for the Wave Maps system written in local coordinates (1), see [4] and the
references therein. Indeed any H?® data®, s > 5, is also H® with respect to local
coordinates on N. Using the finite propagation speed property of wave equations
we can therefore construct a local in time H? solution for the system (3)-(4) which
is unique, as a solution of (1), in any local chart on A/. This is the solution for
which the Main Theorem applies.

For simplicity we shall present the proof of the Main Theorem in the partic-
ular case of constant parallelizable target manifolds. The general case complicates
matters only in so far as the number of terms we need to treat is larger, there
are however no conceptual differences. We shall thus assume that the Cj, are con-
stant and indicate whenever needed what additional steps are required to treat the
general case.

Aknowledgement: We would like to thank D. Christodoulou, T. Tao and the re-
ferree for valuable comments.

2. NOTATION, STRICHARTZ ESTIMATES AND MAIN PROPOSITION

We use the Littlewood-Paley notation of [6]. Thus, for a function ¢(¢,z) we
denote the projections P<p¢(t,z) = [e™x(27%¢)¢(t,€)dE where ¢(t,€) is the
space Fourier transform of ¢ and x(§) = n(§) —n(2€) with 5 a non-negative smooth
bump function supported on || < 2 and equal to 1 on the ball |{| < 1. Therefore
x(€) is supported in {1 <[] < 2} and Y, oz x(277¢) = 1 for all £ # 0. We also
define P, = P<y — P<;. Also for any interval I C Z we define Py in an obvious
fashion, see [6].

Notation:  We shall frequently use the notation A < B to denote A < ¢B for
some constant ¢ > 0 which does not depend on any of the important parameters
used in our estimates.

Following [6] we introduce the notation

l,n_ _
1@]|s, = sup 2*aFE <||<I>||L3L; +2 ’“||3t<I>IILgL;> (9)

g,r€A

where A = {(q,7)/2 < ¢,7 < 00, ;+"5F < Bt} s the set of admissible Strichartz
exponents. Recall that,

5Tn [3] one proves a related result for a model problem in dimension n = 3. The proof was
vastly simplified and extended to all dimensions n > 3 in [5] and [4]. The higher dimensional case
is in fact a lot simpler.

6 According to the global definition 1.4.
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Theorem 2.1. For any fized integer k and ¢(t,z) a function on R x R" such that
the support of ¢ (t,€) is included in the dyadic region 28~1 < |¢] < 281 we have
the estimate,

n—4
1¢lls. S NSO, 2z + 10p(O)]]  nse + 2= 0613 12

In what follows we recall the definition of frequency envelope given in [6].
Definition 2.2. A frequency envelope is an [? sequence ¢ = (cg)rez verifying
Cp 5 QJ‘k_kl‘Ck/ (10)

for all k, k" € Z. Here o is a fixed positive constant; as in [6] we take 0 < o < %

In addition we shall also need 0 < o < "T_4 and 0 <o < 4(7;;31).

We say that the H® norm of a function f on R™ lies underneath an envelope
cif, for all k € Z, ||Pef|| . < cx. We shall write f <<, ¢ or simply f << ¢ when
there is no danger of confusion. Recall, see [6] section 3, that if ||f|| ;. < e then
there exists an envelope ¢ € [? such that ||c||;z < € and f <<; c. Indeed we can
simply take, cx = ) ey 2_”‘k_kl|||Pk||ﬁs.

Definition 2.3. Fix 0 < o < min(%, "T_‘l, 4(7;—__31)) and ¢ a frequency envelope. We
say that the initial data ¢[0] = (d)(O) =, 00(0) = ¢ = ¢36a> lies underneath ¢
if, relative to our frame e, we have for all k& € Z,

1Pea[0]ll 5 < ch-

We shall use the short hand notation ¢[0] << ec.

Following the same arguments as in section 3 of [6] we can reduce the proof of
our main theorem to the following”:

Proposition 2.4. ( Main Proposition) Let c be a frequency envelope® with ||c||;z <
g,0<T < oo and ® = (%) verify the equations (3), (4), and therefore also (6).
Assume that, according to definition 2.3, the initial data verifies the smallness con-
dition @[0] << c. Assume also the bootstrap assumption,

||Pk¢||5k([0,T]><R") S 2CCk (].].)
for all k € Z. Then in fact, for sufficiently small €, and all k € Z,
||qu>||5k([0,T]><R") S C’ck. (12)

Remark 2.5. We may assume that ¢ is small enough, so that C2%e < %

7Our main proposition below corresponds to Proposition 3.3 in [6]. The reduction relies on
Theorem 1.5.
n—4 n—3

8verifying (10) with o < min(%, T m).
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Returning to the definition (9) we make explicit all the useful estimates contained
in the bootstrap assumption (11),

Eal

||Pk¢||L%L%+2*k||atpkq>||L?L:(:+31) < 2575 L (20¢)
1Pc®llp2rs + 2700 @l pors < 2575 - (2Ccy)
1Pe®ll 2ot +2 F|0Pu Bl zpn < 287701 - (200k)
IPs®llzree +2 F10Pe® 1z < 27 - (2Cck)
|Pe®| g2 + 27 0|0 Pe®] e < 2527 . (20¢y)
|1P®|peopee + 27 F10:Pi®lpeeree < 2%+ (2C¢y)
1Pe®| g 201y + 2750 PL®] | p2nny < 2% T2 . (2C¢k)
Lemma 2.6. The assumptions (11) imply
IOP®|| 251 < 26270 Oy (13)

We prove this estimate at the end of section 3.

In view of the scale invariance of both our equations and the smallness condition
#[0] << c it suffices to prove (12) for k = 0. Let ¥ = Py®. We need to prove that,

||\I’||50([0,T]><R") < Ce (14)

To prove (14) we would like to apply Theorem 2.1 to the equation obtained by
applying the projection Fy. to (6) i.e.,

OF = Py(R, - 9"® + E).

A straightforward application of the Strichartz inequalities will not work however.
Indeed according to Theorem 2.1

1Wllsy < co+[[Po(Ry - 0"® + E)| ;12

The cubic term E presents no difficulty, the problem comes up when we try
to estimate Py(R,, - 0*®) more precisely the part of it which corresponds to the
interaction between low frequencies of R and frequencies of ® comparable to those

of W. More precisely the most dangerous terms are of the form R - 9% with R =
P<_1pR. To estimate ||R - OV|| 12 relative to the available Strichartz norms we
are forced to take ¥ in the energy norm L{°L2. This leaves us with R in the
norm L]} L% for which we don’t have any Strichartz estimates. It is precisely this
difficulty which led Tao to introduce his remarkable renormalization idea which we
reproduce below in section 5.

The organization of the paper follows closely that of [6]. In the next section we
reduce the proof of the main proposition to estimates for the linearized equation:

O¥ = —2R, - 9"¥.
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This corresponds to isolating the worst part of Py(R, - 0“®) to which we have
alluded above. In section 4, which represents the main contribution of this paper, we
show how to replace the term fiu by the perfect derivative 8HA of an antisymmetric
potential A. This fact plays a crucial role in carrying out Tao’s renormalization
procedure in section 5.

We shall use, throughout the paper, Tao’s convention to call an acceptable
error any function, or matrix valued function, F on [0, 7] x R" such that

||F||L}L§([O,T]><R") < C?ecy (15)

3. REDUCTION TO A LINEAR EQUATION

Proposition 3.1. The matriz valued function Po® = ¥ verifies the equation
O@ = —2R,, - 9" + error (16)

where Ru = P<_oR, =T- (iu and <i>a = P<_10®,. Here “error” refers to an
acceptable error term in the sense of (15).

Remark 3.2. Written in components ¥ = (¢2) with ¢% = Py¢? the equation (16)
has the form

Oy? = —2RY, - 9,5 m*” + error,
where R}, = Fgcgz;,c, and ¢¢ = P<_1p¢%. Observe that the N x N matrices R, are

. . . "’t _
antisymmetric i.e. R, = —R,,.

Proof : We start with the equation (6) to which we apply the projection P,.
Therefore,

Ov = Py (R, -0*® + E)
The proof of Proposition 3.1 is an immediate consequence of the following Lemmas
Lemma 3.3. We have,
Py(R, - 9"®) = R,, - 9" + error
where Ru = P<_10R,.

Lemma 3.4. The term PyE is an acceptable error term.

We sketch below the proofs of Lemmas 3.3 and 3.4.

Proof of Lemma 3.3 We start by decomposing R, = >, PxR, =Y, Ry and
¢ = Zk Pk(I) = E(I)k- Thus,

PO(Ru . 8“(1)) = Po(E1 + Ey + E3 + Ey+ E5 + Eﬁ)



where,

E = > Rk, - 0" ®p,
max(kl,k2)>10 s ‘klszlgf)

B, = > Rk, - 0" ®y,
max(kl,k2)>10 s ‘kl—k2|>5

E; = (P<_ioRy)-0"P<_10®

Ey = (P-i0,100Ru) - 0" P_10,10)®

E5 = RU . 3“P(,10’10)(I>

Es = (P(—10,10)RH)6HP<—10‘I>

Recall that the matrices R, are products between the constant matrices? I and .
Thus each Py R, can be estimated in the same way as P, ® = ®, according to (11).
Using (11) and the envelope property (10),

> Ry llp2rs - 110" @ryll 20
max(k1,k2)>10 s ‘kl—k2|§5

< PN 2R S 0Py ok ok g2k

IN

Bl Ly 2

k>5 k>5
5 02 cg ZQk(Q—‘,-Qa'—%) 5 02 cg
k>5

: —4
provided that o < %=,

Clearly PyEs = 0, PyE3 = 0. The term Ej is easy to estimate; it contains only
a finite number of terms,

IEallpine < 1P 10100 Rl 22rl|0P 10,100 @l 1202 S C%cf.
For Eg we write,
1Bollirz S 10P<—10®@ll  2tn 0P 10,100 Rl 1277
L2L, "

< 0200 Z 2k(%+ﬁ)ck

k<—10
3,1 _
< %l Z k(3 +5=T ”)50203
k<—10

It remains to consider the term PyEs = Py (Ru . G“P(_10710)<I>>. We use the

standard commutator inequality for functions f, g in R", see Lemma 4.3 in [6],

1Po(fg) = fRogller S IV fllzeligllzs,

9In the general case of a bounded parallelizable manifold one has to take into account the
additional commutator terms. The commutators generate additional powers of ® and therefore
can be treated as easy error terms.
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which holds for all 1 < r,p,q < oo, such that % = % + %. Takingr =2, p=n-—1

and ¢ = % and proceeding precisely as for Eg we derive,
||P0 (RH -8“P(,10’10)q)) _RU 8“\:[1”[/}1]5 S ||8Ru||Lt2L:71||6P(,10710)q)|| , 2(n—31)
L2L, "~
< 0% Z k(3 +ty—0) < C?c
k<—10
as desired. ]

Proof of Lemma 3.4 For simplicity we shall assume that the structure coef-
ficients C, are constant. The general case, which is only slightly more involved,
requires only their boundedness as well as that of their frame derivatives. We may
thus assume that E has the form ®3. We split

Py(®3) ~ 3B, + E,+ 3E;

B, = P0< > q>k1¢k2q>k3>

k1,k2>5; |k1—k2‘§2; k3<5b

B, = Py Y q>k1¢k2q>k3>
ki,ko,k3>b; |k1—k2|<2; ko —k3|<2

E; = B < Z ‘I>k1¢kzq>k3>

ki1,k2<5; |k3|<5

We have,
1Bl S (2o - (3 12k lloers)
k>5 ks<5
< CPepe? 22’“(1’%*") . Z 2ks < OB cye?
k>5 ks<5

provided that o < "7_2 Now,
1Ballpize S D N1®kl7eps - 1Rkl ez
k>5
S 030082 Z 21@(1—%—}-0) . Qk S C3C()62
k>5
provided that o < ”774. Finally,
1Bsllpiz: S Y I®kllzre - 1®kllrzre)( Y 1®kslloer2)
k1,k2<5 |k3|<5
S 030062(2 2§)2 5 C3COS2
k<5
|

In the remaining part of this section we shall sketch the proof of Lemma 2.6.
By scale invariance it suffices to prove (13) for ¥ = 0. In other words we have to
prove,

1Dl 20 < Cio (17)
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According to equation (6) it suffices to prove that ||Py(R, - 0*® + E)||L%L:_1 <

Cc¢y. Once again, the cubic term PyFE is easier to treat and we concentrate on

Py(R,,-0"®). Observe that R, -0*® = O*(R, - ®) — "R, - ®. Recall that ® = (¢2)

and R, = (R},), where R} =T% . According to the equation (4) we have'”
0"Rj, = 0"(Tyo}) = Tt ey, = ~ToTa.0505m™.

Thus 0*R,, - ® is another term cubic in ®.

We split the remaining term
P08”(Ru . (I)) ~ E1 + 2E2,
where

E, = Py o* Z Ryt - O, Ey = Py 0" Z Run, - ®p,-
kl,k2>5,|k17k2‘§2 k1§5,|k2|§5

Since the Fourier supports of both E; and E; belong to the set {1 < |¢] < 2}, it
suffices to estimate || E1, Ea||p272. Using (11) we derive

|1E1llpere < > 1P (Ryu ey * Py )l 212
k1,k2>5, |k1—k2|<2
< > 1Rk, | 2200 (1R || Lgo L2

kl,k2>5,|k17k2‘§2
2 £ 5k(2-n) 2
< C E 22 .22 cy.
k>5

< 02006223(37"“”) < C?cpe
k>5

provided that o < 2. We also have
1Ballpzre < Y. IRuky - ®hollrzrz < > Bk zree ksl e r2
ky <5, k2| <5 ky <5, k2| <5

k
< C?¢ Z 22¢; < C?cpe.
k<5

The Lemma now follows by taking e sufficiently small.

4. CAN REPLACE R, BY J,A

This reduction step is the main contribution of our paper. In order to apply
Tao’s renormalization procedure we express R, in terms of the space-time gradient
of a potential A plus terms which lead to error terms. More precisely,

Proposition 4.1. The matriz valued function ¥ verifies an equation of the form,
0¥ = —29,A - 0"V + error (18)
where the potential A verifies the following properties:

10We assume here that the I'’s are constant; the general case introduces another cubic term.
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i.) The N x N matriz A is antisymmetric i.e. At = —A. The space Fourier
transform of each component of A is supported in |£| < 2710,

ii.) The following estimates hold for any A = PA:

1Aklls, S 27%Ce (19)

10Aklls, < Cex (20)
Also,

10445, S 2"Cey (21)

iii.) Set R, = R, —d,A. The following estimates hold for all PR,

|1 PLR| L3 1o Cc; (22)
PRl Ler S 28CP¢; (23)

IN

Proof : We start with the equation
Oov = —21?“8"\11 + error
We need to find the potential A such that R, = R, — ,A is small. Clearly'!
OyRy — 0uRy = O,y — 0, Ry = P<_10(T - Oy — Ouhv))

Thus according to the equation (3) and the constancy of the structure and connec-

tion coefficients,
8,,Ru — 8HR,, = PS—IO (M . (I) . (I))
with M =~ C? a matrix whose entries are quadratic in Cg.. Henceforth'?,

Ov(PLR,) — 0,(PyR,) = M -Pp(®-®)=FE; + Es
E, ~ M-P, Z By - By,
k'<k—1
Ey ~ M-P Z By, - By,

k1,ka>k, |k1—k2|<2

We now estimate, with the help of (11) and (10) with o < 1.

1Buliee S Iellzee D I1®wllizee

k'<k
< 2200, Y 2K R0y S ok02e Y ok /2o (k)
k' <k k' <k

< 2kcie

1Tn the general case we have additional terms of the form OT'(¢) - ®. These have the form
C'-®-P with C’ the first frame derivatives of the structure coefficients. They are therefore similar
to the terms M - ® - & we treat in the text.

1211 the general case of a bounded parallelizable manifold one would have an additional com-
mutator term which contributes, roughly speaking, a cubic term in ®.
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Since the Fourier support of Es belongs to the set {271 < |¢] < 2¥}, we also have
ak ak
1Bollpie S 2% 1Bl S2% ) D l®mllozrsll®eallizes
ki>k |ko—k <2

2% Z Z 2k1/27nk1/4cck121@2/27%2/40%

Ei>k [ko—kq|<2

5 QkCzci Z 2(17%+20')(k’7k) 5 2kC2C%
k' >k

IN

provided that o < "T’2. Therefore all the components of the exterior derivative

Fy) = d(PyR) verify the estimates
I llipe S 25C%c; (24)
Proceeding in precisely the same manner we find that
1Fiw) o e S 2°5C% (25)
We define Ay by requiring that the spatial components of PR verify the
equation,
O'(PR;) =0 (26)
Consider now the divergence -curl system,
0i(PeRj) — 0i(PrR;) = Flryj
O (PyR;) =0
By standard elliptic estimates, taking into account the fact that the Fourier support
of PR is included in the dyadic region |¢| ~ 2¥ and using (24) we infer that,
||PkRi||L}L;° S 2_k||F(k)||L}L§;° S CQC%

On the other hand we also have good estimates for F{o; = 0, PyR; — 0;P,Ry. In
view of the divergence condition 9*(P,R;) = 0 we derive V2PyRo = —0'F)0:,
with V? the Laplacean in R", V2 = > 87, Therefore using standard elliptic
estimates and (24) we infer that,

1PeRollnize S 27 1Fillnie S CPch

We have thus derived the estimate (22). The estimate (23) follows in the same
manner from (25). We now estimate A. We first observe that the divergence
equation 0*(P,R;) = 0 takes the form V2Ay = 0°(P,R;). This uniquely defines Ay

and we have,

< Q_kCCk.

~

1Ak]ls, S

~

278 Py Rl|s, S 27%||P s,

which gives (19) and (20). To prove (21) we write V20A, = 8;(P.OR;). Therefore,
in view of (13), ||[OAk|ls, <27 %||OPR||s, <27%|OP:®||s, < 2*¥Ccy, establishing
the estimate (21).

To end the proof of Proposition 4.1 it remains to observe that since each Ay
is antisymmetric so is the A = Ek<_10 Aj. We also need to check that the terms
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R, 0"¥ generated when we pass from the equation (16) to (18) are indeed error
terms. We have, using (22)

1R 0" ¥ iz < [IRILipeell®lleere S CoollRllLy e
< @C Y Rillpie <CC* Y &
k<—10 k<—10
5 60035

as desired.

5. TAO’S RENORMALIZATION PROCEDURE

This last step in our proof is a straightforward implementation of Tao’s renor-
malization procedure. We repeat below the main arguments in his construction.

Let M be a large integer, depending on 7', which will be chosen below. Define
the real N x N matrix valued function U to be

U=I+ > U
—M<k<—10

with the Uy defined inductively as follows,

U, = 0 for all k< —M
Uy =1
Uy = Ap-Us, forall —M < k<—10 (27)

with Ugy, = Ek,<k Uk. Due to the fact that the matrices Ay = P, A are antisym-
metric we find the identity

Ul U +UL, - UL, =0
whence,

Uly Uk —=T=>_ U Uy (28)
k' <k

Using this identity we can prove inductively that

WU<kllpgere <2

|UkllLsere < Cep  for k>—-M (29)
as well as
Ukl p2pe S C27% 2, for k> —M. (30)
Also,
lOU<kllLeere S 28C%¢s
OUklrer= S 2k 2% ¢y, (31)
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and

Qk/2 Cck
2812 ey (32)

10U<kll 21z
10Uk ||z 1.5

as well as,
ok(5=557) gy
283 -7 ey (33)

||DU<k||L§L;*1 S
||DUk||L§L;‘—1 5

Indeed the first inequality of (29) holds for £ < —M. Assume that it holds up to
some —M < k < —10. In view of part ii) of Proposition 4.1 we have ||Ag||psep> S
Ccy,. Therefore,

1UkllLere = 1AkU<kllLzre S 2Cek

which proves the second part of (29). To complete the induction for the first
inequality we use the identity (28) according to which

1U<kllZpope <1+ Z Uk e <2
—M<k' <k

provided that ¢ is sufficiently small.

To prove (31) and (32) we proceed once more by induction. Observe that the
first estimate follows from the second. Assume that the second estimate holds for
all k" < k for some sufficiently large implicit constant A. Then, using (10),

lOU<k|lLger= < Z 10U || psoLze < AC? Z 2K ¢y
K<k K<k
< AC Y 2MarR) = 4 0% 2k T 2 (00 < 84 22k
K<k kIO

as desired. Also,

10U<kllr2ree < Z 10Uk |31 < AC? Z 2k /2,

k' <k k' <k
AC2Ck Z 2/@’/220’(/@—/&:’) — Ac2ck2k/2 Z 2/@”(1/2—0’) < 814022ka
k' <k k' <0

IN

since 0 < o < .

The second estimate in (31) can be proved now by induction with the help of
the definition Uy = Ay - U<y,. The result is clearly true for k < —M. We may thus
assume that the first estimate in (31) is verified for some k¥ < —10 and a sufficiently
large universal constant A. We can also assume that the implicit constant in the
estimates (19), (20), and (21) of part ii) of Proposition 4.1 is dominated by %.
Using the above estimates for U<y, U<, and the estimate |cx| < e, we derive



16 SERGIU KLAINERMAN AND IGOR RODNIANSKI

10UkllLre < NOAKLr e lU<kllLere + 1Ak e L 10Ukl 0L
A A . A :
< §C2’“ck -2+ chk -8A2%C%¢;, < ZC ke, + e A2C?2k ¢, < AC2¢y,
as desired. For the second estimate in (32) we have,

10U

lL2pee < N10AkllL2re |Uskllisoree + 1Akl pgo poe 10Ukl 2100
< 202'6/%,c 2+ % Cey - 8428/2C%¢;, < AC2F¢y
provided that € is sufficiently small.
To prove (33) assume the first estimate with the implicit constant 84 to be
true. Then,
OU, = O(A U<y) = (OAL) - Usy, 4+ 20" A - 8,Uc + Ay, - OU .

Hence, using the induction hypothesis and the estimates we have for Ucy, OU 4,
Ay, and A we derive:

18U 2pn— < 108N papn-slU<kllne e
+ 20108kl pz 21 110Ukl gL
_+_

1Akl Lo IBU<kl 21 n -1

< éCQk( )ck 2+ AC’cka( 1)ck C4A2FC? ¢,
+ chk-SACQ’“ L
< AC?GTHg,
Now, using (10),
10Ukl pzpn 0 < AC Y ¥ (B < ACe > ako (3-521-0)
k' <k k' <k
< BAC2ME g,

provided that o < 4(’;__31).
We summarize the most important properties of U =T+, ., Uy in
the following B

Proposition 5.1. Assume that ¢ is sufficiently small depending on C' and M suf-
ficiently large depending on T, C,e. Then the matrices U verify the following prop-
erties:

i.) Approzimate orthogonality:
U0 = Ilpere, 10UV = Dlprr= S C% (34)
In particular, for small e, U is invertible and we have,

1Ullzgerz, U oL S1 (35)
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ii.)  Approzimate gauge condition:

104U — 0,8 Ul S C% (36)

iii.) We also have,
10UlLsorse, 10U L1pee S CP (37)
||DU||L§L;*1 S C% (38)

Proof : The first part of the proposition is an easy consequence of the identity
(28) as well as the estimates (31) and (32). To prove the crucial second part we
write

0,U — GMA U = Z <auUk — (auﬁgk U< — G,A<k . U<k)> — auAS*M
—M<k<10
We estimate 9, A<_ys using Cauchy-Schwartz and (20) as follows
10uA<_mllprree < T210u A< mllpore ST? Y 262, SeT227 M2,
k<—M
Thus, picking M sufficiently large,

HauAS*M”L}L;O <e.

To end the proof of (36) it suffices to prove that for all —M < k < —10 we have
1Ekllpi e S C*ci where
B, = 0,Ur— (0uA<k U<t — 0l - Usy)

= 0,Uk — (OuA<k — 0uAcy) - Uk — A< - Uy,

= 0,Ux — 0,7y - Uy, — A<y - Uy,
Now using the definition Uy = Ay - Uci,

Ey = 0,(AUck) — (0uAr - Uk, — 0, A<k - Uy)
= Ay 0,Uck + 0, Ay - Uy
Therefore, using (19), (20) as well as (30), (32)
Bkl < ||Ak||Lng°||aU<k”Lt2L;° + ||8A§k||L§Lg°||Uk||L§L;o

< O

as desired.

The estimates (37) of part iii.) of the proposition are immediate consequences
of the estimates (31), (32). The inequality (38) can be derived immediately from
(33). [ |

Following [6] we are now ready to perform the gauge transformation
v=U-W (39)
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W verifies the equation
ow = —20 '(0,U - 9,A-U)o*W (40)
20719, A - (0"U)U'Y — U~ (OU)U ¥ + error
In view of Proposition 5.1 we derive,
Proposition 5.2. The matriz valued function W wverifies an equation of the form

Ow = error.

Therefore, if € is sufficiently small,
1%1lso S W llsy < 1T[0]]] 252 + CC%eco < Cop.
This is precisely (14) which ends the proof of the Main Proposition!3.

Remark 5.3. It is interesting to compare our results for the Hodge system (3) -(4)
with the system obtained by considering Lorentz gauge, zero curvature connections
in a general Lie algebra, see [3]:

0aAg — 0gAa = [Aa, Agl
0%A, =0. (41)
Such systems can be written in the form (3) -(4) in the particular case when the
structure constants Cf, verify, in addition to C¢, = —C%, the relations C¢, = —C?...
In this case I'j, = C}.. This corresponds to the case of a Lie group with a bi-

invariant Riemannian metric such as S3. The system (41) is interesting however in
its own right, for general Lie algebras. The results of this paper can be extended to
the case of classical Lie algebras such as o(n), su(n) and probably more generally
to Lie algebras of compact Lie groups. The compactness seems in this case to be
essential'*, by contrast to the case of wave maps where the compactness of the
target manifold is not important.

REFERENCES

[1] D. Christodoulou and A.S. Tahvildar-Zadeh On the regularity of spherically symmetric wave
maps C.P.A.M, 46(1993), 1041-1091.

[2] F. Helein Regularite des aplications faiblement harmoniques entre une surface et une variete
Riemannienne C.R.Acad. Sci. Paris, Serie I, math., 312(1991), 591-596

[3] S. Klainerman and M. Machedon, On the regularity properties of a model problem related to
wave maps, Duke Math. J. 87 (1997), no. 3, 553-589

[4] S. Klainerman and S. Selberg Bilinear Estimates and Applications to Nonlinear Wave Equa-
tions submitted to Bull. A.M.S.

[5] S. Selberg, Multilinear space-time estimates and applications to local ezistence theory for
nonlinear wave equations, Ph.D. Thesis, Princeton University 1999

[6] T.Tao , Global regularity of wave maps I, to appear in .LM.R.N.

[7] T.Tao , Global regularity of wave maps II submitted to C.M.P

13See also the more complete argument in section 7 of [6].

141 this case the transformation (39) should be replaced by the partial gauge transformation
A — UAU! with U an element of the group. Compactness of the group is needed to control
the sup-norm of U.



19

[8] D. Tataru On global existence and scattering for the wave maps equation preprint 1999 to
appear in A.J.M

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON NJ 08544

E-mail address:  seri@math.princeton.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON NJ 08544

E-mail address:  irod@math.princeton.edu



