A NEW APPROACH TO STUDY THE VLASOV-MAXWELL SYSTEM

SERGIU KLAINERMAN AND GIGLIOLA STAFFILANI

ABSTRACT. We give a new proof based on Fourier Transform of the classical Glassey and Strauss
[4] global existence result for the 3D relativistic Vlasov-Maxwell system, under the assumption
of compactly supported particle densities. Though our proof is not substantially shorter than
that of [4], we believe it adds a new perspective to the problem. In particular the proof is based
on three main observations, see Facts 1-3 following the statement of Theorem 1.4, which are of
independent interest

1. INTRODUCTION

We write the Vlasov-Maxwell system as

Of+0-Vof +(E+L2xB)-V,f=0
(1) c'Ey =V xB—4nc'j, V-E =4mp
¢ 'Bi=-VxE, V-B=0,

where f(t,z,v) denotes the particle density ', j(t,z) = [Ofdv the current density, p = [ fdv
the charge density and v = W the relativistic velocity. Consider then the initial value

problem (IVP) given by (1) and
(2) f(0,z,v) = fo(z,v) > 0,E(0,z) = Ey(z), B(0,z) = Bo(z), V-Ey=py,V-By=0.

The standard regularity for the data in (2) is fo € C¢ and Ep, By € C2. The question of global
well-posedness has been considered by many authors. The reduced Vlasov-Poisson system has
been tackled successfully, for large data, by Pfaffelmoser [6], Lions-Parthame [7], Schaeffer [8].
The outstanding result for the full 3D Maxwell-Vlasov system remains that of Glassey-Strauss
[4], who were able to prove a global existence result under the hypothesis of compactly supported
(for all time !) particle density. Later Glassey-Shaeffer [5] were able to remove the additional
support hypothesis for the, so called?, 2 + 1/2 dimensional system.
We recall below the main result of Glassey and Strauss:

Theorem 1.1 (Glassey and Strauss). Assume the above conditions on the initial data. Assume
there exists a continuous function B(t) such that for all x € R3

(3) flt,z,v) =0 for |v| > B(t).

Then there ezists a unique C' solution of the system for all t.

S.K. was supported by N.S.F. Grant DMS 215-6322.
G.S. was supported in part by N.S.F. Grant DMS 9800879 and grants from Hewlett and Packard and Sloan
Foundation.
'Here we assume that we are dealing with only one specie, for a more detailed introduction of the system we
refer to [3].
2In which case f = f(t,z,v) is a function of time ¢, z € R? and v € R3.
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The Glassey-Strauss proof relies on showing uniform bounds in time for the L* norms of F,
B, f as well as of all their first derivatives. They start by rewriting (1) and (2) as follows?:
( 8tf+®'vxf+(E+®XB)'vvf:0a

(4) Ett - AE = (atj + VJL'IO = - fR.’i xf + ﬁatf) dv
Btt—AB V X_]—f]Rg’UXV)fd’U,

| f(0,2,v) = fo(z,v) > 0,E(0,2) = Ey(z), B(0,z) = Bo(z).

Then they represent the fields £ and B using the explicit form of the fundamental solution of
0 = 8? — A in physical space. For example for E they write

d
(6)  Blto) = By(t,o) +—/ds/ L [ 0016 -1y = al.v.vyiv).
ly—z|<t—s |y ZE|
1+ ‘)1/2 and V = (81,82,83).

The presence of the derivative fields V + 90, in the integrand seems to create great difficulties®.
The main new idea of Glassey and Strauss was to decompose V + 90, into fields T; = 0,;, — w;0;,
with w; = (I?;/ji:)li’ tangent to the backward characteristic cone® passing through (t,z), and the

vector field S = 0, + 0 - V. Indeed we have,

UJZ'S wizfj
Oy, = ———— 0 — —— T-
vi l—l—f)-w—i_(m 1+®-w> I

and similarly for 9;. The crucial observation is that S f can be reexpressed by using the transport
equation, i.e.,

where FEj is a solution of the homogeneous equation FEy = 0, © =

Sf=(0+0-V)f=—(E+oxB)-Vyf.

One can get rid of the v derivative of f by integrating by parts with respect to the v-integration
in (5). All this works, and thus allows the authors to estimate the L* norm of E and B in
terms of the L® norm of f, as long as the denominator 1 + ¥ - w is bounded away from zero.
This important fact is guaranteed by the apriori assumption (3).

A similar, much more delicate argument, is needed to obtain the estimates for the derivatives
of E and B. Glassey-Strauss accomplish this goal by proving in fact that for any ¢ in a fixed
interval of time [0, T,

(6) IV2 B0 o + Vo B®)lle < Cr (1 T log* (s;g ||Df(7>||oo))

where® V, denotes the space-time derivatives in z and D = (V,, V,). On the other hand, using
the transport equation, they show by a straightforward argument that:

(7) IDf(#)]loo < CT/O A+ Ve E(T)lloo + Ve B(T) o) I D f (7)]] o0 dr-

The combination of (6) and (7) followed by a straightforward application of Gronwall’s inequality
gives a bound for all the quantities involved. In proving (6) and (7) Glassey and Strauss had to
deal with denominators of type (1 + 9 w)™, n <4 whose possible singularities are avoided

%We get rid of the constants ¢ and 7 by taking ¢ = 47 = 1 in (1).

*Recall that we need to estimates the first derivatives of E and B. According to the above formula this seems
to require two derivatives of f !.

SWhich disappear by simple integration in the formula (5).

5Note that log™ z := log(2 + z) for nonegative z.
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by (3). The last step to complete the proof of Theorem 1.1 is based on a standard recursive
method.

In this paper we are taking a different approach based on the Fourier representation of £ and
B. Observe that,

Ey—AE = / <—V$f—{)(—{)vmf—(E+@xB)V,j))dv,
R3

Btt—AB = /(’lA)XVx)fdQ)
R3

For convenience we shall write the system (4) in the form:
Ohf+0-Vof +a(v)®-V,f =0,

(8) oy — AD = J(t,2),
f(0,z,v) = fo(z,v) >0, @(0,2) = Po(x).

where

(9) o(t,z) = (B 2),B(t ),

(10) a(v)® = (E,dx B),

(11) J(t,x) = M)V f(t,z,v)dv+ | N(v)®(t,z)  V,f(t,z,v)dv,

R3 R3

with M (v) and N (v) matrices depending only on v. In the first part of our proof we don’t need
the explicit representation of «(v), M(v) and N(v); shall only make use of the fact that all
their components, and their derivatives with respect to v, are bounded for all v € R*. When
convenient we will make use of the explicit representation (4).

In this paper we prove the following version of Theorem 1.1:

Theorem 1.2. Consider the IVP (8) with fo € C3(R?) and ®(0,z) € C*(R®). Assume that,
on any fized interval of time [0,T],

(12) @1 220, (0,77 xr2) < C.
Then the system (8) admits unique C*([0,T] x R3) solution.

Remark 1.3. Observe that we have substituted the support assumption (3) with the boundedness
assumption (12). The rwo assumptions are, essentially, equivalent. In fact (3) implies (12)
through a straightforward application of the Glassey-Strauss decomposition idea mentioned
above. On the other hand, (12) together with the assumption of compact support in v for
fo(t, z,v) implies the Glassey-Strauss assumption (3). This follows easily from the properties
of characteristics, see Lemma 2.1. As a consequence of (12) we also have 6| < ¢ < 1 on the
support of f(t,x,v) for all (t,x) € [0,T] x R3, fact on which we shall rely heavily in our proof.

Our strategy is to prove directly that the characteristics associated to the transport equation
in (8) are Lipshitz. To do this we look at the problem not just in the physical space, but also in
the frequency space.

Denote, as in [4], the characteristics’,

(X(S’ t’ ‘,I:’ y)’V(S’ t’ ‘,I:’ y))’ S’t E R’ x’y E R3

"We shall call them forward characteristics for s > ¢ and backward for s < t.
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of the transport equation in (8). They are solutions of the system of ordinary differential
equations in s, with initial data at s = ¢,

(13)

X _ V. _. P
K=V
7 =N X)

X(t,t,z,v) =z and V(t,t,z,v) =v

Our main theorem can easily be reduced to the following:

Theorem 1.4. Consider the IVP (8) on a fized interval [0,T] and assume that fo € C,
®(0,7) € C' and ® satisfies (12). Then for everyt € [0,T] and i = 1,2,3

(14)
(15)
(16)

(17)

sup [sup|3miX(s,t,:1:,v)|] S
s€[0,T] z,v

sup [Sup|8UiX(87taxav)|] S
s€[0,T] z,v

sup [sup|6xiV(s,t,:Jc,v)|] S
s€[0,T] =,v

sup [sup|6UiV(s,t,:Jc,v)|] S
SE€[0,T] T

Q Q Q Q

The proof is based on three main observations.

e Fact 1: When we solve [J® = J by the Fourier method we are led to integrals of the

form [ps H(v)( f[f etiolél f (o €, v)do)dv. These are smoother than may be apparent at first
glance as can be seen integrating first by parts in o, making use of the transport equation
(8) for f and then integrating by parts once more in v. This fact, which follows easily
from Lemma 2.2 below &, seems to be the Fourier counterpart of the Glassey-Strauss idea.
of decomposition of general derivatives into S and T, integration by parts and use of the
transport equation mentioned above.

Fact 2: The time integral of a wave solution ® along characteristics is smoother than ®
itself . More precisely if ® is solution of the inhomogeneous wave equation

06 =F, ®(0) =0, =

and (s, X (s, z))is a time-like characteristic curve ? then fg O (s, X(s,x)) ds, is one derivative
smoother than ®. This fact can be easily seen in Fourier space, i.e.

1
d = — (O d_
2i(++ )

Oy (t,x) = (2m)™" /Ot ds/eii(t_s)meixféf?(s,f)df.

8A similar “smoothing” lemma has been recently obtained by Bouchut, Golse and Pallard [2].
e [ <1, X(0,7)=
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Thus we are led to integrals of the form J = fg ei(is‘g‘”{(s’w)'g)H(s)ds. Integrating by
parts and using the characteristic equations (13) we find,

_ ! 1 i i(is\§\+X(s,w)-§)
U s vl s
T et
o I+ X (5,00 ids

/t %‘A{(Safﬂ) ei(:l:s|§|+X(5,fU)'§)H(8)ds
0 (E|E]+V(s,z)-€)2

Thus, introducing the 3 x 3 matrix S(v) = %, we have
d -~ d
EV(SVIE) = B(V)EV(SVIE) = B(V(S,IE))OZ(V(S,IE))(I)(S,X(S,IE))
and therefore,
t t
i (/€)X (5,2)€) _ 1 i (sl +x (s,)€) 4
/0 e H(s)ds /0 ©e[ 1 X(oo2) .f)e idsH(S)ds
+ /t IB(V(S,ZE))CU(V(AS,LE))@(S,X(S,:E)) ei(:l:s|§|+X(s,:v)-§)H(8)ds
0 (£[E] + V (s, z) - £)?
(20)

and the gain of differentiability is obvious in view of V < < 1. Observe also that the
matrices 3(V'), (V') are bounded.

e Fact 3: In the process of estimating the sup-norms of our main quantities, expressed as
Fourier integrals, we need an extension of the well known Beale-Kato-Majda lemma in [1]
to Fourier integral operators. This is the content of the Lemma 2.5 below. To understand
its usefulness consider the standard initial value problem in R3*!

It is well known, from the explicit form of the fundamental solution in physical space, that
lo(t)||zee < tl|gllzee. As discussed above, in the context of the inhomogeneous wave equa-
tion, this fact plays a fundamental role in the proof of Glassey-Strauss. Unfortunately this
estimate seems very unstable. Indeed consider the Fourier representation of the solution:

o) = [ e SiTQ'f'g(s)dg

an decompose it ¢ = ¢4 + ¢_ with
etitlel

bi(t,7) ~ / o Sl

Can we still bound the L® norm of ¢4 (¢,-) in terms of ||g||r~ 7 The answer is no; the
best we can hope for is an estimate of the form

¢+ (Bl < llgllree log (2+ [IVgllLe) + 1 + llglle

with ¢ € [0,7] and p > 1. We prove a more general estimate of this type in Lemma 2.5,
for Fourier integral operators of the form
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with my homogeneous of degree zero in &.

Throughout the paper we will denote with f the Fourier transform '° of the function f:

96 = [ o) do.

We will also write for 1 < p < oo

s = ([ |g|p(z>dz)1/p

lgllo = sup lg(2)].
z€eR

If the function g has two variables, then for 1 < p,q < oo we write '!

I9lzzzs = (/ (/ |g(,v)]|? dv)p/q dw) v

and if p = ¢ we simplify the notation by writing

lgllzz g = llgllp-

Very often we will use the notation B ~ C, if there exists 8 € C, 8 # 0, such that B = 5C. We
will also write B < C, if there exists m > 0 such that B < mC.

2. PROOF OF THEOREM 1.4

During the process of proving Theorem 1.4 we will introduce few lemmas, but in order not to
distract the reader from the main flow of ideas, we postpone their proofs in the Appendix.
From the definition of characteristics we have

S
(21) X(s,t,z,v) = £E+/ V(o,t,z,v)do
t

(22) Vs, t,z,v) = v—i—/ts a(V)®(o, X (0,t,z,v))do.

We first observe the following support property for f.

Lemma 2.1. Assume that fy is supported on the set S = {|z| < k,|v| < k}. Then if f solves
the transport equation in (8) and ® satisfies (12), then for any t € [0,T]

(23) f(t,m,0) =0 for all (v,v) € Sy,
where
(24) Sy = (@ 0)/I5] > 2t +K) and [o] > 2(t|@] 1 (o) oo + B}

The proof follows directly from (21) and (22).
Since ® solves the wave equation (8), we write

(25) B(t,1) = Bolt,z)+ (27) //Ra sif( t_" sinllt = 9)IE 5 ¢)agdo

(26) = 0+ (‘1’+ - o

10 A1l * quantities refer to Fourier transform with the exception of ¢ = s which denotes the relativistic

v
(1wt
velocity!

"' The definition involving the L> norm is the obvious one.
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where @ is the solution of the homogeneous problem [1®3 = 0 and

¢ i(t-o)lgl
(27) B (t,2) = (2m) /0 /R e o

In what follows we neglect ®g, which contributes only a trivial term in the estimates below.
As &, and ®_ are treated in the same way we may assume that ® = ®. Therefore, ignoring
constants,

t i(t—o)lel .
(28) (I)(t,J?) =~ /0 /Rg /R3 eTeng(U)ff(U,f,v)dodfdv
i(t—o)lel N
/Ot /R3 /R3 %ew-éN(v)Vv(cb * hatf)(o,&,v) do d€ dv.

The first integral can be written in the form,

/ /Rs /Rg W{M(”)ff(a,é’,v)dadfdv

i(t¢]+z€) t
= BT —oilg| £
/R3 €| /R3 M (v)¢ </0 e f(O',f,U)dU) dvd§

At this point we use Fact 1 listed at the end of Section 1. The precise statement is contained in
the following lemma:

Lemma 2.2. Assume that f solves the equation in (8). Then for any fized v and &

t . —iol¢|
D(v,€) /0 e 8 f(0,6,v)do = z’[em f

D(v,&) = <1 + |T|€>

te—w|§| N R
i / a() - Vo« f)(o.€.0)do

0

It is now recognlzable in the left hand side of this equality the smoothmg effect represented by
the factor m We also observe that condition (23) guarantees that ‘1 + 7 |£| ‘ ~ 1. We postpone
the proof of this lemma to the appendix. Returning to I we write

i(tle|+o€) e—iolel ]
I = | M@)ED(w, &)t dv d
| g [ Mwene. [ . fL vd

i1 +x€) . t o—iol¢] ~ .
N /RT [ M)eDw.6) /0 g 0) Vol®« /) (o6, v)do
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Therefore, back to (28), ignoring constants and integrating by parts in v,

i (tIE|+€) eFiolel !
—— | M(@)¢D(v, 67! [ f] dv dg
/ €] / €],

+ / /Rg /Rg . o)lél -x-éN(U)VU(:I;* hatf)(o,€,v) do d¢ dv.

i(tlgl+o6) t icle] o
- 0. &)1 a(v) - V(P * 0, &, v)do
+ /R3 €] /R3 M (v)¢D(v,§) /0 B (v) - Vo (@ * f) (0, &, v)

it +x€) e~ tolgl !
[ [ o | S f| e
w16 e GEdR

i(t—o)lél ~ .
+ /Ut /R3 /R3 ¢ t|§| ¢ ey, [N(U) —I—M(’U)%D(U,f)1]((1)*f)(0',f,1))d0' d§ dv.

Finally, differentiating in z,

@) Vebta) ~ [ [ Myl v o

O(t, z)

%

%

i(t|&|+x€) A
" /Rg /Rg |§| My (v,6)E£(0,&,v) dv dE
((t—0)|§]+m8) o

+ /0 /RB /RB TMQ(U,£)€(@*f)(a,g,u)dadvdg

where
v v -1
(30) M )€|€D|g 13 My (v,§)
v v -1
(31) M )ﬂéf LU TACRS
(32) Vy[N(v) + M (v ) D(v,&)7'] = My(v,¢)

€]

It is not hard to show that My € S~' and M;, My € S°, uniformly with respect to v, where S™
is the class of usual symbols 2 of order m.

We now start the estimates for the derivatives of the characteristics. We first assume that all
characteristics start at time t = 0. We begin with V, V. From (22)

(33) V.V (s,0,2,0) = /sa'(V)BxV(a,O,x,v)@da
0
+ /0 a(V) - (V®)(o, X (0,0,2,v))V: X (0,0,2,v)do

where, as defined in (9) and (10), ® = (F, B) and «(v) = (1,0x).
Thus

(34) VxV(S,O,ZU,’U) zIO_’_II_FIQa

2See for example [9], page 232, for a precise definition.
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where

S
Iy = /a'(V)amV(a,O,x,v)q)da
0
S
I, = /VmX(O',O,:I?,’U)(VE)(O‘,X(O’,O,IB,U))do‘
0

I, = /VmX(O',O,IE,’U)VX(VB)(O’,X(O‘,O,:B,’U))CZO’.
0

Because o/(V') is uniformly bounded the estimate for I is trivial. We first estimate I;. Using
(29) we write
(35) Il :Ill+112+113

where

Iy =~ / V. X(0,0, v)/ / e X(@0TV)E Mo (w, €)Ef (0, €, w) dw dE do
R3 JR3

g
Q

z(r|§|+X 7,0,2,v)-§) R
/ / V. X(0,0,2,v) / M (w, €)EF (0, €, w) duw dé do
- €] -

o]+ X (0,0,2,0)-£) o . ~ A
Ly ~ / /.- VX (@ 0mw) [ [ T, B « (€ w) dr du dé do
o Jes g o e

The integral I;; can be directly estimated since its symbol K11 (w,¢) = My(w, £)¢é € S°. Before
estimating I3 and I;3 we need to do some more work. To get additional smoothing we need in
fact to appeal to Fact 2 mentioned at the end of Section 1. In view of (20) we can write,

(36) Lo = TLiot+Lise+ Tz + i

i(s1€1+X (5,0,2,0)-€) )
Loy = =V X(s,0,z,v) /R3 c ] / K121 (w,§) f(0,€,w) dw d¢
Tigs =~ VyX(0,0,z,v /3 ””5/ Koo (w, &) f(0,€, w) dw dé
I V,V(5,0 TR0 a0)E K f(0 dw dé d
123 R~ / <V (o, ,x,v)/RS H / 123(w, €) £(0,&, w) dw d§ do
Ci(o 1€ +X (0,0,2,0)-€)
.[124%/VX0'0:B’U)/R$ €]
x / BV (0))a(V (0))@(0, X (0)) - K ra (ur, ) £ (0,€,w) dew dE do
and
Ml(wa )5
37 Koy (w,&) = ——1055
B R P T
- Ml(waf)g
& s = Tevo o
Ml(wa )5
39 K &) = .
39) R P
2
(40) K124(UJ,€) — |§| Ml(wag)
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In a similar fashion we also have,

L3 = I3+ Lizgg + 1133+ L34

7, (s—7)|€|+X(5,0,z,v)-£)] N R
Ly ~ —V.X(s,0,2,0 / / / . K1 (w, €)(E * f)(r, €, w)dr du d

R3

(o—7)|€|+X(0,0,z,v)- A

Lz =~ / v VU,O:va / / € / Kizo(w, &) (E * f)(1,&,w) dw dT d§ do
RS

L33 =~ / VXO’OIU)/ X (@0:20)-€ / Klggwf)(E*f)(Uf, w) dw d§ do

(o—7)|€]+X (0,0,2,v)-£]
1134%/VX00$U//RS
/R3 BV (0))a(V(0))P(0, X (0)) X K134(w,§)(E * f)(T,f,w) dr dw d¢ do.
where
MQ(wv£)€
41 Kiz1 (w, —_—
(41) 131 (w, ) €+ V()0
MQ(wa€)£
42 Kz (w, N —
(42) 132(w, §) (€470 O
MQ(wv£)€
43 Kiss(w, ~ B
) w8 = Vo) o]
2
(44) K134(w,§) ~ |§| MZ(wvf)

(1€ +V(0) - £)?
In a similiir manner one can express also Io. In fact the only difference will be the presence of
V and 9;V. But both functions are uniformly bounded thanks to (12) and (23).

Remark 2.3. We have intentionally suppressed the dependence of the symbols K on o, z,v. This
dependence, through V, is trivial in view of the fact that V < 1. We also observe that Koo
and K133 belong uniformly to S~!, while all the remaining K1, belong uniformly to the symbol
class S°. They are in fact all homogeneous in ¢ € R3.

To estimate the terms involving these multipliers we use Fact 3 introduced at the end of
Section 1. We formulate it explicitly in the following lemmas:

Lemma 2.4. Assume that my, = my(z, \;€) € S*, uniformly with respect to x € R® and some
family of parameters X. Let Py be the associated pseudodifferential operator,

Pef(a) = [ | e mu(o, ) F e

i.) Foranyp € [1,3)

(45) 1P-19lls0 < (ll9lloc + llgllzr)-

ii.) Foranyp >3 and 1 < g < oo,

(46) 1Poglly S llgllza

(47) IPoglloe S llgllos log™ (IVgllze) + max(L, [|g]|za).-

where we denote log™ z = log(2 + z).



A NEW APPROACH TO STUDY THE VLASOV-MAXWELL SYSTEM 11

We should need a similar lemma for Fourier integral operators.

Lemma 2.5. Assume that mg = mg(t,z,\;€) € S° uniformly with respect to t € R, z € R3
and a family of parameters \. Assume also that mg is homogeneous of degree zero in &. Let
T =T, be the associated Fourier integral operator, defined by

i(t|E|+z-E)
Ty(t,z,\) = / O ot X )3 (€) de

r: €]
for g € S(R3). Then for any p € (1, 0]

(48) ITglloo < max(1,[lgllL2) + llglleo log™ ([VgllLr).
Also
(49) ITfllzersy S N fllze-

The proof of these lemmas can be found in the appendix. We now use (45)-(48) to estimate
each of the terms I;;;. For example,

IOl S [ 19:XC0000 [ (1760l 08 (19250010415 001241 ) s do

follows from the fact that the symbol K13 = ¢ My € S° and hence (47) can be applied for any
p > 3. Using (45) we estimate

izl S 192X (00,00 [ (o)l + o)z ) o
and
17133 (5)]l oo 5/ IIVxX(U,O,x,v)Iloo/ (||Ef(0aw)”oo+||Ef(0aw)“L2> dw do.
0 R3

To estimate the remaining I;;; terms, we introduce:

o i[(0—7)I€l+y-¢] .
T[H](Ua y) = /0 /]RB’ GTKZJk(w,f)H(T,f)deﬁ,

where H (1,6) = Jga eWEH (1,y)dy and K;ji € S° uniformly. Clearly the Fourier integral T[H]
can be estimated by using (48). Using this notation we now write

Lo (s) = Vo X (s,0,2,0) /R om0 X (0,0,,0))dw

where f(o.,)(y) = fo(y, w). Consequently,

H121(8)[o0 S VX (5,0, 2,0) [l /RB (maX(llfo(w)||L2, 1) +10g+(||Vfo(w)||Lp)> dw

for p € (1,00]. Similarly,

Tia3(s) = /0 ’ [ VY (0,0,2,0)T[fom)(0, X (0,0,2,0))B(V (0)) du do,

and using the boundedness of 3 on the time interval [0, 77,

o)l S [ 19V (@00l [ (tog" (19 aw)ler) + )2 + 1) o,
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and similarly, thanks to the boundedness of «, 5 and ®

e S [ 19X 000l [ (108719 o)) + o)l + 1) duo i

again for p € (1,00]. We use a similar argument to bound I35, with j = 1,2,4. Here we only
show the calculations for the case 7 = 4. We write

I3y = /05 - VX (0,0, 2,v)T[E fy](0o, X (0,0,2,v))B(V (0))®(0, X (0)) dw do

where (Efy)(7,y) = E(71,y)f(7,y,w). Consequently, since «, 3 and ® are uniformly bounded,
in our time interval [0, T,

ss()le < / IV.X (0,0, 2, v) | 1=
0

X

/ (log+(||Ef(a,w>||oo||V(Ef>(a,w)||Le) B, w) e + 1) dw do
RS

S
< / IV, X (0,0, 2, 0) | 1=
0

X

[, (18500 10 T E@ 11 + 195 0)ll2) + 1S 0012 + 1) oo,
We now summarize the above estimates for 0,V

S
(50) [|VzV(s,0,2,0)|lcc S IV2X (0,0, z,v)|| 1 (W1 + Wo + W3 + Wy)(w) dw do
0 R3

~

+ / HVCDV(O-a 07 z, U)HLOO / (W3 + W4)(’LU) dw do
0 R3

N ||VxX(s,0,:Jc,v)||Loo/ (W + W) (w) dw + 1,
RS

where,
Wi(w) = |[If(o,w)]lelog™ ([Vaf(o,w)llze) + || f (0, w)l|zee + 1
Wa(w) = [|2f(0,w)llec + |2 (0, w)l| L2
Ws(w) = log" (|Vfo(w)llzs) + [l fo(w)llz2 + 1
Wi(w) = log"([2f(0,w)llo[VO(o) e + IV f (0, w)l|16) + | F (0, w) 12 + 1,

for p > 3. In a similar manner one also obtains

(51) [VoV(s.0,2,0) 0 < /0 IVoX (0,0, 2,0) | o /R?)(W1 W + Wi + W) (w) dw do
+ /05 VoV (0,0, 2,v)| e /R3(W3 + Wi)(w) dw do
IV X0 [ W+ W) ) du 1.

On the other hand, from (21), we simply have

S
(52) IV0X(5,0,2,0)]lo0 < 1+ / IVaV (0,0, 2, 0) oo do,
0
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and

S
(53) 170X (5,0, 2, 0) 0 < / VoV (0,0, 2, )| o do-
0

We need two more ingredients to be able to complete the proof. The first is the following
lemma;

Lemma 2.6. Assume that ® and f are solutions for (8) and that ® satisfies the uniform bound-
edness condition (12). Then for any t € [0,T]

(54) 1f@llzzzs < Crllfolleo, for 1 <p,q < oo,
(55) IVaf()llzers < CrllVaf(t)lleo, for 1 <gq,p < oo,
(56) [Va@(@)lls < Crl|Vaf(#)loo-

Also the proof of this lemma can be found in the appendix '3. Next we define

z*(s) = sup [|VeroX(7,0)]
T7€[0,s]

v'(s) = sup [[Va,oV(7,0)]lc0-
T7€[0,s]

We then go back to (50), (51) (52) and (53). Making use of Lemmas 2.6 and 2.1 as well as (12)
and (23), we obtain:

z*(s) < 1-!—/081)*(0)d0
(57) ) £ 1 [0+ ) g (IVaf @) do

(58) + o [ log (V£ (0) ) do

The last important ingredient of the proof is the fact that the derivatives of f can be estimated
in terms of the derivatives of the forward characteristics X (s,0,z,v),V (s,0,z,v), s € [0,T]. In
fact, using the backward characteristics X (0, s, z,v), V (0, s, z,v), we write

f(s,z,v) = fo(X(0,s,z,v),V(0,s,z,v)),
Therefore,

IVaf )l < [Vafollo (nva(o,s)uLoo T uvmo,s)um).

According to Lemma 3.1 we can invert the flow and derive,

(59) IVaf($)llee < (nva(s,muoo+||va(8,0)||00
5
T ||vvv<s,o>||oo+||VUV(s,o>||oo) |

13Here we do not try to obtain the best L? estimate for V,®. We needed to have an estimate for some p > 3
and the one for p = 6 was already in the literature.
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We can now substitute (59) in (57) and (58) and finally derive
z¥(s) S 1+/Osv*(a) do
vi(s) < 1+ /Os(v*(a) + 2*(0)) log™* (z* (o) + v*(0)) do
b2 (s) /0 ot (5 (0) + v (o) do
It only remains to invoke Lemma 3.2, in the appendix, to conclude that for all s € [0, T,

(60) Va0 X (5,0)llo0; Ve,V (8,00 < Cr,

and Theorem 1.4 is proved for ¢ = 0. To prove the theorem in full generality we first observe
that if we insert (60) into (59) we obtain the uniform bound

Then we repeat the argument presented above replacing X(s,0,z,v) with X(s,t,z,v) and
V(s,0,z,v) with V(s,t,z,v). It is easy to see that (50) becomes

(62) IVaV(sitz,0)le < /0 Vo X (0, 6,2, 0) [ 1o ég(W1+W2+W3+W4)(w)dwdg
+ /0 VoV (0, t,2,0)|| Lo /R3(W3 + Wi)(w) dw do
VX toao)lum [ W+ W) du+ 1,

that (51) becomes

(63) IVoV (5,820l < /0 Vo X (0, £, 2, 0) |10 /R?)(W1+W2+W3+W4)(w) dw do
+ /05 VoV (o, t,2,v)| L /R?)(W3+W4)(w) dw do
b IVeX (5,12, 0)]| 1o /R3(W3+W4)(w)dw+1,

that (52) gives

(64) VX (st o)l S 1+ [ 192V (0 t,,0)] i
0
and similarly for (53). Thanks to (61), Lemma 2.6 and 2.1, (12) and (23) we have
(65) / Wi (w)| duw < Ci.
R?)

Then if we set

:E*(s,t) = Ssup ||Vm,vX(7'a )]0

T€[0,s]
v*(s,t) = sup [|[ViuV (7,100,

T€[0,s]
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and we insert (65) into (62) and (63) , we obtain
(s, t) < 1+/ v*(o,t) do
0

v*(s,t) < l—i-/os(v*(a,t)+x*(a,t))da+x*(s,t),

and again by Lemma 3.2

’lv:E’UX(S,t)||OO, HVCE,UV(Sat)Hoo <Cr,

for all s,t € [0,T]. This concludes the proof of the theorem.
3. APPENDIX
Proof of Lemma 2.2

The proof is a simple consequence of integration by parts and the transport equation in (8).
In fact
t

t e—tolEl e~tol¢l
(66) / e 7 f(o,6,v)do = [ f +/ 95 f (0,€,v)do.
0

0 —i¢] —il¢]
The transport equation allows us to substitute 0, f and continue the chain of equalities with
e—iolel "

t R . o
~iE] f 0+/0 ewé(ﬁ.gf)(a,f,v)da—i-/ efwlﬁl(a(v) Vo (D * f)(0,&,v)do.

0
Then the lemma is obtained by moving the second term of (67) to the left hand side of the
equality.

67) = [

Proof of Lemma 2.4

The Lemma is well known; we present its proof here for the sake of completeness and as an
introduction to the more difficult proof of Lemma 2.5. For simplicity we shall pretend that our
symbols my depend only on £. In view of the uniform boundedness of my(t, z, \; £) relative to
the parameters ¢, z, A the general case does not present any additional difficulties. We start by
proving (45). First recall [9] that if

Ka) (y) = /1&3 eiy-ﬁma(g) dg,

where m, € S%, o <0, then

_ 1
68 Ko.(y)| < .
(68) |Ka(y)| g
Now write
P_ig(z) = K_i(z—y)gly)dy + / K_i(z —y)g(y) dy,
By (:1:) By (:L‘)C

where Bj(z) is the ball in R® centered at z and of radius 1, and By ()¢ is its complement. We
then use (68) to obtain, for any p € [1,3),

|P_1g(z)| < llglloo + llgllze-
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The inequality (46) is a classic result of Harmonic Analysis; we refer to [9]. We now sketch the
proof of (47). using a well known argument; see for example [1]. Fix z € R, € > 0 and write

g = g1 + g2, where g1(y) = 9(y)XB. () (v). Then if

~ mo(§)
m_l(f) - |£| )

we can write

| Pog(z)]

Ko(y — 7)g(y) dy

N

‘/ K_i(y — 2)Vg(y) dy| +
y—z|<e

1 1
/ LVl dy + / L Vol dy
ly—z|<e |y $| 1>|y—x|>€ |y $|

1
+ / Vgl dy
ly—z|>1 |y - $|3

S M2Vl +log(e™ ) gllo + llgll e,
for any p > 3 and 1 < ¢ < co. Then pick e~ '/P'+2 = ||Vg||z» and (47) is proved.

y—x|>e

Proof of Lemma 2.5

As in the proof of the previous lemma we drop the dependence of mg on t,z, A. Thus mg =
mo(§) is an homogeneous symbol of degree zero in {. We first observe that it suffices to prove
(48) for t = 1. In fact, by a simple change of variable and the homogeneity of mg, we have

(69) (Tg)(t,y) = tT(g0) (1,1 'y)
where g;(y) = g(ty). Thus, assuming the estimate to be true for ¢ = 1 we obtain
ITg)lle = th(Tge)(1)lloo

S lgllss log™ (IIVgllze) + llgllze + 1.

From now on we write T'g(z) = T'g(1,z). For simplicity we may also assume z = 0. Then

(10) 7o) = [ Koty

7 K — i(/¢|—y-)M0(§) d

() N s 3

By a simple limiting argument!'* we can replace K (y) in (71) by the kernel
_ [ te-vom&)

(72) Ky = [ o e e,

with, x an arbitrary test function on [0, co) verifying
(73) 0<x<1, and /|X'(u)|du <10

Without loss of generality we may also assume that x(|£|) is supported in the complement of
|¢] < 1. Indeed we can split K = K; + K, with

Kiy) = [ e e e,
lg1<1 e
"Indeed Tg(0) = limroo Trg(0) with Kr(y) = [oqe 161708 2EIx(1¢] /L) d€ where x is a test function on

[0,00) with x(u) =1 for 0 < u < 1. It thus suffices to prove an estlmate for all L. To do this it suffices to prove
an estimate, for all test function y(u) verifying (73).
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Clearly, [os Ki(v)g(u)dy = fig < " X(1€)(¢) and therefore,

(74) S llgllze-

RB

Kz(y)g(y)dy‘ = ‘/ﬁq %di

In what follows we shall therefore assume that K(y) = Kp(y).
If mg where radially symmetric, then a sharp estimate for Kj(y) was given by Stein !5 in [9],
6.13, page 426. By expressing (72) in spherical coordinates we obtain

27 oo pmo
(75) K(y) :/ / / e (utlylucos0) (0, w)ux () sin 0 df du dw.
o Ji Jo

Notice that because mg € SY is homogeneous it will not depend on u. We now estimate the
inner integral in 6. By integration by parts

/7r ei\y|ucos 9m0(0, ’UJ) sinf@dd = |:€z|yu cos 0 mO (0, ’w) :| T B /” ei\yWCOse alﬂmﬂ(ga ’w) 4o
0 ilylu 1o Jo ilylu

One can then use the method of stationary phase to estimate the asymptotic behavior of the
integral in the right hand side (see for example [9] page 334 and (12) page 336) and prove that
as u — 0o

™ ol ) e tlylu 1
(76) /0 elvlueostn (9, w)sinfdf =~ T (mg(w,w) + W&gmg(w,w)>
etlylu

1
Iyl (mO(O’w) " Waamo(o,w>> .

If now we insert (76) into (75) we derive,

HZ > wu(l— H > N
(77) K(y)%#/l M=y () du — |0y(|y)/1 M+ () du,
where )
Hz(y) = 0 Hz(’UJ,y) d’UJ,
and
1
(78) H,(w,y) = (mﬂ(zaw) + W@ﬂ%(%@)-

Observe that, for fixed z, both H,(y) and d,H,(y) are uniformly bounded . Clearly the term in
(77) with phase function u(1 + |y|) is easier to treat and we ignore it in what follows.
We next decompose the integral I = [o; K(y)g(y) dy as follows:

(79) I = Il+[2+[3
I = / Ye(y) K (y)g(y) dy
I1—|yl|<2e
I, = / 1 (1 —e() K (y)g(y) dy
[1=|yl[>€ 5<|y|<10
K(y)g(y)dy

/{IySI/Q}U{IyZIO}

15We would like to take the opportunity to thank E. Stein for pointing this out to us.
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with 9¢(y) a smooth test function supported in the region 1 — |y| < 2e equal to 1 on 1 — |y| <€
and such that |V, (y)| < 1.

We start by estimating I3, which is the easiest. In fact from (78) we obtain by a straightforward
estimate that

KW <

WEE for |y| < 1/2.

On the other hand, for |y| > 10, we can integrate by parts in (78), and derive in view of (73),

w1y y (1) d <7/ o ldu < -
e x(u) du | < X (u)ldu S —.
/1 ) lyl =1y be () yl
Therefore,
1
K(y)| < e for |y[ > 10.

whence
(80) 3] < Mgl + llgllz2-

To estimate I we proceed in the same way, by integration by parts and using (73), to derive
K@)~ o foramy [lyl — 1] > & 3 <[] <10
y)| ~ orany |ly| — 1| >¢€ = <|y .
11—yl ' 2

Then clearly,
(81) 12| S [lglloo log(e™").

The estimate of I is a little more delicate. Clearly, for Hy| - 1‘ < € we have

K(y) ~ H(y) / Dy () du du,

Consider the new kernel

Observe that,

v i) = K+ oy ( L)) [T dud,
Therefore,
(52) Ky) ~ V K@)+ K@)
(53) ko) ~ o(Law) [T

84) I = / b K W)gly) ~ / () K (v)g(y)dy — / RV, ($e(v)a(y)) dy
(85) ~ I+ Lo+ Iis
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where,

(86) In = / K(y)¢e(y)Vy9(y)
(87) Ly = / B () Vebe(n)g ()
(88) Ly = / B ()b (w)g(v)dy

We start by estimating the kernel K (y)

where
_ etyl=1)
(89) Ky = LHE) / T w)du
|y| 1 U
_ oo i(ly|—1)
(90) Raty) = LHG) [,

and M = ‘|y| - 1‘71. Clearly,

Ki(y)| < / ~du <logM = —log

1—|y|\

w0l 5 [ | (< ot = [l 1
Therefore,

[ 111

IN

| / Ri(y)(y) Vg (y)dy] + | / B (0)e(y) Y y9 () dy|

—1
[t (|11 )
I log?” (‘1—
ol ([ o (1=

for any p > 1 and some 0 < v < 1.
Now, since |Vpe(y)| < et

(91) L] < gl /

‘l—ly\‘ﬁe

N

N

-1 1/p
)dy) < Vgl

—1 _
log |1 = |yl| ™ dy < loge™"(|gll oo

Finally, since K admits the same estimate as K, we find,
L3]S Nlgllze /‘1 ul (K (y)ldy < llgllze--
—ly

Therefore,

(92) 111 S €lIVgllLe +loge g p

Combining this with the estimates for I, I5, see (79), (80), (81) as well as (74), we derive
(93) 1Tg(0)] = |I| S €|Vgllre + loge™ gl + [lgllz2
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L .
We now chose e=! = (2 + ||Vg||z»)” and infer that

1
T9O)] < 1+llgllz> + Zlgllzee log*([VgllL»)

as desired.
The last inequality (49) of Lemma 2.5 for ¢t = 1, can be found in [9], page 399.

Proof of Lemma 2.6

Proof. 1t is easy to see that (54) and (55) are a simple consequence of the fact that || f|lococ < || folloo
and (23). The proof of (56) requires more care. Recalling (29), in the proof of Theorem 1.4, we
can write

V@ =J1 + Jo+ J3,
with

Nna) = [ o) o
i(t|g|+x€) .
nite) ~ [ [ M. 0.6 v vt

¢ i((t—0)|¢|+x8) —
) ~ [ f g L M. 68T 06 o) do

where My € S~1, My, My € S°, uniformly in v. Since My(v,£)¢ € S°, we can make use of the
estimate (46), see Lemma, 2.4, and the compactness of the support of f in v, see (23), to infer

(94) [ @)llze S 11 (E)lze
for any 1 < p < co. Making use of the estimate (49) of Lemma 2.5

(95) 120l 5 [ IVefolt,0)lzz do

t
(9 sl < [ [ 19000 0)le dod
Then finally, using (54), (55) (12), Lemma 2.1 and Gronwall inequality, we derive (56). O

Next lemma shows that the derivatives of the characteristics of the backwards flow can be
estimated with respect to the derivatives of the characteristics of the forward flow.

Lemma 3.1. Let s € [0,T] and denote by (X (s,0,z,v),V (s,0,z,v)) the forward characteristics,
associated to (8) see also (21)and (22), initiating at t = 0 and by X(0,s,z,v),V(0,s,z,v) the
backward characteristics initiating at time t = s. Then,

5
(97) IV (X(O, s,x,v),V(0,s,x, v)) lree < <||Vx,v (X(s, 0,z,v),V(s,0,z, v)) ||Loo>

Proof. By definition

X<t,s,X(s,t,w,v),V(s,t,x,v)

V(t, s, X (s,t,x,v), V(s,t,x,v)) = v
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Differentiating and applying Cramer’s rule it is easy to see that V., (X(O, s,x,v),V(0,s,z, v))
can be expressed in in terms of an homogeneous polynomial of degree 5 in the components of
Vaw (X(s,O,m,v),V(s,O,x,v) divided by the determinant A(s,0,z,v) of the Jacobian of the
transformation,

A(s,0,z,v) = ‘V%U(X(S,O,x,v),V(S,O,x,v)‘.
It thus remains to establish a bound from below for A in the interval [0,7]. To do this we shall
make use of our uniform bounds for ®. Recall that,

X(t,0,z,v) =z and V(¢,0,z,v) =v, for t=0.
Differentiating,

(98) d (0, X,0,X _ 0, Bv) 0 X, 0, X
ds \ 9. V,0,V ) = \a(v)0,®, o/ (V)P 0.V, 0,V
Recall that A(s) = A(0)exp f(f trA(s)ds with A(s) the first matrix on the right hand side of

(98). Since the trace of A depends only on ' (V)®, which is bounded on our interval [0, 7], and
A(0) = 1 we infer that A(s) = 1 as desired. O

Lemma 3.2. Let x(s) and v(z) be two nonnegative increasing functions defined for s € [0,T]
and such that

(99) 5(s) < o+ by /0 o(0) do
(100) o(s) < o+ boa(s) / log* (v(0) + () do
0
(101) + b3/ (v(0) + 2(0)) log (v(0) + z(0)) do.
0
Then

v(s), z(s) < Cp, forall s€0,T].

Proof. Without loss of generality we can assume that z(c) > My for all ¢ > 0 and M is such
that

# > M01/2‘
log™ (M)

Combining (99) with (100) and (101) one easily obtains that

z(s)+v(s) < c3+by /Os(ac(a) +v(0)) do /s log® (v(o) + x(0)) do

0

(102)

(103) + by /Os(ac(a) +v(0))log™ (v(o) + z(0)) do.

Again without loss of generality we can assume that c¢3 = 0,by = b5 = 1. We set z(s) + v(s) =
w(s) and from (103) we obtain

wl(s S’UJO' ag SO+’LUO' ag S’LUO' 0+’LUO' ag
(5) +/0(>d/01g<<)>d+/0(>1g<<>>d
(104) < /Ow(a)dalog+(w(s)).

IN

N
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We now set y(o) = %. Using (102) it is easy to see that for all o € [0, 7]

g w0 ulo)
) < 2T (e ' Q%WMQQ'

Then y(s) satisfies the Gronwall’s inequality

S
v < [ vlo)tog* (4lo)) do
from which we immediately deduce that w(s) < C for all s € [0,T] and hence the lemma. [
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