BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE
EQUATIONS

DAMIANO FOSCHI AND SERGIU KLAINERMAN

ABSTRACT. In this paper, we pursue a systematic treatment of the regularity theory for products
and bilinear forms of solutions of the homogeneous wave equation. We discuss necessary and
sufficient conditions for the validity of bilinear estimates, based on L? norms in space and time,
of derivatives of products of solutions. Also, we give necessary conditions and formulate some
conjectures for similar estimates based on L{L" norms.

1. INTRODUCTION

The goal of this paper is to investigate bilinear space-time estimates for solutions to homogeneous
wave equations. The main part of the paper concerns L? estimates where we give a complete set
of necessary and sufficient conditions for their validity. In the second part of the paper we discuss
more general estimates in LL" spaces for which we find necessary conditions. These lead us to
make a few selected conjectures concerning estimates for quadratic null forms whose solution, we
feel, will be important in applications to nonlinear wave equations. We expect however that the
complete solution will require an entirely new set of techniques than those now available.

Consider two solutions, ¢ and 1, of the homogeneous wave equation in R**",

Op =0, Oyp=0, (O=-07+4,, teR zeR"), (1)
subject to the initial conditions at ¢ = 0,

$(0,-) = do, 0,0(0,-) = p1, ¥(0,-) = vy, 92p(0,-) = . (2)

We want to investigate the space-time regularity properties of the product ¢ in terms of the
regularity of the initial data (¢g, ¢1) and (g, ¢1). In particular we want to find the set of exponents
oy, o, By, B4, B— € R for which we have the estimate!:

<

~J

[0 0o

L2(R1+7)
§ (||Dal¢0||L2(Rn) + HDO&171¢1HL2(R”)) <||Da2w0||L2(R”) + HDO&Q?I’Q/)IHLQ(R”)) ’ (3)

Here, D and D, are homogeneous “elliptic” operators of fractional differentiation on R* and R'*™™,
corresponding to the multipliers || and (|7| + |£]), with 7 € R and £ € R,

Def(€) = €1 f(€),
DYF(r,€) = (7] + [€)*F(r,€).

Date: July 12, 1999.
IFor an explanation of the notation see Section 2.
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The operator D_, instead, corresponds to the degenerate symbol ||7| — |£]|, and reflects the “hy-
perbolic” features of the wave operator O,

(DLF) (1,€) = |Ir| = [€]|” F(7,€).

With the signs ~ and ~ we denote the Fourier transform in R® and in R*™", respectively.
When n = 3, the case ¢ = ¢, a; = ay = 1/2, fy = B, = [ = 0 reduces to the classical
inequality of Strichartz [18],

16l arss) S 1P 0]] oy + 07261 || 2y -

Bilinear homogeneous estimates similar to (3) have first appeared in [6] and formulated as
estimates for null forms. That paper contains some estimates of type (3) in dimension n = 3,

corresponding to cases where . = 1/2 or f_ = 1. In [11], Klainerman and Machedon have
proved the following symmetric cases of (3):
-1
TL23, a1:a2:n4 +%7 1_g<6+§07 50:5—:07
3 8 1 1
n=2, a1:a2:§+7+7 _Z<B+§07 B(]:Oa B*ZZ

In [14], Klainerman and Selberg have obtained, and made use of, the following cases:

1
n=>2 o =0, 042:ga Bo = B4 =0, 5—257
n 1
nz2 a=0 a=1, B+:1_§7 5—257 Bo = 0.

Further special cases? of estimates of type (3) have appeared in [8], [9], [10], [13], [12], [15]. In
this paper we pursue a systematic analysis of the estimates (3), which can be summarized in the
following theorem.

Theorem 1.1. Let n > 2. Let ¢, be the solutions of (1), (2). Then the estimate (3) holds if
and only if oy, ag, By, By, B— satisfy the following conditions:

ot B+ B = on b an— T 4)
n—3

o>t )

fo> =" (
w<ho+ o =12, (7)

o tan> (8)
o) # () i )
@tani) # (5-277) (10)

2See also the work of Beals and Bezard in [1].
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FIGURE 1. Allowed region for ay, as.

Remark 1.2. The necessity of equation (4) follows easily by a straightforward scaling argument.
This restricts our parameters to a four dimensional polyhedral region in the (ay, as, fo, B+, 3-)
space.

Remark 1.3. The best way to understand the structure of the conditions in Theorem 1.1 is to

start by fixing the values of S_ and f, in the range allowed by (5) and (6). With these values
fixed, the conditions (7) and (8) constrain the pair (a4, as) to stay inside the triangle determined

by the vertices
-1 -1
Ao=<ﬁ_+n—,ﬁ_+n )

2 2
n—1 n—2
A= | p- —f_ —
1 <B + 9 ) 5 2 > )
n—2 n—1
Ay = —p_ — _ )
o= (-5 -2 a4
Finally, for (aq, ) fixed, we determine 3, from the scaling condition (4). The sides of the triangle
are allowed, except in the most critical case when we have equality in (5), f_ = —”T_?’. In that

case the sides are entirely forbidden by the conditions (9) and (10).

Remark 1.4. In applications to nonlinear wave equations the most useful cases seem to be those
with 5= = 0 or . = 1/2. These appear in connection with nonlinear equations which contain
null bilinear forms ([7], [8], [9], [10], [12], [14], [15]).

In particular, when n = 3 the value f_ = 0 is critical and the range for the parameters oy, as

is restricted to the interior of the triangle,
1 1
—§<Oél,042<1, Oél—|—052>§.

In the case f_ = 1/2 the sides of the corresponding triangle are also included,

3 1
—1§&1,02§§, CY1+CYQZ§-
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Notice that for n = 2 the value S_ = 0 is ruled out, we need in fact S_ > 1/4 > 0. This is
related to the fact that in the case of the classical Strichartz inequality,

2
H¢2HL3(R1+2) S (HDl/z%HL?(R?) + HDil/Z(ﬁlHL?(R?)) ’

the L3 norm is optimal, i.e. it cannot be replaced by a L? norm with p < 3.

On the other hand, estimates with negative values for 5_ are allowed when n > 3, they have not
appeared in the previous literature. They are important to treat generic nonlinear wave equations
whose nonlinear terms contain derivatives®. Consider for example the equation

Ou = |Dul?, (11)

with initial data in H®. Our estimates give a precise description of the regularity of the correspond-
ing first iterate u;, which satisfies the equation Ou; = |Du0|2, where ug solves the homogeneos
wave equation with data in H®. Indeed, for § > 1/2 we have

larllzze e S [[D2D% ][ S (| D DT (Duo)? |1

and we can use our bilinear estimates with f_ =0 —1, B, = s—1, g = a; < s —1, to
control the first estimate u; in terms of the initial data, whenever s —n/2 > 6 —1/2 > 0 and
0 > —(n — 7)/4. This suggests that the correct range for the wellposedness of (11) should be!
s > max{n/2, (n+5)/4}.

The paper is organized as follows:

Section 3 contains some preliminary remarks concerning the L? theory. Section 4 contains some
simple lemmas which are repeatedly used in the following sections.

In section 5 we discuss the basic counterexamples, which show the necessity of the conditions
(5), (6), (7), (8). In section 6 we provide more refined counterexamples in frequency space to
justify the need for the exceptions (9), (10) and the strict inequality in (6).

The proof of the L? estimates is broken down into several cases according to different types of
interactions of solutions, this is done in sections 7-11. The techniques used here refine, and at
the same time simplify, those contained in [6], [11] and [14]. In section 12 we discuss the dyadic
version of these estimates. The importance of these lies in the fact that they hold even in those
exceptional cases excluded by the conditions (9) and (10). On the other hand they imply most of
the cases covered by Theorem 1.1, with the exception of some limiting cases. Such estimates have
recently appeared also in [21]. In section 13 we will apply Theorem 1.1 to study L? estimates for
null forms.

In section 14 we take on the question of the existence of similar estimates in L? spaces. We find
a set of inequalities for the indices q,r, aq, as, By, By, B € R, which are necessary for the validity
of estimates of the type,

| D DI D (60)

S DMl + 1D ) (Dol + D% 2) . (12)
tHx

and raise the question whether these condition are also sufficients (modulo borderline cases). These

lead us to some specific conjectures concerning estimates for null quadratic forms®. The special

case of (12) with ¢ = co and r = 2 is relatively easy and is treated in sections 15 and 16.

3and don’t satisfy the null condition
“Recently this was proved by Tataru [22]
®Some particular cases of these conjectures were first considered in [6]. See section 14 for precise references.
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Finally, for completeness, we conclude the paper with a section on the so called bilinear re-
striction conjecture®, which generalize the restriction theorem of Stein and Tomas [23]. As the
restriction theorem is intimately tied to the Strichartz inequalities, in a similar fashion we expect
that the solution of the bilinear restriction conjecture, which is much easier to formulate, will shed
light on the above mentioned bilinear conjectures for the wave equation.

2. NOTATION

To simplify the expression of our inequalities, we will use the symbols <, ~, > to denote relations
<, =, > up to a multiplicative constant, which may depend on n, a;y, as, By, 5+, 5, but not on the
initial data ¢y, 1y (or the L? functions f, g). Also, if X <Y and X 2 Y we will write X ~ Y. If
in the inequality < the multiplicative constant is, or can be, much smaller than 1 then we use the
symbols <; similarly, if in 2 the constant is, or can be, much greater than 1 then we use >.

By S*¥ we denote the k-dimensional unit sphere, canonically imbedded in R¥*!, and by dS its
standard volume element.

Fourier transforms on R® and R**" are denoted by = and ~:

fle) = / ) dr, F(rg) = /R OR () dedr,

The L? norms are defined in the usual way,

11 = ([ 1rt@pan)’s 1<p <,

and since we mostly deal with L2 theory, We will often suppress the subscript and simply write
NIl = 1fll;2- We also write (f,g) = [ f(z)g(z)dz for the inner product on L?, while with z -y
we denote the standard scalar product of Vectors in R”.

By L{L" we denote the Lebesque space with mixed exponents defined through the norm

1

nFmﬁgz(/tf(/nwvﬂmwu)z&>5

With R(z) and J(2) we denote the real and imaginary parts of the complex number z.

3. PRELIMINARIES

The solutions to (1) and (2) can be decomposed into their (+) and (=) parts: ¢ = ¢T + ¢,
where

OF(7,6) = 8(r F 1€)) 65 (€),
where ¢ are linear combinations of ¢, and D¢, and similarly for ). The product then decom-
poses into four pieces:

P = YT + T +o T+ Y
By symmetry, it is enough to prove the estimate only for the (++) and (4+—) cases, since the
(——) becomes (++) reversing the direction of time and (—+) becomes (+—) exchanging ¢y with

Wo.

6The conjecture, which surfaced in discussions between Klainerman and Machedon many years ago, was first
announced by Klainerman at a conference on Harmonic Analysis and Applications to PDE’s at MSRI, Berkeley -
July 1997.
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Fourier transforms of products become convolutions, and we have:

S (r,6) = / 5(r — [0l — 1€ — nl)dg () (€ — m) dn, (13)
U (1,€) = / 5(r — |l + [€ — nl) g (n)do (€ — ) dn. (14)

The two integrals look similar but have different behaviors: (13) is an integration over the ellipsoid
of revolution with foci at 0 and &,

E(r,§) ={neR":n|+[§ —n|="1}, (15)

which is a compact manifold; (14) is an integration over the hyperboloid of revolution with foci
at 0 and &,

H(T,§) ={neR" :n|—|{—n|="1}, (16)

which is an unbounded manifold with infinite volume. Also, notice that ¢+ + is supported on the

region 7 > [£|, while ¢t¢)~ is supported on the region || < [¢].

Remark 3.1. The delta functions in the integrals (13) and (14) can be viewed as the pull-backs
of standard delta distributions, or equivalently as measures supported on hypersurfaces (see [4,
Theorem 6.1.5]). Let S be the hypersurface defined by ¢(z) = 0, where ¢ is a smooth function
with Vo(z) # 0 for x € S Nsupp f, and denote by dS, the induced area element on S, then we
have

/f(x)é(qﬁ(x))dl":[gf(x)|v(j;sf;)|'

Observe also that if g is a smooth function which doesn’t vanish on S then, as a consequence of
(17), we have

(17)

0(p(x)) = g(x)d(g(x)b(x)). (18)

By Plancherel’s theorem, the main estimate (3) will follow from the following estimates in
frequency space,

i (el + 1607 el = 161 9= €)| | < ||lml™dotm)]| , 161290 | .
Lre Ly L
which are equivalent to the L? boundedness of the bilinear operators
B(-H—)a B(_|__) : LZ(RH) X LZ(RH) — LZ(RIJHL),
defined as the inverse Fourier transforms of
- §ﬁ07ﬁ+ T—|€ B
B (1.9 = [ 66— al ~ g~ ) =B gt - man. 9
A _ 17+ (J€] = I71)°-
B (f,9)(1,6) = [ 8(r —[n| + £ —nl) Tl =l f()g(€—n)dn. (20)

Remark 3.2. Since these are positive operators, in the sense that B(Jri)(f, g) > 0 when f > 0 and
g > 0, we can always assume, without loss of generality that f > 0 and g > 0 are non-negative
functions. This will simplify the notation and we won’t have to worry about absolute values.
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To construct counterexamples it will be useful to consider also the representation of the operators
B(1+) in physical space:

Biro(f.9)(t / / i CamOW, (. €) £ (n)g(C) dndc, (21)
ou(t, i C) = tnl £ 1¢) + 2 - (n+0), (22)
Bo B+ _ B-
W ,¢) < P D G+ 16~ G )
In|et€ — 7|
0+ CIP+P (| + | — lInl = []1)P-

W_(n,¢) = 24
(m,6) T = (24

4. INTEGRATION ON ELLIPSOIDS AND HYPERBOLOIDS

In this section we collect various results about the geometry of the ellipsoids and hyperboloids
defined in (15) and (16), which will be needed in the sequel.
To deal with integrations over the ellipsoid £(7, &) we introduce a convenient parameterization.

Lemma 4.1. Consider the integral

I(F)(r,€) = / 5(r — nl — 1€ — nl)F(lnl. € — nl) da,

defined in the space-time region T > |£|, then

1o = -1 [ (I o) - P e @)

Proof. Using formula (18) we can multiply the argument of the delta function by the quantity
7= [+ 1€ —nl,
o(r = Inl = 1€ =nl) = (= [nl + € = n)o((r — In)* = [€ = nl*) =
= 2(r — [n)d(r* — [€[* — 27| + 2 - 7).
Introduce polar coordinate for n, p = |n|, w = n/|n|, then dn = p"~1dS, dp; set also the cosine
a=w-£/[¢], then dS, = (1 —a?)"s" dS,, da. With these transformations our integral becomes

00 1
I(F)(r,¢) 2/0 /_IF(p,T—p)é(TZ— €12 — 27p + 2[¢]pa) (T — p)p" (1 — a?)"F dadp.

We use the delta function to set the value of a to
T — [P —27p

, 26
2(¢lp (%)
with the condition —1 < a <1 that forces (7 — [€])/2 < p < (T +£])/2,
7'+|§| ) 2 2 nT_?)
_ — —27p
- n—2 1— T |§| )

Ry I e I b

With a little bit of algebralc manipulation we see that this is
2 — |2 = T+ € T— € R
I(F)(T,g):%/ﬁm F(p,T—p)(T—p)pK 2' |—p> (p— 2' N dp.
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As a last step, performing the change of variable p — = = (2p — 7)/|¢| we reduce the integral to
the form (25). O

As a byproduct of this proof, notice that inverting formula (26) we have the following polar
coordinate representation for n € £(r,§):

e [Tl T+l
(1—¢&-w) 2 72 |
Lemma 4.2. Let a € R and m > —1. Define

p=lnl=5 (27)

1 1/X
H*(\) = / (A + )%™ dt = AvtmHt / (1+ 5)s™ ds.
0 0

for A > 0. Then

A%, as A — 0o;
HE(\) & ¢ Amin(etmt1.0) = qo X 0, ifa+m+1#0;
|log [, as A — 0, ifa+m+1=0.

In particular, if a < b then H(\) 2 HZ()\) as A — 0.

Now we are ready to determine the precise asymptotic behaviour of the integrals on £(7,&) as
7/1&| — 1, which we will be needed in the following sections.

Proposition 4.3. Let a,b € R, and 7 > |£|. Define the integral

[ —=nl = 1§ —nl)
I(r.&) = / el —nlt dn

We have the following estimate for I:
I(r,€) = (7 — [€])” (28)

A:max{a,b,n;rl}—a—b, B:n—l—max{a,b,nTH},

where

n+1
2 J

I(1,8) ~ Tﬁmin{a’b}(T - |§|)an3 (1 + log <7. _T|§|>> ' (29)

Proof. We use Lemma 4.1 with F(s,t) = s % ° and we reduce to

wes (1T e o n—3
19 =l 167 [ (Gea)  (Goe) 0T

1

except when max {a,b} = in which case we have

Split the integration in two pieces, f_ll = ffl + fol. On the interval —1 <2 <0, set t = 1+ and
use

T T T T
——|—xz<——1>+t, — —zr o, l—2’xt
€] €] €] €]

while on 0 <z <1, set t =1 — x and use

T T T T
L tbr~—, ——gm<——1>+t, 1-2>~t.
€l &gl €l
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We obtain

1(.6) m |67 — (€)= [(é)laHis(é—1)+(é)“H;g<m—1)]

and to conclude use Lemma 4.2 with A = 7 — 1. Indeed, when 7/|€] is large we have

l1—a+1-b
1(r,€) ~ |42 — [eP) "7 (|7§'|) ~ primah,

while when 1 < 7/|¢| < 2, suppose max {a, b} = a, we deduce that

—a— —a n+1l 6
I(r8) ~ 6 — IS [0 + )] = et - =y (T2
The behavior of the function H is then determined by the sign of the quantity
n—3 n+1
1— —+1= —
(1—a)+ 5 T 5 a,
according to the statement of Lemma 4.2. O

We can try to prove a similar proposition for integrations over the hyperboloids H(7, &).

Lemma 4.4. Consider the integral
IE)(€) = [ 8= lnl + 1€ = Dl | = o)
defined in the space-time region |T| < ||, then
nos [ T+T T—T
1) = (g -7 [T (B BT ey - a0

Proof. The proof follows precisely the same steps as in the proof of Lemma 4.1. We only observe
that equation (26) remains unchanged,

2 _ 2
— 2
o = €] T+ TP, (31)
21¢lp
except that now we have the restriction 7/[¢| < a < 1. O

Inverting (31) we obtain the polar coordinate representation for n € H(r,&):

EF—7 K+
2(-7+&w) — 2
The analog of Proposition 4.3 for H(r, &) is possible only if we restrict the integration on the
“elliptic” portion of the hyperboloid. More precisely, if n € H (7, &) is in the region where |n| < [¢|

then the geometry of H(7,&) near 7, in terms of curvature, is not too different from that of an
ellipsoid.

p=Inl= (32)

Proposition 4.5. Let a,b € R and |7| < |[£|. Define the integral

6(1 — [nl + 1§ —nl)
I(7,6) = dn.
8 Awmm@m n]*€ —nl* !
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We have the following estimates for I: in the region where 0 < 1 < [€],

I(7,8) ~ €4 (Ig) = )", (33)

where

A:max{b,nzl}—a—b, B:n—l—max{b,ngl},

n+1

=, in which case we have

19 =1l - )= (14108 (1) ) (34

except when b =

similarly, in the region —|&| < 1 <0,

I(r,€) ~ g1 (Ig] + )",

where

1 1
A:max{a,%}—a—b, B:n—l—max{a,n;r },

n+1

except when a = "=, in which case we have

19 =1l + 0% (14108 (1) ) (35)

€+

Proof. We use Lemma 4.4 with F(s,t) = s % ° and we reduce to

nes [ T 1-a T 1-b n—3
) = lee el - % [ (“m) (x—m) (%~ 1) da.

Let’s assume 7 > 0. Set ¢t = x — 1 and use
T T T
r+—=1, x——= (1——)+t, > —1~t.
I3 I3 I3
We obtain
19 = e ep - T (1- ).
2

and to conclude use Lemma 4.2. O

5. BASIC EXAMPLES

Throughout this section L will denote a large positive parameter, L > 1. If £ = (§,...,&,) € R”
is a generic point, we will use the notations &' = (&,...,&) € R* ! and £" = (&,...,§,) € R* 2,
(if n = 2 then & =& and " = @).

The basic idea behind the examples below is to choose appropriate sets F' and G in R”, take
as data f = xp and g = x¢ their characteristic functions, and then restrict By ,), B, with
the representation given by (21), to the largest possible sets in ¢,z for which the corresponding
exponential factors are essentially constant.



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 11

&

2

1 F

1 L 2L &1
) G

FiGURE 2. Example 5.1

Example 5.1 (Necessity of (5)). We first check the estimates (3) by testing the boundedness of
B(;4y when the data f and g concentrate along the same direction and in the same frequency
scale. We consider the function B = B(14)(xr, X¢), where F' and G are the sets (see Figure 2):

F={n:L<m<2L, 1<n<2, 5" <1},
G={C:L<(<2L, -2<(<-1, (" <1}.

Take n € F, ( € G and let # be the angle between 1 and (, then we have
= Cl~ I+ (=~ hl+[CI=L, 0~=L",

|77||C| 2 -1
|+ I¢| = In+ (|~ ———=0"~ L7,
|+ |C]
12 <,2
|77|_771% |77| %Lila |C|_<1%| | %Lila
7| q

m+Ga~L, |+ ST

From (21) we have

B(t,z) = /F /G e P+EEOW (), ) dndg.

The weight W, given by (23) is then of order
5o [+ [, B-
+ ¥ T LaiLe
We write the phase function (22) as
pr=tnl+ICh+z-(n+0)
=t(Inl =m +[¢] = G) + (E+z)(m + ¢) + 2"+ (0" + ()
=tO(L™") + (t + 71)O(L) + 2" - O(1).

— [PotB+—B-—ai—ax _ L*25—*"T71‘

It is then possible to choose a region R in R'*", defined by the conditions

HSL ft+ml LY ST
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&2

2

| F

1 1 2 L 2L &
2 G

FiGUure 3. Example 5.2

such that we have |¢| < 7/3, when n € F, ( € G and (¢,z) € R. Therefore we can neglect the
oscillating factor, since in that case |+ — 1] < 1/2 and R(e*?+) > 1/2. Thus we have

1 P
Bla)| = R(B) > 5 [ [ Wl dndc 2 1797 p 61,

whenever (¢,z) € R. Consequently

Bl ZL*Qﬂ‘*%l|F|1/2|G|1/2|R|1/2 :L*Qﬂ—*%L_
Ixrll Ixall
We let L — oo and therefore, to have the desired inequality we need,
-1
Y B P}

which is equivalent to (5).

Example 5.2 (Necessity of (7)). We still look at the (++) case, but this time we stretch only
one of the data along one direction, keeping the other fixed. We consider the function B =
Bii4y(xr, x@), where now F and G are defined as follow (see Figure 3):

F={n:L<m<2L 1<n<2 <1},

G={(:1<( <2 —2<GG<—1, " <1}.
Take n € F, ( € G and let # be the angle between 1 and (, then we have

nl~n+Cl=nl+[Cdl~L, (=1, 0~1,

nll¢] o
nl+I¢| = n+(|~ ——=0" ~ 1,
]+ [¢]
' [? 1 "k
In| —m ~ ~L, [C(-G= ~ 1,
7] q

m+Ga~L |+ ST

n—

The weight W, is then of order Loo+f+—a1 — L2 A-—"3"  We write the phase function as
o =t(|nl +I¢)) + 2 (n+¢)
=t(nl —m + ¢l =)+ (E+z)(m +G) +2"- (f + ()
=tO(1) + (t + 1)O(L) + 2" - O(1).
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It is then possible to choose a region R in R'*", defined by
ST, t+m|SLTY ST

on which, as in the previous example, we can make the oscillating factor e+ as close to 1 as we
want. Thus we have

[B(t @) 2 L5 |G
whenever (t,z) € R. Consequently

Bl > [ =b-—"5 | F|'?|G| V2| R|V? &~ L2
Ixrll Ixell
Taking the limit L — oo, we find the necessary condition,

ag — B —
Similarly, exchanging the role of F' and G we get

ap — B —

Hence, we obtain the necessity of condition (7).

n—1

<0.

n—1
2

<0.

Remark 5.3. Condition (7) follows also by considering a slightly different scaling, with F' obtained
by a parabolic rescaling (instead of a linear rescaling along one dimension) and G still fixed:

F:{n:L<n1<2L,\/f<n2<2\/f, |77”|<1},
G={C:1<( <2 —2<@G<—1, " <1}.

This example implies the same condition in the contest of L? norms, but will provide different
information when we shall consider the L” theory later on.

Example 5.4 (Necessity of (6) with >). Again look at the (++) case and this time consider the
interaction of data supported in opposite directions. We consider the function B = B(14)(xr, Xa),
where F' and G are the balls of radius 1/4 centered at n* = (L,1,0) and (* = (=L, 1,0) (see
Figure 4).
Take n € F, ( € G, we have
Il ~[¢l~nl+ICl~L, [n+cl~1,
nl+1¢l = In+ <l = L,
=M1 S1, K-S L

The weight W, is then of order L/+*/-—a1—a2 = L~P0="3"  We subtract from the phase function
an innocuous term that doesn’t depend on n or (,

o+ — (| [C) = tlnl = [0 + < = [C*)) + 2 - (n+ )
=t0(1) +z-O(1).
As in the previous examples, it is possible to choose a region R in R**", defined by
sy |zl S L
on which we can make the oscillating factor e+ I I+1¢") a5 close to 1 as we want. Thus we have

|B(t,2)| 2 L% "2 |F||G),
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FIGURE 4. Examples 5.4 and 5.5

whenever (t,z) € R. Consequently

||B|| Z L~ ,80——|F|1/2|G|1/2|R|1/2 ~ I~ 60——
IxrllHlxel
We let L — oo and we get the necessary condition,
n—1
_BO - 9 S 07

which is a non sharp version of (6).

14

Example 5.5 (Necessity of (8)). This time we look at the (+—) case when the data concentrate
along opposite directions. Consider the function B = B, _)(xr, x¢), where F' and G are the balls

of radius 1/4 centered at (L, 1,0) and (—L,1,0) (see Figure 4).
Take n € F, ( € G and let # be the angle between 1 and —(, then we have

m~ICl~L, In+{~1, O0~L7,

nlicl
o+l il = €11~
| —m ~ n'? ~ L7 |+ ¢~ ' ~ L7t
7] Iq
m+G=1, |7+ <1
y (24) is then of order L=*~%2. We write the phase function as
(Inl = 1¢h) + - (n+¢)
(Inl =m = 1Cl=G) + (E+az1)(m +G) +2"- (o + ()
O(L™ )+ (t+21)0(1) + 2" - O(1).
It is then possible to choose a region R in R'*", defined by
HSL, [t+alS1 51,
on which we can control the phase ¢ . Thus we have
|B(t, x)| 2 L™ |F[|G],
whenever (¢,z) € R. Consequently
1Bl
IxrlHlixall ™

~ 1,

The weight W_ given b

t
t
t

> [ a1 a2|F|1/2|G|1/2|R|1/2 L7a17a2+1/2.
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FiGURE 5. Example 6.1

We let L — oo and we get the necessary condition,
1
—ap —ay+ 5 <0,
2
which is (8).

6. COUNTEREXAMPLES FOR THE CRITICAL CASES

The counterexamples in the previous section were easy to find in physical space, however for
the critical cases (9) and (10) it is essential to take into account the interaction between different
frequency scales. This is easier to do in frequency space, where we have the advantage of working
with quantities which are, essentially, positive.

The following example is a straightforward generalization of the counterexample given in [6]
adapted here to any dimension n > 2.

Example 6.1 (Necessity of (9)). Assume that

&1:n1_1, ag = o + B4, ﬁ_:_n;? (36)
Consider the function B = B (++) (f> 9), with
=28 0= )

where E is the interior of the ellipsoid £(1 + 2¢%,(1,0,...,0)). We can compute the norms of f

and ¢g with the aid of Proposition 4.3. Use (29) Wlth a = ”T“ and b =0 to get

142¢2
—In| - ...0) —
||n+1 / / T — || || |n+1 .., 0) 77|)d77d7
En n

1422
~ / (r— 1) |log(T — )| dr =™ 1| logel;
1

use (28) with a =b =0 to get

1+2¢2 1+2¢2 o
[an=[" [sc=m=100 0 =npandr= [ -0 Farme @0
1
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FI1GURE 6. Example 6.2

We obtain
n=1 n=1
£l = ™7 [logel'?, gl ~ ™7
Let E' be the interior of the ellipsoid £(1 + £2,(1,0,...,0)) and consider the region

1 &2

p={re:ccp l>5 5 <r-kl<s|,
We have E(7,€) C E for every (7,€) € D. Indeed, if n € £(7,&) then

= (r = &)+ (1€l +1(1,0,...,0) = &)
<+ (1+¢%) =1+2

When (7,§) € D we have |{| &~ 7 ~ 1 and 7 — [£| ~ €7, hence, using Lemma 4.3 with ¢ = 2+ >
b= By + B4, we find

n—3 (5 - - - n—3
B(T,ﬁ)%&‘_T/ (T —Inl =€ 77|)d77%57|10g6|.

n+1

In|" 2 |§ — n|Poth+

By a computation analogous to (37), the measure of D is of order £2¢"~! and hence

1Bl o =" |logels"F
> n—1

I lgl ™~ e"2 ™2 |loge|1/2

which becomes unbounded as ¢ — 0.

= |loge |2,

The next example proves the necessity of condition (10). This is, essentially, the example given
first in [2] for the case of dimension n = 3.

Example 6.2 (Necessity of (10)). Assume that

1 -1 -3
S BotBr=—" B=-T (39)

Let B(r,§) = B(+_)(f, 9)(1,&), with f = ¢ = Ziv:fzv Xk, where, for each integer k, x; is the
characteristic function of the ball By, of center (k,1,0,...,0) and radius 1/4. We have ||f| =
lgll = N2,

&1+OZ2:
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The support of B, (X, x;) is contained in the ball of center (k+j,2,0,...,0) and radius 1/2.
Summing over all such dlSJOIIlt balls, by orthogonality we have

||‘B||2 = ZI(]akam)a [(]7k7m) = <B(+—)(XkaXm—k)aB(+—)(Xm+]7X—])>7 (39)
j7k7m
where the indices in the sum are restricted by the condition
—N<kk—m,j5,5+m<N. (40)

Each addendum in the sum in (39) is positive, hence we get a lower bound if we further restrict
the indices to a subset of (40). )
Let’s look at a single term I(j, k,m), (see Figure 6). From the definition (20) of B, _) we have

O(Inl + ¢ = 1€ = nl — 1€ = ¢[) d€dn d¢
7k k
fn ko ///6 ZSBm e NPT (1€ = llnl = 1€ = nl) "= [l | = nlezlg — ¢los[¢los

m+]
ceB_]

If we require that 1 < 2m < j < k then we have the following estimates,

=& —nl~k [E-Cl=[Cl=5 [El=m, [&—|nl—I1§—nll~=m"
Also, let B, j be the ball of center (k,1,0,...,0) and radius ¢, where ¢ is a positive constant to be
fixed later, and B, be the ball of center (m,2,0,...,0) and radius 1/8. If £ < 1/8, then
n€E Bk, (E€EBe—j, E€EB, = € Bk, {—n€E Bk, £~ (€ By, ¢ € By,

and we obtain the lower bound

1
: N e e
10bm) 2 i [ e 80161 = 16 =1l = 6= D aganac
£eBy,
We use now formula (17). In our case ¢(&) = |n|+ || — |€ — n| — |€ — ¢| = 0 defines a surface
£(n, ), which is the ellipsoid of revolution with foci at 7 and ¢ that contains the origin. We have
E—n  £-¢

Vo= e T e=¢]

N E-n £-¢\"
‘(L*M—m m-co

~ angle between £ —n and { — ¢
1 1

1
kTG

~
~

Using (17) we obtain

I(j,k,m) k1/2 // (/ ng) dn dc.
EkXB WC)

Lemma 6.3. It is possible to choose £, A €]0,1/2] and a constant C > 0, independent of N, such
that, if (4, k,m) belong to the set

JN,/\:{(jakam) SkSNa 1§m§)\]}7 (41)
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and n € B, ¢ € B, _;, then the intersection of the ellipsoid E(n, () with the ball B}, has an area
greater than C':

inf / dSe > C > 0.
(sksm)eIn A S em,0)nBs,

TIEBa,k
(€B:,—;

With this lemma we can fix € and A, and for large values of N we have

> Y I k,m)

(j:kam)EJN,)\

> Z 1/ Z E—1/2 Z m-]

1/A<j<N/4 N/2<k<N 1<m<\j
ZNYENT  log())
1/A<G<N/4
> N?log N.

fotsf

This shows that
[Beo (£,9)]]
||f|| ||9||

and as N — oo disproves the estimate for the choice (38).

> (log N)'/2,

Proof of Lemma 6.3. Let (j,k,m) € Jyx and n € B.y, ¢ € B._j. To prove the lemma it is
enough to show that, for £ and A small enough, the ellipsoid £(n, () intersects the ball of center
(m,2,0,...,0) and radius 1/16.

First, we verify this when n = (k,1,0,...,0) and ( = (—4,1,0,...,0). Since 1 < 2m < j < k,
it follows that the point (m,2,0,...,0) lies inside & = £(n, ). The plane tangent to & at the
point (0,2,0,...,0) makes an angle & ~ 1/j with the & direction, hence it intersects the ball
B of center (m,2,0,...,0) and radius 1/32, if m/j < X for some positive constant \. Thus B}
contains also points that are outside &y, so it must intersect &.

Then, when n = (k,1,0,...,0) + O(¢) and ( = (—4,1,0,...,0) + O(g), the distance of each
point of & from £(n, () is at most of order &, and we can choose £ small enough to make it less
than 1/32. 0
Example 6.4. The following example is a refinement of that given by Example 5.4 and shows
that the estimate (3) is in fact false when we have equality in (6). Assume that

50:—n21, 5++5_:&1+C¥2.

Let B(1,€) = By (xr x6) (7, €), where F and G are the sets

F={n:lm—-1<e& Iy <e},
G={C:|G+1] <2 || <2},

with ¢ a small positive parameter. We have ||yp| = |F|? ~ &

The conditions n € F, £ —n € G and n € £(r, &) imply that
n~lE—nl=TrT-[¢|~1 e,

and ||xe|| = |G[> ~ ™
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and in particular we have
Bro~ ™7 [ o=l -l
ner
§-neG
The support of B contains the region D defined by
D={(r.9:lal < [¢| <& 1 - 2] < £}
If (1,€) € D and n € E(1,&) N F then we have ( =& —n € G, since
G+ <+ =m+1] <2 [CT<[E]+ ] < 2.
Hence, when (7,&) € D we have
e e ds
B~ [ o=l —l¢—nhay =g+ [ e
ner E(r,6)NF |Vn(|77| + |§ - 77|)|

The gradient in the denominator doesn’t create any problem, indeed we have
_ ‘i _Eom

Inl 1€ —nl
The intersection & (7, )N F is a set of measure ~ "' indeed the conditions (1,£) € D, n € £(7,§)
and |n'| < e imply n € F, since we have

V(| + 1€ = nl)] ~ angle between n and £ —n ~ 1.

| —m <& E—nl-m < nl+lE—n-2/<e® = [2(m —1)| <&
We obtain that for (7,£) € D we have
B(r,€) 2 |7 e,

and consequently,

2+5 !
IBIP > 20D // dedr o, o / / / € e
b e : e 6T+ &)1

We compute the innermost integral with the help of Lemma 4.2,

s [ e e ()~ (9)
~ = =H 3= )=~| =
/s'<<e(|§’|+§1)”‘1 /0(r+§1)n—1 /0(t+%)n1 e T

Hence, for small values of £ we have
&€
Bz o0z [
0

IBI__ o, e flogel?
n+1 n+1

Ixellxell ™ %5

which diverges logarithmically as ¢ — 0.

2

log <§1> ‘ d& ~ 2 Jlog e .

We finally obtain

= [loge|?,
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7. PROOF FOR THE (++)

In this section we prove the estimate for the (+4-) case. We consider the operator By defined
n (19). In this case we don’t need to consider the conditions (8) and (10) which, as we have
learned from the examples discussed in the previous sections, are relevant only for the (+—) case.

The support of B, ) is contained in the region where || < 7, we divide it into two part: the
region near the light cone, where || ~ 7, and the inner region, where |{| < 7. Looking at the
corresponding symbols we see that near the light cone the operator D behaves like D, while D _
degenerates along null directions. On the other hand, in the inner region D degenerates along the
time direction, while D, and D_ behave both as time derivatives.

Proposition 7.1. We have the estimate
B -9 ) S 1612 gl (@2
whenever oy, s, By, By, f— verify conditions (4), (5), (7) and (9).

Proof. By a simple application of Cauchy-Schwarz relative to the measure 6(7 — |n| — [ — n|) dn
we have

Besy (£ 9)( O < A(r €) / F2m)g*(E = n)o(r — ] — 1€ — n) d, (43)

where

Afr€) = lgooros(r - gly- [ IEE Al

|21 | — |20z

Integrating (43) in 7 and & gives us (42), provided that we can show that the quantity A(r,£) is
uniformly bounded for 7 < [{| < 7. To do so we use Proposition 4.3 with a = 20, and b = 2.
Since 7/4 < [£| < 7, if max {on, an} < ™ using (28), (4) and (5) we have

( |§|)2ﬁ NP
nd (7)
¢

24l using (28), (4) a

Ao~ (7

if max {oy, aw} = 2 using (29), (4),(5) and (9) we have

e\ 2
A(r,8) =~ <%|§|> log <T%|§|> < 1

Remark 7.2. The proof of Proposition 7.1 works fine also for the inner region if 5, > 0, since in
that case |£]% is not singular and we can use |¢| < 7. To obtain sharp results with 3y < 0 we need
however a different argument.

if max {ay, ay} > we have

ST

Y

>2max{a1 ;a2 +28_4+n—1

O

Proposition 7.3. We have the estimate
1B (f 9|2 125y S W12 Nglle (44)

4

whenever oy, s, By, By, B— verify conditions (4) and (6).
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Proof. The conditions 7 = || + | — | and |¢| < 7/4 imply that |n| ~ | —n| &~ 7. In this region
we have

Beay (£, 9)(r, ) ~ Je|for®so-—an—an / F(n)g(€ —n)o(r — [n] — [€ — nl)

The vectors n and £ — n are essentially of the same magnitude and their sum is comparatively
small, hence they have almost opposite directions, in the sense that the angle # between n and
—(& — n) has to be less than a small fixed constant, say § < 6, < 7/4. This means that, by
decomposing f and ¢ into a finite number of pieces, we reduce to the case of f and ¢ supported
in opposite conical regions.
Indeed, decompose the unit sphere into a finite number of disjoint components, S*~! = UN_IQ

so that the angle between two unit vectors belonging to the same piece (2; is always less than 0o.
Then define the cones I'; = {{ € R* \ 0: £/|¢] € Q;} and let x; be the characteristic function of

[';. Write f = Z;VZI fj, where f; = x; f, and similarly for g. By the above observation we have

HB(-H-)(fa g) HL2(|§|§£) < Z HB(-I--i-)(fja gk) HLZ(\&\S%) )
Ik
with the sum restricted to the pairs of indices (j, k) for which there exists a cone ' of aperture 26,
such that I'; C I" and I'y C —T'. Since it is a finite decomposition, we also have >, . || fjll [|gr |l S
IIfIllgll- Hence, we can assume f supported in a conical region I' of aperture 26, and g supported
in —I".
We now compute the L? norm of B(44) using the so called doubling technique. This method,

introduced first in [11] for the (+—) case, consists of writing the square of B(++) as a double
integral,

|B(++)(fag)( )| |§h|260 (B th-—a1—ea) .
// f(n VF(E — g5 — Inl — 1€ — n)6(r — | — ¢ — [¢]) dndC,

and then perform the integration with respect to 7 and £. Recall that by (4) we have 5, + [ —
ap — g = — [y — ”T’l We obtain

([ RS

S [f[ e DWBOIEZOE S 50— e+t - nl - e - candc e

CEr el P
Cper

¢
|§|<<\77| [q
We apply now Cauchy-Schwarz to separate the pair f(n)g(¢) from f(& — ()g(& — (),

2 (Il = [¢]+ 1€ =l — 1€ =<¢])
HB(++)HL2(‘§\< ///HGF cem F n)g (C) |§|,2ﬂ0|n|50+”7*1|g|ﬁo+”7’1 dnd¢dg,

€l n|~IC]
and we only have to prove the boundedness of the quantity

)\ 2ﬂ0 n+1

uniformly for || ~ || = A, with n € T" and { € —T". By a rescaling we can take A = 1.

dg,
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The delta function in the last integral restricts £ to a hypersurface #H(n, ¢), which is a hyperboloid
of revolution around the line through 1 and ¢ with foci at n and ¢, which contains the point 1+ (.
The fact that n and ¢ are almost opposite points implies a uniform upper bound on the curvature
of H(n, ) and allows us to treat H(n, () as if it were a hyperplane. More precisely we have

V(€ —n] — |€ — ¢])| ~ angle between & —n and £ — ( ~ 1.

Moreover, ¢ is confined on a bounded region of H(n, ) by the condition || < 1, so we don’t have
to worry about divergencies coming from the unboundedness of #(n, (). Parametrizing #(n, ()
by a projection on a hyperplane orthogonal to n — (, we check that

5l — ¢+ 1€ —nl — I — ¢ as; ae'
/mq a < sé

R sen0) [E120 ~ Joer—r T2

€l<1 lg'1<1
which is a bounded quantity whenever —235, < n — 1. O

8. PROOF FOR THE (+—) CASE

Now we turn our attention to the (+—) case. We consider the operator B, _) defined in (20).
Since B is supported in the region where |7| < |{] we have D ~ D, and we can replace the
operator DfBOD;BrJr by D?, B = By+f+. It is convenient to split the integration over the hyperboloids

H(7,§) into two parts: B_y = By, + By, where

1711 = I71)"-
B = (5 — — _ d
L(f,9)(7,€) /mﬂg_?7|S2|§| (7= Inl+1&€—mnl) o IE = ] fmg(€—n)dn,
171l = I71)*
B = §(T — - — n)dn.
w(f,9)(7,€) /mﬂg_?7|22|§| (7= Inl+1&€—mnl) o IE = ] fmg(€—n)dn

The low frequency part By, can be treated as in the (++) case, since the integration is restricted
to the “elliptic” portion of H(r,¢).

Proposition 8.1. We have the estimate

1BL(f )l < 1F1 ]9l (45)
whenever oy, as, Bo, By, B verify conditions (4), (5), (7) and (9).

Proof. By asimple application of Cauchy-Schwarz with respect to the measure 6(7—|n|+|£—n|) dn,
we have

|BL(f, 9)(1, &) < AT, 5)/|f(77)|2|g(§—77)|25(7 —n| + 1€ = n]) dn, (46)
where
. 6( —|nl + 1§ —nl)
AT, &) = €122 (|¢] = |7 d
O =l - [

Integrating (46) in 7 and & gives us (45), provided that we can show that the quantity A(r,£) is
uniformly bounded for |7] < [£|. To do so we use Proposition 4.5 with a = 2a4 and b = 2. By
symmetry, we can assume 7 > 0. Using (33), (4) and (5) we have

2
Al &)~ (mm ) S b
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if ap > 2 using (33), (4) and (7) we have

N —2014+2B-+n—1
ang ~ (E27) <1

if ap, = 2, using (34), (4),(5) and (9) we have

L\
A“"”<ka> <1+ngJ%7>>5l

The high frequency part Bpy is more delicate and requires the use of the doubling technique.

O

Proposition 8.2. We have the estimate

1B (f, )l S 1719l (47)
whenever oy, s, Bo, By, B— verify conditions (4), (5), (8) and (10).

Proof. Observe that n € H(7,&) and |n| + |£ — n| > 2|¢] implies || < 2min{|n|,|£ —n|} and
In| = |£ — n|. In particular we can assume that oy = ag, since |n|* | — n|** =~ |n|¥|€ — n|°, for
o = 242 and the conditions (4), (5), (8) and (10) depend only on the sum a; + a. Recall also
that we may assume, without loss of generality, that f and g are positive functions.

If we proceed by a direct application of the Cauchy-Schwarz inequality, as in the (++) case, we
encounter the difficulty that the surface H(r,€) is unbounded. We circumvent this difficulty by
using the doubling technique, as it was introduced in [11]. This allows us to rewrite the L? norm
By (f,g) in a way which transforms the integration over hyperboloids to one over ellipsoids.

To calculate the L? norm of By(f,g) we first write |By(f, g)(7,€)|* as a double integral and
then integrate over 7, £. After applying the Fubini-Tonelli theorem and rearranging the integrand,
we derive:

fmg(©) fE—=Qg€—n)
1Bi(f9) ////§<2m1n{|71 cty il 1g = clele = mi®

EPPIEl = 17?6 (m — In| + 1€ — n])o(r — |€ = ¢| +[¢]) dr d€ dndC.

Now the important step is to apply Cauchy-Schwarz correctly. As it is suggested by the way we
wrote the integrand, we separate the pair f(n)g(¢) from the pair f(§ — ()g(§ — 1), then apply
Cauchy-Schwarz with respect to the measure

€7 (1€] = [71)*%=8 (7 — Il + 1€ =)o (T — 1€ = ¢| + [¢]) dr d§ dn .

After an obvious change of variables we derive,

, o o JEE0EL = )
IBu(f:9) // //§<2m1n{|77 ! Fme*(©) ]| |2

(1 = Inl + 1€ = n)o(r — € = ¢ + [¢]) dr d€dn dC.
From this we see that (47) will follow, if we can show that the quantity

P2 = D™ s e e
o= ff 0 i — [+ [c] drae
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is bounded uniformly in 1 and (. The proof of the boundedness of I(n, () requires several steps
and it will be treated in the following three sections. O

9. ANOTHER PARAMETERIZATION FOR ELLIPSOIDS

The integral defining (7, () corresponds to an integration on the ellipsoid of revolution

Em, Q) =A{&: Inl+ Il = 1€ =nl+ 1€ =]},

with foci at n and (, that contains the origin.

To study I(n,({) we introduce polar coordinates. Write & = rwg, n = pwi, ( = ows, with
I7| < r < 2min{p,o} and wp,w;,ws € S L. Also define the cosines a = w; - wy, b = wy * wy,
C =W - Wy.

To deal with the delta functions, introduce the auxiliary variables

X=7—Inl+€=nl=7-p+/r?=2rpa+p?
Y=7—|6—(|+|(|=T7+0—Vr2—2rob+ o2

The system X =0, Y = 0 is equivalent to say that n € H(7,£), ¢ € H(—7,£), and, using formula
(32) for the parameterization of our hyperboloids, we have

P2 2 P2 2
P T Ay
From these two equations we infer that (—7 + ra)p = (7 + rb)o. Hence
T =rUv, (48)
where
po LAl _ n=g (49)

= - Wp-
p+o  In[+I|C]

Substituting for 7 in the formula for p we find that 7 = 2p(—v + a)/(1 — v?), which, using (49),
simplifies to

4dpo u
= —_— 20
g p+o 1—v?’ (50)
where
a+b wtw
U= = 12 2wy > 0. (51)
We need also to compute the jacobian of the transformation (7,7) — (X,Y),
d(X,Y 9x 09X Aoy,
J:‘(") — g g =] L=
8(7‘,’/‘) {;28 o or 1 —Teq " Wo
B T—pa+r—ab _|r(p+0o) = 1(pa — ab) — po(a+b)
-1 o+T| (p=7)(o+7) '
To simplify this expression observe that by (48), (49), (50) and (51) we have
4 4 2
rp+o) =0 tlpa—ob) = pola+b) = 200,
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hence r(p+ o) — 7(pa — ob) — po(a + b) = 2pou and

2pou
(p=7)(o+7)

Since we know that in the region of integration p—7 = |§—n| = |n| = pand o+7 = |{—(| = |(] = 0,
the above jacobian simplifies to

J =

= 7()(’ Y) S}
J—‘ Arr) |xo ) (52)

Y =0

Now we are ready to rewrite I(n, () using polar coordinates and formulas (48), (50), (52) (keep
in mind that by (4) we have 26 +24_ +n —1 = 4a):

28(p _ 28— do(] _ 25—
I(n,() — / r (; |7_|) Tn_lj_l dSwo ~ / r ( |U|) dSwo ~

2 0—2a p2a O'ZO‘U

N 4po 20‘/ (1 — |v])?P-ute-t s ~ 4po 20‘/ ytot ds
“\Grop -y o \Gop) ] e e

with the integration always restricted to the region of the unit sphere corresponding to the points
wp such that r = r(wp) < 2min {p,o}. From identity (50) we see that this condition is equivalent
to say that « < 1 — |v|. Hence,

oy~ (27 )" A 53
(777 C) ~ m UJOES”71 (1 _ |"U|)4a—2’3* wo " ( )

u<1—]v|

10. THE CASE f_ > —2.

We prove the boundedness of I(n,() first in the case where we have strict inequality in (5),
which means

n—3
>

1
57>_ 4 y O{_Z

Using the fact that u < 1 — |v], we can simplify the numerator with the denominator in the
integrand of (53) and we have,

ds.,,
H%C)ﬁ/m-

To estimate this last integral we write v = A\w where

1/2
‘ <1_ 4p021+c> <1
|77|+|C| (p+0)? 2

* Wo,

B |77—C|
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then, using the notation of Lemma 4.2,

/ ds,, <</1 (1—w?)"z .
(1 —[o)27- ~ [y (1= Afw)i=20- 70
3
; (1=
zVﬁI/ ) - dwzﬁﬂlmél<—r0,(M)
_|_

which is bounded, since (25_ — 1)

3
T+1>0

11. THE CASE . = 2.

Now we look at the more delicate cases where we have equality in (5), which by (10) implies an
inequality in (8),
n—3 1 n+1 n—1
B = 1 a>4, B =2« 1 > 1
These cases have already been established for n = 2 and n = 3 in [11], where it was taken advantage
of the fact that S_ is nonnegative. That method doesn’t apply when f_ < 0 and we need a more
precise asymptotic control of the integral defining I(n, ¢) in terms of the angle between the vectors
n and —( when this tends to zero.

To simplify the problem, observe that by symmetry and scaling invariance we can assume
IC| < |n| = 1. As it will become clear later, the quantity /(n,() then depends essentially on two
parameters: o = |(|, which measures the ratio of the magnitudes of ¢ and 71, and ¢ = |w; +ws|/2 =

(14 ¢)/2, which measures the angle between 1 and —(. Both parameters, £ and o, are contained
in the interval [0, 1].

Remark 11.1. We can also assume that

a <

rhli—ﬂ
wlb—t

since otherwise we can use the inequality u < 1 — |v| to reduce simultaneously the powers in the
numerator and denominator of the integrand in (53).

We have to prove the boundedness of the quantity

4da—1

u
I(o,¢ :UQO‘/ 5 dS.,,
) ugi-pl (1= [o]ylor™s"

where

w1 + wa w1 — OWo
U = ‘W, V=——m"-Wp.
2 140

If we follow the same steps as in the previous section, we obtain an upper bound that diverges for
€ — 0. Indeed, with our assumptions we have v = Aw, with

4oe 1/2
1—— , 1—A=og,
‘M%Hd < 0+0V>
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and we can always assume 1/2 < A < 1, otherwise the estimate becomes trivial. By a computation

similar to (54), using u < 1 — |v|, we find

n—3

d " 1 1 — 27
1(075)502(1/ SOLA 502(1/ —( w)ﬂdw%
(1 —fo]) —1 (1= Awl) 2

1—-2A

R T (150) o gl - M) e (o) ogloe)| S <

2a

Y

which shows that I(c,¢) is bounded uniformly in o if ¢ is bigger than a positive constant, but

diverges logarithmically as ¢ — 0.
It remains to see how to control the integral I(o,e) when ¢ is small.
Assume n > 3. We can always choose a coordinate system so that

Wy = (\/1—52,5,0,...,()),
(—\/1—62,6,0,...,0),

Wy =
Wy = <x,y, 1— 22— y%;") , 4yt <1, W estE
It follows that
u = ey,
1—0
=V1—e2x+ ey,
1+o
dSu, = (1 — 2% — y?)"T dS,» dz dy.
[t is convenient to use polar coordinates for the pair (x,y): * = Rcosf, y = Rsinf, with
0<R<1,0<60<m Then
u = Resind, (55)
1 —
v = RQ, Q:\/1—620089+1+06Sin9, Q] <1, (56)
o
dS,, = R(1 — R*)"T dS,» dRdf. (57)
With this parameterization, we have
4a 5 : 4da—1
[(O’ 2a 4a 1/ / R 2 (Slnneg) degs
(1- RIQ )let=
4o—1  p1 _ n-4
< 0.2a54a—1/ (Sln49) . / (1 R) 2 : . dee ~
~ a+2= a+ 2=
B = Y O
T (sin O da—1 3 1 —
=~ 0_26(6404—1 / %Hn 44 < |Q|) dé. (58)
o QT Tz Q)
We use Lemma 4.2, the fact that —4a — 252 + i 1 +1<0and ”—4 > —1, to reduce to
s 4] 4da—1
]—(0_, 5) § 0_2a€4a1/ (SIII ) (59)

o (1—]QN 2
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We split the last integral into two pieces: the contribution coming from the region where |@Q| < %
which is easily bounded, and that where |Q| > %, which needs more attention.

: 4da—1
Il — 0.2a64a—1/ (SIII 9) : de 5 0_2a64a—1 S 1,
<t (1= Q)2
4da—1
[2 — 0_20¢64a1/ (Sln 9) dg
Q>4 (1— Q)2

From its definition

Q=Q0) =V1—c2cosl+ 1_7_

If £ is small enough the condition || > 1/2 requires |cos | to be close to 1. In particular ¢ and
cos f have the same sign, hence

3 : 4o—1 T : 4o—1
I < g?xeto! / (SIL)I deo +/ (S‘IL)I dé | . (61)
o (1-Q) > z (1+ Q)"

Lemma 11.2. Let
3 in @)4—1 ™ in §)4a—1
J+:/ RGULI Y J:/ (S0
o (1-Q)* = -z (1+ Q)2

Then we have Jy < (og) 4ot and J_ < g tofl,

o
ind. 60
0_6 sin (60)

Using this lemma, (61) becomes
I, S g%t l ((gz) tetl f gdotl) y glo20 <
which is bounded in view of the assumption made in Remark 11.1.
Proof of Lemma 11.2. Let’s look first at J_, which is easier. When 6 € [3 7] we have
1+Q>1+V1—c2cosfr1—(1—-c?)(cosh)? =+ (1 —e)(sinh)? = (¢ +sinh)?  (62)

Hence,

, < /a (sin@)**tdg _ /1 e ldy H801 (o) o g—iot!
-~ : 8a—1 ~J 8a—1 ~~ Hia ~ :
o (¢+sinf) o (e+4x)

When 6 € [0, ] we have

1-Q= (l—ssinﬁ—\/1—520059)+
o
~ ((1 —esinf)® — (1 — £%)(cos #)?) + oesind = (¢ —sinf)* + oesinfd. (63)

esinf ~

Hence

e

7, < / (sin f)**=1 d < /1 rioldy
“Jo ((e —sinf)? + oesin )2 o ((

To understand which term is dominant in the denominator of the last integral, observe that
(e — )% < oex if and only if z_ < x < x,, where

xi:%<2+ai\/4a+02> ~ e,

e—1x)?+ 05:6)40‘_%
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and notice that

1/2 1/2

Ty —x_~ol%e |ry—e|xole.

We have

1 1.4(171 da T4 1.40471 da T_ 1.40471 da 1 1.40471 dz
TS o T T T et T | T oset
0 ((e —2)?+oex)™ 2 v (oex)*@ 2 o (e—ux) o, (X —¢)

The first integral in the right hand side is easily estimated,

/$+ ria=1 g, 64(171(0.1/26)
x

)404—% ~ (062

—4a+1
= (o€ .
_ (oex )40‘*% (@)

For the second, since 8& — 1 > 1, we have

/w_ 1.404—1 dx < /% $4a_1 dx N /:1:_ 64a_1 da <
o (E—wft Yy et T e (ema )+ (-

2

1
< gl-ta | dal /E dy _  l-ta +61—4a/ dt
~ . (01/26 4 )81 .

Q

~ cl-da (1 I J%(14&a+1)) ~ (o) 1oL,

The third is treated in a similar way,

/x rioe=1 qr </1 x4a—1dx+/2$+ cla=1 . -
R T N (TR Ba )

€ dy
1—4da da—1 ~ —4a+1
el e /0 g S o)

O

This completes the proof when n > 3.
When n = 2 the above procedure can be simplified. We can always choose a coordinate system
so that

CL)IZ(V].—SQ;g)a WQZ(_V1_627670)7 wO:(COSH,SiHQ), 96[0’71-]
We have

u = ¢esinf,
1_
v=0Q =V1—¢c?cosf + Uasinﬁ,
l+o
ds,, = dé.

We obtain

4a—1 ind 4a—1
[(O', 5) = O'Za/ u—41 dSwo S 0'2(1540671 / %41 d9,
ugi—lp| (1 — Jv[)** 2 (1—lQp™

and we already know from the analysis above that the last integral is bounded.

Remark 11.3. If we compare the formulas, we can see that the above calculations, in practice,
reduce the problem in dimension n > 3 to that of dimension n = 2.



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 30

12. FREQUENCY LOCALIZED ESTIMATES

There is another way of proving Theorem 1.1, with the exception of some limiting cases, by
using dyadic decompositions. This is done by following the steps below:

1. Decompose the functions, and their product, into dyadic pieces relative to the frequency
space.

2. Obtain sharp estimates for the product of solutions corresponding to data supported in
different dyadic regions.

3. Sum the pieces together exploiting the orthogonality properties of the convolution structure.

Step 1: decomposition. Since we deal with L? theory we don’t need any refined Littlewood-
Paley theory, we can simply cut the frequency space into disjoint dyadic shells. Let x, be the
characteristic function of the region {\ < [¢| < 2A} and define the operator Sy : f +— f, where

AE) = (Saf) (&) = xa(©) F (&)

Each function can be decomposed into dyadic pieces, f = Y, .z fa. Throughout this section,
sums in A and g will always be taken over dyadic values, >, = >, oz

If u and v are solutions of the homogeneous wave equation, Ou = Ov = 0, with initial data’
u(0) = f, du(0) = 0 and v(0) = g, d,v(0) = 0, then we can write the product uv as the sum® of
three pieces, uv = ¥y + X9 + X3, where

Y= E UNVy, g = E UNVy, 23 = E UV
A

g2l A\, ue2? A\, ug2?
P BRI u>A

The sums Y; and Y3 contain the interactions between high and low frequencies and, as it was
made clear by Example 5.2, their control is more critical when a4 or as are close to their maximum
values allowed by (7). The sum X5, instead, takes into account of the interactions between same
frequency levels and, as it was made clear by Examples 5.4 and 5.5, its control is more critical
when 3y or a; + i are close to their minimum values allowed by (8) and (6).

Step 2: dyadic estimates. This is really the main step. We prove the following:

Theorem 12.1. Let 0 < g S A and v > —"ff. Take f and g to be functions whose Fourier

transforms have compact supports and let v and v be the solutions of the homogeneous wave
equation, Ou = Ov = 0, with initial data w(0) = f, Ou(0) =0 and v(0) = g, dyw(0) = 0. We have
the following dyadic estimates:

o suppose supp f C {|¢| & A} and supp g C {[¢| S pu}, then
n—1
IDL(uv)l| < w2 (11 |9l (64)
o suppose supp f,supp  C {|€| ~ A}, then
D28, (who )| S A= (I £[HIgl (65)
DS, (wror) || S A2 111 gl (66)

for simplicity and without loss of generality we take ¢o = f, ¢; = 0 and o = g, ¥y = 0.
8This way of decomposing a product is essentially the main ingredient used in paradifferential calculus.
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Proof of (64). We have to prove that

Applying Cauchy-Schwarz, as in the proof of Proposition 7.1, this reduces to show that

n—1
S A gl

Il =€ [ ot Il % € = DS ahol€ ~ ma

2
L7e

T,

Ty

sup ||7| — |§||27/ 5(t — |n| — F|€ —n|)dny S p?rt
ISUINTE

The case p = A is easy and can be treated precisely as in the proof of Proposition 7.1 or Propo-
sition 8.1, by using Lemma 4.3 or Lemma 4.5 with ¢ = b = 0. Assume instead that u < A, then
Inl = A, |€—=n| S pimply |7| = [£] = A and ||7] — |€]] S p. What we need is then the following
lemma, together with the condition 2y + ”T’?’ > 0. O

Lemma 12.2. Let |£| > p. Then
n=3  ntl
o(r = InlF 1€ =nl)dn S [Ir| = [€]] = p=.
I SaUINTY

Proof. Consider the case of integration over the ellipsoid. We make use of formula (25) in
Lemma 4.1 with F([nl, | —nl) = x (I =0l < w),

1o = /éﬂiu o7 = Il = 16 =D dn = (7" - |§|2)HT_3 /1<z<1 (T2 - |§|2x2) (1— IQ)RT_S dz.

T—[¢lzSp

We are in a situation where 7 ~ |£| and

0<1_x§7_7|§|x<ﬁ<<1’

IS

n—1

n— — n— 2 e " o R

) B R ) I R T s
0<1-Su/I¢ €

The case of integration over the hyperboloid is done in a similar way using Lemma 4.4. d

Proof of (65). The case p =~ X is already contained in (64), hence we can assume p < A. If
n| &~ | —nl = X> p~ €], then 7 = |n| + | —n| > |¢| and the D? becomes essentially \” and
doesn’t create any problem (in this case v can take any value). More over, in this case the vectors
n and £ — n must occupy almost opposite positions and, since the interaction £ takes place on a
set of size y, we can reduce to the case where f = fg) and g = g_¢) have supports contained in
opposite cubes  and —(Q of size ~ p at a distance ~ A from the origin.

Indeed, let {Q}QEQ be a family of cubes of size p that covers the supports of f and g. Decompose
f= ZQ fo and g = ZQ go, where fo = xof with x¢ the characteristic function of the cube Q).
Let ug and vg be the solutions of the homogeneous wave equation corresponding to initial data
fq and gq. Then S, (uv) =>4 o, Su(ug,vg,) and the sum can be taken over just the pairs of
cubes (1, Q2 € Q such that (), + Q2 is contained in the region {|£| < 5u}. For each fixed Q; € Q
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there is at most a finite number, depending only on n, of cubes Q2 € Q so that the pair (Q1, Q2)
has that property. This implies that

Yo e llgall S £l

Q1,Q2€9Q
Q1+Q2C{I€|<5u}

Moreover, for each of these pairs of cubes is always possible to find a cube @) of size 10u such that
@1 € @ and Q2 € —Q. Hence, we just have to prove

+ ot
H“(Q)“(—Q)
If we apply directly Cauchy-Schwarz we reduce to show that

sup / §(r—1Inl—1€=nl)dn S,
Inl€e@

TRIN
|€l~on

< e | foll llocall-

L2 o (lel~n)

which is a consequence of the following lemma. O

Lemma 12.3. Let || < 7 and Q be a cube of size . Then
/ S(r —Inl =& =nl)dnp S u" "
neQ

Proof. We have

ds
ot —1In|—1&—n dn:/ U .
/neQ (r=ll=lg=nbdn=J R+ le=D

The vectors n and & — n are almost opposite, hence

no &
IVa(lnl + 1§ =nDl = | — ~ 1.
! Il 1€ =l
The condition || < 7 forces the shape of the ellipsoid to be close to a ball of radius much bigger
than u, hence |E(7,&) N Q| < pul. O

Proof of (66). As for the proof of (65), we can suppose that p < A and f = fg) and g = g_¢)
have supports contained in opposite cubes ) and —@Q of size u at a distance A from the origin.

To treat the resulting expression we have to use again the doubling method discussed in Propo-
sition 8.2. This procedure works in any dimension®. However, as it was recently observed by
Tataru in [21], there is a somewhat simpler proof of the dyadic estimate (66) in dimension n = 2,
which we sketch below for completeness.

The observation is that, in this case, we can follow the same pattern of proof as in the previous
estimates. We can in fact apply directly Cauchy-Schwarz and reduce to show that

(1 = 1 [ otr = Inl 1€ = an £ 1 (67)
Compute the gradient of the quantity inside the delta function,
n_&-n
Vot =Inl+1§—nl) = - - :
! Il 1€

For a discussion of the doubling method in the particular case of n = 2 see [11] as well as [14].
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From the equation 7 = |n| — |£ — n| we infer that

o, E-nl_ -
MI+K—n| e —nl’

Hence, using formula (17) and the fact that we are integrating on a piece of a curve of length

QOO S
[ o= ml+le—aban= (e = [ it - ulbas, S (- 7D Ba kAl
Q QNH(7,€)

and, since [£| — |7| < p, we obtain the desired bound in (67) when 2y > 1/2.
Now assume n > 3. This time we perform a Cauchy-Schwarz inequality only after the doubling
of the integral, and reduce to prove that

[ el = st =l = it + Kl =l = < e
Ap

Using the fact that || — |7| < g, it is enough to look at the most critical case v = —2=2. By
scaling invariance we can also fix © = 1. We have to show that

| 5(r — Il + 1€ — n)8(r + ¢ — | — ¢
=1 - drde S 1. 68
A//wd (lel— 1) ' (5%)

This is an integral restricted to the ellipsoid & = £(n, (), of a type that we have already encoun-
tered.

We first observe that this integral is much simpler to treat in dimension n = 3, since the
denominator in (68) disappears, and therefore we have

dSe
I=~{ 4 Cle— de =
A/W (Il +1¢] = 1€ — | — |€ = ¢|) dé = é o TRES e

Now, from the equation |n| + || = |£ —n|+ |£ — ¢| it follows that [n||C|+n- ¢ =€ —nl|§ — (] +
(& —mn) - (£ =) and we have

20l +n-O)  __nll<lo* 1
E=nllE =<l [E=nllE=¢ A2

where 6 ~ A~! is the angle between 77 and —(. Hence, since the region of integration has diameter
comparable to 1, we have

Ve(le —nl+ ¢~ ¢ =

£e€(n,0)
|€]~1

In general for n > 3 it is not so easy to adapt this geometric argument, we opt instead for
a more analytic approach, with the help of the parameterization for £(n, () used in Section 11.
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Choose a coordinate system so that

1 (\/1—62,6,0,...,0>,

7]
%:(—\/1—52,6,0,...,()),
|§| (Rcos@ Rsin#, \/l—sz">, 0<R<1, 0<6<m " esS"3

By the same calculations that led to (58), taking ov = 1/4, we have

I<// 1_R|Q‘|‘)d3d97

with the quantity @ still defined by (60) with

‘ ‘<<1, S
I¢] Inl ~

The integration is restricted to the region D C {0 < R <1, 0 < # < w} corresponding to £(n, ()N
{|€] =~ 1}. Using formulas (50), (55) and (56) the condition |£| &~ 1 becomes equivalent to

1 — R|Q| ~ AeRsin#, (69)

which is the key to proving the desired estimate.
In the region Dy where R < 1/2 or |Q| < 1/2 there is no singularity in the integrand and

I = // de9 <1
D, 1 _R|Q|)

Consider the region Dy where R > 1/2, |Q| > 1/2. From (69) we have
max{l — R, 1 —|Q|} <1— R|Q| ~ Aesinf

and it follows that we must have sin ) < Ae, since, repeating the argument of (62) or (63), we have
(e £5sinf)? <1 —|Q| < Aesind.

We compute first the integral with respect to R over 0 < 1 — R < Aefl and then estimate the
integration with respect to 6 over 0 < sinf < min {\e, 1},

4 . nT—2 . 1/2
I — // deH 5/ ()\ssmﬁ)%1 40 ~ mm{)\e;lQ} <1,
Dy (11— R|Q|) sing<xe (Aesinf) 2z (Ae)V/

Step 3: summing up. We now use the estimates proved in Step 2 to sum the pieces together.
We start with estimating ;. Since the Fourier transform of the piece p) = ZMO\ u)v, has support
in a region where [£| ~ A, we infer that {pj},cz is a sequence of almost orthogonal functions,

therefore
2 ~ Z 2260 \28+
A

O

2

HDﬂODﬁjD’f* oH D p,
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Using the dyadic estimate (64) of Theorem 12.1 with v = S_ we have

n=1l . _ ., —« « «@
|DZpa| < 3l € 37 w472 a0 1D
PN pA

By (4) and (7) we have that ¢ = —(8y + 4 — o) = - + 27+ — oy > 0, hence

2
|2 pts, | < S2DmAIP (Z( ) ||Da29u||)
ey
2¢e
DL LA > (%) -

B WKL

To ensure the boundedness of the last geometric series we need € > 0, which requires a strict
inequality in (7). In that case,

HD%DTD?El

2 « 2 @ 2 « 2 o 2
S NP AP D ID2gul* = D fIIP D29
A M

The term X3 can be estimated exactly in the same way.
Now consider Y. First decompose Y5 into orthogonal dyadic pieces

2

D§+D€_SH22H Z/L2’80 Z “Dﬁ+Dﬁ u,\v)\ H

2
HD,BOD§+D§— EQH ~ ZMZ/J’O
o

To be rigorous, we should have written uy > ,,., vx instead of u\vy, but we can forget about this
detail since the operators Sy =, ., Sx behave essentially like the Sy’s, indeed we have

SISV =D T USw AP =D ISP = 1A
A A

AN

We have to treat the (++) and (+—) cases differently because of the different behavior of the
operator D,. In the (++) case, Dy corresponds to 7 &~ A and using (65) we find

n—1
| DL D28, (wwn) | § NP AT D D2
In the (+—) case, D, corresponds to || ~ u and using (66) we find
1 n—2
[ D2 D o) | 5 oAt T e Do ] D20

In both cases, using the scaling condition (4) and setting £ = Sy + 25 for the (++) case and
€ = a1 + ay — 5 for the (+—) case, we reduce to

v [P AN a
|pepl s S 3T (5) 107 AllID™a]

© Az
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To estimate an expression like this we write the square of the sum over A doubling the sum, and
interchange the order of summation,

2
2¢e

> Z(%)Eaxbx => > )\M}\E ax, Ox, @x, b3, ~

€
no \A>u Atz \ p<min{A; Ao} 172

N min {1, A2} ’ 9 9
) < () (54 ()

A

Here to ensure the convergence of the geometric series in 1 we had to require that ¢ > 0; this is
equivalent to (6) in the (++) case, while it requires a strict inequality in (8) for the (+—) case.
With this assumption we finally obtain

_ 2 a1 2 s 2 a1 22 as 1|2
| P DI DE | S ST ID AP S 1D gl = ID™ AP D™ g1
A M

Remark 12.4. Using the dyadic estimates of Theorem 12.1 we have been able to reprove Theo-
rem 1.1 except for the cases which correspond to equality in (7) and (8). These correspond to the
boundary of the triangle AyA; A, of Figure 1 and we know that they are allowed, in view of our
previous proof, for f_ > —”—3

On the other hand the estlmates (64), (65), (66) of Theorem 12.1 show, roughly, that for
frequency localized data the estimate (3) is true even in the exceptional cases (9), (10) and also
for By = —%=. This explains why the examples of Section 6 had to take into consideration the

interactions among several different frequency levels to produce a weak logarithmic divergence.

13. NULL FORM ESTIMATES

Theorem 1.1 has its roots in the study of the improved regularity properties for solutions of
nonlinear wave equations with a special null structure. Typically this structure can be described
in terms of null bilinear forms. In general a null quadratic form is an expression of the form
Q(¢, 1) whose symbol ¢(7,&; A, n) vanishes whenever the space-time vectors (7,£), (A, 1) are null
and parallel. We give below some of the main examples of bilinear null forms which have appeared
so far in the study of Lagrangean field theories, such as the Wave maps and Yang-Mills equations.

Consider first a generic bilinear form Q(¢, ) whose symbol is given by ¢(7,&; A, n). In other
words,

Q6. 9)(r,€) = / g(r — N € —m A m)d(r — A€ — )id(A, ) dAd.

Under the assumption that ¢ and v are solutions of the homogeneous wave equation, using the
notation of Section 3, we can take

¢=0¢" b=y~

Then the space-time Fourier transform of () can be written in the form

Qo+, b *)(r,€) ~ /qi(n,ﬁ —m)é(r = n| F € = nD)do(m) (& — ) dn,

where ¢*(n,& —n) = q(|€ —n|, € —n; &|n|,n) will be called the reduced symbol of the bilinear form
Q.
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Definition 13.1. We define the null forms Qg, Q;;, Qo; by

Qo(d, V) = =010y + Voo - Vb,
Qij (¢, V) = 0,00;¢ — 0;00i0, 1<i<j<n,
Quj (0, ) = 0:p0;3p — 0;00pp, 1 < j < n.
Their correspondent reduced bilinear symbols are
g (0,¢) = £ll¢I = n- ¢,
5 (0, ¢) = =miGj + 05,
6o0; (1, C) = —Inl¢; £ myl¢].

These are the null forms that appear in the nonlinear structure of important lagrangean field
theories, like Wave Maps and Yang-Mills equations. Indeed, a good model problem for the equa-
tions of wave maps is given by the equation (see [6], [14])

Hu = QU(ua U),

and the Yang-Mills equations, with an appropriate choice of a gauge condition, have a nonlinear
structure with a quadratic part that is well described by the model system of equations(see [8],

[15])
Ou’ = ¢, D1 Qij(u”, u™) + Qi (D 1u” , u).
These equations have better regularity properties than a semilinear wave equation with a generic
quadratic nonlinearity, like
Ou = |Dul®.

The main cancellation properties of the above null quadratic forms are summarized in the
following lemma.

Lemma 13.2. Let n and ¢ be two vectors in R*. Then we have:

1. for Qo,
Il =n- ¢ (nl+ 1<) (nl + 1<) = I+ <) » (70)
nl¢]+m-Ca i+ ¢l (n+ <l = lnl = €1 (71)

2. fOT‘ Qij)
I ACIS Il IC12 In +C1? (1l + 1< — I+ ¢DF, (72)
I ACIS InFIC I+ <12 (m+ < = il = (<) (73)

3. for Quj,
11¢ = 1¢Inl] 2 1z 1¢12 (Il + 1<) F (nl + 1<) = In +¢])?, (74)
1l¢ + [<Inll ~ 1l 1¢12 [ + CI2 (In+ ¢ = linl = <12 - (75)

Proof. Inequalities (70) and (71) follow immediately from the identities

2(Inll¢l =n-¢) = (Inl+ <] + |n+<l) (Inl + <] = In+ <),
2(Inllcl+mn-¢) = (In+ ¢+ nl = [<D) (In+ <l = [l + <))
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Inequalities (72) and (73) follow from the identity

In AP = (<] +n-O) (nll¢]—n-¢) =
1
= Z(In+€|+|77|— 1<) (I + ¢ = nl +IC]) (nl + IS+ |n +<l) (nl + I¢] = In+ <),

indeed, assume |n| > |(], then we just have to notice that

(In + <l + [nl = I¢]) = In + ¢, (In+ <l = Inl+ <)) S I<1,
(Inl + I+ [+ ) = |nl, (Inl + 1< =+ <) S I¢]-

Inequalities (74) and (75) follow in a similar way from the identities

¢ = 1<II = mlI¢] (nl + I¢] =+ [ + <D (Il + <] = [n+ <)),

Inl¢+ €Il = [nlI¢] (In =+ ¢+ 1nl = 1<) (In+ ¢ = Inl + I¢]) -
O

Let n > 2. Let ¢, be the solutions of (1), (2), and for simplicity take ¢; = ¢»; = 0. We have
the following corollaries of Theorem 1.1.

Corollary 13.3. The estimate

| D2 D> Qu(o. )

L2(R1+n) 5 ||Da1¢0||L2(R”) ”DaszHLz(Rn) )

holds when o, s, By, By, B— satisfy the following conditions:

n+3
Bo+ By +p-=ar+ay— 5
n+1 n—1
> — > —
B - 4 ) BU 9 )
1 1
o+ ax > -, ai§3—+n+ )
2 2
1 n+1 n+1 n+1
(O[1+O[2,B_) 7£ (57_ 4 )7 (aiaﬁ—) 7& ( 4 y 4 >

Proof. We could use (70) and (71) to argue at the level of symbols, but in this case we can just
use the identity

2Qo(0, 1) = B(oy) — (Be)y — o(TY),

to deduce that Qq(¢, 1) behaves like D D_(¢1)). More precisely, let ¢’ and ¢’ be the solutions of
the homogeneous wave equation with data ¢f and v{, where

Bo(&) =10 (E)], (&) = [¥o(&)],
then |Go(@, ¥)| S (D4 D_(¢'0))” and

| DD D2 Qoo w)|| S || D* DT DT (gw)

Also ||[D* ¢p|| = [|D* ¢o|| and || D**4p|| = [|[D**4y||. The result then follows from Theorem 1.1
with g, and §_ replaced by 8, +1 and f_ + 1. O
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Corollary 13.4. The estimate

|pDi D% Q0. 0)

LRI S 1D @oll 2 geny 1D %0l 2 n)

holds when o, s, By, By, B satisfy the following conditions:

n—+3

Bo+Br+08- =ar+ay— 5

n+1 n—1
_ > _

B0> 9 ) 67_ 4 )
3 1

O[1+0422§, az§5—+n_2|_ ) 7::]-727
3 n-—1 n+3 n-—1
(O[1+O[2,6_) 7& (57_ 4 )7 (aiaﬁ—) 7& ( 4 y 4 >

Proof. The inequalities (72) for the (++) case and (73) for the (+—), on the level of symbols,
allow us to replace Q;;(¢, ) by D%Dé(D%qﬁD%z/)), and then we can apply Theorem 1.1 with [y,
B_, a; and s replaced by Sy + %, B+ %, o — % and ay — % Doing in this way we would obtain
the estimate valid in the range above except for the condition on [y, for which we would have only
By > —%. But recall that the condition on £, becomes relevant only in the (++) case when we are
in the region where || < 7. (See Example 5.4 and Proposition 7.3.) There we can use the fact

that [ A¢| < |n|2|¢|2|n+¢|, which is a consequence of (73), to replace Q;;(¢, ) by D(Dz¢D24))
and therefore gaining another half power for f. O

Corollary 13.5. The estimate

| D D2 D% Quyo,v)

L2(R1+n) 5 ||Dal¢0||L2(Rn) ||Da2w0||L2(Rn),

holds when o, s, By, By, B satisfy the following conditions:

n—+3
Bo+ By + B =ar +ay — 5
n—1 n—1
_ >
60> 27 B,_ 47
3 1
o+ ag > —, ai§5—+n+ )
2 2
3 n-1 n+3 n-—1
(al +C¥2,B,) 7£ (57_ 4 ) ) (aiaﬁf) 7& ( 4 y 4 > .

Proof. Using inequalities (74) for the (++) case and (75) for the (+—), on the level of symbols,

1

we can treat Qo;(¢, 1) as if it were DEDE(D%¢D%L/)), and then we apply Theorem 1.1 with .,

B, a replaced by 6++%, 5_+% and QQ_%. a

Remark 13.6. The conditions on the exponents [y, B, 5, a1, as in corollaries 13.3, 13.4 and 13.5
are not only sufficient but also necessary for the validity of the estimates. One can see it using
the same examples given in Section 5 and 6 and applying Lemma 13.2 to the symbols of the null
forms. The only thing to notice is that for the null forms );; our examples correspond to the
region where we can use 72 and 73 with < replaced by ~.
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14. CONJECTURES FOR LYL" ESTIMATES

Now that the L? theory is completely understood, it makes sense to investigate the possible
generalization of these bilinear estimates to the LP context. The starting point in this respect are
the classical Strichartz inequalities which we can cast in a bilinear form as follows (see [3] and [5]):

l0wllge; < (1D Gollager) + D%l ) (1D ollpogery + 1D 40 ogery) - (76)
They hold whenever ¢, r, a satisfy the conditions
1 -1 1 1 1
5§n2 (1_;)7 205:”(1_;)_57 (Q7707n)7£(007173)'

In view of the L? bilinear estimates presented above, it makes sense to consider generalizations
of the type

<

~J

| p* DI D2 (90)

LiLy,
S (I Goll gy + 10701 2y ) (D220l oy + D% 0|y ) - (77)

where by L{L" we denote the Lebesque space with mixed exponents defined through the norm
1

nFmgg=(/:f(/nwvamwm)3&>5

Some estimates of this type, with 5, = . = 0 and [, < 0, have been recently proved, and
made use of, in [15].

Theorem 14.1 ([15]). The estimate

HDﬁ((ﬁw)HL?L; 5 <||Da¢0||L2(R”) + HDOHIQSIHLz(Rn)) (“DawU“L?(Rn) + HDailleLz(Rn)) :
hold when
1 n-1 ( 1)
i 1—=,
q 2 r

1 1
soaaitafioh),
q T

1
a>—, [BL0.
2q

The proof is based on the Littlewood-Paley decomposition and some sharp dyadic version of
the classical Strichartz inequalities.

Remark 14.2. The investigation concerning the L L" bilinear estimates was motivated by the hope
that such estimates could give further insight into the problem of optimal regularity for nonlinear
wave equations. As an example, consider a system of equations of the form

Ou = Q(u, u),
where () stands for an arbitrary null form (see definition 13.1). In [6] one has used L?L? bilinear
estimates

||Q(¢a w)HL?(RHn) N ||¢0||H"T+1(Rn) ||7/)0||H1(Rn) )
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for two solutions, ¢ and v, of the homogeneous wave equation with data ¢(0) = ¢g, ¥(0) =
e

o, 04(0) = 9y1p(0) = 0, together with the standard Duhamel’s principle, to prove
posedness results. Duhamel’s principle suggets, however, that an estimate of the type

1Q(@, D)l 111z S b0l gras @y [P0l graz gy »

with optimal choices of a; and as might imply a better result. Unfortunately, example 14.14
shows that this approach fails. Nevertheless, we suspect that the general form of bilinear L{L’
estimates may turn out to be very useful.

> well-

Let’s discuss now the estimates (77). The following condition follows easily by a straightforward
scaling argument:

1 n
50+5++57—6—;:Oz1—|—042—n. (78)

Using the techniques of Section 5 we want to find other necessary conditions for the exponents ¢,
r, Bo, By, B, a1, g, involved in (77).
The algorithm is still the same:

1. We have to check the boundedness of the operators
B(14), By : L*(R") x L*(R") — L{L},

defined in (21), (22), (23), (24).

2. We test it relative to the characteristic functions of two sets F' and G which may depend on
a small parameter ¢.

3. We choose F' and G in an appropriate way, corresponding to the geometry of the singularity
of the weight W_,. We want also to be able to estimate the order of magnitude of the weight
W, in terms of parameter ¢ when n € F and ( € G, let’s say Wi(n,() =~ W, for some
constant W, = W,(e).

4. To each choice of F and G there corresponds a region R in physical space, depending on &,
so that, when n € F, ( € G and (t,z) € R the phase py(t,x;n, () is essentially constant (or
we can subtract from it a function of (¢,z) to make it essentially constant).

5. This set R will span a time interval of length T, = T.(¢) and all its sections at fixed ¢ will
have the same measure, say equal to X, = X, ().

6. Putting these ingredients together we obtain that

HB(HE)HL;IL;

Ixrllz2 [Ixalle

> W,|F|2|G|2 T8 X1

7. All the quantities on the right hand side will be estimated in terms of power of our parameter
e. The resulting combination will be of order £¢ for some exponent d which depends on the
quantities ¢, r, a., ..

8. For the estimate (77) to be true, £ has to be uniformly bounded as € — 0, therefore d > 0.
This implies a necessary condition on the parameters ¢, r, aq, s, Bo, By, B—.

We classify the examples into two categories, the first contains those with data supported on
the same dyadic shell in frequency space, the second contains those with interaction between high
and low frequencies.



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 42

Interactions of the data at the same frequency level.

Example 14.3. Consider the (++) case. Take
F={n:1<m<2 e<m<2e, 0| <&}, |F| ~ ™t
G={C:1<( <2, —26<G<—¢ (" <e}, |G| ~ ™,

Looking back at (23) and estimating each of the factors |€]%, 77, (7 — |£])f~, |n|** and |C|*2, we
have

16016+ (52)/37

W_|_ ~ W* = = 62/37

loge: ’
Now write the phase as follows
v = tnl = + ¢l = C) + (E+a)(m + )+ - (1 +¢) = 10(2) + (t + 2)0(1) + 7' - O(c).
Hence, we can choose
R={(t,x) :t=0(E%), 21 =-t+0(1), 2 =0}, T.o~e? X, ~e D
Then

n— 2 n—1 d

1 111 n—1 12
W, F]2|GPTIXT ~e?P-c"2 e 2 e7ae v =¢,

and we obtain the condition

dzzﬁ—3+(n—1)(1_1>zo. (79)
q r
Example 14.4. Consider the (++) case. Take
F={n:Im—-1<e e<m <2, 0| <e}, |F| ~ e,
G={C:|G+1]<e, =26 << —¢ (" <e}, |G| ~ &".
We have
W+%W*:%:650,

pr =2t =t(ln —1+[¢| =D +a(m —1+G+1)+2" ( +{) =t0() + - O(e).
Hence, we can choose
R={(t,z):t=0(""),2=0@E""}, T.~ec' X,~c"
Then
W*|F|%|G|%T*%X*% ~ePretete et = g%,

and we obtain the condition

1 1
dzﬁo——+n(1——>20. (80)
q r
Example 14.5. Consider the (++) case. Take
F={n:lm-1]<e, e<m<2e, '] <e}, |F| = et

G={C:|G+1] <& =2 <G < —¢ |(" <}, |G| ~ ™,
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We have

Bo1B+18-
gPlo1P+1

~ — — 60
[[+N[[*— o110z =&,

or —2t=t(n| =1+ |- D4+z(m —1+G+1)+2 - (f + ) =tO(?) + 2,0(*) + 2’ - O(e).
Hence, we can choose

R={(t,2) :t=0(), 2, =02, 2 =0}, T.o~e? X, e ),

Then
W*|F|%|G|%T,§Xj ~ Pt e = ed,
and we obtain the condition
2 1
dzﬁo——+(n+1)<1——>20. (81)
q r
Example 14.6. Consider the (++) case. Take
F={n:lm—-11<e |m| < In"| <e}, |F| ~ "2,
G={C:|Gl < |G-1<e |(" <e}, |G| ~ ™2,
We have
18016+ 16-
W+ ~ W* = W = 1,

oo —2t—ai—xzp =t -1+ [C| = 1) +@(m =1+ C) + a2+ G- 1) +2" - (" + ") =
=t0(e%) + 110(£?) + 2,0(e%) + 2" - O(e).
Hence, we can choose
R={(t,2) :t=0("2), 21 =02, 2, =072, 2" =0}, T.~c? X, ~e "2
Then

l l n n n
WL F3|GETE X ~ PP et = o4
and we obtain the condition
2 1
d:——+(n+2)<1——>20. (82)
q r

However, condition (82) is not sharp and can be improved with a more refined choice of the sets
F and G. The following example was communicated to us by T.Tao.

Example 14.7 ([19]). Consider the (++) case. Take
F={n:Im—-1<e lm—1/<e | <e}, |F| ~ ™,
G={C: |G -1 <e [G+1] <, [(" <&}, |G| ~ ™.
When n € F and ¢ € G we have:
[ = 1+ (= D)+ (1 + (= 1)* + '[P = 2+ 2(m — 1) + O(e?),
CP=0+(G =12+ (1+ G+ + " =2+2(G — 1) + O?).
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Taking square roots we find

|77|+|C|=2\/§+%(m—1+g—1)+0(52).

Hence
p_ — W2 — 21, =

=t0(?) + (%tﬂLfﬁ) (m—1+G—1)Fa(p—-1+G+1)+2"-(n"+{") =
= t0(e%) + 2,0(g) + 220(*) + 2" - O(e).
and of course we have
1Po18+18-
1a1 ]_CKQ
We can choose the region R according to our decomposition of the phase,
R={(t,r):t=0(E%),51=0@E "), 22=0(?),2" =0}, T.xe? X,
Then

W+%W*:

l l n n n
W, F|2|GRTIX]T ™5 e emie T =,
and we obtain the condition
2 1
d:——+(n+1)<1——>20. (83)
q r

Observe that in the above example all weights corresponding to the differential operators are
essentially like 1. Hence condition (83) is due solely to the geometric properties of cones and to the
bilinear structure of the product. There is an analogous example in the simpler contest of bilinear
restriction problems for the sphere, which we will discuss in Section 17 (see Example 17.5).

Example 14.8. Consider the (+—) case. Take

F={n:Im—-1l<e e<m<2e, ' <e}, |F| ~ &",
G={C:|G+1]<e, —2e << —¢ " <&}, |G| ~ ™
We have

oo =t —m —I¢I = C) + (t+2)(m +G) +a' - (' + ) =t0(e*) + (t+21)0(e) + 2" O(e).
Hence, we can choose
R={(t,x):t=0(?), 51 ==t+0( "), 2’ =0}, T.=e? X,~c"
Then
W*|F|%|G|%T,§X*% ~ PotBitbocheloae = ¢f

and we obtain the condition

T
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There is another example for the (+—) interaction at the same frequency level which is associated
to an unusual quadratic-cubic scaling and, for some values of ¢ and r is sharper than Example 14.8.

Example 14.9 ([19]). Consider the (+—) case. Take

F={n:lm—1<e, lm—el < 0] <}, ||~ e
G={C:|G+1]<e [G—¢l <&, (" <}, |G| ~ ™.
We have
W ~W, = 76610:;8;18 = ghothith-

Before estimating the phase, observe that for n € F' we have

1
2 "2\ 2
Il =m (1+77—§+|"2|> —
Ui Un

and similarly, for ¢ € G,

2 62

¢l =G+ 5+ (m+1)5 +0().

This implies that
2

il =161 = (e + @) (1- 5 ) + O,

The phase can then be written as
2

0 — 2exy = tO(e?) + {t <1 - %) + xl] O(2) + 1,0(£%) + 2" - O(?).

Hence, we can choose

62

R= {(t, z):t=0(", v =t (1 - 5) +0(E), 2, =0(?), 2" = 0(52)} )

which corresponds to 7, ~ ¢~ % and X, ~ ¢ ?". Then

=§
Y

1
W,|F|3|GI3 T XT o PotBathgngne=i -

and we obtain the condition

d=ﬁ0+ﬁ++5—§+2n<1—1>20. (85)

T



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 46

Condition (85) is sharper than (84) when ¢ and r belong to the region where

1 - n 1 1
g 2 r)’
The last example for the (+—) interaction at the same frequency level is an adaptation of an

argument of Selberg [16].
Example 14.10. Consider the (+—) case. Take

F={n:1<m<2 |f|<e}, |F| e,
G={C:1<[Cl<2 [IKl+G -1 <e}, |G~ &,
Since the angle between n € F' and —( € —G remains large, we have
1Bo+6+16-
W_ ~ W* = W =1.

Observe that for n € F and ( € G we have
(Inl = 1¢1) = (m +C) + 1= (In] =m) = (I¢]+ G = 1) = O(e?)
Hence we can write the phase as
o +t=1t0(*) + (t+2,)0(1) + 2" O(1),
which corresponds to T, ~ ¢ 2 and X, ~ 1. Then
1 1o L1 n—1 2
W, F|2|G2TIXT ~1e 2 ele™al = &%)
and we obtain the condition
n+1 2
—=>0. 86
o> (56)

Condition (86) is relevant only when n = 2.

d =

Interactions of the data at different frequency levels.

Example 14.11 ([19]). Consider the (++) case. Let L = ¢! and define

F={n:L<m<L+1, 1<np<2 [n"|<1}, |F|~1,
G={C:|¢] <1, —2<&< -1, |(" <1}, |G| ~ 1.
We have
[Bo[B+18- B
Wy~ W, = Lo = Lot “

pr — Lt +z) =t(n| =L+ |C) +z1(m — L+ G) +2" (' + ) =t01) + 1,0(1) + 2" - O(1).
Hence, we can choose
R={(t,z):t=0(1),z2=0(1)}, T.~1 X,~1
Then
W.|F|}|G3TE X ~ [oortB—on — 14,
and, in the limit L — oo, we obtain the condition
d=—py— PB4+ a1 >0. (87)
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Example 14.12. Consider the (++) case. Define

F:{n:L<771<2L,\/Z<772<2\/Z, |77”|<\/Z}, F|~ L'
G={C:|G|<1, —2< &< -1, [(" <1}, |G| ~ 1.
We have
[Bo[B+18-
WymW,=—"——— = [foth=
" Loi]a: ’

47

oy =t(nl—m+ ¢ =)+t +z)(m+G)+2" - (7 + ) =tO(1) + (t +2,)O(L) + 2’ - O(L%).

Hence, we can choose

R= {(t,x) t=0(1), 2 = —t +OL™"), o' = O(L—a)} L T, X, o~ L

Then

n+1 n+1

1 111
W, F]2|G2Té X7 ~ Lo+ "0 =% = [

and we obtain the condition
n+1/1 1
d=—Po— P+ +a1— <———>ZO-

2 2 r
Example 14.13. Consider the (++) case. Let L = ™" and define
F={n:L<m<2L, L<n<2L, || <L}, |F|~ L",
G={C: |0 <1, ~2< G <1, (" <1}, Gl 1.
We have
W, ~ W, = Lﬂ;fi*j _ [potbi-ar,

pr =t +[C) +z- (n+¢) =tO(L) +z - O(L).
Hence, we can choose
R={(t,z):t=0(1),z=0L "}, T.~1, X,~L"
Then
WL|F|3|[G3TEXE ~ [PotBe o34 7 = 4

and we obtain the condition

1 1 1
d:_ﬁo_/8++a1+5_n<§__> > 0.

r

The last example that we present was also communicated to us by T.Tao.

(88)

(89)

Example 14.14 ([19]). Consider the (++) case. Let ¢ be a small positive number and define

F={n:|lnl+m-2e|<e |m|<e/2}, |F|~ e,
G={C:|G+1|<e, [(| <&}, |G| ~ ™.
We have
W~ W, = 1601 6+g8- _ s o



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 48

and for the phase
prt+ (=20t —zi=t(nl+m -2+ (| + )+ (@ —)m+G-1)+2"-(n+{) =
=t0(}) + (z, — t)O(e) + 2’ - O(e).
Hence, we can choose
R={(t,x):t=0(?),2=0("}, T.~e? X,~c™"
Then

n_2_n d

1 1 n
W FF|GPTI X7 o Pt 55 imr = o
and, in the limit € — 0, we obtain the condition
n+1 2

—+n<1—1>20. (90)
2 q 2 7

Making use of the scaling condition (78), we rearrange and summarize the various conditions
that we have found so far in the following proposition.

d:—al—i—ﬁf—i—

Proposition 14.15. Letn > 2 and 1 < q,r < 0o. If the estimate (77) is true then the parameters
q,7, a1, o, B, By, B must verify the following conditions:

e Scaling invariance:

1 1
ﬁo+5++5_:a1+a2+6—n<1——>;

1<n+1<1_1),
qg 2 T
1

q_4;

Geometry of cones:

[ ]
Q
S
S
)
D
S
&
=
<
S
3
2
S
3
S
3
s
QU
.
3
o
<
S
3
B

Low frequencies in (++) interaction:

1 1
el u(inh)
q r

5023—(n+1)<1_1);

q r

Low frequencies in (+—) interaction:

1
ap + g > —,

3 1
amta>——n(l——];
q r
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e Interaction between high and low frequencies:

n

ai§57+§a

ai<ﬁ_+ﬁ_1+n_1<l_l>,
- 2 q 2 2 r
- 2 q 2 r

<B—|—n1+11—|—11
al_f?qn2r 2 q)

Conjecture 14.16. The estimate (77) is true'® when the parameters q,r, oy, aa, Bo, By, B satisfy
the conditions of Proposition 14.15, with the exception of some borderline cases corresponding to
equality in the above conditions.*!

We extrapolate from this conjecture also some conjectures about null forms. Again, for simplicity
we set ¢ = ¢y = 0.

Conjecture 14.17. Let n > 2 and 1 < ¢q,r < oo. Let @) be any of the null forms Qo or Qij
introduced in Section 13. The estimate

1Q(@, V)l gy < 1D%oll 2 1D ol 2,

18 verified whenever q,r, a verify the following conditions:

1 n 1
11z
“ 2q+2< 7“)’

1 . [n+1 1 n+l1l n—1 1 1 n 1
— < min 1—=-, , +—- —+-=11—- .
q 2 T 4 2 r 3 3 r

In the particular case where ¢ = r = p the above conjectures reduce to

1Q(0, )l Lo greny S 11D 0ll 2 1D Yol 5 (91)

n+3 _ 1 n4l 1
forpzn—ﬂanda—ngT(l—z—) .

Estimates of the type (91) were first considered in [6]. There it was shown, using essentially the

example 14.6, that the exponents p = "T“, a = 1 are not admissible for dimensions n = 2, 3.

Conjecture 14.18. Letn > 2 and 1 < q,r < 0o. The estimate
HD_IQZ](d)a,QZ})HL‘tILg + HQZ](D_Id)a,QZ})HL‘tILg S ||‘Da¢0||L2 ||‘DOA,¢)0||L2 )

0This and the following conjectures have more the flavor of open questions. They reflect our current under-
standing of the problem. It is conceivable that the list of counterexamples and necessary conditions presented
above is not complete. In particular, in the region where ¢ and r are very different our conjecture seems far to be
optimal. For ¢ = r we believe our conjecture are sharp up to borderline cases.

1Very recently we found out that T.Wolff has proved a significant part of this conjecture for the case ¢ = r,
see [24]. He claims that when 5 and J are supported on disjoint and transversal subsets of the positive null cone
at the same frequency level, then estimate (77) holds in the sharp range for ¢ = r > Z—ﬁ, leaving open only the
question of the endpoint.
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15 verified whenever q,r, a verify the following conditions:

1—

=3

1 1 -3 1 1
< — < min n 1—-- ,n—l—ﬁ,n + -, nt .
q 3 r r 2 r 4

In the particular case where ¢ = r = p the above conjecture reduces to
HD_IQl](d)a @Z}) HLP(R1+TL) + HQZ](D_Id)a @Z}) HLp(RlJrn) 5 ||‘DOA¢)0||L2 ||‘Da,¢)0||L2 )

foraz%“(l—%),Z—ﬂ§p§n+1whenn23.

15. THE CASE g =00, r =2

Another situation where it is possible to completely verify Conjecture 14.16 is for energy-type
norms, when ¢ = oo and r = 2.

Theorem 15.1. Let n > 2. Let ¢, be the solutions of (1), (2). Then the estimate

<

~J

[0 0o

L L2

S (1D Goll ey + 10" 01 2y ) (I Woll gy + |0 0| o) > (92)
holds if and only if oy, s, By, By, B— satisfy the following conditions:

n

50+B++5—=041+a2—§, (93)

—1
B> -, (94)

4
n

30 > _57 (95)
ai<ﬁ_+g, i=1,2, (96)
a1 4+ ay > 0. (97)

Proof of the sufficient part. By the usual decomposition of ¢ and ) into their + and — parts it is
enough to prove the estimate for ¢ ¢, and ¢, 1 _. Observe that we have

DD D (¢, 404 (L, ) = DO DI DP (4! 4 )(0, z), (98)
where ¢! and 1! are solutions of the homogeneous wave equation with initial data given by
oh(n) = M), wi(C) = e Ny(C), j=0,1.
Since the exponential factors don’t change the norm of the initial data, once we have a bound for

the L? norm in x of the expression (98) at time ¢ = 0, then we automatically get a uniform bound
for all times. Hence the estimate (92) is equivalent to the boundedness of the bilinear operators

B, :L*xL*— L?
defined by

Bﬂﬁm@%=/W&W£—HVWM@—mdm
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where W are still given by (23) and (24).

More over, as we did for the proofs of Theorem 1.1 and Theorem 12.1, it is convenient to look
separately at the contribution coming from the interaction of comparable frequency levels and the
contribution coming from the interaction of different frequency levels. Thus, we decompose the
operators B as the sum of

BY(/. 9)(€) = / We(n, & — n)f(n)g(€ — ) dn, (99)
In|<|€—n|~|¢|

BL(f.9)(€) = / W (n, € — n)f(n)g(€ — ) dn, (100)
[n|~s|E—n|>|€]

B2(f.9)(€) = / W (n, € — ) f(m)g(€ — ) dip. (101)
[n]>]€—n|~|¢|

Obviously the properties of B% are analogous to those of BY, because of the symmetry f + g,
a1 <> ay. Also we can always assume that f and g are non-negative functions.
We assume first that we have a strict inequality in (94):

n—1
4

B> — (102)

The cases with f_ = —”T’l will be considered in Section 16.

Estimates for B}. Consider Bi. If we apply Cauchy-Schwarz directly, we reduce to prove the
boundedness of the quantity

Sup/ W2(n,&—n)dn.
e Jin<le-nl~e]

In the region where |n| < |£ — n| = |£| we have

1€ = nl* = (€] = nl)?

~ [n]6?,
€|

| + 1€ —n| — €| ~
where 6 is the angle between 1 and —¢&. Hence,
Wi (n, & —n) ~ |€|PotPemoz|y|f-ma1g26-
and we have

/ WE(n, & = n)dn S [g[PCotiemes) / PPt dy <
nl<le—nl~el

Inl<|¢|
€] ™
< |§|2(50+ﬁ+a2)/0 pZ(ﬁ—*al)Jrn*l dp/o gLB-+n—2 qp.

The last two integrals are bounded when 45 +n—2 > —1 and 2(f_ —ay)+n—1 > —1, which are
ensured by (102) and (96). The scaling condition (93) then ensures that the result is uniformly
bounded in &.

The estimate for BY is obtained in a similar manner.
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Estimates for B}. In the region where |n| = | —n| > |¢| we have |n|+ |{ —n| — [¢] = || and,
by (93),

W (n, & —n) & || |+ 10 —oamez = |¢|Po|p|=Fo=s

By the now familiar doubling technique and Cauchy-Schwarz inequality, we find

260

B, 5/// L2 o) g2() de anc.
H +H €< n| |77|250+n ( ) ( )

The integral in € is bounded if 23, > —n, which is ensured by (95), and we have

28

[ e,
i) 1220

Observe that here the proof of the boundedness of B}r works also for the case f_ = —”T_l, which

is not critical in this region.

Estimates for B'. In the region where |n| ~ [€ — 1| > |£| we have

|77||§_77| 2
I

where @ is the angle between 1 and n—¢ and 0 is the angle between £ and 7. Indeed, from |£] < |7
it follows that ¢ is small, in particular ¢ = sin ¢, and by geometric considerations we have

€l = llnl = 1€ = nll ~ ~ [¢l(sin0)?,

sinp  sinf
€l e =nl
Hence,
|£|Po+BatB 2. R 26
W_ (77, 5 - 7']) ~ W(Sln 9) == W(Sln 0) .

We then perform the doubling and apply Cauchy-Schwarz. We obtain

2(a1ta2)—n(q; 94,8,
18] = / / / y |'§' W(mfiﬁ? L 2 g?(Q) de dndc.
<In

The integral in £ is bounded if 2(ay + @) —n > —n and 45 > —n + 1, which are ensured by (97)
and (102), and we have

/ |¢[2(arta2)=n (i §)45- 0 ~ 1 /nl ka1 g, /W(Sin A
1€1<|n] |77|2(a1+a2) |77|2(a1+a2) 0 0

The proof of the sufficient part of Theorem 15.1, under the assumption (102), is now complete.
U

The necessity of conditions (95), (96) and (97) with non-strict inequalities, follows from the
examples in Section 14. It remains to show counterexamples to exclude the cases of equality in
those conditions.



BILINEAR SPACE-TIME ESTIMATES FOR HOMOGENEOUS WAVE EQUATIONS 53

Example 15.2. Assume we have equality in (95), 3y = —%. Take f = xp and g = X, where
F is the ball of center (1,0,...,0) and radius 1/2 and G is the ball of center (—1,0,...,0) and
radius 1/2. When |£| < 1/4 we have

Bro@~let [, dnzlet

E—ned

N

Hence, B (f,g) is not a L? function.
Example 15.3. Assume we have equality in (96), a; = - + §. Take

o = —22 ey — (o),
]2 [log [n]|

where F'is the ball of center 0 and radius 1/2 and G is the ball of center (1,0,...,0) and radius
1/2. The function f is in L? when a > 1/2.
When |£ — (1,0,...,0)| <1/4 we have

B_,.(f g)(&) ~ / (|77| + |§ - 77| - |§|)ﬁ_ dn > / 925— d77 ~
’ el p|**2 [log |n]|" mi<1/a [n|* 2=~ [log |n||*

§—neG
- / /A
— Ji<aya Il log [n]|*

As before, # is the angle between n and —¢. The last integral is bounded only if a > 1, hence, we
obtain a counterexample by choosing 1/2 < a < 1.

Example 15.4. Assume we have equality in (97), a;+ay = 0 and consequently fo+5++58- = —5.
Take f = xr and g = xq, where F' is the ball of center (1,0,...,0) and radius 1/2 and G is the
ball of center (—1,0,...,0) and radius 1/2. When [£| < 1/4 we have

B-(9)(©) = 167 [ (el = llal = le =)™ dn 2

{—neG
> |¢|fotBeto- / 0%~ dn > |€] 5.
n—(1,0,...,0)|<1/4

Here 0 is the angle between 1 and £. This shows that B_(f, g) is not a L? function.

16. REMOVAL OF A LOGARITHMIC DIVERGENCE

To complete the proof of Theorem 15.1, it remains to show the boundedness of the operators
B% and B!, defined in (99) and (100), under the assumption that
n—1
b-=-
To prove this critical case it is convenient to perform a dyadic decomposition of the data in

frequency space. Using the summation techniques already seen in Section 12, the estimates can
then be obtained from their frequency localized versions as stated in the following proposition.

Proposition 16.1. Let 0 < u S \. Take f and g to be functions with compact support. We have
the following dyadic estimates:
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o suppose supp f C {[{| ~ p} and supp g C {|¢] S A}, then

1Bl < (4) " (1+ fuog () ) 171 ol (103
e suppose supp f,supp g C {|¢| ~ A}, then
Is.BLr ol < (5)7 (1+ og (5)]) IsHlal (104)

If we apply the procedures of the previous section we would obtain logarithmic divergencies in
the integration of the angular variables. A refined application of the doubling technique will allow
us to transfer the logarithmic loss from the angular variables to the radial ones, for which, in view
of the strict inequalities in (96) and (97), we may allow a loss of € in the exponent.

Proof of (104). Because of the scaling invariance condition (93), we may assume that 4 =1 < \.
Moreover, by the same procedure described in the proof of (65), we can assume that f and g are
supported in opposite cubes, () and —@), of size ~ 1 at a distance ~ A from the origin. In the
region where |n| =~ |€ —n| > |£| we have

&l
9 y )
e+ &

where 6(&, —n) is the angle between the vectors £ and —n. Under our hypotheses the operator to
be estimated is then

€] = [In] — 1§ = nl| =

o fm)g(§ —n)
S1B! (fia) 9-@)(€) m A" e o
1 (@) 9(-Q) /|Z;"<|§eff| 0= (& —n)

in the region where [£| ~ 1. By doubling the integral we need to show that

f( Ng€—1') ' 21112
- [[f L 92 o0 ey e S (g 11

where the region of integration is

Q={(nn,&) nn—&n',\n—E€Q, g ~1}.

We split the integral I = I + I, by decomposing the region €2 into two parts. The first is the
subset €2; defined by the conditions

min {0(£, —n),0(&, -1} < M(n ),
min {0(&, € —n),0(§,§ — 1)} S A —n,&—n);
the second is the subset (25 on which we have
)‘9(777 77,) < min {9(57 _77)7 9(&7 _77,)} )
A€ —n,&—n') <min{0(£,£—n), 05, —n)}

(It is possible to adjust the constant in the above inequalities so that Q C ©; U Q,.)
For I} we apply Cauchy-Schwarz pairing f(n) with f(n’) and g(§ - 77) with ¢g(& —n'). We find

IIQS//m@ 2 (SfZ(n;fQ( ()g —1') dedndi //n (g(ffn)n) dedn i
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In the right hand side, the second integral becomes similar to the first if we perform the change
of variables (n,7',&) — (¢, (", &) = (£ —n,& — 1, =£). Since we have that

d¢
_ / <1+ logA
0(67 77)5)‘9(77777) n—1 n—1 ~ g 9
/9(6,77'2910(7;,77') 0= (& -nb = (&)

it follows that

It S (L+1og ) [ f]] llgll -
For I, we apply Cauchy-Schwarz pairing f(n) with g(§ —n) and f(n') with g(§ —n'), We find
f(m)g*(€ —n) f2)g?* (€ —n')
IQS/ dn' dnd¢ - dndn' d€.
? 0, 0"71(& -n) 0, 0"HE 1)

For fixed 7 the intersection of @ with the set of points 1’ such that 8(n,n") < A has a volume
which is < (AA)"L. Thus

1
- dn’ < 1
0"=1(&, —n) An,ﬂ’><<"“;") T

n'eQ
which implies
L S (11 gl
O

Proof of (103). As before we can assume p = 1 < \. Let’s look at the (++) case. In the region
where |n| < |€ —n| = |£] we have

[l + 1€ — 0l — €] = nl6*(n,€ — n).
The operator to be estimated is

Bg(f, g)(i) )\cm—"—"'l Mdn,

I 07T (1,6 =)

in the region where || &~ A. Now the situation is different from before since f and g are supported
on regions at different frequency scales. This fact will cause us some problems if we try to proceed
using the doubling technique at this stage. Instead, we will first observe that, by duality, is enough
to prove that

J(f,9,0) S X (1 +1og A) 1] g 1171l (105)

where .J is the trilinear expression

J(f,g,m:/Bi(f,g)(s) () dé ~ Aa““//f 92 ”*O dndc.

7

But we can view (105) also as the duality formulation of the L? boundedness for the bilinear
operator

(g, h) () = A@a—"E g(Q)h (77+C)
Blg k) cetnrcn 077 (1,€)

on the region || &~ 1. More over g and h can be restricted to be supported in the same cube @) of
size 1 at frequency level A\. The proof for the boundedness of B’ now can follow the same line as

dg,
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in the proof of (104). (changing ( — —( and ¢({) — g(—() we get to estimate precisely the same
operator).

The proof in the (+—) case for B?, is analogous to that of the (++) case for B}. The only
change is to replace n by —n and f(n) by f(—n). O

17. BILINEAR RESTRICTION CONJECTURE

In trying to solve the Conjecture 14.16, which we expect to be hard whenever ¢ < 2 or r < 2, it
helps to consider a simpler version of it which makes sense in the classical context of the restriction
theorem for the unit sphere S = S” ! in R".

Define the Stein operator to be the adjoint of the Fourier restriction operator Rf = f ,
S

Sf(z) = R f(z) = /eifv'ff(g) A4S ~ (£ dS)" (x).

S
Recall that the classical Stein-Tomas restriction theorem (see [23], [17]) can be formulated as
follows.

Theorem 17.1. Let f € L*(S) and
2(n+1) <

n—1
Then Sf € LP(R™) and

ISFllpo@ny S 111l 2s) - (106)

The Strichartz inequalities (76) are proved by using the same methods which are used to prove
Theorem 17.1. As the bilinear estimates (77) are a generalization of (76), it makes sense to ask for
some version of a bilinear extension of the Stein-Tomas theorem. In particular we may consider
the following bilinear forms,

Q(f, 9) = Qz‘j(sf, Sg)=0Sf- 0;Sg — 0;Sf - 9iSyg.

Observe that the symbol of Q(f, g), 0(&,n) = & A n vanishes precisely when &, n are aligned, this
corresponds to the worst behavior of the product Sf - Sg. It is reasonable, then, to ask what
happens with Sf - Sg if the supports of f and g are not aligned, in other words they have disjoint
projectivised supports. This leads to the following:

Conjecture 17.2. Let 2,8y two disjoint subsets of S such that
diSt(Ql, Qz) > 0, diSt(Ql, —Qg) > 0.

Then
1B(f, g)HLp(Rn) S ||f||L2(Ql) ||g||L2(Qz)7 (107)
for all f supported in 2y and g supported in €2, whenever
2
p>1EE (108)
n

This is intimately connected to the following:
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Conjecture 17.3. For arbitrary f,g € L*(S), p > “2 and Q(f,9) = Q;;(Sf,Sg) = 9:Sf-0;Sg—
0;Sf - 0;Sg we have,

1Q(f, g)”LP(R”) S ||f||L2(S) ||g||L2(S)7 (109)

Remark 17.4. The case p > (n+ 1)/(n — 1) is already contained in Theorem 17.1, since applying
Holderwe immediately have

|B(f, g)”LP(R”) < ||5f||L2p(Rn) ||Sg||L2P(R") N ||f||L2(S"—1) ||g||L2(S"—1)7

forallp > (n+1)/(n—1).
The Knapp example shows that this is sharp. Consider in fact f = g = x¢., where C; is the
cap defined as the intersection of the sphere S and the rectangular box

D.={¢eR": & -1 <&} || <e},
for a small € > 0. We write

St(z) :eixl/ el (éi=1) g’ dSe,

and observe that it is possible to choose a region R, defined by
R.={zeR":|xy|Se? |o| <e'},
such that |Sf(x)| 2 |C:| when z € R.. Therefore

2 2|R,|% ;
B0 _ IS0 5 IOFIRIE s i

Il gl 1f7 ~ |G
In the limit £ — 0 an inequality like (107) implies p > Z—ﬂ

Clearly the Knapp example is not relevant to the case of projective disjoint supports. If we try
to consider a modification of it, where we take f and ¢ to be the characteristic functions of two

disjoint spherical caps, then we are lead to the condition p > —*-. However, this is not a sharp

result, as it shown in the next example, which is one of the main justifications for Conjecture 17.2.
Example 17.5. Define, for some small € > 0, two rectangular regions in phase space as

Dy ={¢eR":|&—1| <& |&] <& €] <&},

Dy={§eR" |G| <&’ [&— 1] <&’ [¢"] <e}.
Let now f = xsnp, and g = Xsnp,, then

1Nl 2y = 9l 2y = 18N Dy|'? m e,
It is then possible to fix a region R in physical space, defined by
o Se7? rel ST " S
such that for x € R we have
SF@) > 518N Dl [Sg(e)| > 318 Dy

This implies that

1B/, 9)ll»
£ 2 Nlgll e

_(n+2)

>SN Dy V2SN Dy |R|7 e
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For small values of £, an estimate like (107) will necessarily require n — ”TTQ > 0, which is possible
only if p > (n + 2)/n.
The conjectures 17.2 and 17.3 can be easily proved when n = 2. This is due to the fact that, in

that case, the optimal exponent is p = ”T” = 2. This fact allows us to apply Plancherel’s theorem

and make use of the simple convolution structure of the Fourier transform of B(f, g).
Indeed,

B(f,9)(€) = (fdS) * (9dS)(&) = /RZ O(1 = |& = no(L = |nl) F(€ = n)g(n) dn,
and applying Cauchy-Schwarz with respect to the measure 6(1 — |£ — n])d(1 — |n|) dn we find

B(f,9)(©)I> < BLDEB (1% 19]°) (€)- (110)
It is not difficult to verify that

BL1)(©) = ¢ 14— €f):”
When we integrate (110) with respect to £ we obtain

— € —=n))d(1 — nl) N2 2
IBLF e 5 [ S €~ Pl dude

Change variable, £ — ¢ = £ — 1, and observe that when |n| = |¢| =1 we have
€l =In+ (= (1+n-0"
A=) =E =+ )= (1 —n-O"

2
||B(f qg ||L2 (R2) //Sl Sl 1 ~ J] |g<() ;|1/2 dSTI dSC

This is an interesting formula. Observe that if the supports of f and g on S! are projectionally
disjoints, i.e. don’t contain points in the same direction, then the quantity 1 — (r-¢)? is bounded
below by a positive constant and in this case we obtain the bilinear restriction estimate

IBUs Ol2@ey S Nl 2sry 91l 2sry -

In the same way, using the structure of the symbol o(&,n) = & A n, we prove,

1QU D 2@y S IF 2y N9l

As was mentioned in the introduction the conjectures 17.2 as well 17.3 have surfaced in discus-
sions between Machedon and Klainerman many years back. They were motivated by their interest
in bilinear null estimates for solutions to homogeneous wave equation. The conjectures, as well as
their simple proof for n = 2, were discussed in a conference at MSRI in July 97.

Recently, Tao, Vargas and Vega [20] were able to make some progress on Conjecture 17.2 in

dimension n = 3. In particular, for n = 3 they could prove (107) for p > 2 — &.

hence
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