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1 Introduction

The goal of this paper is to improve some recent results of Bahouri-Chemin [Ba-Chl], [Ba-Ch2]
and Tataru [Tal], [Ta2], see also [Kl], concerning the issue of optimal well posedness for quasilinear
wave equations. These results are concerned with the initial value problem for quasilinear wave
equations of the form,

Pli=o = o,  OiPli=o = 1.
The classical results on the existence and uniqueness of solutions of the quasilinear equation (1.1)
state that the problem is locally well posed in the Sobolev space H® for any s > ¢ + 1. The proof

is based on H°- energy estimates and the Sobolev embedding theorem. The H*® energy estimates,
obtained by standard integration by parts and commutator lemmas, take the form
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with M depending continuously on the integral [ ||0¢||rc. The Sobolev estimate ||0||r~ < c||@]| g
0

for s > % + 1 allows one to conclude that for sufficiently small time ¢ we can bound the right hand
side of the above inequality purely in terms of ||¢o||ms + ||¢1]|ms—1. These local apriori estimates,
for s > % + 1, can easily be turned into a local existence and uniqueness result, see [Po-Si].

t
The crucial quantity [ ||0@||re could be better controlled with the aid of Strichartz estimates.
0

This can be easily seen in the case of the semilinear equations ¢ = —92¢ + Ad = N(¢, d¢), with
N quadratic in 0¢. In this case the well-known Strichartz estimates for the linear wave equation
in Minkowski space yield a far better local well posedness result! in the space H® with s > 5+ %,
if the space dimension n > 3, and with s > % for n = 2. The required Strichartz estimate for the
solution of the wave equation () = —0?1) + Ay = 0 in the Minkowski space R"™', n > 3, has the

IThis result turns out to be optimal, in general, according to the well-known counterexample of H. Lindblad, [Li].
His results shows that local well posedness fails for H® data, s < 2, in dimension n = 3.
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In the quasilinear case the metric ¢ depends on the solution ¢ and can therefore have only as much
regularity as ¢ has. Thus one needs to address the problem of proving the Strichartz estimates for
linear wave equations Oy¢ = 07 — ¢"9;0;¢ = 0 with rough coefficients (metric).

The conditions needed for the coefficients g/ of the linearized wave operator O, have to be
consistent with the dependence on ¢ of the nonlinear coefficients ¢g*(¢) in (1.1). In view of the
expected boundedness of the Sobolev norms ||¢||zs we may assume® that the norms ||g|zs are

bounded. Moreover, as the H*® norm of a solution of the quasilinear problem (1.1) at time ¢ is
t

controlled by the H® norm of the initial data as long as [ ||0@||r is bounded, we can inductively
0

t
assume that the metric ¢ = g;;(¢) satisfies also the condition [ ||0g||z < By. In view of our
0

experience with Strichartz estimates in flat space we do not expect have direct access to the norm
of ||04]| 1o but, locally in time this can be controlled by the ||0@||;2;... Thus, to close the
argument and derive an improved local existence and uniqueness result for (1.1), we need to prove
the boundedness of H® norms as well as a local L?L%° Strichartz estimate for solutions ¢ to the
linearized wave equation Llj¢ = 0.

The first important work concerning Strichartz type estimates for solutions to ;¢ = 0 with
rough * coefficients is due to H. Smith [Sm]. He showed that the standard Strichartz estimates hold
for equations with C'%! coefficients. However the C'! condition is too strong for applications to
quasilinear equations. Moreover some important counterexamples of H. Smith and C. Sogge showed
that the standard Strichartz estimates fail if the coefficients are rougher than C'*', [Sm-So].

This was the situation before the important breakthrough of H. Bahouri and J.-Y. Chemin. In
[Ba-Ch1] they showed that some weaker form of the Strichartz estimates still survive for equations
with coefficients rougher than C'!, compatible with applications to quasilinear equations. Namely,
they were able to establish a Strichartz estimate with a loss

100025 < ellvnll, geyen + 6115 100,

for solutions to the variable coefficient wave equation O ;¢ = 0, with coefficients verifying assump-
tions of the type discussed above. As long as the loss 0 < % such an estimate can be applied to
prove a local well posedness result for the quasilinear problem considered here, stronger than the
classical one.

The results of H. Bahouri and J.-Y. Chemin, see also [Tal] are based on Strichartz estimates
with a loss of 0 > i for the linearized problem [g1p = 0 where the metric g satisfying conditions
of the type discussed above. Later, D. Tataru showed that the loss® in the Strichartz estimate

1

can be improved o > ¢ [Ta2]. In fact the paper [Ta2] provides the precise relationship between

2The presence of + in the H® norms on the right hand side of the inequality means simply that the estimate holds
in fact with a slightly higher norm.

3These are typical bootstrap assumptions.

“For C* metrics the Strichartz estimates were proved by Kapitanski and by Mockenhaupt-Seeger-Sogge, [Kal,
[Mo-Se-So].

>The immediate consequence of these results is local well posedness for the quasilinear problem (1.1) in the space
stiths>%+%+%,ifn23,ands>%+%f0rn:2.
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the smoothness of the metric, below C!, and the corresponding loss in the Strichartz estimates.
Recently H. Smith and D. Tataru[Sm-Ta] have shown that these results are also sharp and therefore
there is no hope of improving Tataru’s results based purely on linear theory.

In this paper we improve the well posedness results of Bahouri-Chemin and Tataru by taking
into account the nonlinear character of the equation (1.1). We do not simply prove a Strichartz
estimates for solutions of [l;¢ = 0 with bounds on [|g||#s and [|0g]| 1 <, We make use in an essential
way of the fact that the coefficients ¢g"/(¢) of the equation (1.1) verify themselves an equation of the
type Lygi; = N with N depending only on ¢ and 0¢.

Our main result is included in the following theorem.

Theorem 1.1 (A) The quasilinear initial value problem (1.1) in R**" with the metric ¢ () sat-
wsfying the assumptions G below, s locally well posed in H** for s, > sy = 2 + % Namely,
for any initial data® ¢[0] € H** such that ||¢[0]]|ms- < ¢;' Ao, where ¢y is the Sobolev constant of
the embedding H* C L, there exists a sufficiently small interval [0,T] with T = T(||¢[0]||gs-)
such that problem (1.1) has a unique solution ¢ € C([0,T], H**)NC'([0,T], H*~"). In addition, ¢
satisfies a Strichartz type estimate

106112, 22 < T 160]

e (1.2)

The precise assumptions on the coefficients ¢/ are given in the following:

Assumption on the coefficients g:  The family of metrics g(z) is smooth and uniformly positive
definite with respect to bounded values of the parameter z € R. More precisely there exist positive
constants My, Ny such that for a sufficiently large integer k

d l
swl(—)ﬂgAm VO<I<k

|z|<Ao 4

My e < g9 ()68, < MoJel, Wizl < Ao, @)
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o,
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In what follows we describe the reduction of Theorem (A) to the proof of the Strichartz estimate
for a linearized and microlocalized problem on a small interval of time. The first five steps are now
standard, see [Ba-Ch2] and especially [Ta2]. The reduction to the last step is typical to the geometric
approach of [Kl]. Most of the work of the paper goes into proving the last step, Theorem 1.8. We
shall give an outline of this in Chapter 3, after we have introduced the necessary geometric concepts
in Chapter 2. We also provide the reader with a detailed navigation map through the paper at the
end of this Chapter. The detailed proof of the following reductions can be found in Chapter 8.

1.1 Step 1 Energy estimates

As we have already noted above the energy estimates for the quasilinear wave equation (1.1) imply
that the L H* norm of a solution ¢ is controlled by the H* norm of the initial data #[0] provided

that ||8¢)||L[10 ale <1 The next proposition is a more precise version of this statement.

6We denote the initial data for quasilinear equation (1.1) by ¢[0] and say that ¢[0] € H® if (¢o,¢1) € H® x H5 L.
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Proposition 1.1 (Energy estimate) Let ¢ € C([0,T], H*) N C*([0,T], H*™') be a solution of
(1.1) on the time interval [0,T] for some s > 1 obeying the condition that ||¢)||L<[>§T]Lgo < Ay. Then
¢ verifies the following energy estimate.

10/l ze0, s < C (100

[0,T] [0,77]

1s0> M) [|9[0] ] s - (1.3)

Here cosntant C(a,b) denotes the dependence on a,b and H* are the usual homogeneous Sobolev
spaces.

1.2 Step 2 Reduction to the Strichartz type estimates
By the Cauchy-Schwartz inequality, ||8¢||L1 L < T3 ||8¢||L2 L Thus the Strichartz inequality

(1.2) and the smallness of the time mterval [0 T] can be used to close the energy estimates in the
space H®+. This effectively yields the local well posedness of problem (1.1). Theorem (A) can be
then reduced to the following bootstrap argument.

Theorem 1.2 (A1) Let ¢ € C([0,T], H**) N C'([0,T], H**~') be a solution of (1.1) on the time
interval [0, T], T < 1. Assume that

1@l gg o+ + 100|222 < Bo, (1.4)

with the constant By < cs_*lAg, where c,, is the Sobolev constant of the embedding H** C L*°. Then
¢ satisfies the local in time Strichartz type estimate,

10022, 1 < C(Bo) T* |9l ge - (1.5)

[0,7]

1.3 Step 3 The dyadic version of the Strichartz type estimate and the
paradifferential approximation

For the purpose of proving the Strichartz type estimate (1.5) we may regard the quasilinear problem
(1.1) as a linear wave equation for ¢ with rough coefficients. It is advantageous to mollify the
coefficients and work with the family of linear wave equations with smooth coefficients dependent
on a parameter. First we introduce functions ¢* obtained by restricting ¢ to the dyadic piece of
frequency ~ A in Fourier space. More precisely, let ( be a smooth function with support in the
shell {¢ : 2 < |¢] < 2}. Here, & denotes the variable of the spatial Fourier transform. Let ¢ also
satisfy the condition Y, ,((2%¢) =1, V& € R¥/{0}. Let A be a dyadic parameter A = 2* with
some k € Z and denote by Py the “projector”

Pof() = ) = / e (6 F(€) de.

Define also

fax=5S2f=Y_P.f.

B<A

Theorem (A1) then follows from the following dyadic version of the Strichartz type estimates for
¢t = Pro.



Theorem 1.3 (A2) Let ¢ be as in Theorem (Al). Fix a large parameter A. Then for each X > A,
the function ¢* satisfies the Strichartz type estimate

106* 122, 120 < C(Bo) exT™ |1 @ll1gs, ro- (1.6)

[0,7]

for constants cy such that ), c/\ < 1. A similar estimate also holds for ¢<x.

Remark (A2) In the case of the low frequencies, the estimate (1.6) for ¢<a follows trivially from
the Sobolev inequality.

10¢<llLz

[0,7]

1z < T3 |pnll < CATFTTE |
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where ¢ is the norm of the embedding H5T<(R?) C L®(R?). Since s, is assumed to be sufficiently
close to sg = 2+ = (2 —/3) and A is a fived large parameter which could depend only upon By, we
have the desired bound for the low frequency part of ¢.

We restrict the attention to the large frequencies A > A. In the next proposition we show that each
¢* satisfies an inhomogeneous wave equation with the smooth metric g, = Sxag¥(S§¢) for any
fixed value of the parameter a € [0, 1].

Proposition 1.2 Let ¢ be as in Theorem (Al). Fiz the value of the parameter a, a € [0,1]. Then
for each A > A\, ¢ verifies the equation

Oyera® = =070 + 92,.0:0;6™ = RS,
¢)‘|t:0 = ¢0: 8t¢/\|t:0 = ¢%-

Furthermore, the Fourier support of the right-hand side RS is contained in the set {£: A < [€| <
4N}, and for all real s > 1 and an arbitrary t € [0, T

IRA(0) ]+ < e Al RAll22 S C(Bo)A "

with the constants cx: Y., 3 < 1.

(1.7)

(1.8)

1.4 Step 4 Strichartz estimate on the frequency dependent intervals

This step reduces the proof of Theorem (A) to the proof of the precise ” Strichartz estimate for the
linearized equation [y,, ¢ = 0 on small time interval I of size ~ TA (% The loss of regularity in
the estimate (1.6) follows then as a result of summing these true Strichartz estimates over intervals
I'in [0,T].

Theorem 1.4 (A3) Let A > A and let ¢ be a solution of the linear wave equation U, 1) = 0 with
initial data (0] such that the supp ¥[0] € {2X < €] < 2A} and the metric gaa is as defined in
Proposition 1.2. Fiz the value of the parameter a, a = —=2<_ < —1 4+ /3. Then there ezists a

1—2s.+2sg
partition { I} of the interval [0,T] into subintervals I such that the size of each I, |I| < TA=(1=9),

the number of the subintervals is approzimately \' =%, and on each I, 1 satisfies a Strichartz estimate
with a fized, arbitrary small € > 0,

[1Px 0|21 < C(Bo) H[[|[0]]] o+ (1.9)

Twithout losses as in the flat case



Remark (A3) According to the bootstrap assumption (1.4) the solution ¢ of the quasilinear problem
verifies the estimate ||8¢||L[20 Lo < By. It easily follows that there evists a subpartition { I} of the

7]
time interval [0, T|, with the total number of the subintervals I between \'=® and 2\'~% and the size

of each I bounded by TA~('=% such that on each I we have

106 ]|z < A7 00]22, 1 (1.10)

0,712

This construction defines the subpartition { I} mentioned in Theorem (A3).

1.5 Properties of the metric g).

Inequality (1.9) is the Strichartz estimate for a solution of the wave equation with variable coeffi-
cients (metric) O,_,,% = 0 on the frequency dependent intervals I.

The metric g<y« = Sxag(S)a¢) depends upon the solution ¢ of the quasilinear problem. In the next
proposition we state the properties of the family g<)« which follow from the bootstrap condition
(1.4) on ¢ and the construction of the partition { I } described in the Remark (A3).

Proposition 1.3 Let ¢ € C([0,T],H**) N CY([0,T], H**~') be a solution of (1.1) on the time
interval [0,T), T < 1. Assume that ¢ verifies the assumption (1.4) of Theorem (A1l). Consider the
subpartition { I} of the time interval [0, T] as defined by Remark (A3). Then the family of metrics
g<xre = Sxag(Sxa) obeys the following conditions:

For all subintervals I and all nonnegative integers m

10" ™ genell e < AmUmoten g, (1.11)
10" ™ gerallp2ree < ATTF By, (1.12)
(l2 —
10" g<xallpgere < AT By, (1.13)
%-l—m 2 ﬁ+am —
1027 (0% g<xe)llpgers < A2 T By, (1.14)
10" Do 9<rellLiree < A (atem B, (1.15)

The constant By depend only on the constants My and By.

Remark: Observe that by the construction the frequencies of the metric g<xa are truncated above
A only with respect to the Fourier variable dual to the spatial variable x. Therefore, each differen-
tiation with respect to z introduces an additional factor of at most A\*. However, using the fact that
g<xe depends on the solution of the wave equation, we can make the same conclusion for the time
derivatives

Theorem (A3) can be recast® as a result concerning local Strichartz estimates, on a fixed small
subinterval I, for solutions to a linear wave equation with the background metric g<y. satisfying
the estimates of Proposition 1.3.

8We can therefore completely forget the origin of the metric g<y=, we only need to know (1.11)-(1.15).



Theorem 1.5 (A4) Let ¢ be a solution of the linear wave equation

Elggxaw = _81521/) + g;j/\aaiajd) =0,
1/)|t:0 = 1/)07 aM/)|t:0 = @01

on the time interval I of length |I| < A~0=% with initial data ¥[0] supported on the set {£ :
sA < €] < 2A} in Fourier space. Assume that the metric gy verifies (1.11)-(1.15) of Proposition
1.3 with the parameter a chosen such that a < —1 + /3. Let Py be the projection on the set
{€: X < |€] < 2A} in Fourier space. Then for a sufficiently large parameter A, all dyadic A > A
and a fized € > 0,

(1.16)

1P 00l 250 < C(Bo) [IN1[0][] o (1.17)

with the constant C(By) independent of .

1.6 Step 5 Rescaling

It is convenient to replace the problem (1.16) by its rescaled version, so that the support of the
initial data has frequencies || ~ 1 and the time interval I has length < A%

Translating the problem in time, if necessary, we can assume that the time interval I starts at £ = 0.
Introduce the family of the rescaled metrics h)y

ha(t, ) = gara (A1, A 1) (1.18)

Proposition 1.3 implies that h, obeys the following estimates * on the time interval'® I = [0, t,]
with ¢, < A%

||al+mhA||L}ALgo S ATy, (1.19)
L N P (1.20)
10747 b e e S AT E 00, (1.21)
102" (0%ha) g 1 < A~ HF0-m, (1.22)
107 O pybally g S AETO70mm (1.23)
After rescaling Theorem (A4) transforms into
Theorem 1.6 (A5) Let ¢ be a solution of the linear wave equation
Ot = =079 + h30,0;0 = 0, (1.24)

7/)|t:0 = 7/)0, at¢|1t:0 - wl

9 According to our convention A < B means A < C - B for some universal constant C. By the bootstrap
assumption all the constants in our estimates may depend on the constant By. Thus we can treat By as a universal
constant and, in what follows, replace the dependence on it by <. In addition, the choice of the large frequency A, as
in Theorem (A3), will be determined by the condition that A < B may be replaced by A < A°B with an arbitrary
positive €

10We keep the notation I for the rescaled time interval




on the time interval [0,t,] with t, < \°. Assume that the parameter X > A for a sufficiently large
constant A and that the metric hy, verifies (1.19)-(1.23) with the parameter a such that a < —1++/3.
Let P be the operator of projection on the set {€ : 1 < |£| < 2} in Fourier space. Then

1P OYle,, e S 16I(10%0llzz + [[¢nll2) (1.25)
with a constant independent of A in the inequality <.

Remark: Note that Theorem (A5) does not contain any assumptions on the Fourier support of
the initial data 1[0].

1.7 Step 6 Decay estimates

A variation of the standard TT* type argument, see [Kl], allows us to reduce the Strichartz estimate
(1.25) to a corresponding dispersive inequality, see (1. 26) In the process we replace'! the equation
Ehkw = 0 by the geometric wave equation Oy, ¢ = — == th 0,\/det hy, 8tw+m .(hY\/det hy 0;1) =

Theorem 1.7 (A6) Let ¢ be a solution of the linear wave equation

_ / iy /
th’g/) = m det h,\ 3t1/) + — \/7 h det h)\ 8J’Q/) (126)
w|t:0 = woy a1t7/)|t:0 = 7/)1

on the time interval [0,t,] with t,. < X* and with initial data 1[0] supported in the set {£ : 5 <
|€] < 2} in Fourier space. We consider only large values of the parameter X\ > A. Assume that the
metric hy verifies (1.19)-(1.23) with the parameter a such that a < —1 ++/3. Then for all t < t,
and a fized arbitrary small € > 0

1P oY)l S WW)[ Nz (1.27)

We make the final reduction by decomposing the initial data t[0] in the physical space into a sum
of functions with essentially disjoint supports contained in balls of radius % Using the additivity
of the L' norm and the standard Sobolev inequality we can reduce the dispersive inequality (1.27)
to an L? — L™ decay estimate.

Theorem 1.8 (B) Let ¢ be a solution of the linear wave equation (1.26) on the time interval [0, t.]
with t. < \* and with initial data 1[0] supported in the ball Bl( ) of radius % centered at the origin
in the physical space. We fix a big constant A and consider only large values of the parameter A > A.
Assume that the metric hy verifies (1.19)-(1.23) with the parameter a such that a < —1++/3. Then

for all t < t,, an arbitrary small € > 0, and a sufficiently large integer m > 0,

1PV S e EZ 10 9{0]]1. (1.25)

1 The two wave operators differ only by lower order terms in so far as the Strichartz estimates are concerned.



Remark: For convenience we shall consider the initial value problem (1.26) with initial data given
at t = 1 rather than at t = 0. The reduction easily follows from the energy estimate and finite speed
of propagation.

1.8 Outline of the paper

In chapter 2 we give an introduction to our main geometric framework. Our central object is the
optical function u which is defined as a solution of the Eikonal equation whose level hypersurfaces
are forward null cones with vertices on the time axis. Associated to it are our null pair L, L and
the Ricci coefficients try, y, and n which satisfy our main transport and Hodge type equations
described in Propositions 2.2 and 2.3. The remarkable decomposition of one of the null components
of the Ricci curvature discussed in Lemma 2.1 also plays a crucial role in our approach.

In chapter 3 we give an outline of the proof of Theorem B; based on generalized energy estimates
with the help of the modified Morawetz vectorfield K introduced in (3.89). We thus reduce Theorem
B to the Boundedness Theorem( Theorem 3.1). The proof of this latter theorem occupies most of
the remaining part of the paper.

In Chapter 4 we give a sketch of the proof of the boundedness theorem; which motivates our main
geometric constructions. In particular we show how the proof relies on the Asymptotics Theorem
(Theorem 4.2) which describes the behavior of the Ricci coefficients try, x, 1.

The Asymptotics Theorem is proved in Chapter 5. The proof, which relies on an adaptation of
the methods used in Chapter 9 of [Ch-Kl], takes advantage of the full geometric structure of the
equations satisfied by the Ricci coefficients. As in [Ch-KIl] we use this to identify a coupled system of
transport and Hodge equations which allows us to take advantage of the remarkable decomposition
of one the components'? of the Ricci tensor mentioned above. A heuristic outline of our method is
given in section 5.1 We also note that the proof of this crucial theorem imposes the main constraints
in the numerology of our final result.

In Chapter 6 we use the results of Chapter 5 to provide a full proof of the Boundedness Theorem.
The proof relies, in addition to the Asymptotics Theorem, on a subtle integration by parts argument
described in Lemma 6.4, see also [KIJ.

In Chapter 7 we end the proof of Theorem B.

In Chapter 8 we provide the proof of the reductions stated in Chapter 1. Most of them are
standard, see [Ba-Ch2], [Ta2], [Kl]. The main new ingredient here is Lemma 8.4 which plays an
essential role in connection to the remarkable decomposition mentioned above.

Finally in Chapter 9, or the Appendix, we provide proofs of a version of the isoperimetric
inequality and trace theorem which we need in Chapter 5.

12Note that all components of the Ricci tensor are zero for the Einstein vacuum equations. This is not at all the
case for general quasilinear equations of the type we study here. It turns out that the decomposition of the Rgq
component of the Ricci tensor allows us to achieve essentially the same regularizing effect for the Ricci coefficients
as the complete vanishing of the Ricci curvature.



2 The geometry of the wave equation Ll;,7) =0

To avoid the presence of too many indices we shall denote by A any member of the family of metrics
hy. We associate to the Riemannian metric h the space-time Lorentz metric H

H,zdx®dz? = —dt® + hy;datdad . 2.29
B J

Here, and throughout the paper, the greek indices «, § vary through the space-time indices 0, ..,3
while the latin letters ¢, j are reserved for the spatial indices 1,..,3. Thus 2° =t and dz® = dt. We
denote by XY, Z, space-time vectorfields, X = X*9,, and by < X,Y >= H,3X*Y " the standard
scalar product defined by H. We say that vector X is time-like if < X, X > < 0, space-like if
< X, X >> 0, and null if < X, X >= 0. Clearly the vectorfield 7" = 0, is the unit timelike
vectorfield to the spacelike hypersurfaces ¥; defined by the level hypersurfaces of the time function
t. We denote by D the Levi-Civitta space-time connection defined by H and by V the induced
connection on ;. Recall that DH = 0 or, given vectorfields X,Y, Z

Dx <Y, Z>=<DxY,Z >+ <Y, DxZ >.

Given an [— covariant tensorfield IT and vectorfields X, X,...,X; we denote by Ilx, x,..x, the
expression I1(Xy, Xs,...X;) or, when there is no possible confusion, simply ITj5_; We will use
standard rules for raising and lowering indices with respect to the metric H (e.g. X, = HosX?),
as well as silent summation over repeated indices. We denote by L the Lie derivative and by
(X7 = Lx H the deformation tensor a vectorfield X. Recall that (X)ﬂ'aﬁ =D, Xs+ DsX,.

We denote by I'§; = %H“”’(&;Hw + 0sH,5s — 0,Hps) the Christoffel symbols of the connection
D. Observe that the vectorfield T" = 0, is geodesic, i.e. DyT = 0. We denote by k the second
fundamental form of the spacelike hypersurfaces ;. More precisely, for X, Y tangent to ¥y, kxy =
— < DxT,Y >=< T,DxY > . Relative to the coordinates 2° = ¢ and z',i = 1,2,3, we have
kij = — < D;T,0; >=< T,D;0; >. It is easy to check, using the commuting properties of the
coordinate vectorfields, that

1
We are now ready to introduce the following geometric concepts. The optical function introduced

below plays a key role in our paper.
Optical function: This is a solution u of the eikonal equation

DuDyu = H*DyuDsu =0, or (2.31)

|0yu|? = b 0;u Oju (2.32)
with the boundary condition uw =t on the time axis and whose level hypersurfaces are forward light
cones with vertices on the time azis*.

Null Hypersurfaces C,:  These are the level hypersurfaces** C, of the optical function u, whose
normal’® L' = 0°%u - 9, = —H*¥03ud,, is null at every point of C,,.

3Qur choice of the optical function corresponds to u =t —r, r = |z|, in the flat case of the Minkowski spacetime.

14In Minkowski space these correspond to future light cones with vertices on the time axis. By abuse of language
we shall refer to C, as null cones with vertices on the time axis.

5Observe that the vectorfield L' = —9%u - 9, is a null geodesic vectorfield i.e. < L', L' >=0 and D/ L' = 0, see
Proposition 2.1.

10



Lapse function: Define the lapse function b by

b_l =—< LI, 8t >= Uy. (233)

Null pair: Define the null vectorfields L, L

L=0L=—b0"udy = —b H*’04u 0,, (2.34)
L=2T—L.

We easily check, using (2.32), < L, L >=< L, L >=0, <L, L>=2<T,L>=-2.

Affine parameter s for the vectorfield L: We can parameterize any integral curve '® x(s) of
L, initiating on the time awis, such that Lx(s) = L, or L(s) = 1. The affine parameter s defines a
function on R*. Since L(t) = 1 and L(u) = 0, we find that s = ¢ — u.

Compact surfaces S;,: These are the 2- surfaces'” of intersection between the null cones
Cy and the spacelike hypersurfaces ¥;. We regard S, as compact riemannian surfaces with the
induced metric. We use the notation ¥ for the corresponding covariant derivative. We denote by
K = K(S,,) their Gaussian curvature and by A = A(S;,) their total area. We denote by € the
completely antisymmetric tensor on S;,. Namely, for any orthonormal frame e4, A = 1,2 on TS, ,,
el =62 =0, €'?=—¢'=—1.For any tangent to S;, 2-covariant tensor IT4 with components
IT4, 4, defined relative to an orthonormal frame e,4, we define trll = 2,24:1 IT44 to be the trace of
IT.

Regarding S;, as embedded in ¥, we define the unit outward normal'® vectorfield N. Clearly,

hij aj u

N =—
|Vu|h

0y = —b0'ud;, (2.36)

as it can be easily checked with the help of the eikonal equation, the definition (2.33), and the fact
since u is constant on the forward light cones, restricted to ¥;, it decreases away from the origin.
Consequently

L=T+N, L=T-N. (2.37)

Thus both L and L are orthogonal, in the sense of the spacetime metric H, to the surfaces S ,.

Null frame: We can complement L, L to create a frame spanning the tangent space TR*. We
can do this by a choosing an arbitrary orthonormal frame on Sy, t.e. pair of unit vectorfields
ea, A=1,2 tangent to S;, and orthogonal to each other.

Notation: It is often advantageous to use a different notation for the null frame ey, L, L. We
will often denote it e, eq,e3,e4 with L = e3 and L = e,. Whenever we consider the components
of various tensors with respect to the null frame e, es, e3, e, we will use bold font latin indices 3,
4 to indicate the components relative to ez and e4, and capital letters A, B for the components
relative to ey, es. Hence, the components of the spacetime metric H relative to a null frame are:
HAB == 5AB; HgA == H4A =0 for A,B == 1,2 and H33 = H44 == 0, H34 = 2.

6any such trajectory is a null geodesic

1"They correspond to the spheres |z| =t — u in Minkowski space.
18Normal with respect to the Riemann metric h(t,z) of the slice ¥;.
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Null components of the Curvature: The spacetime curvature tensor R can be decomposed, **
relative to the null pair L, L into a 2-tensor o tangent to the surfaces Sy,, a covector B tangent to
Stu and a scalar 7.

Recall that the spacetime curvature tensor R = R3,5 is given by

R(X,Y)Z =DxDyZ — DyDxZ — Dixy|Z.
and has the symmetries:

Raﬁ'y(? — _Rﬁafy(ﬁ - _Raﬂ&y; Raﬁfyé — R’}/Jaﬁa
Raﬁfy(s + Ra557 + Ra,y(s/g =0.

Recall also the Ricci tensor, R, = H“ﬂRaWV. In local coordinates z¢, o =0, .., 3,

1 o
R/u/ = §H ﬁ(aZﬁch + ainuﬁ - a;Zu/Haﬁ - agzﬁH/LV) +H ﬁH’Y(S(FZ,BFJaV - FZVF(Saﬁ) (238)

Note that relative to a null frame ey, e3, €4
R44 = HABR4A4B (239)

since H4® = H** = 0 and R444 = 0 by the symmetry properties of R.

To define the null components «, 3,y of R at a point we consider the surface S, passing through
that point and an arbitrary orthonormal frame e, e; on it. Relative to the null frame e, ey, €3, €4
we then introduce,

aap = Raaan, Ba=Raass, 7= H"PRasp. (2.40)

The traceless part?’ of o will be denoted by dup = asp — %tra dap. Note that tra = Ry,.

Remarkable decomposition of Ryy: The coordinate expression (2.38) for the components of
the Ricci curvature leads to the following crucial representation for the Raq component.

Lemma 2.1 (Remarkable decomposition) The Ryq = €}/eR,,, component of the Ricci curva-
ture admits the following decomposition:

1
Ry = L(2) — §eff e;0yH,, + Error, (2.41)
with the functions z and Error obeying pointwise estimates |z| < |0H| and |Error| < (0H)?.
Proof: The part of the Ricci curvature involving the Cristoffel symbols has a simple pointwise

bound
lefel HY H 5 () 5T, — T3, Tos)| < [0H|?

and thus can be included in the Error.

This is not a complete decomposition
2Owith respect to the induced metric on Sy,
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Since HaﬁaiﬂHW is exactly O ;H,,, it remains to handle the terms

v
€4€4 1708/ 2 2 2
5 H (auBHaV + 0., H,3 — 8uVHa5).

The three terms have a similar structure and can be treated in the same fashion. Note that
€40, = L. Thus ejef H*’ 9”3 H,, = e{H*’ L(93H.,,). The above expression can be written as an L
derivative minus the terms which can be included in the Error, in other words e} e, H** L(0gH,,) =
L(efH*03H,,) — S with S = L(e})H*®0sH,, + ¢{L(H*®)d3H,,. Clearly?, |efL(H*)0sH,,| <
|0H|?. In addition,

L(e}) = L(H” < e4,05 >) = L(H"®) < e4,05 > +H"® < Dyey,05 > +H" < €4, D05 > .

Observe, see Proposition 2.1 below, that Dyey = —kynyes and |k| S [0H|. Also, D05 = €5T750,
and |I'| < |0H|. Hence, the terms denoted by S are bounded pointwise by (0H)? and therefore,
indeed, part of the terms we have called Error.

[t remains to note that z in (2.41) is, in fact, represented by the expression
v rrafB 1 af
z = 64H 65Ha,, — §H L(Haﬁ).

and thus |z| < |0H| as desired.

Notation: A spacetime tensor tangent to to the surfaces S;, will be called S-tangent in what
follows. We shall use the notation R4 to denote any tangent S-tangent 2-tensor obtained from the
curvature R. Similarly, the notation R, is reserved for an S- tangent curvature co-vector.

S-projection, P: The projection P and of the connection D on the surfaces Sy, is the map
TR* x TSy — TSty defined as follows:

Py X =<DyX,es > e, VX €TS,, VY € TR

Note that Py = Y, for any Y € T'S;,. The action of the projected connection P can be extended
in the usual manner to any S-tangent tensor. In particular, for an S-tangent 2-tensor 11

Dyllap =Y (llag) — U(Pyea,ep) —Il(ea, Pres).

We shall also make use of the notation
p, ap = (Pyea, ep).

Ricci coefficients: In the next proposition we introduce the Ricci, or connection, coefficients
X> X> 1,1, & of the connection D relative to our null pair L, L.

2LQur calculations are coordinate dependent. Thus 8, are the coordinate vecorfields aga with respect to our

“given” coordinate system z®. Observe that the components e; of L relative to this system of coordinates are
bounded.
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Proposition 2.1 Define the following tensors on the surfaces Sy, relative to a null frame e, es, e4:

xXap =< Duaes,ep >, x,, =<Duaez,ep >, (2.42)
1 1

=3 < Dses,eq >, n,= 5 < Dyes, e >, (2.43)
1

§A = 5 < D3€3,€A > . (244)

Then the connection D can be described by the following equations:

D ey = xanen — kanea, Daes = X, z€B T kanes, (2.45)
Dyey = —knnea, Dyes =21 ea + knnes, (2.46)
Dsey = 2nases + knneu, Dgey = 2§ ea — knnes, (2.47)
Daea = Paea + 1 ea, Dsea = Psea + naes + & ea, (2.48)
1 1

Dpea = Vgea + 5xaB €3+ 5X 56 (2.49)

Also,
X, p = —XaB — 2kap, (2.50)
0, =k, (2.51)
§A = k'AN —NA. (252)

and,
ha= bt 2.59)

Proof: The proof of Proposition 2.1 is a simple exercise. We illustrate with several examples.

Computation of Daeys: The quantity < Dgeq,ep >= xap by definition (2.42) of x. Also, <
Daey,eq >= 0 since < ey4,e4 >= 0. The proof of the first identity in (2.45) is completed by the
calculation, < Daey,e3 >=< Dy(T + N),T — N >=< DN, T > — < DT, N >=2kay.

Computation of Daey: Recall the definition of the null geodesic vectorfield L'. L' = —du =
—H"0,udy, = b~'L. The eikonal equation (2.32) can be written in the form < Ou,du >=<
L', L' >= 0. The vectorfield L' is indeed geodesic (D, L' = 0), since,

<DpL',d, >=0"u < D,0u,d, >= "u < D,0u,dy >

1
=< D,0u,0u >= 5% < Ou,0u >=0, V.

It follows that Dyey = bDpbL' = (b™'Dyb)ey. Thus, Dyey = (b~ 'Dyb)ey = —% < Dyey,e3 > e4.
Now 22,

22using that T and N are unit and orthogonal, and that T is geodesic (DT = 0.)
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< D4€4,€3 >= — < 64,D4€3 >= =< T+N,DT+N(T— N) >= — < N,DTT >+ < T,DTN >
— < T,DNT > — < N,DNT > + < T,DyN >= 2kyy. In addition, we have also found that
Dyb=—bknn.

Computation of Dses: In view of the definition of ¢ it suffices to calculate < Dzes, e, > which
we rewrite in the form — < e3, D3ey >=< e3,Dyeqy > —2 < e3, Drey >=2kny— < (T —N),Dp(T+
N) - 2kNN-

Computation of Ny = —kan: By definition, 2ﬂA =< Dyes,en >. We also know that ez =
—ey + 2T and < Dyey,e4 >= 0. Thus, 2QA =2< Dyl es >=2<DnNT,eq >= —2kay.

Computation for (2.53): According to definition (2.43) n4 = 3 < Dseq,eq > . Since e, =T + N,
es =T — N =e; — 2N, and Dyey, = —kyney, we obtain ng = — < Dyey,eq >= — < Dy(T +
N),es >= kan— < DyN,e4 > . Since our calculations are local we can choose a system of local
coordinates such that at a given point the metric & has the form h;; = ¢;; and dyh;; = 0. Clearly,
at that point N = —bh" d;ud; = —bd;ud;. Thus, since es(u) = 0 and |Vu|} = uf = b2,

< DyN, ey >=ck < Dyo,ua, (b 0su ), O >= belﬁxaju(aj(b)ak“ + b@?ku)

1 1
:§bze’;ak(aju)2 = 5b2eA(b—2) = b leq(b).

Commutation formulas: We also record here some useful commutation formulas trivially fol-
lowing from the frame equations (2.45)-(2.49) and the identity [X,Y] = DxY — Dy X holding for
arbitrary vectorfields X,Y .

Lemma 2.2

[L,L] = 2(QA —na)ea+kynvL — knnL, (2.54)
le4,€4] = Paea — xapes, (2.55)
[63, 6,4] = p3€A — XABeB + (77A - k‘AN)L + §AL (256)

Remark: According to our assumptions on the metric h we have a very good control on all com-
ponents of the second fundamental form k. Thus, in view of the last part*® of Proposition 2.1 we
have complete control of all Ricci coefficients provided we know how to control x and n. These have
to be estimated from the Fikonal equation, task which requires a major part of this paper. In what
follows we shall derive the so called null structure equations which relate various components of the
Ricci coefficients. We divide these equations into transport equations, along the null generators** of
Cy, for x and 1 and Hodge systems on the surfaces Si,.

I. Transport equations. The main transport equations are given by the following:

ZSee (2.50), (2.51), and (2.52).

ZIntegration along the trajectories spanning C, allows one to reconstruct the frame coefficients x, 7 in terms of
their initial data on the time axis and null components of the spacetime curvature R. This was essentially the
approach of [Kl]. Here, we will act more in the spirit of [Ch-Kl] and exploit other relations between the Ricci
coefficients as well as special structure of the curvature.
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Proposition 2.2 Denote

try = H* By 4, try = HABXABv (2.57)
. 1 . 1
Xap =Xap = 5trxHap, X, =X, — 5irXHas, (2.58)
the trace and the traceless part of tensors x and x respectively.
The components try, X, n and the lapse a verify the following equations® :
1 .
L(trx) + 5(#}()2 = —|X]* = knyntry — Rag, (2.60)
. 1 . . .
Paxan + §(tTX)XAB = —knNXaB — Gag, (2.61)
1 . 1 1
Pana + 5(trx)na = — (ks +15)Xan — 5 (trx)kay — 5 fa,. (2.62)

Remark: The equations above can be interpreted as differential equations along null geodesics
initiating on the time axis. Along each such geodesic we can use the canonical parameter s =t —u
defined earlier.

Proof: The equation (2.59) has already been established in the course of the calculation for Dye,.
Among the remaining equations the most important are (2.60) and (2.61). We will show how to
derive the equation for x4p and leave the derivation of (2.62) to the reader.

From (2.42), xap =< D ae4,ep >. Therefore,

L(xap) =< D4Dpe4,e5 > + < Daey, Dyep > . (2.63)
Using (2.45)-(2.48), commuting D4, D4, and invoking the definition of the curvature R, we have
L(xap) =< DaDaes,ep > + < Diey e €468 > +X(ea, Paep) + Rasap.
In addition, [e4, €4] = Paea — xacec. Therefore, < D, . ,1€4, €8 >= X(Psea, ep) — Xac xcp. Also,

< DaDyes,ep >= —kynxap. Combining, we obtain Pyxap = —knnxas — Xac XcB + Rasap.
Taking the trace we arrive at (2.60). The traceless part of the equation is precisely (2.61).

II. Hodge systems on S;,. In addition to the transport equations a prominent role in our
analysis will be played by certain Hodge elliptic systems on the 2-dimensional surfaces Si,,.

Proposition 2.3 The expressions (divy)a = WB)ZAB, divn = WBnB and (cyrin)ap = YV np—Vgna
verify the following equations:

25which can be interpreted as transport equations along the null geodesics generated by L.
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. . 1 ) )
(divx)a + XaBksy = §(Y7Atrx + kantrx) — Rpaap,  Codazzi equation, (2.64)

) 1 1 o 1
Jivn = §(L(trx) +gtrxtry + tr(X - X) — knntry — 2|n|*) — 37 (2.65)
1 n. 1
cyfrln = §€ABXACXCB - §€ABRA433- (2.66)

Proof: Consider ¥, xap. We can expand it in the following way:

Yoxas = ec(xap) — X(Veea, ep) — x(ea, Yeoen)

=< DcDaes,ep >+ < Daes, Deep > —x(Voea,e8) — x(ea, Voep) =< DaDces, ep >
+ < Dregrenles, € > +Rpaact+ < Daes, Doep > —x(Voea en) — x(ea, Voen)
=ea(xcp)— < Dces,Dyep > +Rpaac+ < Dyes, Deep > —x(V sec,ep) — x(ea, Veoen).

Recall from the equations (2.45)-(2.48) that < Daes, Deep >= x(ea, Voen) + kanxcos and also

< Dees, Daep >= x(ec, Vaen) +konxap. Thus, Yoxas = Vaxes +kanxes —konxas +Rpaac.
Taking the trace with respect to B, C' we infer that, (divx)a = YV trx+kantrx — xapksy +Rpaan
as desired. Separating the try we obtain

. . 1
(divX)a — YV XBE =— §(WBtrX5AB — 2V ,trx) + kantrx — xaBksy + Rpaan
1
:§Y7AHX + kantrx — xaBkpn + Rpaan.

Finally, since x is traceless (divx)a = %WAU"X + %kANtrX — XaBksn + Rpaap as desired.
To obtain the last two equations (2.65) and (2.66) consider Pyx45. We have

Psxas = L(xan) — x(Psea, e) — x(ea, Psen)
=< D3Daes,ep > + < Daes, Dsep > —x(Psea, ep) — x(€a, Psen)
=< DyDsey,ep > + < Diey e 164,68 > + < Dyey, Dgep > +Rpaza — X(Psea, ep)
— X(ea, Pyen) = ea(< Daes,ep >)— < Dgeq, Daep > + < Diey e 4164, €5 >
+ < Daes, Dgep > +Rpaga — X(Psea,e5) — x(ea, Psen).

Again, recall from (2.45)-(2.48)

e3,ea] = Psea — X, e+ (Na — kan)(es — e1), < Daey,ep >= 21,
< Dyeq, Dgep >= x(ea, Psen) + 2kannp, < Dseys, Daep >=2n(PeB) — XaBknn.

Therefore,

Psxap =2V 4np + Xapkyn + 204 — X, ,XcB + Rpasa. (2.67)
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Taking the trace relative to A, B we infer that
L(trx) = 2div n + trxknw + 2|n)* — tr(x - x) +7- (2.68)

from which (2.65) follows.
Contracting (2.67) with ¢ we infer, 2cyrl n — eABXAC)ZCB + e*BR 4435 = 0, since X; X» and Pyx
are symmetric tensors.

Combining (2.67) and (2.68) we obtain a useful formula:

PsXap =2Danp — dhv néap + knyXas + 2(nans — [1|°04B)
1 1 (2.69)

—3XXaB — SIXX, ;T Raasp.

The examination of equations (2.61)-(2.62) and (2.64)- (2.66) yields the conclusion that the system
is not closed. The remaining unknown quantity is L(try). The situation is remedied by eliminating
L(try) from (2.65) with the help of the application of the vectorfield L and the transport equation
for try. The result is a coupled transport-elliptic system for 7.

Proposition 2.4 Define
p=2divn + 2trxkny + 20> — tr(x - X) + - (2.70)
Then

L(p) + trxp = —2XaB (QWAUB — divndap + knnXaB +2(nans — |77|25AB)
1 r
—§tT‘XXAB — §tTXXAB + RA433) + L(R44)

+2(n, = na) V4 (trx) + trx(IX* + (L — L)kyy — Raa).

(2.71)

Proof: Note that according to equation (2.65), = L(trx)+knntrx — 2 (trx)? Let gy = L(try) —
$(trx)?. It then follows that

1
L(p1) + trxp = LL(trx) + L(trx)trx — L(try)trx — §(tr><)3- (2.72)

We commute L and L and use equation (2.60) on the right hand-side of (2.72). The commutator
[L, L] = [e4, e3] has been calculated in Lemma 2.2. We conclude that

L(p1) + trxpn = LL(trx) + 2(n,, — 1)V 4 (trX) + knv L(trx)
1
—knnL(trx) + L(trx)tex — L(try)tex — 5 (trx)*
Substituting L(try) from (2.60), we obtain

L(p) + trxpn = — 2(PsX - X — L(knw)trx + L(Raa) +2(, — 14)V 4 (trx) (2.73)
—L(knntry) + trxknntry + toxL(kyy) + trx (X — Raa). '
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The only unknown on the right-hand side of (2.73) is the term with P;x. This term is available to
us from (2.69). Thus, since p = pg + kyytry

L(p) + trxp = —2XaB (277A773 — dhv ndap + knnXap + 2(nans — |n|*0an)—

1 I
SXXAB — XX, 5+ RA433) + L(Raa)

2 2
+2(n,, — 1a) ¥ 4 (trx) + trx (x> + (L — L)kyy — Raa).
as desired
More commutation formulas: We record more important commutation formulas.

Lemma 2.3 Let II4 be an m-covariant tensor tangent to the surfaces Si,. Then

Vi Palla = Pa¥plla = x5cVella+ Y (xaskon — xsckan + Reaas) i, ¢oa,,  (2.74)

PsPally — PaPslly = 2(np — kpn)Vgéa + knnPaba — knnDPséa
+ Z(QanAiN — 24,k + Rpaas) iy, 5.4,

)

(2.75)

Proof: It suffices to consider the case where II is a 1-form. Let Proj denote the projection on the
tangent space to Sy ,,.

To prove (2.74) observe that it follows from (2.48) and (2.49) that
WB(@4€A) = PTOj DB(D4€A + k‘AN64) = PTOj DB(D4€A) + XBCkANec

and Py(Vyzea) = Proj Da(Dpea — 5xapes — %XABQ) = Proj D4(Dpen) + xapkenec. As a result,
we obtain for a tangent to S;, co-vector §

PiV géa = DaDpéa + kanxpcée — kpnPaéa,
VPséa = DpDaéa + xapkenéc + XV o€a — kpnPaéa.

Also, DyDpés — DDyés = Racapéc. Combining, we have
DaV5éa — VPsba = —xaBkenéc + xBckanéc + xBcVoéa + Racasée

For the proof of (2.75) observe that
Ds(Pses) = ProjDs(Dyes + kanes) = ProjDs(Dyes) + 2npkanes,
p4(p3€A) = PTOjD4(D3€A — NA€3 + (7714 - k'AN)€4) = PI'OjD4(D3€A) + 277AkBN€B-

Hence,
PsPséa = DyDsés — 2npkanés — 2kpn Y géa + knnPséa,
DsPsés = DsDyén — 2nakpnép + 208V géa + knnPaéa.
In addition, D4D3§A - D3D4§A == RAB43§B-- The 1dent1ty (275) follows.
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Corollary 2.1 IfI1,4 is an m-covariant tensor tangent to the surfaces Sy, verifying the equation
p4HA+UtTXHA = FA

with some constant o and a tangent k-covariant tensor Fy, then

1 .
p‘lWBHA + (o + §)trXWBHA = _XBCWCHA - UWB(”X)HA + WBFA

(2.76)
- Z(XAinC’N — XBcka,n + RCAi4B)HA1..C‘..Am'
Also,
PaPsIly + otrxVpIla = —knyPslla + 2(np — kpn) VIl + kny(Fa — otrxIly)
+oDs(tr) g+ PsFu — > (2npkan — 20a,kpy + Rpaus)a, 54, (2.77)

3

More transport equations: Lety = trx—% with s = t—u and let the functions z and Error be as
in Lemma 2.1. The remarkable decomposition of the R44 component of the Ricci curvature proved
in Lemma 2.1 allows us to replace the transport equation (2.60) for try with a more convenient
equation for the function y 4+ z. In addition, after differentiating the transport equation for y + z
with the angular derivative ¥ and applying the commutation formula (2.76), we also obtain the
transport equation for ¥(y + z).

Proposition 2.5

1 2 1 1
L(y+z) + trx(y + 2) = §(y +2)% + i 522 — X — knntry + §GZeZDhHW — Error,  (2.78)

PaValy +2) + g%(y +2) = —XasVp(Y +2) + (Y + 2)Valy +2) = (y + 2) V4 (trx) 2.79)

2 o 1,
+ (g —22)V 2 =2V .0 - X — trxXV 4 kny — knn'V 4trx + WA(§e4eZDhHW — Error).
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3 Outline of the proof of Theorem (B)

As in [K]] the proof of the L? — L* decay estimates for a solution 1 of the wave equation

1 1 .
O = — ovdet h 0 + 0;(h’vdet h0;v) = 0,
W= T deth o & e OV dethOy) (3.80)

7/)|t:1 - 7/)0, atw|t:1 = wl,

with initial data localized in the ball B1(0) in physical space, is based on a curved spacetime
generalization of the well known conformal energy estimates in Minkowski space. Using the optical
function u and the null frame L, L introduced in the previous Chapter we shall construct a vectorfield
K which is the precise analogue of the Morawetz vectorfield in Minkowski spacetime. All the effort
in our approach goes into controlling the error terms generated by the fact that our K is no longer
a conformal Killing vectorfield. Its failure to be conformal is measured by its deformation tensor
(Ko)7. The heart of the proof of Theorem (B) is the boundedness theorem stated in section 3.4. In
section 3.1 we discuss some preliminary facts concerning energy estimates for the equation (3.80).

3.1 Generalized energy estimates

The standard energy estimate for a solution of the wave equation in Minkowski space () = —9%t)+
At = 0 has the form

/latw VP =/|atw|2+ VP,
3¢ Yo

where ¥; is the hyperplane ¢ = const. It is a consequence of the time translation invariance of the
wave equation in Minkowski space corresponding to the Killing vectorfield d;. In the case of the
variable coefficients it is not difficult to verify that the corresponding energy identity has the form

t
[ 10w+ 1902 = [10wp + vup + [ [ wowoguar, (3.81)
i So 0 B,
where k;; = —%@hij is the second fundamental form of the hyperplane ¢ = const. Note that we use
the convention [ f := [ fv/det hdz'dz*dz®. It follows from (3.81) that the energy norm of ¢ at
S S

t

time ¢ is controlled by the corresponding norm of the initial data provided [ ||k||ze < C with some
0
universal constant C'.

We now address the general situation. Let X be an arbitrary time-like vectorfield with the
deformation tensor )7 = Lyxh. Recall that Mg = Dy Xg + DX, Let Qus = 0a000s1) —
%Hag(HWauwayw) be the energy momentum tensor associated to the equation D*D, = O ) = F.
It is easy to check that, DﬁQaﬁ = F0,1, Therefore, setting the X — momentum 1-form P, = QagXﬁ,
we have

1
D*P, = §Qaﬂ M 0s + FX (1) (3.82)

Observe that D*P, = DivP. Therefore, integrating over the time slab [ty,¢] x R", using Stokes’
theorem, and noticing that 0; is the future unit normal to the hypersurfaces ¥, we derive,
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Proposition 3.1 Let ¢ verify Oy = F and X an arbitrary vectorfield with deformation tensor
X 7. We have,

[exay= [exa)-5 [ @ @ms+ [ @or (3.83)
B Bty [to,t]xR” [to,t]xR"

Observe that (3.83) implies the energy estimate (3.81) in the special case when X = 0, and F' = 0.
In that case mpy = X7y = 0 and X7y = —2k;.

The identity (3.83) is particularly important in the case of a Killing vectorfield X, in which case the
deformation tensor (X)7 = 0. In the case of a conformal Killing vectorfield®® X, i.e. X7 = QH,
we need to modify the formula (3.83). This can be done as follows:  For a given vectorfield X and
scalar function Q we set (7 = Xgr — QH and calculate,

1 1
D°P, ziQaﬂ O res + FX(Y) = 5(Qaﬁ O 7as + QUrQ) + FX (1))

1 . 1—n (3.84)
=5(QY M as + Q——0"00,0) + FX(¥)
Also,
Q 0")0,p =D (o) — 0" (Q)d,p — Qp O ¢
1 1
=D" Qo) — 51/)269)u + 51/)2 0,0 - QyF
Therefore,
o n—1 1, L as (x)= n—1 , n—1
D“P, + T(Dﬂ(waﬂw —5¢ 9,0)) = 5@ Tas = —g ¥ OaQ+ (Xy + Tmp)F
or, setting
_ n—1 n—1 ,
P,=P,+ 1 QYO — S Y70, 2 (3.85)
we derive
DP, = %QO‘B X fp — ”g l@zﬂ 0,0+ (Xob+ — ; Isz)F (3.86)

Integrating again over the time slab we obtain,

Proposition 3.2 (Generalized energy identity) Let ¢ verify O, = F and X an arbitrary
vectorfield with deformation tensor ). Let Q be an arbitrary scalar function and 7 = )
QH. Define,

m —

= n — n—

QX Y) = QX Y) + gy y - Tty (@) (3.87)

26In the particular case of the Morawetz K = (t? + r?)9; + 2trd, in Minkowski space we have Q = 4t
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We have,
- - 1
axo)=[axa) -5 [ oW,
Bt Btp [to,t]xR"

—1 —1
4+ / G200+ / (X + 2 —SW)F.
[to, xR [to,f]x R"”

(3.88)

In the particular case of the Minkowski space and conformal Killing vector field K = (¢? + r2)d; +
2trd, we can choose () = 4t so that X7 = 0. Taking also F' = 0 we arrive at the conservation law
for the conformal energy in Minkowski space.

/Q(K,at): /Q(K,at)

We are now ready to define our spacetime analogue of the Morawetz conformal vectorfield. Let
u be the optical function and L = e3 =T — N, L = e, =T + N the corresponding null pair defined
in Chapter 2.

Definition of K: Define the timelike vectorfield,
uey, u = —u + 2t. (3.89)

Define the modified deformation tensor K7 = Kx — 4tH. The modified energy-momentum tensor

Q(K,Y) then takes the form

QUE,Y) = QUK Y) + (n = Dy y — " 202 (1) (3.90)

Remark: Note the difference between the functions u and w in the interior of the null cone Cy.
The optical function u is positive, bounded by t on the time slice ¥;, and uniformly bounded near
Cy. By contrast, the values of the function u lie between t and 2t, and u ~ t near the null cone Cy.

Calculation of Q(K,d;): The generalized energy identity with the vectorfield K involves the
modified energy-momentum tensor @ evaluated on the vectorfields K and d;. The definition (3.87),
(with Q = 4¢) implies that Q(K, 9;) = Q(K, 8;)+ (n—1)tydyp— "51p?. We find the null components
of the energy-momentum tensor ():

Qaa = (Da))’,  Qsa = VY%, (3.91)
Q33 - (D31/))27 Q3A - D31/)Y7Aw7 (392)
Qua = DVt Qus = V0¥t + 5(DstDat) — F)oss. (3.93)

Since K is defined in terms of the null vectorfields es, e4, and 0; = %(63 + e4),

QUK. 0) = 7 (w(Da)? +w7(Ds)? + (& + W) FOP) + (0 = Vivdy — 4% (3.99)

23



3.2 Domain of dependence

The vectorfield K is defined in terms of the optical function u which is only well defined in a
neighborhood of the time axis. We will later verify that under the assumptions (1.19)- (1.23) on
the metric h, the optical function u is well defined in the interior of the null cone Cj described as
the set of points verifying u = 0 or s = ¢, for t € [0,t,]. Consequently the conformal identity (3.88)
applied to X = K has to be restricted to functions ¢ supported in the set s < 7, 7 € [to, ] and
to < t < t,. The following domain of dependence property shows that this is precisely what we
need.

Proposition 3.3 Let ¢ be a solution of the wave equation
Opp = F,
7/)|t:1 = o, 8tw|t:1 =1

with the metric h satisfying assumptions (1.19)- (1.23) on the time interval [0,t.]. Assume that the
initial data (19, 11) at time t = 1 is supported in the geodesic ball By (0) and that the right-hand
side F(t,-) is supported inside the set s <t — 3, t € [1,t,]. Then, for each t € [1,t,], ¢ vanishes in
the exterior of the set s < t.

(3.95)

Proof: This is an application of the well known finite speed of propagation result for nonlinear
wave equations; it relies on standard energy estimates, like (3.81), in the exterior of the forward
null cone Cj, more precisely in the region between the initial slice 3;, a future slice 3;, 1 <t <,
and the exterior of (.

3.3 The Boundedness Theorem

We are now ready to state our main technical step in the proof of the L? — L® decay estimate
stated in Theorem 1.28. Let #(t,-) be a function with support contained in the interior of the set
s <t with t € [0,,].

Introduce?”

/ QUK, 0[],  Qu)(t) = Qo[1](t) + Qold](t) + Qo[024] (1) (3.96)

Theorem 3.1 Let i) be a solution of the wave equation
Opy =0,
7/)|t:1 = o, 8tw|t:1 =1

with the metric h satisfying assumptions (1.19)- (1.23) on the time interval [0,t.]. Assume that the
initial data (1o, 11) at time t = 1 has support in the geodesic ball B%(O). Then for any to,t such
that 1 <ty <t <t,

(3.97)

Qyl(t) S Ql¥(t)- (3.98)

Proof: See Chapter 6.
2TRecall the definition of K in (3.89) and the modified energy momentum tensor (3.90).

24



3.4 Conformal norms

To prove Theorem 3.1 we need to introduce the following auxiliary energy norms.

Definition of £: Let ¢ be a cut-off function equal to 1 in the region u < % Define?®

Eolv](t) = E V1) + E V1),

Eil)(1) = / (2100 + v*)(1 - ©),
7 (399)
ECTI() = / (W2 (Dath)? + u*(Dg)? + 2|V + %) C.

We also define the full conformal norm of ¢
EWN(t) = &[Y](F) + E[ov](t) + E[0V](?). (3.100)

Remark: Observe that due to the difference in the behavior of the functions u and u the conformal
norm &[] attaches different weights to the derivatives of 1 depending on the direction. Thus the
Dytp and Vb are “better” than the Dgip term.

The next theorem shows that the conformal norm £[](t) of the solution of the wave equation is
controlled by the conformal energy Q[](¢).

Theorem 3.2 (Comparison Theorem) Let ¢ be a solution of the wave equation
U hw - 07
V=1 = %o, OWli=1 =

with the metric h satisfying the assumptions (1.19)- (1.23) on the time interval [0,t,]. Assume that
the initial data [0] at time t = 1 has support in the geodesic ball B%(O). Then for any t such that
1<t <4,

ElY](t) < Q). (3.101)
For convenience we also state the starting estimate leading to the proof of (3.101)
Eolv](t) S Qol](1). (3.102)

Proof: See Secton 6.5.
Finally, Theorem (B) is a consequence of Theorem 3.1 Theorem 3.2, as well as the following:

Proposition 3.4 Let v be a sufficiently smooth function supported in the region s <t for1 <t <
t.. Then for any e > 0,

J06(®lls S 7 0 + —— - 1090 Y [ oarur]” (3.103)

(1+¢) (1+1) o

Proof: See Proposition 7.1.

28Observe that &[t](t) is roughly equivalent to [ (u?(Dav0)? + u?(Dstp)? + u?|Vo|* + ¥?).
P
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4 Sketch of the proof of the Boundedness Theorem 3.1

In this Chapter we give a rough sketch of 3.1. The sketch is supposed to help the reader understand
how the main geometric constructions introduced fit in the proof of our main result. We restrict
ourselves to a sketch of the estimate Qg[1](t) < Qo[t)](to)-

Let 7 be a solution of the wave equation O 1 = 0 with initial data localized in the ball 31 (0)
at time ¢ = 1. Observe that the conformal energy identity (3.88) and definition (3.96) of QO[@Z)] (1)
imply ?° that for all 1 <ty <t <t, we have

Qo[Y](t) = Qo[¥](to) — / Qaﬁ Tag —l— - / ? O n(47) (4.104)
tO t to t
We shall also make use of the Comparison Theorem 3.2 from which we infer that,
Eolv](t) = /(22(734@/))2 +u?(D3y)? + |V * +¢7) S Qol¥](1). (4.105)
pP

It is not difficult to verify that O,(47) = 4hYk;;, where k is the second fundamental form of the
embedding ¥, C R™"'. The assumption (1.19) on the metric A implies that f W k|| pe S AU,
to

Thus
+ A sup &[] (7).

[tO 7t]

Qi) S Qul(t) +3| [ Qg
to,t]x R’

4.1 The error term [ QY %r,,
to,]x R’

To prove the boundedness theorem for Qqy[v](¢), it is sufficient to establish that the error term
[ Q* Kz, is controlled in the following way:
(to,t]x R’

/ QY K s <A sup EY)(r) <A sup /(22(1741/))2 +u®(Dgp)” + w? |V |* + %) (4.106)
to,t to,t
lto,t]x R’ Xr

with an arbitrary e > 0.
To achieve that we start by writing the contraction of the tensors Q@*° and ¥7,4 relative to a
null frame ey, e3, e,4.

1 1
Qaﬂ Kﬂaﬁ —Q44 Kiss + ZQ33 K g+ 5@34 Kfgq — Qaa " 7an — Qaa "73a + Qap *7ap.
(4.107)

Pwith n =3
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The components of the energy-momentum tensor () relative to a null frame have been calculated
in (3.91)-(3.93). Consider the term Q33 X744 = |D3¢)|? K744. We want to estimate

/ Dathf? K Tag < A / Eol](r) ~ Ao / P|Dsyl? + ..

T T T

We see that we need the X744 component of the deformation tensor to satisfy | Kﬁ44| < wPhTer— L
More generally, we seem to need the following conditions to hold:

| K ga| SwPA™7™" | Kgy| <uPA7r7, (4.108)
| Kosg| S w?A™ 7", | Fagal < w’A=r7, (4.109)
| K oaa| Suwh™ 77", [ Frap| < @PATr (4.110)

The decay of the components of the deformation tensor X7 described in (4.108)-(4.110) is almost
sufficient for the control of the error term [ Q* K7,5. The only remaining “dangerous”
(to,t]x R’
term *° is the [ (tr %7 + 4u?trk) D3y Datp. This term requires special handling.
to,t]x R
The components of X7 relative to a null frame are recorded in the next Lemma (to be proved
in Lemma 6.1).

Lemma 4.1

K7_T44 = —2U2]€NN, K7_T34 = 4U(1 — bil) + (U2 + Q2)kNN,
Kigs = —8u(l—b"") —u’knn, "Fza = u?(kay — na) + 0> (na + kan),
2
Kﬁ'4A = —2u2kAN, Kﬁ'AB = 2t(t — u)(trx — g)(SAB — 2u2t7']€(5,43 + ’LLQXAB + 22)%143-

Observe that X7 is expressed completely®' in terms of frame coefficients Y, x, 7, the second fun-
damental form & and lapse function b. In view of our assumptions on the metric h we already
have good estimates for k. Most of the work3? of this paper is taken with finding the best possible
asymptotic estimates®® for y,n and b. This will be done in Chapter 5; we outline here the most
important results:

Theorem 4.2 (Asymptotics) Let the function u be a solution of the eikonal equation H* 9,u dpu =
0 with the Lorentz metric H = —dt* + h. Assume that h satisfies conditions (1.19)-(1.23) with a
sufficiently large X\ > A and the value of the parameter a < —1 + V3. Let ey, e, e3,6e4 be a null
frame with e3 = L and e, = L defined in (2.35), (2.34). Then for the associated Ricci coefficients

K

30Here tr K7 = §48 K7, 5 is the trace of the deformation tensor X7 relative to the 2-surfaces St

31Thus, the asymptotic behavior of the frame coefficients determines that of the null components of ¥7.

32The refinement of the asymptotic estimates for the Eikonal equations used in [Ch-KI], [K]] is also the main
novelty of this paper.

33For large A.
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trx, X, n obey the following estimates for all values of the parameter s =t —u with 0 < t < t,,
0 <u <t,, and arbitrarily small € > 0:

2 . .
sup |try — §| +sup |X| + sup |n| < A*F, (4.111)
t,u t,u t,u
2 ~ —a+e
|D(trx — ;)HL?(SM) + 1PXI2seny + 1V 2500y + 1 Panl2s,y < A0 (4.112)

Here, we seta = 1— %aZ and note that we have @ > a for the values of the parameter a, a < —1++/3.

In view of Theorem 4.2 and Lemma 4.1 it is easy to check the estimates (4.108)—(4.110). Thus,

Corollary 4.3 Under assumptions of the Boundedness Theorem

1
[ @ s D] S 3 sl
to,t
to,f] xR’

4.2 The error term [ (tr *7 + 4u’trk) D3y Dyt
to,]x R’
We provide below a very informal discussion on how to bound the remaining term. Note that

by Lemma 4.1 tr ®7 + 4u?trk = 4¢(t — u)(trx — 2). The Asymptotics Theorem gives the bound
ltrx — 2] < A" We can then only conclude that

‘ / (tr K7 +4utrk)Darp Dyyp| < A0 / 72| Darp| |Darp] S A€ [sup} / (T*|Dap|P+72|Dyrp|?).
to,t
to,t]x R’ to,t)x R’ Xr

However, the integral [ 72|Dgt|? is troublesome, since it is not controlled® by the energy norm

Ealbl(r) | -

This forces us to choose a different approach. As in [Kl] we integrate by parts®.

/ (tr 7 + 4utrk)D3tp Dytp = — / D3 (tr 7 + 4utrk) e Dyt
to,t]x R’ to,t]x R’
- / (tr 7 + 4utrk)yYDsDyr).
[to.f] xR’

34Gince @ > a and t < t, < A%, we can assume that A% < A~°¢ for some sufficiently small € > 0
35We only have [ u?|D3y|* < & [¢](r)
b

36we ignore the boundary terms in what follows
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Use the fact that, modulo some lower order terms, [J,1) = —D3D41p+ /A = 0. Integrating by parts
once more we obtain,

/ (tr K7 + 4utrk)Dgyp Dytp = — / Dy (tr 7 + 4u’trk))y Dyt
[to,t] lto,] xR’
/ YV (tr K7 4+ duPtrk)y V00 + / (tr 57 + 4utrk)| V|2
[to.t] fto,f) xR’

The last term is easily controlled as follows:

/ (607 + 4P6xk) ]2 < A~ sup Eof](7):
[tO,t]
(to,t]x R’
The first two terms can be treated in, essentially, the same way. Consider the first one and apply
Leibnitz rule to D(tr X7 + 4u’trk) = D3(4t(t — u)(try — 2)). The most difficult term is 4¢(¢ —
u)Ds(try — 2) as we do not have good pointwise estimates on the quantity Ds(try — 2). However,

according to (4.112), we control its L? norm on the surfaces Sr,: [|Ds(trx —2)||12(s,.,) < A7%". We
now apply the adapted version 7 of the Sobolev inequality on S, (see Theorem 5.2): supg_, [f] S

IV f 25 + S0 F s, ). We have 7| Datbl|z2s,) S &5 [0](7) and also

2
s Da(trx = )0l 7as,) N/ 2||173(t1“><——)||m N sup82lwl2d8

‘ru

2 _
S sup [Da(tr = 2, [(LIFUP + F) S A 2210l (o)

2,

We can now estimate

/ 27 s |Ds(trx — —)w Dy| S /||s Ds(try — —)w”Lz ?U%T||D4¢||L2
to,t
to,t]x R
<Nt — to) sup &[] (1) < A sup E[v](7).

[tO 7t} [tO 7t}

As a consequence, we conclude that | [ (tr “m 4 4u’trk)Dgtp Datp| < A= supy, 4 Eo[](7). This

to,t]xR®
completes the outline of the proof of Boundedness Theorem 3.1.

3TThe true L™ estimate requires to add another factor containing an e power of the L”, p > 2 norm of the first
derivatives
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5 Proof of the Asymptotics Theorem 4.2

Recall that the optical function u is the outgoing solution of the eikonal equation H*?9,u dgu = 0
satisfying the initial condition u = t on the time axis. The Lorentz metric H = —dt?+ h satisfies the
assumptions following from the conditions (1.19)-(1.23) for the family of the Riemannian metrics h
implicitly dependent on the parameter \.

Notations: For convenience we denote the power 1 — % appearing in the conditions (1.21), (1.22)
by @. It is important to observe that for the values of the parameter a < —1++/3 stated in Theorem
(B), we have the inequality a > a. As a result, for all sufficiently small ¢, we have A7%T€\* < A\ 7€,
In what follows, we shall assume that all generated small constants € obey the above condition. In
addition, recall that we are only interested in the large values of the parameter A > A, where A
obeys the condition that the inequality A < B can be replaced by A < A°B. Summarizing, we
have for all sufficiently small € > 0,
a? _
dzl—;, ATIFNT <\ A< B — A<A‘B.

Thus 3* on the time interval [0, %], . < A%, and an arbitrary non-negative integer m > 0,

10" H |y, e S ATOTOmD, 5.113
||81+mHHL2 oo 5 )\—Q_Ta—(l_a)m, 5.114

0,172

||81+mH||LOO - 5 )\,a,(l,a)m

(

(
0,613 ’ (5.

(

(

||a%+m(82H)||LOO 12 5 )\,a,(l,a)m,

[0,tx] T

o™ O hHHL[lO’t*]LgO S A\ (2ma)—(1-a)m

Recall also the null hypersurfaces (), defined by the level surfaces of u, and the 2-surfaces S,
of intersection between C;, and the time slices ¥;. The outward unit normals to S;,,, along ¥, are
denoted by N, and T = 0, is the unit normal to ¥;. We have introduced our canonical null pair
L=T+ N and L =T — N. The null pair can be complemented to a null frame ey, es, e4 with
A=1,2,e3 =L, and es = L with e4 an arbitrary orthonormal frame on S;,,.

In any null frame the covariant derivative D compatible with the Lorentz metric H can be
described by the Ricci (frame) coefficients x, x,7,7,§, and the second fundamental form k;; of the
embedding ¥, € R*. Recall formulas (2.45)-(2.52).

In this Chapter we prove the Asymptotics Theorem 4.2 concerning the behavior of the indepen-
dent Ricci coefficients try, x, n, and the second fundamental form £ relative to the parameter A. We
give here a complete version of the Theorem.

Theorem 5.1 (Asymptotics) Let the function u be a solution of the eikonal equation H* 9,u Opu =
0. Assume that H satisfies conditions (5.113)-(5.117) with a sufficiently large X\ > A and the pa-
rameter a < —1++/3. Let €1, €2, €3, €4 be a null frame with e3 = L and e, = L. Then the associated

38The operator Oy, in the last condition is replaced with the geometric wave operator Oj,. The difference between
the two operators contains only terms quadratic in 9H and, hence, controlled by (5.114).
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Ricci coefficients try, X, n, and the second fundamental form k3° obey the following estimates for
an arbitrarily small € > 0 and all values of the parameter s =t —u with 0 <t <t, and 0 < u < t,:

sup [try — —| +sup |x| + sup |n| + sup k| < A0t (5.118)
t,u t,u t,u tu
||D(tT’X - ;)HLZ(St,u) + ||p§€||L2(St,u) T ||D477||L2(St,u) + ||W77||L2(St,u) + ||pkA-||L2(St,u) < \ ot
(5.119)
2 O a 6 a—(l—a
sup Dy (trx — 2)| + sup [Pax| + sup [Pan| S A" L ymam(ma) (5.120)
t,u t,u t,u
2
sup D3 (trx — §)| +sup [Psx| S A4 AT (5.121)
t,u t,u
sup [Pan| S A0, (5.122)
t,u
sup |V (trx — —)I +sup [Yx| +sup [V S A0 A7 (5.123)
t,u t,u t,u
sup [Paka.| + sup |Pska| S A7 (1=9) " sup \Vka| S A%+ N—e-(-a) (5.124)
t,u t,u t,u

In addition, the derivatives of the metric H relative to the standard coordinates (t, x4, .., x3) satisfy
10T H | 125, < A7 m00F 0 v > 0. (5.125)

The lapse function b = u; " satisfies

sup|b — 1| < min{A\~"U=% A%}, sup|Dyb| < A7E, (5.126)
sup|Vb| < A7t sup|Dsb| < A720-9), (5.127)

t,u t,u
(5.128)

Remark: Note that we do not have a good estimate for for Psn, see (5.119). Such an estimate,
however, is not needed for the proof of the Boundedness Theorem.

Proof: The proof of Theorem 5.1 occupies Sections 5.1-5.11.

5.1 Outline of the proof of the Asymptotics Theorem

Direct attempt to estimate try: Proposition 2.2 provides us with the following transport equation
for try:

1 .
L(try) + §(t1"><)2 = — x> — kyntry — Raa.

39The notation k4. will be used to denote the co-vector k4n or the 2-tensor k4 p tangent to the surfaces St . Also
recall that for an arbitrary vectorfield X and , say co-vector kan, we have Pxkan = X (kan) — k(Pxea, N).
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Integrating this equation along the null vectorfield L and counting only the contribution of the
curvature term on the right hand-side, we obtain the simplest estimate [try — %| < [|R44|. The
main contribution to the curvature R is given by the second derivatives of the metric 92 H. Thus
the condition (5.113) on the metric H would imply the bound |try — %| < A720-9) " This estimate
is far worse than the one claimed in the Asymptotics Theorem. The arguments along this line can
only recover the local well posedness results of [Ta2].

Estimate for try using the special structure of Rgq: The remarkable decomposition of the curvature
term Ryq = L(2) — 3e4ey 0, Hy, + Error proved in Lemma (2.1) and the condition (5.117) on the
metric H allows us to prove a more precise estimate on y = try — % The simplified version of the
transport equation (2.78) has the form L(y + z) + trx(y + 2) = 3€4ef0,H,, — Error. Recall that
|z| S |0H]| and |Error| < (0H)?. Thus integrating the transport equation and using the conditions

(5.113), (5.114), and (5.117) we could obtain |try — 2| < A~ as desired.

Attempt to estimate X via the transport equation: In the first approximation, the transport equation
(2.61) for x can be written in the form DX + 5 (trx)x = &. The curvature term & does not admit a
decomposition similar to the one for Ryy. Thus, by integrating the transport equation we can only
expect to obtain the bound |y| < A72(1=9),

Codazzi equation for Yx: To avoid the use of the transport equation for y we invoke the Codazzi
equation (2.64) for the angular divergence of x on the surfaces S;,. Again, after throwing out
the lower order terms we obtain the equation (divx)a = %WAtYX — Rpaap. In view of the fact
that x is a traceless 2-tensor we can interpret the above as an elliptic Hodge system. As a result
we can estimate ||VX| rz2es..) + TIXl2esi0) S IVErX] r2es,n) + [IRBaas|l2s,.)- Since we do not
have good control on the L*(S;,) norm of the curvature we use the trace theorem (see Theorem
5.3) to pass to the L?(3;) norm with a loss of $ derivative. Again replacing the curvature term
by 0°H we have [|0°H ||12(s,.) S ||8%+2H||L2(gt) < A% with the last inequality following from the
assumption (5.116) on H. Thus, if we suppress the contribution of the Y(try) term we derive the
bound [|Vxlz2(s,,.) + 5l1Xlz2(si.) < A7

Passage from the L? estimates for VX to the L* estimates for x: This is achieved by using the
Sobolev inequality supg, . [X] < [¥x|lz2(s..) + £I1X(l22(s,..) on the 2-surfaces S, see Theorem 5.2.
Thus the desired estimate |¢| < A~ would follow.

Estimate for Y(try): To include the contribution of ¥(try) in the Codazzi equation we use the
special structure of the Ryq component of the curvature invoking the transport equation (2.79) for

YV(y+z2).

Precise approach: In the rigorous approach, which we present below, the transport equations
(2.78), (2.79) for y + z, Y(y + z), and the Codazzi equation (2.64) form a coupled system involving
try, X, Ytry and Yy. The quantities try and x will be always estimated in the L* norm while
their angular derivatives will be taken in the L*(S;,) norm. In addition, the Sobolev inequality of
Theorem 5.2 provides the passage from the estimates for the angular derivatives to the pointwise
bounds for the quantities itself.

Direct attempt to estimate n: The effort to obtain the bound on 7 from its transport equation
(2.62) would result in the estimate || < A=2(17%9). We can not proceed as we did for try since the
[ component of the curvature does not admit a special decomposition.
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Hodge system for n: The more efficient way to control n is via the Hodge elliptic system (2.65),
(2.66) which in a simplified version has the form divnp = (1) — 37, cyirl n = —3€*PRagsp. The
quantity ¢ = L(try) + kyntry — 3(trx)? depends on try and thus has a “good” transport equation
(2.71) which takes advantage of the special structure of Ryq. As a result, the Hodge system (2.65),
(2.66) and the transport equation (2.71) form a coupled system for n, u and Yrn. We estimate n
pointwise while taking the L?(S;,) norm of the quantities ;1 and Y7 and use estimates for try and
x obtained on the previous step.

Remaining estimates We have just provided the outline of the proof of the estimates for L*° norm
of trxy — 2, X, and 7, and L?(S;,) norm of their angular derivatives. The estimates for the remaining
derivatives will then follow more easily. For example, a byproduct of the estimates for 7 is the bound
|Dstrx||zz(s,.) < A" The estimate for Dy(try — 2) follows immediately from the transport
equation for try.

The estimates for the lapse function b and the second fundamental form k& will be discussed in full
detail in the proof of the Asymptotics Theorem.

A comparison between the estimates for try and x,n: There is a fundamental difference between
the derivation of the estimates for try and x,n. The estimates for y = try — % are obtained directly
from the transport equation, which, as we mentioned before, takes the form L(y+ z) 4+ try(y+2) =
%DhH — (0H)?, if we ignore the contribution of x. The integration of this equation produces
the estimate |y| < |z| + A=?79 which follows from (5.114), (5.117). If we now use the fact
that |z| < |0H| and recall the condition (5.115), we obtain the estimate |y| < A~" stated in the
Asymptotics Theorem. Similar bounds are derived for y and 7. However, we can also complement
the pointwise bound on y with the integral estimate

Lo AT S |OH |y, nge + XA 1-a)

Ioleg, i S lelly
Observe that the condition (5.113), ||8H||L1 ~ < AAT9 | Therefore
—(1-a)
||y||L10t] b S A0,

It is important to observe that such an estimate would imply that the L[loyt*}Lgo norm of try — % is
bounded for all values of a < 1. If we had similar bounds for y and n we would be able to prove the
decay estimates of Theorem (B) for all @ < 1. As a result, we could obtain the local well posedness
result in H2*e,

We are not able to derive however such estimates for the Ricci coefficients y and 7. Our approach
to the derivation of the estimates for the above quantities is via the elliptic Hodge systems on 2-
surfaces S;,. As we discussed earlier, this is already better than using the transport equations for
X and 7. The resulting estimate, say for y, in which we only keep track of the contribution of the
curvature R, has the form

o > Lie —a+e
sup [X] S (1WXll2s S WRlz2sin = 107 Hll2s, S 102707 Hll 2wy < AT

t,u

as we have argued above. Unlike the estimate for try — % we are now forced to estimate

||X||L1 /||82+682H||L2 (2¢) < 1y sup||a2+582H||L2 (%0) < e\~ a+e

[Ot]

33



which is worse that A~(1"®_ We see that the above norms remain bounded only if ¢ < a. This

dictates the range of the admissible a: a < —1 4 v/3. The loss occurs when we use the trace
Theorem to replace L?(S;,) norm by the L*(3;).

We now state a series of results which are extensively used below. We start by introducing the
notion of an admissible foliation.

5.2 Admissible foliations

Our two special functions ¢t and u generate the following 2 important foliations. For each fixed ¢ the
2-surfaces S;, form a foliation, which we denote by S;., of the time slice ;. For each fixed u the
same 2-surfaces S;, form a foliation, which we denote by S.,,, of the null cones C),. In each case,
we can describe the foliation by a map ®(s,w) with values in ; or C,, respectively, where s = ¢t —u
and w € 8?. In addition, the foliations are formed by the level surfaces of the function s = ¢ — u
restricted correspondingly to ¥; or C,

In the following definition the domain {2 is assumed to be a subset of the time slice ¥; endowed
with the metric A(¢,-).

Definition 5.1 We say that the level surfaces of a function v : Q — R define an admissible
foliation of Q described by a map ® : [0, max v] x 8 — Q, if the lapse function b = |Vuv|, and the
second fundamental form 6 of the foliation have the following properties:

1) The level surface v = 0 consists of one point, say x = 0, and the norm of the tangent map
% < |d®|y—o| < C for some positive constant C.
There exist a positive constant M < 27°(max v)~
2) |b(v) —1] < Mv,

3) [t —2| < M.

U such that for any v € (0, max v]

Proposition 5.1 Let the level surfaces of function v define an admissible foliation. Denote by S,
the level surface corresponding to the value v. Then for each v € [0, max v| the area of the surface
Sy obeys the estimate

A(S,) =~ v2 (5.129)
The implicit constant in the inequality above depends only on the constant C' and the ellipticity

constant of the metric h.

Proof: See Appendix, where we combine it with the proof of the trace Theorem 5.3.

We now describe the parameters of the foliation S;...

Lemma 5.1 For a fized t < t., consider the foliation Sy. of the region in ¥, containing the point
x =0, by the level surfaces of the function s =t — u(t,-). Assume that the foliation is described by
the map ® : [0,maxs) x 8 — ;. Let ¢*, A = 1,2 be a system of local coordinates on S?. Then
the metric h in coordinates (s, p) has the from

h = b2ds® + yapdd”dp®, (5.130)
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where b 1s the lapse function of the foliation and
b=>b=u;"=|Vul,. (5.131)
The second fundamental form 6,5 =< Y N, ep > of the foliation S, can be found from the identity

Oap = XaB + kas. (5.132)

Proof: First, on a fixed time slice ;, we have ds = —du. The representation (5.130) follows easily
from the fact that 0, is orthogonal to d,,. Moreover, since du = diudx® and |Vul|, = uy = b~', from
the eikonal equation, we have

hijaju .
= 0; = b*0'u 0; 5.133
Vuf? u ( )

Computing
h(0y,0,) = b* = b*du’*(0u, Ou) = b?

we conclude that b = b. Clearly, b = |Vs|, therefore b is the lapse function of the foliation.

The vector N is the outward unit normal to the level surface of u on the time slice t = const. Hence,
the second fundamental form of the foliation S;. with respect to the frame e4, A = 1,2

Oap =< WAN, e > . (5134)
Thus,
XaB =< DA€4,€B >= WA(T—FN),(ZB >= QAB_kAB (5135)

5.3 Sobolev, elliptic, and trace estimates

We now formulate 3 results concerning various estimates for functions defined on 2-dimensional
surfaces and admissible foliations.

Theorem 5.2 Let S be a 2-dimensional surface embedded in R® endowed with a Riemannian metric
h. Assume that relative to the standard coordinates on R?® the metric h obeys the estimate:

sup |0h| < AG', (5.136)
R3

for some positive constant No. Let A(S) = [ 1 denote the area of the surface S relative to the metric
S
h. Assume in addition that with the same constant Ay as in (5.136)

A(S) < 27 15A2, (5.137)

Then for any function f : S — R we have the following isoperimetric inequality:

/ P < / (VF]+ 4] £1). (5.138)
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Here, ¥ is the covariant derivative on S compatible with the metric h and 0 is the second fundamental
form of the embedding S C R®. In addition, we have the following formof the Sobolev inequality on
S: for any § € (0,1) and p € (2, ]
5(p—=2) 1 » 25
suplf S [AS)] ™7 (AT + usPlep) =6 ] [(wse + wopise)] 7.
S S
(5.139)

Proof: The proof of Theorem 5.2 can be found in the Appendix. Since S is a 2-dimensional
surface, the H' C L™ embedding barely fails. The estimate® (5.139) is a correct version of the
estimate of the supremum of a function in terms of its first derivatives in L? and an additional small
power of their LP norm.

The second result is a trace theorem for an admissible foliation.

Theorem 5.3 Let Q be a subset of R® endowed with the metric h. Assume that the level surfaces
of a function v : Q@ — R define an admissible foliation. Then for any level surface S, with v €
(0, maxv], arbitrary € > 0, and any function f : R> — R such that f € H2T¢(R?), we have

1 1,
1f 22,y S 1027 fllza@e) + 107 f [l 22 (5.140)

Proof: See Appendix.

The last theorem recalls the elliptic estimates for Hodge systems proved in [Ch-KI].

Theorem 5.4 Let S be a 2-dimensional manifold endowed with a metric h and a compatible co-
variant derivative Y. Then for any m + 1 covariant, totally symmetric tensor £, a solution of the
Hodge system

Jivg = F, (5.141)
cyrl§ = G, (5.142)
tr = B, (5.143)
there holds the following identity:
/ VP + (m+1)K|¢)” = /{|F|2 +|G|* + mK|E|?}. (5.144)
S s

Here operations div and cyrl are as defined in Proposition 2.3, and K is the Gauss curvature of S.

Remark If £ is a symmetric traceless tensor satisfying div€ = F, then cyrlé = *F, where *F is
the Hodge dual of F: *Fy = expFP?. Thus, in this case the identity (5.144) becomes

/|W§|2+2K|§|2:2/|F|2. (5.145)
S S

4Owhich is a measure-theoretic consequence of the isoperimetric inequality
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5.4 Main equations

We now state the equations which will be used in the proof of the Asymptotics Theorem. Recall
the notations y = try — %, 1= L(trx) + knntry — 5(trx)?, and the decomposition of Ryq = L(z) —
sehey Oy pH,, + Error of Lemma 2.1. Observe that we have pointwise bounds |efe} 0, H,, | < [0, H|
and |Error| < (0H)?. Therefore, from the point of view of the conditions (5.114) and (5.117) on
the metric H these two terms have equal strength. We shall combine them into the single Error
term and write the decomposition Ryq = L(2) + Error. We have

The transport equations:

1

Ly + 2) + trx(y + 2) = §(y +2)% + %z - %zQ — x> — knntry — Error, (5.147)
PaValy +2) + gterA(y +2) = —XapVp(y +2) + (Y +2)Valy +2) = (y +2)¥ 4 (trx)

2 SN
+ (; —22)V 2 =2V, x - X — texV kv — knnY strx + YV  Error,

(5.148)

. . I
L(p) + trxp = —2XaB <2WA773 — v ndap + knnXapg + 2(nans — |n|*0ap) — S ITXXaB : )
5.149

1 . N
- ?WXXAB + RA433> + L(Raa) +2(n, — na) ¥ 4(trx) + trx (]X|* 4+ (L — L)kny — Raa),

. 1 . . .
Paxap + §(trX)XAB = —kNNXaB — QaB, (5.150)
1 R 1 1
Pana + §(UX)77A = —(kpn +1B)XAB — §(trX)k'AN - §5A,- (5.151)

The equations on the surfaces S, ,:

(Avx)a + Xasksn = %(VAUX + kantrx) — Rpaap, Codazzi equation, (5.152)
divn = %(L(u) +tr(x - X) — 2knntrx — 2[n]?) — %% (5.153)
cyfrl n = %EABX LeXes — %GABRAzlsB, (5.154)
K = —itrxtanL %)2 X+ %RABAB, Gauss equation. (5.155)

In the last equation K is the Gauss curvature of S ,,.

5.5 Continuation argument

The proof of the Asymptotics Theorem relies on an elaborate continuation argument which we
describe in this section. Recall that the optical function u solves the eikonal equation and attains
the prescribed value ¢ on the time axis. To find wu, it suffices to describe its level hypersurfaces
C,. These can be obtained as the union of the null geodesics, relative to the Lorentz metric H,
emanating from the vertex, on the time axis, with coordinates (u,0) and initial velocity in the
direction of the vector (1,w), with w € 8.
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Remark: [t is not difficult to verify from the equation for null geodesics, written in the coordi-
natest x®, that any such geodesic x(s) initiating from the point (u,0) can be extended to the value
of the affine parameter s =t, —u. We can also show that the equation L(b) = —bkxy for the lapse
function b implies that the geodesic x(s) intersects each time slice ¥; with t < t,.

Using this construction we can describe the behavior of the derivatives of the optical function
in the immediate neighborhood of the time axis, and, in particular*? | the Ricci coefficients y and
n, and the lapse function b. The following initial conditions are easy to check from our definitions
and the local geometry around points on the time axis.

Initial values*®: There exists a positive constant** M such that for all ¢ € [0, ¢,] and all sufficiently
small s

I1) Jtrx — 2]+ [x(s)] + [n(s)] < 2M,

12) The lapse function b and the area A(S;,) of the surfaces Sy, obey |b(s)—1|+|A(S;.)—4ns?*| — 0
as s — 0,

I3) [D(trx = $)lrasin) + 1PX () s, + 1) [ r2(s,) + 1Psn(9) s, ) < 2M,
14) s* [D(try — $)| + s*[PX(s)] + 5% [Pn(s)| + s [Psn(s)| = 0 as s — 0.

The continuation argument proceeds now as follows. For each time ¢ in the interval [0, t,] let s(t)
be the maximum value of the parameter s = t — u such that the initial conditions with a given
constant M can be extended to the neighborhood of the time axis: ¢ € [0,t,] and s € [0, s(¢))
with an additional condition that s(t) < min{27'°A7/=! ¢}. This means that for all ¢ € [0,t,] and
s € [0, s(t)) we have

Assumptions
A1) trx = 2[4+ [X(s)| + [n(s)| < 2M,

A2) [ID(trx = Dllzzes,.) + IPx) 2 + 1I¥0() |2, ) + [Psn(s)llzes, ) < 2M,
A3) s(t) < min{27 1M1 ¢}

The essence of our continuity argument is to show that, under the above assumptions, the constant
M defined by the initial conditions can in fact be chosen to be M = A% for some fixed, arbitrarily
small, € > 0. Moreover, with this choice of M, the norms described in the Assumptions remain
bounded by M for all values [0, s(¢)]. By the maximality of the interval [0, s(¢)], this implies that
s(t) = min{2719N € ¢}, Since t < t, < A < 2719X%¢ we conclude that the estimates with
M = X\~%"¢ can be extended to the interior of the maximum cone Cy, i.e, the region {(t,s) : s €
[0,t], t € [0,t.]}. This facts form the content of:

4lrelative to which we made our assumptions on the metric H

42y and 1 are simply null components of the hessian of w.

43We use the affine parameter s = t — u to measure the distance to the time axis.

#which may depend on XA ! We show later that this is not the case. Here M may also depend in principle on each
particular hypersurface C,,.
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Theorem 5.5 Let the frame coefficients try, X, and n obey the Assumptions with a constant
2M > \"%F€ for some sufficiently small € > 0. Assume that the region described by s < s(t),t < t,
s a mazrimal domain where the Assumptions hold true. Then the Assumptions are also satisfied
with the constant 2M replaced by A\™%T¢. As a consequence, the maximal domain is the set {(t,s) :
s €10,t], t € [0,t]}.

Remark Under the above Assumptions, all the Ricci coefficients x, x,n,n can be uniformly esti-
mated by the quantity % This is, of course, a very crude estimate, since it is only trx and try that
have singularities at s = 0.

Let T'y; denote the domain in R* defined in A1)-A3). For each fixed € [0, %], the level surfaces
of the optical function u(t,-) generate the foliation S;.. The following Theorem shows that these
foliations are admissible. Moreover, each of the surfaces S;, admits Sobolev, elliptic, and trace
estimates. Keep in mind, in what follows, that s = ¢ — u, s = 0 on the time axis, and s = s(t)
describes the last surface satisfying the Assumptions.

Proposition 5.2 For each fized t € [0,t.] the foliation Sy. parametrized by the values of s € [0, s(t))

is admissible. Moreover, each 2-surface Sy, with s =t—u < s(t) satisfies the conditions of Theorems
5.2, 5.140, and 5.4

Proof: Recall, see Lemma 5.1, the lapse b = b and the second fundamental form 0,5 = xap+kan
of the foliation S;. along ;. To show that the foliation is admissible it suffices *> to verify that
b(s) — 1| < Mys and [tr@ — 2| < M, for all s € [0, s(¢)) and a constant M; such that M;s(t) < 27°.

The lapse function obeys the transport equation (2.59): L(b) = —kynb. Integrating this equa-

: . L . : - [k
tion taking into account the initial condition b(s) — 1 as s — 0, we obtain b(s) = e © " The
second fundamental form k;; = —109,h;; obeys the pointwise estimate |k| < |0H|. Therefore, in view
S

of the conditions (5.113) and (5.115), | [ kyy| < min{A~% s, A=(1=9}. Hence, choosing a slightly
0
bigger value of ¢, if necessary,
b(s) — 1] < min{A70%¢s, CA~1=0} < \7aFepe < \7¢ < 275, (5.156)

Indeed, according to the Assumptions the largest value of s can not exceed ¢t < t, < A% Therefore,
the condition 2) of the admissible foliation is verified.

We also have the formula trf = try + trk. Since |k| < |0H|, the condition (5.115) on the metric
H gives |trk| < A~%. It then follows from the Assumption Al) that

2 _
trf — =] < 2M + A7 = M.
s

In view of the Assumption A3) we have M;s(t) < 277 + A %\* < 27°. The foliations S;. are
admissible with the constant M.

To verify the conditions of Theorem 5.2 it remains to note that by (5.115), sup |0h] < A7%"¢ and
the Remark after the definition of the admissible foliation implies that A(S;,) &~ s* < A\?*. Since
a + 2¢ < a, we see that Theorem 5.2 holds with the value of the parameter Ay = \* €.

45Condition 1) can be easily checked, since S; . is “almost” the foliation of ¥; by geodesic spheres
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5.6 Some useful Lemmas

The first Lemma provides estimates for a solution of the transport equations. Let II-= =", II4 =
; A

hS

denote the inner product of two S-tangent covariant tensors %6 of the same degree 47, and |II]

VII-1I be the corresponding norm of II.

Lemma 5.2 Let 114 be an S-tangent tensorfield verifying the following transport equation with
o>0:
1)4HA+ O'tT‘XHA == FA'

Assume that the point (t,z) = (t, s,w) belongs to the domain T'ys. If 1 satisfies the initial condition
s%Ta(s) — 0 as s — 0, then

[11(t, z)| < supp|F| (5.157)

p<s

For the right hand-side F defined in the whole time slab [0,t,] x R?, estimate (5.157) can be com-
plemented with

11t )| < 4l|F | (5.158)

00 .
O,t*]LI

In addition, if o > 5 and II satisfies the initial condition s*~'||TI|| 2(s,,) — 0 as s =t —u — 0,

then on each surface Sy, with s < s(t)

> [ .
M5 < sz [ 07 2Pl do (5.159)

0

Remark: Any null geodesic x(s) tangent to the vectorfield L lies on the level surface of the optical
function u. We have already observed that the affine parameter s =t—u. Thus, in local coordinates
(t, 1,79, 73) on R, such trajectory is represented by (u + s,x1(s), xo(s),3(s)). Therefore, for a
quantity F defined in the time slab [0,t] x R?, we can replace its integral along a null geodesic x(s)
with an L} L norm of F. Namely, for s =1t —u

t

[ 1E1d0= [ 1F o+ wio)a(o)as(o) do < [ sup P dr = [Flly, oo
0 0 .

[0,e]x
0

Proof: ;From the transport equation for II we have the following simple identity:

Td o 205 2 5
5 g W7+ —[HJ7 = —o(try = L7 + - I,

46 e., tangent to the surfaces S; ,,

“THere for an m-covariant tensor II4, 4 = A;... A,
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where % is a derivative along any trajectory tangent to the vectorfield L = e, initiating on the time

axis. Integrating the identity with the integrating factor s** and taking into account the initial
condition for IT, we obtain for an arbitrary point (t,z) € 'y 48

S S

2 2 2
Mta) < 5 [ ol = 2P dp+ . [ p7F Ty (5.160)
e S Cd
0 0
According to the Assumptions we have [try — 2| < 2M. Thus

4
sup |MI* < 20Ms sup |TI)* + STU/,O“F-Hdp.

ps p<s ps p<s
0

Since s < s(t) and Ms(t) < 271% by the Assumption A3), we easily conclude that
2 4 4o
sup |TI]* < — [ p" F - Tldp.
S a

psp<s
0

The inequalities (5.157) and (5.158) follow. For the derivation of (5.158) we make use of the Remark.

To obtain (5.159) we integrate inequality (5.160) over a fixed surface S;,. Since the area A(S;,) ~
s?, it suffices to have IT satisfy the initial condition s'"~?||II||Z», ., — 0 as s — 0. Taking into
account that the area A(S,,.) = p?, we have

S
20 o 2
5,0y < 55 [ o7 sup o = S,

0
s

2 o
o [ P s W2
0

Estimate (5.159) follows from inequality |try — 2| < 2M, with Ms(t) < 27 according to A3), and
the Gronwall inequality.

+

Let us now record some preliminary estimates for the second fundamental form k£ and the
components of curvature R. Some of the estimates have already featured in the proof of Proposition
5.2.

Lemma 5.3 Let I'y; be the domain described in the Assumptions. The second fundamental form
k satisfies the following estimates inside ["p;:

k<A, / k] < min{A~%s, \-(-0)) (5.161)
0
IVE[ 205, < AT NV (Rna)L2gs,,) < AT (5.162)

“8any point (¢, s,w) in the domain I'j; can be connected by a trajectory ¢t — s = u =const, w = const to a point
(u,0,w) on the time axis. This trajectory is parametrized by s = (s,w), is tangent to the vectorfield L = e4, and is
contained in I'y.
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More generally,*

10k llzagsi o+ [Pkallzas,.) < A (5.163)

Let R represent any component of the curvature R or any quantity obeying the pointwise estimate
7| < |0*H| + (0H)?. Then

IRl L2y < AT (5.164)

Remark The estimates (5.161), (5.163) establish the desired estimates (5.118), (5.119) for the
second fundamental form k in the domain ['y;.

Proof: The estimates (5.161) follow immediately from the pointwise bound |k| < |0h| and the
conditions (5.113) and (5.115).

To prove (5.164), note that any component of the curvature can be estimated |R| < |0*H| +
|0H|?. Since the foliation S;. is admissible, the Trace Theorem 5.3 implies that

102H || 12s5,.) S 102 O H||12(s) + |02 0 H || 12(5,)-

Both quantities on the right-hand side are controlled by the condition (5.116), ||8%82H||L2(2t) <
A7% on the metric H. The presence of ¢ contributes a small extra power of A in the estimate.
Continuing to denote every small power by e we obtain [|0°H || 2(s,,) < A%, In addition, the
area of the 2-surface S;, obeys the estimate A(S;,) ~ s?2. This follows from the Remark after
the definition of an admissible foliation and the fact that the family of surfaces S;. forms an
admissible foliation generated by the level surfaces of the function s = ¢t — u for a fixed ¢. Thus
1(0H)?||125,.) S ssup(0H)* < sA™**. The maximum possible value of s is s(t) which obeys
the bound s(t) < ¢ < t, < A*. Hence, since a > a, we have ||(0H)?||12(s,,) < A% Therefore,
1Rz, < AT
The first estimate in (5.162) clearly follows from (5.164), since k;; = —%@hi]‘- In addition,
Y, (knn) = (Dak)(N,N) + 2k(DsN,N). Since N = %(es — e3), we have DyN = L(xap —
X, 5)€8—kanN. It then follows from the Remark after Assumptions and the estimates |k| < [0H| <
A0 DE| S |07H| that |V kyw| S [02H| + A %71 Thus, ||Vhnyrzs..) S 10°H | rzs,.) +
A3 (S, ,)A"es1 < A=%F¢. The more general estimates of (5.163) can be proved in a similar fashion.
For example,
pSkAN = V3I€AN + k(V3€A — Pg,eA, N) + k(eA, V3N)
= Vskan + (kan — 2na)kny — (kpy — 2nB)kap.
The desired estimate then follows from the Assumption A1) for ), estimate (5.161) for £, and (5.162)
for VEk.

The decomposition Ryq = L(z)+ Error and its use in the transport equations requires estimates
on the quantities z, Error and their first derivatives. The term z is a combination of the terms of
the form r = e{H*°03H,, — $H*’ L(H,3) and Error is represented by the following expression

1
Error = —565 e O nHy + efef H H s (10,10, — T, Tog) — L(ef) H* 0 Hoy — €4 L(H*? )03 Hqy -

49Recall that k4. denotes either the co-vector kan or the 2-tensor kap
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Lemma 5.4 Let the functions z and Error be as above. Then in the domain Iy, i.e., for any
value of the parameter s =t —u < s(t) we have

S

12| + | P2l 12(s,.0) + )\2“‘_1/ sup |Error|dp+ / |DError||p2(s,.,.) dp < )\ ate (5.165)

Sutp,p

Proof: According to Lemma 2.1 we have pointwise bounds |z| < |0H| and |Error| < (0H)? +
|0, H|. Thus the condition (5.115) on the metric H immediately implies that |2| < A™%. In addition,
in view of (5.114), (5.117), and the Remark after Lemma 5.2,

S

[ s (Brrorld S WOHIZ, e+ IOWH gy, o S 370
u+tp,p

It remains to obtain the estimates for the derivatives of z and Error.

Estimates for Y(z), Y(Error): It is not difficult to verify that the term ¥,z gives rise to 3 type

of terms: ¥ ,(H*)0sHyy, €{H*Y ,05Hyy, and Y ,(e)H® 93 H,,,. We analyze them separately
50

1) [efV4(H*?)0sHay| S (OH)

Using condition (5.115) on the metric H and the fact that the area A(S;,) =~ s and s < s(t) < A%,
we obtain ||(0H)?||12s,.) < A7

2) [efHYY 4(0s How)| S |0°H]
It follows from (5.164) of Lemma 5.3 that |[(0°H)||12(s,.,) < A™*.
3) [Wa(ef) H* g Hoy| S 5|0H|

The inequality is a consequence of the following calculation
WA((ZZ) = WA(H“V < 64,8u >) = WA(H“V) < 64,8u > +HM < DA€4,8M > —|—H“V€zl < 64,D378M > .

In view of the frame equations D ey = xapep — kanes. Also Dy, 0, = F5 85 Therefore, using the
estimates |k| + || < 4|0H| < A" and |y| < 2 +2M < 3 with the latter following from A3), w
have

VA S (G +A) S (5.160)

since s < s(t) <t < A* < A% We then have ||s '0H || 12(s,.) S sTLAZ (S, )la—0re < \ate
This finishes the proof of the estimate (5.165) for Vz.

The estimate for ¥, Error has contributions from the following terms:

0Recall that the notation ¥ ,(f) is reserved for €%, 0; f, while the covariant derivative of the S-tangent tensor Ilg
is denoted by ¥ ,II5. Thus ¥ ,(H*?) refers to the derivatives of each fixed component H%? of the space-time metric.
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1) |e5W 4 (e)0nHw| S §100H|,

which follows from (5.166). The condition (5.117) on the metric H and the inequality A(S,,,) = p?
yield

S

J 107 O x50y dp S [ 57 A (Surp) sub (D0 S (Dl e S X0,
u+p,u
0

0

2) |eltet ¥, 0n Hyu| < 5|0 DL H
The condition (5.117) and the inequality s < A® imply that

~J

/ 10T H | 25,4, dp S sIOOWH 1, 10 S A0,

Note that in the interesting range of the values of a, a < —1 + /3, we have 3(1 — a) > a. Thus,
)\73(1711) < "€

3) eh W4 (e) H? Hys T sT0, | S 5 (0H)?

Hence, from the condition (5.114), [ [0 (0H)?||12(Sus,0) dp S NOHZ, 0 S A~ (),
0 [0 7T
4) |efef ¥ (H*P) H 5T 00, | S [OH [P
Combining (5.114) and (5.115), we obtain [ [[(0H)*||12(s,,,.) dp < sA™F A0 < A=),
0

5) lekes HP HosY 5 (T,p)T0, | S [0H] |0 H]

We have proved in Lemma 5.3 that for any surface S;, with ¢ — u < s(t) there holds the estimate
10°H || 12(5,.,) < A7%F¢. Therefore, with the help of (5.113),

JIOH @ H) 125, 1) dp < A |0H |y, | pe < A7),
0

6) |V A L(ef) H*? 05 Ho|

Recall the calculation of L(e4) from Lemma 2.1, L(e}) = L(H"®) e4s — knney +H" e e4,1'%5. Taking
into account that |Ve,| < L, we obtain |V, L(e%)| < |0°H |+ |0H|*+1|0H |+ |Vkny|. (From Lemma
53 ||WkNN||L2 St,u S )\ a+5 Hence

S

s v (] ]' —a+e
/ 1V L () H? 05 Ho | 125,10y dp S / sup [OH | | (|02 H|+|0H [+~ |0H |+ |V ) 125, d < A
0
7) |L(ef)V o(H*)05(How)| < |OH

Thus, as in 4), [||[(0H)?||r2(s
0

dp < A7),

uto,u)
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8) |L(ef) H*PY 4 (0 How)| S 10H||0*H]
Thus, as in 5), [ ||8H(82H)||L2(Su+p,u) dp < \~a-(1-a)+e,
0

Estimates for the remaining derivatives of z and Error: The treatment of the remaining L
and L derivatives is almost identical to the proof of the estimates for the angular derivatives. The
only deviation is the appearance of L(e}) or L(e}) derivatives replacing the ¥ ,(e}) terms. We have
the following identities:

L(e}) = L(H™ < e4,0, >) = L(H™) < €4,0, > +H" < Dsey,d, > +H" < €4, D30, > .

The frame equ_ations imply that Dges = 2naes + kynes. Also, D30, = egFglﬁb. Hence, since
|k| + |T] < A% and by the Assumptions |n| < 27'%(¢)"!, we can conclude that for s < s(t),
|L(e})] < 278s™!) which is even better than the corresponding estimate for YV ,(ef). A similar
estimate holds for L(e}). The rest of the proof remains unchanged.

Improved elliptic estimates: Armed with the estimates of Lemma 5.3 we can refine the esti-
mates for the Hodge systems formulated in Theorem 5.4. We show that the scalar curvature K of
the surface S;, can be replaced ' by the quantity s 2.

Lemma 5.5 Let £ be an m+1 covariant, totally symmetric tensor, a solution of the Hodge system
on the surface S,

Jiv€ = F,
cyrlé = G,
tré = F.
Assume that the 2-surface Si,, belongs to a domain Ty so that s < s(t). Then & obeys the estimate
+1
/ VEI” + m282 € <2 /{|F|2 + |G]> + mK|E|?}. (5.167)
St,u St,u

Proof: The Gauss curvature K of the surface S, can be expressed in terms of the Ricci coefficients
of the frame ey, 5, €3, €4 and the curvature R of the ambient 4-dimensional space, see (5.155) and
[Ch-K1]. Namely, K = —strxtry + 5% - X + sRapap. Recall that according to (2.50)
—xaB — 2kap. Also expanding try = % + y we have

1 1 1 1 1 1 1

K=—+- —y? 4+ “trk + —ytrk — =¥ — v -k + =R .

2 Tyt gyttt gyt 2|><| Xk +5Rapan
According to the Assumption A1) |y = try—2|+|x| < 2M. The Assumption A3) gives M < 270571,
and (5.161) provides the bound |k| < A7%7¢ < 2710571 where the last inequality follows from the
fact that s < s(t) <t <t, < A\* and @ > a. We then derive the inequality

» Xup =

K>— — ~|Ragasl. (5.168)

51We need to do this since we do not have pointwise estimates for K.
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Insert inequality (5.168) into (5.144).

m+1
[ wee+ SRR < [ (FP+IGP + mEIEP + RananlcP). (5169
St,u S,

t,u

We want to absorb the last term on the right-hand side of (5.169) into its left-hand side. First, from

the Holder inequality [ [Rapas||é> < ([ |Rapas/?)z( [ |€]*)2. To handle the L*(S,,) norm of
St,u St,u St,u

¢ we make use of the Sobolev inequality (5.138) applied to f = £2.

(/I£I4)5§(/|Y7§|2)§(/ |§|2)$+/|tr9||5|2. (5.170)
St,u St,u St,u St,u

The identity trf = try + trk implies that 0 < trf < % In addition, Lemma 5.3 implies that
IRABAB 22(5:.) < A™%F¢. Hence, with the help of the Cauchy-Schwartz inequality and the estimate
s < s(t) <t < A% we have

[ Reanasliel < a2 [(sIver + i) <t [(wel+ e

St,u St,u St,u
_— (5.171)

<3 [ (wer+ S5 e,

St,u

The inequality (5.167) immediately follows.

5.7 Estimates for try and y
We are now ready to prove some of the desired estimates for the Ricci coefficients try and y.

Proposition 5.6 Let 'y be the neighborhood of the interval [0,t.] of the time azis described by
the Assumptions. Then the frame coefficients try and x satisfy the following estimates at any point
(t,x) = (t,s,w) and on any surface Sy, C Ty with s =t —u < s(t):
2 9 —a+e
irx — 2]+ 18()] < A7, (5.172)

2 > —a+te
IV (trx = ez + 1PX 2 < A (5.173)

Proof: It would clearly suffice to prove the following fact:

Lemma 5.6 Assume that the frame coefficients try and x satisfy the following estimates at any
point (t,x) = (t,s,w) and on any surface Sy, C Ty with s =t —u < s(t):

2 .
[trx — ;I + |x(s)| < My,
2 .
|V (trx — ;)Hm(st,u) + VX 22(800) < M.
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with some constants My, My < 2M. Then they also obey the estimates

2 M _ _

b= 2 < AT [R(s)] < XM+ AT, (5.174)
2 > M2 —a—+e

19(tx = 2 ligs,) + VRN < 2+ A7 (5.175)

Proof: We divide the proof into a sequence of steps.
Step 1. Estimate for y = try — 2
Recall the transport equation (5.147) for the quantity y + z

1 2 1
Ly+z)+trx(y+2) = 5(y +2)% + P 5272 — %> — knntry — Error,

where the functions z and Error appear as a result of the decomposition Ryy = L(2) + Error and
obey the estimates of Lemma 5.4. In particular, |z| < A7% and ||E7“7"07"||L[10t Ly < A,

The condition of Lemma 5.6, |y| = |[trx — §| < M, and the estimate on z imply that the quantity
y + 2 verifies the initial condition s?(y + z) — 0 as s — 0. Therefore, Lemma 5.2 with o = 1 yields
the estimate at a point (¢, ) with s =t — u < s(¢)

2 .
(y+2)| < sup p(texlk] 4 [2]) + s sup(R1° + [y + o) + 4| Erroryy,  re-
PSS p<s sUx

As we have remarked before, in the domain I"); at a point corresponding to the value of the affine
parameter p, we have |try| < %. In addition, the conditions of Lemma 5.6 imply that |y|+|x| < M; <

2705(¢). Thus, taking into account estimates |k| < A7 |z] < A% and ||Err0r||L[10t Lo <A (@)
we obtain®? for s < s(t)
ly 4 2| < 6A T F 2700, 4 Nt

Using the estimate |z| < A™*"¢ once again, we obtain, with a slightly larger €, the desired estimate
trx — 2| < 279M; 4+ A7

Step 2. Estimate for Y(try — 2)

S

The L?(S,,) estimates for Y(try — 2) = Yy are derived with the help of the transport equation
(5.148)

PaValy +2) + ;trXVA(y +2) = —XaBVp(Yy +2) + (Y +2)Va(y +2) — (y + 2) V4 (trx)

2 SN
(- = 22)V 2 = 2V,X - X — teX YV ykvw — knn WV tex + Y Error,

s
To apply Lemma 5.2 with o = 2 to estimate ||V (y+ 2)||12(s,.) we need to verify the initial condition
s’V (y + 2)[|L2(s,..) — 0 as s = 0. The conditions of Lemma 5.6 provide the bound ||¥Vyl|z2(s,.) <

52Recall once again that the inequality < can be replaced by < by adding an extra factor of \¢
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M;, since y = try — 2. In addition, z obeys the estimate ||¥z||z2(s,,) < A% of Lemma 5.4. Thus,
the estimate (5.159) of Lemma 5.2 implies for s =t — u < s(t)

91 | A
V(Y + 2)|lr2es,.0) < = P4(||77(y+Z)||L2(su+,,,u)(|><| + [yl + |zl + |knn]) + (| VError||o(s,,,..)

0
1 T
HIV (s (Y] + 12|+ kvw ]+ 2) + tox ([ WhEvallzacs,s,.0 + |X|||Y7X||L2<su+p,u>) dp.

Recall the conditions of Lemma 5.6 with y = trx — 2. We have |y|+ || < M; and [|Vyl|12(s,.) +
1¥xllz2(s..) < Ma on any surface S;, with s = ¢ —u < s(t) with positive constants M;, M, such
that (M, + Ms)s(t) < 278, Invoke also the estimates for Yz, YError, and Ykyy from Lemmas 5.4
and 5.3. Then

2 — —a+e¢ —a+te — — —a+te
IVtrx || n2esin) = ||Y7(trx—g)||Lz(5t,u) <27 My + A0 3N T 4 27, <2730, 4+ A

We have finished the proof of the try estimates in Lemma 5.6.

Remark: Using the initial condition s*|Viry| — 0 as s — 0 we can complement the derived
L*(S;.) estimate for Virx with a less precise L®(S;,) bound. It is not difficult to obtain from
(5.148) that for s < s(t),

S

2
sup |W(trx — )| < 2752/,0 Vx| dp+ C(s TA 2070 4 \-30-a)y, (5.176)

t,u

0

This will be used as weak estimate. A weak L estimate for ¥try is needed in conjunction with a
similar weak estimate for Yx to establish the strong estimate for ||x||Le-

Step 3. Estimate for Yy

The main tools in the estimates for y are the Codazzi equation and the elliptic estimates. Recall
the Codazzi equation (5.152)

. . 1
(dhivx)a = —XaBksn + §(Y7AUX + kantryx) — Rpaas.

Since x is a traceless 2-tensor tangent to the surfaces S;,, the div equation constitutes a Hodge
system and allows one to obtain the bounds on any angular derivative of . The results of Lemma
5.5 imply that on any surface S;, with s < s(t)

. 3 1. .
[ sl <o [ s
St,u St,u

Hence, using an already proved estimate ||Wtrx||z2(s,,) < 27°Ms+ A7, conditions of Lemma 5.6,
the estimates from Lemma 5.3, and the fact that A(S,,) = s?, we obtain

. 3. .
J IR+ 5l < 4 [ QRPIRE + [Pt + [KPlecx? + [Raanl?)
St,u St,u
< 2—16)\2(—(1-}—5) + 2—10M22 + )\2(—(1-}-5) + )\2(—a+e) + )\2(—(1-}-5) < 2_6M22 + )\2(—(1-}—5)'
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The desired estimate on ||¥Vx||12(s,,) immediately follows.
Step 4. Estimate for x

In the previous step we have proved the estimate

3 _
/ |y7>%|2_|_ 5 2|>A<|2 < 2—6M22 _i_)\?(—a-l-e).
S
St,u

We now rely on the Sobolev estimate (5.139) formulated in Theorem 5.2 to prove a pointwise bound
on x. Proposition 5.2 justify the use of Theorem 5.2 on any surface Sy, with s =¢ —u < s(t). We
have for any ¢ > 0 and p € (2, 00]

3(p=2) 25
. 5(p-2) N DTN Tt A . . 3-2)
sup |X| 5 [A(St,u)] 2p+5(p—2 (/(|Y7X|2 + |tr9|2|X|2))2 2p+35(p—2) [/(|Y7X|P_|_ |tr9|p|X|p) 2p+5(p—2 ,

St,u
St,u St,u

Since trf = try + trk we infer that % < |trf — §| < % Thus, setting p = oo and using the estimate
A(Spu) & s* < \*, we obtain

a . 3
SUp | S AFH (20 My £+ A7) T (sup V| + () sup 1) (5.177)
t,u t,u t,u

This is a favorable estimate for large values s > 1. To take care of the region s < 1 we proceed
from the transport equation (5.150) for x

. 1 . . .
Paxap + §(trX)XAB = —knnXap — Qan,
According to Lemma 5.2 and the initial condition |x| < M as s — 0 we derive for s < s(t)

X(s)| < s(sup [kyn|[x] +sup|&l).

In view of the assumptions of Lemma 5.6, || < M; < 27'9(¢). We also have |k| < A7%*€ and since
@ is a component of curvature R, || < A=% (179 by (5.115). Hence,

|)A((S)| 5 )\—(i-l-e + 8)\—@—(1—(1).

which completes the proof of Lemma 5.6 in the region s < 1. For the values of s in the interval
1 < s < s(t) we can use the estimate (5.177) which yields®

sup [X] S AT (270 My + A7) 1755 (sup |V |+ A0 .

St,u St,u

Since 0 can be chosen to be an arbitrary positive number, the desired estimate on y stated in
Lemma 5.6 would follow if we prove a weak estimate of the type |Vx| < A* for some even positive
power a.

Step 5. Weak estimate for Yy

53with the help of the inequality 1|¢| < L(A~F¢ 4 sA=@~(17a)) < \=8F¢ since s > 1.
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To obtain such an estimate we shall make use of the transport equation for ¥x which is obtained

by differentiating the transport equation for y and using the commutation formula of Corollary 2.1.
Thus,

. . . . . 1 . . .
DsVoXap +trxVoXap = —XcpYVpXap — knnVeXaB — §WC(U"X)XAB — XaBYokny — Vobap
—(xackpn — Xepkan +Rpasc)Xps + (Xsckpny — Xepkey + Rppac)Xpa-

Lemma 5.2 with 0 = 1 and the initial condition s?|¥y| — 0 as s — 0 provides an estimate for the
supg, , | Vx| on any surface S;, with s =1 —u < s(t). As in the Remark at the end of the Step 2,
it is not difficult to show that

S

sup |Vx(s)| < 2852/,0 |Vtrx|dp + C’(s’l)\’m’“) + )\’3(1*“)), (5.178)
St,u
0

The only non-trivial part of the estimate (5.178) is the analysis of the term involving ¥ b 5. We
provide it below.

Estimate for Y dap: Recall that & is a traceless 2-tensor tangent to the surfaces S;, generated
by the curvature R according to the formula asp = Ryaup — %R4C4C oap. It clearly suffices to
consider the term ¥ ,Rga4p. We have a simple identity relating the intrinsic angular derivative to
its counterpart in the ambient space.

Y Rasap = DecRasap+ < Rles,ep)ea, Does > + < R(Dees, ep)ea, e4 >
+ < R(es,ep)(Dces — Voea,eqa >+ < Rles, (Deoep — Voep)ea, es >.

Hence, with the help of the frame equations (2.45)-(2.49) and the estimates | x|+ |k| < 457" following
from the assumptions of Lemma 5.6, we obtain

|V Raaag| < [DR|+2's 'R/

The estimate (5.178) requires control of the integral s 2 [ p?|¥ @ap|. Since the curvature R can
0
be estimated pointwise as |R| < |0?°H|+ |0H|?, and |DR| < |03H|+ |0?H| |0H]|, we easily conclude
from the conditions (5.113), (5.114) on the metric H that s=2 [ p?|V aap| < sTIA72170) 4 2\ —30-a),
0

Estimates (5.176) and (5.178) combined together yield the desired weak bound

2 ~ —1y—2(1-a —3(1—a
sup |V (trx — =)+ sup [F] £ 5 1A 200 o300

t,u St,u

Hence, for the values of the parameter s € [1, 5(t))
sup || < A5 (278 My + A7) ok (A 7210 ymabe) ol
St,u

The appropriate choice of sufficiently small constants d and e concludes the proof of the estimate
for x and of Lemma 5.6.
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5.8 Estimates for n

Proposition 5.7 Let 'y, be the neighborhood of the interval [0,t,] of the time azis described in
the Assumptions. Then the frame coefficient n satisfy the following estimates at any point (t,x) =
(t,s,w) and any surface Sy, C Uy with s =t —u < s(t):

n(s)| + 11Vnllz2(s,) <A (5.179)

Remark: During the proof of Proposition 5.7 we can supplement the Assumptions with the
estimates for try and X which we have already proved in Proposition 5.6.

Proof: The proof follows the same pattern as that of Proposition 5.6. The role of try is played
here by pu = L(trx) + kyntryx — 3 (trx)? while 7 plays the role of x. Indeed recall that p verifies the
transport equation®® (5.149),

L(p) + trxp = —2xaB (2Y7A773 — v ndap + knnXas + 2(nans — |nl*0ap)
1 |
—§tI"XXAB — §trXXAB + RA43B> + L(Raa)

+2(QA - nA)WA(trX) + trx(|)2|2 + (L - L)kNN - R44)-

while 7 verifies the divergence-curl system® (5.153), (5.154),

1 o 1

div n = 5(,“ +tr(X - X) — 2knntry — 2/nl*) - PRk
1 AB ~ ~ 1 AB

cyrln = 26 XyoXoB — 5¢€ Raass.

We shall slightly change however the scheme of the proof; first, we establish the bound for
|¥nll2(s,..) in terms of [[u]|z2(s, ) then the desired bound for the latter, and last, with the help of
a weak estimate for the L> norm of 1 and the Sobolev inequality, we prove the desired result for 7.

Step 1. Estimate for Yn

We apply the elliptic estimates proved in Lemma 5.5 for the div — cyrl system verified by 7 to
derive that, on any surface Sy, with s < s(¢),

1 o .
/ Yn|* + ;|77|2 < [ A{IpP + 2P X7+ 20k 6rx” + [n]* + X1 + 2/R|?}
St,u S

t,u

We have ||R||2(s,,) < A% from Lemma 5.3. In addition, ||+ x| + [k| < A7%, Jtry| < 357,
and |n] < M < 271971 Thus,

]' —a-+e
/|Y7n|2+@ln|2§/lul2+hz( . (5.180)
St,u

St,u

Hence the estimate on ||¥n]|2(s,,) requires control of the L*(S,) norm of . In the next step we
shall prove the following:

54One might be tempted to compare it with the transport equation for y = try — %; in fact it should be compared
with the transport equation verified by the angular derivatives Yy.
53to be compared with Codazzi equation verified by ¥.
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Lemma 5.7 Let o = L(trx) + knntrx — 5(trx)%. Then on any surface Sy, with s < s(t)

/ |M|2 < )\(2—a+e)
St,u

Lemma 5.7 immediately implies the estimate

1 —a+te
/ [Vl + 5 Inf* < A, (5.181)
St,u

as desired.
Step 2. Proof of Lemma 5.7

To obtain the bound on y in L*(S;,,) for any surface S, with s < s(t) we use the transport equation
for ;1 and Lemma 5.2 with 0 = 1. First, however, we have to modify the equation for p by taking
advantage of the special structure of the term L(Ry44). Recall that Ryq = L(2) + Error with z and
Error satisfying estimates of Lemma 5.4. In particular, we have

1Dz r2(s,.0) + / |DError|| 2s,,,,) < A7 (5.182)
0

Using the commutator formula
(L, L] = D3ey — Dyes = 2(n — n)es + knnL — knyL
see Lemma 2.2, we obtain
L(Raa) = L(L(2)) +2(n = n)¥ 4(2) + knn(L = L)r + L(Error)
This leads to the following transport equation for p — L(2)
L(p— L(z)) + trx (n — L(2)) = F, (5.183)

where F'is given by

. . .
F = -2xXan <2WA77B — div ndap + knnXas + 2(nans — [n*0as) — §trXXAB

_%terAB + RA433> +2(n =)V 4(r) + knn(L — L)(r) + L(Error)

—trxL(2) +2(1,, — 14) ¥V 4(trx) + trx (|X[* + (L — L)knny — Raa).

To apply Lemma 5.2 to equation (5.183) we need to verify the initial condition s||p—L(2)||12(s,.) — 0
as s — 0. To do this it suffices to observe that yu = 2divn + 2kyntry + 2|n|> — tr(x - X) + R. Hence,
using the Assumptions for 7, try, and X, and the estimate ||Rz2(s,,) < A%+ following from
Lemma 5.3, we obtain

sl (8)] r2(s,0) < $°(AM + A70F + 2°0M%s).
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In addition, (5.182) provides the estimate ||L(2)|72(s,,) < A~%", from which also s||L(2)||12(s,.) —
0 as s — 0 as desired.
Hence, on any surface S;, with s < s(t), there holds the estimate

S

= L) o2y < 257 / PIF 25

0

The remaining part of the proof is a tedious estimate of the contributions of the each term involved
in the definition of F'. The following estimates are trivial consequences of estimates (5.172), (5.173)
on try and y proved in Proposition 5.6, estimate (5.182) on D(z), L(Error), Lemma 5.3, and the
estimates |n(s)| + [|¥nll12(s,.) < 27'%s~ ", which follow from the Assumptions.

S S
s [ P IIX Villogs,.y < A7, 2) 572 [ PIXInPPllizs,.) < AT
0 0
S S
572 [ o? X trxllcogs,,) < APC0F9s 4) 572 [ p*lltrx R|p2cs,,.) < A7
0 0
s 2 [P InD(r)lL2(s,.) < A 6) s [ pPlIL(Error)|lracs,,) < A
0 0

572 [ p°lltex (L = L)knnllr2(s,,) < A
0

These, allow us to conclude that || — L(2)||r2s,,) < A™**°. Finally, using estimate (5.182) once
again, we have the bound ||L(2)||r2s,.) < A7, from which the conclusion of Lemma 5.7 now
follows.

Step 3. Estimate for n

As in the case of the pointwise estimate for x we shall make use of the Sobolev estimate (5.139) of
Theorem 5.2 to prove that || < A7, For any 6 > 0 and p € (2, 0c] we have °¢

5(p—2) 26
2p+6(p—2) L0525 2p+5(p=2)
suplil S [A(5.)] ™7 ([ (waP + i) =] [ awnp+ Siap] 7

t,u
St,u St,u

Setting p = oo and using estimates (5.181) and A(S;,) < A?* we infer that

< Cate) (12 1 25
sup |77| )\2+6)\ 2p+45(p—2) (Sup |Y777| -+ g sup |77|)2+6 (5184)

t,u St,u St,u

Therefore, it only remains to establish some weak estimates for n and Y.
Step 4. Weak estimates for n and Y7
Recall the transport equation (5.151) for 7.

. 1 1
Pana + = ( X)na = —(kpn +1B)XaB — §(trX)’fAN — 5Pa
3

56Take into account the estimate § <
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and apply °7 to it Lemma 5.2 with o = % We have for any s < s(t),

sup [n(s)] S AT sy @ (1m0, (5.185)

t,u

In the region s < 1 this already gives the desired estimate || < A~%*¢. To estimate ¥n we need to
take the tangential derivatives of the above transport equation for n and apply Corollary 2.1. We
have

N . . 1
PaVpia + texVyita = —Xpc¥olla = XacVgilie = ne¥pXac = 5 Vp(trx)na
+YgFa + (XaBken — XBckan + Reaan)ne,

with Fy = —konXac — %(trx)kAN - %BA. We now proceed as in the case of the weak estimate for
Yx. It is not difficult to show, by using Lemma 5.2 with 0 = 1 and checking the initial condition
s%|Vn(s)| — 0 as s — 0, the following estimate:

sup |[Vn| < s7IA721m0) 4 \—301-a), (5.186)

t,u

Hence, in the region 1 < s < s(t) < A* we have the estimates supg, | [Vn| S A~2(1=9) and
s n(s)] < s7HATTe 4 sA70(1m0)) < A=+ We then infer from (5.184) that for 1 < 5 < s(t)

sup 5] < AP ACTHOO 5 (\20-0) 4 \—are) s

t,u

Since 0 can be chosen to be arbitrarily close to 0, we conclude that for all s < s(¢)

sup [n] < AU,

t,u

5.9 Remaining estimates for try, y, and 7

To estimate the remaining derivatives of try, x, and 1 we invoke the equations
2 1 4 .
Dy(try — g) = —5((trx)2 — ?) —|X]? — kxntry + Rag,
. 1 . . A
Paxas = _§(trX)XAB — knnXaB + Raaas,

1 . 1 1
Pana = —i(tYX)UA — (kN + nB)XaB — §(trX)kAN + §RA4437

5 1 A4 o

D3 (try — g) = 2div 1 + trxkny + 2|n)* — §(trxtrx + ?) + = 2 (1—b7") —tr(Y - X) + Raasa,
. . L .

DPsXan =2Pang — hv néap + knnXas + 2(nans — n*048) — SXXaB = SUXX 5 F Raass.

The pointwise estimates and the L?(S;,) estimates for the angular derivatives of y, try, and n
obtained in the previous 2 sections allow us to show that for any s < s(t)

5TObserve that the initial condition s|n(s )| — 0 is satisfied in view of the Assumptions. We also make use of the
estimates |k| + x| < A7, |n(p)] < 27101 and |B] S Ao (o),
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2 2 .
| Da(try — ;)HLz(st,u) + || D3 (try — ;)HLZ(Sm) + [|Paxle2(se.)
+1Psxllr2(se0) + 1 Panll 2,y < A7

(5.187)

In addition, using the weak pointwise estimate |Vn| < A72(=2 s~ + \=31-9) for the angular deriva-
tive ¥n, we can conclude from the equations above that

2 ” —ate — —a—(1-a
[Datrx = =)+ [Pax| + [Pan] S AT 7" 427707,

2
| D3 (try — §)| + |Psx| < A 20-a) =1 4 \—3(1—a)

5.10 Proof of Theorem 5.5

The Propositions 5.6 and 5.7, and the estimates (5.187) immediately imply Theorem 5.5.

5.11 The end of the proof of the Asymptotics Theorem

The Proposition 5.5 provides the most important estimates of the Asymptotics Theorem. Observe
also that we have already established the weaker pointwise estimates on all the derivatives of try;,
X, and the angular and the P4 derivatives of 7 of the form

2
sup | V(try — ;)| + sup | Vx| + sup |Vn| < \21-a) gt )\—3(1—(1),

t,u St,u St,u

2 _ _
sup |Dy(try — ;)| + sup |P4ax]| + sup [Pan| < Aoteg—l 4 )\—a—(l—a),

t,u St,u St,u

2
sup D (trx — =)+ sup [Pax] S A0 4 A7),
S

t,u t,u

To obtain the weak estimate on the remaining Ps derivative of 1 we use the transport equation for
na + kan, which can be easily deduced from (5.151),

1 . 1
Pa(na + kan) + §(trX)(77A + kan) = —(kgy +nB)XaB + Pakan — §5A =: Fy.

Integrating this equation we infer a weak estimate | + kan| < sA7*(1=9) We then derive the
transport equation for Ps(na + kay) via formula (2.77) of Corollary 2.1.

1
DPiPs(na + kan) + 5(“)()7)3(77/1 +kan) = —knnPs(na +kan) + 2 — kpn)Vg(na + kan)+
1 1
Enn(Fa— §th(77A +kan)) — 5733(th) (ma + kan) +Psla
—(2nBkan — 2nakpN +Rpaas)(ns + ksn)

The most “dangerous” term here is D3 (try)(na + kan) since Da(try) =~ 252 as s — 0. The weak

estimate for n4 + kan however allows us to reduce the singularity at s = 0 to that of s™!. Now
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integrating the transport equation we can obtain the weak pointwise estimate |Ps(n + kan)| <
(_Lf

~J

A730=0)  The estimate |Dsn| < A73179) easily follows from the estimate [Pskany| < A7 079 see
below.

The remaining estimates for the derivatives of the lapse function can be obtained from its transport
equation Dgb = —kynb. This yields |Dgb| < A%, The angular derivatives of b can be obtained
from the equation ny = b= 'V 4b+k4n. Finally, the D3 derivative can be estimated from its transport
equations obtained with the help of identity (2.77) of Corollary 2.1.

As we already noted in the Remark after Lemma 5.3, the estimates (5.161) and (5.163) yield the
most important bounds on the second fundamental form k&

sup [k| + |0ky nllz2(s,.) + 1Pkallze(s,.) < AT

t,u

However, following the proof of Lemma 5.3 and using already established estimates on try, x, and
n, it is not difficult to obtain the additional weaker pointwise estimates:

sup | Paka.| + sup [Pska.| < A0,

t,u t,u

sup |Vka.| < A 200 g7t 4 \=30-a),

t,u
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6 Proof of the Boundedness Theorem

In this Chapter we give a full proof of the crucial Boundedness Theorem 3.1 stated in section 3.3.
We first recall some of the basic terminology, introduced before, which shall be used throughout
the Chapter.

Energy-momentum tensor: Qap = 0a¥0s%) — ag(H Y0,00,1)
Null components®® of Q:

Qaa = (Dgvp)?, Qsa = |V, (6.188)
Q33 = (Ds1))?, Q3a = DY 41, (6.189)
Qus = Dat¥ st Qun = V¥ + S(Da0Pat = [F0Plorn. (6190

Modified energy-momentum tensor: Qus = Qap + = Q1/)651/) ”;Waﬁ(a)
Modified Morawetz’ vectorfield: K = 5(_2L +u?L)
Modified Deformation tensor: @ = Xn — 4tH
Conformal energy:  Qo[](t) = [ Q(K,d;)[], with
Xy

QUE, 0)[8] = (6 (Da)? + w2 (Dyw)? + (u + )PP + (n — idy — 20,

Conformal identity for a solution iy = F':

1
Qi) = Qi) -5 [ @ / PO+ [ (KW + - ) w)F.
to,f] xR’ [to,t] to,] xR’
(6.191)
Full conformal energy: Q](t) = Qo[v](t) + Qol0u](t) + Qo[0?v](t)
We rewrite the Boundedness Theorem, stated in Chapter 3, in the following form:
Theorem 6.1 (Boundedness Theorem) Let ¢ be a solution of the wave equation
O =0,
HY (6.192)

7/)|t:1 = 7/)0, 8tw|t:1 - wl

with the metric H satisfying assumptions (5.113)- (5.117) on the time interval [0,t.]. Assume that
the initial data (Yo, 1) at time t = 1 has support in the geodesic ball B%(O). Then for any to,t,
such that 1 <ty <t <t,,

Qo[Y](t) S Qo[¥](to), (6.193)
Q[0](t) S o[t (t0) + QolOr] (ko) (6.194)
Q07 9](t) S Qo[¥)(te) + Qol0r](t0) + Qo[0;¥](to), (6.195)

58These formulae can be easily checked from the definition of Q.
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Proof: The proof of the Boundedness Theorem occupies sections 6.1-6.5.

In the proof of the Theorem 6.1 we need to use the following auxiliary norms.

Basic Conformal norm: — &[](t) = EY](t) + E§[](t), where,
ElvI(t) = /(152|51/)|2 +97)(1 =), &t) = /(@2(7941/))2 +u*(Ds))” + u’ VY * +47) ¢,

with ¢ a smooth cut-off function equal to 1 in the region u < %

The full conformal norm: E[p](t) = E](t) + E[0Y](t) + Eo[0*Y](¢).

We also make use of the partial conformal norms Ey[v](¢) + Eo[0s00] (t) + E[0240](t). The following
propositions are important to establish the relationship between the conformal energy Q[v](¢) and
conformal norm E[](t):

Proposition 6.1 Let ¢ be a function with support in the interior of the cone Cy and the metric H
satisfy the assumptions (5.113)- (5.117) on the time interval [0,t.]. Then for any t < t,

E[Y](1) S Qold](t). (6.196)

As a consequence, we also have

Eol](1) + Ela](t) + Eol07v](1) S QLYI(E). (6.197)

Proof: See section 6.1.

Proposition 6.2 Let ¢ be a solution of the wave equation () = 0 under the assumptions of the
Boundedness Theorem. Then for any t < t, the full conformal norm of ¥, E[Y](t) = EY](t) +
Eo[O](t) + E[0%Y](t) obeys the estimate

E[WI() S Elw(t) + Eol0)(t) + Eol07¥1(t) (6.198)

As a corollary of the last two propositions we have,

EWIE) < LYl (6.199)

Proof: See section 6.5.
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6.1 Preliminaries

We start with a Lemma in which we calculate the components of the modified deformation tensor
7 relative to an arbitrary null frame.

Lemma 6.1 Relative to an arbitrary null frame ey, e3,eq, A = 1,2, complementing the null pair
L = ey, L = e3, the modified deformation tensor © = X7 — 4tH has the following components:

Taa = — 20 knn, Taq = 4u(l — b 1) + (u? + u*)kyy, (6.200)
Taz = —8u(l —b7") — ’kyn, Tga = v (kan —na) +u*(na + kan), (6.201)
2
Taa = —2uk N, Tap = 2t(t — u)(try — ;)6AB — 2utrkSap + UQXAB + u’XaB.
(6.202)

K

Proof: The deformation tensor “ 7 evaluated on the vectors X,Y can be found from the formula

Er(X,Y) =< DxK,Y >+ < DyK,Y >=
X<KY>4+Y <K, X>—-<KDxY >—-<KDyX >.

Therefore, with the help of the structure equations (2.45)-(2.52)

Krga =2 < DyK,e4 >=2D4 < K, e4 > —2kyy < K, €4 >=
— 2D4(u?) + 2u%kn Ny = 20k,

with the last equality holding since eq(u) = 0.

Krga = < DyK,e3 > + < D3K, ey, >= —Dy(u?) — D3(u?) + v’knn + vk,

Kras =2 < D3K, e3 >= —2D3(u?) — 2u’kyn,

Krga=<D3K,es >+ < DaK, e3 >= —Da(u?) + u’na +u2§A +ulkay =
u’(na + kan) +u’€

since u = —u + 2t and es(u) = es(t) = 0.

K7T4A =<K D4K, €epq > + < DAK, €4 >= —DA(UZ) +U2QA — u2kAN = ’IJ,Q(QA — k'AN),

Ko =2 < DiK,eg >= QZXAB + uZXAB.

We now compute D3 (u?), D3(u?), and Dy(u?).

D3(u?) = —Dy(u)? + 2T (u?) = 4b 'u,
D3(u?) = 2uDs(—u + 2t) = —4b~'u + 4u(T — N)(t) = du(l - b7), (6.203)
D4 (u?) = 4u.
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Let us rewrite X7 taking into account (2.50)-(2.52), (6.203), and the identity u = —u + 2t.

Taa = =8t +4u(l — b1 + (u® + v kny,

(

Krga = —2u%kyn, K
Krgg = —8u(l — b ') —u?knn, “msa=u?(kay —na) +u*(na + kan),

K

Krgn = —2ukan, Tap = 2t(t — u)trxdap — 2u’trkéap + uZXAB + u*X aB-
The components Hzqy = —2 and H,4 = 1 are the only non zero components of the metric H in the
null frame. Subtracting 4¢H from the deformation tensor X7 we obtain the desired expression for

.
We next record the following integration by parts formulae.

Lemma 6.2 Let X be a vectorfield tangent to the hyperplane ;. Denote by V the covariant
derivative obtained by restricting D to Xy. Then for any smooth functions F,.G : ¥; — R

/ FX(G) = — / (X(F) + divX F)G. (6.204)
Et Et
In particular,
/ FN(@G) = — / (N(F) + tr0)G. (6.205)
3t >t
In addition, if V' is a vectorfield in TS, tangent to the surfaces S, then

/FcﬁvV = — /(WF + b 'YVbF) - V. (6.206)

P 3t

Proof: The Identity (6.204) follows easily once we choose geodesic coordinates in the neighborhood
of a given point xg so that h;(zy) = d;;, Oh(x) = 0, and divX = 9;X". To compute divN in (6.205)
we use the orthonormal frame e4, N, A = 1,2. Then divN =< ¥V, ,N,e4 >= trf. Finally, recall
that the metric A has the from h = b2du® + v4pdp?d¢®, where ¢* are local coordinates on the
surfaces S, see Lemma 5.1. As a consequence,

/F = /b(/ F)du, coarea formula, (6.207)

2,5 St,u
from which the identity (6.206) is now an obvious consequence.

We shall next make use of the above integration by parts formulae to prove Proposition 6.1.

Proof of Proposition 6.1: Define two additional vectorfields S and S.

1 1
S = glues+ueg), S =g(ues — ues). (6.208)
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Then since u = —u +2t,e3=0; — N, es = 0; + N

(0 = H{ut 10, =S — (- (e — ) = S~ (= W),

1 t 12
to, = S — :
b 2(63+64) t—u t—u

Therefore, with the help of the identities (6.205), and N () =0, N(u) = —b~!

(n=1) [ wtos =n - 1) [(6(50) - (- N @)

3t

(0= 1) [wlsw)+ "5 [ttt - w + 50

1 ¢2

(n=1) [ vtds ~n 1) / (0 (59) ~

2t —u
3t

N(@*)

=(n—1) /w— Sv) + n_I/(t_tu)2(tr9(t—u)—bl)wQ.

The second fundamental form 6 45 = x4 + kap. According to the Asymptotics Theorem 5.1, with
n =3, we have |try — 2= < A7 k[ < A% and |b— 1| S A7) Therefore,

=1 [wiow =n—1 [iso)+ "2 [aron ey,

3t ¢

(n_ 1)/1/)258,51/) e 1/( t_tu(ﬁw) + (TL— 1)2(n—2) / (t _t2u)2(1+0()\d+a+6))1/)2‘

Since

Q(K, d)[¢] =

(W (Dav))” + u*(Ds))” + (w + u?)[V*) + (n— 1)

| =

and

1 1

1@ (Day)” + (D)) = S((SY)* + (S9)%)
we can introduce positive constants A, B : A+ B = n — 1 such that

1

QI = 5 [ {((50)7 +240(5%) + (an - 1+ O 1197

¢

+ (807 + 280 (80) + (Bl -2+ O #49) Eu?) (2 + )9 |

For any values of A, B such that 1 < A <n —1and 0 < B <n — 2 it is possible to find positive
constants c¢q, ¢s such that

(S¥)* +24¢(Sy) + (An — 1)¢p* > a1 ((S¥)* + ¢7),

(S07 + 280 (80) + Blu— )t 2 (807 + -y
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The above constraints on A and B can be satisfied for any n > 3. Therefore, since A~%tot¢ ig
arbitrarily small for all sufficiently large values of A\, we conclude that

Qul() 2 [ (w(Duw? +w*(Dat)? + (u + ) [FUP + 7).

>t

It remains to note that u = —u + 2t =t + s > t.

The following Lemma will be very useful throughout this section

Lemma 6.3 Let V,w : R> — R be smooth functions defined in the region Ext, = {z :

r={z: 7<s< 7}
with 7: 1 <7 <X Foranyp: 1< p < oo,
1
/ Viw? < T sup |V|p sup ||V||L2 Sra) (||Y7w||L2 —2||¢||%2( r))
Ext, 0<u<2t T T
Ext, (6.209)
2_
< 7572 sup |V|P sup ||V||L2 5, &0 [w](7).

Extr 0<u< 3

Remark: The best rate of decay in T in the above lemma is attained for large values of p. We

shall apply Lemma 6.3 in situations when all the corresponding norms of V' are bounded by powers
of A. Thus choosing p to be sufficiently large we can write (6.209) in the simplified form

/V2w2§72)\6 sup ||V||%2(Sr,u)50[w](7_)' (6.210)

0<u<3r
FEaxt, -

Proof: Start with the coarea formula (6.207), [ VZw? =

( [ V*w?)du. and apply to it the

Emtr Srou

Mﬂ%\‘
o

Hélder inequality for some p > 1, 1 s+ ;, =1,

/V2 2 < ( /|V|2” )7 ( /|w|2p )7, (6.211)

Recall® the isoperimetric inequality (5.138), f 1f1?)2

-

< [ (|Vf|+tx0]|f]). Substituting f = f?

T, U

and applying Holder inequality once more we obtam forany 1 < p < o0

Cf 1 s [ 11 fsl 1) 5 (6.212)
S‘r,u S-,—,u

59stated in Theorem 5.2
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Apply (6.212) to the function w in (6.211).

[ v s / VI / Vol -+ ead] 5 o) 5
L l
S sup |V /|V| / p/|vw|2+|tre| wf).

Note that p;;l =p 1| [ 1 <s*<7% and trf < 3s . Therefore,

T,u

2 2 1
[ vt s ot swVitsa ([ VPP [ (vl + )

FExt, Srou Eaxt,

as desired.
We now formulate a crucial lemma, based on integration by parts.

Lemma 6.4 Let v be a solution of the equation O pp = F and G a function verifying the following
properties:

|G Leo(s,0) + P3G 25,0y + [IVG | L2s,.0) < T2AF (6.213)

Then, for 1 <ty <t < A and a cut-off function ¢ equal to 1 in the region s = 7 —u > 3, we have

/ G DaDsih C = / GFHC+ A sup E[](r). (6.214)
TE[to,t]
to,t)x R’ to,t]x R’ ’
In addition,
| / G Dy (| < A sup E[](7). (6.215)
TE[to,t]
lto,t]x R ’
Proof: We shall use the convention [ = [ +dethdzdr. Recall that 9,v/deth

to,t] xR to,t]x R’
Tr kv/det h, where Trk = h¥k;;. We also have e3 = T — N = 9. Integrating by parts first with
respect to 0; and also with respect to N, with the help of Lemma 6.2, we obtain

/ G Dyt Dats € = / G (DsDa) ¢
(to,t]x R’ to,t]x R

(-Ds(GQ) + (w0~ eRG ) Dav i+ [ GuDas¢ ~ [ Gupaic.
R =

to,t] X

+
[
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Using the estimates |G(7)| < 72X, |D((7)| < 571, [trf] < 2, and |k| < A7¢ we can easily take
care of the boundary terms, the term involving D3((), as well as the term involving (trf — Trk).
We derive the formula:

/ GD3YyDyp ( = — / DsGDyptp ( — / GDsDy ¢ + lo.t., (6.216)
to,]x R’ to,] xR’ to,]x R’

where the lower order terms l.o.t. can be estimated by [Lo.t.| < A™sup,cp, 4 &o[¢](T). We shall
show in fact that the remaining terms on the right hand side are also of the form of lower order
terms.

1) Estimate for [ D3GDap1p(: First apply Cauchy-Schwartz to write,
to,t]xR*

| / DaG Dyt (| < / FIDeG ol E (7).
to,t] xR’ [to,1]

We apply®® Lemma 6.3 for V = (D3G and w = 1) to obtain,

IDsG ¥ Cllrae,) < 772X sup || DsGllnas, )& [WI(T) < ATHEF [V](7)

3
0<u< 3

where we have used the hypothesis ||D3G|| (s, ) < 7°A7%"¢ of Lemma 6.4. Consequently,

| [ DueDac] £ s afulln)

TG[to,t}
to,t]xR®

as desired.

2) Estimate for [ G (DsDay)tp(: We shall use now the fact that ¢ is a solution of the
to,t]x R

wave equation. This allows us to express the D3D, derivative of ¢ in terms of angular derivatives,

the right hand-side F', and lower order terms. Expressed relative to a null frame the wave operator

(,1) takes the form

Ont = H* 5 = —tha3 + .4,

where ..., = ej(ei(1)) — Deej(1). We use the Ricci formulas: Dges = 2naea + kynes, and
Dpea = Ypea + %XABeg + %XAB&; to derive

1 1
Onp = —DgDatp + LJap + 204V 40p + ?UXD:&T/) + (5“& + knn)Dat. (6.217)

60We apply in fact the Remark following Lemma, 6.3.
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As a result of this calculation
[ epspwuc= [ Guc(o+ g+ junD (6.218)
[to.1]x R’ [to,f)xR”
+ (%t@ + kyn)Datp — F).
Take now into account the estimates || + |k +77%|G| < A™*"¢ and |trx| + |trx(s)| < 2. Note also

that, for 0 < u < %{, the values of s = 7 — u lie in the interval s € [%,7]. Using these we easily
derive,

1 _
| [ G Gt kenPaw) e <320 [ @D+ T+ o)
to,t]x R to,t]x R
<xme [ e,
[to,t}

as desired. The terms with D31 and /A1) have to be once more integrated by parts.

/ GtryDs i ( = % / (—D;;,(Gtrx() + (trf — Trlc)GC)trx(L/))2
to,t]x R to,t]x R’
1 1
+3 [ Guntwrc -5 [ Guwye
¢ DI

Clearly, |Gtry ((7)] < A1 and |try(trf — Tr k)G (| < A~%*¢. Thus,

1 1

| / GtrxDsyp (| < 5 / |Ds(G trx Ollzes,) €5 [W](T) +A7° S?p](‘/’o[w](ﬂ-
TE t07t

to,t]x R [to.t]

We shall now apply Lemma 6.3 to the remaining integral on the right-hand side with V' = D3 (G try ()
and w = ¢. In view of the Asymptotics Theorem 5.1 we have the estimate ||Ds(trx — 2)||r2(s,.) <

A~0F¢. Using our assumptions on G and the estimates |D3s| = |1—2a"'| < 2, |D¢| < 5771, we easily
conclude on any surface Sy, with 0 <u < 2 and 1 < 7 < t,, ||Ds(G trx ()||r2(s,.) < A7 e Using

Lemma 6.3 we infer that | Ds(G trx ()Y 2=,y S )\€+§)\“_a50% [¥](T) < )\_680% [4](7), and therefore

| / GreDybu (| <7 sw &IUI0).
TE|to,t
(to,t]x R’

as desired.
Finally we estimate the last term in (6.1) by integration by parts as follows:

| camvc—— [ cwr- [ vwe60v.w0
to,t]x R’ to,t]x R’ to,t]x R
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The first integral can be easily estimated by A™*"\*sup, ¢y, n Eo[Y](T) < A7 sup,¢p, g Eol], as
desired. To estimate the second we use Lemma 6.3 once more.

[ r0GOTwul < [ 06 vl & )

[to,t]x R’ 0,8
< /72 sup ([0 V4 (0G O)lrxs,.) sup Eolw](7).

[to,t] ueld ] relte]

It thus suffices to show that 772 sup,c( 5 167V, (0G O li2(s,.) < A7 This follows trivially

from the assumptions®! of Lemma 6.4 together with the estimates [b] < 2, |[Vb| < A7%*€ of the
Asymptotics Theorem 5.1, and |V¢| < 57 1. Thus, back to (6.1), we infer that

| / GDsDayp | < A7 sup &[y](r)

TE [to,t]
to,t]xR®

as desired.

The proof of the second part of Lemma 6.4, estimate (6.215), is much easier. It suffices to
observe that Dgiy ) = %D3(1/)2) and use the integration by parts argument along the lines of the
proof of (6.214).

This ends the proof of Lemma 6.4.

6.2 Proof of Theorem 6.1; Estimates for ¢:

The goal of this section is to prove the estimate (6.193) of Theorem 6.1. Let ) be a solution of the
wave equation [,1) = 0 with initial data supported in the geodesic ball B% (0) at time to > 1. Then
1 verifies the conformal identity (6.191)

N

Q) = Qi) 5 [ (@ - 20°0u(0) dr = Qi) -5 [ I

to,t)x R’ to,t)x R’
In view of Proposition®? 6.1 it suffices to prove the following fact:

Proposition 6.3 Under the assumptions of the Boundedness Theorem, for all t € [to,t.], we have:

o

lto,t]x R’

< A€ sup ElY)(r). (6.219)

TEto,t]

'we have |G| + [|VG||12(s,.) < A~ "Fer.
62 accordlng to which & [¢]( ) < Qo[v](2)
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More generally, the following identity holds for a solution of the wave equation Ly = F':

/ (@0 — 20°00(r)) =2 / (7 — u)(try — %)F@/) G s Elulr). (6.220
to,t]x R’ to,t]x R’ v

T

Here, C 1s a cut-off function equal to 1 in the region described by the condition s > 5 and vanishing
for s < 7.

Proof: _We start by observing that O,(t) = —ﬁ&t(\/det h) = _%hijathij = _%hijkij, Since
|k] < A% we have

[ PomlEa T s gl

TE[to,t}

(to,t]x R’

It thus remains to estimate the term [ Q*’[¢]7,5. Decomposing relative to a null frame,
(to,t]x R’

making use of (6.188)-(6.190), we find®,

/ Q™ (Y] Tas = / <%7733(D4¢)2 + %7744(7)37/))2 + %7_?34|Y77/)|2

[to,] xR to,t]x R
— TaaD3YY ) — T3aDapV 400 + Tap YV 0V gtb + trﬁ(%pswﬂﬂ/} - |Y7¢|2)> :

Recall the expressions (6.200)-(6.202) for the components of the deformation tensor 7. With the
help of the estimates for the frame coefficients stated in the Asymptotics Theorem, and taking into
account that u < u and 7 < u < 27 we have

|Taa| S A2, Taa) S A9 4 A2, (6.221)
ITss] S (AT L AP, Jwsa| S AT, (6.222)
|Taal S A2, Tapl S A FwP, (6.223)

Since E[Y)(1) = [ (u*(Darp)? + u*(Dsep)® + u?|V)|* + ¢p?) it easily follows that

s,
| / QY [YTas| S / AT ATDEW(T) + 2 / = Dyt Dyt
to,t]x R (to,t]x R’ to,t]x R
where, = = 7(1 — u)(try — 2).

The last term presents difficulties; indeed since we cannot do any better than 2| < A~ ¢y?

the straightforward estimate, | []ZDgt) Datp| < A7 [ (u*(D3¢)* 4 u?(D4t))?), is not convenient
Sa s,

63Recall that trm = E2A:1 TaA is the trace relative to the surfaces Sy,
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as [ u?(Ds)? £ E[Y](r). Therefore, this term requires special treatment; Lemma 6.4 was proved
s,

for this reason. Using it we derive the estimate

| / EDsyDap | < A sup E[)(7), (6.224)

TE[to,t}
to,t)x R
and thus end the proof of Proposition 6.3.

We break the integral on the left into the interior and exterior parts parts as follows:

[ zowpw— [ =pwpwi-g+ [ =Dwpawc
to,t]x R (to,t]x R’ (to,t]x R’
where as before ¢ is a cut-off function equal to 1 in the region s > 7. The first integral can be
estimated by the interior part of the conformal norm &E[¢)].

/ EDsT/)Dzlw(l — C) < )\*ﬁ+e / T2|8L/)|2(1 o C) < )\7&+a+e sup g(z)[@/)](’/')
to,t]x R’ o xR T€[to,t]

We concentrate on the remaining exterior part. Note®® that the function = = 7(7 — u)(try — %)
verifies the estimate ||Z[10e(s,.) + [|PE] 2(s,.) < A0T72

We can therefore apply Lemma 6.4 to end the proof of the estimate (6.224). Indeed, since =
satisfies the conditions of Lemma 6.4 and [, = 0, we conclude that

/ = DguDath ¢ < A sup E[](7).

TE [to,t]
lto,t]x R

as desired.

6.3 Proof of Theorem 6.1; Estimates for 0.y

We shall now try to establish the estimate (6.194) of the Boundedness Theorem 6.1.

Notation: Let IT be an arbitrary tensor (say of rank 2) on R*. We define the absolute value |TI|
by setting |I1] = 3_, 5 |llag|, where Ilag are the components of I relative to the standard coordinates

5. Observe that [IT| ~ Y7, 5 [T1*?], since the metric H is bounded.

We also use notation i xI1 = HagXﬂ to denote the contraction of the tensor II with a vectorfield X .
In particular, for the tensor D%y of the second covariant derivatives of a function 1) we have i xD?1)
is a co-vector (ixD*), = DiﬁwXﬂ Throughout the section we shall use the following:

64This easily follows from the Asymptotics Theorem 5.1 and the trivial bound |D7| + |Du| < 10.
65Relative to which we have our assumptions on the metric H
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Estimates for H: We recall the estimates for the metric H following from the conditions (5.113)-
(5.117) and the Asymptotics Theorem.

10H | g

[0,t4]

I <|32H| + (8H)2) l2(si,) <A (6.226)

e SN @), g SATHY

0,618 ~ ’

(6.225)

In addition, as a consequence of (6.226) and the Remark following Lemma 6.3 we also have for any
T € [0,t,]

T||(|10°H| + (0H)*)0v | r2s,) < ATHER (9] (7). (6.227)

We now state a useful lemma concerning the conformal norm &y[0v)].

Lemma 6.5 The following bound holds true for any t € [0,t,]:

2
[ D 0P + 3 aDP o) + D3 + 06 < 460l00]t) (6.225)
A=1

"

Remark: Lemma 6.5 implies that D3g is the only “bad” second covariant derivative of 1. Observe
also that the expression (6.228) does not dpend on the particular choice of the frame e on S,.

Proof: The proof follows almost immediately from the following observation:

&[09](1) Z/IfZ(IDzL(W)I2 +[V(09)*) +u’[Ds(09)[” + [09]* >

3¢
1 _ :
3 [ EUD? 0P+ 3 Do oP) + Dl + 0wl ~ [ #ITPlou:
A
Yt 3t

It only remains to note that the Cristoffel symbols " obey the estimate |I'| < 4|0H| < A~%"¢. Thus,
J TP < [ov]* < &[09](1)-

pof ¢
Our next task is to derive an equation for d;1). Since O 1 = 0 it follows that O ,0pp = [ O p, Of]1).
Since 0, is a special coordinate vectorfield we can easily calculate in coordinates,
[0, 0] = [0 + h90,0; + Tr ko, + I'%0;,0,) = —0,h70,0; — 0,(Tr k)0, — 0,(I')0;.  (6.229)
Therefore,
Proposition 6.4 The function 0y) verifies the inhomogeneous wave equation,
O 40 = Fgy = —0,h70,0;¢0 — 0,(Trk) b — 0,(TL)900 = WPth.05 + V0y1). (6.230)

Here W denotes a spacetime 2-tensor verifying % |W| < |0H|. Similarly, V denotes a spacetime
vector whose components, in coordinates, verify |V| < |0*H| + |0H 2.

S Here, in coordinates, |W| =3, 5 |Was| and [0H| =Y, 5, 10, Hapl. In fact, in this case, W*# = -9, H*”

aBy
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As a solution of the wave equation (6.230) function d;¢) verifies the conformal identity®” (6.191)

QowI(t) =Quowl(te) ~ 5 [ (@ [0wiras — 20 Du(r)) dr
to,t]x R’

1
+ [ K@) +2rownFydr= Qi) -3 [ B
(to,t]x R’ to,f] xR

In view of Propositions 6.1 and 6.2 in order to establish the estimate (6.194) of Theorem 6.1 it
suffices to prove the following

Proposition 6.5 Under assumptions of the Boundedness Theorem the following estimates hold for
all t € [toy,t.] and Opp solution of the equation (6.230):

[ B s Elouln) + sup Elullr) (6:231)

TE[to,t] TE[to,t]
to,]x R’

Proof: We decompose Iy = Q*?[0,¢]705 — 2(0;t0)? O (1) — 212 with the term Iy = (K(@tv,/)) +

27’6,51/)) Fy. In view of the second part of Proposition 6.3 with the function d;% replacing v, we
have

/ Q" (007 as — 2(000)° O 4(1) =2 / EFHop(+A° Sl[lp } Eolow](T)
TElo,t
(to,t]x R’ to,t]x R

with = = 7(7 — u)(trx — 2). Thus to establish Proposition 6.5 it only remains to show that for

J = (E 3t1/)C — K(atw) — 27 8tw)F(t) we have

|/)HSPHWQWWH&mMWW-

TE[to,t] TE[to,t]
to,t]x R’

We now break the term Fjy into two parts Fyy = V1) + WD2 40 = Fiy + F;) according to
(6.230). We then also have a corresponding decomposition J = J' + J2.
Estimate for J': The term J' = (29, (— K (0y¢)) —27 8t1/))Fé) contains the part of Fi;) involving

only the first derivatives of 1.
Observe that it follows from a pointwise inequality |Fj,y| < (|0°H|+|0H|?)|0+| and (6.225) that

|Fiy] S A77079|0¢|. Recall also the estimate |Z| < A7"Fr? < 7. Write

T = (2=21)F}00) ¢ — (K(0) + 27 0up(1 — () Fly = Ji — Jy

6THere, Q*°[0;¢)] is the energy-momentum tensor @) associated to 0y1).
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We have
2 1
[ s [(iemsiompiov) ¢ < [ (o HI+ 9HP)00 s, 51001,
(to,t]x R’ [to,t] [to,t]
It then immediately follows from (6.227) that

/ [TE < ATt sup E[0P)(r) < A sup &[A](7).

TEto,t] TEto,t]
(to,t]x R’

To treat the remaining term .JJ we break it into its interior and exterior parts
Jy = (u*Dy0py) + u2D38tw)Fé) +27 9pp) (1 — ¢) + (u?DyOyih + u2D36t1/))Fé)) C=Jy + )¢

We first estimate with the help of (6.225)

[ ts [ el rpel(a s + pEPs| - O) S
to,]x R’ lto,t] xR’

A [ 4 v ) (- ) < X0 sup Eloul() + sup Ealul(r)).

TE[to,t] TE[to,t]
(to,t]x R’

The exterior integral of J3¢ can be treated again with the help of the estimate (6.227).

[ mis [ ([ wmowr e oowr)

[tO ,t] % R3 [to ,t] 3r

TI(10"H|* + [0H|*) 0 C|l2(s,) < A7 sup &[0¢](7).

TE[to,t]

We shall now estimate the remaining error term containing .J2.

Estimate for J?: We consider the remaining part of the error term:

[ 2= [ Eawc-xow -2 onr,
to,t)x R’ to,t]x R’

According to (6.234) the term Fj) = WED? s1p and W] < [0H] S A% We have already noted in

(67
Lemma 6.5 that all second covariant derivatives i, D?1) and i4D*)) containing at least one derivative
in the directions e4 or ey, A = 1,2 exhibit the best decay, i.e.,

/ 2([iaD*| + 3 iaD[2) S Eoldw](r).
S, A

It is then a simple exercise to check that the part of F; (%) corresponding to such covariant derivatives
contributes the term with the bound A\=*"*sup, ., 4 E[0Y](7) to the estimate for the error term.
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Therefore, it only suffices to consider the term W33D3;1). Furthermore, since e3 = —e, + 27, and
D3T = kanes + knyN we can assume that F(%) = W33D30,1). We write

[ = [ (E-2WDdwa ¢ - i DauW D<)

(to,t]x R’ (to,t]x R’
— / u?D 40 W3B D30, (1 — () — / D30 pWD30) = / (J2¢ — J — J2)
to,t]x R (to,t]x R’ (to,t]x R’

The estimate for J3 is trivial, since it follows from the estimate |W| < A™% that

/ 2] S A4 sup E[OE](r) < A= sup Eo0u](r).

TE[to,t] TE[to,t]
lto,t]x R’

The interior term J produces the estimate

[ oAt [ eeera -0 <0 s slovlr).
TE[to,t]

to,t]x R’ to,t]x R
It remains to address the exterior term JZ¢. We split
Tt = (2= 2r)W* D50 0 ¢ — W’ Dadp W D300 ¢ = j1 — o

The integral [ j; will be estimated with the help of (6.215) of Lemma 6.4. We take G =
lto,t]x R

7(2 — 27) W33 and replace ¢ by ;%) in Lemma 6.4. Then, provided we can verify the conditions of

Lemma 6.4 for thus chosen G, we obtain from (6.215)

[ Al s s,
TG[to,t}
to,t]x R’
The second term j is reduced to yet another term with the help of identity (6.214) of Lemma 6.4.

We take G = u?WW3? and replace ¢ by 9,1 observing that 0,0 verifies the equation 0,0, = Fyy.
Thus, if G obeys the conditions of Lemma 6.4, we have

/ j» = / WWSF 0+ X s El(r) = / AT s £l
TE[to,t TEto,t

(to,t]x R’ (to,t]x R’ to,t]x R

with j3 = w’W33F0,1) (. Before tackling the last error term js let us verify that the functions
7(2 —27) W33 and u?W?*3 obey the conditions of Lemma 6.4 in the region u € [0, 27]. We need the
following properties:

1) [r(E - 2r) W |+ [u2WP (| < A
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2) [ Ds(r(E = 21) W ()l 12s,..) + IIV(T(E = 20) W3 )l ags, .y < A7
3)  [|Ds(u?W3 ) || i2gs...) + V(@3B Q)| 125,y < A0FeT2

The first property easily follows from the fact that [W| < [0H| < A7%, |Z] < A7%"r% and u <
27. The other two are the consequences of the pointwise bounds mentioned above, the already
established estimates for Z: ||DsZ||12(s,..)+ || VEl| £2(s,.) < A7%7?, the trivial bounds |D7|+|Du| <
10, |D¢| < 577!, and the following estimates for the derivatives of W33, First, W3 = W4,
Furthermore, we have from the frame equations

D3(Waa) = DsWaa + 204 Waa + knnyWaa
YV sWaa) = DaWaa + xa8Wpa — kanWaa

Thus, since W is essentially ® the tensor of the first derivatives of the metric H, both of the Ds
and ¥ derivatives are bounded pointwise by |0°H| + s~ '|0H|. Hence, the Asymptotics Theorem
implies that ||Ds(Waa)llr2(s,.) + IVONVaa)ll2(s,..) < A7, Properties 1) - 3) allow us to apply
Lemma 6.4 to the integrals of j; and js.

The remaining term is f J3 = f g2W33F(t) o C.
to,t]x R (to,t]x R’

Remark: Note that we have already obtained the estimate for the integral of 7,

T

[ a1l [ E-ewepawan) < a s &[ov](7)
TE|to,t
to,t)x R’ to,t]x R’

Combining this with the estimates for the integral of J' we can conclude that we have, in fact,
already established the estimate

[ E-Eyavcl<x s &fovln) (6.232)

TE [to ,t}
(to,t]x R’

s From the point of view of the asymptotic behavior the function u?>WW33 is slightly “better” than
= — 271 since )
|= — 27| < 37, W33 < AP

IDE=27)exs,y) 700 ID@W)leegs,.) S AT

The Remark above implies that we can repeat the arguments that led to the estimate (6.232) with
W3 in place of = — 27 to show that | [ js| < A7 sup, ¢, 4 £0[0¥](7), thus completing the

(to,t]x R’
proof of Proposition 6.5.

Remark The results of the computation above can be summarized in a slightly more abstract form
which will prove to be useful in the next section.

68Recall that in this case W8 = —9,HP
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Assume that Oy verifies the equation 0,0 = F and let Fiyy be as in (6.230). Then the following
identity holds true:

[ zrowc— [ @ ramFy == [ WS (E - Rya

to,t] xR (to,t]x R’ lto,t]x R (6.233)
+A7¢( sup &[OY](T) + sup E[Y](T)).
TEto,t] TE[to,t]

Here 2 = 7(1 — u)(trx — 2) and the tensor W* = —9,H*”.

6.4 Proof of Theorem 6.1; Estimates for 921

Differentiating (6.230) and commuting [J;, with d; we derive the equation for 971).
0,079 = Fluy = F(ltt) + F(Qtt)v
F} = —2(2kY9,0;00) + 0, (trk) 0% 4 0,(T%)9;01)), (6.234)
Fjy = —(20,(k")0,0;¢) + 0 (trk) 0y + 07 (1],)0;40).

The conformal identity for 97¢ has the form Q[07v](t) = Q[97¢](ty) + [ I3 with
to,t]x R’

I3 = _%Qaﬁ[aﬁ/}]ﬂaﬁ + (07¢)?0n(7) + (K (07¢) 4 21074) Fu.-

Proposition 6.6 Under the assumptions of the Boundedness Theorem we have the following esti-
mate for all t € [ty, t.]:

| / I3] < A™¢( sup &[0*9)(1) + sup &|0Y](1) + sup E[](T)). (6.235)

TG[to,t} TG[to,t} TE[to,t]
to,t]x R’

The Propositions 6.1 and 6.2 imply that Proposition 6.6 completes the proof of Theorem 6.1 and,
as a result, the proof of the Boundedness Theorem.

Proof: According to the second part of Proposition 6.3 with 97t instead of v, we have
1 - —€
/ =5 QY07 Fap + (0)* T a(r) = = / = Fupd C+ X7 sup &[0Y)(7) (6:230)
TE|to,t

to,t)x R’ to,t]x R’

Observe that in the decomposition Fiyy = Fét) + F(Ztt) the term F(ltt) = 2F; from the previous
section with 0, replacing ¢). Therefore, we are in a situation described by the last Remark of the
previous section with 9,1 instead of ¢. We have (0,02 = Flyy) and

[ =Rudvc- [ @) doF, —- [ WS
(to,t]x R’ lto,t]x R lto,t]x R
+A7¢( sup &[0,0¢](T) + sup E[0w](T))

TEto,t] TEto,t]
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We are left with estimating the term

/ (EC + W ( — 27) Fy Ofp — / (u*Da07 ) + u*Dsdi1p) Fiyy-
to,t]x R’ to,t]x R’

We now act by brute force. First, since |Z| + [W| < A %72 < 7, we can bound the expression
above by

/ T Eaplles. sup &7 [07¢](r) (6.237)

[to,t} Te[to,t}

The function F(Qtt) can be schematically written in the form F(Qtt) = ?H0*Y + O3H ). In the
interior all derivatives multiplied by the weight 7 are bounded by the corresponding conformal
norm. Therefore, using the bounds [?H| < A7 (7% and |0*H| < A~%20-9) following from the
assumptions on the metric H, we obtain

/ TIFGy (1= Ollzas,) S / (Y‘_"“*‘”IIT (L= Ollzxs,) + A 2T op(l - <)||L2(2T))

[to,t] [to,t]

A0 (sup E2[0v](r) + sup E2[¥](7))

TEto,t] TEto,t]
The exterior part is treated as follows. We have
[ PR PCs [P Hrer + 0 H o)
=, s,

Lemma 6.3 yields
/7’2|82H|2|821/)|2 S )\—2@+2650|:82,l/)](7_)

=,
since [ |9?H|? < A\728+2€ and |02H| S A (9,
Sru
In addition, from (5.125) and (5.115) we also have [ |®H|?> < A\720-2(1-9+2¢ and |93H| <

S
A~=2(1=0)  Thus by Lemma 6.3

/T2|83H|2|8'l/)|2 < )\—26/—2(1—@)‘1‘680[81/)](7_)

S,

Taking the square root and integrating in time the last 2 inequalities we obtain

/ T1F2y Cllizm,y < A sup E20%0)() + sup E2(0](r))

TE[to,t] TE[to,t]
[tO 7t]
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6.5 Proof of Proposition 6.2

We now address the issue of the control of the full conformal norm &£[¢] of a solution of the
wave equation [,th = 0 by the partial conformal norm Ey[¢)] + &[0,¢0] + E[0?4]. Intuitively, this
statement is almost obvious since the spatial derivatives of ¢ can be controlled from the elliptic
equation A, = 921+ lower order terms. Let us recall the precise statement of Proposition 6.2.

Proposition 6.7 Let

Elul(t) = [ EADF + V6P) +u?Davl + [of

3t

Recall that E[Y](t) = E](t) + E[0Y](t) + E[0*](t) is the full conformal energy of ¢. If ¢ is
a solution of the wave equation Iy = 0 and the assumptions of the Boundedness Theorem are
verified, then for any t <t,

EWI() S Elw(t) + Eola)(t) + Eol07¥1(t) (6.238)

Proof: In what follows we shall say that a term is a Lo.t.; (l.o.t.p) % if it can be estimated
by c&¢] + €E[Y] (respectively ¢ (E[y] + Eo[0Y]) + €E[]) with some positive constant ¢ and a
sufficiently small positive €. To prove Proposition 6.7 it clearly suffices to establish that

Eoloy] < E[Y](t) + EolD)(t) + EoldFY)(t) + Lo.ty,
E0[0%0] < EoU](1) + LB (t) + Eo[020] (1) + Lo.ts.

Recall that the covariant derivative V is the restriction of the covariant derivative D to ;. We
formulate a useful commutation Lemma which can be proved by a tedious application of the Codazzi
equation and is very similar to the proof of Lemma 2.3 of Chapter 2. We also include a simple
integration by parts formula. Recall that for a tensor U tangent to ¥, the covariant derivatives
V3.4U denote the projections of the space-time derivatives D3 4U to X;.

Lemma 6.6 Let U; be an m-covariant tensor tangent to ¥y. Then in the frame N,ea, A= 1,2 on
2y

VaVaUr = VaVaUr = =xapVpUr + kanVnUr + Y _(krnkas = kr,akon + Ry, gaa)Up, .
p
V4VNUr = VNV4Up = naVaUr + knn VU + Z Ri,7anUy, j 1,
p
VsValUr = VaValUr = =X, VUr + kanVnUr + > (kryaksn — ki,nkas +Ri,us)Up, oo
p
VsVNnUr — VNVaUr = (2kany —na)VaUr + knn VU + Z Ri,ss8Ur, i1

p

(6.239)

69ower order term
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We also have that for any vectorfield X tangent to to 3,

VxValr = VaVxUr =Y Riysxaly, jo.- (6.240)

p

Here, R is the curvature of the covariant derivative V on ¥,. In addition, let e; be a frame on ¥,
and let h;; = h(e;, e;). Then for any scalar function U and any co-vectorfield V; tangent to ¥, the
following formula of integration by parts holds true:

/ZhijViUV} = —/ZhijUViV}. (6.241)
SRR SRR

Estimates for £[0¢y]: Clearly we only need to consider the spatial derivatives V. In this section
we shall show that

E[VY(t) < Ef](t) + E[0u](t) + E[02)(t) + Lo.ty
Note that it suffices to consider only the exterior part of the conformal norm
&0 = [ (PIDATOP + [FT6)7) + DoV + [V6F) ¢
3t

with a cut-off function ( equal to 1 in the region s > % This can be explained as follows. The
interior part of the norm E[V](t) is simply equivalent to the weighted H' norm of V).

&V ~ [T + Ve - ),

Integrate by parts in the first term relative to the standard spatial derivatives 0; and note that the
terms where the derivatives falls on the cut-off function (1 — () are of the type

/ﬁawa(aiw)aic <! / v — &) + €/t2|a(a,-¢)|2(1 _ &) < e [H](t) + Lot
m Yt m
where C is a cut-off function with a slightly larger support. Thus
EIVY)(t) < / 200 DAY (1 =€) + 26 "E[i](t) + Lovt.1.
3t

Since 1 verifies the wave equation, we have Ay = 929 + (0H)9, where (0H )01 schematically
denotes the term containing the first derivatives of the metric H and function . Then

V(1) < / 20w 0(OHOW) (1 — ) + Eo[020] + 2 Eo[](8) + Lotr.

pP
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Since by the assumptions on the metric [0H| < A~ and [0?H| < A% (179 we obtain
ELVY(t) < € 1E[0H)] + 26 TE[](t) + Lo.t.y.

In order to simplify the exposition we shall only treat the [ ¢*|D4(V)|*( part of the exterior

3t
conformal norm E§[V](t). Using the fact that V40; = eﬂﬂjal, where T are the Cristoffel symbols
of the metric A on the slice ¥;, and the bound |T| < A~%, we have

/t2|D4(V1/))|2 = /chiijﬂ/) VaVih ¢ + Loty
P 3t
Here we work in the standard coordinates x1,..,x3 on ;. Commuting the covariant derivatives
/tQh,ijViV4z/) V4v]’¢)§ + l.O.tl.
3¢
Integration by parts yields
— / 2hIN ) ViV 4V 10 ¢ + € &[] (t) + Loty
3t

The expression above does not depend on the choice of the frame on ;. Hence, we take an
orthonormal frame N,e,, A = 1,2 and commute V; with V4. These commutators are completely
described in Lemma 6.6. Its analysis shows that the “worst” possible term produced is of the type
s~1V. Since we work in the exterior region we have s > %, and thus obtain

- / PV 41 Va(Ayth) € + 26 Eoftb](#) + Lot

"

Again, since 1) verifies (p¢) = 0, we have A1) = 029 + (0H)(9v). The same argument as in the
interior case then produces the bound

EolOFYI(t) + e Eo[¥](t) + Loty

Estimates for £,[0%¢]: Again the more difficult part is the exterior norm
0010 = [ (PP + IV(00)F + v Da(@0)) ¢
3t

There are 2 possible cases. If the both derivatives in 0% are spatial, then choosing again the term
D4(0?)) we have

/t2|D4(v2¢)|2§ = /t2|V4V21/)|2C+1.0.t.2 = /tQViVNWVNNﬂ/)(+1.o.t.2,

Yt " 3t

78



where the last identity follows from the commutation formula (6.239) with an orthonormal frame
e; = N,es, A =1,2. Integration by parts according to Lemma 6.6 and another commutation with
V4 yields
— / 2VaVith VaV, Vi Vit C 4+ 1o.t.o.
3t

The commutation between V} and V; produces the curvature term D4Ry V). The curvature
obeys a pointwise estimate |R| < A7%~(1=%) and its covariant derivative |[V4R| < A7¢"2(1=%) Hence,
after an additional commutation of V4 and Vi, we obtain

— / 2VaVith Vi Va4V Vi C + 1o.t.o.

3¢

Another integration by parts and commutation gives

/t2|v4(Ah¢)|2§+l.o.t.2.

3¢

Using the fact that A, = 929 + (OH)(0v) the estimate can be finished as in the end of the
previous section.

The second case is when we have a mixed derivative 9,Viy. Again the most difficult term is

[ t2|D4(8:V)|? C. Since 9; = e3 + N and the term with N falls into a category that has just been

3t

treated, it suffices to consider [ ¢*|D4D3(V))|? (. Note that the expression [, (V) can be written
3t

relative to a null frame in the form 7

O,V = —=D3D4 (V) + A(VY) + 204V (V) + %trng,(VL/)) + (%trz + kyn)Da(V).

and that O,(Vy) = (0°H)(0¢) + (0H)(0?H) if ¢ verifies the wave equation. Hence, using the
estimates for the Ricci coefficients |n| + |try — 2| + |try — 2| < A7%"€ and [k] + [0H| < A%,
02H| < A7 (1=9) we obtain

/t2|4A(Vw)|2 ¢+ Loty
¢

The expression under the integral sign above is clearly dominated by |V(V?%)[2. Thus the case of
a mixed derivative is reduced to the situation with 2 spatial derivatives considered above.

gee (6.217)
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7 Proof of Theorem (B)

As we have already observed, Theorem (B) is a consequence of the Boundedness Theorem 3.1, the
Comparison Theorem 3.2, and the following:

Proposition 7.1 Let ¢ be a sufficiently smooth function supported in the region s <t for1 <t <
t.. Then for any e > 0,

[CZGIPES E2[Y)(t) + ———— E2079[y](t) Z / |aa%| (7.242)

Therefore, the proof of Theorem (B) will be complete with the proof of Proposition 7.1.
Proof: Recall that E[¢)] = E[Y]+E[0v]+E[0*)]. Also the conformal norm &[] = EL[Y]+EE[Y],

&) = [ (Plovk +10P)a -0, &0 = [ (L1Pal +21FoF) + Dl + 0P ¢

Et 2:‘,
with a cut-off function ( equal to 1 in the region s > % As a result, the interior part of the &[],

3

el = [ (£ 32 omof + 10P) (1 - o).

oo m=1

Estimate for (1 — (): We start with the interior estimate. Since in dimension n = 3 we have
the embedding H?(3;) — L*°, we derive

10 (#)(1 = Dllzge S NO*((1 = 22y + 10 (L = O)ll2ss-

It remains to observe that the derivatives of the cut-off function ( are supported in the region
£ < s < § and obey the estimates [0™(] < t7™. Therefore ™', |0(4(t)(1 — O)) [l S #E Y1) as
desired.

Estimate for ¢ (: We have the identity d(¢ () = 9¢ ( +1 d¢. The term 9 9 obeys the estimate
1e0(t) ¢ e S Tll00(8) (1 — ()||zee with a slightly different cut-off function ¢ and, thus can be easily
treated with the help of the interior part of £[](?).

Thus, the problem is reduced to establishing the estimate for |0 (¢, )| at any point (¢, z) with
£ <'s <'t. We shall show that for any such s

sup [t ) <+ 25) £ (1) Z/ 001

Stu

"lwith perhaps a slightly different ¢ in the definition of £¢[¢]
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According to the Sobolev inequality (5.139) with p = 4 of Theorem 5.2 we have ™ for any positive

o<1,
16 1 — 48 s
sup |ouf? 5 #3% ( [ (wou -+ Glov) 5 | [ (voul + o0l

ey
St,u
St,u St,u

We can also estimate
([ 1our) / vour) ([ 1ouP) / oo
St u S sU

/ you!') / Y2ouP) / you?) / Yoyl

In addition, observe that the trace theorem 5.3 for the foliation S;. parametrized by s = ¢ — u

provides us with the estimate

/|f|2<(/ N/ /|f| /|f|2

ss

l\J\»—‘ (_,.

Stt o and N is the vectorﬁeld of the unit normals to S;;_,.

Here, Q Les = Upe
Thus, settlng €= 4%55’ using the fact that 7 < 4 < s < t, and applying the Holder inequality,
we obtain

sup 0] St

t,u

/ ¥ VOul + [Foul + SIN@OE + [ou))
(7.243)

<[ [ 19NT R0 + [F00 + ¥ VOuP + V0P + (N @V + jouf)]

%ss

We make the following two observations:
1) The second factor can be crudely bounded by 337 _ [ |997|>. Using the standard ™ energy
pP
3 m
m=0 f |aam '4/)|2
21

estimate, it is not difficult to show that the sum above is bounded

) Using the fact that N = %(eq — e3) and the frame equations which imply that Dyey — Vyea =

2
naN — kanes, we can conclude that ¥, Y(0y) = YN (0¢) + naN(0¢) — kanes(?)). According to
a i < A€ we can

the Asymptotics Theorem, we have the bound |n| + |k] < A7*¢. Since t < ¢, < \°
estimate the first term in (7.243) by

[ (@) + V@) + 100l + v < ¢ 2lwe).

¢

"taking into account that trf < 2, A(S;,) <'s
"The tensor version of the estimate requires the covariant ¥, derivative

"based on the commutation with the time vectorfield 8; only

2 t t
,and 7 <s <5
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Combining all the estimates we obtain for the values of s =t — u, i <s<t

3
sup vl S ¢ 2 gl < [3 [ oozl
Stu m=0
1

as desired
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8 Proof of the Reductions

In this Chapter we fill in the proofs of the reductions of the local well posedness for the quasilinear
equation 1.1 stated in Theorem (A) to the proof of the decay estimate formulated in Theorem (B).

8.1 Step 1 Proof of the energy estimate

We start with the lemma providing the equation for ¢*, a dyadic piece of ¢. Recall that the notation
f<x = Sxf refers to the truncation of function f in Fourier space above frequencies of size A.

faa=Y 1"

B

Lemma 8.1 Let ¢ satisfy the conditions of Proposition 1.1. Then for each dyadic \, ¢* verifies
the equation

076" — 92,($)9:0;6™ = Ry, (8.244)

where for any s > 1 and t € [0,T] the right hand-side Ry obeys the estimate

i7:106(1) [ 30 (8.245)

(IR E.) < Cllot)]

with C' a constant depending only on ||¢||LE>6>T]L§;O < Ay and M,.
Proof of Lemma 8.1

Remark: Throughout this chpater we shall often ignore universal constants independent of M,
and Ag.

The proof of this lemma is based on the technique of the paradifferential calculus. Recall that Py
denotes the projection on the frequencies of size ), so that ¢* = Py¢. Then

0™ — Pr(g”(9)8:0;0) = 0.
We introduce the notation -
G- 82¢ = g“(d))aiajd)-
Then
PA(G-0*¢) =P\ G"-P¢" =Py Y G"-0°¢" +
"%

[L<%I/,V
Py Y GO+ P Y GM0°¢" =E + By + Es.
y<%ﬂ,ﬂ %Vg,quV,V

It is clear that in the case when of one frequencies p or v dominate, the projection P, on the
frequencies of size A forces the dominant frequency to be of the same size. We say that p ~ A if
A< <AN
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Treatment of E;
Er= Y G"- 90"+ [P, G, 10"
p<ix v

The first term is precisely the term to keep™. To estimate the second we need a simple commutator
lemma.

Lemma 8.2 Let p(§) defines a multiplier P and m(x) defines a multiplication operator M. Then
for any q such that 1 < q¢ < 0o and any function f € L2

112, M f g < NP'[[|0ml| e (11l 2g- (8.246)

Here P’ is the multiplier corresponding to O¢p and ||P'|| is its norm.

Proof of Lemma 8.2

To prove this lemma it suffices to note that

@) = [ Pl = y)mly) = () (w) dy

—— [ Pa=u)a ) [ am(ry+ (1 =)o dr 1) dy

and that the convolution with the P(z)z" corresponds to the multiplier with the symbol 9, p(€).
Observe that the symbol of Py is the function ¢(A™'€). Therefore ™,

IS 1P G 1P s A ISP G, 106 1

(2N v~
<Ny Mol|9g] 116" |2 < D Mol|Og]| e [|6 -
v v
Squaring and summing over A we obtain the bound
8Mol|0¢]| = [l ]l 77+-
Treatment of E,
=R Y@ v,
72 -
Hence,
1Ballfremr SN NG 12100 llize < DN ullGHlli2100< sl <D MollGH |l 106 | 2o
TN 2 B

Thus, squaring and summing over A\ we obtain

1] ot < 8Mo[|G|

OP|| oo

s

We need an additional standard result.

">Observe that Zu<%>\ Gt - 9% = ggA6i6j¢A - Ei:%x GH - 9%¢* and the second term is of the type F3

!
"6Recall that the metric g obeys the condition SUP|; <A, | (d%) gl < M, for all integer I: 0 <1 < k and a sufficiently
large k&
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Lemma 8.3 Let g(z) be a smooth function with the property that |g|cx < My for a sufficiently large
k>0 and all |2| < Ag. Assume also that ¢ € H® and ||¢||L < Ag. Then

l9(¢)]

s S C(M()a AO)

(8.247)

We can then conclude that

15|

s < C (Mo, o)l 9|

OP|| oo

s
Treatment of Eg

Es=Py ) G'-0°¢

1/~u,1/>%/\
Hence,
_ A\ s—1

1Bl X700 G 1062 < D0 (2) 190G aze 6 e

uny>%A uny>%A

<M A\ s—1 ) a

<My 32 () 19196

V,I/>%A

Clearly, if s > 1 then the convolution with »(!~*) maps (> — 2. Thus,

1Bl gs-1 < 8Mo|[6]] |0 2o -

We are ready to finish the proof of Proposition 1.1. Choose a large parameter A in such a way
that for any A > A the metric g<)\(gz$) is elliptic with a constant of ellipticity 2M,. This is always
possible since Sy is an approximation of the identity and the original metric ¢/(¢) is elliptic with
a constant M.

For the values of the dyadic parameter A < A rewrite the equation for ¢* in the form

at2 ¢)‘ - 9<Aa 0; d)
noting that the change of the metric introduces the error term of the type Ej.

For A > A we keep the form of the equation as in Lemma 8.1
0} — 92,0,0;¢™ = Ry
In either case, the standard H' energy estimate for the wave equation yields
1620, i < 2Mo(167(0]]] 2 + | Ballzy, 1 22)-
Using Lemma 8.1 and the Gronwall inequality we immediately obtain for s > 1

19l zes e < C(Ao, Mo) exp (1001, 12| 2[0]] 7+

The estimate for s = 1 is standard and does not require the paradifferential decomposition.

fo,71-%

[0,7] L
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8.2 Step 3 Proof of Proposition 1.2

The paradifferential approximation needed in Proposition 1.2 can be obtained from the paradiffer-
ential approximation of Lemma 8.1 by a further truncation (mollification) of the frequencies of the
metric ¢¥/(¢). In particular, it is easy to see that

Oyere® = =0, + 92,,0:0;0" = —Ro + (92,(9) — 92,.)0:0;0.
The term R, satisfies in fact a better estimate than stated in Proposition 1.2. Tt remains to handle
(g;ﬂ((b) - gg,\a)aiaj(/)/\-
First, we have
Sxg7(#) — Sxag”(Sxed) = Sxg” (¢) — Sxag” (¢) + Sxeg” (¢) — Sxag” (Srab).
The Fourier support of the term (Sy — Sx.)g”(¢) belongs to the region \* < |¢| < . Therefore,
1(Sx = S2a) g7 (6200 | jro-1 <X THI(Sx — Sxa) g7 (9) |22 10:0;0* |2
SATOM[|00]| e |67 s < MoA™ x| 121l gy

We also have
1

Sxa g (p) — Sxag”(Sxaep) = Si / g9 (1¢ + (1 = 7)Sxap) dr(Id — Sxa)p.

0
and the function (I'd — S)a)¢ has its Fourier support only for [£| > A%, Therefore,

153(6(6) — 97(S300)0:0 6 jroor <X M| (Td — S3)l | 960,012
SN M 06 2 [0 < MoA™ €206 ]

8.3 Proof of the implication: Theorem (A3) — Theorem (A2)

We assume that Theorem (A3) has been already proved with the partition I as described in the Re-

mark (A3). The Duhamel formula immediately implies the inhomogeneous version of the Strichartz
estimate. Namely, for any function ¢ such that the supp O,_,,¢ C {3A < €] < 4A} we have on

each time interval [

1P 00lly21 < C(Bo) [1(1OCI0) e + [ Fgpa tll s prie)-

g<aae

Proposition 1.2 implies that the estimate above can applied to ¢*, the A-dyadic piece of the solution
of the quasilinear equation. Note that [, ,¢* = R and for any s > 1 we have the estimate
RS () e < exA(|06(t) ]| oo ||4()]] j7-- From the Remark (A3) and the Holder inequality it follows
that on each time interval I we have [|0¢(t)|| 11 < A~(=9) B;. Therefore,

1B grnve < BoXerl0ll e o
Hence, from the Strichartz estimate

106 112 < C(Bo) 1IN0 | e + Bod* > eallbll g siec)-
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Squaring and summing over [ we obtain after taking into account that the number of intervals
#1 ~ X7 and that |I| < TA~(-

l—a —5a
10612z, , 220 < C(Bo) TAINZ (|06 e e + AT allll oo, o)

[0,71]

Therefore, we obtain the desired estimate

10612, 15 < C(Bo) T*exlldllsg . sre-

[0,7]

provided that s, + €(1 —a) — 2 — e — 5(1 —a) > 0. This requires that a > 2=%=_ Since in the
Strichartz estimate of Theorem (A2) we have T%*~°°  parameter € should be chosen € = s, — sy and

a = % It is easy to check that since s, > sqg = 2 + %(2 — \/3), the value of the parameter

a< —1++3.

8.4 Proof of the properties of the metric g<j.

In this section we provide the proof of Proposition 1.3. First we note that it is sufficient to verify
(1.11)-(1.15) with m = 0. This is due to the fact that "™ g<ya = (0™Sx)(dg(Sre¢)) and each
differentiation of the projector Sy produces roughly a factor A%. The only exception is (1.15) since
it is nonlinear in g<).. In this case we can argue that qua g<xa is essentially a product of two terms
such that the Fourier transforms of each of them are supported in the region |£] < A% Therefore,
the result also has support in roughly the same region of Fourier space. Hence each differentiation
again introduces the factor of \°.

Remark: To be precise, the argument above works only for the spatial derivatives O, since Sxa
truncates the frequencies > \* only with respect to the space variable x. However, using the fact that
g depends on ¢, a solution of the wave equation, one can recover the corresponding estimates for the
time derivatives. Let us illustrate this by proving the estimate (1.11) with m = 1. This is one of the
few estimates with m # 0 that we actually use. We assume that we have already proved (1.11)-(1.15)
for m = 0. Then, clearly the derivatives 02g<ya and 9,0rg<ra can be estimated with an additional
factor of X\*. It remains to address the derivative 02g<ya. Observe that 8} = DgQa + g<)\a38
Therefore, using the condition (1.15) with m = 0 and the fact that 0;,0; are spatial derivatives, we
obtain
||81529§)\“||L}Lg° <A OBy 4 A ratep, < \Tmate g,

Proof of (1.11)-(1.15) for m = 0:  The inequality (1.12) with m = 0 follows immediately from
inequality (1.10) defining the partition I, since
_l=a
109<xe 2150 < Mol|00| 252 < A2 Mo By

The Holder inequality yields (1.11) from (1.11).
To prove (1.13) we have the following chain of estimates. Recall that the value of the parameter a
is chosen such that a > 5—2s, and that s, > 2+ %(2 — \/3) Let ¢ be the constant of the embedding
H>(R?) c L*®(R®). Then

10(Sxeg(Sxadp)llzsrrze < MollO(Srad)llzgorze < MocllO(Shad)l oo g

(8.248)

a2
< My eX* G100 e s S AT MycBo.
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The estimate (1.14) is scale equivalent to (1.13). We use Lemma 8.3 to obtain

105 gxellzz < C (Ao, Mo) 103 ™ Sre 1z

The proof now proceeds in the same way as the proof of (1.13).

The most interesting part of the Lemma is estimate (1.15). It is a true reflection of the fact that
metric g<). depends on the solution of the quasilinear wave equation. To emphasize its importance
we formulate it as a separate lemma.

In the following, for brevity, we will suppress the argument Syay of the metric g<ya.

Lemma 8.4 FEach component of the metric gga — S1ag"(Sa () obeys the estimate
Higz\agé/\“HL}Lgo <\ (-ap.

Here, ¢ is a solution of the quasilinear problem (1.1) and the time interval I described in the Remark

(A3) after Theorem 1.4.

Proof: We compute

Dgga G<ra = — 8fg§)\a + ggAaa-anga
= - SA“QII(SA“(at¢)) 923053 (9"0:(520 9)9;(Sxa ) (8.249)
+83 (9 (Sxa (07 9)) + 9250 e (' (e (8:0;9)).
The first two terms on the right-hand side of (8. 249) are quadratic in d¢. Thus inequality (1.10)
(

imply that its L}L®-norm are bounded by A=("%MyB2. In the remaining two terms we need to
do some commutation and use the fact that ¢ is a solution of the equation —9?¢ + ¢"9;0;¢ = 0.

As in the proof of Proposition 1.2 we have

95 = 97 =8 g" (Sxa) — g7 (9) = (S — Id)g" (Sxadh) + g7 (Sxa ) — g” ()

1

) ) (8.250)
=(Stge — 1d)g" (Sxa ) + /gl]"(TSAaﬁﬁ + (1= 17)8)dr (Sxe — Id)o.
0

Note again that I'd — Sya is a projector removing frequencies || < A*. Therefore,

1925 = 97Nl p2ree < AT Mol|06|12150 < AT*AT2 Mo B, (8.251)
Then
1(9%50 = 97)S2a (' (Sre (3:00)) 1112 < (19250 — QUHL%LgOHSA“ (9'(Sxe (0:0;0)) | p210 < (8.257)
A~ MEBy||06 20 < A OMEBE.

Therefore, we consider the term ¢ .Sya(g'(Sxe (9;0;0)). We have
97 S (g' (S (0:0;0)) = g, Sxe](9'(Sxa(059)) + Sxa (979" (S (0,0;9)).
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Using Lemma 8.2 we conclude that
116, $1)(6 (S0 g < A MENOGl 131100 (00, D) < A-C-IMEBE:
Clearly, ¢¥ and ¢’ commute. Consider the identity
9780 (0;0;0) = [g", Sxa0;)0j¢ + Sxa (0;9"0; ).

The second term combined together with the third term of (8.249) produces (¢ which is zero. To
estimate the first term we use Lemma 8.2 again. Note that S).0; is a multiplier determined by the
function ((A7%€)&;, where ( is a cut-off function equal to one on the unit disk. Therefore,

1197, Sx 010l 110 S Mol|O||72, < A9 My B,
Gathering all estimates together

18cs0 gre lz1zee < A—(-9p2 B2,

8.5 Step 6 Proof of the implication: Theorem (B) — Theorem (A6)

Assume that Theorem (B) has been already proved. Consider function 1 verifying the geometric
wave equation [y, 1) = 0 with initial data 1[0] supported in the set |£| € [3,2] in Fourier space.

Let functions x,(z) form a partition of unity subordinate to a covering of R?® by balls B L (xy) of
radius % such that at most 5 balls intersect at one point. In addition, assume that

X7 |emi» < C (8.253)

for some sufficiently large integer m uniformly in .J.

Let 1,(t) denote the solution of the geometric wave equation Oy, 1)y = 0 with initial data ;[0] =
X7 ¥[0]. By Theorem (B)

1 m
1P oY (t)|lre < T Z 10" 101z,
e

for some sufficiently large integer m. Since 1;[0] has compact support of size one in physical space,
by Sobolev inequality

105, [00ll2 S 105200l S D 107Xl z= 10" [0l 2 (o)

r4+s=k+2

Using the property of the covering and (8.253) we obtain after summing over .J

1 m+2
1P oY)l S A+ Z 10%4[0]| .,
k=0

The fact that the Fourier support of ¥[0] lies in the dyadic shell of size 1 allows one to complete
the proof of the implication.
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8.6 Proof of the implication Theorem (A6) — Theorem (A5); Decay —
Strichartz

On this step of the reduction of Theorem (A) to Theorem (B) we show that Theorem (A6) implies
Theorem (A5). Thus, we shall assume that the family of metrics h) satisfies conditions (1.19)-(1.23)
and that any solution of the geometric wave equation [, ¢ = 0, with Fourier support of the initial
data in the set {|¢| € [3,2]}, obeys the decay estimate ||P 0y (t)||pe S W Y[0]|z1. We need
to show that under these assumptions any solution” of the wave equation [, ¢ = 0 satisfies the
Strichartz estimate || P 6¢||L[20,t*]Lgo St N10[0]]] 2.

First, observe that it suffices to prove the following estimate:

1P OBl , e < Ml|G[0]ll 22 (8.254)

[0,£x]

with e =1 — % and a constant M independent of ¢ and .

_ Observe also that the solutions of either the geometric wave equation [, ¢ = F' or the equation
0,1 = F obey the following energy inequality for any ¢,y € [to, t.]:

1000122 < exp(C 1Oy, 1) (1000} 2 + 1Pl 12 )
<2(l10v(to)llzz + 1Pz, 2).

where the last inequality follows ™ from the condition (1.19) on the metric hy.
Furthermore, since 7

(8.255)

th = Eh

\ 0u(v/1ha])0; + 0i(\/|halh )
\/I |
A

it is also not difficult to show ®° that it suffices to establish (8.254) for a solution the geometric
wave equation. We shall now prove a stronger result.

Proposition 8.1 Let ¢ verifies the wave equation p¢p = 0. Assume that the metric h is elliptic
L and satisfies the condition

CllonliLy, 12 < (8.256)

DN | =

for some sufficiently large positive constant C'. Then for any q > 2 and for some universal constant

M

)

1P 0¢llLs, , pee < MI|[O0]]] L2, (8.257)

provided that the conclusions of Theorem (A6) hold true.

T

remark that we don’t require the Fourier support assumption on the initial data. This is due to the presence of
the projection P in the estimate.

"8Recall that we consider A > A for a sufficiently large constant A

79|h)\| = det hy

80By the Duhamel Principle we would obtain
1POdlLs,, L < M([I4[0]llL2 + 10R]| L1

[0,t4]

1109l 12)

[0,tx] 2 Ot]m

and the condition (1.19) together with the energy inequality for ¢ would imply (8.254).
81for simplicity we can assume that the ellipticity constant is 2
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Remark: We first prove the estimate (8.257) for P 0;¢.

Proof: Clearly, we can assume that (8.257) holds true for a sufficiently large constant M dependent
on A. We shall establish a uniform bound on M.

Let (wg,w;) € H'(R?) x L*(R?), w = (wo,w;) and ®(t,s;w) be the vector (¢,d;¢), where
é(t, s; w) denotes the solution at time ¢ of the homogeneous equation [J,¢ = 0 subject to the initial
data at time s, ¢(s, s;w) = wq, O;P(s, s;w) = wi. By a standard uniqueness argument ** we can
easily prove the following:

<I><t, s; @(s,to;w)> = ®(t, to; w) (8.258)

Denote by H be the set of vector functions w = (wg, w;) with (wg,w;) € H'(R?) x L2(R?). The
scalar product in H is defined by

<w,v >= / (wl -v1 + hijang . 8jv0>
Yo

Let X = L1

0[5 and its dual X' = e

[U,t*]L:}c' Let T be the operator from H to X defined by:
T (w) = =P 9,6(t, 0; w) (8.259)

The adjoint 7 is defined from X to H. To prove estimate (8.257) it suffices to prove that 7 -7*
is a bounded operator from X' to X. By our bootstrap assumption we have ||7||y—x = M where
|7 || denotes the operator norm of 7. Thus,

1T T llxrsx = M2
To calculate 7 we write,

<T fiw>=<f,T(w) >= — / 0,0P fdtdr = — / 0rp T,
[O,t*]x].:{,3 [O,t*}ng

where v is the unique solution to the equation

Ontp = 07 — 0,(h79;9) = P,
¢(t.) = 0ip(t.) = 0.

Consequently, integrating by parts, and observing that
1

N (&:(v/Thln7956) = ,(v/Th) 010

82which follows from the energy estimate (8.255), which still holds under assumption (8.256) on the metric h

(8.260)

;¢ =
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we obtain

<Tfuws=[ (atas(matz/)(m—afas(ow(m)— [ s

Zo [0t]><R3
= / (9:6(0)0:(0) + h79;6(0) / f (n70,(V/ThD)9;(0)
— A/ TD26(0))i6(0) / i
0,0]xR?

=< w, ¢[0] + R(f) >

with ¢[0] = (¢(0), 0;¢(0)) and R(f) the linear operator defined from X' to H by the formula,

< IR(f / i (P I31000) — 2/ )0) - | Do

0,.]xR*>

Therefore,

TT*f = To[0] + TR(f) (8.261)

Observe that Uy, ¢ = Pf+e with e = ﬁ <8t(\/|h|)8t¢)—8i(\/ |h|)hij8jz/)>. Thus we can write

Y = 1 + 1y with,
th/)l = Pfa

Lpy =€
with both 1, 1y verifying the zero initial conditions in (8.260). Now T[0] = T, [0] + T (0] and
Tn[0] = =P3,®(t,0;¢1[0]). According to the Duhamel Principle we have, v (¢) f<1> (t,s; F(s))ds
with F'(s) = (0, Pf(s)) and therefore,

b«

U [0] = —/@(O,S;F(s))ds

0

Tn[0] = PO,® (t,(); ®(0,s; F(s ) 0, ®(t, s; F(s
Fonarinm) - fon

We are now in a position to apply the dispersive inequality of Theorem (A6). Indeed, since the
space Fourier transform of F(s) = (0, Pf(s)) is supported in the region || € [3,2],

and,

1P 3 ®(t, 53 F(s)) | < C(1+ [t — s|) | Pf(s)]|1-
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Therefore, by the Hardy-Littlewood-Sobolev inequality,

1741 (0|,

[Ot]

C||f||Lq o (8.262)

with C' a constant, independent of . It depends in fact only on the H-L-S constant, ¢ > 0, and the
constant C' in the dispersive inequality of Theorem (AG).
To estimate T15[0] we apply the Strichartz inequality with bound M,
1T %2 [0]llLe . oo < MI[02[0] |3

[0,tx]

where,

[92[0]l = sup < w, 9a[0] >3 < (|09 (0)]] 2

llwll <1

To estimate we shall make use of the energy estimate (8.255) for ) verifying the equation Oty = e,
subject to the initial conditions ¢ (t.) = Oybe(t.) = 0

1092(0)ll22 < Cllellny, 12 < ClORILy, rllOllieg, 12
Therefore, with the help of the condition (8.256), we have
1T 42[0]| g, , s M||51/)||L0t] 12 (8.263)

We shall now estimate the other error term 7 Rf. Since the operator norm of 7 is bounded by
M

Y

ITR(f)zg

0,617

< M| R(f) I3
On the other hand,

[B(f)le = sup < w, R(f) >

llwllz <1

"l / W (h90:(\/TR1)3;6(0) = 01(v/TRD216(0) ) ¥(0) + / =¥

0,.]xR>

Observe that since ¢ verifies the equation [,¢ = 0, we have

(h70:(VIMD36 — (VTADA9) | + i (31(h)3;9).

Ohup = 0,000 + 0, (0u(h)0;0) = |

1
Vb
Therefore, integrating by parts, we obtain

1Rl = sup

<1 / \/W

(0,2

(W70:(\/ThDO;6 — D/ TR])Ou ) D + By (1) s D).

Estimating in a straightforward manner we derive,

IRl < CllORlLy, , reollOPlize, 2100

[0,t:]" [0,t£]" [Ot]w
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We use the energy inequality (8.255) to estimate Had)HLFS’t 12
Applying it and using ||w||% < 1 we infer that, ||8¢)||L<[>§t 12 < C. Therefore, with the help of
(8.256), we have

TRz < 2 M)|0vl (8.264)

[0,6.17 ARLES

To estimate ||81/)||L[o§t 12 we rely on the following:

Lemma 8.5 The solution 1 of the equation Oy = Pf, (t,) = 0,0(t,) = 0 verifies the estimate,

109l es, 12 < 2M||f|| I (8.265)

[0,£x]

Gathering together (8.262),(8.263),(8.264) and (8.265) we infer that,

17T fllx = [T (41 [0] + (0] + R(f))l e

Therefore, in view of (8.261),

1 2
0,617 (C+§M )Hf“lf[](;t*]lfalc

1
M2 = | TT |l < (C+ 5M2),

Thus we infer that M is a universal constant, as desired.

It only remains to prove the Lemma 8.5. We proceed as follows. Let ¢ be fixed in the interval
[0,%.]. We rewrite the equation [J,¢ = 0 in the form,

~ 1
ho=F= (at(\/m ou6 — B (/Th] )aicb) (8.266)

with initial data ¢(t) = wo, 0,¢(t) = wq, and (wg, w1) = w € Hy, ||w||y, < 1. Here, the space H,; is

defined by the scalar product < w,v >3,= [ w; vy + h¥;wg jvy. We also recall that, see (8.260),
>t

Ontp = Pf (8.267)

with initial data ¢y (t.) = Op1(t.) = 0. Multiplying (8.266) by 0;¢ and (8.267) by 0;¢ and inte-
grating in the region [¢,7,] x R™ we derive the identity,

/ (at¢atw+hifai¢ajw> = —//8t¢Pf+8th+8t(hij)8iq§8j1/).
>t
t -

Therefore,

Ov@)llze < 1P Ouflly,, e 1 Flly o+ CllORLy, 1108l

[0,t«] 72

22|09 oo

[0,tx] [Ot]
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We recall that according to our assumption ||P 8t¢||L‘[’0t Ly < M||wl||z,, < M. Also according to

the energy estimate, ||0;¢||r 12 < 2||w]|3, < 2. Therefore,

012 —

10025, 12 < MUy gy + ClOMy, e l0lis5, o2

[0,t«]72 — [0,tx]

: 1
and therefore, since C’||ag,\||L[10,t*]Lngo < 3, we conclude that,

10| zg

[0,

]L% < 2M||f||L([1(;,t*]Lalc
as desired.
To prove the Strichartz estimate for the spatial derivatives we rely on the proof, given above,

for P 0;¢. We thus assume that the estimate (8.5) holds true for P 0,¢ with a universal constant
M

To estimate ||P 6a¢||L<[10t Ly it suffices to estimate the integral, Z = [ Pd,¢ fdtdx for
’ 0t.]xR’
functions f with [[f||,«+ . < 1. Let ¢ verify the equation Uptp = Pf with ¢(t.) = 9,9(t.) = 0.
[0,t+] 7

Therefore,

7 / 9us )y = / (1t + / (aaasm) 0,16(0) + B,6(0) aaz/»(()))
0,0]xR? 0,.]xR o

Proceeding as before we show that,

| / 006 0] < C10glls 1|96l 1210011

0,172 o1l o.e1l2
0t xR’
Also,
[ (260200 + 060)2,60) ) < 06000200115,
2o
The energy estimate (8.255) gives ||0¢||p~ 12 < 2||06(0)|z2. According to the Lemma 8.5 we have,

[0tx]72 =

||37/)||L[°g,t*]Lg < 2M||f||y[1(;t [LE

Observe that the M in Lemma 8.5 depends only on the Strichartz estimate (8.257) for P 0,¢ which
we have already proved. Therefore,

2] < CM|0¢(0)[2=(1 + 10Rllzy,  2ee)f Il 1y < CMI[OS(0)] 22

0

which implies, ||P 8aq§||L<[10 Ly < CM||0p(0)]| 12 as desired.

tx
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9 Appendix

In this Chapter we provide the proof of the two theorems formulated and employed throughout
Chapter 5. The first theorem, see Theorem 5.2, is the isoperimetric inequality on a 2-surface
embedded in R?® endowed with metric ~ with minimal control of its derivatives.

Theorem 9.1 Let S be a 2-dimensional surface without boundary smoothly embedded in R® endowed
with a smooth Riemannian metric h. Assume that relative to the standard coordinates on R3, the
metric h satisfies the following condition:

sup [0h| < A! (9.268)
R3
for some positive constant Ny. Assume also that the area A(S) of the surface S induced by h verifies
A(S) = /1 < 271AL. (9.269)
S

Then for any smooth function f : S — R we have the following isoperimetric inequality 83:
1
([172)" 5 [awsi+ pmoiir). (9.270)
S S

Here, Y is a covariant derivative on S compatible with the restriction of metric h on S and 0 is
a second fundamental form of the embedding S C R®. In addition, the following Sobolev inequality
holds on S: for any 6 € (0,1) and p from the interval p € (2, 0]

_er=2) L s -
suplf| 5 [AS)] 7 ([ (w2 + Pl =5 [ [qwse + sl )] 7,

S S

(9.271)

where A(S) is the area of S.

Remark: The isoperimetric inequality in the form (5.138) on a submanifold M of a Riemannian
manifold N has been known to hold in the following cases:

1) N =R, h is the Fuclidean metric, [Si].

2) M, and N are arbitrary, and there is a pointwise bound on the curvature of N, |[Ry| < C,
[Ho-Sp].

Theorem 5.2 is an intermediate result between 1) and 2). Note that in the context (5.113)-(5.117),
where we will apply this result, the uniform pointwise bounds on the curvature are not even available.

Proof: The proof is an adaption of the method used in [Si] and [Ho-Sp].
Let V be a covariant derivative on R?® compatible with the metric & and let ¥ denote the
corresponding covariant derivative on S. Choose an orthonormal frame e4, A = 1,2 on S. For any

83independent of Ag
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vectorfield X : S — TR® we can define divX = >, < V,X,es >. The inner product <, > is
taken with respect to the metric h: < X,Y >= h; X'Y7. Any vectorfield X can be decomposed,
X = XT + X"N, where X7 is tangent to S and N is a unit normal vectorfield to S. Then

divX =) < VaX" eq > +X") < VaN,eq >=divX" + X"trf),
A A

where div X7 denotes the intrinsic divergence of the tangent to S vectorfield X” and 6 is a second
fundamental form of the embedding S C R3. Integrating the last identity over the surface S and
noting that by the Stokes’ theorem [ divX” = 0, we have

S

/diVX = /X"tr@. (9.272)
S

S

Fix a point 7y on S. Define the distance function r(z, zy) on R® according to the formula
r?(x, 20) = hyj(x) (2 — w0)" (v — o)’ (9.273)

The distance function r is equivalent to the standard euclidean distance on R®. It is also equivalent
8 to the geodesic distance d;, generated by the the metric h. Let f be a positive function on S. Fix
two positive parameters s and p and define a radial vectorfield X

X =G(f(x) —s)Glp—r(z,20)) Z, 7 = (x — 10)"0;. (9.274)

Here (i, ( are 2 identical cut-off functions such that ¢; »(7) =0 for 7 < 0 and (3 2(7) =1 for 7 > €
for some sufficiently small € > 0. Also ¢y » are chosen in such a way that the first derivative (; , > 0.

The smallness of € is determined by the condition that the set {x € S : r(x, ) < €} is contained
in the geodesic disk ¥ D, (xg) of radius rp on S. We require that ro be less than the injectivity
radius of S and that

2
/ 1> % Vr < rg (9.275)

D (z0)

Clearly, the smallness of € could depend on the the value of the parameter Ay and various constants
defining the embedding S C R*. However, it can be made independent of the choice of the point
Zo. The dependence on Ay is irrelevant since we will take the limit e — 0.

We already observed that the distance function r is equivalent to the geodesic distance on R?.
Since the geodesic distance can only increase after passing to a submanifold, we can conclude that
the set {x € S : r(z,z9) < €} contains the geodesic disk D%G(ﬁo)- Thus, the inequality (9.275)
implies that

2

/ Goloe —rla,a0)) > o (9.276)

84The constant relating the two distance functions clearly depends on the ellipticity constant of the metric h.
Without loss of generality we can assume that $dp(z, o) < r(z, o) < 2ds(z,z0) for all 2o € R? and all points z
such that dj(z,zo) < € for a sufficiently small e

85with respect to the geodesic distance on S

97



Since f is a smooth function there exists a positive constant C', which in fact is determined by
the L™ norm of Yf, such that wherever f(zg) > s+ Ce we have f(z) > s+ € for all x such that
r(z,zo) < €. We will assume that the point zy has the property that f(xy) > s+ Ce.

We calculate div.X. Using the silent summation rule over the repeated indices we obtain
divX = GV, f < Zyea> GGV, r < Z,eq >
+G QY (2 — 7o) < Opeq > +C G — 1) < Va0, e4 >.
Clearly, ¥ ,(z — x0)" = €0k (x — x0)* = €';. Therefore,
YV, (z — T0)' < O e >=< 4,64 >= 2.

Furthermore, < V40;,e4 >= e’j‘eZ‘Fik]’, where I' denotes the Cristoffel symbols for the metric h.
We also have that |(z — z¢)¢| < Cr for some positive constant C' which depends on the ellipticity
constant of the metric h. Therefore, it follows from condition (9.268) that

11 G —@0)" < Vadi,ea > | < G QA (2, m0) < G GAG'p
since r(x, z9) < p on the support of (. Continuing the calculation we have

honi(z — @0)™ el Op(humg) (& — 20)™ (2 — )’
+ e .

r 2r

YV r(x,x0) = eljlakr =

Thus,

< Z,ey >2 x — x0)™(x — x0)?
V() < Ziea 5= 30 200 5y () RS s
A A

T 2r

Note that r(z, xy) is precisely the length of the vectorfield Z with respect to the metric h. It follows
that >, < Z,eq >*< r?(z,20). In addition, |(z — zp)"(z — x0)’| < Cr?(z,x0). Hence, using
condition (9.268)

GGV A(r) < Zyea > | < G Glr+ Ay 'r?) <G Glo+Agtp?).
We conclude that

G162 Ag'p) = G Glo+Ag'p?) <divX + G Gl flp (9.277)

Integrating (9.277) over S using the identity (9.272) together with the fact that since | X|, = ¢ (or
the normal component |X"| < (; (2p, we obtain

d
(2-Aylp) S/ GG o+ A ) S/ GG <o [(GGVafI+GGlt)). (9.278)

S

It is not difficult to verify that (9.278) is equivalent to

_dip[p L+A5" /ClCZ <p(1+A57p) /C1C2|Y7Af|+C1C2ltr9| (9.279)
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Integration with respect to p over the interval [o, p] with 0 < o < p yields

! +A010)3/C1 Golo = r(w,20)) < p~?(1+ Aolp)g/ﬁ Gap — r(x, 20))

, ’ (9.280)
+/T‘2(1+Ao‘17)2/€{ (T = 7(2,20)) |V f| + G Go(T — 7(2)) 626

g

Let

a(r) == (L+ A7) | G(f(x) — 5) Go(T — r(w, 0)),

B(r) == (1+Ag'm)* [ G(f(2) = 5) QT — 7(,20))|Wu f| + Ci(f (@) — ) Ca(7 — 7(2, w0)) [026)].

—

s
Note that functions a(7) and 3(7) are nondecreasing. The identity (9.280) takes the form

p

o~2a(0) < p~2alp) + / 28(r). (9.281)

o

Recall that at the point g, f(zo) > s+ Ce. The choice of the constant C' ensures that f(z) > s+e¢
for all z such that r(x,xy) < e. It the follows that (i(f(z) — s) (2(2¢ — r(x,29)) = 1 on the set
r(x,xg) < €. According to (9.276), the area of this set is bounded from below by 7e?/8. Thus,

(26) 2a(2€) > (1+ Ag'2¢)°27%n > 27", (9.282)
Observe also that

/ (@) — ) Gl — (e, 7)) < / G(f(x) — 5) < A(S) < 275A2.

S

for arbitrary p and s, which follows from (9.269). Define

Po = 214 / G(f (9.283)

Clearly, pp < £+Ag. We then have the following inequality for a(r):
(po) 2a(r) <27%m, VO <7 < 5pp. (9.284)
We formulate an auxiliary lemma which is a variant of the well-known result, see [Si] (Lemma 18.7).

Lemma 9.1 Let a(7), 5(7) be two positive nondecreasing functions satisfying (9.281), (9.282), and
(9.284) with py defined in (9.283). Then there exists a positive p in the interval 2 < p < py such
that

a(5p) < 20p08(p)- (9.285)
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Proof: We argue by contradiction. Assume that for all p in the interval 2¢ < p < py we have
a(5p) > 20py(p). Inequalities (9.281), (9.282), and (9.284) then yield

PO

1
271 < sup (o) %a(o) <pyZalp) + 7 %a(57) using (9.281), (9.282)
2e<o<po 209
2e
1 PO 1 5p0
<pitalm)+ 1= [ 70+ 1 [ a(
10e Po
—2 1 —2 Lo\
<po“alpo) + 5 P (o) "alo) + g(PO) a(5p0)
€SO0

1
<- sup (o) %a(o)+2 % using (9.284).
4 9c<o<po

Contradiction.

Since p < py < éAO, the inequality (9.285) can be interpreted as follows:

/Q — ) G(5p — r(z, 1)) <202 214 1/( - S))%
(9.286)
/Q —5) Galp — (@, 20)) |V o f| + G (f () = 5) Glp — r(z, 30))|t20)].

The same estimate holds for any choice of the point xy, with perhaps different p(x), as long as zg
satisfies the condition that f(x¢) > s + Ce.
For any positive 7 define the set

M; ={xeS: f(x) >}

In this notation, inequality (9.286) holds for any point o € M, c.. The union of 3-d euclidean
balls B ze)(20), o € Mgice is a covering of My .. By the Vitali covering lemma for R3? we can
find a disjoint subcollection B4 (%0), z0 € M| ., where M{ .. C M, ¢ such that M, c. C
UHEOEM +CEB4P($0)(1‘0)'

As we already mentioned above, the ellipticity of the metric h implies that on R? the euclidean
ball B4, (0) is essentially the same as the set r(x, zo) < p(xo). Without loss of generality, we can
assume that they are the same.

Now observe that the function (o(5p(xg) — r(z,29)) = 1 on the set where r(x, zo) < 5p(xy) — €.
Since p(xg) > 2¢, the above set is contained in r(z,20) < 4p(20) & Bup(ao)(zo). Thus, summing
(9.286) over xy € M., ., we obtain 5

| at@-95([atw-s /cl )= )Y+ G (@)~ s)led] (9.287)

s+Ce

86We replace the inequality < by < with a universal constant independent of €, Ag. In this case, the constant is
20- 2971,

100



We can rewrite (9.287) as follows:

AMeic) £ 4300 (— ] [ Q@ - w7 + [ ). (9.289)

S

Multiply (9.288) by s + Ce¢, note that (s + Ce)?A(M,) < 2 fo + 2(Ce)?A(S), and integrate with

respect to s over the interval (0,00). We easily obtain the follovvlng estimate

| s /f L[+ o) + ANt [(9.71+ i)

f(xz)>Ce S S

Taking the limit as € — 0 and simplifying yields
/ & / V7| + fltrt). (9.289)

To obtain estimate (9.271) we integrate (9.288) over the interval (¢, 00) using the fact that A(M;) <
A(M,) for all s > t. Taking the limit as € — 0 we obtain

[ A00) £ 4300 [Q¥51+ () = e, (9.200
t M;
Define the function m(t) = [ A(M,). Applying the Cauchy-Schwartz inequality in (9.290) we obtain
t
/ VI + (7 () — 102" (9.291)

The application of another Cauchy-Schwartz inequality yields for an arbitrary § € (0,1) and p €
(2, o0]

1

([ 1972+ 0P (@) - 7)< a0 5 / Y+ ool — o)

(9.292)
x / b+ 0ol 1)’
My

Recall that A(M;) = —m/(t) and strengthen the inequality by replacing the first integral over the
set M, on the right hand-side with the integral over the whole surface S. Combining (9.291) and
(9.292) we obtain

1+5(I;;2)

m(t) S [=m'(1)] (9.293)



with the constant C' defined by

o= ([ twopis) 7 ([1wsp+ worisp)” (9.204)
S My

Rewrite inequality (9.293) in the form
/
m (t)Zp > 0 wntY
m(t)] 767

and integrate with respect to ¢ over the interval (0, ¢pax), Where tp.x = supg f. Clearly, ¢y« is the

smallest value of ¢ where m(t) = 0. In addition, m(0) = [ A(M,) = [ f. Therefore,
0 s

2p 2 (:Ef;(_z)Q)
sl P+ (p—
supf § C'2p+3(—2) |:/ f]
S

S

Observe that the Holder inequality, estimate (9.289), and definition of the constant C' imply that
1
[rsais [ 2 sas)( [ 1wee+ uorre)
S S S
Using the definition of the constant C' we finally conclude that

5(p=2) L y
sup /£ [A(S)] 7 ( / P+ Pl R)” / Y1+ o) T
S s

The second result proved in this Appendix is the trace theorem for foliations, see Theorem 5.3.

Theorem 9.2 Let Q C R? be a subset of R® endowed with a Riemannian metric h. For simplicity
assume that the ellipticity constant of h is equal to 2, i.e,

1 .
5|X|2 < hy X'X7 < 2|1X)?

for any vector X € R3. Assume that the level surfaces of a smooth function v define an admissible
foliation ® : [0, maxv] x S? — Q which means that the lapse function b = |Vv| and the second
fundamental form 6 of the foliation have the following properties:

1) The level surface v = 0 consists of one point, say x = 0, and the norm of the tangent map
% < |d®|—o| < C for some positive constant C'.

2) [b(v) — 1] < Mo,

3) |t~ 2| < M

for some constant M such that M maxv < 275,
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Then for any level surface S, with v € (0, maxv|, arbitrary € > 0, and any function f : R® — R
such that f € H2T(R3), we have

1, Lie
1 fllr2se) S 11077 flln2sy + 1027 fll r2(rs).- (9.295)

In addition, let Q%M = uwe[%uyv]sw and let N = b1, be the vectorfield of the unit normals to the
foliation. Then

1
1) S IN D sy, ol sy, + 1 (9.296)
The constants in (9.295), (9.296) depend on the constant C'.

Proof: On Q the metric  in coordinates v, ¢!, ¢? associated with the foliation ® has the form
h = b2dv* 4+ yapdp™ do”®,
where « is the family dependent on v of metrics on S2. The second fundamental form of the foliation,

i.e., the second fundamental form of the embedding S, C R?, is determined from the formula

Oan OyYAB-

~ 9
Therefore

1
tr = %8,, In(det 7). (9.297)

Note that condition 1) implies that the metric h in coordinates v, ¢!, ¢* has the property that for

the values of v — 0, we have bz(—g) < wv~*det h(v) < 2b(v) C. Using condition 2) we conclude that

1
1 S v tdeth(v) <40, v — 0. (9.298)
Thus integrating (9.297) with respect to v and using the conditions 2) and 3) we obtain

dt v ’04 v
1 677(“):/thredw:/—i/(ﬁMHM?w)dw
w
Vo Vo

" det 7(vo)
Vo
Hence A 1 A
t
an—4 —272< lnm < lnv—4 +2°2,
Yo det (vo) Yo

Exponentiating, taking the limit as vy — 0, and using (9.298) we conclude that
Loy
——v* < det < Cevh.
ooV S de v(v) < Cev

Since the area of the level surface S, can be found as A(S,) = [ \/dety, it follows that for any
S2
v € [0, max v]
v? < A(S,) < v?
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with implicit constants dependent only on the constant C and the ellipticity constant of the metric
h. This proves Proposition 5.1.

Consider function f : R* — R from the Sobolev space Hzt<(R?). Decompose f into its Fourier
dyadic pieces f = Y, f*, where A = 2% k € Z is a dyadic parameter, and the Fourier support of
the function f* belongs to the set {|£| € [3A,2A]}. Fix the value of v € (0, max v] and consider
the restriction of f* to the domain Q1 = Une[lySw- Let Cy(w) be a cut-off function such that

Co(w) =1 for w > $v, ¢,(w) =0 for w < 1v, and |¢)] < 5v".

Consider the integral of the function |f*¢,|? over the level surface S,. In the coordinates v, ¢® the

integral has the form
[ 1540 G Vet (o)
S2

Integrating by parts relative to the radial variable w and taking into account that Cv(iv) =0, we
obtain

[ 180G VAT = [ [ @20 w.) £ w) G 4 200(G) 1P, P

v S?

IS

45 (0w 0 /et 3 0)) |20, ) G ) /ety ().

Note that (,(v) = 1, |¢)| < 5v7!, and 9, In y/det y(w) = 2b(w)trf(w). In addition, the volume
form on Q, relative to the metric h in coordinates w, ¢, has the density b(w)y/dety(w). Thus,
using the conditions 2) and 3) we have

[P [ @ iip)+ 00 ).
Sy Ql'u,'u

Note that the inequality above obviously holds also for the function f. Therefore, estimate (9.296)
follows from a simple application of the Hoélder inequality and condition 2).
Using the Holder inequality and the fact that the volume of in’ is ~ v, which follows from

the condition 2) and (9.298), we also obtain
[19es [ eurne=([10F)"
Sy o
ZU’U

The directional derivative d,, can be expressed as a combination of the standard 87 derivatives.
Since the length of the vectorfield d,, relative to the metric h is |0,|, = b and h is the Riemannian
metric on R* with the uniformly bounded ellipticity constant %, it follows that |3, f| < 2|0f]. The

v

87relative to the standard coordinates on R?
88Recall that we assumed for simplicity that the ellipticity constant = 2
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same reasoning also allows one to replace the integral on the right hand-side with the integral over
the whole space R? relative to the standard euclidean metric. Thus

/|J”|2 SN0 ezl e + 115 S 192 217, (9.299)
Sy

where we used the fact that there is an embedding H%(R3) C L?(R?) and that, since f* has only
frequencies of size A, 0|2 [[ /12 < A2[10% f 2]l /|2 < |02 2132 We can also replace the
right hand-side of (9.299) by A%|[02~f*||2 or A=2¢||@2 ¢ f*|| 2. The first replacement provides
some decay for the low frequencies A and the second is good for the high frequencies. Taking the
square root of (9.299) and summing over all dyadic frequencies A, we obtain

||f||L2(Sv) 5 ||a§76f||L2(R3) + ||a§+€f||L2(R3)‘
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