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Abstract. We construct a first order, physical space, parametrix for solutions
to covariant, tensorial, wave equations on a general Lorentzian manifold. The
construction is entirely geometric; that is both the parametrix and the error
terms generated by it have a purely geometric interpretation. In particular,
when the background Lorentzian metric satisfies the Einstein vacuum equa-
tions, the error terms, generated at some point p of the space-time, depend,
roughly, only on the flux of curvature passing through the boundary of the past
causal domain of p. The virtues of or specific geometric construction becomes
apparent in applications to realistic problems. Though our main application
is to General Relativity , which we discuss in [Kl-Ro5], another simpler appli-
cation shown here is to give a gauge invariant proof of the classical regularity
result of Eardley-Moncrief [EM1]-[EM2] for the Yang -Mills equations in R1+3.

1. Introduction

We construct a first order, physical space, parametrix for covariant, tensorial, wave
equations on a general Lorentzian manifold which is particularly well suited to
geometric applications to the Einstein-vacuum and Yang-Mills equations. We give
a purely geometric interpretation for both the parametrix and the associated error
terms. This fact is particularly well suited to solutions of the Einstein vacuum
equations in which case the error term can be shown to depend, roughly, only on
the flux of curvature passing through the boundary of the past causal domain of
a point p in space-time . Though our main application to General Relativity is
not included in this paper, see [Kl-Ro5], we are able nevertheless to illustrate the
effectiveness of our construction in the context of the Yang-Mills equations in the
Minkowski background R3+1. We reprove the classical regularity result of Eardley-
Moncrief with the help of a gauge invariant parametrix formula. This allows us to
completely avoid the Crönstrom gauge, which plays an essential role in the Eardley-
Moncrief proof.

It is important to emphasize that our parametrix is well suited to provide uniform
curvature bounds in specific applications, such as in connection to the break-down
criterion of [Kl-Ro5] or the gauge invariant proof of the Eardley-Moncrief result pre-
sented here. It is by no means well suited to other applications based on Strichartz

1991 Mathematics Subject Classification. 35J10

The first author is partially supported by NSF grant DMS-0070696. The second author is
partially supported by NSF grant DMS-01007791. Part of this work was done while he was
visiting Department of Mathematics at MIT .

1



2 SERGIU KLAINERMAN AND IGOR RODNIANSKI

or bilinear estimates, such as optimal well posedness for nonlinear wave equations
for which parametrices based on Fourier integral operators, or wave packets, are
clearly better suited. On the other hand, it is equally clear that Fourier space based
parametrices are not appropriate in the type of applications we consider here; in-
deed they are not at all the right tool if one is interested in uniform bounds of
solutions to geometric problems.

We give a new proof of the Eardley-Moncrief result based on our new parametrix
adapted to gauge invariant wave equation. We recall that the curvature Λ of a
Yang -Mills connection satisfies,

!(λ)Λαβ = 2[Λσ
α , Λσβ ]

where Λαβ = ∂αλβ − ∂βλα + [λα, λβ ], λ a one form defined in Minkowski space
R1+3 with values in a Lie algebra G and !(λ) the corresponding gauge invariant
wave operator . We recall the Eardley-Moncrief proof was based on deriving a
pointwise estimate for Λ. This was done by approximating !(λ) with the standard
wave operator ! and use of the classical Kirchoff formula (4). To deal with the error
term !(λ) − ! one had to rely on a particular gauge condition, called Crönstrom
gauge. Our gauge invariant parametrix , which generalizes (4), allows us, instead, to
estimate the value of Λ at a point p in terms of an error term expressed as an integral
along the past null cone N−(p) of a geometric expression which depends1, roughly,
on up to two tangential derivatives along N−(pure) of the connection λ, or one
derivative of its curvature Λ. This fact may seem bad enough to ruin our chances
of proving the desired result2. The essential point here is that both derivatives are
tangential to the light cone. This fact, combined with the Bianchi identities and
a subtle cancellation, which depends essentially on the algebraic structure of the
nonlinear equation, makes our proof go through. The proof will simply not work
without a geometric, gauge invariant form of the error term.

We consider solutions to the covariant, tensorial wave equation

!gΨ = F, (1)

on a given Lorentz manifold (M,g). Here Ψ and F are k tensor-fields on a 3 + 1
dimensional Lorentz manifold (M,g) and !gΨ = gµνDµDνΨ denotes the covariant
wave operator on M, with D the Levi-Cevita connection defined by g. To simplify
the discussion below we consider first the scalar case

!gψ = f. (2)

In Minkowski space (R3+1,m) with m = diag{−1, 1, . . . , 1} the wave operator on
the left hand side of (2) is the standard D’Alembertian ! = mαβ∂α∂β . The general
solution of !ψ = f can be written in the form,

ψ = ψf + ψ0 (3)

1Through the transport equation (54).
2In view of the energy identity we have an a-priori bound on the curvature flux through N−(p)

We don’t have any a-priori for derivatives of Λ.
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with ψ0 a solution of the homogeneous equation !ψ0 = 0 and ψf given by the the
Kirchoff formula,

ψf (t, x) = (4π)−1

∫ t

0

∫

|x−y|=t−s
|x− y|−1f(s, y)dsdσ(y)

= (4π)−1

∫

R3+1
+

1
|x− y|δ(t− s− |x− y|)f(s, y)dsdy. (4)

Here dσ(y) denotes the area element of the sphere |x−y| = t−s and δ represents the
one dimensional Dirac measure supported at the origin. The homogeneous solution
ψ0 is fixed by initial data on the hyperplane t = 0.

One can also recast (4) in the form

ψf (t, x) = (4π)−1

∫

R3+1
+

H(t− s)δ
(
− (t− s)2 + |x− y|2

)
f(s, y)dsdy (5)

where H(t) is the Heavyside function supported on the positive real axis and the
expression |x − y|2 − (t − s)2 = d0(p, q)2 is the square of the Minkowski distance
function between the vertex p = (t, x) and the point q = (s, y) in the causal past
J−(p)∩R3+1

+ of the point p ∈ R3+1
+ . All attempts to extend Kirchoff’s formula to

a general four dimensional curved space-time are based on either (4) or (5). Thus
the first term in the so called Hadamard parametrix is constructed by replacing
the Minkowski distance function d0 with the Lorentzian distance function d(p, q)
defined by the metric g. Thus one can set,

ψf (p) = (4π)−1

∫

J−(p)
r(p, q) δ

(
d2(p, q)

)
f(q) dv(q) (6)

with dv the volume element of the metric g, and r(p, q) a correction factor which
verifies a transport equation along the null boundary of J−(p) and such that
r(p, p) = 1. The integral on the right makes sense for the portion of J−(p) which
belongs to a neighborhood D of p where the geodesic distance function d(p, q) is well
defined and sufficiently smooth. Typically one requires D to be causally geodesi-
cally convex, i.e. any two causally separated points in D can be joined by a unique
geodesic in D. The local parametrix in D is then defined

ψf (p) = (4π)−1

∫

J−(p)∩D
r(p, q) δ

(
d2(p, q)

)
f(q) dv(q) (7)

The integral in (7) is supported on the portion of the boundary N−(p) of J−(p)
included in D.

The error term !gψf − f , however, does not vanish unless g is the flat metric m.
One can improve (6) by making successive corrections based on solving a series
of transport equations in J−(p) ∩ D. In the process the error term can be made
as smooth as we wish, for given regularity of f , at the price of requiring higher
regularity of the metric g, see [Fried]. Moreover the resulting parametrix, called
Hadamard parametrix, is no longer supported just on the boundary of J−(p). One
obtains a solution of (2) of the form,

ψ(p) =
∫

J−(p)∩D
E−(p, q)f(q) dv(q). (8)
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with E−(p, q) = r(p, q)δ
(
d2(p, q)

)
+ . . . is the retarded Green function of !g

The Hadamard parametrix (8), which requires both infinite smoothness of g and
geodesic convexity for D is ill suited for applications to nonlinear problems. It
turns out that in many situations one does not need the precise representation
(8) and that in fact the first order parametrix of type (6) suffices. This fact was
first made use of by S. Sobolev, see [Sob], to provide a proof of well-posedness
for general second order linear wave equations with variable coefficients. A similar
parametrix was later used by Y. C. Bruhat, see [Br], in her famous local existence
result for the Einstein vacuum equations. Both [Sob] and [Br] construct their first
order parametrices, which we refer to as Kirchoff-Sobolev, based on the flat space
formula3 (4). The generalization of (4) to a curved space-time proceeds from the
observation that the function up(s, y) = t− s− |x− y| is an optical function, i.e.

mαβ∂αu∂βu = 0, (9)

vanishing precisely on the past null cone N−(p) with vertex at p = (t, x) given by
the equation up = 0. Letting r = |x− y| one can easily check that

!
(
r−1δ(up)

)
=

(
! r−1

)
δ(up) + (−2L(r−1) + r−1!up)δ′(u)

+
(
maβ∂αup∂βup

)
δ′′(u) = 4πδ(p),

with δ(p) the four dimensional Dirac measure supported at p. Indeed the terms
involving δ′′(up) and δ′(up) both vanish, the first in view of (9) and the second
because,

−2L(r−1) + r−1 !up = 0,

with L the null vectorfield along N−(p) defined by L = −mαβ∂βup∂α. On the
other hand δ(up)!r−1 = δ(up)∆r−1 = 4πδ(p).

Based on this one can generalize (4) to a curved space-time by setting,

ψf (p) =
∫

J−(p)∩D
a(p, q) δ(up(q)) f(q) dv(q) (10)

where up = up(q) is the backward solution to the eikonal equation,

gαβ∂αu ∂βu = 0, (11)

vanishing on the past null cone N−(p), and a(q) = a(p, q) verifies the transport
equation similar to that satisfied by r−1 in flat space. As in (6) we need to restrict
ourselves to a neighborhood D of p in which solutions to (11) remain smooth.

To explain the restriction to the neighborhood D to which the integral in (10) is
restricted we return for a moment to the initial value problem in flat space-time. In
the Minkowski space-time model with the choice of an initial Cauchy hypersurface
Σ0 = {t = 0} the Kirchoff formula

ψf (p) = (4π)−1

∫

J−(p)∩J+(Σ0)

1
r(p, q)

δ (up(q)) f(q) dv(q) (12)

3It is easy to show that the two constructions (6) and (13) differ in fact only by a normalization
factor at the vertex p.
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with p = (t, x), q = (s, y), up(q) = t− s− |x− y| and r(p, q) = |x− y|, coincides at
point p with the solution of !ψ = f with zero initial data at t = 0. The represen-
tation is valid for any point p to the future of Σ0 and the surface of integration

N−(p) ∩ J +(Σ0) = {(s, y) : t− s = |x− y|, s ≥ 0}
is smooth with exception of the vertex point p. In a flat space-time model with
the Lorentzian manifold M = R × Πa, where Πa = R2 × R/aZ is a flat cylin-
der of “width” a, the representation (12) also coincides with the solution of the
inhomogeneous wave equation with zero initial data at t = 0, provided that we
restrict ourselves to points p = (t, x) such that t ≤ a. For points p = (t, x) with
t > a formula (10) no longer4 represents the solution of the inhomogeneous problem
with zero initial data at t = 0. The null hypersurface N−(p) ∩ J +(Σ0) develops
singularities5 (scars) in the time interval [0, t−a] due to intersecting null geodesics.
This shows that the accuracy of the Kirchoff formula in this case is restricted to
the neighborhood D = {(t, x) : 0 ≤ t ≤ a} of the Cauchy hypersurface Σ0.

To describe the situation in a general space-time (M,g) we assume that M is glob-
ally hyperbolic, i.e., there exists a Cauchy hypersurface Σ ⊂ M with the property
that each in-extendible past (future) directed causal curve from a point p to the
future (past) of Σ intersects Σ once. We denote by Σ+ = J +(Σ) the future set of
Σ. By finite speed of propagation the solution ψ(p) of the wave equation !gψ = f
at point p ∈ Σ+ is completely determined by the values of f in J−(p) ∩ Σ+ and
initial data for ψ on J−(p) ∩ Σ.
Definition 1.1. We will say that E−(p, q) is the retarded parametrix for !g at p
if

ψ(p) =
∫

J−(p)∩Σ+

E−(p, q) f(q) dv(q)

coincides with the solution of the problem !gψ = f with zero initial data on
Σ. We will say that the first term in the expansion of E−(p, q) – distribution
K−p = a(p, q)δ (up(q)) – is the retarded Kirchoff-Sobolev parametrix.

Let D be a space-time neighborhood of Σ. The expression

ψf (p) =
∫

J−(p)∩Σ+

a(p, q)δ(up(q))f(q)dv(q), p ∈ D (13)

is the Kirchoff-Sobolev approximation to the solution ψ(p) of the wave equation
!gψ = f with zero initial data on Σ. Clearly ψf fails to be a solution to (2) in the
non-flat case. We write a general solution of (2) with zero initial data on Σ in the
form,

ψ(p) = ψf (p) + Ef (p) (14)

with Ef an error term.

In this paper we will:

4In fact the correct representation can be obtained by lifting the problem to the covering space
R×R2 ×R, applying the Kirchoff formula and taking periodization in the last variable with the
period a.

5Note that although past null geodesics intersecting, say at t∗ = t−a can be extended beyond
t∗ they no longer belong to the boundary of the causal past of p.
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(1) Provide a careful derivation of (13) and (14) for points p in a suitable
neighborhood D of Σ and show that the error term Ef can be expressed in
the form,

Ef (p) =
∫

J−(p)∩Σ+

E(p, q) δ(up(q))ψ(q) dv(q) (15)

where the smooth density E(p, q) depends only on geometric quantities
associated to the null hypersurface N−(p).

We should note that classical constructions of the Kirchoff-Sobolev parametrix
establish the error term Ef as explicitly dependent on the metric g and its
derivatives relative to some chosen system of coordinates. To our knowledge
the fact that Ef is supported only on the boundary of the past set J−(p)
does not seem to have been fully recognized and used in applications. A
similar observation was, prior to this work, communicated to us verbally by
V. Moncrief. His claim, based on Friedlander’s treatment of the Hadamard
parametrix, was the starting point of our own investigations.

(2) Extend formulas (13) and (15) to the covariant tensorial wave equation (1).

Once again the classical treatment of the tensorial wave equation introduces
additional coordinate dependent error terms. Our approach is entirely co-
variant.

(3) Provide a minimum set of conditions for the local geometry of M near p to
ensure that the representation (13) and (14) holds true at p. We also make
use of our recent results from [Kl-Ro4] to show that for the Einstein vacuum
space-times (M,g), with vanishing Ricci curvature, formulas (13) and (14)
can be extended to points p at distance t∗ from Σ, with t∗ dependent,
essentially, only on the L2 norm of curvature6 of g.

(4) Our formula can be easily adapted to gauge invariant wave equations. In
section 4 of the paper we write down such a formula and show how it can
be used to give a very simple proof of the Eardley-Moncrief global existence
result for the Yang-Mills equation in the 3+1 dimensional Minkowski space,
see [EM1],[EM2]. The remarkable fact about our approach is that it is
entirely gauge independent; we don’t need to specify any gauge condition7.

The size of the neighborhood D, mentioned above, is first and foremost constrained
by the condition that the optical function u is smooth. In the case of a Riemannian
manifold the distance function from a point p is smooth in a geodesically convex
neighborhood of p whose size can be evaluated in terms of the C2 norm of the metric
g, as measured in a given system of coordinates. Alternatively, by a theorem of
Cheeger, the size of this neighborhood depends only on the pointwise bounds for

6Note that classically the construction of a Kirchoff-Sobolev parametrix could only be justified
for points p such that J−(p) ∩ Σ belongs to a geodesically convex neighborhood D of p. As we
note below this requires uniform control for at lest two derivatives of the metric.

7The method of [EM1],[EM2] was heavily dependent on the choice of a Crönstrom gauge.
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the Riemann curvature tensor and a lower bound on the volume of a unit geodesic
ball. For similar reasons the construction of a solution up to (11) is restricted to a
geodesically convex neighborhood8 D of p. Unlike the Riemannian case, however, a
purely geometric characterization of the size of a geodesically convex neighborhood
of a point p is not available and thus all known parametrix constructions for wave
equations had to be restricted to domains D whose size is determined by the C2

norm of the metric g in a given system of coordinates. Thus the Kirchoff-Sobolev
representation would only hold for points p at maximal distance t∗ from Σ with t∗
dependent on the C2 norm of the metric. As we shall explain below, such demand
on the regularity of the metric would make the Kirchoff-Sobolev formula impossible
to apply to realistic nonlinear situations, such as Einstein’s field equations.

The importance of the classical C2 condition becomes apparent upon examining the
regularity of the null boundary N−(p) of the causal past J−(p). This set is ruled
by past null geodesics γ(s) originating from p and terminating at the points γ(s∗)
beyond which one can find a time-like curve connecting p and γ(s) with s > s∗,
see [HE]. Regularity of N−(p) breaks down precisely at the terminal points γ(s∗).
There are two reasons for the existence of a terminal point γ(s∗).

(1) γ(s∗) is a conjugate point.
(2) γ(s∗) is a point of intersection of two different null geodesics.

The existence of conjugate points is governed by the Jacobi equation for the Hessian
D2u of the optical function u,

DL(D2u) + (D2u)2 = R( · , L, · ,L)

with L = −gαβ∂βu∂α the null geodesic vectorfield alongN−(p) and R the curvature
tensor of g. This formula indicates that, at least as far as the conjugate points are
concerned, the terminal value of the affine parameter s∗ can be bounded below by
an upper bound on sectional curvature which, in turn, can be controlled by a C2

bound on the metric.

Uniform bounds of of the curvature tensor R, or C2 bounds for the metric g, are
however not very useful in applications to nonlinear wave equations. For example
in the classical local existence result for the Einstein vacuum equations [Br], which
is based on Kirchoff-Sobolev formula, the C2 requirement is by itself worse9 when
compared to the result in [HKM] based on the Sobolev norm Hs, s > 5/2. It
is for this reason alone that the Kirchoff-Sobolev parametrix has been abandoned
in all rigorous work on nonlinear wave equations in favor of energy estimates and
Sobolev inequalities. The main goal of our paper is to revive the Kirchoff-Sobolev
parametrix by constructing it and showing that in the particular case of the Einstein
vacuum equations,

Rαβ = 0,

8Defined as the image of the exponential map : TpM → M restricted to the largest convex
subset of TpM where it is a diffeomorphism.

9Additional losses of derivatives lead to a C5 result in [Br].
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it is well-defined under much less stringent assumptions. For this task we rely in an
essential way on the results in [Kl-Ro1]–[Kl-Ro3] which show10 that the radius of
conjugacy along N−(p), expressed relative to an affine parameter of L, depends only
on the size of the geodesic flux of curvature11 Fp along N−(p). These results are
complemented by our recent work [Kl-Ro4] where we establish the remaining part
of a lower bound on the radius of injectivity of N−(p), i.e., control of intersecting
null geodesics from p, expressed relative to a given time function. We achieve this
by assuming, in addition to the above mentioned bound on the curvature flux, the
existence of a coordinate system xα in D relative to which the metric g is pointwise
close to the flat Minkowski metric.

Acknowledgment. We would like to thank V. Moncrief for fruitful discussions
in connection with our work. He was first to point out to us that a formula of
type (14) with an error term Ef of the form (15), supported on the boundary of
the past of p, should hold true. His derivation, based on Hadamard’s parametrix
construction as formulated in [Fried], differs however significantly from ours. We
would also like to point out that our invariant derivation of the Eardley-Moncrief
global regularity result for the 3 + 1 dimensional Yang-Mills equations answers a
question first raised to us by him.

2. Basic definitions and main formula

2.1. Null cones. Consider a spacelike hypersurface Σ, a point p to its future Σ+

and J−(p) its causal past. We start by assuming the following local hyperbolicity
condition for the pair (Σ, p):

A1. All past causal curves initiating at points in a small neighborhood of J−(p)
intersect Σ at precisely one point.

Let N−(p) be the null boundary of J−(p). In general N−(p) is an achronal,
Lipschitz hypersurface. It is ruled by the null geodesics12 from p, corresponding
to all past null directions in the tangent space TpM. These null geodesics can
be parametrized by fixing a future unit time-like vector Tp at p. Then, for every
direction ω ∈ S2, with S2 denoting the standard sphere in R3, consider the null
vector )ω in Tp(M),

g()ω,Tp) = 1, (16)

and associate to it the past null geodesic γω(s) with initial data γω(0) = p and
γ̇ω(0) = )ω. We can choose the parameter s in such a way so that L = γ̇ω(s) is
geodesic. Thus,

DLL = 0, g(L,L) = 0, and, at point p, g(L,Tp) = 1 (17)

10Properly speaking the results in [Kl-Ro1]–[Kl-Ro3] do not consider the vertex p yet the
methods used in those papers can be shown to extend to cover the case of interest here. In fact,
this forms the subject of the Q. Wang’s thesis, Princeton University, 2006.

11This is an appropriate L2 integral of the tangential components of the curvature tensor along
N−(p), called curvature flux, which will be defined below.

12Every point in N−(p) \ {p} can be reached from p by a past null geodesic in N−(p).
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As mentioned in the introduction the null cone N−(p) is smooth as long as the
exponential map (s, ω) → γω(s) is a local diffeomorphism and no two geodesics,
corresponding to different direction ω ∈ S2, intersect. Thus for each ω ∈ S2 either
γω(s) remains on the boundary of J−(p) for all positive values of s or there exists a
a value s∗(ω) beyond which the points γω(s) are no longer on the boundary of J−(p)
but rather in its interior, see [HE]. Thus N−(p) is a smooth manifold at all points
except the vertex p and the terminal points of its past null geodesic generators.
Indeed, at a terminal point q there exists a null geodesic through q which fails to
be in N−(p) past q. This implies that the tangent space Tq(N−(p)) contains the
past tangent direction of the null geodesic but not its opposite. This means that
N−(p) must be singular at q. In what follows we shall denote by Ṅ−(p) the regular
part of N−(p), that is the part with its terminal points removed. Clearly the null
geodesic vectorfield L is well-defined and smooth on Ṅ−(p).

The parameter s in the definition of γω is an affine parameter on Ṅ−(p), i.e.

L(s) = 1, s(p) = 0. (18)

Let γ denote the degenerate metric induced by g on Ṅ−(p). Clearly γ(L, X) = 0
for any X ∈ T Ṅ−(p). Let χ denote the null second fundamental form of Ṅ−(p),

χ(X, Y ) = g(DXL, Y ). (19)

where X, Y are vector-fields tangent to Ṅ−(p) and D denote the covariant deriv-
ative on (M,g). Clearly χ is symmetric and χ(L, X) = 0 for any X ∈ T Ṅ−(p).
This allows us to define trχ as the trace of χ relative to γ.

Given a point q ∈ Ṅ−(p) \ {p}, we can define a null conjugate L to L such that,

g(L,L) = −2, g(L,L) = g(L,L) = 0. (20)

and further complement it by vectors (e1, e2) with the property that

g(L, ea) = g(L, ea) = 0, g(ea, eb) = δab, a, b = 1, 2. (21)

The vectors (L,L, e1, e2) can be locally extended to a neighborhood of a point
q ∈ Ṅ−(p) \ {p} to form a smooth local null frame. Relative to such a frame
the only non-vanishing components of the null second fundamental form χ are
χab = g(DeaL, eb) = χba. We can introduce the other frame coefficients,

χ
ab

= g(DeaL, eb), ζa =
1
2
g(DaL,L), η

a
=

1
2
g(ea,DLL) (22)

Note that, in general, χ
ab

is not symmetric.

Remark. A canonical way to define a null geodesic conjugate is to take L the
unique null vectorfield orthogonal to the level surfaces Ss defined by the affine
parameter s. We refer to the corresponding null pair as a null geodesic pair. We
can also choose e1, e2 to be tangent to Ss. Note that in that case χ is symmetric.
We also note that in a neighborhood of p where N−(p) coincides with its regular
part Ṅ−(p) the geodesic null frame defined above is smooth away from the point
p.
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For the purpose of constructing our Kirchoff-Sobolev parametrix we shall make, in
addition to A1 the following assumption.

A2. We assume that N−(q) coincides with Ṅ−(q) past the space-like hypersurface
Σ for any point q in a neighborhood of p.

2.2. Optical function. To make sense of our Kirchoff-Sobolev formula we need to
define an optical function13 u, in a neighborhood of Ṅ−(p), such that it vanishes
identically on Ṅ−(p). We define u uniquely relative to the time-like vector Tp as
follows:

Let ε > 0 a small number and Γε : (1− ε, 1 + ε) →M denote the timelike geodesic
from p such that Γε(1) = p and Γ′ε(1) = Tp. From every point q of Γε let N−(q)
be the boundary of the past set of q. In view of assumption A2 for all sufficiently
small ε > 0, N−(q) coincides with its regular part Ṅ−(q) to the future Σ+ of Σ.

We now set u to be the function, constant on each Ṅ−(q), such that for q = Γε(t),

u|Ṅ−(q) = t− 1.

This defines a smooth function u which vanishes on Ṅ−(p) and verifies the eikonal
equation (11)

gαβ∂αu ∂βu = 0,

in a neighborhood Dε of Ṅ−(p) ∩ Σ+. Observe that the null geodesic vectorfield
L = gαβ∂βu ∂α extends the vectorfield in (17) to D. It verifies the normalization
condition,

g(L,Tp) = Tp(u) = 1,

at all points of Dε. We can thus extend the definition (19) of the null second
fundamental form χ and its trace trχ at every point in Dε.

We can introduce local coordinates around any point in r ∈ Dε by considering the
unique null geodesic γω,q, with ω ∈ S2, which initiates at q ∈ Γε and passes through
r at value s of its affine parameter. Denoting by u the value corresponding to the
null cone Ṅ−(q) we see that r is determined by the coordinates u, s and ω ∈ S2.

2.3. Dirac measure on Ṅ−(p). Given our smooth optical function u, defined
in the neighborhood Dε of Ṅ−(p) ∩ Σ+, and a distribution µ on the real line
R, supported at the origin, we can define the pull-back distribution u∗(µ) = µ ◦
u on Dε ⊂ M in the usual sense of distribution theory. In the particular case
when µ is either the Dirac measure δ0 or its derivatives δ′0, δ

′′
0 , . . . , we denote the

corresponding distributions on M by δ(u), δ′(u), δ′′(u), . . . . We can thus make
sense of calculations such as,

Dαδ(u) = δ′(u)Dαu, DαDβ

(
δ(u)

)
= δ′′(u)DαuDβu + δ′(u)DαDβu

13i.e. a function which verifies (11)
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Clearly δ(u), δ′(u), . . . are supported on Ṅ−(p) ∩ Dε. We can use the definition of
δ(u) to define the integral along Ṅ−(p) of any continuous function f supported in
Dε as follows.

Definition. Given a continuous function f supported in Dε we define its integral
on Ṅ−(p) by,

∫

Ṅ−(p)
f =< δ(u), f > (23)

Proposition 2.4. The definition (23) depends only on the restriction of f to Ṅ−(p)
and the normalization condition (16) used in the definition of the null geodesic
generator L.

Proof : We may assume without loss of generality that f is supported in the
domain Dε, which can be parametrized by the coordinates u, s and ω ∈ S2 as
described above. We can the easily calculate, according to the definition of δ(u)
and coarea formula,

< δ(u), f >=
∫ ∞

0

∫

S2
f(0, s, ω)dsdas

where das denotes the area element on the 2- surfaces Ss of constant s.

2.5. Kirchoff-Sobolev parametrix. Consider Jp to be a fixed k-tensor at p and
let A be the unique k -tensor-field defined along Ṅ−(p) which verifies the linear
transport equation,

DLA +
1
2
trχA = 0, (sA)(p) = Jp (24)

with s the affine parameter (18). The tensor-field A can be extended smoothly14

to a small neighborhood of Ṅ−(p). We can now define the distribution, or current,
in Σ+,

< Aδ(u),F >=< δ(u),g(A,F) > (25)

for an arbitrary, smooth, k-tensor-field F supported in Σ+. Here g(A,F) denotes
the full contraction of the k -tensor-fields A and F with respect to the space-time
metric g. Observe that the current Aδ(u) depends only on the choice of Tp and
Jp and not on the particular extensions of u and A.

In what follows we identify the space of k-tensors at p and its dual with the help
of the metric g.

Definition. We call K−p = K−p,Jp
, a k-tensor-field distribution with values in

the space of k-tensors at p, defined by the formula K−p,Jp
= Aδ(u), with A defined

by (24), the retarded Kirchoff-Sobolev parametrix at the point p, corresponding to

14We can in fact extended it canonically by solving the same transport equation along Ṅ−(q),
with q ∈ Γε and initial data sA(q) = Jq where Jq is an arbitrary smooth tensor-field coinciding
with Jp at p = q and s the afine parameter along Ṅ−(q). Note that, so defined, the tensor-field
A is smooth away from the axis Γε.
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Jp. If Ψ is a solution of the equation !gΨ = F, with F supported in Σ+, we denote
by ΨF,Jp(p) the k-tensor at p defined by the integral,

ΨF,Jp(p) =< K−p,Jp
,F >=

∫

Ṅ−(p)
g(A,F). (26)

In the case of the scalar wave equation !gψ = f we can choose A to be the scalar
solution of (24) with initial data (sA)(p) = 1. In that case we have K−p = Aδ(u)
and

ψf (p) =< K−p , f >=
∫

Ṅ−(p)
Af.

In the particular case of Minkowski space we can easily identify A = Ap(q) with
the term |x− y|−1 where q = (s, y) ∈ N−(p) and p = (t, x).

2.6. Time foliation near vertex. Returning to the construction of u in subsec-
tion (2.2) we observe that the parameter t along the geodesic Γε can be extended
to a local, equidistant15 time foliation Σt, t ∈ [1 − ε, 1 + ε] which covers a whole
neighborhood of the point p, such that p ∈ Σ1. Indeed, starting with a fixed space-
like hypersurface Σ1 through p, orthogonal to the future unit timelike vectorfield
Tp, we can define this geodesic foliation using the timelike geodesics normal to Σ1.
In particular, for all t ∈ [1− ε, 1], if we denote by Ωε the set

Ωε =
(
J−(p) ∩ Σ+

)
\ ∪t∈[1−ε,1] Σt (27)

then its boundary is given by

∂Ωε = N−
ε (p) ∪D1−ε ∪D

where N−
ε (p) is the portion of N−(p) to the future of Σ and the past of Σ1−ε,

D1−ε = J−(p) ∩ Σ1−ε and D = J−(p) ∩ Σ.

Let T = Dt denote the future, unit normal to the foliation Σt, defined in a neigh-
borhood of p. We define the null lapse function ϕ and the second fundamental form
k associated to Σt:

ϕ−1 = T(u) = g(L,T), k(X, Y ) = g(DXT, Y ), ∀X, Y ∈ TΣt. (28)

Clearly ϕ(p) = 1. Since T is a locally smooth vectorfield, k is a smooth symmetric
2-tensor. In particular,

‖k‖L∞ ≤ C

for some constant C. Similarly, since u is a smooth optical function and ϕ(p) = 1,
the lapse ϕ is a smooth bounded function in a neighborhood of p. in particular,

|ϕ(q)− 1| → 0, q → p. (29)

We now recall the Raychaudhuri equation satisfied by trχ along Ṅ−(p),
d

ds
(trχ) +

1
2
(trχ)2 = −|χ̂|2 −Ric(L,L). (30)

with s the afine parameter of L and χ̂ the traceless part of χ.

15With the lapse function of the foliation identically one.
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The behavior of the function trχ at the vertex p is determined by the conditions

(strχ)(p) = 2, χ̂(p) = 0. (31)

Integrating the Raychaudhuri equation one can easily deduce that,

|trχ(q)− 2
s
| → 0, q → p. (32)

Consider the time function t restricted to N−(p). Then
∂t

∂s
= L(t) = g(L,T) = ϕ−1 (33)

The area |St(p)| of the 2-d surfaces St(p) = Σt ∩N−(p) obeys the equation
d

dt
|St(p)| =

∫

St(p)
ϕ trχdaγ .

This and the behavior of trχ and φ near p (t(p) = 1) imply that

|St(p)| = 4π(t− 1)2 + O(|t− 1|3) (34)

On the other hand from (33) and (29), t− 1 = s + o(s), which implies that

|St(p)| = 4πs2 + o(s2) (35)

We shall also make use of the following simple variation of proposition 2.4.

Proposition 2.7. Let t be a regular time function defined on Ṅ−(p) with t(p) = 1
and equal t0 < 1 on Σ0∩Ṅ−(p), where Σ0 is an arbitrary spacelike hypersurface on
Ṅ−(p) ∩Σ+. Assume that ϕ = dt

ds < 0. Then, for every test function f , compactly
supported in J +(Σ0)

< δ(u), ψ >=
∫ 1

t0

∫

St

fϕdtdat (36)

where St denotes the level surfaces of t and dat the corresponding area element.

Proof : The result follows easily by first extending t and u to a neighborhood D
of Ṅ−(p) ∩ Σ+ and the applying the coarea formula as above.

2.8. Statement of the result. We consider a space-like hypersurface Σ ⊂M and
a point p ∈ Σ+ = J +(Σ) such that the assumptions A1-A2 are satisfied.

Theorem 2.9. Let Ψ be a solution of the equation !gΨ = F with F a k-tensor-field
supported in Σ+. Then for any k-tensor Jp at p,

Ψ(p) = ΨF,Jp(p) +
∫

Ṅ−(p)
g(E ,Ψ), (37)

where
ΨF,Jp(p) =< K−p,Jp

,F >=
∫

Ṅ−(p)
g(A,F)

and A verifies (24). The smooth error term E depends only on Jp, the geometry of
the truncated null cone Ṅ−(p) ∩Σ+ ⊂M, and the ambient spacetime curvature R
restricted to Ṅ−(p).
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In the particular case of a scalar wave equation !gψ = f , A and E are scalar
functions on Ṅ−(p) and,

ψ(p) = ψf (p) +
∫

N−(p)
Eψ,

The precise expression of the error term E will be given in Theorem 3.11

3. Derivation of Kirchoff-Sobolev formula

3.1. Covariant derivatives of space-time tensors. As is well known there is no
canonical way to define a restriction of the space-time covariant derivative D to a
null hypersurface. This is due to the absence of a canonical projection of a tangent
space TqM, q ∈ Ṅ−(p), onto the tangent space Tq(Ṅ−(p)). This projection can
be fixed, however, by a choice of a null conjugate L, i.e. a null vector such that
g(L,L) = −2. With this choice we define an induced covariant derivative (L)D on
Ṅ−(p):

(L)DXY = DXY +
1
2
χ(X, Y )L, ∀X, Y ∈ T Ṅ−(p)

For example, if we choose X, Y to be the elements (ea)a=1,2 of a null frame (L,L, e1, e2),

Daeb = (L)Daeb +
1
2
χab L.

We now make sense of covariant derivatives of space-time tensors along Ṅ−(p).
We start by defining a covariant derivative D̂ of a space-time 1-form Aµ defined
on Ṅ−(p). Thus we view A as a section of the vector bundle16 T ∗M over Ṅ−(p),
endowed with the induced covariant derivative (L)D. We interpret the covariant
derivative D̂A of A along N−(p) as a 1-form on Ṅ−(p) with values in T ∗M. Thus,
for every vectorfield X ∈ T Ṅ−(p) and any vectorfield Z in TM,

D̂A(X;Z) = D̂XA(Z) := X
(
A(Z)

)
−A(DXZ)

We also write,
( D̂XA)µ = XaDaAµ, ∀X ∈ T Ṅ−(p).

We define D̂
2
A, an Ṅ−(p) 2-tensor of second covariant derivatives of A along

Ṅ−(p) with values in T ∗M, by the formula,

D̂
2
A(X, Y ;Z) = ( D̂X D̂A)(Y ;Z) = X( D̂A(Y ;Z))− D̂A((L)DXY ;Z)− D̂A(Y ;DXZ)

or simply,

D̂
2
Aµ(X, Y ) = ( D̂X( D̂Y A))µ − ( D̂(L)DXY A)µ

These definitions can be easily extended to higher covariant derivatives along Ṅ−(p)
and to higher order tensors A.

16with the covariant derivative denoted by D
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3.2. Kirchoff-Sobolev current. Consider the current K−p,Jp
= Aδ(u) defined in

(25). Recall that Jp is an arbitrary k-tensor at p and A is a k-tensor-field verifying
the transport equation, along Ṅ−(p),

DLA +
1
2
Atrχ = 0, sA(s)|s=0 = Jp. (38)

Also L = gµν∂νu ∂µ, gµν∂νu ∂µu = 0 and L(s) = 1. Let L be an arbitrary local
null conjugate to L, i.e. L(u) = g(L,L) = −2. Calculating relative to an arbitrary
null frame we easily check that !gu = trχ. Formally we thus have,

!g

(
Aδ(u)

)
= !gAδ(u) + (gµνDµADνu + A!gu)δ′(u) + A(gµν∂νu ∂µu)δ′′(u)
= !gAδ(u) + (−L(u)DLA + A!gu)δ′(u)

= !gAδ(u) + 2(DLA +
1
2
Atrχ)δ′(u)

Hence,

!g

(
Aδ(u)

)
= !gAδ(u) + 2(DLA +

1
2
Atrχ)δ′(u). (39)

Observe that the above calculation does not depend on the choice of L.

Since

DL(sA) = −1
2
(trχ− 2

s
)sA (40)

we have, in view of (32), that along Ṅ−(p),

|sA(q)− Jp| → 0, s → 0. (41)

We shall next apply K−p,Jp
= A δ(u) to the equation !ψ = F in the sense of

distributions,
∫

Σ+
g(A δ(u),!gΨ) =

∫

Σ+
g(!

(
A δ(u)

)
,F) (42)

where Σ+ = J +(Σ) is the future of the initial hypersurface Σ. We assume that Ψ
has zero data on Σ and that F is supported in Σ+. Our next goal is to integrate
by parts on the left hand side of (42). We first decompose !gA, for an arbitrary
tensor-field A, relative to our null frame (20) - (21). For simplicity we assume that
Aµ is a one tensor, the general case can be treated in the same manner. We recall
the definition of the Ricci coefficients (22),

χ
ab

= g(DeaL, eb), ζa =
1
2
g(DaL,L), η

a
=

1
2
g(ea,DLL)

and also introduce,

ω = −1
4
g(DLL,L) (43)

which is well defined in a neighborhood Dε of Ṅ−(p), see subsection 2.2. Using also
the notation in subsection (3.1) we derive:

!gAµ = gαβD2
αβAµ = −1

2
D2

LLAµ −
1
2
D2

LLAµ + δabD2
abAµ
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Now, DbAµ = D̂bAµ and, since Daeb = (L)Daeb + 1
2χabL,

D2
abAµ = ea( D̂bAµ)−DDaebAµ

= ea( D̂bAµ)−D(L)Daeb
Aµ −

1
2
χabDLAµ

= D̂
2

abAµ −
1
2
χabDLAµ

Hence, denoting ∆̂Aµ = δab D̂
2

abAµ,

δabD2
abAµ = ∆̂Aµ −

1
2
trχDLAµ

On the other hand,

D2
LLAµ = D2

LLAµ + R λ
µ LLAλ

= DLDLAµ − 2ζa D̂aAµ + 2ω D̂LAµ + R λ
µ LLAλ

Henceforth,

!gAµ = −DLDLAµ + ∆̂Aµ + ζa · D̂aAµ (44)

− ω D̂LAµ −
1
2
trχDLAµ −

1
2
R λ

µ LLAλ

Remark 3.3. In the case when A is a scalar formula (44) becomes, simply,

!gAµ = −DLDLA + ∆̂A + ζa · D̂aA− ω D̂LA− 1
2
trχDLA (45)

3.4. Integration by parts. In view of (39) we have,

!g

(
Aδ(u)

)
= !gA δ(u) + (2 D̂LA + trχA)δ′(u) (46)

where for u = 0,

D̂LA +
1
2
Atrχ = 0.

According to section 2.6 we have defined a time foliation Σt, t ∈ [1 − ε, 1 + ε], in
a neighborhood of the vertex p with p ∈ Σ1 such that the boundary of the set
Ωε = J−(p) \ ∪t∈[1−ε,1] Σt is given by,

∂Ωε = Ṅ−
ε (p) ∪D1−ε ∪D.

Here Ṅ−
ε (p) is the portion of Ṅ−(p) to the future of Σ1−ε , D1−ε = J−(p) ∩ Σ1−ε

and D = J−(p) ∩ Σ. As before we denote by T the future unit normal to the
surfaces Σ0 = Σ and Σ1−ε. Note that Σ1−ε needs only be defined locally, for small
ε > 0. Note also that, for ε = 0, T coincides with Tp as defined in section 2.1.
Clearly,

∫

Ω
g(A δ(u),!gΨ) = lim

ε→0

∫

Ωε

g(A δ(u),!gΨ)

where Ω = J−(p) ∩ Σ+. Due to the presence of δ(u) and the fact that ψ is
supported in Σ+ we may assume in what follows that all functions we deal with
in the calculation below are supported in the set Ω = J−(p) ∩ J+(Σ). Thus the
boundary of the intersection of their supports with Ωε is included in Σ1−ε.
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Lemma 3.5. Let F,G be two tensor-fields of the same rank and F is a distribution
supported in Ω. Then

∫

Ωε

g(F,!gG) =
∫

Ωε

g(!gF,G)−
∫

Dt

(
g(F,DTG)− g(G,DTF )

)∣∣∣∣
t=1−ε

t=0

,

where D0 = D.

Proof : Indeed,

g(F,!gG)− g(!gF,G) = Dαg(F,DαG)−Dαg(DαF,G)

Thus,
∫

Ωε

(g(F,!gG)− g(!gF,G)) =
∫

Ωε

Dα
(
g(F,DαG)− g(DαF,G)

)

= −
∫

Dt

Tα
(
g(F,DαG)− g(DαF,G)

)∣∣∣∣
1−ε

0

We now write,
∫

Ωε

g (A δ(u),!gΨ) =
∫

Ωε

g
(
!g

(
A δ(u)

)
,Ψ

)

−
∫

Dt

g(Aδ(u),DTΨ)
∣∣∣∣
1−ε

0

+
∫

Dt

g
(
DT

(
Aδ(u)

)
,Ψ

) ∣∣∣∣
1−ε

0

=
∫

Ωε

g
(
!g

(
A δ(u)

)
,Ψ

)
+ Iε + Jε,

where Iε and Jε denote the boundary terms on D1−ε. The term corresponding to
D0 vanishes due to the zero data assumption for Ψ.

Proposition 3.6. We have

Iε → 0, Jε → −4πg(Ψ(p),Jp) as ε → 0.

Thus,
∫

Ω
g (A δ(u),!gΨ) = lim

ε→0

∫

Ωε

g
(
!g

(
A δ(u)

)
,Ψ

)
− 4πg (Ψ(p),Jp) (47)

Proof : We analyze the boundary terms Iε, Jε. Clearly,

Iε = −
∫

D1−ε

g (Aδ(u),DTΨ) = −
∫

Ṅ−(p)∩D1−ε

g(A,DTΨ)ϕ daγ

where, see (28), ϕ = |DTu|−1 is the null lapse and daγ is the area element of
the 2-surface S1−ε(p) = Ṅ−(p) ∩ D1−ε. Recall that according to (34) the area
|S1−ε(p)| " ε2.
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Now,

|Iε| " ‖ϕ‖L∞
( ∫

S1−ε

|A|2daγ

)1/2(
∫

S1−ε

|DTΨ|2daγ

)1/2

" ‖ϕ‖L∞‖DTΨ‖L∞‖A‖L2(S1−ε(p))|S1−ε(p)|1/2

" ε ‖ϕ‖L∞‖DTΨ‖L∞‖A‖L2(S1−ε(p))

Recalling (41) and (34) we easily see that ‖A‖L2(S1−ε) is bounded as ε → 0. Thus,
for a smooth tensor-field Ψ, we clearly have,

Iε → 0, as ε → 0.

We now consider the second boundary term,

Jε =
∫

D1−ε

g
(
DT

(
Aδ(u)

)
,Ψ

)

=
∫

D1−ε

δ(u)g (DTA,Ψ) +
∫

D1−ε

δ′(u)DTu g(A,Ψ)

=
∫

D1−ε

δ(u)g (DTA,Ψ) +
∫

D1−ε

δ′(u)ϕ−1 g(A,Ψ)

= J1
ε + J2

ε

If N = ϕL + T denotes the unit normal17 to S1−ε = Ṅ−(p) ∩ Σ1−ε in Σ1−ε, then
DNδ(u) = δ′(u)DNu and DNu = DTu = ϕ−1. Hence,

J2
ε =

∫

Σ1−ε

δ′(u)ϕ−1 g(A,Ψ) =
∫

Σ1−ε

DNδ(u)g(A,Ψ)

We next record the following integration by parts formulae.

Lemma 3.7. Let X be a vectorfield tangent to the hyperplane Σt and let f, g be
two scalar functions on Σt. Denote by ∇ the covariant derivative restricted to Σt.
Then,

∫

Σt

fX(g) = −
∫

Σt

(X(f) + div Xf)g. (48)

In particular,
∫

Σt

fN(g) = −
∫

Σt

(N(f) + trθ f)g, (49)

where tr θ is the mean curvature of the 2-d surfaces St,u = {u = const} ∩ Σt.

Proof : Formula (48) is standard. To prove (49) observe div N = g(∇NN,N) +∑
a g(∇aN, ea) = trθ where θ is the second fundamental form of the surfaces St,u ⊂

Σt.

17A priori, the vectorfield N is defined only on Ṅ−(p) ∩ Σ1−ε, it can however be extended
locally as a unit normal to the foliation of 2-d surfaces {u = const} ∩ Σ1−ε.
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Using the lemma we infer that,

J2
ε = −

∫

Σ1−ε

δ(u)
(
Ng(A,Ψ) + trθ g(A,Ψ)

)

= −
∫

Σ1−ε

δ(u)
(
g(DNA,Ψ) + trθ g(A,Ψ)

)
−

∫

Σ1−ε

δ(u)g(A,DNΨ)

Now, proceeding as for Iε, it is easy to check that
∫
Σ1−ε

δ(u)g(A,DNΨ) → 0 as
ε → 0. Hence,

lim
ε→0

J2
ε = − lim

ε→0

∫

Σ1−ε

δ(u)
(
g(DNA,Ψ) + trθ g(A,Ψ)

)

Or,

lim
ε→0

Jε = − lim
ε→0

∫

Σ1−ε

δ(u)
(
g(DN−TA,Ψ) + trθ g(A,Ψ)

)

Now observe that L = ϕ−1(N − T). Hence, DLA = ϕ−1DN−TA. Since DLA +
1
2Atrχ = 0 we infer,

DN−TA = ϕDLA = −1
2
ϕAtrχ.

Hence,

lim
ε→0

Jε = − lim
ε→0

∫

Σ1−ε

δ(u)
(
− 1

2
ϕtrχ + trθ

)
g(A,Ψ)

On the other hand θab = g(∇aN, eb) = g(Da(ϕL+T), eb) = ϕχab +kab. Therefore,
trθ = ϕtrχ + δabkab and we deduce,

lim
ε→0

Jε = −1
2

lim
ε→0

∫

Σ1−ε

ϕtrχδ(u)g(A,Ψ)− lim
ε→0

∫

Σ1−ε

(δabkab)δ(u)g(A,Ψ)

It is easy to see that the second term of the right hand side converges to zero for
ε → 0. Indeed,

|
∫

Σ1−ε

(δabkab)δ(u)g(A,Ψ) | =
∣∣
∫

S1−ε(p)
(δabkab)g(A,Ψ)ϕ daγ

∣∣

" |S1−ε(p)| 12 ‖k‖L∞‖Ψ‖L∞‖ϕ|L∞‖A‖L2(S1−ε(p))

Therefore,

lim
ε→0

Jε = −1
2

lim
ε→0

∫

S1−ε(p)
ϕ2 trχg(A,Ψ) daγ

It is easy to check that,
1
2

lim
ε→0

∫

S1−ε(p)
ϕ2 trχg (A, (Ψ−Ψ(p)) daγ = 0

Therefore,

lim
ε→0

Jε = −1
2

lim
ε→0

∫

S1−ε(p)
ϕ2trχg (A,Ψ(p)) dαγ

Or, since supS1−ε(p) |ϕ − 1| → 0, and supS1−ε(p) |trχ − 2
s | → 0 as ε → 0, we infer

that

lim
ε→0

Jε = −ε−2 lim
ε→0

∫

S1−ε(p)
g (Ψ(p), (sA)) = −4π lim

r→0
g (Ψ(p), (rA)(r))
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Thus, using the initial condition lims→0 sA(s) = Jp, we obtain

lim
ε→0

Jε = −4πg(Ψ(p),Jp)

We now analyze the term
∫
Ωε

g
(
!g

(
A δ(u)

)
,Ψ

)
on the right hand side of (47). In

view of (46) we have,
∫

Ωε

g
(
!g

(
A δ(u)

)
,Ψ

)
=

∫

Ωε

δ(u)g ((!gA),Ψ) +
∫

Ωε

δ′(u)g ((2DLA + trχA),Ψ) .

Given the normalization L(u) = −2 we have δ′(u) = − 1
2DLδ(u). Integrating by

parts we obtain
∫

Ωε

δ′(u)g ((2DLA + trχA),Ψ) =
1
2

∫

Ωε

δ(u)g
(
DL(2DLA + trχA),Ψ

)

+
1
2

∫

Ωε

δ(u)g
(
(2DLA + trχA),

(
DLΨ + DαLαΨ

))

+
∫

Dt

δ(u)g(((2DLA + trχA),Ψ) g(L,T) |t=1−ε
t=0

Recall that 2DLA + trχA = 0 on the surface u = 0. Therefore the last two terms
vanish and we derive,

∫

Ωε

δ′(u)g ((2DLA + trχA),Ψ) =
∫

Ωε

δ(u)g
(
DL(DLA +

1
2
trχA),Ψ

)

Therefore,
∫

Ωε

g
(
!g

(
A δ(u)

)
,Ψ

)
=

∫

Ωε

δ(u)g
((

!gA + DL(DLA +
1
2
trχA)

)
,Ψ

)

We now recall (44),

!gA = −DLDLA + ∆̂A + ζa · D̂aA

− ω D̂LA− 1
2
trχDLA− 1

2
R(·,A,L,L)

Therefore,

!gA + DL(DLA +
1
2
trχA) = ∆̂A + ζa D̂aA− 1

2
trχDLA

− ω D̂LA +
1
2
(DLtrχ)A− 1

2
R(·,A,L,L)

while since DLA + 1
2 trχA = 0 on Ṅ−(p),

−1
2
trχDLA− ωDLA +

1
2
(DLtrχ)A =

1
2
(DLtrχ +

1
2
trχtrχ + 2ωtrχ)A

Hence, we have proved the following,

Proposition 3.8. In the case of a one form A verifying (38),

!gA + DL(DLA +
1
2
trχA) = ∆A + ζaDaA

+
1
2
(DLtrχ +

1
2
trχtrχ + 2ωtrχ)A− 1

2
R(·,A,L,L),
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where

∆A = ∆̂A +
1
2
trχ D̂LA = ea(DaA)− g(Daea, eb)DbA

is a Laplace-Beltrami type operator which coincides with the standard surface Laplace-
Beltrami operator in the case when the frame {ea}a=1,2 spans a tangent space of a
2-dimensional surface18.

In the scalar case we have instead, see remark 3.3,

!gA + DL(DLA +
1
2
trχA) = ∆A + ζaDaA

+
1
2
(DLtrχ +

1
2
trχtrχ + 2ωtrχ)A,

Using the above proposition we infer that,
∫

Ωε

g
(
!g

(
A δ(u)

)
,Ψ

)
=

∫

Ωε

δ(u)g
((

∆A + ζaDaA
)
,Ψ

)

+
1
2

∫

Ωε

δ(u)
(
DLtrχ +

1
2
trχtrχ + 2ωtrχ

)
g(A,Ψ)

+
1
2

∫

Ωε

δ(u)R(Ψ,A,L ,L)

We now make use of the following,

Proposition 3.9. Introduce the mass aspect function as in (13.1.10b) of [C-K],

µ = DLtrχ +
1
2
trχtrχ + 2ωtrχ (50)

The following formula holds true relative to the standard geodesic foliation on
Ṅ−(p),

µ = 2div ζ − χ̂ · χ̂ + 2|ζ|2 + RLL +
1
2
R(L,L,L,L) (51)

Proof : See [C-K].

Remark 3.10. Note that according to (51) the mass aspect function µ depends only
on the null hypersurface Ṅ−(p) and the ambient curvature R.

We have therefore proved the following precise version of theorem 2.9,

Theorem 3.11. Let A be a vectorfield verifying,

DLA +
1
2
Atrχ = 0, sA(p) = Jp on u = 0

where Jp is a fixed vector at p. Then solution Ψ of an inhomogeneous vector equa-
tion !gΨ = F, in a globally hyperbolic spacetime (M,g) satisfying A1,A2, with

18As in the case of the geodesic foliation.
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zero initial data on a Cauchy hypersurface Σ can be represented by the following
formula at point p with Ω = J−(p) ∩ J +(Σ),

4πg(Ψ(p),Jp) = −
∫

Ω
δ(u)g(A,F) (52)

− 1
2

∫

Ω
δ(u)R(Ψ,A,L ,L) +

∫

Ω
δ(u)g

((
∆A + ζaDaA

)
,Ψ

)

+
1
2

∫

Ω
δ(u) µg(A,Ψ)

where,

R(Ψ,A,L ,L) = RαβγδLγLδΨαAβ ,

with Rαβγδ the components of the curvature tensor R relative to an arbitrary frame.

Remark 3.12. Theorem 3.11 implies that the error term E in (37) has the following
representation

Ea = −1
2
RaλγδAλLγLδ + (∆A + ζaDaA)α +

µ

2
Aα

in the case of a vectorial wave equation. For the scalar wave equation

E = (∆A + ζaDaA) +
µ

2
A

Remark 3.13. Formula (52) can easily be generalized to higher order tensor wave
equations. Indeed if both Ψ and F are tensor-fields of order k then Jp, A and E
are also of order k and,

g(E ,Ψ) = g
(
(∆A + ζaDaA),Ψ

)
+

µ

2
g(A,Ψ) (53)

+ R(·, ·,L ,L)#Ψ#A

where the last term denotes a scalar contraction of R(·, ·,L ,L) with Ψ and A.

4. Wave equation for sections of vector bundles and applications to
the Yang-Mills equations

Now let V be a vector bundle over (M,g) with a positive definite scalar product
<,> and a compatible connection λ. We may assume that V is a vector bundle
associated to a principal bundle P so that V = P ×G E with G a compact Lie
group and a vector space E. Let G denote the Lie algebra of G. The connection λ
is a G valued 1-form on V , which, locally can be viewed as a G valued 1-form on
M.

We define the gauge wave operator !
(λ)
g for sections Ψ : M→ V

!(λ)
g Ψ = gµνDµDνΨ,

where Dµ = Dµ + [λµ, · ] denotes the gauge covariant derivative. We denote by Λ
the curvature of the connection, i.e. the G valued 2-form on M,

Λαβ = ∂αλβ − ∂βλα + [λα, λβ ].
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As before we construct a Kirchoff-Sobolev parametrix K−p for !
(λ)
g by defining

K−p = K−p,Jp
= A δ(u), where A is a section of V which verifies the covariant

transport equation19

DLA +
1
2
trχA = 0 (54)

with initial data (sA)|s=0 = Jp and Jp is a fixed element of the fiber Vp. As before
we assume that (M,g) is globally hyperbolic and satisfies A1,A2. We also assume
that u is a solution of the eikonal equation gαβ∂αu ∂βu = 0 with u, vanishing on
the boundary N−(p) of the past of p in M. Repeating our calculations of section
3, we obtain the following analog20 of Theorem 3.11.

Theorem 4.1. Let A be a section of a vector bundle V over (M,g) verifying,

DLA +
1
2
Atrχ = 0, sA(p) = Jp on N−(p)

where Jp is a fixed element of Vp. The solution Ψ of the inhomogeneous gauge
equation !

(λ)
g Ψ = F, with zero initial data on a Cauchy hypersurface Σ can be

represented by the following formula at point p with Ω = J−(p) ∩ J +(Σ),

4π < Ψ(p),Jp > = −
∫

Ω
δ(u) < A,F > (55)

− 1
2

∫

Ω
δ(u) < [ΛLL,A],Ψ > +

∫

Ω
δ(u)

〈(
∆(λ)A + ζaD(λ)

a A
)
,Ψ

〉

+
1
2

∫

Ω
δ(u) µ < A,Ψ >

In particular, in Minkowski space, for general initial data, we have the following
representation:

4π < Ψ(p),Jp > = −
∫

Ω
δ(u) < A, F > −1

2

∫

Ω
δ(u) < [ΛLL,A],Ψ > (56)

+
∫

Ω
δ(u) < ∆(λ)A,Ψ > +

∫

Σ
(< Aδ(u),DTΨ > − < DT(Aδ(u)),Ψ >)

The last term represents contribution of the initial data on Σ.

Remark 4.2. The formula (55) can be naturally extended to consider sections
of the bundle TM ⊗ . . . ⊗ TM ⊗ V . In this case terms of the form

∫
Ω δ(u) <

R(·, ·,L,L)A,Ψ >, where R is the Riemann curvature tensor of g, need to be
added. The corresponding extension of (56) does not therefore introduce any ad-
ditional terms.

4.3. Yang-Mills equations. We now assume that λ is a Yang-Mills connection
on a 4-dimensional Lorentzian manifold (M,g), i.e., it verifies the equations

DαΛαβ = 0. (57)

19Note that here transport of A along integral curves of L is modulated by the action of the
gauge potential λ.

20The only new term in the formula (55) below is due to the commutator (D
(λ)
L D

(λ)
L −

D
(λ)
L D

(λ)
L )A = [ΛLL,A] in deriving formula (44)
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The Yang-Mills equations are hyperbolic in nature and admit a Cauchy formulation,
in which the connection λ is prescribed on a Cauchy hypersurface21 Σ and then
extended as a solution of the problem (57). The uniqueness and global existence
for the Yang-Mills equations with smooth initial data in 4-dimensional Minkowski
space-time was established by Eardley-Moncrief, [EM1], [EM2]. This result was
later extended to the Yang-Mills equations on a smooth 4-dimensional globally
hyperbolic Lorentzian space-time by Chruściel-Shatah, [CS]. A different proof in
Minkowski space, allowing for initial data with only finite energy , was given by
Klainerman-Machedon, [KM].

All of the above approaches were manifestly non-covariant; as they required a choice
of a gauge condition for the connection λ. The approach of Eardley-Moncrief was
based on the fundamental solution for a scalar wave equation in Minkowski space
(Kirchoff formula) and made use of Cronström gauges: For any point p the connec-
tion λ can be chosen to satisfy the condition

(p− q)α λα(q) = 0

The work of Chruśicel-Shatah relied on the Friedlander’s representation of the fun-
damental solution of a scalar wave equation in a curved space-time and a local
analog of the Cronström gauge. Finally, Klainerman-Machedon’s proof was based
on a Fourier representation of the fundamental solution of a scalar wave equation
in Minkowski space, bilinear estimates and the use of the Coulomb gauge:

∂iλi = 0

Below we present a new simple gauge independent proof of the global existence and
uniqueness result for the 3 + 1-dimensional Yang-Mills equations. The main new
ingredient is the use of a gauge covariant first order Kirchoff-Sobolev parametrix
described in Theorem 4.1.

Differentiating the Bianchi identities D[αΛβσ] = 0 and using the equations we infer
that the curvature Λ is a solution of a covariant gauge wave equation

!(λ)
g Λαβ = 2[Λσ

α,Λσβ ] + 2RσαγβΛσγ + RασΛ σ
β + RβσΛσ

β

For simplicity we consider the problem in Minkowski space, although our results can
easily be extended to the general case of a globally hyperbolic smooth Lorentzian
manifold, as in [CS]. The equations then simplify,

!(λ)Λαβ = 2[Λσ
α , Λσβ ] (58)

Recall that the curvature Λ can be decomposed into its electric and magnetic parts
Ei = Λ0i and Hi = *Λ0i. We also recall that the total energy

E0 =
∫

Σt

(
|E|2 + |H|2

)
.

is conserved. Moreover, adapting the energy identity to to the past J−(p) of a point
p ∈ Σ+ we also get a bound on the flux of energy along N−(p). More precisely we
derive,

F−p ≤ E0.

21This requires space-time M to be globally hyperbolic.
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where the backward null energy flux F−p is defined with the help of a null frame
(L,L, ea) centered at p. Without loss of generality we may assume that p = (t, 0)
and denote r = |y|. Then L = ∂r−∂t, L = −∂t−∂r and ea is a frame on a standard
sphere Sr. With these notations

F−p =
∫

N−(p)

(
|ΛLL|2 +

2∑

a=1

|ΛLa|2
)

As in the original approach of Eardley-Moncrief the key element of the proof of
global existence is a pointwise bound on curvature Λ. Once this bound is established
the remaining steps concerning existence, propagation of regularity and uniqueness
are very standard and will be omitted. The precise statement concerning an L∞

bound on Λ is as follows:

Lemma 4.4. There exists τ∗ > 0 dependent only on E0 such that for any point
p = (t, 0) we have

|Λ(p)| ≤ Ct−τ∗ ,

where the constant Ct−τ∗ depends only on the solution Λ on a hypersurface Σt−τ∗ .

Remark 4.5. Iterations of Lemma 4.4 leads to a pointwise bound on the curvature
Λ in terms of the initial data.

Proof : We fix τ∗ > 0, whose is to be determined later, and apply the represen-
tation formula (56) in the domain Ω = J−(p) ∩ J +(Σt−τ∗),

4π < Λ(p),J > = −2
∫

Ω
δ(u) < A, [Λ,Λ] > −1

2

∫

Ω
δ(u) < [ΛLL,A],Λ >

+
∫

Ω
δ(u) < ∆(λ)A,Λ >

+
∫

Σt−τ∗

(< Aδ(u),DTΛ > − < DT(Aδ(u)),Λ >) (59)

Here J is an arbitrary G valued anti-symmetric 2-tensor on R3+1, A is a G valued
2-form on R3+1 verifying the equation22

DLA + r−1A = 0, (rA)|r=0 = J

and <,> denotes a positive definite scalar product on Λ2(R3+1)⊗G. The last term
in (59) depends only on the solution Λ on Σt−τ∗ and therefore is consistent with
the claim of Lemma 4.4. We now observe that for a, b ∈ Λ2(R3+1)⊗ G we have

| < a, b > | ≤ |a| |b|,

where |a| denotes the absolute value of an element in Λ2(R4) ⊗ G relative to the
positive definite scalar product23. In what follows all the norms will be understood
to involve the absolute value | · | on Λ2(R4) ⊗ G. We denote by N−

τ∗(p) the null

22Recall that L = ∂r − ∂t, DL = ∂r − ∂t + [λL, ·] and r = |y|.
23 R4 here stands for the Euclidean 4-dimensional space.
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boundary of Ω to the future of Στ∗ . Then

|
∫

Ω
δ(u) < A, [Λ,Λ] > | ≤ ‖rA‖L∞(N−τ∗ (p))‖r

−1[Λ,Λ]‖L1(N−τ∗ (p)),

|
∫

Ω
δ(u) < [ΛLL,A],Λ > | ≤ ‖rA‖L∞(N−τ∗ (p))‖r

−1ΛLL‖L1(N−τ∗ (p))‖Λ‖L∞(N−τ∗ (p)),

|
∫

Ω
δ(u) < ∆(λ)A,Λ > | ≤ ‖Λ‖L∞(N−τ∗ (p))‖∆

(λ)A‖L1(N−τ∗ (p))

It is easy to see, see e.g. [EM2] that

|[Λ,Λ]| ≤ |Λ|
(
|ΛLL|+

2∑

a=1

|ΛLa|
)

and therefore

‖r−1[Λ,Λ]‖L1(N−τ∗ (p)) ≤ τ
1
2∗ ‖Λ‖L∞(N−τ∗ (p))

(
F−p

) 1
2

Similarly,

‖r−1ΛLL‖L1(N−τ∗ (p)) ≤ τ
1
2∗

(
F−p

) 1
2

To prove Lemma 4.4 it would be sufficient to show that

‖rA‖L∞(N−τ∗ (p)) " |J|, ‖∆λA‖L1(N−τ∗ (p)) " |J|
(
τ

3
2∗

(
F−p

) 1
2 + τ∗F−p

)

(60)

and then choose τ∗ << (1 + E0)−1 as F−p ≤ E0.

To prove (60) we introduce a new G valued 2-form B = rA so that

DLB = 0, B|r=0 = J.

Considering the components of the 2-form B it suffices to assume that B is a G
valued function on R3+1, in fact on N−

τ∗(p).

Commuting24 the transport equation DLB = 0 with r2∆(λ) we obtain

DL(r2∆(λ)B) = r2 [Λ a
L ,∇(λ)

a B] + r2∇(λ)
a [Λ a

L ,B]

We also have the equation

DL(r∇(λ)
a B) = r [ΛLa,B]

We combine these equations into the system:

DLB = 0, (61)

DL(r∇(λ)
a B) = r [ΛLa,B],

DL(r2∆(λ)B) = 2r2 [Λ a
L ,∇(λ)

a B] + r2 [∇(λ)
a Λ a

L ,B].

The first equation immediately implies that

sup
N−τ∗ (p)

|B| ≤ |J|,

24Recall that ∇(λ) is a gauge covariant derivative acting on sections Sr → P ×Ad G and ∆(λ)

is the corresponding gauge Laplace-Beltrami operator on a standard sphere Sr of radius r.
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as the covariant derivative Dα = ∂α + [λ.·] is compatible with a scalar product on
G. We infer from the second equation that

‖∇(λ)B‖L2(Sr) ≤ |J|
∑

a=1,2

∫ r

0

(∫

Sρ

|ΛLa|2dσs

) 1
2

dρ

where dσs is the are element of a 2-dimensional sphere Sρ of radius ρ.

To treat the last equation in (61) we need to worry about the term [∇(λ)
a Λ a

L ,B]
which contains derivatives of Λ. Recall that the flux only allows us to estimate
the tangential components of Λ and none if its derivatives. We get around this
difficulty by expressing the Yang -Mills equations DαΛαβ = 0 relative to the null
frame L,L, e1, e2. In particular, DaΛLa +DLΛLL = 0. This in turn implies that

∇(λ)
a Λ a

L =
1
2
DLΛLL +

1
r
ΛLL.

Thus
DL(r2∆(λ)B− 1

2
r2[ΛLL,B]) = 2r2 [Λ a

L ,∇(λ)
a B]

Therefore,

‖∆(λ)B‖L1(Sr) ≤ |J|




1
2
‖ΛLL‖L1(Sr) +




∑

a=1,2

∫ r

0

(∫

Sρ

|ΛLa|2dσs

) 1
2

dρ




2




Integrating with respect to r we obtain

‖∆(λ)B‖L1(N−τ∗ (p)) " |J|
(

τ
3
2∗ ‖ΛLL‖L2(N−τ∗ (p)) + τ∗

∑

a=1,2

‖ΛLa‖2L2(N−τ∗ (p))

)
.

and the result follows.

5. Applications to General Relativity

In this section we specialize our results to Einstein vacuum space-times (M,g):

Rαβ −
1
2
Rgαβ = 0 (62)

Equations (62) combined with the Bianchi identities imply that the Riemann cur-
vature tensor Rαβµν of an Einstein vacuum metric g satisfies a covariant wave
equation

!gRαβµν = (R 4 R)αβµν ,

where the quadratic term R 4 R is obtained by a contraction 25 of the curvature
tensor Rαβµν with itself.

25These contractions result in a special structure of the quadratic term, crucial to the analysis
in [Kl-Ro5] where we investigate a breakdown criterion in General Relativity. The structure of
this term is somewhat analogous to the corresponding term in the Yang-Mills theory, see previous
section.
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Theorem 5.1. Let p be a point to the future of a space-like hypersurface Σ in
an Einstein vacuum space-time (M,g). We assume that assumptions A1,A2 are
verified at p. Let A be a 4-tensor verifying,

DLA +
1
2
Atrχ = 0, sA(p) = Jp on u = 0

where Jp is a fixed 4-tensor at p. Then the curvature tensor Rαβµν of g can be
represented by the following formula at point p with Ω = J−(p) ∩ J +(Σ),

4πg(R(p),Jp) = −
∫

Ω
δ(u)g(A,R 4 R) (63)

− 1
2

∫

Ω
δ(u)R(·, ·,L ,L)#R#A +

∫

Ω
δ(u)g

((
∆A + ζaDaA

)
,R

)

+
1
2

∫

Ω
δ(u) µg(A,R) +

∫

Σ
(g(Aδ(u),DTR)− g(DT (Aδ(u)) ,R))

where # denotes a contraction operation between tensors. The last term represents
the contribution of the initial data on Σ.

Representation (63) opens the possibility of proving a pointwise bound on the cur-
vature tensor in terms of initial data on Σ and, as in the Yang-Mills case, the flux
of curvature along the null boundary N−(p) of the set Ω. However, as opposed
to the Yang-Mills equations on Minkowski background, where the curvature flux is
bounded by the L2-norm of the curvature of initial data, no such a priori bounds
are available for the Einstein vacuum equations. This suggests the use of the L2

based curvature norms to deduce a breakdown criteria in General Relativity, i.e.
to show that the space-time can be continued as long as such norms remain finite.
For the Yang-Mills problem in Minkowski space the underlying reason for having
an a- priori bounds on the flux of curvature is due to the presence of the Killing
vectorfield ∂t = ∂

∂t . In the case of the Yang-Mills equations on a smooth curved
background, such as in [CS], the result remains true even though ∂t is no longer
Killing; it suffices that its deformation tensor is bounded. We call such a vectorfield
approximately Killing.

These considerations suggest the following question. Assume that the space-time
(M,g) possesses an approximately Killing, unit, vectorfield T, orthogonal to a
space-like Cauchy hypersurface Σ, with deformation tensor π(X, Y ) = g(DXT, Y ).
We also assume that the slices Σt obtained by following integral curves of T from
Σ0 have constant mean curvature. Can the space-time be extended as long as π
remains finite in the uniform norm?

The finiteness of the deformation tensor π allows one to control, via energy estimates
based on the Bel-Robinson tensor, both the L2 norms of the curvature R along Σt

and the flux of curvature along the null boundaries N−(p). The key step in the
remaining analysis is to derive a pointwise curvature based on the representation
formula (63). In [Kl-Ro5] we give an affirmative answer to the question raised above
by showing that the size of the region of validity of the formula (63) depends only
on the assumed L∞- bounds on π and reasonable assumptions on the initial data
on Σ. Such estimates follow from our work in [Kl-Ro4]. More precisely we show
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that for a space-time metric g in the form

g = −n2dt2 + gijdxidxj ,

where n is the lapse function of the t foliation and the vectorfield T is orthogonal
to Σt, the following result holds true.

Theorem 5.2. Assume that (M,g) is a globally hyperbolic Einstein vacuum space-
time with Σ0 a Cauchy hypersurface. Let the lapse function n and the deformation
tensor π of T satisfy

N−1
0 ≤ n ≤ N0, ‖π‖L∞ ≤ K0

Assume also that M contains a future, compact set D ⊂M such that for any point
q ∈ Dc the radius of injectivity of N−(q) is at least δ0 > 0.

Let Σ be one of the slices of the t foliation. Then assumptions A1,A2 of this paper
are satisfied for all points p at distance ≤ δ∗ from Σ, where δ∗ depends only on the
Cauchy data on Σ0, N0, K0 and δ0. In particular, the representation formula (63)
holds for all such points.

6. Open questions

All the results of this paper have been derived under assumption A2 which re-
quires that, for any point p, the boundary N−(p) of the causal past J−(p) remains
smooth at least until it reaches the space-like hypersurface Σ. It is only under this
assumption that we can guarantee that the Kirchoff-Sobolev parametrix of Theo-
rem 3.11 gives a faithful representation of a solution of the wave equation. We have
already discussed the two obstructions to smoothness of N−(p): conjugate points
of the congruence of past directed null geodesics from p and intersection of two
distinct past directed null geodesics from p. The second obstruction can be easily
demonstrated on a space-time M = R×T3 or M = R×Πa based on a flat torus T3

or a flat cylinder Πa of width a. In those cases, however, an (exact) parametrix can
be easily constructed by lifting the problem to the covering space R× R3. On the
other hand, the examples above are very special. Conjugate points can not be re-
moved by a simple26 lifting and the quantity trχ, which features prominently in our
representation formulas, diverges to −∞ at a conjugate point. However, the same
focusing phenomenon shrinks the volume of a conjugate point region thus leaving
open a possibility that, perhaps, with some additional assumptions on the structure
and strength of conjugate points, the integral quantities appearing in our represen-
tation formulas remain finite. It may thus be that the Kirchoff-Sobolev parametrix
remains valid even beyond the region of formation of conjugate points. A good
place to start investigating this issue would be product manifolds M = R × M
with metrics of the form g = −dt2 + gijdxidxj . A particularly interesting class to
consider are product manifolds with M collapsing in the sense of Cheeger-Gromov.

26Conjugate points can be desingularized however by lifting to the cotangent space
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