RICCI DEFECTS OF MICROLOCALIZED EINSTEIN METRICS

SERGIU KLAINERMAN AND IGOR RODNIANSKI

ABSTRACT. This is the third and last in our series of papers concerning rough
solutions of the Einstein vacuum equations expressed relative to wave coordi-
nates. In this paper we prove an important result, concerning Ricci defects of
microlocalized solutions, stated and used in the proof the crucial Asymptotics
Theorem in [KI-Ro2].

1. INTRODUCTION

This is the third and last in our series of papers concerning rough solutions of the
Einstein vacuum equations expressed relative to wave coordinates. More precisely
we are concerned with solutions of the Einstein vacuum equations,

Ros(g) =0 (1)

expressed! relative to wave coordinates =2,

1 v [e3

Eau(g“ 8[d,)z* = 0. (2)
The solutions we consider here have a limited degree of differentiability, we only
assume that in a time slab [0, 7] x R® we control the the first derivatives of g in the
energy norm L{°(HLT), v > 0, as well as in the mixed Strichartz norm L7(LZ).
More precisely,

[&
gz™ =

Metric Hypothesis:
108l

[0,T

e+ 10l 1 < Po, 3)

for some fixed v > 0 arbitrarily small.

This condition was introduced in section 2 of [KI-Rol] as the main bootstrap as-
sumption in the proof of our main theorem concerning H?*7 solutions , v > 0
arbitrarily small, of (1)- (2).

Microlocalization is an essential technique in dealing with rough solutions of non-
linear wave equations, see [Kl-Rol] and the references therein. By a microlocalized
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1Tn wave coordinates the Einstein equations take the reduced form
gaﬁaaaﬁguu = Ny (g, 38)

with N quadratic in the first derivatives dg of the metric.
1



2 SERGIU KLAINERMAN AND IGOR RODNIANSKI

rough Einstein metric, at cut-off parameter A > 1, we understand, essentially, the
low frequency part( frequency < A) of a given Einstein metric (1)-(2). To ex-
plain this in more details we recall below the definition of the Littlewood -Paley

projections,
> P
n<i

Pfx) = / e Ex () F(€)de

where x € C§°(R) supported in £ < |¢| < 2 and PR x(pn~t€) = 1. The operators
P, are the standard Littlewood -Paley dyadic projections corresponding to the
frequencies u € 2%.

Py

Consider a fixed solution g of (1) satisfying the metric hypothesis (3) relative to
the fixed system of wave coordinates (2). Consider also a fixed dyadic parameter
A € 27+ and define the microlocalized rescaled metric,

H(t) 1‘) = H()\) (t> 1‘) = (P<)\g)(/\71t) Ailm) (4)
Observe that Hy) is the low frequency part of the rescaled metric, i.e. Hy) =
P.1(G(y)) where,

G(}\)(t,l') = g(Ailtv/\ilx) (5)

In the rescaled variables we restrict ourselves to the slab [0, t.] % R3 with t, ~ A\ ~8¢€0
for some small €p, in fact 5¢p < 7. In this region we define the optical function u
to be the solution of the eikonal equation,

H*P9,udgu = 0 (6)
verifying the initial condition
U(Ft) =1 (7)

where T'; is the timelike geodesic passing through the origin of and orthogonal(
with respect to H) to the initial hypersurface £5. We denote by ¥; the spacelike
level hypersurface generated by the time function ¢ = 2°. We denote by C, the
level hypersurfaces of w and by S:, their intersection with ¥;. In [KI-Ro2] we
show that the the null hypersurfaces C, form a proper foliation of the domain
Q. =Z7,N([0,t.] x R*). Here ZT, denotes the future domain( domain of influence)
of the point I'_; € ¥_;.

To each point p € ), we associate the canonical null pair,
L=T+N, L=T-N (8)

where T is the future unit normal to ¥; and N is the outward unit normal to the
surface S;, passing through p. Observe that L is proportional to the null geodesic
generator L' = —H‘w@guaa of Cy.

A null frame ey, es,e3 = L,eq = L consists of the null pair L, L together with an
arbitrary choice of vectors (e4)a=1,2 tangent to S;, such that H(ea,e) = dap.
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Relative to such a null frame the metric H has the form,

H3q4 = =2, H33 = Hyy = H3p=Hya =0, Hap =0a5B. 9)
The null components of the inverse metric are therefore,
H34 — _1 H33 — H44 — H3A — H4A =0 HAB — 6AB (10)
2 ) ) -
While the rescaled spacetime metric G = G(y) verifies the Einstein equations

R, (G) = 0 this is certainly not true for the microlocalized metric H = H(y).

Definition 1.1. We call Ric(H) the Ricci defect of the microlocalized metric
H = Hy).

The Ricci defect of H plays a fundamental role in the proof of the Asymptotics
Theorem, see Theorem 4.5 in [KI-Rol] or Theorem 2.5 in [K1-Ro2]. More precisely
it appears as a source term in the null structure equations, see section 3 of [K1-Ro2].
For example the trace of the null second fundamental form yap = H(D.,L,epB)

try = 648y ap verifies an equation, roughly, of the form
d
X = —Rus(H) + ... (11)

where Ryy = Ric(L,L) = L"LBRQB and s the affine parameter of the vectorfield
L,ie. L(s) = 1. Ignoring all other terms on the right hand side of (11) we see
that try can be controlled pointwise by the mixed L} (L2°) norm of the Ricci defect.
In [KI-Rol] we have shown, using the metric hypothesis (3) and the fact that H
arises( see (4)) from an Einstein metric g, that,

| Ric(H)|lpzpe S AT (12)

In the Asymptotics Theorem 9.1. in [KI-Ro2] the proof of the estimates (118-121)
was heavily dependent on (12). However we also need L?(S;,,) estimates for some
derivatives of try, in particular the angular derivatives Ytry. Differentiating the
equation (11) we see that [|¥Vtrx||zz2(s, ,) depends on,

t
/ VR s (H) |25, . dr

To establish such an estimate we need first to compare the Ricci defect Ric(H)
with Ric(G) = 0 and then take advantage of energy estimates for derivatives of H
along the null hypersurfaces C,,. Here we encounter a substantial difficulty as the
2-surfaces S¢ ,, as well as the null hypersurfaces C,, have been constructed relative
to the approximate metric H. This leads to significant differences® between the
Cy- energy estimates for derivatives of H and the corresponding ones for G, see
proposition 7.7 in [KI-Ro2] and proposition 2.2 here.

In this paper we use the specific structure of the component R4 relative to the
wave coordinates and overcome this difficulty. We prove the following;:

2The estimates for the second derivatives of the higher frequencies of G do in fact diverge
badly.
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Theorem 1.2. On any null hypersurface C,

t
/ IV Ras ()| 25, ydr S A~ (13)

This result, stated without proof in theorem 8.1 [KI-Ro2], played an essential role
in the proof of the asymptotics theorem. The asymptotics theorem itself is a crucial
step in the proof of our main theorem, see [KI-Rol]. The main goal of this paper
is to prove theorem 1.2.

2. PRELIMINARIES

2.1. Background estimates. We start by writing down estimates for the rescaled
metric G(t,z) = g(A"*t,A\"1z). These are immediate consequences of the metric
hypothesis (3) and the choice of the restricted time interval [0, ¢.].

10G |2 S A E 400, (14)
102G | oz S A2 e (15)

It is also easy to derive the following estimate for G in L?(S;,,) norm.
10G]I12(5,,) S AT (16)
This estimate follows by virtue of Holder and the trace inequality (see theorem 77

in [K1-Ro2]) on S;, from (15).

We also recall the estimates for H derived in [KI-Rol] and [KI-Ro2]. They are
summarized in section 7 of [KI-Ro2]. We list below only the ones which we need in
this paper. Morally, since H = P.1G they follow from the corresponding estimates
for G.

17
18
19
20

10H || p2p S A5,
102 H]| ez S A73 740
10H||r2(s,..) S A™*°

)
)
)
| Ric(H)lpipe S AT, )

(
(
(
(

We also have the following cone estimates(see section 7 of [KI-Ro2] ), which play
an essential role in the proof of theorem 1.2:

Proposition 2.2. The following estimates hold in the region Q, = T+, N[0, t,] x R?
and 1 < A, pe.

IDLOH|2cy SA 25 IIDWH]lL2(c,) S A2 (21)
IDLO(PG)|p2(cn) S pd—te0r— 3150,
||D*(PHG)||L2(C’") 5 )\7%7450'“*%7460 (22)
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We shall also need estimates for the derivatives of the null vectorfield L in €,
IVL| <O+t (23)

where r = r(t,u) is defined by Area(S;,)= 47r®> and © verifies the following esti-
mates,

1O]lp2pe S ATETIO (24)
1005y S AT (25)
By the comparison arguments proved in section 6.4 of [K1-Ro2] we have
ret—u (26)
. We also have,
10lz2(D, ) S A% (27)

where,

Definition 2.3. The annulus Dy, is defined by Dy, = Uy<w <u+t1S¢,w is the an-
nulus on 3; of thickness 1 and outer boundary S; .

Observe that,
IVLll2cs,.) S 1 (28)

~

Clearly we also have,
IVL|t2(p,..) S 1.

For a proof of the estimates (23)-(25) we refer to section 9 of [KI-Ro2].

2.4. Set-up and error terms.

Definition 2.5. We denote by P the projection on the frequencies of size < 1 and
by P the projection on the frequencies of size < 2 such that PP = P.

Definition 2.6. We define

H(t,z) = PG(t,z)
h(t,z) = Y P,G(tx)
n>1
Clearly,
G=H+h (29)

Also, for the inverse metric,
Gl'=H+n"' '=T+H 'R 'H'=H*'-H 'hH' + O(h?

(30)

Therefore,
Gop = Hupg+ hop (31)
G = H* —h*® +0(h?) (32)

where the indices of h are raised according to the matrix H.
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In view of the fact that R, (G) = 0 we infer that,
Ry (H) = Ry (H) — PRy, (G).

This is the starting point of our lengthy calculations which are presented in the
following sections. In the process we are going to generate a large number of error
terms. To better keep track of them we will systematize them in the following
subsection.

2.7. Error terms.

We start with some basic commutator estimates which we shall need below.

Lemma 2.8. Let Q be one of the Littlewood-Paley projections Q = P, P, P, with
u > 1. We may assume(see remark below) that the support of the integral kernel
Q(x) of the projection Q is localized to the unit ball centered at the origin in the
case Q = P, P, and the ball of radius = if Q = P,.

We denote
Q= sup |z,
z: Q(z)#£0
Then for all p € [1,00] and arbitrary functions u,w,v such that Vw,Vf € L and
veLP,

1
NQ, wvllLr(p,.) < @IIVwIILw(Di_u)IIvIILP<Di,u>, (33)
1
||[Q,w]v||Lp(Dt,u) S @vaHLP(Dt,u)||v||L°°(Dt,u)v (34)
NQ, Vwlllr(p,..) S [Vwllpel|lvllze, (35)

1
1@ wl, flvllze..) < WIIVwIIwai,u)IIVfIILoou)i,u)IIUIILP(Di,u)- (36)

Remark 2.9. The assumptions made on the supports of the integral kernels of Q) =

P, P, P, are essentially true®. Consistent with the uncertainty principle we can

show that the kernels of @ are rapidly decaying outside the ball of radius one for
P,P and p~! for P,.

Proof The proof of the lemma is standard. For completeness we show below how
to derive estimates (33) and (34). We have

[Q,wlv = g Q(z —y) (w(y) —w(z))v(y) dy

1
= —/ Qlz —y)(z —y)' Oiw(ry + (1 - T)x)o(y) dydr  (37)
0o Jx,
Therefore, since the support of Q(z) belongs to the unit ball centered at the origin,
1
@, wlvllre(py..) S @IIVwIILw(Di_u)IIUIILP(Dt,u), (38)

Sstrictly speaking they are incompatible with the compact support assumption of the
Littlewood-Paley projections in Fourier space.
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where the annuli Dy, on the right hand side of (38) are perhaps twice as large as
the original annulus. This proves (33).

To obtain (34) we proceed as follows. Using (37) we obtain

1 1
@, wlvllLe(p,.) S @II/0 . Q)| [Vw(z +72)[ Jo(x = 2)|dzd7||Lr (D, )

1 1
< L / QENYVw( +72)0( — 2)llurp, . dz dr
Q) s,

1
S = IVwllee o, IV e (D, ) -
Q| (Dr,u) (Dr,u)

as desired. Here we once again used that the support of Q(z) belongs to the unit
ball centered at the origin. [ ]

Definition 2.10. Given functions f,v,w in L>*(Q,) we introduce the following;:

e We denote by [f] any operator with the property that for any function v in
O, and any t € [0,t.], u > —1:

107l S min {10y llolzco, - 10, lleco
(39)

e We denote by «(f,v;w) any function in 2, which satisfies the inequality:
7 (f, s w)lle2(py) S N lLg 0o 10Lee (D) lwl 22D, ) (40)

Definition 2.11. Given two operators A and B we say that A < B if for any
function v

|AvllL2(p,..) S I1Bll2(p,..) (41)
We also say that 7(f,v;w) < 7(g,v;w) if

I7(f, v5 wllz2(p, ) S W9llLe o) 10llLe 0,0 llwlz2(0, ) (42)

Remark 2.12. The expression [f] verifies the following trivial property
[af] < llallze[£]-

The same holds true for 7(f, g;v) with respect to all entries.

For the Littlewood-Paley projection @ let (Qf) be the result of the application of
Q@ to f. We also denote by @ f the operator whose action on functions is defined by

Qf(v) := Q(fv)

The typical examples of expressions of type [f] are listed in the following lemma.

Lemma 2.13.

e For the projections Q = I, P, P, P, with dyadic u > 1, we have Qf < [f] and
@f) < If1

o For Q= P, PPy, we have, [Q, f] S 5[V /] and [VQ, f] S [V /],
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Proof To verify that Qf < [f] we estimate
||Qf(v)||L2(Dt,u) S ||Q(fv)||L2(Dt,u) S ||fv||L2(Dt,u)

S min {||f||Loo(Di,u)||U||L2(Dt,u) ; ||f||L2(Di,u)IIUIILw(Di,u)}

A similar argument shows that (Qf) < [f]. We now verify that [Q, f] S & [V/]-
Using the commutator estimates (33) and (34) we obtain

1 .
Q. Aol S i {||Vf||Lm<Dt,u>||v||Lz<Di,u>, ||Vf||L2<Di,u>||v||Lm<Di_u>}

as desired. The proof of the estimate [VQ, f] < [V f] is similar. It uses the com-
mutator estimate (35). [ |

We also record some similar properties of the triple expressions 7 (f, g; h).
Lemma 2.14.

e ForQ; =1, P,?,Pu with some dyadic p > 1 and v = 1,..,3, we have

(Q1)(Q20)(Qsw) S m(f,v;w). (43)
e With the same choice of Q1,Q2,

fi <(Q1v)(Q2w)> < n(v,ws f), (44)
1 <(Q1”)(Q2w)> < n(f,viw). (45)
o With the same choice of Q
A1)Qu) < n(fv5w), (46)
A1)Qu) < w(w,w: ). (47)

o If | fllLe S lgllpe then

©(f,v;w) < w(g,v;w) (48)

Proof The proof of (43) follows immediately from the definition of 7(f,v;w) and
the properties of the projection @;. Indeed

1(Q1A)(Q20)(Qsw)llz2(p,) S Q1)L (D) 1(Q20)| Lo (D, ) (@3w) [l L2(D,. )
S Mfllze .y Vllze (o, Hlwllrz(p,..)

To obtain (44) we estimate using definition (39) for [ ],

||[f](<Q1v><Q2w>>||L2<Dt,u) < 1l 1(@10) (@)l )

S ||f||L°°(Dt,u)||U||L°°(Dt,u)||w||L2(Dt,u)

The alternative estimate in (39) for [f] similarly leads to (45).
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We also derive

A (Qu)lL2 (D, ) 1fllze (o, ) I[N Q) L2(D, )

S
S ||f||L°°(Dt,u)||’U||L°°(Dt‘u)||w)||L2(Dt,u)

as claimed in (46). The estimate (47) once again is obtained by using the alternative
term in (39) in the estimates for [f] and [v].

Finally, if [|f(|z=(p,.) S [19llL(D, ...), then,
lw(f,vsw)l2p .y S Il lVllLee (o, Wiz, .
S gllee e, 0l (D, 10l 22D, )
Thus according to definition 2.11, 7 (f,v;w) < (g, v;w) as desired in (48). ]

3. WAVE COORDINATE CONDITION

In what follows we shall rely crucially on the fact that our standard coordinates
z*, a = 0,..,3 satisfy the wave coordinate condition (2) relative to the metric G.
Recall that the wave coordinate condition has the form:

1
0 = ——8,(G**\/|G
N ( |G)

= 0,G*° + %Gaﬁawaaaw
or, in view of 9(G**G3,) = 0,

GP0,Gpy = %Gaﬁa(,aaﬁ. (49)

Next we shall review some basic notation connected to our standard null frame
L=e4, L =¢3,e4, A=1,2. When L, L are applied to scalar quantities we also
use the notation L = 9,, L = J5. Recall that the null components of the metric H
are given by,

Hsy =—2, Hs3 =Hyy =Hsa=Hya =0, Hap=0aB.

The null components of the inverse metric are therefore,

3 — _%, H? = H* = HPA = g*A =0, HAP = §4B,
Given a vectorfield X = X*0, we decompose relative to the null frame as follows:
X = —%<L,X>L—%<L,X>L+<eA,X>eA
= —%szL— %X3L+XA€A (50)

or, using upper indices,
X =X°L+ XL+ X%eu (51)

where )
X3 = —5Xa, X*=_2X;, X4=X,4.
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In view of this we shall use the following notation,

Definition 3.1. For an arbitrary spacetime tensor M %,
1 1 1
M3 = —§MQBLQ = —EM‘XBHMLV = —§M“BHC,4,

1 1 1
M* = —EMQBLQ = —EM‘XBHML” = —§M“3Ha3,

M8 .= M*Pe,, = M H,. e,

In particular

H3Dz — H34La — —lLa
B .

Definition 3.2. Given a scalar function f we shall denote by D, f any function
for which we have an estimate of the form

IDFISILAI+ Y lealHP)E = LA+ |V f|

A=1,2

Given a tensorfield U with components Ugﬁ relative to our standard coordinates
% we denote by D,U a scalar quantity which can be estimated by,

ID.U| Y ID.ULS.
a,B

Given two tensors U,V we denote by UD,V a scalar quantity which can be esti-
mated by
|[UD, V| < |U||D.V].

For example, consider the coordinate vectorfield d, and decompose it relative to
the null frame L, L, e 4 according to (50). We shall write the decomposition formula
in the form,

1
Oa = —5La L+ D.. (52)

Using the above notation we are now ready to state the main result of this section.

Lemma 3.3. The following identities® are consequencies of the wave coordinate
condition (49):

2H**33(Q@) 0 = HYP0,(QG)as + GD.(QG) + Err (53)
LFLY85(QG,,) = G-D.(QG)+ Err, (54)
Laeiaii(QGaa) = G- D*(QG) + ET‘T, (55)
B = hd(QG)+ ﬁ[aa]aa (56)

In particular,
L¥L°83H,y = G - D.H + Err (57)

4They are in fact approximate identities. The terms on the right hand side are schematically.
What we mean is that the terms on the left can be estimated by the quantities appearing on the
right.
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We also have,
L°LP0,0,(QGs,) = H-D.O(QG)+ Err (58)
1

Err =
Q)

<[6G] - 0%G + [62G]6G> +h-02(QG) + 0G - O(QG)

Proof We start by projecting (49):
1
Q(G™0aGs) = 5Q(G*70,Gag)-

In view of the fact that Q(u-v) =u- Qv+ ﬁ[VU]v we derive
1

/10616 (59)

1
Gaﬁaa(QGﬁa) = §Ga660(QGa6) +

Expanding (59) relative to the null frame, we have
1

G3P03(QGs,) + G 04(QGs,) + G4 (QGs,) = %Gwa(,(QGw) + 0 [0G]0G,
whence, for any o,
G 04(QG,) = 5670, (QG4) + GD.QG) + 15 [0G1G
Writing G3° = H3% — b33 4+ O(h?) we derive,
2H?**03(QG0s) = HYP0,(QGas) + GD.(QG) + Err (60)
Err = hd(QG) + h20(QG) + —[0G10G (61)

@

Remark 3.4. Since ||h]|p~ < 1, the error term h?0(QG) can be treated in the same
way as hd(QG) and we shall ignore it. In what follows we shall often drop terms
like this without further mentioning.

We thus derive the desired approximate identity (53).

Contracting (60) with L? we obtain,

2L° H3*95(QG o) = GD.(QG) + HD.(QG) + Err
As HD.G can be estimated exactly in the same way as the more difficult term
GD.G we shall drop it. We shall later absorb similar terms into related, more
difficult terms, without further mentioning.
We now recall that H3* = —%L". Henceforth,

—L"L* 05(QG ) = GD.(QG) + Err,

which gives (54).

We can also contract (60) with e9 to obtain

e H**03(QG oo ) = GD.(QG) + Err.
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Using again the relation H3* = —%La, (55) immediately follows. We shall now
prove (58). Differentiating (49), we find,

G*P0,0,Gpy = %GD‘B&Y&GQB +0G - 9G. (62)
We manipulate the left hand side of (62) schematically as follows:
Q(G-0°G) H-9*(QG) + Q(G - 9*°G) — H - 9*(QG)
= H-9*(QG)+Q(G-9*G) — G -9*(QG) + h - 0*(QG) (as G=H — h)
= H-0*(QG)+[Q,GI0*G + h-9*(QG)
(QG)

1
= H-0*(QG)+ @[GG]EVG +h-0*(QG)
Therefore, proceeding in the same way on the right hand side of (62),

H®%0,0,(QGs,) = %Q(GD‘B(?W@UGM) + Err

1
= 3 H*9,0,(QG o3) + Err (63)

Frr = ﬁ[aG]-82G+h-82(QG)+Q(8G-8G)

- ﬁ[aa] L9°G + h- 9(QG) +

1

Tl [0°G]OG + 8G - d(QG)

We now contract (63) with L.

1
L°HY?0,0,(QGs,) = §L"H“68(,6V(QGQB) + Err
= H-D,0(QG) + Err
Therefore, expressing H*?9, relative to the null frame L, L, e4,

L°LP0,0,(QGs,) = H - D,O(QG) + Err

4. FIRST REDUCTION

In this section we show how to reduce the statement of Theorem 1.2 to the following;:

t
/ Ras (Bl 2, ,ydr < A7 (64)
u+1

where, see definition 2.3, Dr , = Uy<w/ <ut1S57,w is the annulus on ¥, of thickness
1 and outer boundary S;,. Throughout this and the remaining sections we denote
R44 = R44 (H) and Ric = RiC(H)

Step 1 Take care of f:H IVRaallL2(s, ) dT
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We start with formula
VRy = VI*L"R,, =2(VL)-L- Ric+ L*L"VR,,. (65)
Recall that, see (23),
VL<r'+0
with © verifying the estimates (24)—(25). Clearly, [|(© + 7 !)[|12s,.) S 1. Also
observe that, in view of (26), r < 1 as 7 varies between v and u + 1. We infer that

u+1 u+1
[ IR les i 5 [ (n(@ Y leas, || Riellzs + 7V Rian?)dr
<l Ricllupe + IV Rl

It remains to observe that the frequencies of Ric(H) are essentially < 2 and there-
fore, ||V Ric||p> S || Ric|[z. Henceforth, in view of the background estimate
(20),

u+1
/ VRl s,y dr < || Ricllpe < A4 (66)

Step 2 Take care of fi [VRuallr2(s, ) dr-

1l

We start as in Step 1 with formula (65). To estimate the first term on the right
hand side of (65) we use [|[VL||z2s, ,) S 1, see (28).

Therefore, using also (20)
t

/ IVL- L Ricllrzgs, . dr S sup  [IVL|lrzcs, )l Ricllpipe S ATITH
u+1 t

+ u+1<7<

as desired. In other words,
t

t
/ VR, ,ydr S A0 4 / LA LY VR llps(s, ydr (67)
u+1 u+1

It remains to estimate the second term in (67). Using the simple estimate:

111725,y SIVFlz2o I f 2o,

where D7, = Uy<w <ut1Sr,w is the annulus on ¥ of thickness 1 and outer bound-
ary Sr -

1 1
IL“L'VRwllrz(s,n) S IVLAL'VRuw o LA LY VR w72 )
5 ||VLHLVVRUV”L2(DT,H) + ||LHLVVR;LV||L2(D.,.JL)
NOW, using ||VL||L2(D,-,“) S 1,

IVL* LYV Ry || 2D S IIVL -V Ricl|t2p, ) + ||L"L"V2R,“,||L2(DT’H)
S VL2 b, ) IV Ricllpe + |L“ LYV Ry ll22(p, )
5 ||V RiCHL:o + ||LMLVV2RH,,||L2(DT’H) (68)

Now, since Ry, & PRy, (H), and ||V Pf|l12p, ) S IfllL2(p...) with perhaps a
slightly larger annulus D; ,,

)
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LRy 2o,y S IV PLL Rullza(p, ) + | [LAL", V*P] Ricllz=(p. )

<
S LRyl o, ) + I[LALY, VP P] Riellr2(p, )

To treat the second term we shall use the following commutation lemma, see lemma

2.8,

I1[£,VEP)gllz2p..) SIVFllzzo, o llglle (69)

with a possible larger annulus D, , on the right hane side.

Therefore,
1[L2%, V*P) Ricllr2(p..) S VL2, Riclzs S || Ricus
Therefore, back to (68),
IVLAL*VRyu 20, ) S [Rasllzzo, ) + || Riclliz + [V Riclz
or, since Ric = Ric(H) ~ P Ric,
VLA L VR w1z, o) S [Rasllizo.) + | Riellzs (70)
Also, clearly,
I L'V Ry llr2(pr) S IRatlliap..) + || Ricllz.
Therefore,

1LYV Ruyl|L2(s, ) S [RaallLz(p,..) + || Ricllze (71)

whence,

t t
/ IVRlpz(s, dr S / IRasllz2(o, ydr + || Rie|lzpm + A1
u+1 u+1

t
< / Rl (o, ,ydr + A~
u+1

Combining this with (66) we obtain,

t

t
/ VRt ()| 25, ydr < /

u+

IRasll L2, dr + A1 740 (72)
1

as desired.

5. THE ALGEBRAIC STRUCTURE OF R, (H)

We start with the formula,

R, (H) = R, (H) ~ PR, (G) (73)
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Recall the expression of the Ricci tensor relative to local coordinates:

R, (H) = RU(H)+RE(H) (74)
RLI,,) (H) = %Haﬁ <Ha'/ Bu+ Hpy,av —Hog yuw — Hyw 7a6>

= %H % Hiappuw) = %H O (Hifapu)) = Huv a5)
REH) = HoHs (T, ()T () - T, (T () )

where )
FlB(H) = §H’Y‘T (Haﬁ,oz + H,o B~ Ha5’0> .
To calculate Ry, (H) — PR, (G) we use (31) and (32),

GaB - HaB + haB
GaB — HCYB _ h‘lﬁ + [h . h]
Therefore, using the notation in (74) and the fact that H = P G, we find,

1 « «
R)(H) - PR{)(G) = 5 <H °Hiapur) — P (G G[aBuV])>

1 « « «
=3 <h ® Hiagu) + G Hiapyn) — P (G BG[aﬁuuﬂ) + 1O H

1
> <haBH[aB,“,] + G5 p G[agu,,] — P(GQBG[QBMV])> + h20%H

1 a «
= 5 <h BH[aB,uu] + [G B>P] G[aﬁuu]) + ’/T(h,h;62H)

For convenience we shall introduce the following notation,

Definition 5.1. Given two scalar functions v, w we define

{v, w} =[v,P] w.

Therefore,

R;(}V) (H) - PR[(_LIV) (G) = <haBH[ozBuV] + {Gaﬁ s G[aﬁul/]}l> + ﬂ-(ha hv 82H)

N | =

(75)
Remark 5.2. Observe that,
[P,v](I = P)w = P(v(I — P)w) —vP(I — P)w)

= Z P(U)‘l’LU)‘2)

A1>1,22>2, ] In(A1 A7 1)|<2 (76)
= Z [P, v w2
A1>1,00>2, In(A1 A5 1)|<2
Thus, writing w = Pw + (I — P)w,

{v,w} = [v,PlPw+ > [, Pl (77)
A >1,02>2,| In(A Ay )| <2
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To compute the contribution to (73) of the quadratic terms RE?,,) (H) we start
I} 5(H) which we write in the form

1
FZB(H) = iHA{J <PGJB7Q +PGaa,B _PGaB,a>-

Now commuting P with H, and using (32),
[N s(H) = PT]4(G) + [0H]OG + [hOG]

Therefore, using that h and OH are bounded and the definition of the error term
m, we infer that

R()(H) = H“BHva<(PFZB(G)) (PT5, (@) = (PT,(G)) (PFig(G))>

+ w(0H,0H;0G) + w(h,0G;0G) (78)

On the other hand, using first the formulae (31), (32) and then commuting P with
H

)

PRR)(G) = P(Gaﬁaw(rzB<G>riy<G>—rzy(mrig(c:) ))

= 15 P(T(6)T5(6) - T (O (6))
+ w(0H,0G,0G) + w(h,0G, 0G) (79)
Thus, combining (78) with (79),

R()(H) - PR)(G) = —H"Hy <P (TG4, (@) = (PT,5(@)) (PTE,(G))

— P (I, (G)Is(G)) + (PT},(G) (P rgB(G))>
+ w(0H,0H,0G) + n(h,0G, 0G) (80)
To simplify the expression above we introduce the following,

Definition 5.3. Given two functions v and w we introduce their modified® parad-
ifferential product {v,w}.

{v,w}:=P(v-w)— Pv-Pw (81)
Remark 5.4. Observe that,
{v,w} =P Z vA1PS%w+P Z ™M w2
<< Ar>1 | In(a g h) <2
+P Z PS%U’LUAQ +P Z M W (82)
Lan<d Ao>1 | In(a Az )| <2
R ST SR S
laa 1<t
L1

51t differs from the standard paradifferential product. In our definition we have removed the
low-low interactions.
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With this definition we can write

RC)(H) - PRE)(G) = ~HH,, ({%(G), I, (@)

—{I,(@), rgB(G)}> + Err (83)
with the error term of the form

Err = 7(0H,0H,0G) + n(h, G, 0G)

Thus, taking into account (75) and (83), we rewrite (73) in the form,

Ry, (H) = I, +1II,, +III,, +Err (84)
I, = %h“ﬁH[aﬁw] (85)
II, = [G*,P]Gapum (86)
Ml = = ({ T8 = (T T (57)
Err = 7(0H,0H,0G) + n(h,0G,0G) + n(h,h; 0> H) (88)

Remark 5.5. Recalling the definition of 7 and using the fact that the frequency
range of h is included in [¢]| > 1 we have

t
/ |7 (h,0G,0G)||L2(p,..) S lhllezee - 10Gp2re - sup [|0G]| 2, )
u+1 T

S ||3h||L$L;° ' ||8G||L§Lg° 'SUPH8G||L2(DT,“)
T

10G | 2e - 10G |25 - 5up 190G L2(D, )

IN

We can thus replace 7(h,0G,dG) by 7(0G, 0G;0G). By a similar argument, tak-
ing into account the frequency support of H, we can also replace w(h, h; 0>H) by
m(0G,0G; 0G). Finally, by a trivial argument, we can also replace 7(0H,9H, 0QG)
by 7(0G, 0G; 0G). Therefore the error term in (88) can be simplified to

Err = 7n(0G, 0G; 0G).

6. THE STRUCTURE OF I44 AND I1l4y

6.1. Structure of Iy4. Contracting the formula (85) with L*L” we obtain, see
also the definition of [[ ]] in (74),

1
Iy = §L“L" <ha5HHaBW]] - haﬁHW,a5> (89)
Observe that

LrL” H[[aﬁw]] =LrL” <Ha'/ Bu+ Hayav — Hap ,uV> ~ L(OH)
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It remains to consider the term L*LY h*?H,, .. Observe that,
L*L"0,08H,, = D.OH + [0GOG] + [0G][0G] + [VL]OG + [VLOG].
This is obvious if & = 1,2, 4 and follows from (58) of Lemma 3.3 if & = 3. Therefore,
L*LYh*PH,, o5 = hD.OH + 7(h,dG;dG) + m(h,dG, VL)
Appealing to remark 5.5 we can summarize our results above in the following
Proposition 6.2. We can write,
I,4 = hD,.OH + Err,

where

Err = n(0G, 0G;0G) + n(0G, 0G; VL)

6.3. Structure of Il 4. Recall that
I1,, = {G*",Glapuy} = [G*?, PIGlapuu
For technical reasons we also introduce the following,

Definition 6.4. Given scalar functions f,v,w we define,

{v, fow}) =[v,P]fPuw+ > ™, Pl fuwt (90)
A >1,02>2,| In(A Ay ) [<2

Lemma 6.5.

Ho, wy =A{v, fow} +7(Vf,Vv;w) (91)

Proof Using representation (77) for {, }', the commutation lemma 2.8 and the
definition of 7 ( see definition 2.10 ) we infer that

flv,w} = [v,P]fPw+ > [0*, P] fwe
A1>1,02>2,| In(A Ay 1) [<2
+ [f.[v,P]|Pw + > [f, [, PlJw* (92)

A1>1,20>2,| In(A A5 1) <2
= {v, fow} +n(Vf,Vv;w)

We also define,
{v,Low} := {v,L*od,w}
{vieacw} = {v,elyod,w}

Definition 6.6. We denote by {v, D, o w}' a scalar quantity which can be esti-
mated as follows

[{v, Diow}| S o, LowY |+ (3 [{v,ea0w}'?)

A=1,2

1
2
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We now proceed with the estimate for I1y4.
Iy = L*LY{G*?,Glapun}

= ALY <{G”B »Glapun}t = {G*7, G, aﬁ}’>

We start again with the term containing G[ag,,])- According to the definition 6.4
of {v, fow}" and the relation (91), we obtain

LLY{G®?, Gapuy ) = {G*, L*LY o Gilapuw)} + ©(VL,0G;0°G)
Using also definition (6.6), we infer that

LFLY{G*? , Gllagu ) = {G, Ds 0 0G} + n(VL,0G;9°G)
It remains to consider LFLY{G*? G, a5}'. Proceeding as above we obtain
LMLY{GP Gy ap} = {G*P, LFLY 0 Gy ap} + ©(VL,0G,0°G).

According to the wave coordinate condition (58),

LFLY0,058(QGuy) = H-D.O(QG)
+ ﬁ <[6G] -0*G + [0°G) - c’)G) +h-0*(QG) + 0G - 0(QG)
for any projection Q = I, P, Py, with A; > 1. Therefore, in view of definition (90),
{GP | LFLY 0 8,05G, Y = {G,H-D.,doG} (93

9
+ {G,hod’GY +{G,0GodG} +E (94

where the error term E has the form,

)
)
E = [G,P]?([E)G]62G+[62G]6G>

+ 3 Lip.a P Py, ([6G]62G T [62G]6G>
1 >\2
)\1>1,)\2>2,\1n()\1)\2_ )|§2

Observe that the infinite sum above is controlled by the presence of the factor A5 !
and therefore E is of the form

E =7m(0G,0G ; 8°G).
Observe also that the error terms in (94) can also be written in the form,
{G, hod*G} 7(0G, h; 8*G)
{G,0G0dG} = =(0G,0G; Q)
Finally, according to lemma 6.5 the principal term in (93)
{G,H-D,0doGY =H-{G, D,d0GY +n(VH,0G,pr’G)

We summarize these calculations in the following.

Proposition 6.7. We can write
Iy ={G, D00 G} + H-{G, D.doG} + Err, (95)
where the error term

Err=n(VL,0G;0*G) + (G, 8G; 0G) + 7(dG, 8G; 9*G)



20 SERGIU KLAINERMAN AND IGOR RODNIANSKI

7. THE STRUCTURE OF Il

Recall (83),
Iy = —LMLYH*PH,s ({I‘ZB(G),F‘;,,(G)} - {F:LV(G)’FL;B(G)}>

= &5 -6& (96)

with {, } denoting the modified paradifferential product introduced in definition
5.3.

Remark 7.1. We note here the following simple property of { , }:
Ho,w} = {fv,w} +7(v,w; Vf) = {v, fw} + 7(v,w; V).

Recalling remark 5.4 we shall now introduce the following expression closely related
to fg{v,w}.

Definition 7.2. Given scalars v, w, f,g we introduce

{fov,gow} =P Z fv)‘l-gPS%w+P Z for - guwt
lani<a A>3 In(aagth)|<2
+P Z fPcyv cgu? + P Z for - gut?
1<he<d Xe>4 In(an Ay <2 (97)
B LR NV S
3<Ai<1 Laa<1
- X e
$<A1,20<1

Lemma 7.3. We have,

o, wy={fov, w}+7(v,w;Vf) ={v, fow}+m(v,w;Vf) (98

Proof |

We also define,
{Lov,w} = {LMod,v,w}

{ea ov,w}

{€lt 0 Ouv,w}
In view of the lemma we have
L*{9,v,w} = {Lov,w} + 7(0v,w; VL) (99)

Definition 7.4. We denote by {D,ov,w} a scalar quantity which can be estimated
as follows

{D. ov,w}| S {Lov,w} + ( Z |{erv,w}|2)%

A=1,2
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In the calculation below we shall use the notation FZ{B = G771, 43 where,

1
Fo‘\aﬁ = i(Gaa,B + Gﬁa,a - Gaﬁ,a)-

The term & = —H“BHA,(;L“L”{I‘ZB(G),F‘fw(G)}:

Using remark 7.1 then expressing G*? = H®? — h®% 4+ O(h?) and applying the
definition of m we derive,

=& = H“BHW;L”L”{FZB(G),I“;V(G)} (100)
= H“BHM;L”L”{GWFPHB , G&’FMV}
= H“BHM;GW’GJ"L“L"{I‘MB , rmy} + Err
= HQBHML“LV{FMB , rmy} + Err

= HO‘BH‘S‘T{L“ o8, LY o Fa|a,,} + Err  (using (98))
with the final expression® for the error term

Err = 7n(0G, 0G ; 0G) + n(0G, 0G ; VL)

Consider now the bilinear term {L* o I'5),3, L” 0 I'y|o, }. As we start manipulat-
ing the left hand side we consider {L* o T'5,3,w} for a fixed w. As w remains
unchanged in the calculations below we shall drop the bracket and simply write
{L# o T3, w} = L* o Ts),5. Thus instead of,

1
{L“"Fauﬁa w} = 5{”0 <Gu6,6 +G66,u—G6u,6> ; w} =
we write,
n _ 1 n _1 p
LFolsyus = L% | Gus,p+ Gpsu—Gops ) = 5L o | Gus,p = Gops ) + DuoG

1
= 3 <L“85 o Gué — L*95 0 GBH) + D, oG,

where we have used that 0 commutes with o, i.e. {fo v, w} = {f0ov, w} .
Recall that, see (52), 0y = —+Lq L + D,. Therefore,

1
L* o F5|M5 = —1 (LBLM(33 o Gué — LsL'O50 GBH) +D,oG (101)

According to (53) of Lemma 3.3 and the formula H3* = —1L%, we have

L aqa

—L*33(QG)ar = H*?0,(QG)ap + GD.(QG) + hd(QG) + 0]

6Use also remark 5.5, lemma 7.3, and the boundedness of ||G, H, h|| .
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with @ any of the projections @) = I, P, Py,, with A\; > 1, appearing in the definition
of {, } and o. Therefore,

—L%330Goy = H*0, 0 Gop + GD, 0 G + h o G + [0G]0G
Therefore, from (101), and expanding 95, 0s relative to the null frame,
1
L* o Dg)p = Z(LBHW@; 0 Gue — LsH" 030G s) + Dy o G
+G-D,oG+ hodG+ [0G|0G
1
= —g (LBL(;HMU&; o Gua — L(;LBH“U&; o Gug)

+D,oG+G D,oG+ hodG + [0G|0G
=D.,oG+G-D,oG +hodG + [0G|0G

Similarly we have
1
L'oTap, = 3L"o (Gw,a + Gan,y — GW)

1
= -3 (LVLaa3 0 Gyy — L"Ly03 0 Gou/> +D.oG

1
= 1 (LQH””&Y oGy — LyH"" 84 o GW>

+ D.,oG+G-D, oG +hodG +[0G]0G
= D,oG+G-D, oG +hodG +[0G]0G

Thus, going back to (100),

& :H-H{(D*OG—{—G-D*OG),(D*OG—I-G-D*OG)}
+ m(0G,0G; 0G) + m(0G,0G ; VL) (102)

The term E; = H"BHW;L“L"{FZV(G), rgB(G)}:

Using remarks 7.1 and 7.3,

&

H“BHM;L“L”{H“I‘EW , H“rmg} + 7(h,0G ; 0Q)

= H‘“’{L“L” o Tgj, H* 0 FMB} + 7(0G, 8G;0G) + 7(0G,0G; VL)

Observe that according to (54), Lemma 3.3,
1

LFLY05(QG) 0 = G- D.(QG) + hd(QG) + 0l

[0G]0G

for any @ = I, P, P\, with Ay > 1. Therefore,
L'uLyad o G[,Ll/ =G- D, o G+ hodG + [8G]8G
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Thus

LFLY o Fa‘u,, LFLY o <Gu5,,, + GWML - Guy’(;)

DyoG—-LFL"050Gy, =DyoG+G-DyoG  (103)
+ hodG + [0G)0G

Using (83) we have,
H*P8, 0 Gas =2H**03 0 Gy + GD. 0 G + h o G + [0G]IG.

Therefore,

Haﬁ o Fa|a6 = Haﬁ ° <Gaa,6 + GBJ,a - Gaﬁ,o‘)

- HCVB o <2Gaa',6 - Gaﬁ,a’)
= 2H050Gq; — 2H**030Gay + GD. 0 G + ho G + [0G]0G
= GD,oG+ hodG + [0G|0G

Therefore, similar to (102), we derive
E = H{(D*0G+G-D*0G),(D*0G+G-D*0G)} (104)
+ 7(0G,0G; 0G) + n(0G,0G; VL)

We now observe that according to the remark 7.1
{G-D,oG,f} =G{D. oG, f}+7(0G, f; VG)
Therefore returning to (96), using (102), (104), and the boundedness of H and G
we infer the following
Proposition 7.5. We can write
ITlyy = {DyoG, D.oG} + Err,

where

Err =n(0G,0G ; 0G) + n(0G, 0G ; VL)

8. ESTIMATES FOR [l44, I144, AND [114y

According to the reduction (64) and the representation (84),
Rys = Ina + 1144 + 11144 + Exr
with
Err = 7(0H,0H;0G) + 7(h,8G;0G) + w(h, h; 0*H).
Therefore we need to show that

t t
[ Wi, dr [ il . dr
u+1 u+1
t t
+/ ||IH44||L2(DT,U)dT+/ |Errl2(p, ) dr S AT
u+1 u+1
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We start with error terms accumulated above and in the lemmas 6.2, 6.7, 7.5.

8.1. Estimates for the error terms. According to the property (48) of 7,
7(0H,0H;0G) < w(0G, 0G;0QG).
We then estimate, with the help of the estimates (14)—(16) for G,

t
| Ir(0G.0650G liso. .y dr S 106120 5up 0G0
u+1 T

)

~

< AT sup 9G] |pas, ) S AT
T, U

Since the frequencies of h are restricted to the region || > 1, h = (I — P)G, we
also have

=u)

t
/ I7(h,0G;0G) 2D,y dr - S I1hll232=110G] |72z sup [10G |22
u+1 T

S ATEOOh] gy SATH

In addition, using the background estimates (17)—(20),

t
/ e, b3 P E) 2o,y dr S B2, sup 10°H |2,
u+1 T

_3_
Sz ||ah||%?L;o Sup||62H||L2(E_’_) SA 5—8e¢o
T

Estimating the error terms generated in proposition 6.2, and using the estimate
(28) for VL

t
/ I7(0G,0G; VL) ||lp2(p, ) dr S “aG“ing“ sup [|VL||2(p, ) S A5
u+1 T

To bound the error term 7(VL,dG;0%*G) in proposition 6.7 we use the inequality
(23), [IVLI| £ (© +r7!) and

! : t dr 3
O+r HE. d¢> C) w+</ 7>
GRS T Olizes+ ([ 7

S AT

IN

which follows from the comparison 7 & 7 — u, see (26). Thus,

t t %
[ IR(VL.06:00) 2oy b % ( / ||VL||%w(D,,u)dT) 109G 1= sup [°Clluz(o. .
u+1 u+1 T

< ATEOsup (192G 2,y S ATITIO
T

Finally,

t
/ 17(0G,0G; 0°G)|p2p. .y dr S 110GI22p 5up 0G| 2o )
u+1 T

S )\717860 sup ||82G||L2(Z,—) 5 )\7%7860
T

The error terms in proposition 7.5 are the same as considered above.
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8.2. Estimates for the principal terms. These estimates depend decisively on
the L?(C,) estimates for the tangential derivatives of G and H derived in proposi-
tion 7.7 of [KI-Ro2], see also proposition 2.2. For convenience we recall the result
here.
IDOH 2y A2 IDH 2 S A® (105)
Also,
IDD(PuG)lz2e,) S w2 oAz,

S
I1D«(PuG)llL2(c) S

A~z o0 e (106)

We start with the principal term hD,.0H appearing in proposition 6.2.

t t
/ ||hD*aH||L2(DT‘u)dT 5 / ||h(7')||Lg°||D*8H||L2(Dq—,u)d’r
u+1 u+1

+ +
t 2
S Wilizor ([ 1D-0Hsp, )
u+
S N9Glpzre  sup  |IDwOH|p2(c,)
u<u' <u+1l
< ATl (using (105))

as desired.

We now estimate the principal terms {G', D.0o G} and H-{G, D,.0oG}" appearing
in proposition 6.7. Since H is bounded it clearly suffices to treat the first term.
Recall that

{G, D80G} =[G, P]D,d(PG) + > [P,G, P] D, 8(P,G)
v>1u>2, | In(vu=1)|<2
We estimate the first term as follows:
t t
[ NG.PID.0PGsio,ydr S [ 1061z 1D 0PC)iaio, . dr

+1 +1
1
2

N

t
0630 ([ 1D-0PG) )

+
S N0GlLze  sup +1||D*a(?G)HL2(Cu,)
< AThTie (using (105)) (107)

We estimate the high-high interaction as follows

t t
/ PG, PID. R sz(o. 7 S / PGl 1. 0BG .

1 t
S 5 [ IRV ID. oG reo..
u+1
1
S 0Cls s DR iac

u<lu' <u+1
< wlprtoxTIo8o (ysing (106))
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Therefore,
t
| PG PID. OGO 2(p, .y dr S vttt oa 50 (10g)
u+1
Combining (107) and (108) we conclude that
t
[ MG D00 GYlapydr S AR A ST
u+l v>1,u>2,|In(vp—1)|<2
< )\—1—460
It remains to estimate the principal term {D. oG, D, oG} in Proposition 7.5. We
recall from definition 7.2 that
{D.oG,D.0G} = P Y D.PG) D.(Pc1G)
%<V§4
+ P > D.(P,G) - D.(P,G)
v>3 | In(vp=1)|<2
+ P Y D.(P<yG) - Du(P,G)
i<pu<a
+ P > D.(P,G) - D.(P.G)
p2>5, In(vp=1)[<2
— Y D.(P,G) - D.(P1G)
%<V§1
— Y Du.(P:1G) - D.(P,G)
t<p<t
— Y D.(PG)-D.P,G)
%<V,u§1
By symmetry and similarity it suffices to estimate the first 2 terms in the expression
above. We have
t t
/ ID(P,G) - Du(Pey O,y dr / DBl 1D (Pey Ol dr
u+ u+
S N0z s ID-(PG)llisc,)
u<u' <u+1
< prtey s (by (106).)
Thus
¢
[ P Y DG DAPy Ol S Y / ID.(PG) - D.(P<s @llz(p. )
utl %<IIS4 2<1/<4
< A—l 8ep

Consider now the high-high interaction term

J=P > D.(P,G) - D.(P,G)

v>3,|In(vp=1)[<2
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Clearly,
t t
[ IDR6) DB Gl S [ DRG0, 1D (P Gz dr
u+1 u+1

< 0Gle s DBz e

u<u' <u+1

S )\—1—8601/—%—460
Thus,
t t
/ | Tz, o dr < 3 / ID.(P,G) - Du(Py )12 (oo, dr
utl v>1 In(rp=t)| <2 vH!

5 )\717850 Z Vféflleo 5 )\717860

v>g,|In(vp=1)[<2
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