THE CAUSAL STRUCTURE OF MICROLOCALIZED ROUGH
EINSTEIN METRICS

SERGIU KLAINERMAN AND IGOR RODNIANSKI

ABSTRACT. This is the second in a series of three papers in which we initiate
the study of very rough solutions to the initial value problem for the Ein-
stein vacuum equations expressed relative to wave coordinates. By very rough
we mean solutions which cannot be constructed by the classical techniques
of energy estimates and Sobolev inequalities. In this paper we develop the
geometric analysis of the Eikonal equation for microlocalized rough Einstein
metrics. This is a crucial step in the derivation of the decay estimates needed
in the first paper.

1. INTRODUCTION

This is the second in a series of three papers in which we initiate the study of
very rough solutions of the Einstein vacuum equations. By very rough we mean
solutions which can not be dealt with by the classical techniques of energy estimates
and Sobolev inequalities. In fact in this work we develop and take advantage of
Strichartz type estimates. The result, stated in our first paper [KI-Rol], is in fact
optimal with respect to the full potential of such estimates'. We recall below our
main result:

Theorem 1.1 (Main Theorem). Let g be a classical solution® of the Einstein equa-
tions

Ras(g) =0 (1)
expressed® relative to wave coordinates 2,
1
Ogz® = @%(g“”lglc%)x“ =0. (2)

We assume that on the initial spacelike hyperplane ¥ given by t = 2° = 0,
Vgas(0) € H7'(Z), 0Oigap(0) € H*7'(T)

1991 Mathematics Subject Classification. 35J10.

ITo go beyond our result will require the development of bilinear techniques for the Einstein
equations, see the discussion in the introduction to [KI-Rol].

2We denote by R, p the Ricci curvature of g.

3In wave coordinates the Einstein equations take the reduced form

g% 00580 = Ny (g, 08)

with N quadratic in the first derivatives dg of the metric.
1
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with V denoting the gradient with respect to the space coordinates x', i =1,2,3 and
H? the standard Sobolev spaces. We also assume that g,5(0) is a continuous Lorentz
metric and Sup 4| —, |8ap(0) —mas| — 0 as 1 — oo, where |z| = (2?21 |z7|2)2
and m,g the Minkowski metric.

We show* that the time T of existence depends in fact only on the size of the norm
10w (0)|| grs—1, for any fized s > 2.

In [K1-Rol] we have given a detailed proof of the Theorem by relying heavily on a
result, we have called the Asymptotic Theorem, concerning the geometric properties
of the causal structure of appropriately microlocalized rough Einstein metrics. This
result, which is the focus of this paper, is of independent interest as it requires the
development, of new geometric and analytic methods to deal with characteristic
surfaces of the Einstein metrics.

More precisely we study the solutions, called optical functions, of the Eikonal equa-
tion

H(D;g@auagu =0, (3)

associated to the family of regularized Lorentz metrics Hy), A € 2V defined, start-
ing with an H2*¢ Einstein metric g, by the formula

Hy = Paog(A ', A ). (4)

where® P,y is an operator which cuts off all the frequencies above® A. The impor-
tance of the eikonal equation (3) in the study of solutions to wave equations on a
background Lorentz metric H is well known. It is mainly used, in the geometric
optics approximation, to construct parametrices associated to the corresponding
linear operator Oy. In particular it has played a fundamental role in the recent
works of Smith[Sm], Bahouri-Chemin [Ba-Chl], [Ba-Ch2] and Tataru [Tal],[Ta2]
concerning rough solutions to linear and nonlinear wave equations. Their work
relies indeed on parametrices defined with the help of specific families of optical
functions corresponding to null hyperplanes. In [Kl], [KI-Ro], and also [KI-Rol]
which do not rely on specific parametrices, a special optical function, correspond-
ing to null cones with vertices on a timelike geodesic, was used to construct an
almost conformal Killing vectorfield.

The main message of our paper is that optical functions associated to Einstein
metrics, or microlocalized versions of them, have better properties. This fact was
already recognized in [Ch-KI] where the construction of an optical function normal-
ized at infinity played a crucial role in the proof of the global nonlinear stability of
the Minkowski space. A similar construction, based on two optical functions, can

4We assume however that T stays sufficiently small, e.g. T < 1. This a purely technical
assumption which one should be able to remove.

5More precisely, for a given function of the spatial variables z = z!, 22,23, the Littlewood
Paley projection Pcy f = Eﬂ<%>\ P.f, Py,f=F""! (X(u—lg)f(g)) with x supported in the unit
dyadic region % <lég<2.

6The definition of the projector P.y in [KI-Rol] was slightly different from the one we are
using in this paper. There P,y removed all the frequencies above 270\ for some sufficiently
large constant Mjy. It is clear that a simple rescaling can remedy this discrepancy.
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be found in [KI-Ni]. Here, we take the use of the special structure of the Einstein
equations one step further by deriving unexpected regularity properties of optical
functions which are essential in the proof of the Main Theorem. It was well known
(see [Ch-K]], [Kl], [KI-Ro]) that the use of Codazzi equations combined with the
Raychaudhuri equation for the try, the trace of null second fundamental form ¥,
leads to the improved estimate for the first angular derivatives of the traceless part
of x. A similar observation holds for another null component of the Hessian of the
optical function, n. The role of the Raychaudhuri equation is taken by the transport
equation the “mass aspect function” pu.

In this paper we show, using the structure of the curvature terms in the main
equations, how to derive improved regularity estimates for the undifferentiated
quantities x and 7. In particular, in the case of the estimates for n we are lead to
introduce a new non local quantity 4 tied to u via a Hodge system.

The properties of the optical function are given in details in the statement of the
Asymptotics Theorem. We shall give a precise statement of it in section 2 after we
introduce a few essential definitions.

The paper is organized as follows:

e In section 2 we construct an optical function u, constant on null cones with
vertices on a fixed timelike geodesic, and describe our basic geometric entities
associated to it. We define the surfaces S; ,, the canonical null pair L, L and
the associated Ricci coefficients. This allows us to give a precise statement of
our main result, the Asymptotic Theorem 2.5.

e In section 3 we derive the structure equations for the Ricci coefficients. These
equations are a coupled system of the transport and Codazzi equations and
are fundamental for the proof of theorem2.5.

e In section 4 we obtain some crucial properties of the components of the Rie-
mann curvature tensor Rqgy6.

e The remaining sections are occupied with the proof of the Asymptotic Theo-
rem. We give a detailed description of their content and strategy of the proof
in section 5.

The paper is essentially self-contained. From the first paper in this series [KI-Rol]
we only need the result of proposition 2.4 (Background Estimates) which in any
case can be easily derived from the the metric hypothesis (5), the Ricci condition
(1), and the definition (4). We do however rely on the following results which will
be proved in a forthcoming paper [KI1-Ro3|:

e Isoperimetric and trace inequalities, see proposition 6.16
e Calderon-Zygmund type estimates, see proposition 6.20
e Theorem 8.1

We recall our metric hypothesis( referred in [KI-Rol], section 2 as the bootstrap
hypothesis) on the components of g relative to our wave coordinates z?,
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Metric Hypothesis:
[0,T] , T -

108l e + 198l , 1 < Bo, (5)

for some fixed v > 0.

2. GEOMETRIC PRELIMINARIES

We start by recalling the basic geometric constructions associated with a Lorentz
metric H = Hy).

Recall, see [KI-Rol] section 2, that the parameters of the ¥, foliation are given by
n,v, the induced metric h and the second fundamental form k;;, according to the
decomposition,

H = —n?dt* + hy;(da’ 4+ v'dt) ® (da? + v7dt), (6)

with h;; the induced Riemannian metric on ¥, n the lapse and v = v'd; the shift
of H. Denoting by T the unit, future oriented, normal to ¥; and k the second
fundamental form k;; = — < D;T,0; > we find,

Oy =nT + v, < O,v>=0
1
k‘ij = —§ETHZ']' = —12n_1(8thij — [fvhij) (7)

with Lx denoting the Lie derivative with respect to the vectorfield X. We also
have the following, see [KI-Rol] sections 2, 8:

e < hi&'d < e, e<n®— oy (8)

for some ¢ > 0. Also n,|v| < 1.

The time axis is defined as the integral curve of the forward unit normal T to the
hypersurfaces ¥;. The point I['; is the intersection between I' and X;.

Definition 2.1. The optical function u is an outgoing solution of the Eikonal equa-
tion

H*P9udzu = 0 (9)

with initial conditions u(I't) =t on the time axis.

The level surfaces of u, denoted C,, are outgoing null cones with vertices on the
time axis. Clearly,

T(u) = [Vuln (10)

where h is the induced metric on X4, |Vul|? = Z?Zl lei(u)|? relative to an orthonor-
mal frame e; on Y.

We denote by S, the surfaces of intersection between ¥; and C,. They play a
fundamental role in our discussion.
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Definition 2.2 ( Canonical null pair).

L=bL'"=T+ N, L=2T-L=T-N (11)

Here L' = —H*?95ud, is the geodesic null generator of C,, b is the lapse of the
null foliation(or shortly null lapse)

bl =—<L'\T >=T(u), (12)

and IV the exterior unit normal, along ¥, to the surfaces S; ,,.
Definition 2.3. Null frame , e, ez, €3, €4

Definition 2.4 (Ricci coefficients). Let e3 = L, e, = L be our canonical null pair
and (e4)a—1,2 an arbitrary orthonormal frame” on S; . The following tensors on

St,u

xaB =< Duaes,ep >,  x,, =<Duaes,ep >,

1 1

nA:§ <D364,€A >, QA:§<D46376A >7 (13)
1

§A:§<D363,6A>.

are called the Ricci coefficients associated to our canonical null pair.

We decompose x and x into their trace and traceless components.

try = HABXAB, try = HABXAB, (14)
. 1 . 1
XaB = XaB = 5tixHap, X,p = X,p — JttXHas, (15)

We define s to be the affine parameter of L, i.e. L(s) =1 and s = 0 on the time
axis I';. In [KI-Ro|, where n = 1 we had s =t — u. Such a simple relation does not
hold in our case, we have instead, along any fixed C,,,
dt 1
ds "
We shall also introduce the area A(t,u) of the 2-surface S(¢,u) and the radius r(¢, u)
defined by

(16)

A = 47r? (17)
Along a given C,, we have®
% == / ntr
ar )
Therefore, along C.,
dr r
i §ntrx (18)

Te1,ea,e3,eq forms a null frame. This can always be defined locally, in a neighborhood of a
point.

8This follows by writing the metric on S, in the form yap(s(t,0),0)d0*d0B, relative
to angular coordinates 6',02, and its area A(t,u) = [,/7d0' A df?. Thus, that %A =

J %'yAB %’yABﬂdGl A df?. On the other hand %’yAB =2y ap and % =n.
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where, given a function f we denote by f(t,u) its average on S;,. Thus

ftwy=—— 1

2
471'7" St

The following Ricci equations can also be easily derived see [KI-Ro]. They express
the covariant derivatives D of the null frame (e4)a=1,2, €3, €4 relative to itself.

Daes = xapep — kanes, Daes = x ,zeB + kanes,
Dyes = —knnes, Dyez = 21 ea + knnes, (19)
Dsey = 2n4ea + knnea, Dses = 2€ e — knnes,
Dyes = Paea +1 e, Dzes = Psea +naes + & eq,
1 1
Dpgey = VBGA + §XAB es + §XAB eq

where, Ps, P4 denote the projection on St ,, of D3 and Dy, ¥ denotes the induced
covariant derivative on S, and, for every vector X tangent to ¥,

Enx =knx —n"'Vxn (20)
Thus kxy = kvy —n 7' N(n) and kay = kany —ntVan. Also,
X5 = —XAB — 2kaB,
n, = —kan, (21)
§A =kan +n"'Vyn — NA.

and,
na=b"'Y, b+ kan. (22)

The formulas (19), (21) and (22) can be checked in precisely the same manner as
(2.45-2.53) in [KI-Ro]. The only difference occur because DrT does not longer
vanishes. We have in fact, relative to any orthonormal frame e; on X,

DT =n"‘tei(n)e; (23)

To check (23) observe that we can introduce new local coordinates z¢ = #'(t, )
on ¥; which preserve the lapse n while making the shift V' to vanish identically.
Thus 0; = nT and therefore, for an arbitrary vectorfield X tangent to X;, we
easily calculate, < D7T, X >=n"2X! < Dp,0;,0; >= —n"2X! < 0;,Dp,0; >=
—n72X1 < 0y, Dp, 0 >= —n_QX’%& < 0, 0p >= n_2X’%8i(n2) =n"1X(n).

Equations (21) indicate that the only independent geometric quantities, besides n,
v and k are try, x,n. We now state the main result of our paper giving the precise
description of the Ricci coefficients.

Theorem 2.5. Let g be an Einstein metric obeying the Metric Hypothesis (5) and
H = H(y be the family of the regularized Lorentz metrics defined according to (4).
Fiz a sufficiently large value of the dyadic parameter X\ and consider, corresponding
to H = Hy), the optical function u defined above. Let I be the future domain of
the origin on Y.

Then for any eg > 0, such that 5¢q < v with v from (5), we can extend the optical
function u throughout the region I N ([0, \!=8°] x R®) and show that in that region
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the Ricci coefficients try, x, and n satisfy the following estimates:

1_

2 . _
lltrx — ;”L%Lgo + Xl 2 ree + Il p2re S A2, (24)

2 o —3e
lltrx — ;||Lq(st,u) + IR za(se0) + 0l Lacs,) S AT (25)

In the estimate (118) the function % can be replaced with ﬁ In addition, in
the exterior region r > t/2,

2 —1y—4e > —1y—e
ltrx = <llzee(sen) SETAT Rllze(s,) SEATC+0H®) oz,
Illze (s, S AT+ AT+ AYOH (1) - (26)

where the last estimate holds for an arbitrary positive €, € < eg. We also have the
following estimates for the derivatives of try:

360
Y

2 2 _
I Sult_) |L(trx — ;)||L2(Si,u)||Lt1 +1I fulz |IL(trx — m)”m(si,u)HL} <A

r2>3 23 (27)

2 —3e
I sup IWerx|lzecs, olles + [l sup [V (trx — ——=)llz2(se iyl S AT (28)
r>t r>t TL(t—’U,)

22 =2
In addition we also have weak estimates of the form,
2
sup [|(V, L) (trx — ———) ln=(s,.) S A9 (29)

for some large value of C. The inequalities < indicate that the bounds hold with
some universal constants including the constant By from (5).

3. NULL STRUCTURE EQUATIONS

In the proof of theorem2.5 we rely on the system of equations satisfied by the by the
Ricci coefficients x, . Below we write down our main structure equations. Their
derivation proceeds in exactly the same way as in [KI-Ro]( see propositions 2.2 and
2.3) from the formulas (19) above.

Proposition 3.1. The components try, x, n and the lapse b verify the following
equations’ :

L(b) = —bkyn, (30)
L(trx) + () = ~IX? = Fvwir — Rag, (51)
Psxan + %”’X)ZAB = —kNNXAB — @B, (32)
Pana + %(trx)nA = —(kBN +nB)XaB — %”’XkAN - %BA,- (33)
Here dap = Raasp — %R446AB and B4 = Ryasq. Also, setting,
uw = L(try) — %(trx)2 — (knn +n " 'Vyn)try (34)

9which can be interpreted as transport equations along the null geodesics generated by L.
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we find
L() + trxpe = 201, =)V (1) = 2 (2¥ 4 + 20405
+ kNNXAB + trxXaB + XacXcoB + 2kacxos + RB43A)

1 o
— L(Rua) + (2knN — 4"_1VN"))(§(”X)2 — x> — knntry — Rus)
- = 35
+ 4kX ntrx + (trx + kv ) ([ + Ras) (35)

— try <2(kAN —na)n " Van —2In ' N(n)|> + Ruzas + QkNmkﬁ>

Remark 3.2. Equation (31) is known as the Raychaudhuri equation in the relativity
literature, see e.g. [Ha-El].

Remark 3.3. Observe that our definition of p differs from that in [KI-Ro]. Indeed
there we had, instead of p,

- 1 .
ju= L{trx) = 5(trx)* — 3knntrx

and the corresponding transport equation:
L(f) + trxii = 2(n, = 1)V (6) = 2%a5 (2V 4m5 + 2047

+ knNXaB +trxXaB + XacXes + 2kacxeB + RB43A)
— L(Ru4) — L(knn)try — 3L(knn)try + 4k ytry (36)
+ (trx + 4knn)(IX]? + Raa)

We obtain (35) from (36) as follows: The second fundamental form k verifies the
equation( see formula (1.0.3a) in [Ch-KI]),

EnTkij = —VNjn + n(RiTjT - k‘lmk‘Jm)
In particular,
Lorkyy = —Van +n(Ryrnt — EnmkR).

Exploiting the definition of the Lie derivative £,,77, we obtain
T(k‘NN) + Qk(VNT, N) = —n_lv%ﬂl + (RNTNT — k‘Nmanl).
It then follows that
1 1
§L(kNN) + EL(kNN) —2(knn)? — 2(kan)? = —n VAR + (RyrNT — ENmkR)

Therefore,

%L(kNN) _ %L(n_lN(n)) - —%L(kNN) _ %L(n_lN(n)) + (Rvrnt + knmkR)

+n Y VNN)n—n ?|N(n)]?
Recall that kxy = kyy —n "N (n) and < VyN,eq >= kay — na. Thus
Lknn) = —L(kNN + nle(n)) + 2(kan —ma)n" Van
2ln N (n)]? + Razaz + 2knmkR.
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Therefore taking p = L(trx) — 3 (trx)? — (knn +n ' N(n))trx we derive the desired
transport equation (35).

Proposition 3.4. The expressions (divx)a = WBXAB, divn = WBnB and (cyrin)ap =
Y ans — Y gna verify the following equations:

C o . 1
(¢ivx)a + Xapkpn = 5(Vatrx + kantrx) — Rpaas, (37)
. 1 _ N 1
divn = 3 (u +2n N (n)try — 2[n* — |x|* - 2kABXAB> - §RB43A,
(38)
1 . 1
cyrln = 3 €*® kacxcn — 5 €*P Rpza. (39)
We also have the Gauss equation,
A 1
2K:XABXAB_§t7Xt79_(+RABAB (40)

We add two useful commutation formulas.

Lemma 3.5. Let 114 be an m-covariant tensor tangent to the surfaces St .. Then,

YVePulla — Pu¥Vplls = xBoVolla —n~'VenPalls (41)
+ Z(XAZ-BTCCN — xBoka,n + Roaan)lly, ¢ 4, -

(3

Also, for a scalar function f,

YNVaf =VaVnf= —;kANszf — (na + kan)Dsf — (xaB —XAB)WBf( |
42

Proof For simplicity we only provide the proof of the identity (42). The derivation
of (41) is only slightly more involved (see [Ch-KI], [KI-Ro]). We have

VNVaf = VaVnf=I[N.ealf = (Vyea)f = (Dnea — Vyea)f — (DaN)f

Now using the identity N = $(es — e3) and the Ricci equations (19) we can easily
infer (42). [ |

4. SPECIAL STRUCTURE OF THE CURVATURE TENSOR R

In this section we describe some remarkable decompositions'® of the curvature
tensor of the metric H. We consider given a system of coordinates'! z® relative to
which H is a non degenerate Lorentz metric with bounded components H,3. We
define the coordinate dependent norm

|0H| = max |0, Hap| (43)
a,Byy

10The results of this section apply to an arbitrary Lorentz metric H.
' This applies to the original wave coordinates z%.
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We say that a frame eg, ep, €., €4 is bounded, with respect to our given coordinate
system, if all components of e, = €0, are bounded.

Consider an arbitrary bounded frame e, €, €., eq and Rgpeq the components of the
curvature tensor relative to it. Relative to any system of coordinates we can write

Ropea = efeye)e (02, Has + 035 Hary — 03, Hos — 025 Hsy) (44)
Using our given coordinates ® we introduce the flat Minkowski metric mqg =
diag(—1,1,1,1). We denote by ]O) the corresponding flat connection. Using f) we
define the following tensor:
7(X,Y,Z) = Dy H(X,Y)
Thus in our local coordinates z“ we have mo5y = 0y Hag.

Proposition 4.1. Relative to an arbitrary bounded frame e, ey, e.,eq we have the
following decomposition:

Rabcd = Da’”bdc + Db'”acd - Da’”bcd - Db'”dac + Eabcd (45)

where the components of the tensor E are bounded pointwise by the square of
the first derivatives of H. More precisely, denoting |E| = maxqpc,d|Eabed| =
MaXa,8,v,6 | Eapys|, we have

|E| < |[oH (46)

Remark 4.2. Tt will be clear from the proof below that we can interchange the
indices a, ¢ and b,d in the formula above and obtain similar decompositions.

We show that each term appearing in (44) can be expressed in terms of a corre-
sponding derivative of 7 plus terms of type E.

Consider the term R; = eé"efe?e‘;agéffm. We show that it can be expressed in the
form D,mpeq plus terms of type E. Indeed,
Dumpea =  €a(Thed) — ™ bed — ToD,ed — TheDod
€40 (ehey €105 Hay) — TD,bed — MoDacd — ToeDod
= R, + eg‘aa(e‘;efeg)aﬂ-]gv — TD,bed — TbD,cd — TbeD,d
= R+ e‘fieg‘@a(ef)ejc{)gHBV — TDgbed — -+
Now,
TDgbed = ]o)dH(Daebaec) = e‘;(Daeb)Be;’&;Hgy
Thus,
D,mpea = R1 + ege;’&;Hm (egaa(ef) — (Daeb)ﬁ)
On the other hand
(Deep)’ = < Dgey, 0, > HPH
= e20u(e))— < ey, D,8, > H— < 4,8, > €2, (H")
Henceforth, we infer that,

RL(J}J)cd = DaTpea + Et(ziz):d
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with
EW = e3eY9;Hp, (< €5, Dady > HO'+ < 4,0, > 20, (HM)).
Since D,d,, can be expressed in terms of the first derivatives'? of H we conclude

that |E™M| < |9H|? as desired. The other terms in the formula (44) can be handled
in precisely the same way.

Remark 4.3. We will apply proposition 4.1 to our metric H, wave coordinates =
and our canonical null frames. We remark that our wave coordinates are non
degenerate relative to H, see (8), and any canonical null frame eq = (T'+ N),e3 =
(T — N), e4 is bounded relative to z%.

Corollary 4.4. Relative to an arbitrary frame e4 on S;, we have,

Ruscp =YV m8pc + Vgmacp — Y amBcp — Vgmpac + Easep
(47)

with E is an error term of the type,
1B S (|0H|* + |x|[0H]).

and,
| < |0H].

Corollary 4.5. There exists a scalar w, an S-tangent 2-tensor wap and I1-form
E 4 such that, the component Rpsap admits the decomposition

Rpaap =YV m+ Y map + Ea.
Moreover,

7| < |0H]
1B < (10H]” + |x||0H]).

Corollary 4.6. There exists an S-tangent vector w4 and scalar E such that
€8 Rapss = cifrlnr + E

and,

0H|

(10H|* + |x||0H]).

||

S
Bl <

Corollary 4.7. There ezist S-tangent vectors 7r1(41),7r1(42) and scalars E | E®?) such
fhat PR au3p = divt™ + R+ Ray + EW,
e*? Rausp = cyrin® + E®),
where R is the scalar curvature. Moreover,
72 < (o]
|ECD S (I0H|® + [x||0H]).

~

"?recall that Dgdy =T 5 with I the standard Christoffel symbols of H.



12 SERGIU KLAINERMAN AND IGOR RODNIANSKI

Proof Observe that Rap = HMVRALLBV = —%RA334 - %RA433 — (5CDRACBD.
Hence, since Rasps = Rpaas, we have 64PR 45 = —0PRaup3 — 062 B PR acsD,
and therefore,

PR assp = 6 PRap + 0 P5“PRacnp

=R+ Ry + 0*P5PRacsp.
We now appeal to corollary 4.4 and express 6*PR 4435 in the form
PR gg3p = divr™ + R+ Ryy + EW,
where

7D < 9H|
1BV < (0H] + |x||0H]).

On the other hand since R34 + Rapss + Rassp = 0, we infer that Rasps —
R a4p3 = —Rapys. Thus,

2 € Rapzp = — € Rapus.

In view of corollary 4.6 we can therefore express €42 R 4435 in the form c1/r17r(2) +
E®), [ ]

5. STRATEGY OF THE PROOF OF THE ASYMPTOTIC THEOREM

In this section we describe the main ideas in the proof of the Asymptotic theorem.

1. Section 6

We start by making some primitive assumptions, which we refer to as

e Bootstrap assumptions.
They concern the geometric properties of the Cy, and S;, foliations. Based
on this assumptions we derive further important properties, such as

e Sharp comparisons between the functions u,r and s.

e Isoperimetric and Sobolev inequalities on S ,,.

e Trace inequality; restriction of functions in H?(2;) to St.

e Transport Lemma

e Elliptic estimates on Hodge systems.

2. Section 7 We recall the background estimates on H = Hy) proved in [KI-Rol].
We establish further estimates of H related to the surfaces S;, and null
hypersurfaces C,,.

e L9(S; ) estimates for 0H and Ric(H).
o Energy estimates on C,.
e Statement of the estimate for the derivatives of Ricqy(H).

3. Section 8
Using the bootstrap assumptions and the results of sections 6 and 7 we provide
a detailed proof of the Asymptotics theorem.
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6. BOOTSTRAP ASSUMPTIONS AND BASsiC CONSEQUENCES

Throughout this section we shall use only the following background property, see
proposition 2.4 in [KI-Rol], of the metric H in [0,¢.] x R®:

10H |20 S AT3 740 (48)
By Hoélder inequality we also have,
10H|pipe S AT (49)

The maximal time t, verifies the estimate t, < A =8¢,

6.1. Bootstrap assumptions. We start by constructing the outgoing null geodesics
originating from the axis Iy, ¢t € [0,t.]. The geodesics emanating from the same
points € I'; form the null cones C,,. We define Q* C [0,%.] X R® to be the largest
set properly foliated by the null cones C, with the following properties:

A1) Any point in Q* lies on a unique outgoing null geodesic segment initiated
from I'; and contained in Q*.

A2) Along any fixed Cy, £ — 1 as s — 0. Here s denotes the affine parameter
along Cy, i.e. L(s) =1 and s|r, = 0. Recall also that r = r(¢,u) denotes the radius
of Sty = Cy Ny,

Moreover, the following bootstrap assumptions are satisfied for some ¢ > 2, suffi-
ciently close to 2 :

—1_2¢
<\ "2 o,

~

1 . 1
B1) |[[trx—2[pzp S AT27, IXll2pee S AT272, Inllz2re

B2) ltrx = 2[lpa(s,) SA20, IXllpacs,.) S AT, InllLacs,..) S AT>.

Remark 6.2. Tt is straightforward to check that B1) and B2) are verified in a small
neighborhood of the time axis I';. Indeed for each fixed A our metrics Hy are smooth
and therefore we can find as sufficiently small neighborhood, whose size possibly
depends on A, where the assumptions B1) and B2) hold.

Remark 6.3. We shall often have to estimate functions f in Q, which verify equa-

tions of the form % = F with f = fy on the axis I';. According to A1) we can

express the value of f at every point P € (2, by the formula,
£(P) = fo(Po) + [ F
-

with v the unique null geodesic in 2, connecting the point P with the time axis
'y and Py = yNT;. For convenience we shall rewrite this formula, relative to the
affine parameter s in the form

1= £0)+ [ F(sas
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It will be clear from the context that the integral with respect to s’ denotes the
integral along a corresponding null geodesic 7.

6.4. Comparison results. We start with some simple comparison'® between the
affine parameter s and n(t — ).

Lemma 6.5. In the region ),
s~ (t—u), de, s<S(t—u) and (t—u)<s

Proof Observe that 2 = L(t) = =n~"! and, since u|r, = t,

t—u—/ / (50)

Thus, since n is bounded uniformly from below and above, we infer that s and t —u
are comparable, i.e. s &t —u. In particular s < A1 7%¢° everywhere in (..

Remark 6.6. The formula % = n along v together with the uniform boundedness of
n, used in lemma 6.5 above, allows us to estimate integrals along the null geodesics
v as follows:

[ =1 [ e = 1 [ Rt = [ R e

We shall make a frequent use of this remark.

In what follows we shall refine the comparison between s and ¢ — u.

Lemma 6.7. In the region ),

n(t —u) = s<1 + O(A‘4€°>.

Proof Consider U = (n(t —u) — s) and proceed as in lemma above by noticing
that % = 0. Therefore,

diSU _ dis (n(t ) - s) = 'Lm)n(t — )

= n7'L(n)s +n~'L(n) <n(t —u) — s)
Integrating from the axis I'y we find,

Ul(s) :/s'n_lL(n)ds'+/U(s')n_lL(n)ds' (51)

~

3In [KI-Ro] we had in fact n = 1 and s = t — u. In our context this is no longer true due to
the non triviality of the lapse function n.
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where 7 is the null geodesic initiating on the axis I'; and passing through a point
Py corresponding to the value s. By Gronwall we find,

U(s) 5/ 'In"tL(n)|ds’ exp/ |n"'L(n)|ds’.

According to the Remark 6.6, [ n~*L(n)| < |0H|| 1. We can now make use
of the inequality (49) and infer that

n(t —u) = s<1 + O(A860)>.

|
Lemma 6.8. The lapse function b satisfies the estimate
[b(s) = n(s)] S AT (52)
throughout the region ..
Proof Integrating the transport equation (30), L(b) = —bkyx, along the null

geodesic 7(s), we infer that,
bs) = bO)exp (~ [ Fn).
0

Since |knyn| S |0H|, the condition (49) gives [J [knn| S A8, According to
our definition b=! = T(u) and u|r, = t. Thus b=1(0) = T(t) = n1(0) and
therefore, |b(s) —n(0)] < A8, To finish the proof it only remains to observe that
n(s) =n(0)] < [ IL(n)] S A5, u

Recall that the Hardy-Littlewood maximal function'* M(f)(t) of f(t) is defined by

M) = sup !

—_ T)dT,
25l Jy T

and that,
MOy SNz
for any 1 < p < oo.

Lemma 6.9. Let a be a solution of the transport equation
L(a)=F

Then for any point P € Q. N X Ny, where v is the null geodesic initiating on the
azis I's at the point Py € Xy, and terminating at the point P, we have the estimate

|a(P) = a(Ro)| S sM([|Fllzz=) () (53)

with s the value of the affine parameter of v corresponding to P.

Hyestricted to the interval [0, t.]
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Proof Integrating the equation L(a) = % = F' along v we obtain

la(P) — a(Po)| = | / F < / 1F |l 5,y dr < (¢ — o) M(IFll ) (0

It remains to observe that t —to = t —u and that according to lemma 6.5, [t —u| < s
|

Using lemma 6.9 we can now refine the conclusions of lemmas 6.8, 6.7.

Corollary 6.10.

b=n+sO(M(OH)(t)), (54)
n(t—u) = s+ s?0(M(0H))()), (55)
e 5| S MEmO. (56)
s = 3 liane S A4 67)

where M(OH)(t) is the mazimal function of ||0H (t)||pe.

Proof The proof of (54) is straightforward since L(b —n) = —bkyn — L(n). Now
observe that the right hand-side |bkyny + L(n)|| < |0H| and (b —n)|p, = 0.

Since, according to lemma 6.7, n(t — u) < 2s, the equation L(n(t — u) — s) =
n tL(n)n(t — u) can be written in the form

d
|2 (n(t =) — )| S 5108
Thus with the help of lemma 6.9 we obtain
In(t —u) —s| < s> M(0H)

The inequality (56) is an immediate consequence of (55) and lemma 6.7. The
estimate (57) follows from (56), (48), and the L? estimate for the Hardy-Littlewood
maximal function. [ |

We shall now compare the values of the parameters s and r = ﬁA%(St,u) at a
point P € St ..
Lemma 6.11. The identity
r=s (1 + O()\_BEO)> ,
holds throughout the region Q.. In particular this implies that

2ms? < A(t,u) < 8ms?
with A(t,u) the area of S .

Proof Similarly to (18), we have
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Using the identity A(S;,,) = 47r?, we obtain

dr 1 2
= 1+ try — =
ds + 871 Js, . ( X r> (58)

Integrating along the null geodesic v passing through the point P = P(s) * we

have
1 2 2
Py =ols [ [ (m=2) <an [ ol 2o
Y r St,u r Y r (59)
! 2 ! 2
S| (r=s)lltrx = =[leee + [ 8'[Jtrx — —[|Le
- r - r
Thus by Gronwall, and the bootstrap estimate B1),
2 1_ 2 _
lltrx — ;HL}L;O SATTIO |ty — ;HL%Lgo SA
we infer that, |r — s| < sA=6¢.
|

Having established that r =~ s we shall now derive more refined comparison esti-
mates involving try — % and its iterated maximal functions. These will be needed

later on in section 9.6 where try — 2 rather than try — 2 appears naturally.

Corollary 6.12.

2
r =51 < MO (i = Zlae), (60)
3 2
= sl S s¥lltrx = < llezre, (61)
Here, MF is the k-th mazimal function. Moreover,
2 2 2
jorx = 21 S ltrx = 2|+ MP(lir = = ), (62
2 < 2
Iltrx — ;HL?L;O S it — g”L%L;o: (63)
2 2_1 2
ek = Zlrogsin) S T+ 755 = llgze (64
2 2 2 1
- o < ltry — = o+ ATz A0 65
”r n(t_u)”Ltsz S [ltrx S||L$Lm + (65)

Proof We write the transport equation for r in the following form:

1 2 1 2
L(r) = — try — — — - 66
(r) 8mr St,u( x s) + 8mr /St,u s (66)
Differentiating [y 2 we obtain

L 2) = 2.2 _ 2, 2 2
</5t,u S> /St,u(strx 52) /Si_u S(trX s) * /si_u 52 (67)

150bserve that according to A2), (r —s) — 0 as s — 0 along C,
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2 1 2
L Z)=2 —(try — =
(L. 2) =2, s

Since s —r — 0 as r — 0, we have fSt S% — 8m. Using lemmas 6.11 and 6.9 we
infer that ’

Furthermore,

2 2
/ —2:87r+s/\/l(||trx——||,;;o)
St S S
Integrating (67) and using lemma 6.9 once more we obtain

2 2 2
/ 2 = 8 + 2 M2(|Jtrx — =|lne) + M (b — =llzs)
Siu S s s

U

Again, according to lemma 6.11, r &~ s. Thus returning to (66)

s 1 2 2
L = — —_— t - — M2 t - - Sad
() =5+ g [, (0= )+ oM (lenx = )
or, equivalently,
1 2 2
L 2 = 2 —_— t - - M2 t - = g
() =25 g [ (b= ) s M (loex = L)

Integrating with the help of lemma 6.9 we infer that,
7= 524 Ml - 2 l) + 5 Ml - 2z
It then follows that
r=s+ s M?(||try — §||L;o) (68)

Observe that if during each integration along v we used Holder inequality instead
of the bounds involving maximal functions, we would have the estimate

2
r=st st = Sl (69)

This estimate can be used effectively to compare r and s on a single surface S;,,
while (68) works well with the norms involving integration in time. Thus, we infer
from from (68) that

2 2 2
S =SS ME(JItrx = = |pee), 70
12 =21 M (lrx — Zllez) (70)
2 2 2
||; - g”LfL;o S lltrx — g“Lngo (71)
In addition, (69) implies that
2 2 2_1 2
||; - g||Lq(St,u) SraTEtry — g||L3L;° (72)

Inequalities (62)-(64) follow from the identity try—2 = try—2+2—2 and (70)-(72).

S

Finally, (65) follows from (70) and (57). [ |

Remark 6.13. Observe that the equation (58) and lemma 6.9 also give the estimate

2
Ir = sl S s M(llerx =~z ) (#).
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Thus with the help of the bootstrap assumption B1) and the L? estimate for the
maximal function we infer that,

2 2 2 2
lltrx — gHLfL;“ S lltrx — ;HL?L;O + ||; - g||Lt2L;°
(73)

2
< 2fltrx — ;HL%L;O S ATET0

Moreover, since r & s, the equation (58), Holder inequality and the bootstrap
assumption B2) also imply that

2
r=sl S [ o= laags, S A0t
r .
.
Using the bootstrap assumption B2) once again we infer that

It 2|| S It 2|| + ||2 2||

X — —||lLe X — —||Lg — — —||Le

X s L (Si.u) ~ X r L (Si,u) r s L (Si.u) (74)
A2 4 A2 s, ) S A2

Estimates (74), (73) indicate that the bootstrap assumptions B1), B2) also hold
for (trx — 2).

6.14. Isoperimetric, Sobolev inequalities and transport lemma. We con-
sider now the foliation induced by S, on X; N ),. Relative to this foliation the
induced metric h on ¥; takes the form

h = b?du® + yapdep” do®

where ¢* are local coordinates on S2. We state below a proposition concerning the
trace and isoperimetric inequalities on ¥; N Q.. The proposition requires a very
weak assumption on the metric h, in fact we only need

(supr2) V2 Rl|2s,) < A (75)
Q.
for some large constant Ap > 0 and an arbitrarily small ¢ > 0. In this and the
following subsection we shall assume a slightly stronger property that

(supr=)||VEHOH | 2(n,) < AG" (76)
Q

*

Remark 6.15. The assumption (76) is easily satisfied by our families of metrics
H = H,), see remark 7.2.

Proposition 6.16. Let S;,, be a fized surface in X N Q.
i. For any smooth function f : Si, — R we have the following isoperimetric in-

equality:
(/.

ii.  The following Sobolev inequality holds on Sy, for any § € (0,1) and p from

57)° s [ avsi+ . (77)

tu tu

the interval p € (2, 0]
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< r i 2 2 f12)) 3 Gy
sup [f| Srwvse=a ([ (V" +r 2 |f))

t,u t,u

(79)
I PSP

26
:| 2p+8(p—2)
)

iii. Consider an arbitrary function f : £ — R such that f € H2(R3). The
following trace inequality holds true:

Nfllz2s,.) S ||6%+6f||L2(Et) + ||3%76f||L2(21)- (79)
More generally, for any q € [2,00)
3_2., 3_2_,
fllzacs,..) S 1102 at 2z + 1027 fllp2(s,)- (80)

Also, considering the region Q*(%r, r) = U%r§p§r5t7u(p), where r = r(t,u), we have
the following:

1
1 1Z25,0) <IN 2@ 2o 1|20 2y + ;||f||L2(Q*(§r,r))- @)
81

Finally we state below,

Lemma 6.17 (Transport Lemma). Let II4 be an S-tangent tensorfield verifying
the following transport equation with o > 0:

p4HA+UtT’XHA: Fy.

Assume that the point (t,x) = (t, s,w) belongs to the domain Q.. If Il satisfies the
initial condition s*°TL4(s) — 0 as s — 0, then

Tt )| < 4[| Fl|Lipe- (82)

In addition, if o > % and II satisfies the initial condition

1“2(07%)||H||Lq(st,u) — 0 as r — 0, then on each surface St C Q.

1 t o1
I Las, ) S W/ ()" | Fllpos, ) dt’ (83)
r 1 u

Finally, if I1 is a solution of the transport equation

1
Pilg + otryIly = ;FA'

verifying the initial condition s**IL4(s) — 0 with some o > %, then

T, )| < 4AM([|F[lze) (). (84)

Proof The proof of (82)-(83) is straightforward. For a similar version see [KI-Ro].
Estimate (84) can be proved in the same manner as (53) of lemma 6.9. [ |
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6.18. Elliptic estimates. Next we establish a proposition concerning the L? esti-
mates of Hodge systems on the surfaces S;,. They are similar to the estimates of
lemma 5.5 in [Kl-Ro]. We need however to make an important modification based
on the corollary 4.4.

Proposition 6.19. Let & be an m + 1 covariant, totally symmetric tensor, a solu-
tion of the Hodge system on the surface S¢, C €.

divé = F,
cyrlé = G,
tré = 0.
Then & obeys the estimate
m + 1
[wer+ T er <2 / (1P + |G, (85)

Proof Using the standard Hodge theory, see theorem5.4 in [KI-Ro] or chapter 2
in [Ch-KI], we have

/ IVER + (m + DEE? = /S (IFP + G}, (36)

The Gauss curvature K of the 2-surface S¢, can be expressed as follows:

1 1 1 1
K = ~(trx)* + =trxtrk + 5)2 "X+ §RABAB

4( 2
Thus it follows from corollary 4.4 that
K—-r?=yY,0s+E

where the tensor IT and the error term F, relative to the standard coordinates z?,
obey the pointwise estimates |II| < |0H| and |E| < (|0H|* + |X|? + |x||0H]). Then
we have

/ Vel + T i e < / (PP + |G + (m + 1)(V 4Ly + E) €]},
St (87)

Integrating the term fSi V 4I14]€)? by parts we obtain for all sufficiently large p,

1_ 1,1
3=p T

/S VIl = —2 / AV A€ € < V€25 €l s o 1T ocs .

,u

The isoperimetric inequality implies that for 2 < p < 0o

2 _
65 € (I96llcs.o + rlels.
We also deduce from the trace inequality that
2 7*76
Ml za(s,..) S NOH |pus, ) S 10T 5TV H| 2w,y + 1058~V H]| 25,
Thus the smallness condition
il A A VHl|2(s,) < AG
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ensures that we can absorb the term (m + 1) fSi Y 4I14]€|? on the left hand-side
of (87). For large p the above condition coincides with (75).

It remains to estimate [¢ F[¢|*. The most dangerous term is [ |X[*[]*. Ap-
plying the Holder inequality we infer that,

/S RPIER S UEE s, o K12 0(s, -

Using the isoperimetric inequality once more, we conclude that we need a smallness
2

condition on r' ™4 IX|lzacs,..) for some g > 2. This is guaranteed by our bootstrap

assumption B2). ]

We shall next formulate a version of the Calderon-Zygmund theorem for the above
type of Hodge systems.

Proposition 6.20. Let & be an 2 covariant, traceless symmetric tensor, verifying
the Hodge system on the surface S¢, C

JivE =Yv+e
for some scalar v and 1-form e. Then,
1Ellzagsi.) S WWlLacs...) + llellr(s..) (88)

1_1,1
where = = = + =.
p 2+q

Also'S,

_2
€l (50) S IWllzoe(s,0) l0g" (FIIWVI L (s,0)) + 7 7 llellzags,)  (89)
for any p > 2, where logt 2 = log(2 + |2]).

Similar estimates hold in the case when & is a 1-form verifying the Hodge system
divé = divvy + ey,
cyrlé = cyrlvy + e

for some 1-forms v = (v1,v2) and scalars e = (e, e2).

7. PROPERTIES OF THE METRIC H AND ITS CURVATURE TENSOR R

7.1. Background estimates. We start by recalling the background estimates on
the family of the Lorentz metrics H = H(y) proved in [KI-Rol], see proposition

7).
Metric H admits the canonical decomposition
H = —n?dt* + hyj(da’ +v'dt) @ (do? + v! dt)
and satisfies the following estimates on the time interval [0, ¢,] with ¢, < AL—8¢o,
clé)? < hy&'dd <cHEP, nP—lp >e>0, |nlfo] <t (90)

6The term ||rYv||pe(s,.,) can be in fact replaced by ||[r¥v||p-(s, ) for r > 2
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||al+mH||L[10i ]Lg° 5 )\7860, (91)
||al+mH||L[20t ]L;" 5 A_%—460, (92)
||81+mH||Lﬁ§>t ]L;o 5 )\_%_460, (93)
1 1
IV @H)||L, 12 SAT for — 5 <m <5 +de (94)
1
V3@ H) s, s SATEY for = S deo <m »

IV (H 0605 H) |, 1o S A0, 96

k]
IV™ (V2 Rag(H)) Iz SA7
IV Ras(H)llpy, , ne SA50

k]

97

)
)
)
98)

(
(
(
(

Remark 7.2. The inequality (92) with m = 0 is consistent with the property (48),
which we have used throughout section 6. Moreover, since in the region 2, the
radius r of the surfaces S;, does not exceed \' =3¢ we have, according to (94),

r%ellV%+e(aH)||L%, 2 S A3 teo)ey e < )~ de,

Jtx]

This verifies the condition (76).

7.3. L1(S;,) estimates. The trace inequality (80) of proposition 6.16 allows us
to derive the L9(S;,) estimates on the metric H from (94).

Proposition 7.4. For any q in the interval 2 < g < 4

10H || pas, ) S As18E"2)e (99)
In addition,
| Ric(H)||Lo(s, ) SAF 2 8G e (100)
forpe[1,2].
Proof

Since ¢ < 4, by Holder inequality
2_1 2_1y(1—-8¢
10H || La(s,.) S 777 N0H Ia(s,.) S A2 [0 |1, )
Using the trace estimate (80) we infer that

IOH || acs,..y S AT 50 |9H]| 1 gy S A6 1RG0

~

where we have used [|0H|| g (ga) S A~z from (94). The inequality (100) follows
similarly from the trace theorem and (97). [ |
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7.5. Energy estimates on C,. In this subsection we shall derive energy esti-
mates, along the null hypersurfaces C,, for tangential derivatives of the first deriva-
tives of the rescaled metric
t x

G(t,l‘) = g(X) X)
Recall that the original space time Einstein metric g, verifies R,,(g) = 0. In
addition, since our coordinates z® satisfy the wave coordinate condition (2), the
metric g satisfies the quasilinear wave equation

gaﬁaaaﬁguu = Nul/(gyag)' (102)

We have also defined the truncated g<x = > p<in P,g and, by rescaling,

(101)

t x
H(t,z) = -, =)
( 7:1") g<>\(A’ )\)
our background metric. Similarly, for a dyadic u > % we can define
t z
() (¢ - P el
G ( ,1‘) uAg(A) )\)

Observe that H has frequencies < 1 and G® is localized to the frequencies of size
p which can not fall below 3.

We now formulate a basic energy estimate on the null cones C,, for H and G,

Definition 7.6. Given a scalar function F' in ), we denote by D, F the C, tangen-
tial derivatives of F. More precisely, D, F = (VF, LF'). We shall use this notation
for the components of the metrics H and G relative to our fixed system of coordi-
nates. We also use this notation applied to all components of the derivatives 0H
and 0G. Thus |D.OH| =) |D..0yHap|

.8,y
Proposition 7.7. The following estimates hold in the region §,:

IDLOH |2,y SAT2, [IDeH|lp2c,) S A (103)

In addition, for the functions G defined above

ID.OG W |12(c.y S pr Tt 4,

(104)
DG 20,y S max{p~!THopTa 40y ma o y—1—deo}

The following result can be deduced from propositions 7.7, 4.1.

Corollary 7.8. Any component of the curvature Rapeq = R(eq, €p, €c, eq) with vec-
torfields eq, ey, €. varying between L,ea, A = 1,2, obeys the energy estimates on Cy:

_1
IRabedllL2(0) S A2

In particular,

_1
IRullz2c) = Y. IRasepllzzc,) + IRasoall2(c,) + RBasallzac,) S A2
A,B,C,D
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Proof of proposition 7.7

Metric g is a H*'? solution of the Einstein equation. Thus after rescaling and
taking into account v > 5eg, we infer that in addition to the estimates (91)-(96) for
H, we also have

10" GO gz S ATET RO for m = 0,1 (105)

We shall make use of the rescaled version of lemma 8.9 in [KI-Rol] to derive the
equations for H and G(®.

H9,0H =F,  H*9,0,G"™ =F,, (106)

with the right hand-sides F', F}, obeying the estimates

IFllpire S A, 10F |2 SATE,, (107)
IFullpire S ptox—3740 ||0F,[| s S plotoa— 4o (108)

We shall use the generalized energy identity with the vectorfield 7" in the region
My, +, bounded by the cone C, and the time slices ¥, ¥ intersecting C,. The
vectorfield L is orthogonal, in the sense of the Lorentzian metric H, to the cone
Cy. Thus

/Q[H](T,L>+ QIH|(T,T) = Q[H](T,T)—/
Cu PP

(Q“B[H]Tm5+FT(H)>
Mg t,u

Seo

with the energy-momentum tensor

QUflas = 0a05f — 5Has(0, 0" f)

and the deformation tensor (T)nag = L7 H of the vectorfield T'. A similar identity
also holds for G*. According to (7) and (23) the components of the deformation
tensor T can be described as follows:

Mri; = =2k, (Mo =n~"'Opm, Moo =0
Thus the deformation tensor | (77| < [9H|, and by (91) obeys the estimate
107l g SATH (109)

Observe that

QUH)(T, L) = 3 (LHY + J|VH* = 5|D.HP,

QUHI(T,T) = 5(THY* + 5|VH? = J10HP

In addition, |Qas(f)| < 2|0f|*. Thus, using (94), (107), and (109), we obtain

/ |D*H|2§/ |6H|2+4/ (| (T) 7| |8H|2+|F||8H|>
Cu 3 Mg, t,u

o]

S ||8H||2L;>°Lg +] (T)W||Lng°||8H||2L;>°L§ I Fllpi2|0H][Lger2 S A
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Similarly,

[ o
Cy Yto

S ||3G“||%;>°Lg + ||T”||L}Lg°||aGu”i§°L§ + 1 FullLi 2 [10G* || Lo 2
—2—8¢p )\717860 u717860 )\727860}
)

0G| + 4/

My t,u

(|T7r| 9G + || |aG“|)

< max{p

To get the estimates for D,OH and D,.OGH* we differentiate the equations (106).
Commuting the derivative with the metric H we obtain,

H?0,030H = OF + (0H**)9,030H = F*,
HP0,050G" = OF,, + (0H")0,030G" = F,
Using (107)-(108) and the inequality [|0H |11 S A7* of (91), we infer that
IFllgire SAT2 |Fllgppe S ptotoama—teo

Thus using the generalized energy identity for 0H and 0G* we will have

/ IDOH? SN0°H[G o2+ D7l g 1o 10*H o o HIF 13 02 10 H lpgorz S A

u

Also,

/ |ID.0G" P S N10°GH [Fee 2 + 1| Vel 1 1o 10° G T o 2 HNER L2 2 10°GH |10 12

u

1—8epy—1—8¢p
SN
|

8. A REMARKABLE PROPERTY OF Ryy

While the spacetime metric g verifies the Einstein equations R, (g) = 0 this is
certainly not true for the effective metric H = H(,). This could create serious
problems in the proof of the asymptotics theorem as the Ricci curvature appears
as a source term in the null structure equations. We have already established an
improved estimate for Ric(H) in L} L, see (98). This was done by comparing
R, (H) with R,,(G) = 0 where G = g(A~'t, \"'z) is the rescaled Einstein metric.
We need however a stronger estimate involving the derivatives of Ry4(H) along the
null cones C,. To establish such an estimate we encounter an additional difficulty;
the null cones C, have been constructed relative to the approximate metric H.
This leads to significant differences between the C', energy estimates for the second
derivatives of H, see (103) and the corresponding ones'” for G, see (104) in propo-
sition 7.7. Using however the specific structure of the component Ry4 relative to
the wave coordinates we can overcome this difficulty and prove the following:

Theorem 8.1. On any null hypersurface C,

t
/ VRt (H)llp2(s, ydr S A (110)

17The estimates for the second derivatives of the higher frequencies of G do in fact diverge
badly.



ROUGH EINSTEIN METRICS 27

Proof The proof of the theorem requires a rather long and tedious argument which
we present in our paper [KI-Ro3]. ]

9. ASYMPTOTICS THEOREM

We start by recalling already established estimates for the metric related quantities
which play crucial role in what follows.

10H]| 200 S AT 740, (111)
10H | ags, ) S AT BE7D0 for 2<q <4, (112)
| Ric(H)||p1pe S AT, (113)
Ric(H)||rr(s, ) < AFT28G Do gor 1 <p<2, 114

( i,u) ~
(115)

1D.0H||2(c) S A2, 115
s
/ ||VR44||L2(SL“) < )\_1_260, (116)
0
_1
IRl L2(c,) S A2 (117)

where [|[R||z2(c,) = 24 B .c.p IRaBepllL2c,) HIRaBoal L2, HIRBasall2(c,) -
Note that some of the above estimates hold only throughout the region (..

Theorem 9.1. Throughout the region . the quantities try — %, X, and n satisfy
the following estimates:

2 . 1
lltrx — ;“L?L;o + Xl pzree + I0llp2pe S A2, (118)
2 N _
lltrx — ;||Lq(st,u) + IR za(s0) + 0l Lacs,.) S AT3. (119)
In the estimate (118) function % can be replaced with ﬁ We can also state the

corresponding L} estimate following by Holder inequality:

1
ltrx — ———llpzree SATEC Ity — ——= e SATC
n(t —u) n(t —u) (120)
In addition, in the exterior region r > t/2,
2 1N _de N —1y—e
lltrx = <llzee(s.) SE°A o Rllpee (s SEIATCHOH )L
19l (s0,0) SATHH AT+ ANO(H) (1) g - (121)

where the last estimate holds for an arbitrary positive €, € < 9. We also have the
following estimates for the derivatives of try:

2 2 3¢
[Isup [LL(trx = 2)llzzcs, oy + lsup IL(trx — ——)|lz2(s,.0) Iz S AT,

r>g

2 —3€
[l sup IV trx|lzes, o llo: + [ sup [V (¢rx — Y — Mez(s,ollos S AT
r>4 r>4 n(t - u) (123)
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In addition we also have weak estimates of the form,
2
sup [|(V, L) (trx = ———)lL(5..) S A9 (124)
sup (trx = o=y e s
for some large value of C.

Corollary 9.2. The estimates of theorem 9.1 can be extended to the whole region
T N ([0,t.] x R3), where I is the future domain of the origin on .

Remark 9.3. The proof of the corollary 9.2 requires an extension argument. The
estimates of the Asymptotics Theorem, which are uniform with respect to the
bootstrap region (2, provide very good control of the foliations C,, and St ,. By
the standard continuity argument this allows us to show that the estimates, in fact,
hold in the maximal domain allowed by the background estimates (111)-(117) on
the metric H, Z,” N ([0, t.] x R?).

Remark 9.4. Observe also that we can extend the results of (118)—(121) to a sligtly
larger domain ZT, N([0,¢.] x R?). This is in fact needed to derive the first derivative
estimates (122)—(123), in Z;” N ([0, t.] x R*), whose proof depends on theorem 8.1.
That theorem, to be proved in [Kl-Ro3], requires indeed the estimates for ©, see
definition below, in a slightly larger domain. The estimates for ©® however, i.e.
(118)—(121), are independent of theorem 8.1.

Proof

To simplify our calculations we start with the following definition.

Definition 9.5. We set,

2 2 .
© = Jorx — =] + [orx — =]+ [<| + |u] + o] (125)

In view of our bootstrap assumptions B1), B2) ( see section 6.1), Remark 6.13 as
well as the estimates (111)-(112) for 0H we can freely make use of the following:

—1-2¢ —2e
1Ollrzre A2, 1O]1acs,,.) SAT (126)

inside the bootstrap region (2,.

9.6. Estimates for try, x.

We start with estimates (118)-(121) for try. Observe that in view of the Corollary
6.12 it suffices to prove the desired estimates for try — %

Writing y = (try — %) we have,

2.
L(y) + trxy = —Ras = Zknn + 07 (127)

Applying the transport lemma 6.17 we infer that at any point P € (.,

Sy s [

1
52 <|R44| + —|8H| + @2>
v S
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where 7 is the outgoing null geodesic initiating on the time axis I'; passing through
P and s is the corresponding value of the affine parameter s. Therefore,

1
WP S Rusllagoe + 5 [ 10H]+ 101z,
Y
and, in view of (126) and (113),

1
L e L (128)
Y

In the exterior region s > £, using the condition (111), we infer that,
2
lorx = 2 sy S E A0, (129)
s ,

which proves (121). On the other hand, see also the proof of lemma 6.9, (128) leads
a global estimate,

2
lorx = Zllze S ATHO + M(OH)(t) (130)

where M(OH) is the maximal function of ||OH (t)||z=. The estimates (130) and
(111) together with the corresponding maximal function estimates readily imply
that

2
lerx = Sllezzee S ATETO 4 IMOH) ()12 S A2 4 [|0H || 2 S ATETO

On the other hand, using the comparison results between r and s, see section 6.3.,
s < AT8% < )\ and the Holder inequalities

2 2 2 g 2 _1 2 g -
lorx == zacsi) S 7ol (s, S AN 74041572 0H |z S AIATITHO S AT

provided that ¢ > 2 is chosen sufficiently close to 2. Using the comparison results
between % and % of Corollary 6.12 we infer that,

174N

2
lorx = Zllzze S AR (131)
2 —4e
lbrx = =llzas,.) S AT (132)
as desired in (118) and (119). Finally, (120) follows from (57) of Corollary 6.10.

We shall now estimate ¥ from the Codazzi equations (37),

. . 1
(divX)a + XaBkBN = §(Y7Atrx + kantrx) — Rpaas. (133)

Taking advantage of corollary 4.5, with a different error term E, we rewrite it in
the form,

. 1 2
(div)a = 5V albrx - ;)-FWAW-FWBWAB-FE (134)
with 7 and F obeying pointwise estimates

1
7| S19H|,  ES©-0H +—|oH|
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We shall now take advantage of the elliptic estimate of proposition 6.20; we write,
Whimsin S Al = 2lies,.
+ Xl (sen) + T F BN pagsi) (135)
with ¢ > 2.

Remark 9.7. In the application of the elliptic estimate (89) in the derivation of
(135) we need some rough estimates for Ytry of the type

[rVtrx|lzeo(s,.) S AC

for some large constant C' > 0. These weak estimates, consistent with (124), are a
lot easier to derive and can be obtained directly from the transport equations (31),
(32) for try and x. We refer the reader to our paper [KI-Ro] for more details.

Therefore, choosing ¢ = 2 + € for sufficiently small € > 0, and using the bootstrap
assumptions B2) as well as the assumptions (112) we infer that,

A € 2 €
€05y S XX = 2l o + A0H s
_2 _ 2
ot q(||@||Lq<st,u)||aH||L?+r ”quaHnL?) (136)

3l = s, + 10 1z
Now we observe that the desired pointwise estimate (121) in the exterior region
r > t/2 follows from (129) and the estimate |2 — 2| < A™0s~ 1 < A0~
XN zoe(se) S ETIAT0 + [|0H ||z (137)
We can also add a global estimate following from Corollary 6.12'% and (130).
X[ (s0.) S ATHTH0 + OH(8) + M*(OH)(2). (138)

Now squaring and integrating (136) in time we infer from (111) and the just proved
estimate (131) for try — 2 that

o € 2 —1_3¢
||X||L§L;° SA <||U"X - ;HL%L;O + ||3H||L§L;°> SAT? S0, (139)
which is the estimate claimed in (118) of theorem9.1.

On the other hand, applying the elliptic estimate (88) of proposition 6.20 to the
equation (134) yields the following;:

R 2
IXllzacs, . S lltrx — ;||Lq(si,u) + [0H] pa(s, ) + |1 EllLr(s,..)

'$Namely, the inequality [[trx — 2||pee < M3 ([Jtrx — 2||zc)
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for some ¢ > 2, % = % + %. Choosing ¢ = 2+ € as in bootstrap assumption B2) we
infer with the help of the estimate (132) for try — 2 and (112), that

. e 1
XNl a(si0) SATC + 10 0H | 1o(s,.0) + ;||5H||Lp(st,u)

SN+ 10H] 25, ) 1Ol Lacs,.o) + 10H | La(s, )
< A,

9.8. Estimates for 7.

We start with the Hodge system (38)—(39):

1 _ . 1

divy = ={p+2knntry — 20> = X = 2kaxas ) — =0“PRasss,
2 2
1 AB ~ 1 AB

cfrln = B €7 kacXxcB — 3 €77 Rausn

with  defined in (34), p = L(trx) — 3 (trx)? — (knn +n 'V yn)trx and satisfying
the transport equation (35),

L) + trx = 201, = na)¥ 4 (60x) = 2%a5 (2V 478 + 20475
+ knNNXaB +trXXaB + XacXeB + 2kacxeB + RB43A)

—1 1 2 o12

— L(Ry) + (2knn — 4n VN"))(g(trX) - |x|
_ _ _ A (140)
— k?NNtI'X — R44) + 4k]2VNtrX + (tI‘X + 4k7NN)(|X|2 + R44)

1

—try <2(k7AN - 77A)n71VAn — 2|n*1N(n)|2 + 5R,4343 + QkNmkﬁ>

Observe that in view of Corollary 4.7 we can rewrite our div-curl system for n as
follows:

div n

1 . . 1
diva™) + B (H + 2knntrx — 2[n)* — X[ - 2kABXAB> —gw+t E®,

cyrly = Clﬁ'lﬂ'@) + % 4B kacxcs + E®), (141)
where w = (R 4+ Ra34) and

72| < |0H]|

|ECD| S (10H] + |xI|0H]).-

Remark 9.9. We would like to treat the system formed by the transport equation
(140) coupled with the elliptic system (141) in the same manner as we have dealt
with the system for try and ¥. Indeed the Hodge system (141) is similar to the
Hodge system (133). The transport equation for u differs however significantly from
the transport equation (127) for try. Indeed the only curvature term on the right
hand side of (127) is R44 while the right hand side of (140) exhibits the far more
dangerous term. L(Ry44). In what follows we shall get around this difficulty by
introducing a new covector j through a Hodge system on the surfaces S; ,. Using
once more the special structure of the Einstein equations we shall derive a new
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transport equation for y# whose right hand side exhibits only terms depending on
Ric(H) and favorable components of the curvature tensor.

We define an auxiliary S-tangent co-vector ji4 as a solution of the Hodge system

divi = p—w, (142)
cyrlg = 0 (143)

with w = Ry3 + R. We now prove the following

Proposition 9.10.

1. The covector j verifies the following,

1 2
Bo(Pub+ Jorch—%-4) = OH-Puh+ ¥y (2Ras+ 2ni 4 0-0)
- %(3R34+2R)+®Ric+®R*+®-D*6H
+ 0-0:-0+-0-0+0H,
r r
1 .
cfrl(Pasf+ 5t — X ) = OH -Puy+¥(0-0) +R. -0
+ %9-6+6-6-®

2. The covector i verifies the following estimates

1hllp=(s.) S AT+ M(OH) (144)

1l zacs,.) S AT (145)

Proof of part 2 of proposition 9.10

Remark 9.11. For convenience we extend our bootstrap assumptions B1) and B2)
to include g. Thus, throughout the proof below, we redefine ©, see (125), as follows:

2 2 .
© = [trx — |+ [trx — Z| + X + [l + [OH] + [ 4] (146)

This is justified since our stated estimates are stronger than B1) and B2) for 4.

Assuming the first part of the proposition 9.10 we now derive the estimates of part
2. We start by applying the elliptic estimates of proposition 6.20 to the Hodge
system of proposition 9.10. Thus for some ¢ > 2, denoting by M the quantity

M = (Puh+ vk — X 4),
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we have,

e . 1
IM||po(s, ) SWOH||Las, HIM|Lo(s,.) + A (H Ric(H)||p(s,,) + 1Ol7 (s, ) + ;||8H||Loo(st,u)>
_z2 .
+rie <||®R*||L‘1(St,u) + 1OV (0H)l|Lacs, ) + 10 Ric(H)||L(s,,.)
Lo, 3 L 1
+ I Rie(H) s, ) + 107Nnacsu) + 2107 nags ) + 5 110H s, ) ) -
Remark 9.12. As in the case of the estimates for x, the use of the elliptic estimates

(89) of proposition 6.20 for the Hodge system satisfies by the quantity M requires
rough estimates of the type

Ir YR aall = (5,,0) + 1WAl 22 (5,,) + 11O - ¥Ollpacs, ) S AT

for some ¢ > 2. The estimate for the derivatives of the Ricci curvature and the
metric H are contained in our background estimates (91)-(98). In addition to try
and y, for which we have already outlined the procedure of obtaining such weak
estimates, the quantity © contains  and jg. Once again, we can use the transport
equation (33) for n and the Hodge system (142)-(143) combined with the transport
equation (140) for p to handle these terms.

Taking ¢ sufficiently close to ¢ = 2, using the bootstrap assumption, ||O[|re(s, ) S
A~2¢0 <1, and the estimate ||0H || a5, ) S A7 < 1/2 we can then conclude that

. 1
1M][Lee(s,.) S A° <|| Ric(H)||z=(s,.) + [1OllL~(s, ) + ~OH L= (s.,.)

+n@uwaﬁwnD*aHnLq&#>+n@an@L”anmﬂ@L”)

Applying the transport lemma 6.17 to the transport equation

Pajp + %trx#i =M+ x4, (147)

we infer that at any point P € ().,

|wwnsﬁs@m+eﬁ

where 7 is the outgoing null geodesic initiating on the time axis I'; passing through
P and s is the corresponding value of the affine parameter s. Hence,

P S /\E/(IIGII%w(st,u)+||9||Loo(si,u)IID*aHIILq(si_u)
.,

1
+ 10lle(s o Rellagsi ) + 5 [ I0H ..
Y
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Observe that by B1) and (115), we have

[ 1005 1D-0H s, ) % 1Oz ( / ||D*aH||iq(st,u))
Yy Y

1—-2 2
SATTT0N O H| o L IDLOH o o,
< \—3—2c0 \—(1+4e0)(3—3) \— 3
< A_1_260
A similar estimate, by (117), also holds for the term involving R.,. Consequently,
1l o500y S AT+ M(9H)

as desired.

Observe also that in the exterior region r > %,

IhllLo(s,) S AT+ r7iATHe. (148)

Going back to proposition 9.10 and applying now the estimate (88) of proposition
6.20 we deduce, for % =1+ %,

. 1
IMlza(s,) S NOHN 25,0 1M [Lags, . + | Rie(H)|Lacs, ) + ~I0H | Lacs, ) + 1Ol 20, .

F110llges, ) (HD*aHan(si,u) n ||R*||Lz<si,u>)

2_ 2_
+ 17Ol (s, ) + 77 NIOH Lo s, )

According to the estimates (112), |0H||12(s, ,) S A% < 1. Thus we can absorb
the term with M into the left hand-side.

On the other hand, using the transport lemma 6.17 applied to the transport equa-
tion (147) we infer,

1 ! B
Wlinis S iy [ 7O (Wi, + 10 )

Applying the bootstrap assumptions B1), B2), and (111)-(117) we infer that,

1 . 1 .
il La(s,.) S A <A2 | Ric(H)||7, o || Ric(H) ,t 191|222 1O La(s,,)

%
175 s,

1 ¢ 2 2
o [ O D) oz, )
r a u

1 _z
+ 7218l pas, ) ID<OH I z2c) + 77 O u(s, 10125

+

2_

1 ¢ _2 2_
13Ol + oy [ )R 0 s,
T a u

SATH 415 E |9 H |2 S AT
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as desired. On the right hand-side of the last series of inequalities, for the sake of
brevity, we have abused the notation using || f||z«(s, ) to denote sup; ,, [|fllza(s,..)-

Using the estimates (144) and (145) for 4 we are now ready to return to the proof
of the estimates for n

Now with the help of the established estimates for y we shall derive the desired
estimates for |||/ 21 and [[n]|Les, ,)- First observe that using using the definition
(142)-(143) of 4 the div-curl system (141) for n takes the form

div(n-5i) = dive) 4 JOH 100,
mm(n_%,,i) = cdrlﬂ'@)-{—%(?H-{—@-@

We are now ready to apply proposition 6.20 to our Hodge system for n— %/ﬁ Thus,
for some g > 2, sufficiently close to 2,

1 _2 _2
1= g#ll=(s..) S ANOHlpw(s,u) + 7 @ |10H ||pas, ) + r' 1107 Lags, )
S ANOH||pee(s, ) £ AT Ol Lo, )

where we have used the bootstrap estimate ||0||pa(s, ) S A™*°. Furthermore, we
infer with the help of (144) that

InllLee(si0) SAT" + MOH) + X[|0H]| Lo (s,..) + A CNIOl L(s,.0)
(149)

The desired L?L° estimate follows immediately from the bootstrap assumption

B1) and the estimates (111)-(117).

Consider also the exterior region r > % Observe that, using the estimates (129),
(137) and (148) for trx — 2, X, 4t already established in the exterior region we infer
that,

1l (s, S AT+ AT + XOH |1 (150)

On the other hand, for © = § + ¢,

1 ‘ 2
1= S#lLesn S NNOHpos, ) + N0H|lLos,.0)
102l Lr(s,..)

Since % = % + % and ¢ > 2, we have 2p < ¢ and the Holder inequality gives

2_4 _
||9||%2p(st,u) Srie ||9||2Lq(st,u) SA seo

from the bootstrap assumption B2), provided that ¢ is sufficiently close to 2. Thus
with the help of (112) and the estimate (145) we obtain,

InllLacse.) S Nillpacs, ) + A2 S A3 (151)
as desired.
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Proof of part 1 of proposition 9.10 We now concentrate on the proof of

proposition 9.10. We start by expressing the transport equation (140) for u =

L(trx) — 5 (trx)? — (knn +n~'Vyn)try in a more tractable form. The troublesome

terms are LR44 and tryRy343. We shall first eliminate LR44 in exchange for more

favorable terms. We do this with the help of the twice contracted Bianchi identity:
D"(Ryw — %gu,,R) =0

with R the scalar curvature R = g"”R,,. Thus, relative to our canonical null
frame,

D3Rys 4+ D*Ryy + DARyy = %L(R),
or,

D3Ryq = —DyRyz + 2D Rys — L(R).
On the other hand,

DsRys = LRus —4naRas — 2knnRuy
DsRss = LR43—2n,Ryn
D*Rya = Y"Rua—xacRoa +kanRaa — %term - %terM
Therefore,
L(Ry) = —L(Raz+R)+2Y"Rua

— (2Ras + R —Ruy) - trx + Ric- (X, k,n)
Using this formula we can rewrite the transport equation for g in the form:

L(p) + trxp = L(w) + 2Y 4R a4 + trx(2Rss + R) — tryRusas
+2(n, —na)Vatrx —4x-¥n+0-R.+0-0-0+0 - Ric+%®-6+ri26H,
where w = Ry3 + R. Thus

L(p—w) +trx(p —w) = 2Y ;R as + trxyRss — trxRusas + © - Ric (152)

+2(QA—nA)WAtrx—ALX-Wn—FO-R*+®-®-6+%®-6+%6H
Observe that R34 = HC'BRQ354 = %R4343 — 64BR 4345. Also, Rap = —%R3A4B -
tRaasp + 0“PReapp. Therefore,

Ryss = 2(Ras + 6“7 Ruap) + 676" Roaps
or, since 0*BR 45 = R34 + R, using corollary 4.4 for Rapcp,

R3s34 = 2(2R3s + R) —divr + E,
where
Irl S10H|  and  |E| S |OH| + |x||0H].
Using this we can rewrite (152) in the form,
Lp—w)+trx(p—w) = 2V, Rus + trxdivr — trx(3Rss + 2R) (153)
Q(QA —na)Y strx —4x-Yn+ 0O - Ric+ 0 -R,

+

1 1

+ ©0-0-0+-0-0+ 9H
T r
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Recall that we defined an S-tangent co-vector jf4 as a solution of the Hodge system

divgg = p-w, (154)
afrlp = 0 (155)

We shall now use the commutation formula of lemma 3.5.
v (Pagh) — L(divyh) = %trxdﬁw/i + X Vi —nT V- Py
+ %trX];?AN//iA — XapkeNih + Rapapiha
el (Pugh) — Licwrlyf) = %trxcu,irl it €% ne Y otha— €74 Y ynPujha

— B9 xpakenpat €5 Racupiha

Using the transport equation (152) and commuting L with div and cyrl (see lemma
3.5) we can derive the following Hodge system for P4 (4t):

Qv (Puh) = —texdivi+ X Vi +OH - Puf + ~div
+ Q(QA —na)Y atrx —4x - Y0+ Rapappha +2Y ,Ras

— %(3R34 +2R)+ 0O Ric+ OR,.+ 06 -D,.0H
+ e-e-@+19-@+i2aﬂ,
T T
1 R
cyrl (Pagh) = §trxc11r1//i + OH - Pyp+ €24 Yopaxsce
1
+ €“B Ripicha+-0-0+0-0-0

Remark 9.13. We got rid of the dangerous term L(Ra44). We still need to eliminate
the terms of the form © - YO.

Observe that according to the Codazzi equation

. 1 1 .
divxa — §Y7AU“X = §kANtrX — xBnkBN — RBaas.

Therefore,
S+ KanYpha = g div (o) + TP (amia) + gl Ve — (7 San)ia

= -y (%trX//iA - >2AB//£B> — i GkANtrx — XBNkBN — RB4AB>
Thus
v (Pul + trha — Xanhs) = OH - Puf 2dhvm + 200, —na) ¥ abrx — 4% Vi

2
+ 2¥,Ras — ~(3Rss + 2R) + O Ric + OR.

1 1
+ ©-D.OH+0 - 0:-0+ 6.0+ 50H, (156)



38 SERGIU KLAINERMAN AND IGOR RODNIANSKI

Also, since cyrlyt = 0, we have
1 N -
5t]rxct,irl/;iJr eBAY phaxpe =€P Y JhoXBe
= - eV, (Xsotho)+ €*P YV Rpeike
1 N
=_ A8 VA(itrX//iB + XBopho)+ €8 Y (trx) s+ €*F (Y xB0) e

On the other hand, see [KI-Ro] section 2, Y ,xBc = YoXxaB — Rpaca + k- x.
Therefore,

cyrl (Pagh + %trX/ﬁA — XaBits) OH - Pugf — 21l (X - )+ €17 ¥ 4 (trx)shs

1
+ +;®-@+@-@-® (157)
Observe also, in (156), using Codazzi
—2AV trx —4XAP  Vpna = =24V strx — 4V (Xasns) + 4V Xanns
= 4V (Xapnp) + 49sRaspa +1-x -k
Therefore,
1 . . 2
div (Pagh + §trX//iA —XaBjs) = OH -Puyt+Y, <2RA4 — 4 aBnB + ;WA>
2
+ QQAVAtrX — ;(3R34 + 2R) + O Ric + OR.
1 1
+ G-D*8H+@-@-®+;@-®+r—28H
In addition, since n,= —kan,
_ 2 2 _
N, Vatrx = =V | kan(trx — ;) + (trx — ;)VA(kAN)
- 2
=-Va (kAN(trx - ;)) +©-D.0H.
Thus

v (Puk + %trX/ﬁA — Xagihs) = OH - Py + ¥ 4 <2R44 —4XaBNB + %W — 2k an (trx — %))

2
(3R34 +2R) + O Ric+ OR, + 0 - D, 0H

r

+ 0-0-0+-0-0+—0H,
r r

Since Yr = 0 and cyrlyt = 0, the corresponding curl equation takes the following
final form:

OH - Puff — 21 (- )+ €% T4 ((brx — 2ihs)

+ %9-6+6-6-®

el (Pagh + %trx/ﬁA + Xasis)
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9.14. Estimate for Ytry.

To estimate Ytry we commute( taking advantage of the lemma 3.5) the equation
for trx with angular derivatives ¥. Therefore,

3 - - SN
PuYtox + gtox Yoy = —WR44 — trxVknn — knn Viry — 2¥X - X

— —n 1Y7n( trx? + knnvtry + Ras)

Using the transport lemma 6.17 we deduce

1 t _ _
IVtrxllzacs,.) S r2—(15)/ 7"(75')2<||Y7R44||L2(si,,u)+7°(tl) 1||Y781L1||L2(si,,u)+7“(t') 2||8H||L2(St,,u)

+ X VRlleecs, ) +r@)THIOH)? |z, ) + 10H Ric(H)”LZ(St,,u))dtl

Consider the most dangerous term r%(t) fi r(t")?|VRaallL2(s,, ,)dt’. We estimate it
with the help of the estimate (116) and find,

1 t t Iy
7 [ IRl S [T Rulzzgs, S A7
Also, with the help of (115),
I _1 1,1
=10 / r(IVOH |12, dt' S r 2 IVOH |2y S r2A7
u
All other terms are easier to treat. Therefore,
t

r2 || Wirxllpags, ) STeATTRO 4 A2 +/ r(t) 211 Villees, ,dt'-
u (158)

It remains to estimate Yx. We do this with the help of proposition 6.19 applied to
the Codazzi equation (37) written in the form (134). Thus

1 1
[ PRP+ SIRE < [ (e + [VOHP + IoHP + ]
Si,u Si,u

Therefore,

IVl L2(s1,0) < IVtrXlL2cs, o) + IVOH (L2 s, ) (159)
24
+ 10H (1) |z~(s,..) + 101722 1011, .

for some ¢ > 2. Observe that we can take q sufficiently close to 2 and use the
already proved estimates (119) to obtain H@”Lq(st ) S < A3, In addition, observe
that by Holder inequality and (118)

/ 1015 S s"Fl0]7e. S A0 (160)

for all values of ¢ sufficiently close to 2.
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Using (159) we estimate,

¢ 1 . ~ ¢ 1. . ~
/ VIR Fillas, odt < / PV RN s 1T, Lt
u u
t
1, A
)V Rl 5y o IV EX 2G5,

N
T

l=

+

N 14,
O8]z (WaHuLzmu)+||aH||Lngo+A : )

t
1. 1 C1—4e
< / PV RN s 1Pt s, ) dE + 1 (A1

Here we have used (111), (115), (118), (160), and the fact that r(¢') < cr(t) for all
t'" < t, which follows from the comparison r(t') ~ t' — u and the monotonicity of
t'" — u along the cone C,,. Therefore, returning to (158), we obtain,

t
1 1. _1- —1 ERTEN
r2 || Wirxllzaes, ) S TPATITIO A7 +/ r(t)2 Xl Lo s, IIVtXIL2(s,0 ) dE-
u

Thus, by Gronwall inequality, and the fact that fi XNz (s, »dt" S IXlpioe S
A73¢, we infer that

rE||Wtrxllnacs, o) S rEATIT2O AR, (161)
Consequently, since the time interval [0, t.] obeys t, < A!78¢  we have

I sup [IWtrxllzzcs, .l < AT (162)
r(t)>%

This establishes the first part of the estimate (123).

9.15. Estimates for L(try).
Recall the relation between L(try) and pu:

b= Liiry) — 3 (i00)° — (kwa + 0 Nw)iny
Observe also that L(r) = g fst’u trx. Thus

2 1 2 1 2 2 1
L) =—— [ try=2 4 — 2 k) = 2 4 -
_(r) - /Sm X = 3 + gy /Si‘u(trx - + 2trk) 3 + 7"@

In addition, |%(try)? — Z| < 1©. Therefore,
2 r ~ r

1
lullz2 (s, ) + II0H - Ol|L2(s, ) + ;||@||L2(st,u)
1Ol (s, ) + lellz2cs, ) (163)

Here we have used the Holder inequality combined with the estimate (112):

2
|| L(try — ;)||L2(St,u) S
S

10H|L2(s,,.) S A
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It remains to estimate ||u||z>(s,,)- We obtain this estimate from the transport
equation (35) for p which combined with Corollary 4.7 can be written in the form:

1 1
L(p+ Ras) + trx(p+ Rag) = OV(try) + OVn + 2N (Ryq) + 0° + ;@2 + ﬁaH
1 1
+ — Ric(H)+ O Ric(H) + OR. + -R. (164)
Remark 9.16. In the derivation of (164) we have expressed L(R44) in the form

L(Ry4) — 2N (Rya4).

Using the transport lemma and the estimate (116), fi IVRuallL2(s,, ) dt' S A2,
we infer that,

1 t
lllz2(s..u) S [Raallzzcs, ) + @/ r)®llz=(s, IVnllras, ) d

1 —1l—z€

+ 7 1Ol (@) Pl + A7 7%
—1
1012519l z2si,) + 107715 + (1) 10H 110
+ || Rie(H)ll; e + 101 L2cs, | Rie(H)1 1 (165)
_1

+ 10| 2L Rl L2 +7() 7 2[|[Ru[L2(c,)

I _ 1.1
ST / P15, IFnllzcs, ) dt + X7 +r(6) 7273

u

Here we have repeatedly used the Holder inequality, the assumptions on the metric
(111)-(117), the already proved estimates (118)-(119) for ©, and the estimate®”

2

t
¥ len = ([ IHer T, , @)

' 3
5 </ T(t/)Za(/\fleEO -l-T(t’)i%/\*%)z dtl)
S () FFOATITZ0 4p()eATE < r(1)2ATE

following from the estimate for ||¥Vtrx||z2(s, ,) proved in (161).

On the other hand, 7 is the solution of the Hodge system (38)—(39):

1 - R 1

divnp = 3 (M + 2kyntrx = 2[n)° = |xI* - 2kABXAB> - §5ABRA4BB;
1 R 1

cfrln = B e*® kacxes — 3 e*® Rausp.

The elliptic estimate of proposition 6.19 applied to this div-curl system gives us the
bound

1
Vnllz2(s, . ) + ;||77||L2(st,u) Sllellzecs,..) + 11Olneo(s, 1Ol 2 (s, )
+ 110l (s, + IRAs3B(lL2(s,..) (166)

19Constant a can be chosen arbitrarily from the interval (0,2). Its only purpose is to remove
the logarithmic divergence at p = 0.
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Recall that according to (117), [|[RaasB|l2(c.) S A~z. Thus substituting estimate
(166) into (165) we obtain

1 t B 41
llexcse S 5 / rENOlze=(s, llullzzcs, ) dt + A7 +r()~EA"3
u

We rewrite the above inequality in a more convenient form:

t
1 1 1. 1
r®)2 el s, ) 5/ 1Oz, ()2 lullLas, ) dt' +r(E) A7 + A7
Since
t t ) .
[ 10lis, < [ 110l d S Oz S A7,
u 0
application of Gronwall’s inequality yields the estimate
r®)F lullzzs, SrHENT A

Returning to (163) we obtain
2 1 1.1
|| L(trx — ;)||L2(St,u) SA T +HO]|pe +r 2
Similarly to (162) we then derive the following estimates in the exterior region:

2 —3e
[Fsup IL(trx = =)lle2s, o lley < A7 (167)

r>g

This proves the first part of the estimate (122).

To finish the proof of (122)-(123). we first recall that L(2) = % + 10. Observe
also that

L(n(t—u)) =n'L(n)n(t—u)+n(n'=2b"") = —14+2n(b"'—n"")+n ' L(n)n(t—u)

According to Corollary 6.10 |b — n| < sM(OH). Since by lemmas 6.7, 6.11 the
quantities 7, s, and n(t — u) are comparable, we infer that

2 2 2 2 1 1
LI-)|-L|l——)=—-—+— +-M(0H)+ -0
_< > _<n(t—u)> 2 n2(t —u)? +rM( )+7“

1 1 1 1

=2(—- Z

(7“ + n(t—u))(r n(t—u))
Thus using Corollary 6.12, (111), and (118) together with the estimate for the
maximal function we obtain

2 2
sup IL(2) - L(
’I“Z% r

1
— <= =
n(t_u))HLz(St.u)HL? ~ ||7‘

+ %(M(GH) +0)

1

mHLfL;o
+IM@H) g2 + 1Ol 2 S A™E740

The above inequality followed by Hélder and (167) allow us to conclude that

|| sup || L(trx —

—— )25, ol S AP, (168)
P>t n(t —u) L2(Seu)l1Lg

Similarly,

Y (n(t —w) =n~"V(n)n(t — u)
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and consequently,

2 1 1
_° < Z110H < ||OH||p2pe < ATE 40
Isup 17 (= sl S 15w C10R s, iz S WOH sz S

Thus we can complement (162) with the estimate

2 360
|| sup ||V (trx — m)HH(SM)HL} < Ao, (169)

t
r>y

It only remains to discuss the weak estimates (124). These are a lot easier to
prove and can be derived directly from the transport equations for try and x(
see proposition 3.1), in the case of the tangential derivatives Ytry, and from the
transport equation for n( see proposition 3.1), in the case of L derivative®°.
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