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Abstract

We revisit the classical results of the formation of trapped surfaces for the Einstein vacuum equation
relying on the geodesic foliation, rather than the double null foliation used in all previous results, starting
with the seminal work of Christodoulou [I2] and continued in [21], [2], [4], [I6], [3]. The main advantage of
the method is that it only requires information on the incoming curvature along the incoming initial null
hypersurface, which is more along the lines of [10] on the formation of trapped surfaces in spherical symmetry.
Therefore, the methods used here may be better suited for studying the Weak Cosmic Censorship conjecture
in the spirit of [1I]. Another important advantage, which we plan to bring to fruition in a forthcoming
paper, is that it is appropriate to the study of the formation of trapped surfaces from more general Cauchy
data than treated in [24]. Our paper is based on a version of the non-integrable PT frame introduced in [20]
and [15], associated to the geodesic foliation.

1 Introduction

All known results on the formation of trapped surfaces for the Einstein vacuum equation starting with the
seminal work of Christodoulou [12] and continued in [21], [4], [16], [3], [2], make use of an adapted double
null foliation. The goal of this paper is to show that similar results can be derived using instead a simple
geodesic foliation and an associated, non-integrable, PT frame first introduced in [20], [I5]. The method
only requires information on the incoming curvature along the incoming initial null hypersurface and appears
better fit to study the formation of trapped surfaces from Cauchy data, something which we plan to discuss
in a forthcoming paper. The result is based on a version of the non-integrable PT (Principal Temporal)
gauge introduced in [20] and [I5] and uses the (a,d) version of the short pulse method introduced in [4].

1.1 Set-Up

Consider a spacetime M = M (4, a; 7*) with past null boundaries H,UH_; and future boundaries H;UX +,
where Hj is null incoming and X is a spacelike level hypersurface of a time function 7 to be specified (See
Figure 1). Here ¢ is a small constant and, following [4], we introduce another large constant a which satisfies
da < 1. The spacetime M is foliated by the level surfaces of an ingoing optical function w such that u =0
on Hyand u=9on H,.

Geodesic foliation on H_;. The restriction of uw to H_; coincides with the affine parameter of a null
geodesic generator of H_1, denoted by e, normalized on the sphere S_1 := H 1N H;,. We let u =0 on
S_1,0. This gives a geodesic foliation on H_1, and the level surfaces of u are 2-spheres. We then have, for
w = ig(D,ﬁm,eg), o = %g(qumea), n,= %g(Dmg,eu), (o = %g(Dam.,eg),

w=0, £€=0, n=—C (1.1)
We can also derive the bounds of other Ricci coefficients, see Proposition

Geodesic foliation on M. Using the incoming optical function v we deﬁn @Dey := —2grad u, such
that (Des is geodesic. We also define s to be the affine parameter of es, i.e. (9)ey (s) =1 with s = —1 on

IRecall that, given a function f, (grad f)* := g9, f.
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Figure 1: The spacetime M

H_1. We then define <9)e4 so that {(9>eg, <f’)e4} forms a null pair orthogonal to the sphere S, s, defined
as the intersection of level hypersurfaces of u as s, and denote by S the horizontal structure perpendicular
to Weg, Wey, tangent to the spheres Sy s. We also denote Wy, v, @DV, the corresponding horizontal
derivative operators (see Section and by ((g)ea)azl,z an arbitrary orthonormal frame of S. Note that
we have

1
Wea(u) = g(gradu, Ves) = —2g(Wes, Ves) = 1. (1.2)

In particular, restricted to H_1, (9)64 coincides with the e4 defined above on H_;.

Remark 1.1. The geodesic foliation and its associated geodesic horizontal null structure defined above are
a simple example of a Principal Geodesic (PG) structure, as introduced in [17]. We will thus refer to
(9)63, <g)e4, (9)61, 9ey as a PG frame.

We denote by (9T the corresponding Ricci coefficients and by ('R the null curvature components with
respect to the geodesic frame. Thus (se(ﬂ e.g. [20]),

(9, = 0, (9)§ =0, (9)77 _ (g)C _ (g)ﬂ7 (9)63( (9)64(3)) — 9@, (1.3)

We associate to the geodesic frame a system of angular coordinates 04, A = 1,2 as follows:
e On H_, we set (9>e4(9A) = 0 with 64 specified on Sp,—1 := HyNH_1;
e Using the values of 6 on H_; we extend them to M by Dez(64) = 0.

We define the timeE' function 7 := %a@ + s.

PT frame. In the geodesic frame, each non-vanishing Ricci coefficient satisfies a transport equation along
the integral curve of (Yes. Some of these equations, however, contain transversal derivatives, leading to a
loss of derivatives. We deal with the issue by considering another frame { Des, (Pey, e, } which veriﬁe

Dy = ey, My =o. (1.4)

2The relations (T.3)) follow easily from D (9es (9)e3 = 0 and by applying the commutation relations (see formula 2.2.3 in [I5] for
an easy derivation) below to the functions u, s

[@es, De,] = (g)éa @ey + (@y — 9, Dy — (Q)Xab (@ey,
[@ey, De,] = W¢, @eg + ((g)g+ 9)¢), @ey — Dy Dy,
[Dey, @es] = 2( (g)ﬂ — @) De, + 29y e — 2(9)y (9,

3We show later in Section that 7 is indeed a time function.
4The existence of such a gauge can be easily justified in view of the transformation formula (2.7).



The remarkable feature of the frame, called PT frame in [20], is that the loss of derivative issue disappears
once we set up this gauge condition, see Proposition This positive feature is however compensated by
a negative one, that is the fact that the horizontal structure associated to the null pair ((T)eg, (T)e4) is not
integrable, see Section and the more detailed discussion in Chapter 2 of [I5]. This problem can however
be resolved by relying on both frames, the non-integrable PT frame to deal with the es-transport equations
and the integrable PG frame for dealing with elliptic and Sobolev type estimates.

Remark 1.2. In what follows, as there is no danger of confusion, we drop the prefic ™ for the PT foliation.
We thus denote (Tes = es, Me, = ea, by H the horizontal structure perpendicular to es, es and by V, V3, Va
the corresponding derivative operators. We denote by I' = {trx7 try, (‘1>t1“)<7 (@r XXX 1M, ¢ w,w, 575}
the set of all PT-Ricci coefficients. N - a

Remark 1.3. The PT frame we work with coincides with the geodesic frame on H_1 and verifies, see

Definition[2-3 and Proposition
W= 07 5 = 07 ﬂ = _<7 (a)trx =0. (15)

‘We introduce the renormalized quantityEI
trx:=trx+ — (1.6)

and denote by I the set of non-vanishing Ricci coeflicients
f‘ = {tr X7 tr\&? (a)tr X7 27 X7 C’ (JJ, E}'

1.2 Initial conditions

Initial Data on H,. Following the results of [12], [21], [4], [16], we start by assuming that the incoming
data on H, is Minkowskianﬂ We note however that we can significantly relax this assumption by only
requiring information on the incoming curvature. Indeed, unlike the case of the double null foliation used in
these above mentioned works, all Ricci coefficients in the PT frame can be determined by integration along
the ez direction. The incoming data on H, is only used in the derivation of the curvature components by
energy estimates.

Initial Data on H_;. Our data on H_; verifies the An-Luk [4] short pulse assumption on Xo = X|z_,,
which can roughly be thought of as the free data that can be prescribed on H_;:

> IOV’ ViRollegracs ) < Coa?, No29, (1.7)

i1<Ng,j<1

as well as s
i%f/ [0 (u, 0)*du > éa. (1.8)
0

Remark 1.4. Using the argument in [16] (see also [6]]), one can relaz (1.8)) by replacing the inf over 6 by
sup. See Remark[7.3

Remark 1.5. Note that the S-foliation on H_1 is that induced by the geodesic foliation and that both the
PT and geodesic frames discussed above coincide with double null frame on H_1 used in [J|] and all the other
above mentioned works. We point out that in [§] the assumption is weaker as there is no requirement on the
V4 derivative of Xo in . This is achieved by a renormalization of curvature components such that the
contribution from VaXo completely decouples from the system. This can, in principle, be also achieved in
our framework but we do not pursue this here.

5In contrast, since tr x presents a worse behavior similar to 1/|s|, one does not need to renormalize it by subtracting its
Minkowskian value.

60ne can also study other type of incoming data. In [22] and [2], the incoming data corresponds to Christodoulou’s naked
singularity solution in [I3].



1.3 Main result

Here is a short version of our main result.

Theorem 1.6. Consider the characteristic initial value problem described above. If (1.7)) holds, then the
spacetime can be extended to M(9, a; —éaé), together with its incoming geodesic foliation. Moreover, if (1.8)
also holds, then S&,—%aé s a trapped surfaceﬂ

We later provide (see Section|3) a more precise version of Theorem Which also extends to more general
incoming initial data on H.

Previous results. Christodoulou’s pioneering work [12] is the first result on the formation of trapped
surfaces in the Einstein-vacuum spacetime. Klainerman—Rodnianski [2I] then adopted a systematic approach
by scale invariant estimates to simplify the proof of [12]. This idea was then further generalized by An [IJ.
Li-Yu [24] showed that there exists Cauchy initial data corresponding to Christodoulou’s spacetime. The
result was later strengthened by Li-Mei [23], who proved that a black hole can indeed form. Along a different
line, Klainerman-Luk—Rodnianski [I6] significantly relaxed the lower bound in by developing a fully
anisotropic mechanism for the formation of trapped surfaces.

The first scale-critical result was established by An—Luk [4], which led to the further study of the apparent
horizon [5], [6]. Later An [3] gave a simplified proof of the scale-critical result in the far-field regime by
designing a scale-invariant norm based on the signature and decay rates. Our work provides proof of a
similar result in the finite region using the incoming geodesic foliation instead of the double null foliation.

We also refer the readers to the results generalized to the Einstein equation coupled with matter fields
271, [, 8], 28], 126, .

1.4 Main features in the proof of Theorem

1. As mentioned earlier, we make essential use of PT frame in order to avoid the loss of derivatives
intrinsic to the geodesic foliation. Note that the horizontal structure spanned by (e1,e2) is non—integrableﬁ
with respect to e4, i.e. (Ytry # 0. The use of non-integrable structures was pioneered in the proof of Kerr
stability [20], [I5]. To compensate for the lack of integrability of the main horizontal structures used in
these works, one needs to consider associated integrable structures for which one can derive elliptic (Hodge
estimates) and Sobolev inequalities. In our case this role is played by the geodesic frame {(g)e,l}.

2. The typical transport equation verified by all Ricci coefficients in the PT frame, is of the form
Vs + Mrxy = F. (1.9)

The main contribution of trx is —2/|s|, so neglecting F' (which we expect to control by a bootstrap as-
sumption), we infer that the quantity ‘8|2>\1/) is conserved. It helps to divide all Ricci coefficients I' as
follows:
i. Those that are of size 1 on H_1, and satisfy the transport equation with A = % They behave
like 1/|s| on M. We denote these by I'y (stands for “bad”);

ii. Those that are of size da2 on H_1, and satisfy the transport equation with A = 1. They behave like
6(1%/\s|2 on M and are denoted by I'y (stands for “good”).

iii. The outgoing shear ¥ for which we have only the bounds X ~ a%/|s|. In addition, in contrast to the
case of the double null foliation (used in [21], [4], [16], [3], [22], [2]), we also have present the signatur{l
+2 quantity & which behaves similarly to ¥. Though &, like ¥, is a large quantity, due to signature
consideration, it gets paired with better behaved quantities in nonlinear terms.

"Note that 7(6, —%aﬁ) = 1—10116 - %aé < —éa&, so S5 _ 1,5 indeed lies in M(4, a; —%aé).
’ 4

81t is however integrable in es, i.e. (a)trx = 0. This is due to the fact that the corresponding horizontal structure is tangent to
the u hypersurfaces, see Proposition
9The signature of a quantity is basically the number of e4 minus the number of e3 in its expression.



3. The right-hand side of denoted by F' contains linear curvature components and nonlinear terms
relative to the Ricci coefficients (fg, fb). As usual, the curvature components are controlled by energy type
estimates using the null Bianchi equations. The nonlinear quadratic terms for (i) are of the form Iv‘g Ty
Those for (ii) are of the form I, - Ty, Discounting the anomalous behavior discussed below, both of these
will result in the gain of at least an extra a =2 factor in their estlmate In our case the terms in I', have
signature +1 and those in F have signature 0 or —1. By simple signature con51derat10ns it is easy to see
that when is applied to Fg, we cannot have F -T', terms in F. Similarly, when is applied to Fb,
one cannot have terms of the type ', - I',. The absence of a worse term is crucial to close our estimates. For
example, suppose ¥ € I', and we have the equation

1 . -
V3’¢)+§U‘X'{/):Fb-rb+---

Since I'y ~ 1/|s|, we would end up integrating 1/|s| which gives an additional logarithmic growth in |s|.

4. Anomalies: The key quantity X is large even compared with f‘b, with an extra a2 factor. This is a crucial
feature for the mechanism of the formation of trapped surfaces. Its presence makes some nonlinear terms
become borderline. To overcome this difficulty one needs to make use of the triangular structure of the main
es transport equations, that is to follow a specified, correct, order in doing the estimates.

5. As already mentioned we need to work with both the geodesic and PT frames. The passage from the
(9e-frame to the e frame is made using the frame transformation formulas (see (2.11)))

1 1
4= (9)64 — fe (9)6a + Z|f|2 (9)63’ eq = (g)ea -5 fa (g>637 es = (9)637
where f veriﬁeg

st—i—%trzf:QC—X-f. (1.10)

The Ricci coefficients in the e and e frames are related by Lemma The e frame is used to derive
Hodge elliptic estimates and Sobolev inequalities. More precisely, whenever we need to make use of these,
we pass from the PT frame e to the (Ve frame and then transform the result back to the PT-frame.

6. The ansatz from the bootstrap assumption (see (3.6)) ¢ € Iy ~ (5<z%|s|72 (which is true in the double
null framﬂ leads to a logarithmic loss in the |s|-weighted estimate when we integrate the equation .
To avoid this problem we show that in fact, in the PT frame, { satisfies a slightly improved estimate of the
form ¢ ~ da? |s] ™ + 5%a|5|7% that circumvents the problem.

7. Apart from the transport equations of type (1.9)) verified by the Ricci coefficients, we also need to control
the curvature components by using energy type estimates) °| This is a standard procedure, see for example
Section 8.7 in [I7] or Chapter 16 in [I5]. A typical pair of null Bianchi equations can, in our case, be written
in the form

Va1 + Atr xpy = D epa + F1,

(1.11)
Vapa = D1 + Fa,

where D, D* represent horizontal Hodge operators (defined in Section [6.3)) that are formal adjoint of each
other. The corresponding energy estimates for (11,2) is derived by integrating the divergence identity

Div (|s|*®* Vi1 [Pes) + Div (|s|*** Vb [*es) = - -

on the causal region enclosed by the boundaries H,, H_1, Hg, 3.

10The absence of worse nonlinear terms is related to the “signature conservation” pointed out in [T4].
1 This follows by using the condition (9)17 = (9)¢ and the transformation formulas of Lemma
12and in fact, as one can later verify, also in the integrable geodesic frame

13This is in fact the only place where we need to take into account the incoming data on Hy.



8. To estimate higher derivatives we need to commute both the transport equations of type and the
null Bianchi pairs with V, more precisely] *| with |s|V. A small difficulty appear when we commute the
second equation of the Bianchi pair ([1.11)), applied to ¢1 = B,%2 = «a, with V due to the commutator
[V4,V]a = EVsa+ -+ - which contains the term Vsa for which we do not have an equation.

It turns out that, with very little additional work, we can also commute equation with |s|V3 just as
with |s|V. As a result, |s|V and |s|V31 both behave similarly with ¢). We note however that the signature
of V and V3 are different, and this is the reason why we do not pursue the strict hierarchy according to the
signatures, as in [21], [3], but only distinguish V4 with 0 = (V, V3), and, by a similar spirit, distinguish I'y,
which is of signature +1, with fg, of signature 0 or —1.

We also note that the analogous problem of the commutator between V3 and V is not present in view of
the fact £ = 0 in our PT gauge. We rely very little on the V4 transport equations for the Ricci coefficients—
they are in fact only needed on H_;.

2 Preliminaries

2.1 Horizontal structures

We review below some basic facts about non-integrable horizontal structures discussed in Chapter 2 of [15].
Given a pair of null vectors {es,es} satisfying g(es,es) = —2, we consider the horizontal structure
associated to it given by the distribution H = {e3, es}*. With a choice of an orthonormal basis {e1, ea} of
this horizontal structure, we obtain a null frame {es,es,e.} (a = 1,2). When the horizontal structure is
integrable, i.e. the distribution H is involutive, we also say that the null frame is integrable (which is not
the case for the principal null pair in Kerr spacetime).
The Ricci coefficients and curvature components are defined byﬁ

1 1

Xab = g(Daes,ev),  x,, = 9(Dacs,er), €a = 59(Daeasca), & = 59(Dses,ca),
1 1 1 1

w = —<g(Dses,e3), w=—-g(Dses,es), ma=;g(Dses,ea), 1 = 59(Daes,ea),
4 4 2 —a 2
1

Ca = §Q(Da@4763)7

a = R B_ER‘ _ER(, *_E*R,, B_ER,
ab = adbd, a=5 a434, P = 4 3434, p= 4 3434, P = 2 a334,
a,, = Rases.

For a vector field X, we define its projection onto the horizontal structure H by
h) v . 1 1
X=X+ §g(X7 es)es + ig(X7 es)es.

This also defines the projection operator II. A k-covariant tensor field U is called horizontal, if

U(Xy, -, Xe) =U("Mxy, -, WXy,
The horizontal covariant derivative operator V is defined by

1 1
VxY = M(DyY)=DxY — 5K(X, Y)es — §X(X, Y)es

using the definition of x, x. Similarly, one can define V53X and V4 X as the projections of D3 X and DsX.
Then the horizontal covariant derivative can be generalized for tensors in the standard way

VzU(Xy, o+ X)) = Z(U(Xq, - Xi)) —U(Vz X, oo, Xi) — - = U(Xa, -+, Vz Xy),

14This latter can be thought of as the “rotation operator” which is commonly used in the analysis of wave equations.
15Here D denotes the spacetime Levi-Civita connection associated to g, and R denotes the spacetime Riemann curvature tensor.
We also use the shorthand notation Dy, = D ,. The Hodge dual *R is defined by *Rygu, = % Em,pa Ragpo-



and similarly for V3U and V4U.
In the non-integrable case, the null second fundamental forms are decomposed as

~ 1 1
Xab = Xab + i(sath‘X + 5 Eab (a>tr X

-~ 1 1 (@)
Xab = Xab + Eéabtrx-‘r 5 Cab trx

where the trace and anti-trace are defined by
trx = 6“°xab, try = éabxab, @try =€ yab, (a)trK =g Xop’
and the horizontal volume form &€, is defined by

1
€ (X,Y):= 3 € (X,Y, e3,e4),

and we choose the orientation such that €;2= 1. The horizontal structure H is integrable if and only if
@ty y = (“)trl = 0; see Chapter 2 in [15].
The left dual of a horizontal 1-form v and a horizontal covariant 2-tensor U are defined by

*wa =C€ab ’d)b7 (*U)ab ‘=C€ac Ucb-
For two horizontal 1-forms v, ¢, we also define
V- di=06"Yadr, YAG=€" Yatp, (VB)ab = Yty + Poda — art) - ¢

In particular |[¢| := (¢ - w)% with the straightforward generalization to general horizontal covariant tensors.
This will be used to define LP-type norms of . Similarly we define the derivative operators

divep = 0"° Vo, curly) : =€’ Vathy, (VU)ap := Vathp + Ve — dap div 1h.

2.2 Frame transformations

To pass from the geodesic frame (e to the PT frame we need to appeal to the transformation formulas
for the corresponding Ricci coefficients given in Section 2.2 of [20]. The general formula of a transformation
between two null frames e and e’ was given in Lemma 2.2.1 of that section. In our context we only need
transformations that preserve es:

Lemma 2.1. A general null transformation between two null frames (es, e, e1,e2) and (e, €}, €1, €5) which
preserves e3 has the form

1 1
el3 = €3, eg:ea"’ifae& eil :e4+fbeb+z|f|263 (2.1)
The inverse transformation which takes the e frame to the € frame is given by replacing f with —f, i.e.
1 1
o= ch  camch— ifuch  en=ch feh+ SIfPeh

Lemma 2.2. Under a null frame transformation (2.1) the Ricci coefficients transform as follows:

e The transformation formula for £ is given by

1 1 R 1, 1
€ =6+ Vif+ Jrxf = DuxfHrwf +5f R+

1 1,2 1, .2 1,2 1,4 (2.2)
50O S+ WP = ZUof + LU x o+ 1l
o The transformation formula for § is given by
§' =¢, (2.3)



e The transformation formulas for x are given by

1 1
Xab = Xab + fam + Ver, fo + Z|f|2xab + Z|f‘2fa§b + fola

1 1 (2.4)
- fafbgf EfbchaC - ifafbfcéc-
o The transformation formulas for x are given by
X, =X, T fa&,- (2.5)
e The transformation formula for ¢ is given by
/ 1 1 (a) . 1. 1
=¢- = i —wf— =X f— (- OF 2.
=0 gtrxf - "ux"f-wf—5x-f 2(f or (2.6)
e The transformation formula for n is given by
/ 1 1 2 1
W =n+5Vaf —wf+ 7= 5(F-OF (2.7)
o The transformation formula for n is given by
/ 1 1 (a) * 1 ~ 1 2
_o .1 1 Lo o Lippze 2.
n =0t gtexf = e x4 of x4 I (2.8)
e The transformation formula for w is given by
/ 1 a 1 2 1 a b 1 2 ra
_ = )y — - _ = = . 2.9
W =wt - ma - 3P = 10K, — S, (2.9
e The transformation formula for w is given by
1
W=wtsf& (2.10)

The proof follows from a direct calculation. See [I8] for detailed derivations in full generality. Note that,
unlike the version in [20], we keep track of all error terms

2.3 Passage from the PG to the PT frame

Consider the transformation formula from the PG frame (e to a new frame e for which n = 0. In view of
Lemma with f replacecﬂ by —f, we must have

1 1 1
n= (g)n_ §(g)V3f+ (g)gf—l—2|f|2(g)§+§(f' (g)é)f

Note that one can easily verify Vsf = DVsf, as es is geodesic. Since Duw, (g)§ vanish we deduce that f
must verify the equation 0 = <9)n - %ngA

Definition 2.8. The PT frame e = e is defined by the transformation formula
1 1
e = De, — £ @e, + Z|f|2 (g)eg, o = De, — 3 fa (9)637 e3 = Wey (2.11)
with f the unique solution of the equation

Vaf =29, f =0. (2.12)

H_,

16This is needed as our situation here is non-perturbative.
7Thus f corresponds to the inverse transformation formula from the e-frame to the (9e-frame.



Proposition 2.4. The PT frame defined above verifies the following properties:
1. We have

w=0, £=0, n=-¢ (a)trK:O. (2.13)
2. We have

V%f:—%uxf+2§—g-f (2.14)

Proof. To check we start from the fact that es = Yes is geodesic, ie. w = 0, £ = 0. Note that
ea(u) = Deq(u) — 1 faes(u) = 0. Hence e, are tangent to the level surfaces of u and so is the commutator
[e1,e2]. Thus <")trx =€ab g(Daes, er) = —% Eab g(es, [ea, e5]) = 0. In view of the transformation formulas
for ¢ and 7 in Lemma we easily check that we also have ( +1n = 0 + (9>ﬂ =0.

To check we use the inverse transformation formulas, corresponding to e — Pe. Thus ¢ =
¢ — itrxf — 5X - f. Since (@0 = Wy and Wp = %ng we deduce that %ng =(— %tr&f — %X f as
stated. (I

2.4 Null structure and Bianchi equations in PT frame

Proposition 2.5. Under the ingoing PT frame the null structure equations in the incoming direction es
take the form:

~ 1 2
Vatry = f\X|Qf§(trx) ,
VX = —trxX-o
~ ~ 1
Vatrx = —-X'X— 5tr&trx + 2p,
a = = 1 a *
Vg()trx = fXAXfEtrX()trXfQ 0,
Vsx = _§(trXK+trXX)+§ K( )try,
~ 1
Vi¢ = —=X-¢— 5“&( -5,
Vaw = [C+0p,
_ s ! Lay, =
Va§ = X0t gtox¢— 5 o+ B

2
s

We also have the equation oftTi =try +

— — 1, — ~
Vatrx + tr xtrx = i(trx)2 — \X|2.



The Bianchi equations take the form

Vea - VBH = —jtrxa+ (B8 -3+ PR,
Vi —diva = —2(trxf— “trx"8) —2wB +a-¢+3(Ep+ "€ ),
Vif+dive = —trx8+28-X,
Vap—divg = —g(trprr(“)trx*ﬂ)—é-ﬁ—%-ﬁ—%ga,
Vi'ptcurl = —;(trx*p— @tryp) +¢- "B —2¢- *é—i-%g- *a,
Vp+divg = —%crxp—i—(-é—%f'%
Vs p+curlf = fgtrl*erg**@f%)?-*g,
Vaf—dive = —(trxf+ “Dtrx"B)+2wB+28-X+3(p¢— p7C) —a-§,
Vif+diva = —2trxf+2a-(,
Via+ V& = —%(tr xa+ Dtrx ") + dwa + 5¢8B — 3(px — P X)-
Here,
dive = —(Vp+ V'),
divg = —(Vp— "V ).

Proof. Immediate consequence of Propositions 2.2.5 and 2.2.6 in [15] by using the vanishing of §, w, 7, (@gr X, N+

¢. The equation of tr\i follows from the one for tr x, e3(s) = 1, s < 0 and direct computations. O

2.5 Commutation lemma

We rely on the general commutation Lemma, see Section 2.2.7 in [I5], to derive the following.

Lemma 2.6. With respect to the PT frame we have, for a general k-horizontal tensorfield Ya = a;...a,,,

. (2.15)
[Va, Vpltha = —XbcVetha + Z (Xbaiﬂc - XbCﬂa.)Q/’almcmak + & Vaa
i=1
k
+ 3 (Xy € = Xy st €aie "Bo)ar
=1
Moreover
1 k
[Va7 Vb]wA = 5 <a)tr XVSTZJA €ab t+ (h>K Z Eaic (gaiagcb - gaibgca) wa1~~c~~ak7 (2 16)
i=1 .

MK = fltrxtrx + l)?f(\f p.
4 = 27 =
Proof. The commutation formulas (2.15)) follow immediately from Lemma 2.2.7 in [I5] while (2.16)) fol-

lows from Proposition 2.1.45 in [I5]. In both cases we take into account the vanishing of the quantities
& w, m, (“)tr&7 1 + ¢ in our PT frame. O
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3 Precise version of the Main Theorem

Throughout the remaining of the paper, we use {es, e4, €, } to denote the PT frame, and {(g)eg, (9)ey, (g)ea}
to denote the PG frame. We may also denote the @e frame simply by e’. We denote the corresponding
horizontal derivative V and 9V (or V’). We shall also denote 0 = (V, V).

3.1 Main Norms

We introduce our basic integral norms on M. All Ricci and curvature coefficients are defined with respect
to the PT frame but may be integrated along the S(u, s) spheres of the associated geodesic foliation. Thus,
for example, we define

S |S% knk |5\3 kxk \8|2 kk *
Ry = ——|[s"0"allr2s, )+ — =180 BllL2(s,.) T Sa [15°0% (0, "PL2(s4.)
2a - 02a2 - a N (3.1)
S knk kak
1ok Bl ) + ——rlls* 0 allpags, -
az - 0~ laz -

Also, with tr\/X =trx+ %,

[NE

1 s
s kak o kak bk
O == — |[s"0"XIL2(s,,..) + 870" tr Xl p2(s, o) + l;‘ Tlls" 0% wl[L2(s, )

a2 d2a? (3 2)

|87 | ko 5] | kb o oo Lk '

+ 18"l L2 (s, ) + ST (G X tr ) 22(sy.0) T = 18707 fllL2 (s,

0 2az daz daz

along with a few L° norms
S |S‘2 kk/j~ —~— 1
Okoo = —1Is"0" (X tr X, 87 )00 (54.0)-
da? -

We also define the energy type norms (X,,,:= %, N {0 < v < u})

11 _1
Rip=8%a 2 (a tlls" o allpags, ) + 15" Blliaa, ) )

1

16 %a 2 (aii ||s(s"0™)8

kk *
v 186N (0. Pz,

Hu

+ 5—%@—1“828%19@'&2(&“) + 57%a7%|\538k0kg\|L2(£u).

We also use R[] to denote the 1)-part of the Ry 2 norm, e.g., we denote Ry [f] := P P | |525kvkg\ lL2(m,)-
We also make use of the compound norms B

O<n = sup 0z, R<n = sup Rk,2, R‘;N_l = sup RE, (3.3)
k<N k<N k<N-—1

or simply O and R when there is no possible confusion.

3.2 Initial data on H_;

First, we note that the PT framﬁ on H_; coincides with the double null frame used in previous works.
One can thus easily compare our conditions with those of [12] and [4].

Proposition 3.1. Assume that the short pulse condition (1.7)) holds true for some No > 9 and that the data
on H_1 N H, is Minkowskian. Then on H_1, as well as in a local existence regionﬂ for all i < N, with
0= (V,V3).

0(EX) ~a?, (e, Dirx)~ 1, dwn~dTa?, (X try) ~ da?, )
. . 1 . . . P 3 :
Va~ 5_1a%, VB ~aZ, ¥(p, p)~da, VB~ 5%a, a~ 63a%,

18Recall that the PT and the PG frames coincide on H_1, see Remark
19Note that (#)trx = 0 initially on H_; but not in a non-trivial local existence region in the PT frame.
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Proof. To start with one can deduce, using the analogues of Propositionin the ey directionm the bounds

)?Na%, try ~ 1, Cwéa%7 Xwéa%, trx+2~5a%

Njw -

a~b6tat, Brat, (p, p)~da, B~&%a, a~§al.

We can then show, using the commutation Lemma[2.6] that the same asymptotic conditions hold true for the
angular derivatives V of these components. The same bounds for the V3 derivatives hold also true—they
can be easily deduced from transport equations in Proposition 2.5] Indeed, all quantities except a, verify a
V3 equation. Estimates for Vsa can be derived by integrating on H_; of the equation for V4(V3a) obtained
by commuting the V4o Bianchi identity with V3. Schematically,

VaVsa + VBVsf = [Va, Vsla + [VS, V)8 + Vs(Ty - @) + Vs(Ty - (8,0, p))-

For details we refer the reader to [12]. O

3.3 Main Theorem (second version)

Theorem 3.2. There exist a small constant do > 0 and a large constant ag > 1 such that for any 0 < § < do
and a > aog with da < 1, for the characteristic initial value problem described above, with the data on H,
Minkowskian or a perturbation satisfying Ri,2lu=0 S 1 for k < N, where N > 5 is a positive integer,

1. If (1.7) holds, then the spacetime can be extended to M(9,a; —%aé) such that the following estimate
hold true for all k < N, with a sufficiently large constant C= C(N) > 0,

Ri2<C, O <C. (3.5)
2. Moreover, if (1.8) also holds, then Sé,—iaé 1s a trapped surface.

We prove the theorem by a continuity argument based on the following bootstrap assumption.
Bootstrap assumptions. Assume that for some 7* with —1 < 7% < —%aé, the following bounds hold true
for all u and s satisfying 7 = %a@ + s < 7%, and for a sufficiently large constant C to be chosen,

Op o (u,8) < Cy,  forall k < [N/2]+1,
Ri(u,s) < Cp,  forallk <N -1, (3.6)
O (u,8) + Ro(u) < Cp,  forall k <N.

The existence of such 7* is ensured by a standard, characteristic local wellposedness result, see for example
[25]. We improve the bootstrap assumption, summarized in the sequence of steps below, showing that the
constant Cj can be replaced by a universal constant depending only on the initial data and the size of féad .
The local existence result can then be invoked to extend the existence region to the whole M(a, d; —%aé)

while preserving the same bounds.

3.3.1 Main Steps
1. In Section |5, we integrate the es-transport equations in Proposition including the equation ([2.14)
for f, and derive L*-estimates on the spheres Sy, s.

2. To pass from L? to L°° estimates we need to rely on a version of the Sobolev inequalities which holds
true for the non-integrable PT frame. This is done in Section [f] by going back and forth between the
PT frame and the integrable PG frame@

3. In Section [B] we derive the spacetime energy estimate for the null curvature components and close the
bootstrap argument.

20The e4-equations on H_1, where the foliation is geodesic, are similar to the ones in Propositionby the substitution ez — e4,
X=X X=X & w— w, ¢ » —( with potential loss of derivatives (this is like a PG frame rather than a PT frame), which
does not matter on H_1. Similar for curvature components and note that *» — — *p.

21'Where we can rely on the standard Sobolev inequalities in the geodesic frame.
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Remark 3.3. We note that since 0 < u < §, the size of |7| and |s| are always comparable. In particular, we
always have |s| > §a5. The reason to introduce T is to give an achronal boundary of the spacetime to derive
the energy estimates.

4 Sobolev estimates in a non-integrable frame

Recall that we denote by S the horizontal structure given by the PG frame and by H the one of the PT
frame. For simplicity of notation we use ’ rather than (9 to denote the quantities associated to the PG
frame S.

Lemma 4.1. Suppose that the bootstrap assumption (3.6)) holds. Then for an H-horizontal covariant tensor

1, we have the estimat

) it -1 <2
(s 18] (50,00 S 28"Vl L2cs, ) +a 2|(0) 7%l 2s,..)- (4.1)

i<2

for any Su,s in M(8,a;7). The right-hand side can also simply be replaced by 3, ., |[s0" ] 25

uys)

Proof. Given an ‘H-horizontal covariant tensor ¥4 = 1q;...q, , We define the S-horizontal tensor 'J}A = @almak
so that

7 Tt /
Vay-ay = w(e(117 . ,eak) = Ya,.ay

for any a1, - ,ar. To apply the Sobolev estimate, we wish to control V/V’t. We first compute V1, which
is a S-horizontal covariant (k + 1)-tensor:

Vitarar = €5 (Par-ap) = Y(Deg€ays -+ 1€a,) =+ = W(€n,, - s Der€a,)
eb(Vayap) = (Do €y, e, ) =+ — (e, -+, Deren,)
= (Dej¥)(€ar;  1€ar) + ¥(Dejays 1 €ar) + -+ ¥(€ar, + , Des€ay)
- @(Degele,"' sehy) = — (e, s Des€ay)

k
= Ve Yaya, + Z (g(Dezbeai, ec) = 9(Dejear, e'e)) Yaq-coap,
i=1

k
1 1
= Ve Payar + (*gfaixbcwal--»cmak + §chba,¢a1-~c~-%) = (VY)bayap»
=1

where we used £ = 0 in the last step. Here we define V’l; as a H-horizontal tensor (this is simply a notation).

Then, applying the calculation above with 1& replaced V'z[), we obtain
~ ~ k ~ 1 1
ViVelarar = Ver (V)carar + Y (V)agar -d-ay, - (—gfai&d + Efdxbm) ,
i=0
where ag := c. For the first term, by the definition of szv, we have

k
1 1
veg(vw)calmak = V%Veéd)ar“ak + Z vel/:. (( - ifaixcd + §deuu,,[)¢a1”'d'”ak>

=1
— (Vy + %fm)(vc + %fcvs)wal.u% +o(fx )
= ViVelayoap +0f 00 + f- 0520 + 0(T'y - )

using that |s| "1 f € T'} := A,t\r/,s_l , and hence f - =Tl f4+|s|"'fell.
g g X X X g g

22Throughout this work, the implicit constant implied by the symbol “<” is independent of bootstrap constants C and O, R.
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Therefore, using the bootstrap assumption |3Vf}]|, \Ivg| < Obaz |s| =2 for Iv‘; and the Sobolev estimate on
the sphere Sg,sﬁwe derive, using |s| > tad,

[/ 111 Lo (5u0) = 8/ 18] Lo (500) S N1(5V) 29| L2 s,
SNV, (VO)I22(s,.0) + 15Vl L2(s, ) |15] - XllLos(5u.0)
SVl 2gs,.0) + H(SV)SWHLZ(%,S)HS(SV)SIEHLOO(SE,S)
£ zoe (s 1) =20 12, ) + 1150 F | oo (50,0 1599 25, )

A vk 1 — 1 —
S DMV llLa(s, . (1 + O8a2 |s|7%) + Oda? |s| 2[|(s0)=*0[| 2(s,,.)

-
0 HM[\J
<)

o .
s 18"V YllL2(s, ) T a 2‘|(5°)§2¢||L2<sﬂ,s)7

7

and the result follows. |

With this estimate, each bootstrap bound on L?(Sy s) norm implies a lower-order L>°(Sy,s) bound of
the same quantity. We will make use of these L bounds without mentioning the use of the Sobolev lemma.

5 Estimate of Ricci coefficients in PT frame

We denote I' as all possible Ricci coefficients in the PT frame. We also set, with f introduced in Definition

and verifying (2.14]),

Di={6xtrx, Ptrxw, X trx s fy =Ta UL, U Ty,

where
Fo={&X}, To={rx, Drxw}, Ty={¢Xtrx s 7"} (5-1)
. . . . _ _1lr(9 ) — 1 =
Remark 5.1. Note that, using (2.11), which implies e.(s) = —5f'%es(s) = —5f, we have Viry =

Vt\ri—k vV(2s!) = VU"\/X—FQS_Qf = S_l(Svt\I‘/X—FZS_lf), so we see that while trx is not in Iy, sVtrx is

schematically szg + fg (higher orders are also similar).

5.1 Integrating the model transport equation

We rely on the following weighted integration lemma. This is similar to Proposition 5.5 in [4].

Lemma 5.2. Suppose that the bootstrap assumptions (3.6]) holds true in M(8,a, ). Then for a H-horizontal
covariant tensor field satisfying the equation

Vs + Atrxy = F,

we have, for A1 =2(A — 3) and s < —%ad,

s 191122 (50,0) S 1811 L2(50 1) +/ s M IF] (s, ) ds'- (5.2)
. u

We also have the higher-order estimates for k < N:

A +kNk A +kNk s A ) 3
™ 0™l L2(s, 1) S ™ TF0 Yl L2gs, ) + / |1 R Fllnas,, ) ds” (5.3)
> ) u,

i<k?—

23which follows from the proof in [12] with the e4 direction replaced by the e3 direction.
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Proof. Note that ez(|1)|?) = 2¢ - V31p. We can thus make use of the following variation formula for scalar

functions ¢
85/ qb:/ esd + trx¢
Su,s Su,s

since ez = 0s. Letting ¢ = |s|**!|¢|?, we have (note that s < 0)

65/ \sl”lww\z):)/ ~2uls M I + 208 - Tag 4[5 r xwl?|
Su,s Su,s o
- )/ 21519 - (=Mals| " + Vaw) + | tr xul?|
Su,s

- / 2o (F = Mo xwr—als| " 9) + [ tr x|
Su,s - -

Y N N R
Su,s

1 1
2 2
<2</ |s|“1|w|2> (/ |s|2*1|F|2> + MO8t |s|? / 15[ 2,
Su,s Su,s Su,s

where we made use of the bootstrap assumption in the last step. Now, sinc@ ls| > éaé, we have

ffl Oéa%|s'|72ds’ < Oa" 2 < 1, and the estimate follows by integration using the Gronwall inequality.
This finishes the proof of .

For the higher-order version, we need to commute the equation with 8 = (V,V3). When we commute
the equation with V3, we have

VsV + )\trKVM/J + )\Vs(trz)d) = V3F,|

SO usin stry = — — 5(tr and the original equation Atr = F — V31, we get
ing Vstr x = —|X|* — 3 (tr x)* and the original equation Atr xy = F — V3¢, we g

1., 1
V3(Vsth) + Mr xVsih — 5/\|X|21/1 + 5trx(Vsy = F) = Vs F,
ie.,
1 1 1,402
V3 (V) + ()\ T §>trxv3¢ = VaF + JtrxF + 2Ky

The term |§|*1 = s~ " (s|X|*)% and is of the type (in fact better) s 'T'y1. Inductively, we get the schematic
expression

VaVie + (A + %)trxvgw = VAF + 3 [s| IVEI(F + Ty - 0.

j=1

The commutation with V*, by the formula (2.15)), gives
i { i i—1 % i—1 ok
[V, Vg = —Strx V' + V' (T - 09) + V(BT - )

hence .
VsVt + (/\ + %)t@viw =V 4+ VT (T, 00) + VB ).

Therefore, to commute with d¢, we can commute in either way for finite times, and get

V3d'y + (A + %)tr@iw =3 s I F 405 T (T oy) 405N (B - ).
j=0

24See Remark .
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Then, applying the integration lemma (Lemma|5.2), we get (for simplicity, we denote here S = S, /),

S
||52A+17101¢||L2(S£73) N ||32A+171311/’||L2(s£,,1) Jr/ ‘5l|2)\+171||01F||L2(S) ds’

+ / | P 0 (- )]sy + 1078 )12 s d”
—1
S
S |\82A+1_101¢||L2(s£,,1) +/ |8/ [P | 25y ds”
-1

+/ [/PATE ST I8 2 S04 [ oo () + 1572072 Ty || oo ) 8™ 07 | L2
-1 i1 +io=i
i9<i/2

+/ 1122 D I Bl L2 8202 oo s) + 1572072 Bl | oo () |80 | L2 (s
-1 i1tio=i—1
in<i/2

S
S |\82A+1_101¢||L2(s£,,1) +/ |8/ [P 2 ds'
-1

1 1
® . 0a2 —1 rigai da? — 14y ai

_|_/ O . Z Hs/2>\ 15/ 2D 2’(/)|‘L°°(Su,s’) +Oi|s’|2 Z ||S’2>\ 1+ 1 11/]||L2(S) ds’'
—1 -

T2
2<i/2 11 <1
s
+/ REA[B18%a2 (|72 [s'| Y0 (1520 ][ s, L yds
1 -

ip<i/2

S
+ [ RELBIFaTs| ST DD (15 0 gl e, ) ds-

-1 i1<i—1

We note that the argument here in fact requires i/2 > 2 in view of the Sobolev estimates we employed;
however, if i/2 < 2, we can directly estimate f!, and S in L°° using the bootstrap bounds and Sobolev
estimates, hence controlling ¢ in L?*(S) and resulting in the same estimate.

Then, using the non-integrable Sobolev estimate, together with the bootstrap assumption , we have

s 0% |2y ) S ||52A+i_10i¢”L2(sﬁ,_1) +/ |5/|2A+i_1||°iF||L2(su_S/) ds’

s Sa? 3, L
Jr/ (CbL+Cb52a2|s'| 3)2”812)\ 1+]0]¢||L2(Su S,)ds'.

-1 |s’|? i<i
Since
—a 50% 2 3 =3, 1
/ CbW—Q—C’b&aﬂs\ “ds' < Cra 2 K 1,
_1 s
we can sum up ¢ = 1,--- , k and use Gronwall’s lemma to get
182 0 gl 2 s, o) < NS 0 L2 s, ) +Z/ [ AR s, 45
i<k’ 1 -

which finishes the proof of (5.3)). O

Remark 5.3. From the proof, it is clear that the same estimate holds when F is replaced by F + fg - in
view of the bootstrap bounds of I'y.

5.2 Estimate of Ricci coefficients

In this subsection, we derive the estimates for all non-vanishing Ricci coefficients through the integration
along the direction of e3. As emphasized in the introduction, there is no loss of derivatives due to our choice
of the PT gauge.
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Remark 5.4. We make systematic use of the es transport equations of Pmposition to which we apply
the transport Lemma Without further notice we estimate weighted L*(Sy,s) expressions of the form

[Is"0" (v1 - ¥2)lL2(s,,.) bY

> 18" p2gs, 15202 W Lo (s, o) + 118207201 oo (5, 0|87 2 | p2(s, -
i1 +ig=i
in<i/2

Proposition 5.5. We have HskbkaLz(S&S) S (Relpl + 1) 5%a%|s\7%, kE<N.

Proof. Recall from (|1.1) and (2.12) that w = 0 on H_;. We apply Lemmato the equation Vzw = |[¢|*+p
and derive

I |5|i_laiw||L2(su,s) Sl |3|i_laiw||L2(sﬁ,_1) +/ |5/|i_1||Di(|C|)2||L2(suys,) + |S/‘i_1||aip‘|L2(su S/)dsl
-1 - -

s s 1 L
< o+/ |S,\71(’)5a%|5'|’2.(’)5a%|5’|71d5/+(/ [ 74as") * lls(0"0)1 2 o,
—1 -1 -
< 0%%als| ™ + RilploZat |s| 72
S (Rilpl+ O%a™%)8%a%[s| % < (Rilo] +1) 6% a?|s| 2. 0

Proposition 5.6. We have Hskbkﬂ\Lz(sﬁws) S (RelB]+ 1) 57%a%|s\%, kE<N.

Proof. Recall from (1.1)) and (2.12]) that £ = 0 on H_,. We apply Lemmato the equation for V3¢ written
schematically in the form V3¢ =X -(+ 1T, - ( + B to derive

|||3|Flai§||L2(sﬁ,s) S |||S‘i710i§”L2(S%,1)+\/1|S,|i71”ai((5€7rb)'C)HLZ(SLS/)+|s,|i71||Diﬂ”L2(Sﬂ’s/)d“’J
s s 1 o
S 04 [ 15ioatls | osatls T as 4 (1170 ) s Bl e,
—1 —1 -
< O%als| 7 + Ri[B] 6 2a?s| 2
S (RilBl+ 0% )8 Fakls| E S (RiB] +1)5 Pab|s| 2, 0

Proposition 5.7. We have HskaCHLz(S%S) S saz + (Re[B] + 1) 5%a|s|7%, k<N.

Proof. We apply Lemma (with A = %) to the equation for Vs(, written schematically in the form
Va(+strx¢ =Ty - ¢~ p,

sl ¢l (s, S HISIZG’CIILa(sﬂ.,l)Jr/ s 110" (Tg - Ollzacs,, .y + 18T Bllzecs, ) ds’
—1 = =

s s 1 L
< da? +/ 06a?|s'| "% 06a?|s| " ds + (/ |s’|*4ds’)2|\825201§|\L2(Eu)
-1 -1 -
< dad + 0%%als| 2 + R[B)6% als| 2
< da? + (Rilf] + O%a~2)5%als|"% < da? + (RiB] +1)d%als| 2. 0

Remark 5.8. This is slightly better than the Sa? |s|72 size of the bootstrap assumption. This turns out to
be useful to avoid a logarithmic loss in the estimate of the frame transformation f.

Proposition 5.9. We have Hskbk(tr\/& zzes,. S §a%\s|_1, k< N.
Proof. We apply Lemma [5.2| (with A = 1) to the equations

1 —

Vstry +trxtry = 5(trx)2—|g|2, VsX +trxx = —a.
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||51+i°i@7tr&)”m(sg,s) S |‘sl+iai(27trX)HLz(SH),])+/ |S'\1+i|\°i(Pg'Fg)vaigﬂm(sm,)
-1 -

s s 1 o
< sa? +/ O*6%als'|?ds’ + (/ \s'|74ds') : ||535101g||L2(ﬂu)
-1 -1 -
3 22 —-1 5 3 .3
S a2 +0%6%als|” +Rla]d2a?|s| 2
< (1+0% 2 +Rla]a ?)da? < da?. O
Proposition 5.10. We have HskaX\HLz(Su,S) S az, k<N.

Proof. We apply Lemma (with A = %) to the equation for V3 written schematically VX = —%trxi—i—
Ty -T%

[APN (PN ° iy T 1 ° -
Is"0" X L2(s,,.0) S l18"0°XL2(s,, 1) +/ |s'"[0"(Tg - To)llezcs, ) ds' S a2 + [ Oda2|s'|7*- Ods’

-
|
-

W=

< (1+0%]s| Ha? < az. O

s

Proposition 5.11. We have ||s*0* (tr ¥, (a)tTX)HL?(sE, y S1+Relp, ], k< N.

Proof. We apply Lemma (with A = %) to the V3 equations for tr y and (“try of the form

a 1 a ~ A~ A~ A *
Vs(try, “trx) + Strx(try, @try) = —(X- XX AX) +2(p, — ).

Making use of the L? bounds of X and X and the corresponding L> bounds, derived using Lemma we
obtain

[|s"0" (trx, (a>tI“X)||L2(S£,S) < ls(trx, (a)trx)||L2(sﬁ,_1) +/ \5/|i||0i(2'f<)||m(su )
-1 =

S
[T olsacs,
-1 =
s 5 %
L L
51+ Z / az 'HSJDJXHLOO(S%S,)+7|Sl| . ||5J0JX||L00(SH‘S,)dSI
j<i/2’ 1

s P
#( [ 15172as) s (o oDl

1

(5.4)

51—!—/ dals'|?ds’ + Rilp, *p]5%a%|s\_%
-1
S1+Rilp, ol +6als| ™" S 1+ Rilp, . m

5.3 L? Estimate of f
To derive the estimate of f, we make use of the equation, see (2.14)),

1 ~
Vaf +texf=2-%-f, fl, =0

Proposition 5.12. We have HskbkaLz(S%S) S Relf] éa%, k< N.

Proof. Applying Lemma (with A = 1) and using the L*(S) estimate of ¢ obtaine in Proposition

~ 1
251t is essential here to use the better result of Proposition rather than ¢ € T'y ~ daZ|s|~2.
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we derive

||5i0if||L2(sﬁ,s) S HsiaifHLZ(s&,,l) +/ |s'"I[0°¢, 0" (T'y “Pllle2s, ) ds’'
-1 -

< 0+ [ daF +Ri[B|6%als'|"F + 0%%als'| 2 ds'
-1
< sa? +Ri[ﬂ]5%a|s|7% + O*6%als| ™
< Saz(1+Ri[Bl6%at|s| 2 + 0%az|s| ') < (1+ Ri[B]) daZ. O

5.4 L*(S)-estimates for the curvature components

In what follows we derive non-top L*(Sy,s) estimate@ of the curvature components. We start with the

following.
5 7

Proposition 5.13. We have HskakgHLz SRla]o2 %| |72, k<N -1

(Su,s) ~

Proof. Applying Lemma[5.2]to “Vsa = 0a”, we have

S
—1 1 — 3 1 1
ls™ 0 all2gs, ) S I 0"l lL2s, ) +/ 8172 ||s"%s" o al | as, ) ds’
) .,

s 1 L
<% + (/ |5/ 7208 ) * 1% 0 a2

$ 6% + Rla] 0% a2 |s| "% < Rla]63a?|s| 2
so multiplying both sides by |s| we obtain the estimate. O

Proposition 5.14. We have HskbkﬁHLz(S 52a2| |3, k< N-1.

w,s) ~

Proof. We apply Lemma (with A = 2, ¢ < N —1) to the equation V33 +diva = —2tr x §+2a-(. Making
also use of the estimates for the Ricci coefficients and « already obtained, we derive

Is* 0" Bl 25,y S 18*70"Bllr2(s, 1) +/ \5/|3+i\|ai+lg|\L2(s£’s/) + ‘3/|3+i||ai(g'C)HL%SLS/) ds’
S 5% + (/ |s’ |72ds) [|s°s HlDngHLz(ﬁ“) +/ |s'|307€6a%|5'|72-6%a%\s'|7§ ds
- -1
< 5%? +Ro%al|s| 2 + OR[a ]5%a2|sr%
< (1+R82|s| 2 + ORS2a?|s|”2) 6% < 5%, O

Proposition 5.15. We have ||s"0% (p, “P)llL2(s,..) S dals|” 2 E<N-1.

Proof. We apply Lemma (withA=2,i<N-1)to

. 3 1.
Vip+divg = fitrxp+ﬁ B— 5 Q,
* 3 * * 1/\ *
Vs p+curlf = *§trg p+C- ﬁ*gX' Q,

26That is ignoring loss of derivatives.

19



S
150 plla s, S 1520 plaags, Ly + [ 18P0 8,0°(C - 8,0 R @llags, oy
—1 -

s l . . s
< da+ (/ \8'|_2ds') : ||8282+101+1ﬁ||L2<§u) +/ |5|20’R5a%|s/\_2 -52a%\s/|_3 ds'
—1 “ —1

s
+/ Is'PORa?|s'| ™" - 62a3|s| "7 ds’
1

< da+R[BOZals| "2 + ORG%a?|s| "2 + ORG3 a?|s|” 2

<1 +R[fla"? + ORa™*)éa < da.

The estimate of “p follows in the same way. O

Proposition 5.16. We have HskbkﬂHLz(Suvs) < a%\s|_l, k<N-1.

Proof. We apply Lemma (with A=1,i <N —1) to V3 +divp = —trxf +26-X

S
Is" "Bl 25, < 80 BllLas, o) +/ s ™0, 0" (8- Qs o) s’
1 S /% 1+in14i s 1.1 2 3 ,-3 .,
< a? o+ (/ |s'] ds) [Is(s"""0 p)||Lz(£u>+/ |s|ORaz|s|”" - 6°az|s'| " ds
-1 - -1
1 111 2 2| (-2 5
< a? +R[pj62a?|s|” 2 + ORI“a”|s| " S a2. O

Proposition 5.17. We have HskakaHL?(su,S) < 6 'a2, k< N —1.

Proof. We applym Lemma (with A =1/2,5 < N —1) to Vza — VR = —%trxa +¢®B—3(pX+ *X)

HSiaiaHL?(Sﬁ,s) S ||Siai06|\L2(s%_1) +/ Is''l[p B, 0" (p - lezs, ) ds'
-1 =
s 1 i . s
< 67101% + (/ ‘Sl|—2ds/) 2||Sz+101+15||L2(ﬂu) +/ ORQ%|S|71 ~5a|s'\72 ds’
1 - -1
< 5'a? +R[B]6 Za|s| 7 + ORSa’|s| >
< 5 'aT(1+RIB|62|s|7F + ORS%als| ) < 5 Va2, O

5.5 Improved estimate for ¢
We improve the estimate for ¢ obtained in Proposition [5.6] for all but the top derivatives.

Proposition 5.18. We have HskaEHLz(Su’S) < az, k<N -—1.

Proof. We proceed as in the proof of Proposition starting with V3¢ =x- ¢+ I ¢ + B, by taking into
account the new bound for f just derived in Proposition [5.16] Thus, for i < N — 1,

|||5‘i710i§|‘L2(Sﬂ,s) S H|5|i710i5||L2(sﬂ,,1)+/ |5l|i71||ai(>A('C)HL?(SuS/)dsl
—1 -
S . 1 .
r1— 7 /
[T 0Bl s
-1 -
< 0—|—/ |s'|71(9a%-5a%|s/|72+/ a%|s/|72d8'
1 _
S O%als| > +a?|s| " =a?(s| 7 (1+0%6a?|s| ") S als| 7. O

27We use p in the estimates below to represent both p and *». We omit the estimate for (®8 as it is even better than fg Q.
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5.6 Summary of the results proved in this section
Proposition 5.19. The following estimates hold true.@
OSN + R2N71 5 R§N~

We also have the improved estimates

OSN[S&:@?X? g] +R§N71[§,P7 *p7ﬁ704] S 1.

With the help of the non-integrable Sobolev estimates of Lemma [£.1] we also obtain O<y_3,00 S R<n-
We state the precise estimates:

Corollary 5.20. For k < N — 3, we have the estimates:

1 1 1
Kk~ a2 kk d2a2 Eak 1
1s"0"Xl|Loo (5,.0) < 7k s w||Loe (5,,0) < RMF7 5707 tr X[ oo (54.0) SR[MQ7
S
kk /T o 50% k~k 561% k~k <a%
(5707 (tr X, X[l Loe (5,.0) < EEk [1s70%CllLoe (54.) < R[ﬁf?’]W, [s"0%¢ oo (5,0) S T
1 5 3 3
k<k da? kk 62a2 k-k (5201E
150 Fllzme 5,0 S RBIT  Mls"0 el lies,,0) S Rl " 1570 Bl (50,00 S g
s
da a? “lg2
kak  * kak kak
1s"0%(p, “P)llLoe(su0) S 7730 IS0 BllLoe (s S 770 18707 allLoeos,) S
s 5| Is|
Note that for &, we have used the improved bound obtained in Proposition [5.18]
6 Energy Estimates
Notations. We make the following notational conventions to be used throughout this section.
1. Whenever we use the index 41, we mean summation over i1 = 0,1,---,i (with the covention that
replaces i1 —1 by 0 if i1 = 0); whenever we use the index i2, we mean summation over i = 0,1,--- , [¢/2].

In these situations we drop the summation symbol.
2. We use S, when there is no ambiguity, to denote the spheres Sy, s.

3. We use the double integral sign [[ to denote either a full spacetime integral or the integral over the u,
s variable (i.e. the non-angular variables).

6.1 Integrating region

Recall 7 = ;5au + s. In the region {r < 7*} with 7* < —1ad, we have, using (L.2)),

Deg(r) = Deg(s) =1, Dey(r) = %a + Wey(s). (6.1)

We need to estimate (Ves(s) for which we use the formula, see (T.3), —2 @w = Pes(Dey(s)). Moreover,
the estimates in the PT frame, together with the transformation formula for w (see Lemma [2.2)) imply that

| Dol S Jool + 1£] - [(G )l + 151> S O8%a2|s| =2 + O°6als| >,
Then using e4(s) = 0 on H_; and integrating in @Des = 9, direction, we obtain

| Dea(s)| < 062 a?|s|"2 + 0%6%als| 2 < O < a/10. (6.2)

28See ([3.3) for the definition of the norms.
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In particular (e, (7) > 0. Let (grad 7)* be the vectorfield perpendicular to the level surfaces of 7 defined
by (grad 7)* = g"”9,7. We have

1 1
(grad 7)" = g"' 8,7 = _5((9)63(7.) (9)64 + (g)e4(7.) (9)63) — _5((9)64 + (g)e4(7_) (g)eS)7

SO
a

(9)
0t 64(8))’

g(gradr,gradt) = — Wey(r) = —(

which is strictly negative. This shows, in particular, that X, is a spacelike hypersurface with future unit
normal given by

_ gradT
lgrad 7|

=

6.2 Divergence Lemma

We apply the spacetime divergence lemma (see e.g. [14], [I5]) to causal domains of the form M C M(9, a; )
enclosed by ¥, = {7 = const} U H, to the future and H_1 U H,, to the past.

Lemma 6.1. Consider a vectorfield X on a causal domain M C M(0,a;7y) enclosed by ¥, = {7 =
const} U H, to the future and H_1 U H to the past. Then

[ oo+ [ e = [ R /Eogocea)f / /M(DivX>

T =u

where the integrations on X, and M are with respect to their standard area and volume forms and N. =

- g:g:‘ is the future unit normal to 3. The integrations on the null hypersurfaces H,, and H_1 of scalar

functions f are defined as follows

/ﬂf:/sds/susdeOIS’ /H, f:LdgL Fdvols

w,—1

Proof. Immediate application of the Stokes formula applied to the differential form (*X)agy = Eagyp X"
by observing that *(d*X) = Div X. See Section 8.1 in [I4] for the details. O

Corollary 6.2. Consider the vectorfield X = Ages + Aaeq, where A3, As are given smooth functions. Then,
integrating on the same domain M,

A O G A A A

with |grad 7| ~ a'/2.

Proof. We have

1 1 a
X, N, - I S a 7
9(X, N7) |grad 7| (Ases(7) + Aaea(r)) |grad 7| (AS M (10 * e4(5)>)
g(X7 63) = —2) g(X7 64) = —2As,
and the result follows from Lemma [6.1] O
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6.3 Estimates for general Bianchi pairs

Definition 6.3. We denote so by the set of pairs of scalar fields in the spacetime, s1 by the set of H-horizontal
1-forms, and s2 by the set of symmetric traceless H-horizontal covariant 2-tensors.
Definition 6.4. We consider the non-integrable horizontal Hodge-type opemtorﬂ
o D, takes s1 into so: D€ = (divE, curl §),
o D, takes so into s1: (D16)0 = Vs,
o D] takes so into s1: (D1(f, £))a = —Vaf+ €ab Vi fe,
o D takes s1 into so: DrE = —%V@f.
Lemma 6.5. The following identities hold:

,pjlﬁ(.ﬂf*)'u:(faf*)'wlu_vd(fua+f*(*u)a)> (f7f*)€507 u € 81,

(6.4)
(P2f)-u=f-(Pou) = Va(fsu™), feEs, u€s.
Proof. Direct calculation. See Lemma 2.1.23 in [I5]. O
Definition 6.6. We consider the following two types of abstract Bianchi pair@:
Type I. These are systems in 1 € 5, and Y2 € s,_1 (k = 1,2) of the form
Va1 + Atr xih1 = —kDiaps + Fi, ©6.5)
Vs = Pyipr + Fa,
Type II. These are systems in Y1 € s,_1 and Y2 € s, (k= 1,2) of the form
Va1 + Atr x¢1 = Pyipe + F1, (6.6)

Vahe = *kwil/}l + Fy,

The main goal of this subsection is to prove the following lemma:

Lemma 6.7. Suppose that the bootstrap assumption holds. Then, for both pairs (6.5), , we have the
estimate

a—%/ 82i+4>\—2|a¢w1|2+/ 82i+4A—2‘Di¢2‘25/ 82i+4)\—2‘0i¢1|2+/ 82i+4A—2‘Di¢2‘2
= H H_, H

T Hau -0

S v | e v
i=0 M o

Proof. We prove the estimate for the first type; the second type follows in the same way. Commuting the
equation with ?°, using the commutator Lemmﬂ we derive{fl

(6.7)

Vad'eh + ()\ + %) trx ' = —kDio's + FY,

‘ ‘ ‘ (6.8)
Vid'ths = D0 1 + Fy,
where FY = F1,FY = F,, as in —, and for i > 1
Fi=3"Js[ 0" 7R+ 0" (T ovn) +0' (B - w) + k(DL 0o, 69
j=0 .

Fy=0'F + [V470i]w2 - [’Dmbi]dn.

298ee [14] for the original definitions and [I5] for the extensions to the non-integrable case.

30The null Bianchi identities in Proposition can be split in the pairs (¢, 8), (ﬁ, (p, *p))7 ((p, *p),ﬁ) and (8, @) which fit into
one of the two types described here.

31We deal with the commutation between V3 and 9% in the same way as in Section

32Here the Hodge-type operators act with the indices of 11, w2, e.g., (Padia)a = VO0iayy, (P50'B)ap = —%Va@)(aiﬁ)b.
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We next make use of the formulas
Dives = —2w +tr x = tr, Diveys = —2w + try (6.10)
to calculate the divergence of the vectorfield
X = 22 iy 205 4 kst 2 iy 2y,
Div X = s+ =2|9ig, |2Divees + e3(s2 P 20iy]?) + ks? 42 ~2|0ighy|Div ey
a5 20 )
_ 52i+4>\72|ai¢1|2trz+ (20 + 4\ — 2)s2 A3 |giy |2 1 252201y, . Wity
+ ks® T2 00 |2 (—2w + tr x) + k(20 + 4X — 2)s7 T ey (s) [0 e |
+ 2k AT 200y - V40 s
_ 32i+4>\72|ai’(/)1|2trx+ (20 + 4\ — 2)2 A By 2
+ 252 A28y, (—mDng - (% + )\)tr@iwl + Ff)
+ ks T2 0 o |2 (< 2w + tr x) 4 k(20 + 4X — 2)s” T ey () [0 o
+ 2ks T 200y - (P01 + Fy)
= (i 42\ — 1) T2 (% - trx) [0iep1|? + 254220, - FY — 2ks™ T 200y - Pty
+ ks?iTAr2 (—2w + trx + (20 + 4\ — 2)s™ Tea(s)) ["h2|* + 2ks> A2y - Py
F 2ks2 T2l P i,
Note that ‘ , ‘ . ‘ ‘
' - Py'ehr — 0'pr - D't = div (0'4)1 - 0'¢ha),
which is a direct generalization of Lemma [6.5] Therefore we get
Div X = —(i + 2\ — 1)s> T 20y [o'ypn [ + 287 20%yy - FY
+ k¥ (22w 4 try 4 (20 4+ 4\ — 2)s Mea(s)) [0 2| + 2k T TPy, - Y
+ 2ks* T2 div (0'hy - 0'ha).
The last term is equal to
2ks> A2 div (0% - 0'4he) = 2kdiv (s7T 20 )y - 0% ahe) — 2K (20 + 4N — 2)sP AT 25TV, () (07 4h1 - 07 4h2)a.
Therefore,
Div X = 2kdiv (s* T 720%1 - 0'ea) — (i 4+ 2X — 1) T 2oy [0l [?
+ ks?iTar—2 ( — 2w+ trx + (20 +4X — 2)57164(8)) [0'4po|?
— 2k(2i 44X — 2)s*TA 257, (5) (071 - 0'4)a
+ 255200 - FY 4 2ks” T 0N, - FY.

(6.11)

To derive our final result it remains to integrate (6.11)) on M. In view of the lack of integrability of our PT
frame, we need however to replace div with Div with the help of the formula, for an arbitrary H-horizontal
1-form W, seﬂ [15] Lemma 2.40]

Div¥ =div¥ +1n- V.

33Note that in our case, we have n = 0.
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Integrating this relation over M and using the divergence formula in Lemma for w# (the index raising
with respect to g), we obtain, in view of the fact that U5 = ¥, = 0,

//Mdiv\I/://MDiv‘I/*Q"I/:f/Tg(ea,NT)\I/a—//Mﬁ.qj
:/ ‘gradr\*V(T).\pf//Mﬂ.‘y

-

(6.12)

Note that we have \gra_dr\fl_ea(r) = |grad 7| 'eq(s) = —|grad 7|7 f. Since |gradr|™! ~ (f%, applying
[6.12) to W = s+ =29%), - 2%eba, we obtain

)// okdiv (82i+4A72D7L1/}1 'Diﬂh)‘ < aié / )f ) (82i+4)\72aiw1 .aiw2)‘ + ’ // n- (82#“720”&1/11 'Diﬂh) .
M =r JIM T
We then apply Corollaryto (6.11) with X = s T 2% ez + ks 2205 |%e4 to derive

-3 i+AN=2) 50 a iHAN—2) i i+AN—2~i
a 2/ PRI 2|D ¢1|2+(E+e4(3)) g2t 2‘0 '¢’2|2+/ RN 2|D ¢2‘2
o, H

Hu

5/ 82z+4)\72|01w1‘2 +/ 821+4)\72|02¢2|2 T aii/ 821+4)\72‘f.011/}1 ‘011112‘
H_, H

=10} pI-

b [ (1 4 s a0l + T 0l + allo o)
M

+| // ST Y 4 0"y - F)
M

Clearly, due to the smallness of |f|, the weighted integral of f - 0%}y - 0% can be absorbed by the flux terms
over %, on the left-hand side.

We now estimate the spacetime integrals on the right-hand side. Note that on X, |s| = |7|4 15|au| > |7].
Also, the bound of Ve, (s) in implies |e4(s)| < O. Then,

) - ) —ad i . .
// S2z+4>\72‘1—\g||azw1|2 dvol 5 / ( 0(‘5;1/7';32Z+4>\72‘01w1|2 O,i% d27—> dr
M - r

1

—ad 1
—1 i AN—2) i daz
<a 2sup (/ g2 2|DZ¢1|2dET) . (@] a2 dr
T o -1 |7l
1 i — i ()]
<a 2sup(/ -2y ¢1|2d27) —_
T pap az

and

. 6 . .
// |(rb+s—1e4(s))|\ow2|2dv01g/ (/ Ols| " pruf?) dgggvsup/ b2, (6.13)
M o “H, @ uw/H,

Therefore, taking the supremum over 7 and u, we can absorb several terms on the right by the left-hand

side and obtain
_1
a 2 sup /

+/ P2y 2 ‘ // R R 4 S o
Hy M

82i+4A72‘Diw1|2 +sup/ 52i+4>\72|0i¢2|2 5/ 82i+4)\72|0id)1|2
#, Ju,

—1

It remains to estimate the terms F}, Fy in . We have, schematically, using (2.16]) and (@) ¢r x=0,

1—1

[P,V =Y V(WKy 4+ DtrxVsp)

j=0
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where P stands for any of the four Hodge-type operators in Definition We also have, by (2.15)),
[P, Vil = 0" (|s| o) +0' (T - 0w) + 0778 ),
so composing these two formulas we get

[P, =" (18] ow) + 0 (Derxow) + 07 (B v+ WKy

Also,
Vi, 'l =0 (50, ) - 00) +0'" ((IsI 7€, "B, ) - ).
Therefore
Fi = |sI 70" P+ e, (6.14)
Fy =0'Fy + errs,
where

err = 0" (T, €) - 0w )+ (1576 "8, ) v)
+0 (o] o)+ ((“)trx - wl) Fo (B K ).

We deal below Wlth the contributions of erry,errs to We first deal with the second line in the
expression of err. The estimate of the second line of err} is 1dentlcal We have

[ [ o (0l Vo ) #0746 K )) |
M
S e A (A RN )
M
+ // 1 + sl Hsiilaiil <h)KHL2(S)) : ||5i2+m71°i2¢2||L°°(S)||3i1+2A710i11/11||L2(S)
// . 12 1 12 1(})>KHL’>O(S) H i+2X— 1D 7/)2"LZ(S)H5“+2>\_10“7§>1HL2(5>
// |8|7 |szl+2>\ 1 zlw | // 7«1+2)\ 1 llw ‘ )
+RIp) / / 5|7 \|s“+“*1a“w2\|L2<S>||s“+“*1a“w1||ms>
<Cb // - 11+2>\111w‘ // 11+2/\111w|>%
—ad 2 1 21 +4X—2 i1 +2A—14 2 3
s ([ Tt ([t a ) (5 sup 1510 )
T » u o

-1 -

N

-
-

. . 1 . .
scm)*vsup(a*f / \s|2“+4H|a“wl|2) 8% sup 1510 oy

T - u

1 1 i 2 . .
SCvad (supad [ PR s [ 0 gy )
.

T T

which, after summing up over the index i, can be absorbed by the left-hand side of the desired estimate
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For the first line in the expression of err!, we have
‘/ |S|2i+4)\—20iw1 ) (Di—l(fg o + 8- ¢1)) ‘
™ I
-2 2 8, -4 i14+2A—1i i1+2A =1
S [[ (05adlsl 2+ ab s sl 1157 0wl pagsy - [57 20 e
M

—ad
< / (Oéa% 7|72 + §%a? |T|73) sup (aié / |s|2’+4A72\01w1|2dv0127> dr
—1 T

=,

S (Oafé + cf%) sup (cf% / |s|2¢+4)‘72|0iw1|2dv01x> .
ET

-

Similarly, for the first line in the expression of errh, we derive
| [ 1 0t (07 () 0w+ (5176 Bp) - 00)) |
M

S [[ (ablsl™  RIsl ™ Js]- 0%t b o] dalsl ) 157 0 gl s
M

< 8(a? (a8) ") -sup 8" T 0 T2,y S a7 Zsup [T 0 Ry .
U w —=u.

u

Both terms can be absorbed by the left-hand side. This finishes the proof of the estimate (6.7]). O

Remark 6.8. In the estimates below we apply Lemma to the actual Bianchi pairs («, ), (B, (p, *p)),
((p, *p), B) and (B,a). In doing this we will ignore nonlinear terms of the form fg -1 in F1 or Fy, and
(f‘b, X) - ¥2 in Fa, as they have already been dealt with in the proof of Lemma .

6.4 Estimate of the pair (¢, ()
Proposition 6.9. We have a_%||si0ia|\2Lz(ET,u) + HSiOi/BHQH(ﬁ ) S 57 ta, i <N.

Proof. Consider the equations

~ 1
Vsa—-—V®E = —itrxa-i-Fh
V4B—divo¢ = FQ,
with
i = (®B-3(pXx+ P'X),
Py = —2trxB+2%trx B —2wB+a- (20 +n) +3(Ep+ "€ ),

of the form (6.5)), with k =2, A = %, 1 = «, Y2 = . Therefore, applying Lemma we have

a 2 sup/ s*p'al? +sup/ s>’ B2 5/ s*[o'al? +/ ¥ B2
T w JH H_ H,

T =u

1
+‘/ s 'a 'R +Diﬂ~DiF2)‘.
M

As before, we only need to estimate the nonlinear terms with one of the factors replaced by its L°°(S) norm.
Note that at the top order of derivatives, we can only use the weaker estimate of £ from Proposition [5.6]
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‘We have

and

\//safp )-o'f

’// s*0'(Dy - B, % - p))vbia+s2i0i(fg-a)-0iﬁ‘

1 i1 4 1 i1~ i1 N0
s/ (062 |s] 72150 Bl acs) + a?ls| M Is 0" pll (s ) 152" all (s
M

o 3 o 3
5 O(Fa% (// |S‘74‘811011a|2) (// |s”b”ﬂ\2)
M M
_ 3 - 3
% (// |S7,107,1a|2) (// |S‘2‘811011p|2>
M

1
—ad L 2 L
< Oba? (/ \7’\74 sup 0 ? HSHDHOCHQL?(ET) dT) .52 sup HS“D“BHLz(EU)

—1 T u -

1 —aé 1 . . 2 . .
s (Tt s a bl 0 e, ) 6 sullss 0l
—1 u -

1 1

111 11 o3 11 111
<(96a2|a5| SR Za? 57 RO Za? +a?lad| 2R 2a? -62RIZa?
SOR?* ' +R* <6,

S / 05~ Za% |s| 2|50 pll2cs) 150" Bl 2 s
M
< Oéféa%\aﬂ*%ésupHss“D“pHLz(Eu)sup||si10“m|L2(ﬂu)
11 11 11 B
< 06 zazlad|” 25R6%a? - RG Za?
< OR%*' <6 . O

6.5 Estimate of the pair (3, p)
Proposition 6.10. We have, for all i < N,

T .
a 2 ||51+101ﬂ|‘i2(§],&) + [[s" 10 (p, P)H2L2(gl) < Rlof*da.

Note that we have shown that R[a] < 1, so this is an improvement of CZ26a in the bootstrap assumption,
if C is sufficiently larger to start with.

Proof. We start with

with

Vs = —Pilp,—"p) —trxB+ F,
V4(P7_*P) = @15+F27
Fl = ZQS&

F>

(20+) - (8,"8) =26 (8, "B) — 5%+ (@, "a)

of the form (6.5), with k =1, A =1, ¢1 = B, 2 = (p, — “p).
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We estimate the contribution from Fi, in a similar way to Section

)// R oﬂ\ J[ (07140 Bl ) 0 Blleco
% ( 71071/_3‘ )2 (// ‘S|—2|S7Iai/_}|2>§
M

1
—asd . ) . 2 o
< Oa 3 (/ |T|74811pa7%|‘$Zl+10118“12(27)dT) Wk SupHSZSHDHQHLz(ﬂu)
1 T u -

< Oa?|ad]”? - R(6a)? - 6% - Ré2a = OR*5a” < da.

We now estimate the terms & é and X -a in F5. We have

. o o .
\// "0 (6 - B) - " (p, p)\s// |sPORS™ 2ak |s| 7% - ||s0™ B[ 2cs) - lIs0pl 12 (s)
M M
<ORS-6 2a?|ad|” 3 sup 15250 Bl 2, 155 0™ pll 2oz, )
1

<ORI 'a"' RéZa- R(s% 3 — OR*§a? < da,

and, using the improved estimate of X obtained in Proposition
i i * 2¢ Ly =2 i1 ai ini *
| [] 1520 @00, )| < [ 1ssabisl 2l 0 alegs 150 o, Bl
M M
) . 3 o 3
sat ([[ sl ) ([ 1sPisto o 0
M
1 1
1 R -1 i1ai |2 2 P11 )2 2
< da? / | 7] sup a 2/ [s" 0" a|” ) dr §-sup|lss™ 0" pl[z2(m, )
-1 ™ - u T
1

< §a?|ad| 2 R[a]d" Za? - Rlp]da?
< R[p|R[a)da < C~'R[p)*da + CR[a)?*da,

\ /\

so taking a suitable C' > 0, the first term can be absorbed by the left-hand side (which is like R[p]*da), and
we obtain the result. O

6.6 Estimate of the pair (p, )
Proposition 6.11. We havelfl l|s""%0 lﬂ||22(H ) S 8%a®, i < N.

Proof. Consider the equations

Vilp, p)+ D18 = —%trx(p, p) + Fu,
ViB = Dilp, p).
with
Fio= (5,70~ 3% (@ o),
F, = —(trxﬁ—&-(a)trx*é)+2wﬁ+2ﬁ-2—3(pﬂ— o) —a-,

34We omit the estimate of the flux on ., as it is no longer needed.
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of the type , with k=1, A = %, Y1 = (p, 'p), Y2 = B. We have
i i i * - i1 ini *
‘// |s|* 1N (R - @) - ' (p, p)’ S // Is|*az[s|~|s" 0 all 2 (s) 15D (o, P)| L2 s)
M M
1 _ 3 i1 i (3 *
<$6-a2lad| " - sup|[s’so 1Q||L2(ﬂ£)||55 ' (p, P)||L2(ﬂi)

“Rlp, ")0%a? < R?6%a? < 6%a°.

Recall that, see Proposition [6.10}

T

supaié/ Is"T°8)* < Rla]’da, i< N.

-

The R[a]? factor here can in fact be dropped in view of Proposition Then we have
| // s 08 ) - 08| < // |s|'08a?|s| 2|5 0" ]| 12 s,
M B B M

Oda? - (//M \s|*2|ssi1ai1m2) : (//M \s|4|siai§|2) :

Siai@ IL2(s)

A

—ad 2 L %
< Oda? (/ |T|72R26ad7'> (6sup ||szszbzg||iz<ﬂu)>
-1 u o
1 1 11 1 3
S Oda? - |ad| 2 R62a? - §2R[f]62a
S OR*6%a? < 6%a°.

Also,

—
_
w
Y

i

£

<.
®
o
<
™
A

1 1 _1 i i I~1
//M 15106~ B ad s H[|s 0" a2 s l15°0 Bl 12 o)

1 1 3 : - P
s [ o5 babisl d s o alliags - 50 Bl s
" 24
_1 1 _3 3 i1xi1 2 i1
< 06 2a? -5lad]” 2 supl|s®s™o QHL?(gu)'HS SDéHLz(Eu)
" w w
_1 1 _3 5 3 3
< 06 2a? -5lad|”2 - Ré2a? -Rdza
< R¥Pa? < 8% O

6.7 Estimate of the pair (5, «)
Proposition 6.12. We have Hsi"'%igHLz(Eu) < 6%, i < N.

Proof. Consider the equations

ViB = —ﬁzg—Qtrxé-l-Fl,
Via = 2P,8+ F.
with
Fl:QQ'C7

1 1 (a N ~ ~ ok ke
Fzz—gtrxg+§( Jtrx "o+ dwa+ (C—4n)BB - 3(pX — P7R).
This is of the type (6.6), with k =2, A =2, ¢1 = 3, ¢» = a.

30



As above, we only need to deal with the term pX in F> ( "p*X is, of course, similar). We have

i i~ i 1.— i1 ini
[ st vl 5[] 1sl0sab s s s o llsiallie s
M M
S O6az 8- supl[ss" 2" pllaqar, ) lls*s 'l Lo,
< 08%aRé2a? -RE2a?
< OR*%a3 < §%d’. O

6.8 End of the proof of Part 1 of Theorem (3.2

According to Proposition we have the following estimates hold true, see (3.3) for the definition of the
norms,

O<n +R<n-1 S Ren.
According to the results of this section, we also have
R<n S 1.

Therefore, combining them together and using the non-integrable Sobolev estimate (4.1)), we have improved
all bootstrap assumptions, and as a result, the spacetime can be extended to 7% = —éa& such that the
estimates O<y + R<n S 1 remain valid. This ends the proof of the first part of the Main Theorem

7 Formation of trapped surfaces

On H_1, in view of the equation

1. , 3 1. 1 - -
V4(pf§x~5):dIVﬂf§trxp*C-Bf§X~a75(*trxxfa)-x
1 1 S .
_ EX' (—itrzx—l—trXX—FV@Q-i-ﬂ@ﬂ)

1 ~ 1
= xR +O0(a?),

we obtain
1. . 1 (% 2 ’ 1
pP—5X"X =—5 [ IXI'la_,du + O(éa?).
2 2 /,
H_;
We also have
1. . 3 1. 1 1 ~ ~  la_( ~
V3 (p—y«x) = —div g - Etrxp—k@ﬁ— X a—3 <—§(tr>@+trxx)+§ X( )trx> X

1. _
— X (Ftrxx - a)
1

[<)

tr xX -

N =

. 3 1 ~ 1 o~ ~ fm o~
:—dlvé—5trxp+§-§+Ztrx|&|2+1trxx~x— trx XX+

>~

. 3 1. . 1 N 1 .

I
[=)
=

Therefore, it is straightforward to derive

1SRl

1
5 BE +0(8a?|s|7?).

[<)

1
P=35X
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Recall that tr x satisfies the es-transport equation
1 ~ ~
Vstrx + §trxtrx =20—-X"X-
On H_,, the Raychaudhuri equation clearly implies
2
trxz2—/ X1 | m_, du’ + O(6). (7.1)
0

This sets up the initial value. We then obtain, by integrating the es-transport equation,

o2 JRPlady
IX=17 "3
E E

+0(8a?|s|72). (7.2)
Therefore, by the lower bound assumption (1.8]), we have, for u = 4,
trx < 20s] ™ — adls| % = |57 (2 - adls| ™),

so taking s = —iaé we get tr x < 0. Note, however, here trx is defined under the PT frame, so in order
to show the formation of trapped surfaces, we still need to switch back to the integrable PG frame. This is
straightforward since, by (2.4)),

a 1 1 1
try =trx+96 bVe/afb + Z\fﬁtr& — Efafbxab +f-C=trx+0(6a2|s|?),
and hence we also have tr ' < 0. According to the bound for tr\/X we obtained (see Corollary , we also

have try’ = tryx = —ﬁ(l + O((S(L% ) = —%(1 + O((f%)) < 0, using a > 1. Therefore, we obtain a
trapped surface S&,—%aé'

S

Remark 7.1. The equation (7.1)) also rules out trapped surfaces on the initial outgoing null hypersurface.

Remark 7.2. This precise upper bound of tr x, which only depends on the initial data, is in fact everything
needed to prove formation of trapped surfaces in anisotropic situations, i.e. with the inf in (1.8) replaced by
sup, in view of the argument in [16] (see also [6]]).
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