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The Kerr spacetime, discovered by Kerr in 1963 [Ke| as an example of
algebraically special metric, is an asymptotically flat solution of the vac-
uum Einstein equations representing a rotating black hole in equilibrium.
The Kerr spacetime possesses a 2-parameter isometry group such that the
two generating Killing fields commute and the integral curves of one of the
Killing fields are in a neighborhood of spatial infinity timelike curves, so
the associated subgroup corresponds to a group of time translations in this
neighborhood, while the integral curves of the other Killing field are space-
like circles, so the associated subgroup corresponds to a group of rotations
in a plane. The group orbits are then cylinders. Moreover the distribution
of planes orthogonal to the group orbits is integrable. The integral sur-
faces are then mutually isometric. We thus have a quotient manifold (Q, h)
represented by any one of these orthogonal surfaces. The metric g of the
spacetime manifold M at the group orbit corresponding to ¢ € Q is given
by:

9(q) = f(a) + h(q)

where f(q) is the metric of the group orbit. In Boyer-Lindquist coordinates
we have coordinates (t,¢) on the group orbits and (r,6) on the orthogonal
surfaces, and the two Killing fields are:
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The coordinate ¢ is an azimuthal angle, so ¢ is taken modulo 27w. The
coordinate 0 is a polar angle, so 0 < # < 7. The circles which are the
integral curves of the rotation field 9/0¢ degenerate to points at # = 0 and
0 = m, the two components of the rotation axis. The group orbits degenerate
there to lines, the integral curves of 0/0t. The metrics f and h are given
by:
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The Kerr spacetime is actually a 2-parameter family of spacetimes, the pa-
rameters being a and M. The positive parameter M is the mass of the
black hole, while its angular momentum is a vector J directed along the
axis of rotation, which we can think of as the z axis, and the parameter a
is the ratio J* /M. The spacetime represents a black hole if |a| < M. The
extreme case |a| = M being exceptional, we shall confine attention to the
subextremal range |a| < M. In the case a = 0 the spacetime reduces to the
static, spherically symmetric Schwarzschild solution known since 1916 [Sc|,
which represents a nonrotating black hole in equilibrium.
We have

A=(r—ry)(r—r_) where ry=M=+\/M?—a?
From the above expression for the metric f of the group orbits we obtain:

detf = —Asin?6

where

hence the group orbits are timelike cylinders for r > r and r < r_, spacelike
cylinders for ry > r > r_, and null cylinders for r =ry and r = r_.

The metric h of the quotient @ is singular at the two roots r+ of A. These
are only coordinate singularities of the spacetime metric g. To elliminate
them we introduce in place of ¢ and ¢ the coordinates v and &, where

v=t+ /(7‘2 +a®)A dr, =6+ /aAldr
The metric g of M is expressed in terms of the new coordinates as;
g = f + 2dvdr — 2asin® 8dédr + p*db?
where f is again the metric of the group orbits:
f = foodv® + 2fpedvdf + feed€?

with
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0/0v, 0/0¢ being the two Killing fields expressed in terms of the new coor-
dinates. The metric g expressed in the new coordinates is manifestly regular
at the roots of A. Here we shall only be concerned with the region r > ry —¢
for some small € > 0, which contains only the larger root r.

As is evident from the above form of the metric g, in view of the preceding
expression for det f, the hypersurface r = r, which corresponds to ¢t = +o0,
is an outgoing null hypersurface. This is the future event horizon H™, the
future boundary of the domain of outer communications, which is is general
defined as the causal past of future null infinity, and corresponds here to
the region where r > r1. On the group orbits which are the null cylinders
corresponding to r = ry the null generator is

ot ' “tog v ot

in the old and new coordinates respectively. This Killing field is the null
generator of H. Here, the constant:
o a

e r2 +a?
is the angular velocity of Ht. Any particle falling into H™ is seen from
spatial infinity to approach H™' asymptotically, but never to actually cross
it, acquiring in the limit ¢ — oo the angular velocity w .

On hypersurface in the closure of the domain of outer communications
where

P> —2Mr =0

fu and fy, vanish. This is the hypersurface r = r¢(6), where
M? — g2 cos? 0

It is called the stationary limit surface because the Killing field 9/0t is
timelike outside this hypersurface but null on this hypersurface, thus it is
the limit of the region where a particle world line can be an integral curve
of the stationary Killing field. The stationary limit surface lies outside H™,
thus in the interior of the domain of outer communications, everywhere
except at the poles 8 = 0, 7 where the two hypersurfaces touch. The region
between the stationary limit surface and H™ is called the ergosphere. In
this region a particle is compelled to rotate in azimuth in the same sense
as the black hole, its angular velocity becoming equal to that of the black
hole at HT. In the ergosphere a particle can have negative energy, meaning



that, with p being a particle momentum, that is a covector the evaluation of
which on any future-directed timelike vector is positive, the particle energy,
which is the quantity p(9/9dt), can take negative values. This is because the
stationary Killing field 9/0t is spacelike in the ergosphere.

At the time the Kerr solution was discovered, and during the time 1968-
1971 when I was a graduate student in physics at Princeton in the group of
John Wheeler and our professor had encouraged us to study the fascinating
properties of the Kerr solution, the colleagues in astrophysics considered all
this as pure fantasy having nothing to do with reality. But the situation
changed dramatically in the intervening years, and now black holes, in fact
rotating black holes, is a central theme in astrophysics. In recent decades
a compact object at the center of our Milky Way galaxy named Sagittarius
A*, with a mass of 4 million solar masses, was identified as a supermassive
black hole. The observations, by tracking of orbiting stars, led to the award
to Rienhard Genzel and Andrea Ghez of the 2020 Nobel Prize in physics,
shared with Roger Penrose for his theoretical contributions to general rela-
tivity. The identification of Saggitarius A* as a supermassive black hole was
confirmed in 2022 by an image produced by the Event Horizon Telescope.
Even more impressive is the supermassive black hole with a mass of 6 billion
solar masses at the center of the giant spherical galaxy M87 at the core of
the Virgo cluster of galaxies, 55 million light years from Earth. The image
of this black hole, captured in 2019, was in fact the first to be produced by
the Event Horizon Telescope. Associated with the M87 black hole are ultra-
relativistic plasma jets along each of the two components of the rotation
axis. Supermassive black holes are now thought to be the engines driving
all Active Galactic Nuclei and Quasars.

For this view to rest on a solid theoretical foundation however, it is
necessary that the dynamical stability of the stationary black hole solutions
to general small, but finite, perturbations be mathematically established.

Recently the papers [KS] by Klainerman and Szeftel and [GKS] by
Giorgi, Klainerman and Szeftel were published, which taken together solve
this stability problem in the case that the angular momentum to squared
mass ratio of the black hole is suitably small. This marks a milestone in
the mathematical development of general relativity theory. In reaching this
milestone several mathematicians have contributed over the preceding two
decades, and dramatic developments have taken place resulting in the solu-
tion of problems which seemed out of reach only a short while ago.

The papers in question were preceded in particular by the monograph
[KSa] by Klainerman and Szeftel which was the first to address a problem
in nonlinear theory in the same context albeit under a special symmetry



assumption, and by the paper [DHRT] by Dafermos, Holzegel, Rodniaski
and Taylor which constructed the solutions corresponding to a codimension
3 subset of the space of initial data.

A subfamily of the Kerr family is the Schwarzschild family of non-
rotating static black holes. However an attempt to address a simpler problem
of the nonlinear stability of the Schwarzschild family would be misguided,
because a generic finite perturbation of the initial data for Schwarzschild
will result in the black hole acquiring some spin. Unless a symmetry con-
dition is imposed, such as polarized axisymmetry as in [KSal, or else the
initial data are selected out of a codimension 3 subset chosen so that the
final black hole spin vanishes as in [DHRT], in the general nonlinear theory
only the stability of the Kerr family is a sensible problem, the only possible
simplification being a smallness restriction on the angular momentum to
squared mass ratio.

Nevertheless, a proof of nonlinear stability necessarily rests on under-
standing the decay properties of the solutions of the linearized Einstein
equations which govern infinitesimal perturbations, and the linearization
can be about the Schwarzschild family as well as about the more general
Kerr family.

The work of mathematicians was preceded by the work of physicists in
the period 1957-1989, which formulated the relevant equations to which the
linearized KEinstein equations reduce in ways which played a basic role in
the later work of mathematicians, first in the context of the linearized the-
ory and then, when suitably extended, also in the nonlinear theory. The
first work was that of Regge and Wheeler [RW] who formulated the lin-
earized about Schwarzschild equations from a metric perturbation point of
view in the form of wave-type equations, the Regge- Wheeler equations. An-
other point of view, based on the Newmann-Penrose formalism which uses
a null frame field (see [NP]) was introduced by Teukolsky [Teu] and is well
suited to the Kerr solutions because of the presence in those solutions of dis-
tinguished null frame fields, the principal null frames. Teukolsky discovered
that o and «, the extreme curvature components relative to such a principal
null frame field satisfy decoupled wave equations, the Teukolsky equations,
which separate into modes. Chandrasekhar then found a transformation, the
Chandrasekhar transformation, expounded in his book [Ch], which relates
the null frame field approach to the metric perturbation approach. trans-
forming, for each mode, the Teukolsky equations to Regge-Wheeler-type
equations.

While the work of physicists in formulating suitable equations for the per-
turbations did play a fundamental role in the subsequent work of mathemati-



cians, as far as stability results are concerned, these were derived through the
separation of variables and the analysis of the resulting modes and where es-
sentially limited to showing that there are no exponentially growing modes.
The goal was reached by Whiting [W] who showed that the solutions of the
linearized equations about any member of the Kerr family do not contain
any exponentially growing modes.

However mode stability was insufficient to demonstrate, even in the case
of the scalar wave equation on a Schwarzschild background, the decay of
solutions with compactly supported initial data. This is because of the
presence of trapped null geodesics which neither fall into the black hole nor
escape to infinity, along which solutions can concentrate for arbitrarily long
times. In the case of the Schwarzschild spacetime the trapped null geodesics
are contained in a timelike hypersurface, a timelike cylinder, in the exterior
of the black hole. In the case of the wave equation on a Kerr background,
even the boundedness of the solutions could not be established. This is
because of the presence, as we have seen above, of a region surrounding
a Kerr black hole, the ergosphere, where the Killing vectorfield generating
time translations at spatial infinity is spacelike and as a consequence par-
ticles can have negative energy. Waves of negative energy falling into the
black hole are accompanied by waves of increased positive energy escaping
to infinity, in a phenomenon called “superradiace”. Moreover, in the case
of Kerr spacetime the trapped null geodesics are not confined to a timelike
hypersurface but extend to a spacetime region in the vicinity of the black
hole. The only simplification which occurs for Kerr spacetimes correspond-
ing to small angular momentum to squared mass ratio is that in this case the
region where trapped null geodesics occur does not intersect the ergosphere.

Mathematicians began studying these problems in 2003, the first work
being that of Blue and Soffer [BSo| which established local energy decay
for the solutions of the wave equation on Schwarzschild spacetime. This
was established using a multiplier vectorfield with a coercive deformation
tensor which degenerates on the timelike cylinder containing the trapped
null geodesics. The method originates, in the case of the wave equation on
Minkowski spacetime, in the paper of Morawetz [Mo], and for this reason
estimates of this type are called Morawetz estimates. The result of [BSo] was
soon improved to a uniform local energy decay result by Blue and Sterbenz
[BSt].

A new insight was provided by Dafermos and Rodniaski in [DR1] with the
understanding of the redshift effect present in a neighborhood of the event
horizon, boundary of the black hole. This insight was employed to construct
the redshift vectorfield with the help of which they achieved control of the



solutions in the vicinity of the event horizon. Another important method,
that of P weighted estimates, was introduced by Dafermos and Rodnianski
in [DR2] and used to derive the uniform decay properties of the solutions.

In the case of the wave equation on Kerr spacetime, by reason of the
presence of the ergosphere and the associate phenomenon of superradiance,
as remarked above, even the boundedness of solutions proved difficult to
establish. This was first done by Dafermos and Rodnianski in [DR3], in the
case of small angular momentum to squared mass ratio of the black hole, us-
ing a decomposition of the wave function into a higher and lower frequency
parts, with the higher frequency part containing the frequencies displaying
the phenomenon of trapping and the lower frequency part containing the
frequencies displaying the phenomenon of superradiace, the crucial observa-
tion that in the case of small angular momentum to squared mass ratio of
the black hole the superradiant frequencies are not trapped. See also the ex-
position in [DR4]. This result was soon followed by the proof in this case of
local energy decay in [TaTo]. The derivation of a decay estimate for the wave
equation on Kerr in the full subextremal range |.J|/M? < 1 of the magnitude
|J| = |a|M of the angular momentum J to squared mass M of the black
hole was estabished by Dafermos, Rodnianski and Shlapentokh-Rothman in
[DRS], using a subtle continuity argument.

Another development in the same area was the work [AB] by Andersson
and Blue. This was inspired by the work of Carter in [Ca] who discovered
that Kerr possesses a Killing tensor K*¥ and used it to study the motion
of test particles on Kerr, the quantity K*“p,p,, where p, is the particle
momentum, being a constant of the motion. Making the quantum corre-
spondence according to which to p, there corresponds the operator 9/0z*,
they defined a 2nd order differential operator acting on the wave function,
and used it to prove decay for the wave equation on Kerr in the case of
small |J|/M?, purely in physical space, avoiding entirely frequency decom-
positions. This work laid the foundation for the wave equations estimates in
[GKS], as it is robust with respect to perturbations of the underlying metric.

All the above results concern the wave equation on Schwarzschild, or,
more generally, on Kerr spacetime. As for the actual linearized Einstein
equations, these were first addressed, in the case of the Schwarzschild back-
ground, by Dafermos, Holzegel and Rodnianski in [DHR]. There is a fun-
damental difference of this problem from the problem of wave equation on
Schwarzschild. This is the fact there are infinitesimal perturbations of the
initial data for Schwarzschild which lead to solutions of the linearized equa-
tions which do not decay in time. These are of two kinds. First, we have
the perturbations which correspond to initial data for nearby Kerr solutions,



including that to a Schwarzschild solution of slightly different mass. And
second, we have the perturbations which correspond to a different descrip-
tion of the same Schwarzschild solution, in particular the description from
the point of view of a slightly moving frame. These must be considered sep-
arately, and modded out, in order to obtain solutions which decay in time.
In the case of the second kind of perturbations this is done in [DHR] by
adding what the authors call “a pure gauge solution”.

The paper [DHR] makes use of a physical space version of of the Chan-
drasekhar transformation to prove boundedness and decay of the solutions
of the Teukolsky equations. This approach, of estimating the extreme curva-
ture components by passing from the Teukolsky equations to Regge-Wheeler
type equations to which the methods developed for the treatment of the wave
equation can be applied, is basic to all further developments in the subject.

In the case of the linearized Einstein equations about a member of the
Kerr family with |.J|/M? < 1 the papers [Ma] and [DHRa] were the first to
study the Teukolsky equations for the extreme curvature components, prov-
ing boundedness and decay. These results were superceeded by the results
of Teixeira da Costa and Y. Shlapentokh-Rothman [TdCSR1], [TdCSR2]
which estabish boundedness and decay for the Teukolsky equations on Kerr
in the full subextremal range |.J|/M? < 1. Also, subsequent to [Ma] and
[DHRa], the first linear stability results for the full system of linearized Ein-
stein equations about Kerr with |.J|/M? < 1 were established independently
by [ABBM] and [HHV].

Passing from linearized theory to the actual nonlinear theory involves
not only adapting the techniques developed in the linear framework to the
situation where the background is not fixed but is itself evolving, but, more
importantly, in handling the aspects of the nonlinear problem which are
entirely absent in linearized theory. These aspects are in connection with the
fact that a finite perturbation of the initial data results in waves escaping
to infinity and carrying off energy, linear and angular momentum. As a
consequence of energy and angular momentum being carried off, the mass
and spin of the final black hole differ from the corresponding quantities
associated to the initial black hole. As a consequence of linear momentum
being carried off, the final black hole is not at rest relative to the center of
mass frame of the initial black hole, but is moving relative to it with a certain
velocity. The corresponding momentum, called recoil momentum, is familiar
to anyone who has fired a bullet with a rifle. These back reaction effects
are entirely absent in linearized theory, being quadratic in the amplitude of
the perturbation. Capturing the mass, spin and recoil momentum of the
final black hole is crucial in applying a decay argument along the lines of



the linearized theory, because it is relative to the final background that the
waves decay.

As already mentioned above, the monograph [KSa] by Klainerman and
Szeftel was the first to address the problem of stability of black holes in
the nonlinear theory, albeit under the special symmetry condition of polar-
ized axisymmetry. Under this condition the angular momentum vanishes
throughout the evolution, thus so does the initial as well as the final black
hole spin. Nevertheless linear momentum as well as energy is carried off
to infinity by the waves, thus there is indeed non-trivial recoil momentum,
except for the fact that it is aligned with the axis of symmetry.

To capture the final background Klainerman and Szeftel introduced, first
in the polarized axisymmetric context of the monograph [KSa] and then in
the general context of perturbations of an initial Kerr black hole with small
angular momentum to squared mass ratio in [KS1] and [KS2], a new geomet-
ric concept which they call generally covariant modulated or GCM surfaces.
It is by means of these surfaces, which come with a distinguished pair of
null vectorfields defined along them, that they succeed in capturing the final
background in the papers [KS] and [GKS]. The geometric construction is
“teleological” in so far as it starts from the essential part ¥, of a spacelike
hypersurface at late times (see in this connection [Sh]), in the framework
of a bootstrap argument, and proceeds toward the past to a neighborhood
of the hypersurface where the initial data are given. We postpone further
discussion of the ideas introduced in the papers [KS] and [GKS] until after
we have described the content of the paper [DHRT] which preceded them.

As already mentioned above, the paper [DHRT] involves the selection of
the initial data of a codimension 3 subset chosen so that the final black hole
spin vanishes, thus the final background is that of a Schwarzschild solution.
This allows the authors to make use of the framework and method of [DHR].
As we mentioned above in our discussion of the paper [DHR], there are two
kinds of infinitesimal perturbations of the initial data for Schwarzschild,
which lead to solutions of the linearized equations which do not decay in time,
namely the perturbations which correspond to initial data for nearby Kerr
solutions, and the perturbations which correspond to a different description
of the same Schwarzschild solution, in particular the description from the
point of view of a slightly moving frame, and that in [DHR] a pure gauge
solution is added to mod out the second kind of perturbations.

What is meant in [DHRT] by gauge is a double null coordinate system
based on a pair of optical functions (u,v), the level sets of u and v being
outgoing and incoming null hypersurfaces respectively. Two teleologically
defined such gauges are employed in [DHRT], one of which is designed to



capture a neighborhood of the future event horizon, boundary of the black
hole, and the other is designed to give a precise description of future null
infinity. In the bootstrap argument involved in the nonlinear setting of
[DHRT] there is a final outgoing null hypersurface, taken as far as we wish
toward the future in the course of the argument, which anchores the two
gauges by being a level set of both of the associated u optical functions.
The relation of the two teleologigally defined gauges to the initial data is
described in terms of the relation of each to two auxiliary gauges associated
to the initial data.

The drawback of this approach from the physical point of view is that
the recoil momentum, an intrinsically nonlinear effect, is not manifest, be-
ing hidden in the transformation between the teleological gauges and the
auxiliary gauges and swamped by the linear effect due to the second kind
of perturbation mentioned above, which is dominant for small amplitude
perturbations.

We finally come to the papers [KS] and [GKS]. As already mentioned, the
main new concept here on which the whole geometric construction depends
is that of a GCM surface. In particular this allows a derivation of the recoil
momentum : see Remark 8.31 of [KS] and page 2889 of [GKS].

Another notion which plays an important role, in particular in [GKS],
is that of non-integrable horizontal structures. This notion, first introduced
in the paper [GKSa|, and the related notion of principal geodesic structures
introduced in [KS], is natural to perturbations of Kerr because Kerr space-
time itself possesses distinguished pairs of null vectors, the principal null
vectors, which span timelike planes, such that the orthogonal distribution
of spacelike planes is not integrable. With the aid of this notion generalized
Regge-Wheeler equations are derived to which the methods used to treat
the wave equation on Kerr can be applied. In this connection a central role
is played in [GKS] by the extension of the Andersson-Blue method of [AB]
to these generalized Regge-Wheeler equations, as this gives Morawetz-type
integrated energy decay estimates from which the required actual decay es-
timates are derived without recourse to frequency decompositions, provided
that |.J|/M? is suitably small.

A simple statement of the Kerr stability theorem proved in [KS]| and
[GKS] is the following:

Theorem: The maximal future development of a general, asymptotically
flat, initial data set, suitably close to a Kerr initial data set of mass My
and angular momentum Jy and sufficiently small ratio |Jo|/ME, possesses
a complete future null infinity and converges in its causal past to another
nearby Kerr spacetime Kerr of mass Moo and angular momentum Joo close
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to Mg and Jy respectively. The future event horizon is then the boundary of
the causal past of future null infinity in the maximal future development.
Although this result marks a true milestone, it cannot be the end of the
line for the black hole stability problem, because of the smallness restric-
tion on the ratio |J|/M?2. The general case of the full subextremal range
|J|/M? < 1 remains open. In this regard, the papers [TdCSR1], [TdCSR2]
and [Mi] suggest that the general case may not remain open for too long.
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