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This is a complement to the note published on Sergiu Klainerman’s web page1 regarding
the ongoing conflict with the authors of [DHRT]. Many of those who have read our
note [K-S:remarks] are under the impression that the issue is merely one of priority. The
present note is meant to clarify that, beyond the issue of priority, our main complaint is
the use by the authors of [DHRT] of crucial ideas in our earlier works [K-S18] [GCM1]
[GCM2] without appropriate references. Despite of our repeated requests, more than 30
months after the appearance of [DHRT] on arXiv, no corrections have been made.

1 Important past contributions recognized in our work

As we have acknowledged in our papers and repeated many time in lectures, our work
builds on ideas developed in the last 6-7 decades by a large number of physicists and
mathematicians. Here is a short list of the main papers which have been directly influential
in our work:

1. The derivation of the Teukolsky equations, in [Teuk], based on the Newmann-
Penrose null frame formalism [NP].

2. The proof of the nonlinear stability of the Minkowski space- Christodoulou- Klain-
erman [CK93].

3. Chandrasekhar transformation, see [Chan], which, in the case of the linearized Ein-
stein equations near Schwarzschild, connects the Teukolsky equation to the Regge-
Wheeler one.

1See https://web.math.princeton.edu/ seri/homepage/.
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4. Morawetz estimates for the scalar wave equation in a fixed Schwarzschild back-
ground; works of Blue-Soffer [B-S1], Blue-Sterbenz [B-St], Marzuola-Metcalfe-Tataru-
Tohaneanu [Ma-Me-Ta-To].

5. Morawetz estimates for the scalar wave equation for slowly rotating Kerr; work of
Anderson- Blue [A-B], Tataru-Tohaneanu [Ta-Toh].

6. The red shift, rp-weighted and decay of energy- flux estimates; works of Dafermos-
Rodnianski, [Da-Ro1] and [Da-Ro2].

7. Morawetz estimates for the Teukolsky equations for Schwarzschild (based on the
Chandrasekhar transformation); work of Dafermos-Holzegel-Rodnianski [D-H-R].

8. Morawetz estimates for the Teukolsky equations for slowly rotating Kerr; work of
S. Ma [Ma] and [D-H-R-Kerr].

2 Main new ideas in our work

Here is a list of the main new ideas introduced in our works, see more details in section
4 of [K-S:brief]:

I. Idea of constructing and making use of GCM spheres S∗ and spacelike hypersurfaces
Σ∗ as a way to initialize the outgoing geodesic foliation of our GCM admissible
spacetimes. The idea, which requires the construction of co-dimension 2 spheres
not directly related to the initial data, lies at the heart of our entire approach. It
was already present in [K-S18] in the simpler polarized case, extended to the general
case of perturbations of Kerr in [GCM1], [GCM2] and [Shen] and then used in the
proof of the nonlinear stability of slowly rotating Kerr, see [K-S:Kerr].

II. Definition of the angular momentum based on the GCM “last sphere” S∗, see
[GCM2] and [K-S:Kerr].

III. Extension of the geometric framework based on S-foliations, first used in the nonlin-
ear stability of the Minkowski space [CK93], to deal with non-integrable horizontal
structures typical to Kerr, see [GKS1] and [GKS-2022].

IV. In [K-S18] the GCM admissible spacetime M was divided into an exterior region
(ext)M, foliated by an outgoing geodesic foliation which initiates at the GCM bound-
ary Σ∗ and terminating at a timelike boundary T , and an interior region (int)M
foliated by an incoming geodesic foliation which initiates at T . This was necessary
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in view of the fact that the outgoing foliation of (ext)M is uncontrollable near the
event horizon. In [K-S:Kerr] we need to introduce an additional region (top)M, such
that M = (int)M∪ (top)M∪ (ext)M is causal.

V. Robust Morawetz estimates for generalized Regge-Wheeler (gRW) equations in per-
turbations of slowly rotating Kerr, see [GKS-2022], based on an appropriate geo-
metric construction of an approximate second order symmetry operator2. The idea
was first used in [A-B] to derive a Morawetz estimate for the scalar wave equation
in a fixed slowly rotating Kerr background.

3 Ideas in our work used in [DHRT] without attri-

bution

Below are comments3 on how our ideas, in I, II and IV are used without any attribution
in [DHRT].

Issue concerning I. The introduction of [DHRT] contains no specific reference to the
GCM type construction on which the work is based until page 22 of the introduction, under
the heading “The bootstrap region and the teleological normalization of the null gauges”.
There, with minor modifications, our GCM conditions appear out of the blue on a last
sphere denoted S(uf , v∞), the precise analogue the GCM last sphere S∗ in [K-S18]. There
is however no reference to where the idea originates from. There is indeed no mention
whatsoever (!) to the GCM constructions developed in [K-S18], [GCM1], [GCM2]. The
two GCM papers, which extend the construction of GCM spheres to the full setting of
general perturbations of Kerr, are in fact not mentioned at all in the bibliography! See
section 2, item 1b in [K-S:remarks] for more details about this.

There can be no possible excuse for this omission. Both of us have been given plenty
of lectures on our work on the stability of Schwarzschild, many of them in Princeton4

in which we have expressly emphasized the importance of GCM spheres. The authors
of [DHRT] were also well aware of our two GCM papers. We have strong reasons to
believe that they were in fact instrumental in having our papers rejected from JAMS
and Acta where we have first submitted them, more than 18 months before the release

2Which commutes with the scalar wave operator in Kerr. The existence of such operators was first
discovered by Carter.

3Only I, II and IV are relevant to the case of [K-S18] and [DHRT].
4Starting with my November 2017 Weyl lectures, attended by both Dafermos and Rodnianski. I also

gave a lecture at at the inaugural meeting (6–8th March 2019) of the Gravity Initiative. Jeremie gave a
talk at the Princeton Analysis seminar on October 22, 2018.
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of [DHRT]. One may reasonably wonder if it is possible that they had arrived at the
same concept independently, before the release of our Schwarzschild paper [K-S18]. The
following incidents show that in fact the authors of [DHRT] were not originally aware, at
least by early 2019, of the GCM approach which they make full use of in their paper.

Klainerman: In my graduate course of the Spring semester 2019, I gave a full presen-
tation of the proof of the nonlinear stability of Schwarzschild following the second arXiv
version of Dec. 2018 of [K-S18]. Martin Taylor, the fourth author of [DHRT], attended
the first 2-3 lectures in Feb.2019 when I explicitly emphasized and explained our GCM
approach. At some point, knowing that Martin was already giving talks5 on the not yet
released [DHRT], three years before the paper appeared!, I asked him how he and his co-
authors solve the same issue, that is how they fix the gauge at null infinity. The answer
given by Martin was that “ we proceed as in the proof of the stability of the Minkowski
space” [CK93]. Yet in the proof of the stability of the Minkowski space one constructs, on
a given spacelike hypersurface6 Σ∗, a specific co-dimension 1 foliation initialized at space-
like infinity, in reference to a fixed, given, foliation on the initial data hypersurface7. By
contrast in [DHRT], as in [K-S18], the authors start from the far away co-dimension 2
GCM sphere, the last sphere mentioned above, with no direct reference to the initial data.

Later that Spring Taylor gave a very well attended one hour lecture at the Gravity Initiative
inaugural meeting (6–8th March 2019) at the end of which I asked him the same question.
This time Igor Rodnianski intervened and gave the same answer, “as in the proof of the
stability of the Minkowski space”.

These incidents provide conclusive evidence that in 2019 (more than two years before
[DHRT] appeared on arXiv on April 2021) the authors were not yet aware of the GCM
constructions, introduced in our works, on which their paper relies.

Issue concerning II. This regards the crucial definition of the angular momentum, which
was discussed in detail in section 2, item 1d of [K-S:remarks]. The main point is that the
[DHRT] authors make the same definition of the angular momentum as in [GCM2] without
any reference to that paper. In addition we point out the following highly misleading
reference to [K-S18], made at the top of page 3 of the [DHRT] introduction:

“ Whereas, as remarked above, the full codimension-3 submanifold of moduli space yield-

5Such as the Oberwolfach meeting on Mathematical General Relativity August 5-11, 2018, October
1, 2018 at the Gravity Initiative lunch at Princeton and November 20, 2018 at the University of Kentucky.

6Σ∗ is the last slice of the maximal time foliation used in the proof.
7The more appropriate comparison is with [KN03] where the choice of the foliation is on a fixed

incoming null hypersurface initiated on the initial slice. The reference to [CK93] is however reasonable
since the main ideas are comparable. As we show in [K-S:remarks], the linear paper [D-H-R] relies on
the same type of (linearized version) co-dimension 1 foliations initialized on the initial hypersurface.
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ing asymptotic stability (iii) of Schwarzschild, in the absence of symmetry, can only be
characterized teleologically, in contrast, in the restrictive setting of symmetry, one can
easily identify criteria on initial data which guarantee that their only possible end-state
within the Kerr family would be Schwarzschild.”

It is correct that our polarized assumption is made on the initial data yet, what the
authors call their “ teleological” construction, is based on nothing else than a GCM
sphere S∗ (S(uf , v∞) in their version)! It is true that our polarized assumption implies
that the angular momentum is fixed a-priori to be zero on S∗, while in the case of [DHRT]
it requires an additional modulation argument to force it to vanish, but the fact remains
that the “teleological” GCM spheres appeared already in [K-S18] and were defined in full
generality in [K-S:Kerr]. The additional finite modulation argument, of which the authors
of [DHRT] are so proud, is in fact rather straightforward8 once the infinite dimensional
modulation argument, implicit in the choice of the last sphere S∗, is implemented.

Issue concerning IV. In the linear paper [D-H-R] the authors work with a global,
double null foliation which covers the entire future of the Schwarzschild horizon and,
as we pointed out in [K-S:remarks], is initiated on the horizon. Prior to the release of
the [DHRT] paper in April 2021, in all their talks on the subject the authors seem to
suggest that they planned to work with a family of finite spacetimes, each foliated by
a double null foliation, which converge to a spacetime defined to the future of the final
event horizon, thus foliated by a unique double null foliation as in the case of the Israel-
Pretorius double null foliation of the Kerr exterior. In other words they were originally
intending to follow an approach consistent to what was done in the linear paper [D-H-R],
where the double null foliation was initiated at the horizon. It is pretty clear that such a
procedure cannot work and in fact in [DHRT] the authors adopt a procedure very similar
to ours (in [K-S18]), based on two foliations one outgoing (initialized at “null infinity”).
and one incoming (initialized on a timelike hypersurface T using the induced data of the
outgoing foliation). No reference to this important fact is made in their paper.

8The authors of [DHRT] do themselves provide evidence in this regard. Thus, towards the mid-
dle of page 7 in their introduction: “ Indeed, given that the fundamental double null gauges al-
ready have to be constructed teleologically (in fact, already in linear theory; see Section II), it turns
out that the additional problem of constructing Mstable does not in practice present a major con-
ceptual difficulty (although it gives rise to a number of interesting technical issues; see Section V)”.
Similarly, in his 10/10/2021 Joint Online Mathematical Relativity Colloquium (JoMaReC) talk ( “
https://educast.fccn.pt/vod/clips/1jvqoxsa0t/streaming.html?locale=en ” -from 37’40 to 39’20- it is
clearly stated that “after having done infinite dimensional modulation, doing three extra parameters
is “ not such a big problem”.
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