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CHAPTER 1

Special Relativity

1. Minkowski Space

The n+1 dimensional Minkowski space, which we denote by Rn+1, consists of the
manifold Rn+1 together with a Lorentz metric m and a distinguished system of
coordinates xα, α = 0, 1, . . . n, called inertial, relative to which the metric has
the diagonal form mαβ = diag(−1, 1, . . . , 1). We write, splitting the spacetime
coordinates xα into the time component x0 = t and space components x = xi, . . . xn,

ds2 = m′αβdx
αdxβ = −dt2 + (dx1)2 + (dx2)2 + . . .+ (dxn)2. (1)

We use standard geometric conventions of lowering and raising indices relative to m,
and its inverse m−1 = m, as well as the usual summation convention over repeated
indices. The coordinate vectorfields ∂

∂xα are denoted by ∂α. The dual 1 forms
are dxα. An arbitrary vectorfield can be expressed as a linear combination of the
coordinate vectorfields X = Xα∂α with smooth functions Xα = Xα(x0, . . . , xn).
An arbitrary 1-form is a linear combination of the coordinate 1-forms A = Aµdx

µ.

Under a change of coordinates xα = xα(x′ µ) we obtain,

ds2 = mµνdx
′ µdx′ ν , m′µν = mαβ

∂xα

∂x′ µ
∂xα

∂x′ µ

Two inertial systems of coordinates are connected to each other by translations
xα = x′ α + xα(0), Lorentz transformations,

x′ α = Λαβx
β , mαβ = mµνΛµαΛνβ (2)

and combinations of the two x′ α = Λαβx
β + xα(0).

Exercise. Show that the Lorentz transformations B(v) = B(0i)(v) : R1+n −→
R1+n, with −1 < v < 1, (called boosts) which rotate the axes t = x0 and x = xi,
i = 1, 2, . . . n and keep all other fixed have the form,

t′ =
t− vx

(1− v2)1/2
, x′ =

x− vt
(1− v2)1/2

(3)

Relative to null coordinates u = t − x, v = t + x and u′ = t′ − x′, v′ = t′ + x′ we
have,

u′ = λ−1u, v′ = λv, λ =
(1− v)1/2

(1 + v)1/2
(4)

Show that B(v), |v| < 1 forms a one parameter group of diffeomorphisms of the
Minkowski space and find the relativistic law of addition of velocities.
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4 1. SPECIAL RELATIVITY

D the flat covariant derivative of Rn+1. Recall that covariant differentiation asso-
ciates to any two smooth vectorfields X,Y another vectorfield DXY which verifies
the following rules.

(1) Given three vectorfields X,Y, Z and scalar functions a, b we have

DaX+bY Z = aDXZ + bDY Z

DX(fY ) = X(f)Y + fDXY

(2) For any vectorfields X,Y, Z,

Xm(Y,Z) = m(DXY, Z) + m(X,DY Z)

Given an arbitrary 1-form A = Aαdx
α we have Dαωβ = ∂αωβ .

A vector X is said to be timelike, null or spacelike according to whether m(X,X)
is < 0, = 0 or > 0. Accordingly a smooth curve xα(s) is said to be timelike, null
or spacelike if its tangent vector dxα

ds is timelike, null or spacelike at every one of
its points. A causal curve can be either timelike and null at any of its points.
The canonical time orientation of Rn+1 is given by the vectorfield T0 = ∂0. A
timelike vector X is said to be future oriented if m(X,T0) < 0 and past oriented if
m(X,T0) > 0.

Similarly a hypersurface u(x0, . . . xn) = 0 is said to be spacelike, null or timelike
if its normal Nα = −mαβ∂βu is, respectively, timelike, null or spacelike. The
metric induced by m on a spacelike hypersurface is necessarily positive definite,
that is Riemannian. A function t(x0, x1, . . . , xn) is said to be a time function if its
level hypersurfaces t = t are spacelike. On a null hypersurface the induced metric
is degenerate relative to the normal direction, i.e. m(N,N) = 0. In particular
function u = u(x0, . . . xn) whose level surfaces u = u are null must verify the
Eikonal equation

mαβ∂αu∂βu = 0 (5)

Equation (5) can also be written in the form DNN = 0. We call N a null geodesic
generator of the level hypersurfaces of u.

Definition Smooth solutions u = u(x0, . . . xn) of the eikonal equation (5) are called
optical functions. Their level hypersurfaces are null.

Exercise. Show that the functions t± r, with t = x0 and r =
√

(x1)2 + · · · (xn)2

are optical functionsin Rn+1 \ {0}.

1.1. Physical Interpretation. Given a timelike curve C : xα = xα(s) we
define proper time along the curve,

τ =
∫

(−mαβ
dxα

ds

dxβ

ds
)1/2ds (6)

According to special relativity τ is the time which would elapse on a clock carried
along the curve. The tangent vector U = uα∂α to a timelike curve parametrized
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by its proper time τ is called the four velocity of the curve. Clearly,

uαu
α = m(U,U) = −1

Particles subject to no external forces travel along geodesics, i.e. its four velocity
verifies

DUU = 0. (7)

In coordinates uα∂αuβ = 0. Clearly, all geodesics in Minkowski space are straight
lines. All material particles have a rest mass m which appears as a parameter in
the equations of motion in the presence of forces. The energy momentum 4-vector
of a particle of mass m is defined to be,

P = mU (8)

or in coordinates pα = muα. By definition the energy E of the particle is defined
to be p0. In particular, in the rest fram of the particle we have,

E = m (9)

or E = mc2 if the original Minkowski metric is in fact mαβ = diag(−c2, 1, . . . , 1).

In the rest frame of a particle its four-velocity has components Uµ = (1, 0, 0, 0). In
a frame ,with respect to which the particle is moving with velocity v along the x1

axis, we find (by performing a Lorentz transformation to a frame relative to which
the particle is at rest)

pµ(γm, vγm, 0, 0), γ = 1/
√

1− v2.

For small v this gives, p0 = m+ 1
2mv

2 ( rest energy plus newtonian kinetic energy)
and p1 = mv (the newtonian momentum of the particle).

More generally, given an observer, present at the site of the particle whose 4- velocity
is V = vα∂a, we can decompose,

P = EV + P⊥, E = −m(P, V ) = −muαvα (10)

where P⊥ denotes the component of P perpendicular to V and E denotes the energy
of the particle as measured by the observer. For a particle at rest with respect to
the observer, i.e. U = V , we have again Einstein’s famous formula E = m.

We define (as four-force) the four- vector,

fµ =
d

dτ
pµ(τ) = m

d2

dτ2
xµ(τ)

Gravity, which is the simplest example of force in newtonian mechanics, is mani-
fested in relativity by the curvature of the spacetime itself. Another force which is
important in electromagnetism is the Lorentz force. If Fµν is a given electromag-
netic force one defines the four-Lorentz force acting on a particle with four velocity
U and charge q,

fµ = qUλFλ
µ (11)

The equations of motion for the particle are,

m
d2

dτ2
xµ(τ) = fµ(τ). (12)
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The causal future J+(S) of a set S consists of all points in Rn+1 which can be
connected to S by a future directed causal curve. The causal past J−(S) is defined
in the same way. Thus, for a point p = (t, x), J +(p) = {(t ≥ t0, x)/|x−x0| ≤ t−t0}.

1.2. Symmetries. Let xµ be an inertial coordinate system of Minkowski
space Rn+1. The following are all the isometries and conformal isometries (see
definition (3.3) in the Appendix) of Rn+1.

1. Translations: for any given vector a = (a0, a1, ...., an) ∈ Rn+1,

xµ → xµ + aµ

2. Lorentz rotations: Given any Λ = Λρσ ∈ O(1, n),

xµ → Λµν x
ν

3. Scalings: Given any real number λ 6= 0,

xµ → λxµ

4. Inversion: Consider the transformation xµ → I(xµ), where

I(xµ) =
xµ

(x, x)

defined for all points x ∈ Rn+1 such that (x, x) 6= 0.

The first two sets of transformations are isometries of Rn+1, the group generated
by them is called the Poincarè group. The last two type of transformations are
conformal isometries. the group generated by all the above transformations is the
conformal group. In fact the Liouville theorem, whose infinitesimal version will be
proved later on, states that it is the group of all the conformal isometries of Rn+1.

Remark. The transformations mentioned above generate 1 parameter groups of
transformations. Thus, corresponding to time translations, we associate the ad-
ditive transformation group U(α)(s) which fixes all coordinates xβ , β 6= α and
takes xα to xα + s. Corresponding to a Lorentz transformation which rotates the
t = x0, x = x1 axes we associate the 1− parameter additive group B(0i)(v) given
by (3). The scaling transformation generate a multiplicative. Finally, using the
inversion I we can generate the 1− parameter additive groups Cα = I−1 ◦ Uα ◦ I.

Any additive 1− parameter group of transformations U(s) generates a vectorfield
X according to the formula,

Xf =
d

ds
(f ◦ U(s))|s=0.

Clearly the generators of the groups of translations and lorentz transformations are
Killing while those generated by scalings and inverted translations are conformal
Killing (see definition 3.4).
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We list below the Killing and conformal Killing vector fields which generate the
above transformations.

i. The generators of translations in the xµ directions, µ = 0, 1, ..., n:

Tµ =
∂

∂xµ

ii. The generators of the Lorentz rotations in the (µ, ν) plane:

Lµν = xµ∂ν − xν∂µ

iii. The generators of the scaling transformations:

S = xµ∂µ

iv. The generators of the inverted translations 1:

Kµ = 2xµxρ
∂

∂xρ
− (xρxρ)

∂

∂xµ

Of particular importance is the vectorfield K0 = (t2+r2)∂t+2txi∂i, which is causal.

Here r2 = |x|2 = (x1)2 + · · · (xn)2.

Remark. Observe that the vectorfields T,L are all Killing while S,K are con-
formal Killing. Recall that a vectorfield X is a Killing vectorfield for a metric g
if LXg = 0 or , equivalently if its deformation tensor (X)παβ := DaXβ + DβXα

vanishes identically. The vectorfield X is called conformal Killing if (X)π is pro-
portional to the metric g.

We also list below the commutator relations between these vector fields,

[Lαβ ,Lγδ] = mαγLβδ −mβγLαδ + mβδLαγ −mαδLβγ
[Lαβ ,Tγ ] = mαγTβ −mβγTα

[Tα,Tβ ] = 0
[Tα,S] = Tα

[Tα,Kβ ] = 2(mαβS + Lαβ)
[Lαβ ,S] = [Kα,Kβ ] = 0
[Lαβ ,Kγ ] = mαγKβ −mβγKα

(13)

Denoting P(1, n) the Lie algebra generated by the vector fields Tα,Lβγ and K(1, n)
the Lie algebra generated by all the vector fields Tα,Lβγ ,S,Kδ we state the fol-
lowing version of the Liouville theorem,

Theorem 1.3. The following statements hold true.

1) P(1, n) is the Lie algebra of all Killing vector fields in Rn+1.

2) If n > 1, K(1, n) is the Lie algebra of all conformal Killing vector fields in Rn+1.

1Observe that the vector fields Kµ can be obtained applying I∗ to the vector fields Tµ.
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3) If n = 1, the set of all conformal Killing vector fields in R1+1 is given by the
following expression

f(x0 + x1)(∂0 + ∂1) + g(x0 − x1)(∂0 − ∂1)

where f, g are arbitrary smooth functions of one variable.

Proof: The proof for part 1 of the theorem follows immediately, as a particular
case, from Proposition (3.7). From (111) as R = 0 and X is Killing we have

DµDνXλ = 0 .

Therefore, there exist constants aµν , bµ such that Xµ = aµνx
ν + bµ. Since X is

Killing DµXν = −DνXµ which implies aµν = −aνµ. Consequently X can be
written as a linear combination, with real coefficients, of the vector fields Tα, Lβγ .

Let now X be a conformal Killing vector field. There exists a function Ω such that

(X)πρσ = Ωmρσ (14)

Using formulas (111) and (112), in the appendix, it follows that

DµDνXλ =
1
2

(Ω,µmνλ + Ω,νmµλ − Ω,λmνµ) (15)

Taking the trace with respect to µ, ν, on both sides of (15) we infer that

�Xλ = −n− 1
2

Ωλ

DµXµ =
n+ 1

2
Ω (16)

and applying Dλ to the first equation, � to the second one and subtracting we
obtain

�Ω = 0 (17)

Applying Dµ to the first equation of (16) and using (17) we obtain

(n− 1)DµDλΩ =
n− 1

2
(DµDλΩ +DλDµΩ) = −�(DµXλ +DλXµ)

= −(�Ω)mµλ = 0 (18)

Hence for n 6= 1, DµDλΩ = 0. This implies that Ω must be a linear function of xµ.
We can therefore find a linear combination, with constant coefficients, cS + dαKα

such that the deformation tensor of X − (cS + dαKα) must be zero. This is the
case because (S)π = 2m and (Kµ)π = 4xµm. Therefore X − (cS + dαKα) is Killing
which, in view of the first part of the theorem, proves the result.

Part 3 can be easily derived by solving (14). Indeed posing X = a∂0 + b∂1, we
obtain 2D0X0 = −Ω, 2D1X1 = Ω and D0X1 + D1X0 = 0. Hence a, b verify the
system

∂a

∂x0
=

∂b

∂x1
,
∂b

∂x0
=

∂a

∂x1
.
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Hence the one form adx0 + bdx1 is exact, adx0 + bdx1 = dφ, and ∂2a
∂x02 = ∂2b

∂x12 , that
is �φ = 0. In conclusion

X =
1
2

(
∂φ

∂x0
+

∂φ

∂x1

)
(∂0 + ∂1) +

1
2

(
∂φ

∂x0
− ∂φ

∂x1

)
(∂0 − ∂1)

which proves the result.

1.4. Null frames. A pair of null vectorfields L,L form a null pair if m(L,L) =
−2. A null pair en = L, en+1 = L together with vectorfields e1, . . . en−1 such that
m(L, ea) = m(L, ea) = 0 and m(ea, eb) = δab, for all a, b = 1, . . . , n− 1, is called a
null frame. The null pair,

L = ∂t + ∂r, L = ∂t − ∂r, (19)

with r = |x| and ∂r = xi/r∂i, is called canonical. Simmilarly a null frame
e1, . . . en+1 with en = L, en+1 = L is called a canonical null frame. In that case
e1, . . . , en−1 form, at any point, an orthonormal basis for the the sphere St,r, of con-
stant t and r, passing through that point. Observe also that L is the null geodesic
generator associated to u = t− r while L the null geodesic of u = t+ r.

Remark. Expresse relative to the canonical null pair,

T0 = 2−1(L+ L), S = 2−1(uL+ uL), K0 = 2−1(u2 L+ u2 L).
(20)

Both T0 = ∂t and K0 = (t2+|x|2)∂t+2txi∂i are causal. This makes them important
in deriving energy estimates. Observe that S is causal only in J +(0) ∪ J−(0).

1.5. Conformal Compactifcation. In polar coordinates x1 = r cos θ1, x2 =
rsinθ1 cos θ2, . . . , xn = rsinθ1 sin θ2 · · · sin θn−1, the Minkowski metric takes the
form,

−dt2 + dr2 + r2dω2
n−1, r > 0

where,

dω2
n−1 = (dθ1)2 + sin2 θ1(dθ2)2 + · · ·+ sin2 θ1 · · · sin2 θn−2(dθn−1)2

is the metric of the standard n − 1 dimensional sphere Sn−1. We introduced the
advanced and retarded coordinates u = t− r, u = t+ r and rewrite m in the form,

−dudu+
1
4

(u− u)2dω2
n−1, −∞ < u < u <∞

We now make the change of variables,

u = tanU, u = tanU, −π
2
< U < U <

π

2
and rewrite the Minkowski metric in the form,

1
cos2U cos2 U

(
− dUdU +

1
4

sin2(U − U)dω2
n−1

)
or, introducing the new metric m̃,

−4dUdU + sin2(U − U)dω2
n−1 (21)
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we derive,

m̃ = Ω2m,

with,

Ω = cosU cosU =
1

(1 + u2)1/2(1 + u2)1/2
(22)

Finally introducing the new variables,

T = U + U, R = U − U
the new metric m̃ takes the form,

−dT 2 + dR2 + sin2Rdω2
n−1

Observe that dR2 + sin2Rdω2
n−1 is precisely the metric dω2

n of the standard sphere
Sn. Thus the metric m̃ is precisely the standard Lorentz metric,

−dT 2 + dw2
n (23)

of the cylinder En+1 = R×Sn. The space-time thus obtained is called the Einstein
cylinder. Consider the map P : R1+n → E1+n defined by,

(t, r, ω)→ (T,R, ω), ω ∈ Sn−1 (24)

where,

T = tan−1(t+ r) + tan−1(t− r)
R = tan−1(t+ r)− tan−1(t− r)

or,

U = tan−1 u, U = tan−1 u

with tan−1 : R→ (−π/2, π/2). We have established the following:

Proposition 1.6. The map P establishes a conformal isometry between the minkowski
space Rn+1 with metric m and the Einstein cylinder En+1 with metric2 m̃,

P ∗(m̃) = Ω2m. (25)

with conformal factor Ω given by formula (22). The image P (Rn+1) is the bounded
region of En+1 characterized by the conditions,

−π < T ±R < π, 0 ≤ R < π

Definition. The boundary of P (Rn+1) in En+1 is given by,

∂P (Rn+1) = S+ ∪ S− ∪ i0 ∪ i+ ∪ i−

Here

S+ = {T +R = π, 0 < R < π} = {U =
π

2
, −π

2
< U <

π

2
}

S− = {T −R = −π, 0 < R < π} = {U = −π
2
, −π

2
< U <

π

2
}

are called the future and past null infinities of Minkowski space. The point

i0 = {T = 0, R = π} = {U = −π
2
, U =

π

2
}

2Recall that, given Φ : M→M′ with T a covariant 2-tensor on M′ one defines the pull back
tensor Φ∗T on M by Φ∗T (X,Y ) = T (Φ∗X,Φ∗Y ).
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is called the space-like infinity while the points,

i+ = = {T = π,R = 0} = {U = U =
π

2
}

i− = {T = −π,R = 0} = {U = U = −π
2
}

are called the time-like future and past infinities of the image P (Rn+1 of Minkowski
space in the Einstein cylinder. Note that all time-like geodesics of Minkowski space
begin at i− and end at i+, all space-like geodesics begin and end at i0 and all null
geodesics start on S− and end on S+.

Remark 1. Observe that a conformal isometry maps null hypersurfaces int null
hypersurfaces. Thus, since u = t− r and u = t = r are optical functions for Rn+1

there is no surprise that U = T−R
2 , U = T+R

2 are null for En+1. In particular we
see that the future and past null infinity boundaries S± are indeed null.

Remark 2. Observe that Ω > 0 and vanishes at the boundary ∂P (Rn+1 in En+1.
Also (∂UΩ, ∂V Ω) 6= 0 on S+ ∪S−. In other words the differential dΩ of Ω, in E1+n

is non-vanishing along the null boundaries of P (Rn+1). On the other hand dΩ
vanishes at i0. One can show only that the hessian D̃2Ω is non-degenerate, where
D̃ denotes the covariant derivative operator on En+1. In fact,

D̃αD̃βΩ = 2m̃αβ

Using these facts on can prove that the null boundary ∂P (Rn+1 is of class C2 at i0

and C∞, in fact real analytic, everywhere else.

Remark 3. Observe that the vectorfield ∂T in En+1 is a Killing vectorfield for the
metric m̃. It is in fact the image through P of the vectorfield K0, i.e. P∗(K0) = ∂T .

Exercise. Verify all statements made in Remarks 2, 3.

2. Classical Field Theory

2.1. Basic Notions. In this section we will discuss some basic examples of
nonlinear wave equations which arise variationally from a relativistic Lagrangian.
The fundamental objects of a relativistic field theory are

• Space-time (M,g) which consists of an n + 1 dimensional manifold M
and a Lorentz metric g; i.e . a nondegenerate quadratic form with signa-
ture (−1, 1, . . . , 1) defined on the tangent space at each point of M. We
denote the coordinates of a point in M by xα, α = 0, 1, . . . , n.

Throughout most of this chapter the space-time will in fact be the
simplest possible example - namely, the Minkowski space-time in which
the manifold is Rn+1 and the metric is given by

ds2 = mαβdx
αdxβ = −dt2 +

(
dx1
)2

+ · · ·+ (dxn)2 (26)



12 1. SPECIAL RELATIVITY

with t = x0,mαβ = diag(−1, 1, . . . , 1). Recall that any system of coordi-
nates for which the metric has the form (26) is called inertial. Any two
inertial coordinate systems are related by Lorentz transformations.

• Collection of fields ψ = ψ(1), ψ(2), . . . , ψ(p) which can be scalars, ten-
sors, or some other geometric objects3 such as spinors, defined on M.

• Lagrangian density L which is a scalar function on M depending only
on the tensorfields ψ and the metric4 g.

We then define the corresponding action S to be the integral,

S = S[ψ,g : U ] =
∫
U
L[ψ]dvg

where U is any relatively compact set of M. Here dvg denotes the volume element
generated by the metric g. More precisely, relative to a local system of coordinates
xα, we have

dvg =
√
−gdx0dx1 · · · dxn =

√
−gdx

with g the determinant of the matrix (gαβ).

By a compact variation of a field ψ we mean a smooth one-parameter family of
fields ψ(s) defined for s ∈ (−ε, ε) such that,

(1) At s = 0, ψ(0) = ψ.
(2) At all points p ∈M \ U we have ψ(s) = ψ.

Given such a variation we denote δψ := ψ̇ := dψ(s)

ds

∣∣∣
s=0

. Thus, for small s,

ψ(s) = ψ + sψ̇ +O(s2)

A field ψ is said to be stationary with respect to S if, for any compact variation
(ψ(s),U) of ψ, we have

d

ds
S(s)

∣∣∣
s=0

= 0

where,
S(s) = S[ψ(s),g;U ]

We write this in short hand notation as
δS
δψ

= 0

Action Principle, also called the Variational Principle, states that an acceptable
solution of a physical system must be stationary with respect to a given Lagrangian
density called the Lagrangian of the system. The action principle allows us to derive
partial differential equations for the fields ψ called the Euler-Lagrange equations.
Here are some simple examples:

1. Scalar Field Equations.

3For simplicity we restrict ourselves to covariant tensors.
4as well as its inverse g−1
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One starts with the Lagrangian density L[φ] = − 1
2gµν∂µφ∂νφ− V (φ) where φ is a

complex scalar function defined on (M,g) and V (φ) a given real function of φ.

Given a compact variation (φ(s),U) of φ, we set S(s) = S[φ(s),g;U ]. Integration
by parts gives,

d

ds
S(s)

∣∣∣
s=0

=
∫
U

[−gµν∂µφ̇∂νφ− V ′(φ)φ̇]
√
−gdx

=
∫
U
φ̇[�gφ− V ′(φ)]dvg]

where �g is the D’Alembertian,

�gφ =
1√
−g

∂µ

(
gµν
√
−g ∂νφ

)
.

In view of the action principle and the arbitrariness of φ̇ we infer that φ must satisfy
the following Euler-Lagrange equation

�gφ− V ′(φ) = 0, (27)

Equation (27) is called the scalar wave equation with potential V (φ).

2. Wave Maps.

The wave map equations will be defined in the context of a space-time (M,g), a
Riemannian manifold N with metric h, and a mapping

φ : M −→ N.

We recall that if X is a vectorfield on M then φ∗X is the vectorfield on N defined
by φ∗X(f) = X(f ◦φ). If ω is a 1-form on N its pull-back φ∗ω is the 1-form on M
defined by φ∗ω(X) = ω(φ∗X), where X is an arbitrary vectorfield on M. Similarly
the pull-back of the metric h is the symmetric 2-covariant tensor on M defined by
the formula (φ∗h)(X,Y ) = h(φ∗X,φ∗Y ). In local coordinates xα on M and ya on
N , if φa denotes the components of φ relative to ya, we have,

(φ∗h)αβ(p) =
∂φa

∂xα
∂φb

∂xβ
hab(φ(p)) = 〈 ∂φ

∂xα
,
∂φ

∂xβ
〉

where < ·, · > denotes the Riemannian scalar product on N .

Consider the following Lagrangian density involving the map φ,

L = −1
2

Trg(φ∗h)

where Trg(φ∗h) denotes the trace relative to g of φ∗h. In local coordinates,

L[φ] = −1
2
gµνhab(φ)

∂φa

∂xµ
∂φb

∂xν
.
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By definition wave maps are the stationary points of the corresponding action.
Thus by a a straightforward calculation,

0 =
d

ds
S(s)

∣∣∣
s=0

= I1 + I2 (28)

I1 = −1
2

∫
U

gµν
∂hab(φ)
∂φc

φ̇c ∂µφ
a∂νφ

b√−gdx

I2 = −
∫
U

gµνhab(φ)∂µφ̇a∂νφb
√
−gdx

After integrating by parts, relabelling and using the symmetry in b, c, we can rewrite
I2 in the form,

I2 =
∫
U
φ̇a
(
hab(φ)�gφ

b + gµν
∂hab
∂φc

∂µφ
c∂νφ

b

)
dvg (29)

=
∫
U
φ̇a
(
hab(φ)�gφ

b +
1
2
gµν

(
∂hab
∂φc

+
∂hac
∂φb

)
∂µφ

b∂νφ
c

)
dvg

Also, relabelling indices

I1 = −1
2

∫
U

gµν
∂hbc
∂φa

φ̇a ∂µφ
b∂νφ

c dvg.

Therefore,

0 = I1 + I2

=
∫
U
φ̇a
(
hab�gφ

b + ∂µφ
b∂νφ

cgµν
1
2

(
∂hab
∂φc

+
∂hac
∂φb

− ∂hbc
∂φa

))
dvg

=
∫
U
φ̇a
(
had�gφ

d + ∂µφ
b∂νφ

cgµν
1
2
hdshad ·

(
∂hsb
∂φc

+
∂hsc
∂φb

− ∂hbc
∂φs

))
dvg

=
∫
U
φ̇ahad

(
�gφ

d + ∂µφ
b∂νφ

cgµνΓdbc
)
dvg

where Γdbc = 1
2h

ds
(
∂hsb
∂φc + ∂hsc

∂φb
− ∂hbc

∂φs

)
are the Christoffel symbols corresponding

to the Riemannian metric h. The arbitrariness of φ̇ yields the following equation
for wave maps,

�gφ
a + Γabc gµν∂µφb∂νφc = 0 (30)

Example: Let N be a two dimensional Riemannian manifold endowed with a

metric h of the form,
ds2 = dr2 + f(r)2dθ2

Let φ be a wave map from M to N with components φ1, φ2, relative to the r, θ
coordinates. Then, Γ1

11 = Γ2
11 = Γ1

12 = Γ2
22 = 0 and Γ1

22 = −f ′(r)f(r), Γ2
12 = f ′(r)

f(r) .
Therefore,

�gφ
1 = f ′(r)f(r)gµν∂µφ2∂νφ

2

�gφ
2 = −f

′(r)
f(r)

gµν∂µφ1∂νφ
2

3. Maxwell equations.



2. CLASSICAL FIELD THEORY 15

An electromagnetic field F is an exact two form on a four dimensional manifold
M. That is, F is an antisymmetric tensor of rank two such that

F = dA (31)

where A is a one-form on M called a gauge potential or connection 1-form. Note
that A is not uniquely defined - indeed if χ is an arbitrary scalar function then the
transformation

A −→ Ã = A+ dχ (32)

yields another gauge potential Ã for F . This degree of arbitrariness is called gauge
freedom, and the transformations (32) are called gauge transformations.

The Lagrangian density for electromagnetic fields is

L[F ] = −1
4
FµνF

µν .

Any compact variation (F(s),U) of F can be written in terms of a compact variation
(A(s),U) of a gauge potential A, so that F(s) = dA(s). Write

Ḟ =
d

ds
F(s)

∣∣∣
s=0

, Ȧ =
d

ds
A(s)

∣∣∣
s=0

so that relative to a coordinate system xα we have Fµν = ∂µAν−∂νAµ and therefore
Ḟµν = ∂µȦν − ∂νȦµ. The action principle gives

0 =
d

ds
S(s)

∣∣∣
s=0

= −1
2

∫
M

ḞµνF
µνdvg

= −1
2

∫
U

(∂µȦν − ∂νȦµ)Fµνdvg

= −
∫
U
∂µȦνF

µνdvg =
∫
U
Ȧν

(
1√
−g

∂ν
(√
−gFµν

))
dvg

Note that the second factor in the integrand is just DµF
µν where D is the covariant

derivative on M corresponding to g. Hence the Euler-Lagrange equations take the
form

DνF
µν = 0. (33)

Together, (31) and (33) constitute the Maxwell equations.

Exercise. Given a vector field Xα on M, show

DαX
α =

1√
−g

∂α
(√
−gXα

)
We can write the Maxwell equations in a more symmetric form by using the Hodge
dual of F ,

?Fµν =
1
2
∈µναβ Fαβ

and by noticing that (33) is equivalent to d ?F = 0. The Maxwell equations then
take the form

dF = 0, d ?F = 0 (34)
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or, equivalently,

DνF
µν = 0, Dν

?Fµν = 0 (35)

Note that since Lorentz transformations commute with both the Hodge dual and
exterior differentiation, the Lorentz invariance of the Maxwell equations is explicit
in (34). Note also the very interesting duality symmetry of the equation,

F → ?F, ?F → −F (36)

Definition. Given X an arbitrary vector field, we can define the contractions

Eα = (iXF )α = XµFαµ

Hα = (iX ?F )α = Xµ ?Fαµ

called, respectively, the electric and magnetic components5 of F . Note that both
these one-forms are perpendicular to X.

We specialize to the case when M is the Minkowski space R1+3 and X = d
dx0 =

d
dt . As remarked, E,H are perpendicular to d

dt , so E0 = H0 = 0. The spatial
components are by definition

Ei = F0i, Hi = ?F0i =
1
2
∈0ijk F

jk =
1
2
∈ijk F jk

We now use (34) to derive equations for E and H from above, which imply

Dν
?Fµν = 0 (37)

and (33), respectively. Setting µ = 0 in both equations of (35) we derive,

∂iEi = 0, ∂iHi = 0

Setting µ = i and observing that Fij =∈ijk Hk, ?Fij = − ∈ijk Ek we write

0 = −∂0Ei + ∂jFij = ∂0Ei+ ∈ijk ∂jHk = ∂tEi + (∇×H)i
0 = ∂tHi− ∈ijk ∂jEk = ∂tHi − (∇× E)i

Therefore,

∂tE +∇×H = 0, ∂tH −∇× E = 0 (38)
divE = 0, div H = 0 (39)

These are the classical Maxwell in vacuum (i.e. in the absence of sources). Alongside
(38) and (39) we can assign data at time t = 0,

Ei(0, x) = E
(0)
i , Hi(0, x) = H

(0)
i

Exercise. Show that the equations (39) are preserved by the time evolution of
the system (38. In other words if E(0), H(0) satisfy (39) then they are satisfied by
E,H for all times t ∈ R.

5In physics books the electric field Ei = −F0i and the magnetic field is dented by B. Thus
the Maxwell equations look somewhat different from ours.
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The Maxwell equations with sources have the form,
∂tE +∇×H = ji

∇ · E = ρ

∂tH −∇× E = 0
∇ ·H = 0

(40)

or, in space-time notation, with J0 = ρ and J i = ji,

DνFµν = Jµ (41)

Observe that the 4-current J verifies the continuity equation,

DµJ
µ = 0. (42)

Note that the symmetry (36) is broken by the presence of charges.

5. The Einstein Field Equations:

We now consider the action,

S =
∫
U
Ldvg.

Here U is a relatively compact domain of (M,g) and L, the Lagrangian, is assumed
to be a scalar function on M whose dependence on the metric should involve no
more than two derivatives6. It is also assumed to depend on the matterfields ψ =
ψ(1), ψ(2), . . . ψ(p) present in our space-time.

In fact we write,
S = SG + SM

with,

SG =
∫
U
LGdvg

SM =
∫
U
LMdvg

denoting, respectively, the actions for the gravitational field and matter. The mat-
ter Lagrangian LM depends only on the matterfields ψ, assumed to be covariant
tensorfields, and the inverse of the space-time metric gαβ which appears in the
contraction of the tensorfields ψ in order to produce the scalar LM . It may also
depend on additional positive definite metrics which are not to be varied 7.

Now the only possible candidate for the gravitational Lagrangian LG, which should
be a scalar invariant of the metric with the property that the corresponding Euler-
Lagrange equations involve at most two derivatives of the metric, is given8 by the

6In fact we only require that the corrsponding Euler-Lagrange equations should involve no
more than two derivatives of the metric.

7This is the case of the metric h in the case of wave maps or the Killing scalar product in

the case of the Yang-Mills equations.
8up to an additive constant
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scalar curvature R. Therefore we set,

LG = R.

Consider now a compact variation (g(s),U) of the metric g. Let ġµν = d
dsgµν |s=0.

Thus for small s, gµν(s) = gµν + sġµν +O(s2). Also, gµν(s) = gµν − sġµν +O(s2)
where ġµν = gαµgβν ġαβ . Then,

d

ds
SG(s)

∣∣∣
s=0

=
∫
U

Ṙdvg +
∫
U

R ˙dvg

Now,
˙dvg =

1
2
gµν ġµνdvg

Indeed, relative to a coordinate system, dvg =
√
−gdx0dx1 . . . dxn Thus, the above

equality follows from,
ġ = ggαβġαβ ,

with g the determinant of gαβ . On the other hand, writing R = gµνRµν and using

the formula d
dsg

µν
(s)

∣∣∣
s=0

= −ġµν , we calculate, Ṙ = −ġµνRµν + gµνṘµν . Therefore,

d

ds
SG(s)

∣∣∣
s=0

= −
∫
U

(Rµν − 1
2
gµνR)ġµνdvg +

∫
U

gµνṘµνdvg (43)

To calculate Ṙµν we make use of the following Lemma,

Lemma 2.2. Let gµν(s) be a family of space-time metrics with g(0) = g and
d
dsg(0) = ġ. Set also, d

dsRαβ(s)|s=0 = Ṙαβ. Then,

Ṙµν = DαΓ̇αµν −DµΓ̇ααν

where Γ̇ is the tensor,

Γ̇αβγ =
1
2
gαλ(Dβġγλ + Dγ ġβλ −Dλġβγ)

Proof : Since both sides of the identity are tensors it suffices to prove the formula
at a point p relative to a particular system of coordinates for which the Christoffel
symbols Γ vanish at p. Relative to such a coordinate system the Ricci tensor has
the form Rµν = DαΓαµν −DµΓααν .

Returning to (43) we find that since gµνṘµν can be written as a space-time di-
vergence of a tensor compactly supported in U the corresponding integral vanishes
identically. We therefore infer that,

d

ds
SG(s)

∣∣∣
s=0

= −
∫
U

Eµν ġµνdvg (44)

where Eµν = Rµν − 1
2gµνR. We now consider the variation of the action integral

SM with respect to the metric. As remarked before LM depends on the metric g
through its inverse gµν . Therefore if we denote SM (s) = SM [ψ,g(s);U ] we have,
writing dv̇g = 1

2gµν ġµνdvg,
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d

ds
SM (s)

∣∣∣
s=0

= −
∫
U

∂LM
∂gµν

ġµνdvg +
∫
U
LMdv̇g

= −
∫
U

(
∂LM
∂gµν

− 1
2
gµνLM )ġµνdvg

Definition. The symmetric tensor,

Tµν = −
(
∂LM
∂gµν

− 1
2
gµνLM

)
is called the energy-momentum tensor of the action SM .

With this definition we write,

d

ds
SM (s)

∣∣∣
s=0

=
∫
U

Tµν ġµνdvg (45)

Finally, combining 44 with 45, we derive for the total action S,

d

ds
S(s)

∣∣∣
s=0

= −
∫
U

(Eµν −Tµν)ġµνdvg

Since ġµν is an arbitrary symmetric 2-tensor compactly supported in U we derive
the Einstein field equation,

Eµν = Tµν

Recall that the Einstein tensor E satisfies the twice contracted Bianchi identity,

DνEµν = 0

This implies that the energy-momentum tensor T is also divergenceless,

DνTµν = 0 (46)

which is the concise, space-time expression for the law of conservation of energy-
momentum of the matter-fields.

Let us now replace SG with the new action,

SG,Λ =
∫

(R− 2Λ)dvg

The resulting field equations are,

Eµν + Λgµν = Tµν (47)

where Λ is the cosmological constant. Observe that (47) can be written in the form,

Eµν = Tµν − Λgµν

and interpret −Λgµν as the energy density of the vacuum, a source of energy and
momentum present even in the absence of matterfields.
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Another possible gravitational lagrangean, which depends on a scalar function φ

LG = f(φ)R +
1
2
gµν∂µφ∂νφ− V (φ)

where f(φ), V (φ) are specified functions which define the theory. This leads to
scalar-tensor theories of gravity.

3. The energy-momentum tensor

The conservation law (46) is a fundamental property of a matterfield. We now turn
to a more direct derivation.

We consider an arbitrary Lagrangian field theory with stationary solution ψ. Let
Φs be the one-parameter group of local diffeomorphisms generated by a given vec-
torfield X. We shall use the flow Φ to vary the fields ψ according to

gs = (Φs)∗g
ψs = (Φs)∗ψ.

From the invariance of the action integral under diffeomorphisms,

S(s) = S[ψs,gs; M] = SM [ψ,g; M].

So that

0 =
d

ds
S(s)

∣∣∣
s=0

=
∫
M

δS
δψ
dvg +

∫
M

Tµν ġµνdvg (48)

The first term is clearly zero, ψ being a stationary solution. In the second term,
which represents variations with respect to the metric, we have

ġµν =
d

ds
(gs)µν

∣∣∣
s=0

= LXgµν = DµXν + DνXµ

Therefore

0 =
∫
M

TµνLXgµνdvg = 2
∫
M

TµνDνXµdvg = −2
∫
M

DνTµνXµdvg

As X was arbitrary, we conclude

DνTµν = 0. (49)

This is again the law of conservation of energy-momentum.

We list below the energy-momentum tensors of the field theories discussed before.
We leave it to the reader to carry out the calculations using the definition.

(1) The energy-momentum for the scalar field equation is,

Tαβ =
1
2

(
φ,αφ,β −

1
2
gαβ(gµνφ,µφ,ν + 2V (φ))

)
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(2) The energy-momentum for wave maps is given by,

Tαβ =
1
2

(
< φ,α, φ,β > −

1
2
gαβ(gµν < φ,µ, φ,ν >)

)
where < , > denotes the Riemannian inner product on the target mani-
fold.

(3) The energy-momentum tensor for the Maxwell equations is,

Tαβ = F ·µα Fβµ −
1
4
gαβ(FµνFµν)

An acceptable notion of the energy-momentum tensor T must satisfy the following
properties in addition of the conservation law (49),

(1) T is symmetric
(2) T satisfies the positive energy condition that is, T(X,Y ) ≥ 0 , for any

future directed time-like vectors X,Y .

The symmetry property is automatic in our construction. The following proposition
asserts that the energy-momentum tensors of the field theories described above
satisfy the positive energy condition.

Proposition 3.1. The energy-momentum tensor of the scalar wave equation sat-
isfies the positive energy condition if V is positive. The energy- momentum tensors
for the wave maps, Maxwell equations and Yang-Mills satisfy the positive energy
condition.

Proof : To prove the positivity conditions consider two vectors X,Y , at some
point p ∈ M, which are both causal future oriented. The plane spanned by X,Y
intersects the null cone at p along two null directions9. Let L,L be the two future
directed null vectors corresponding to the two complementary null directions and
normalized by the condition

< L,L >= −2

i.e. they form a null pair. Since the vectorfields X,Y are linear combinations
with positive coefficients of L,L, the proposition will follow from showing that
T(L,L) ≥ 0, T(L,L) ≥ 0 and T(L,L) ≥ 0. To show this we consider a frame at
p formed by the vectorfields E(n+1) = L, E(n) = L and E(1), . . . , E(n−1) with the
properties,

< E(i), E(n) >=< E(i), E(n+1) >= 0

and

< E(i), E(j) >= δij

for all i, j = 1, . . . , n− 1. A frame with these properties is called a null frame.

9If X,Y are linearly dependent any plane passing through their common direction will do.
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(1) We now calculate, in the case of the wave equation,

T(L,L) =
1
2
E(φ)2

T(L,L) =
1
2
L(φ)2.

which are clearly non-negative. Now,

T(L,L) =
1
2

[L(φ)L(φ) + (gµνφ,µφ,ν + 2V (φ))]

and we aim to express gµνφ,µφ,ν relative to our null frame. To do this,
observe that relative to the null frame the only nonvanishing components
of the metric gαβ are,

gn(n+1) = −2 , gii = 1 i = 1, . . . , n− 1

and those of the inverse metric gαβ are

gn(n+1) = −1
2

, gii = 1 i = 1, . . . , n− 1

Therefore,
gµνφ,µφ,ν = −L(φ)L(φ) + |∇/ φ|2

where

|∇/ φ|2 = (E(1)(φ))2 + (E(2)(φ))2 + . . . E(n−1)(φ)2.

Therefore,

T(L,L) =
1
2
|∇/ φ|2 + V (φ).

(2) For wave maps we have, according to the same calculation.

T(E,E) =
1
2
< E(φ), E(φ) >

T(E,E) =
1
2
< E(φ), E(φ) >

T(E,E) =
1
2

n−1∑
i=1

< E(i)(φ), E(i)(φ) > .

The positivity of T is then a consequence of the Riemannian character
metric h on the target manifold N .

(3) To show positivity for the energy momentum tensor of the Maxwell equa-
tions in 3 + 1 dimensions we first write the tensor in the more symmetric
form

Tαβ =
1
2

(Fα µFβµ + ?Fα
µ ?Fβµ) (50)

where ?F is the Hodge dual of F , i.e. ?Fαβ = 1
2 ∈αβµν F

µν .
Exercise. Check formula (50).

We introduce the following null decomposition of F , at points p ∈M,

αA = Fa4 , αa = Fa3

ρ =
1
2
F34 , σ =

1
2
?F34.
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which completely determines the tensor F . Here the indices a = 1, 2
correspond to the directions E1, E2 tangent to the sphere while the indices
3, 4 correspond to E3 = L and E4 = L. We then calculate that for ?F ,

?Fa4 = − ?αa = , ?Fa3 = ?αa
?F34 = 2σ , ??F34 = −2ρ

where ?αa =∈ab αb. Here ∈ab is the volume form on the unit sphere,
hence ∈ab= 1

2 ∈ab34, i.e. ∈11=∈22= 0, ∈12= −ε21 = 1. With this notation
we calculate,

T(E(4), E(4)) =
1
2

2∑
a=1

(F4a · F4a + ?F4a · ?F4a)

=
1
2

2∑
a=1

(αa · αa + ?αa · ?αa)

=
2∑
a=1

αa · αa = |α|2 ≥ 0.

Similarly,

T(E(3), E(3)) =
2∑

A=1

αa · αa = |α|2 ≥ 0

and in the same vein we find

T(E,E) = ρ2 + σ2 ≥ 0

which proves our assertion.

Exercise. Consider the Maxwell equations with sources, (40). Show that the
energy momentum tensor Tαβ verifies,

DαTαβ = JλFλβ

with JλFβλ the Lorentz force.

3.2. Perfect fluids. A perfect fluid is a continuous distribution of matter
with energy-momentum tensor,

Tµν = ρuµuν + P (mµν + uµuν) (51)

where uµ is a unit timelike vector-field representing the four velocity of the fluid.
Also ρ and P denote, respectively, the mass-energy density and pressure of the fluid
(as measured in its rest frame). The equation of motion of a perfect fluid, subject
to no external forces, in a spacetime (M,g), is

DµTµν = 0. (52)
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These can be rewritten in the form,
uµDµρ+ (ρ+ P )Dµuµ = 0,

(P + ρ)uµDµuν + (gµν + uµuν)DµP = 0
(53)

In Minkowski space, i.e. g = m, in the non relativistic limit, i.e.

P << ρ, uµ = (1, v), v
dP

dt
<< |∇P |

where v denotes the usual 3 velocity and ∇P the spatial gradient, we derive
∂tρ+∇(ρv) = 0,

ρ(∂tv + v · ∇v) = −∇P
(54)

3.3. Conformal Fields. Another important property which the energy mo-
mentum tensor of a field theory may satisfy is the trace free condition, that is

gαβTαβ = 0.

It turns out that this condition is satisfied by all field theories which are conformally
invariant.

Definition. A field theory is said to be conformally invariant if the corresponding
action integral is invariant under conformal transformations of the metric

gαβ −→ g̃αβ = Ω2gαβ

Ω a positive smooth function on the space-time.

Proposition 3.4. The energy momentum tensor T of a conformally invariant field
theory is traceless.

Proof : Consider an arbitrary smooth function f compactly supported in U ⊂M.
Consider the following variation of a given metric g,

gµν(s) = esfgµν .

Let S(s) = SU [ψ,g(s)]. In view of the covariance of S we have S(s) = S(0). Hence,

0 =
d

ds
S(s)|s=0 =

∫
U

Tµν ġµνdvg

where

ġµν =
d

ds
gµν(s)

∣∣∣∣
s=0

= fgµν .

Hence,
∫
U (Tµνgµν) fdvg = 0 and since f is arbitrary we infer that,

trT = gµνTµν ≡ 0.

We can easily check that the Maxwell and the Yang-Mills equations are conformally
invariant in 3 + 1-dimensions. The wave maps field theory is conformally invariant
in dimension 1 + 1, i.e. if the space-time M is two-dimensional10.

10Similarly for the linear scalar wave equation
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Remark: The action integral of the Maxwell equations, S =
∫
U FαβF

αβdvg is
conformally invariant in any dimension provided that we also scale the electro-
magnetic field F . Indeed if g̃αβ = Ω2gαβ then dvg̃ = Ωn+1dvg and if we also set
F̃αβ = Ω−

n−3
2 Fαβ we get

S̃[F̃ , g̃] =
∫
F̃αβF̃γδg̃αγ g̃βδdvg̃ =

∫
FαβFγδgαγgβδdvg = S[F,g].

We finish this section with a simple observation concerning conformal field theories
in 1+1 dimensions. We specialize in fact to the Minkowski space R1+1 and consider
the local conservation law, ∂µTνµ = 0. Setting ν = 0, 1 we derive

∂0T00 + ∂1T01 = 0, ∂0T01 + ∂1T11 = 0 (55)

Since the energy-momentum tensor is trace-free, we get T00 = T11 = A, say. Set
T01 = T10 = B. Therefore (55) implies that both A and B satisfy the linear
homogeneous wave equation;

2A = 0 = 2B. (56)

Using this observation it is is easy to prove that smooth initial data remain smooth
for all time.

For example, wave maps are conformally invariant in dimension 1 + 1. In this case

A = T00 =
1
2

(< ∂tφ, ∂tφ > + < ∂xφ, ∂xφ >) ,

Given data in C∞0 (R), (56) implies that the derivatives of φ remain smooth for all
positive times. This proves global existence.

3.5. Conservation Laws. The energy-momentum tensor of a field theory is
intimately connected with conservations laws. This connection is seen through
Noether’s principle,

Noether’s Principle: To any one-parameter group of transformations preserving
the action there corresponds a conservation law.

We illustrate this fundamental principle as follows: Let S = S[ψ,g] be the action
integral of the fields ψ. Let χt be a 1-parameter group of isometries of M, i.e.,
(χt)∗g = g. Then

S[(χt)∗ψ,g] = S[(χt)∗ψ, (χt)∗g]
= S[ψ,g].

Thus the action is preserved under ψ → (χt)∗ψ. In view of Noether’s Principle we
ought to find a conservation law for the corresponding Euler-Lagrange equations11.
We derive these laws using the Killing vectorfield X which generates χt.

11The same argument holds for conformal isometries acting on a conformally invariant field
theory. We therefore also expect conservation laws in such a setting.
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We begin with a general calculation involving the energy-momentum tensor T of ψ
and an arbitrary vectorfield X. P the one-form obtained by contracting T with X.

Pα = TαβX
β

Since T is symmetric and divergence-free

DαPα = (DαTαβ)Xβ + Tαβ

(
DαXβ

)
=

1
2
Tαβ (X)παβ

where (X)παβ is the deformation tensor of X.

(X)παβ = (LXg)αβ = DαXβ + DβXα

Notation. We denote the backward light cone with vertex p = (t̄, x̄) ∈ Rn+1 by

N−(t̄, x̄) = {(t, x)
∣∣0 ≤ t ≤ t̄; |x− x̄| = t̄− t}.

The restriction of this set to some time interval [t1, t2], t1 ≤ t2 ≤ t̄, will be written
N−[t1,t2](t̄, x̄). These null hypersurfaces are null boundaries of,

J−1(t̄, x̄) = {(t, x)
∣∣ 0 ≤ t ≤ t̄; |x− x̄| ≤ t̄− t}

J−[t2,t1](t̄, x̄) = {(t, x)
∣∣t2 ≤ t ≤ t1; |x− x̄| ≤ t̄− t}

We shall denote by St = St(t̄, x̄) and Bt = Bt(t̄, x̄) the intersection of the time slice
Σt with N−, respectively J−.

At each point q = (t, x) along N−(p) , we define the null pair (E+, E−) of future
oriented null vectors

L = E+ = ∂t +
xi − x̄i

|x− x̄|
∂i, L = E− = ∂t −

xi − x̄i

|x− x̄|
∂i

Observe that both L,L are null and < L,L >= −2.

The following is a simple consequence of Stoke’s theorem, in the following form.

Proposition 3.6. Let Pµ be a one-form satisfying ∂µPµ = F. Then12, for all
t1 ≤ t2 ≤ t̄,∫

Bt2

〈P, ∂t〉+
∫
N−[t1,t2](p)

〈P,E−〉 =
∫
Bt1

〈P, ∂t〉 −
∫
J−[t1,t2](p)

Fdtdx (57)

where, ∫
N−[t1,t2](p)

〈P,E−〉 =
∫ t2

t1

dt

∫
St

〈P,E−〉 dat.

Applying this proposition to Stoke’s theorem to (57 ) we get

12The brackets 〈·, ·〉 in (57) denote inner product with respect to the Minkowski metric.
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Theorem 3.7. Let T be the energy-momentum tensor associated to a field theory
and X an arbitrary vector field. Then

∫
Bt2

T(∂t, X) +
∫
N−[t1,t2](p)

T(E−, X) =
∫
Bt1

T(∂t, X) (58)

−
∫
J−[t1,t2](p)

Tαβ (X)παβdtdx

In the particular case when X is Killing, its deformation tensor π vanishes identi-
cally. Thus,

Corollary 3.8. If X is a killing vectorfield,∫
Bt2

T(∂t, X) +
∫
N−[t1,t2](p)

T(L,X) =
∫
Bt1

T(∂t, X) (59)

Moreover (59) remains valid if T is traceless and X is conformal Killing.

The identity (59) is usually applied to time-like future-oriented Killing vectorfields
X in which case the positive energy condition for T insures that all integrands are
positive. We know that, up to a Lorentz transformation the only Killing, future
oriented timelike vectorfield is a constant multiple of ∂t. Choosing X = ∂t, (59)
becomes, ∫

Bt2

T(∂t, ∂t) +
∫
N−[t1,t2](p)

T(E−, ∂t) =
∫
Bt1

T(∂t, ∂t) (60)

In the case of a conformal field theory we can pick X to be the future timelike,
conformal Killing vectorfield X = K0 = (t2 + |x|2)∂t + 2txi∂i. Thus,∫

Bt2

T(∂t,K0) +
∫
N−[t1,t2](p)

T(L,K0) =
∫
Bt1

T(∂t,K0) (61)

In (60) the term T(∂t, ∂t) is called energy density while T(E−, ∂t) is called energy
flux density . The corresponding integrals are called energy contained in Bt1 , and
Bt2 and, respectively, flux of energy through N−. The coresponding terms in (61)
are called conformal energy densities, fluxes etc.

Equation (60) can be used to derive the following fundamental properties of rela-
tivistic field theories.

(1) Finite propagation speed
(2) Uniqueness of the Cauchy problem

Proof : The first property follows from the fact that, if
∫
Bt1

T(∂t, ∂t) is zero at
time t = t1 then both integrals

∫
Bt2

T(∂t, ∂t) and
∫
N−[t1,t2]

T(E−, ∂t) must vanish

also. In view of the positivity properties of the T it follows that the corresponding
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integrands must also vanish. Taking into account the specific form of T, in a
particular theory, one can then show that the fields do also vanish in the domain
of influence of the ball Bt1 . Conversely, if the initial data for the fields vanish in
the complement of Bt1 , the the fields are identically zero in the complement of the
domain of influence of of Bt1 .

The proof of the second property follows immediately from the first for a linear
field theory. For a nonlinear theory one has to work a little more.

Exercise. Formulate an initial value problem for each of the field theories we
have encountered so far, scalar wave equation (SWE), Wave Maps (WM), Maxwell
equations (ME). Proof uniqueness of solutions to the initial value problem, for
smooth solutions.

The following is another important consequence of (60) and (61). To state the
results we introduce the following quantities,

E(t) =
∫

Rn
T (∂t, ∂t) (t, x)dx (62)

Ec(t) =
∫

Rn
T (K0, ∂t) (t, x)dx (63)

Theorem 3.9 (Global Energy). For an arbitrary field theory, if E(0) <∞, then

E(t) = E(0) (64)

Moreover, for a conformal field theory, if Ec(0) <∞,

Ec(t) = Ec(0) (65)

Proof : Follows easily by applying (60) and (61) to past causal domains J−(p)
with p = (t̄, 0) between t1 = 0 and t2 = t and letting t̄→ +∞.

3.10. Energy dissipation. In this section we shall make use of the global
conformal energy identity (65) to show how energy dissipates for a filed theories
in Minkowski space. Consider a conformal field theory defined on all of Rn+1. At
each point of Rn+1, with t ≥ 0, define the standard null frame where

L = E+ = ∂t + ∂r

L = E− = ∂t − ∂r.

Observe that the conformal Killing vectorfield K0 = (t2 + r2)∂t + 2rt∂r can be
expressed in the form,

K0 =
1
2
[
(t+ r)2E+ + (t− r)2E−.

]
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Thus,

Ec(t) =
∫

Rn

1
4

(t+ r)2T++ +
1
4

(t− r)2T−− +
(
(t+ r)2 + (t− r)2

)︸ ︷︷ ︸
2(t2+r2)

T+−dx.

=
∫

Rn

1
4

(t+ r)2T++ +
1
2

(t2 + r2)T+− +
1
4

(t− r)2T−−dx (66)

Ec(0) =
∫

Rn
T(∂t,K0)(0, x)dx =

∫
Rn
|x|2T(∂t, ∂t)dx

According to (65) we have Ec(t) = Ec(0). Assuming that Ec(0) =
∫

Rn |x|
2T(∂t, ∂t)dx

is finite we conclude that,∫
Rn

T++(t, ·)dx . t−2Ec(0)∫
Rn

T+−(t, ·)dx . t−2Ec(0).

The remaining term in (66) contains the factor (t − r)2 which is constant along
outgoing null directions r = t+ c. Hence for any 0 < ε < 1∫

|x|>(1+ε)t

T−− = O(t−2)∫
|x|<(1−ε)t

T−− = O(t−2).

We conclude that most of the energy of a conformal field is carried by the T−−
component and propagates near the light cone.





CHAPTER 2

ON THE PHYSICAL CONTENT OF GENERAL
RELATIVITY

1. Equivalence Principle and Derivation of the Field Equations

Einstein’s point of departure was the well known experimental fact concerning the
universality of free fall or the weak equivalence principle. In Newton’s theory of
gravitation the universality of free fall appears implicitly in the identification,

mi = mg (67)

between the inertial mass mi of a particle, i.e. the one which appears in F = mia
law, and the gravitational mass mg which appears in the gravitational force between
two particles separated by a distance r, Fg = GmgMgr

−2 = −mg∇Φ where Φ is
the gravitational potential of the particle of mass M = Mg,

Φ = −GM
r
. (68)

An immediate consequence of (67) is the universality of free falling test particles in
a fixed gravitational field, i.e. the acceleration a of any such particle is given by,

a = −∇Φ (69)

Very early on in his quest for a relativistic theory of gravity Einstein realized that
this mysterious equality (67) contains a deeper equivalence between inertia and
gravitation. In his famous thought experiment with a freely falling elevator he ob-
serves, as consequence of the universality of free fall, that all rigid objects in the
elevator appear as being at rest with respect to the freely falling reference frame
attached to the elevator. Thus, relative to such a frame, the external gravita-
tional field appears to be erased. Einstein’s principle of equivalence extrapolates
this impossibility of distinguishing between uniform acceleration and an external
gravitational field to all physical experiments, not just free falling particles.

Thus, his principle of equivalence (EEP) postulates as follows.

• Any gravitational field can be locally1 erased using an appropriate freely
falling, local, reference frame. The non-gravitational physical laws (such
as electromagnetism) apply in this local reference frame in the same way
as they would in an inertial frame (free of gravity) in special relativity.

1In fact infinitesimally

31
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• Starting with an inertial reference frame in special relativity one can cre-
ate an apparent gravitational field in a local reference frame which is
accelerated with respect to the first.

The passage from an inertial frame to an accelerated one is, mathematically, a
change of coordinates xα = xα(yβ) from the inertial coordinates xα to general
coordinates yα. In the new coordinate system the metric takes the form,

gµν(yλ)dyµdyν , gµν = mαβ
∂xα

∂yµ
∂xβ

∂yν
(70)

This has led Einstein to consider general Lorentzian metrics. The time-like geodesics
in such space-times, corresponding to the trajectory of freely falling particles,

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0 (71)

where

Γλµν =
1
2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν)

Interpreting the term Γλµν
dxµ

ds
dxν

ds as corresponding to a gravitational force acting
on the particle, we see that the equivalence principle here corresponds to the math-
ematical possibility to choose a coordinate system, in a neighborhood of a point q
along the curve, such that Γ(q) = 0. In other words, we have erased the gravita-
tional force at q, by simply making a local change of reference.

Exercise. Prove this fact. Show in fact that a coordinate system can be chosen,
in a neighborhood of q along the curve, so that Γ vanishes along the curve.

Once he decided that the metric g describes both the geometry and spacetime and
gravitation Einstein had to find which equation it satisfies. This equations has to
supersede the Poisson equation for the Newton potential,

∆Φ = 4πGρ (72)

where ρ is the mass density. The explicit form of Φ in (68) corresponds to a
pointlike mass distribution. A relativistic generalization of (72) should take the
form of a tensor equation. One can guess that the tensor generalization of mass
density should be the energy-momentum tensor T . The following three principles
have led him to

Rµν −
1
2
Rgµν =

8πG
c4

Tµν (73)

where G is Newton’s gravitational constant and c the speed of light.

(1) Principle of General Relativity The fundamental Laws of Physics should
be covariant. This is a principle of indifference, i.e. physical phenomenon
do not take place in the same way (in general) in different coordinates
systems (as is the case with inertial coordinates in special relativity) but
no coordinate system (in general) has a privileged status relative to others.

(2) In the presence of matter the source of the gravitational field has to be
the energy-momentum tensor.
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(3) Principle of correspondence In the limit where one neglects gravitational
effects, i.e. g = m, the laws of Physics should be those of special rela-
tivity. Moreover there should be a special limit with regard to which the
equations being sought reduce to Newton’s theory of gravity.

These three principles has led Einstein to his field equations, One can show (see
[1]) that the three principles described above uniquely determine the Einstein field
equations.

1.1. Geodesic deviation and tidal forces. Let γs(t) be a smooth one -
parameter family of time-like geodesics γs : [0, 1] → R parametrized by their ar-
clength t. We assume that the map (t, s) ∈ [0, 1]× (−ε, ε)
to(∂tγ, ∂sγ) is smooth and has a smooth inverse so that the curves γs(t) span a two
dimensional surface on the original Lorentzian manifold M. We can regard t, s as
local coordinates. Let T = ∂t X = ∂s the corresponding coordinate vectorfields,
i.e. for any function f on M,

T (f) = ∂tf(γs(t)), X(f) = ∂sf(γs(t))

Since the curves γs are geodesic we have,

DTT = 0.

We can also normalize T such that g(T, T ) = −1. We can also choose the “ original”
s-curve, s→ γs(0), such that its tangent X is perpendicular to T . Then, since T,X
commute we find,

Tg(T,X) = g(T,DTX) = g(T,DXT ) =
1
2
Xg(T,T) = 0

Hence X remains orthogonal to T for all values of t ∈ [0, 1]. Consider V = DTX,
the rate of change (along a given geodesic) of the displacement vector X. We may
interpret V as the relative velocity of an infinitesimally nearby geodesic. We now
calculate the relative acceleration of an infinitesimally nearby geodesic. Since X,T
commute and DTT = 0 we deduce,

DTV = DTDTX = DT (DXT ) = DX(DTT ) + [DT ,DX ]T
= [DT ,DX ]T = R(T,X)T

Thus we deduce the geodesic deviation formula,

D2
TX = R(T,X)T (74)

Thus, geodesics which start are parallel at t = 0, i.e. V = DTX = 0, may fail to
remain so because of the non-vanishing of the curvature term R.

2. Weak Field limit

We say that the gravitational field is weak if we can decompose the metric g into
the flat metric m plus a small perturbation h,

gµν = mµν + hµν , |hµν | << 1, (75)
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in an inertial system of coordinates with respect to m. Clearly,

gµν = mµν − hµν

where the indices of h are risen with respect to the minkowski metric m. Recall
that,

Rµνρ
σ = ∂νΓσµρ − ∂µΓσνρ + ΓαµρΓ

σ
αν − ΓανρΓ

σ
αµ

Now, neglecting quadratic terms in h,

Γρµν =
1
2
mρλ(∂µhλν + ∂νhµλ − ∂λhµν) +O(h2)

We deduce,

Rµνρ
σ =

1
2
(
∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ

)
+O(h2 + |∂h|2).

and, with h = mµνhµν ,

Rµν =
1
2
(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ρ − ∂µ∂νh−�hµν

)
+O(h2 + |∂h|2).

R = ∂µ∂νh
µν −�h

We derive the Einstein tensor,

Eµν =
1
2
(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ρ − ∂µ∂νh−�hµν −mµν∂α∂βh

αβ + mµν�h
)

+ O(h2 + |∂h|2)

The expression can be simplified if we introduce the trace reversed quantity,

h̄µν = hµν −
1
2
mµνh

Then,

Eµν = −1
2
�h̄µν + ∂σ∂(ν h̄

σ
µ) −

1
2
mµν∂α∂βh̄

αβ +O(h2 + |∂h|2)

where,

∂σ∂(ν h̄
σ
µ) =

1
2
(
∂σ∂(ν h̄

σ
µ) + ∂σ∂µh̄

σ
ν

)
Thus the linearized Einstein equations take the form,

−1
2
�h̄µν + ∂σ∂(ν h̄

σ
µ) −

1
2
mµν∂α∂βh̄

αβ = 8πTµν (76)

We now come to the issue of gauge invariance. Consider another copy of the same
manifold M, which we denote Mb, endowed with the flat metric m. We have a
diffeomorphism between them which we denote

Φ : Mb →M

Note that Φ is the identity map if we consider the same coordinate system on Mb

and M, but we allow the possibility of considering different coordinate systems.
We define the perturbation h by,

h = Φ∗g −m (77)

We say that the gravitational field on M is weak if there exists a diffeomorphism Φ
such that |hµν | << 1 in a fixed coordinate system in Mb. Of course, we can have
many such coordinate systems and therefore we have to recognize how to pass from
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one admissible system to another. Consider an arbitrary vectorfield X on Mb and
its induced flow Ψt : Mb →Mb. We can now define the family of perturbations,

ht : = (Φ ◦Ψt) ∗ g −m = ψ∗tΦ∗g −m = Ψ∗t
(
Φ∗g −m) + Ψ∗tm−m

= Ψ∗th + Ψ∗tm−m

Writing Ψ∗th = h +O(|t|)h and,

Ψ∗tm−m = −tΨ
∗
tm−m
−t

= −tLXm +O(|t|2)

where, recalling the definition of Lie derivative,

LXm = lim
t→0

Ψ−tm−m
t

.

Hence,

ht = h− tLXm +O(|t|2 + |t|h)

or, for |t| ≤ ε,

ht = h− εLXm +O(ε2).

We denote ξ = −εX. Thus, for small ξ, h and h +Lξm describe the same physical
perturbation. This means that linear gravity has a gauge freedom given by,

h′µν = hµν + ∂µξν + ∂νξµ (78)

This is similar to the gauge freedom of the electromagnetic field, A′µ = Aµ + ∂µχ.

Using (78) we can now simplify the linearized Einstein equations (76). Indeed we
try to choose the vectorfield ξ such that,

∂µh̄′µν = 0

Now,

h̄′µν = h̄µν + ∂µξν + ∂νξµ −mµν∂
λξλ

Thus,

∂µh̄′µν = ∂µh̄µν +�ξν .

Hence if,

�ξν = −∂µh̄µν (79)

we have,

∂µh̄′µν = 0. (80)

In such a gauge the Einstein equations take the form,

�h̄µν = −16πTµν (81)
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2.1. Newtonian limit. The newtonian limit is derived from the Einstein field
equations, with T the energy-momentum tensor of a perfect fluid (see (51)) , under
the following assumptions

(1) Gravity is weak, i.e. g = m + h with h verifying (81).
(2) The relative motion of the sources is much slower than the speed of light,

i.e. u0 ≈ 1, |v| << 1 with vi = ui, and Tij << T0i << T00.
(3) The space-time geometry is slowly changing, i.e. ∂thµν are small.

The assumption about sources can be reformulated as follows. There exists an
inertial coordinate system such that,

T00 = ρ

and all other components of T are negligible. Since ∂2
0 h̄µν are negligible we derive

from (81),

∆h̄µν = 0, (µ, ν) 6= (0, 0)
∆h̄00 = −16πρ

Assuming that h̄µν are well behaved at infinity we derive h̄0i = h̄ij = 0. Let,

φ = −1
4
h̄00 (82)

Thus, since,

hµν = h̄µν − 1
2
mµν h̄

h00 = −2φ, hii = 2φ, h0i = 0, ∆φ = 4πρ (83)

This leads to the metric,

−(1 + 2Φ)dt2 + (1− 2Φ)
(
(dx1)2 + (dx2)2 + (dx3)2

)
(84)

The motion of freely falling test particles in this geometry is governed by the geo-
desic equation,

d2xλ

dτ2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0

with τ proper time. For motion much slower than the speed of light we can ap-
proximate dxµ

dτ by the vector (1, 0, 0, 0, ) and proper time τ by the t coordinate t.
Thus,

d2xi

dt2
= −Γı

00 =
1
2
∂h00

∂xı
= −∂iΦ

i.e.,

d2xi

dt2
= −∇iΦ (85)

as expected.
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2.2. Gravitational radiation. In linear approximation the propagation of
gravitational radiation is governed by the source- free, linearized Einstein equations,

∂µh̄µν = 0, �h̄µν = 0. (86)

In deriving these equations we have used the gauge transformations (78). The
remaining gauge freedom is given by transformations,

�ξµ = 0. (87)

One can use this additional freedom to obtain, in the so called radiation gauge,

h = 0, h0i = 0, h00 = 0. (88)

We first show how to arrange h = 0 by performing a gauge transformation (78)
with ξ1 = ξ2 = ξ3 = 0, i.e.

h′ = mµνh′µν = mµν(hµν + ∂µξν + ∂νξµ)
= h− 2∂tξ0

where �ξ0 = 0. Let f := h− 2∂tξ0. Taking the trace of the equation

�h̄µν = �(hµν −
1
2
mµνh) = 0

with respect to m we see that �h = 0. Thus,

�f = �h− 2∂t�ξ0 = 0.

To show that f = 0 we only need to arrange the initial conditions for ξ0 at t = t0
to be such that,

f = 0, ∂tf = 0 at t = t0.

This leads to the following choice for the initial data for ξ0,

∂tξ0 =
1
2
h, ∂2

t ξ0 =
1
2
∂th

or, equivalently,

∆ξ0 =
1
2
∂th, ∂tξ0 =

1
2
h. (89)

Solving the initial value problem (89) for �ξ0 we find in this manner a gauge
transformation given by the covector (ξ0, 0, 0, 0) such that in addition to (86) we
also have, h = 0. More precisely, there exists a gauge transformation such that,

∇µhµν = 0, �hµν = 0, h = 0.

We can use the remaining degree of freedom, i.e. by solving �ξi = 0, i = 1, 2, 3, in
the same manner to also obtain h0i = 0. As a bonus we can now also show that
h00 = 0. Indeed, using ∇µhµν = 0 we must have ∂th00 = 0. Since also �h00 = 0, we
infer that h00 is a constant. By another trivial change of gauge we deduce h00 = 0.
We have thus proved the following:

Proposition 2.3. In the weak field limit, we can find a gauge transformation such
that the components h0µ, µ = 0, 1, 2, 3 and the trace h vanish. Thus the linearized
vacuum equations take the form,

∇jhij = 0, �hij = 0, δijhij = 0. (90)
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Observe that there only six independent components of hij verifying four differential
equations. Consider now plane wave solutions to (90),

hαβ = Cαβe
ikµx

µ

(91)

with constants Cαβ and kµ. To verify (90) we need C0β = 0 and

kjCij = 0, δijCij = 0
kµk

µ = 0.

Choosing kµ = ω(1, 0, 01) we find that the only non-vanishing components of C
are A = C11 = −C22 and B = C12 = C21. Thus a plane wave traveling in the x3

direction is completely characterized by A,B and ω. The solutions corresponding
to A 6= 0, B = 0 and A = 0, B 6= 0 describe the two independent polarization states
of plane gravitational wave.

To detect a gravitational wave one one has to study the relative acceleration of two
point masses due to it. For two nearby freely falling masses, this acceleration is
given by the geodesic deviation formula (74). For two bodies nearly at rest in a
global inertial system xα we have, with T ≈ ∂t, D ≈ ∂ the flat covariant derivative
operator and Xµ the deviation vector,

d2Xµ

dt2
≈ Rν00

µXν (92)

In the radiation gauge,

Rν00µ ≈
1
2
∂2hµν
∂t2

(93)



APPENDIX A

BASIC GEOMETRIC NOTIONS

We briefly review the following topics below:

1.) Lie brackets of vectorfields. Frobenius theorem

2.) Lie derivative of a tensorfield

3.) Multilinear forms and exterior differentiation

4.) Connections and covariant derivatives

5.) Pseudo-riemannian metrics. Riemannian and Lorentzian geometry.

6.) Levi-Civita connection associated to a pseudo-riemannian metric.

7.) Parallel transport, geodesics, exponential map, completeness

8.) Curvature tensor of a pseudo-riemannian manifold. Symmetries. First and
second Bianchi identities.

9.) Isometries and conformal isometries. Killing and conformal Killing vector-
fields.

1. Pseudo-riemannian, Lorentzian metrics

A pseudo-riemannian manifold 1, or simply a spacetime, consist of a pair (M,g)
where M is an orientable p+ q-dimensional manifold and g is a pseudo-riemannian
metric defined on it, that is a smooth, a non degenerate, 2-covariant symmetric
tensor field of signature (p, q). This means that at each point p ∈ M one can
choose a basis of p + q vectors, {e(α)}, belonging to the tangent space TMp, such
that

g(e(α), e(β)) = mαβ (94)

1We assume that our reader is already familiar with the basics concepts of differential ge-

ometry such as manifolds, tensor fields, covariant, Lie and exterior differentiation. For a short
introduction to these concepts see Chapter 2 of Hawking and Ellis, “The large scale structure of

space-time”, [?]

39
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for all α, β=0, 1, ..., n , where m is the diagonal matrix with −1 in the first p entries
and +1 in the last q entries. If X is an arbitrary vector at p expressed, in terms of
the basis {e(α)}, as X = Xαe(α), we have

g(X,X) = −(X1)2 − . . .− (Xp)2 + (Xp+1)2 + ....+ (Xp+q)2 (95)

The case when p = 0 and q = n corresponds to Riemannian manifolds of dimension
n. The other case of interest for us is p = 1, q = n which corresponds to a Lorentzian
manifolds of dimension n+ 1. The primary example of Riemannian manifold is the
Euclidean space Rn. Any other Riemannian manifold looks, locally, like Rn. Sim-
ilarly, the primary example of a Lorentzian manifold is the Minkowski spacetime,
the spacetime of Special Relativity. It plays the same role, in Lorentzian geometry,
as the Euclidean space in Riemannian geometry. In this case the manifold M is
diffeomorphic to Rn+1 and there exists globally defined systems of coordinates, xα,
relative to which the metric takes the diagonal form −1, 1, ..., 1. All such systems
are related through Lorentz transformations and are called inertial. We denote the
Minkowski spacetime of dimension n+ 1 by (Rn+1,m).

Relative to a given coordinate system xµ, the components of a pseudo-riemannian
metric take the form

gµν = g(∂µ, ∂ν)

where ∂µ = ∂
∂xµ are the associated coordinate vectorfields. We denote by gµν the

components of the inverse metric g−1 relative to the same coordinates x, and by |g|
the determinant of the matrix gµν . The volume element dvM of M is expressed, in
local coordinates, by

√
|g|dx =

√
|g|dx1 . . . dxn. Thus the integral

∫
M
fdvM of a

function f , supported in coordinate chart U ⊂M is defined by
∫
U
f(x)

√
|g(x)|dx.

The integral on M of an arbitrary function f is defined by making a partition of
unity subordinated to a covering of M by coordinate charts. One can easily check
that the definition is independent of the particular system of local coordinates.

In view of (95) we see that a Lorentzian metric divides the vectors in the tangent
space TMp at each p, into timelike, null or spacelike according to whether the
quadratic form

g(X,X) = gµνX
µXν (96)

is, respectively, negative, zero or positive. We defined the magnitude of a vector
to be |X| =

√
g(X,X), if X is spacelike, |X| =

√
−g(X,X) if X is timelike and

|X| = 0 if X is null. Observe that the Cauchy-Schwartz inequality for timelike
vectors takes the form,

g(X,Y )2 ≥ |X|2|Y |2.

The set of null vectors Np forms a double cone, called the null cone of the corre-
sponding point p. The set of timelike vectors Ip forms the interior of this cone. The
vectors in the union of Ip and Np are called causal. The set Sp of spacelike vectors
is the complement of Ip ∪Np. The causal structure of a lorentzian manifold M is
given by specifying the null cones Np ⊂ Tp(M)

Proposition 1.1. Two Lorentz metrics g1,g2 have the same causal structure if
and only if they differ by a proportionality factor.
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Proof It suffices to show that if their causal structures are the same then g2 = Λg1

for some non-vanishing scalar function Λ. Let X be two vectors, one spacelike the
other timelike. Since the roots of the quadratic forms in λ ∈ R, g1(X + λY )
and g2(X + λY ) coincide we deduce that the corresponding coefficients must be
proportional,

g1(X,X)
g1(Y, Y )

=
g2(X,X)
g2(Y, Y )

Setting,

Λ =
g2(X,X)
g1(X,X)

=
g2(Y, Y )
g1(Y, Y )

one can easily show that Λ = Λ(p) does not depend on the particular vectors X,Y .
By a simple polarization formula it then follows that, for any two non-null vectors
X,Y ,

g2(X,Y ) = Λg1(X,Y )

A frame e(α) verifying (94) is said to be orthonormal. In the case of Lorentzian
manifolds it makes sense to consider, in addition to orthonormal frames, null frames.
These are collections of vectorfields2 eα consisting of two null vectors en+1, en and
orthonormal spacelike vectors (ea)a=1,... ,n−1 which verify,

g(en, en) = g(en+1, en+1) = 0 , g(en, en+1) = −2
g(en, ea) = g(en+1, ea) = 0 , g(ea, eb) = δab

One-forms A = Aαdx
α are sections of the cotangent bundle of M. We denote

by A(X) the natural pairing between A and a vectorfield X. We can raise the
indices of A by Aα = gαβAβ . A′ = Aα∂α defines a vectorfield on M and we have,
A(X) = g(A′, X). Covariant tensors A of order k are k-multilinear forms on TM.

Given a submanifold N ⊂ M, the restriction of gp to Tp(N) defines the induced
metric h, i.e.

hp(X,Y ) = gp(X,Y ), ∀X,Y ∈ Tp(N)

The submanifold is said to be spacelike if its induced metric h is Riemannian,
timelike if h is Lorentzian and null if h is degenerate, at every point p ∈ N. Of
particular interest are submanifolds of codimension 1, called hypersurfaces, given
(locally) by the non-critical level sets of a function f : M → R, with df 6= 0. We
define the gradient of f to be the vector obtained by raising the indices of the 1-
form df , Nf = −gµν∂µf∂ν . A level hypersurface Hf = {f = c} is spacelike, timelike
or null if Nf is respectively timelike, spacelike or null. Clearly, in all cases, Nf is
orthogonal to Hf . Observe that, for any vectorfield X,

g(Nf , X) = X(f).

2We write eα instead of e(α) to simplify the notation, whenever there can be no confusion.
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Thus X is tangent to Hf if and only if g(Nf , X) = 0. In the particular case of a
null hypersurface case Nf is both orthogonal and tangent to Hf . Also,

0 = g(Nf , Nf ) = gµν∂µf∂νf (97)

i.e. f verifies the eikonal equation in M.

Notation: We will use the following notational conventions: We shall use bold-
face characters to denote important tensors such as the metric g, and the Riemann
curvature tensor R. Their components relative to arbitrary frames will also be de-
noted by boldface characters. Thus, given a frame {e(α)} we write gαβ = g(eα, eβ),
Rαβγδ = R(eα, eβ , eγ , eδ) and, for an arbitrary tensor T ,

Tαβγδ... ≡ T (eα, eβ , eγ , eδ, ...)

We shall not use boldface characters for the components of tensors, relative to a
fixed system of coordinates. Thus, for instance, in (96) gµν = g( ∂

∂xµ ,
∂
∂xν ). In the

case of a Riemannian manifold we use latin letters i, j, k, l, . . . to denote indices
of coordinates x1, x2, . . . , xn or tensors. For a Lorentzian manifold we use greek
letters α, β, γ, . . . to denote indices 0, 1, . . . , n. Given an arbitrary frame E(α) in
M

2. Covariant derivatives, Lie derivatives

We recall here the three fundamental operators of the differential geometry on a
Riemann or Lorentz manifold: the exterior derivative, the Lie derivative, and the
Levi-Civita connection with its associated covariant derivative.

2.0.1. The exterior derivative. Given a scalar function f its differential df is
the 1-form defined by

df(X) = X(f)
for any vector field X. This definition can be extended for all differential forms on
M in the following way:

i) d is a linear operator defined from the space of all k-forms to that of k+1-forms
on M. Thus for all k-forms A,B and real numbers λ, µ

d(λA+ µB) = λdA+ µdB

ii) For any k-form A and arbitrary form B

d(A ∧B) = dA ∧B + (−1)kA ∧ dB
iii) For any form A,

d2A = 0 .
We recall that, if Φ is a smooth map defined from M to another manifold M′, then

d(Φ∗A) = Φ∗(dA) .

Finally if A is a one form and X,Y arbitrary vector fields, we have the equation

dA(X,Y ) =
1
2

(
X(A(Y ))− Y (A(X))−A([X,Y ])

)
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where [X,Y ] is the commutator X(Y ) − Y (X). This can be easily generalised to
arbitrary k forms, see Spivak’s book, Vol.I, Chapter 7, Theorem 13. [?]

2.0.2. The Lie derivative. Consider an arbitrary vector field X. In local coor-
dinates xµ, the flow of X is given by the system of differential equations

dxµ

dt
= Xµ(x1(t), ..., xp+q(t)) .

The corresponding curves, xµ(t), are the integral curves of X. For each point p ∈M
there exists an open neighborhood U , a small ε > 0 and a family of diffeomorphism
Φt : U →M, |t| ≤ ε, obtained by taking each point in U to a parameter distance
t, along the integral curves of X. We use these diffeomorphisms to construct, for
any given tensor T at p, the family of tensors (Φt)∗T at Φt(p) .

The Lie derivative LXT of a tensor field T , with respect to X, is:

LXT |p ≡ lim
t→0

1
t

(T |p − (Φt)∗T |p) .

It has the following properties:

i) LX linearly maps (p, q)-tensor fields into tensor fields of the same type.

ii) LX commutes with contractions.

iii) For any tensor fields S, T ,

LX(S ⊗ T ) = LXS ⊗ T + S ⊗ LXT .

If X is a vector field we easily check that

LXY = [X,Y ]

by writing (LXY )i = − d
dt ((Φt)∗Y )i

∣∣∣
t=0

and expressing (Φt)∗Y )i
∣∣∣
p

= ∂xi(Φt(q))
∂xj(q) Y j

∣∣∣
q
,

where q = Φ−t(p). (See [?], Hawking and Ellis, section 2.4 for details.)

If A is a k-form we have, as a consequence of the commutation formula of the
exterior derivative with the pull-back Φ∗,

d(LXA) = LX(dA) .

For a given k-covariant tensorfield T we have,

LXT (Y1, . . . , Yk) = XT (Y1, . . . , Yk)−
k∑
i=1

T (Y1, . . . ,LXYi, . . . , Yk)

We remark that the Lie bracket of two coordinate vector fields vanishes,[
∂

∂xµ
,
∂

∂xν

]
= 0.

The converse is also true, namely, see Spivak, [?], Vol.I, Chapter 5,
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Proposition 2.1. If X(0), ...., X(k) are linearly independent vector fields in a neigh-
bourhood of a point p and the Lie bracket of any two of them is zero then there exists
a coordinate system xµ, around p such that X(ρ) = ∂

∂xρ for each ρ = 0, ..., k .

The above proposition is the main step in the proof of Frobenius Theorem. To state
the theorem we recall the definition of a k-distribution in M. This is an arbitrary
smooth assignment of a k-dimensional plane πp at every point in a domain U of
M. The distribution is said to be involute if, for any vector fields X,Y on U with
X|p, Y |p ∈ πp, for any p ∈ U , we have [X,Y ]|p ∈ πp. This is clearly the case for
integrable distributions3. Indeed if X|p, Y |p ∈ TNp for all p ∈ N , then X,Y are
tangent to N and so is also their commutator [X,Y ]. The Frobenius Theorem
establishes that the converse is also true4, that is being in involution is also a
sufficient condition for the distribution to be integrable,

Theorem 2.2. (Frobenius Theorem) A necessary and sufficient condition for a
distribution (πp)p∈U to be integrable is that it is involute.

2.2.1. The connection and the covariant derivative. A connection D is a rule
which assigns to each vectorfield X a differential operator DX . This operator maps
vector fields Y into vector fields DXY in such a way that, with α, β ∈ R and f, g
scalar functions on M,

a) DfX+gY Z = fDXZ + gDY Z

b) DX(αY + βZ) = αDXY + βDXZ (98)
c) DXfY = X(f)Y + fDXY

Therefore, at a point p,

DY ≡ Y α; β θ(β) ⊗ e(α) (99)

where the θ(β) are the one-forms of the dual basis respect to the orthonormal frame
e(β). Observe that Y α;β = θ(α)(De(β)Y ). On the other side, from c),

DfY = df ⊗ Y + fDY

so that
DY = D(Y αe(α)) = dY α ⊗ e(α) + Y αDe(α)

and finally, using df(·) = e(α)(f)θ(α)(·),

DY =
(
e(β)(Y α) + Y γθ(α)(De(β)e(γ))

)
θ(β) ⊗ e(α) (100)

Therefore

Y α;β = e(β)(Y α) + ΓαβγY
γ

and the connection is, therefore, determined by its connection coefficients,

Γαβγ = θ(α)(De(β)e(γ)) (101)

3Recall that a distribution π on U is said to be integrable if through every point p ∈ U there

passes a unique submanifold N , of dimension k, such that πp = TNp.
4For a proof see Spivak, citeSpivak, Vol.I, Chapter 6.
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which, in a coordinate basis, are the usual Christoffel symbols and have the expres-
sion

Γµρν = dxµ(D ∂
∂xρ

∂

∂xν
)

Finally

DXY =
(
X(Y α) + ΓαβγX

βY γ
)
e(α) (102)

In the particular case of a coordinate frame we have

DXY =
(
Xµ ∂Y

ν

∂xµ
+ ΓνρσX

ρY σ
)

∂

∂xν

A connection is said to be a Levi-civita connection if Dg = 0. That is, for any
three vector fields X,Y, Z,

Z(g(X,Y )) = g(DZX,Y ) + g(X,DZY ) (103)

A very simple and basic result of differential geometry asserts that for any given
metric there exists a unique affine connection associated to it.

Proposition 2.3. There exists a unique connection on M, called the Levi-Civita
connection, which satisfies D g = 0. The connection is torsion free, that is,

DXY −DYX = [X,Y ] .

Moreover, relative to a system of coordinates, xµ, the Christoffel symbol of the
connection is given by the standard formula

Γµρν =
1
2
gµτ (∂ρgντ + ∂νgτρ − ∂τgνρ) .

Exercise: Prove the proposition yourself, without looking in a book.

So far we have only defined the covariant derivative of a a vector field. We can
easily extend the definition to one forms A = Aαdx

a by the requirement that,

X(A(Y )) = DXA(Y ) +A(DXY ),

for all vectorfields X,Y . Given a k-covariant tensor field T we define its covariant
derivative DXT by the rule,

DXT (Y1, . . . , Yk) = XT (Y1, . . . , Yk)−
k∑
i=1

T (Y1, . . . ,DXYi, . . . , Yk)

We can talk about DT as a covariant tensor of rank k + 1 defined by,

DT (X,Y1, . . . , Yk) = DXT (Y1, . . . , Yk).

Given a frame eα we denote by Tα1... ,αk;β = DT (eβ , ea1 , . . . , eαk) the components
of DT relative to the frame. By repeated covariant differentiation we can define
D2T, . . .DmT. Relative to a frame eα we write,

Dβ1 . . .DβmTα1...αk = Tα1...αk;β1...βm = DmT (eβ1 . . . , eβm , eα1 , ..., eαk).
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The fact that the Levi-Civita connection is torsion free allows us to connect covari-
ant differentiation to the Lie derivative. Thus, if T is a k-covariant tensor we have,
in a coordinate basis,

(LXT )σ1...σk = XµTσ1...σk;µ +Xµ
;σ1
Tµσ2...σk + ....+Xµ

;σk
Tσ1...σk−1µ .

The covariant derivative is also connected to the exterior derivative according to
the following simple formula. If A is a k-form, we have5 A[σ1...σk;µ] = A[σ1...σk,µ]

and
dA =

∑
Aσ1...σk;µdx

µ ∧ dxσ1 ∧ dxσ2 ∧ .... ∧ dxσk .

Given a smooth curve x : [0, 1] → M, parametrized by t, let T =
(
∂
∂t

)
x

be the
corresponding tangent vector field along the curve. A vector field X, defined on
the curve, is said to be parallelly transported along it if DTX = 0. If the curve
has the parametric equations xν = xν(t), relative to a system of coordinates, then
Tµ = dxµ

dt and the components Xµ = Xµ(x(t)) satisfy the ordinary differential
system of equations

D
dt
Xµ ≡ dXµ

dt
+ Γµρσ(x(t))

dxρ

dt
Xσ = 0 .

The curve is said to be geodesic if, at every point of the curve, DTT is tangent
to the curve, DTT = λT . In this case one can reparametrize the curve such that,
relative to the new parameter s, the tangent vector S =

(
∂
∂s

)
x

satisfies DSS= 0 .
Such a parameter is called an “affine parameter”. The affine parameter is defined
up to a transformation s = as′+b for a, b constants. Relative to an affine parameter
s and arbitrary coordinates xµ the geodesic curves satisfy the equations

d2xµ

ds2
+ Γµρσ

dxρ

ds

dxσ

ds
= 0 .

A geodesic curve parametrized by an affine parameter is simply called a geodesic.
In Lorentzian geometry timelike geodesics correspond to world lines of particles
freely falling in the gravitational field represented by the connection coefficients. In
this case the affine parameter s is called the proper time of the particle.

Given a point p ∈ M and a vector X in the tangent space TpM, let x(t) be the
unique geodesic starting at p with “velocity” X. We define the exponential map:

expp : TpM→M .

This map may not be defined for all X ∈ TpM. The theorem of existence and
uniqueness for systems of ordinary differential equations implies that the exponen-
tial map is defined in a neighbourhood of the origin in TpM. If the exponential
map is defined for all TpM, for every point p the manifold M is said geodesically
complete. In general if the connection is a Cr connection6 there exists an open
neighbourhood U0 of the origin in TpM and an open neighbourhood of the point

5[σ1...σk;µ] indicates the antisymmetrization with respect to all indices (i.e. 1
k!

(alternating

sum of the tensor over all permutations of the indices)) and “, µ” indicates the ordinary derivative

with respect to xµ.
6A Cr connection is such that if Y is a Cr+1 vector field then DY is a Cr vector field.
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p in M, Vp, such that the map expp is a Cr diffeomorphism of U0 onto Vp. The
neighbourhood Vp is called a normal neighbourhood of p.

3. Riemann curvature tensor, Ricci tensor, Bianchi identities

In the flat spacetime if we parallel transport a vector along any closed curve we
obtain the vector we have started with. This fails in general because the second
covariant derivatives of a vector field do not commute. This lack of commutation
is measured by the Riemann curvature tensor,

R(X,Y )Z = DX(DY Z)−DY (DXZ)−D[X,Y ]Z (104)

or written in components relative to an arbitrary frame,

Rαβγδ = θ(α)
(
(DγDδ −DδDγ)e(β)

)
(105)

Relative to a coordinate system xµ and written in terms of the gµν components,
the Riemann components have the expression

Rµνρσ =
∂Γµσν
∂xρ

−
∂Γµρν
∂xσ

+ ΓµρτΓτσν − ΓµστΓτρν (106)

The fundamental property of the curvature tensor, first proved by Riemann, states
that if R vanishes identically in a neighbourhood of a point p one can find families
of local coordinates such that, in a neighbourhood of p, gµν = mµν

7.

The trace of the curvature tensor, relative to the metric g, is a symmetric tensor
called the Ricci tensor,

Rαβ = gγδRαγβδ

The scalar curvature is the trace of the Ricci tensor

R = gαβRαβ .

The Riemann curvature tensor of an arbitrary spacetime (M,g) has the following
symmetry properties,

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ

Rαβγδ + Rαγδβ + Rαδβγ = 0 (107)

The second identity in (107) is called the first Bianchi identity.

It also satisfies the second Bianchi identities, which we refer to here as the Bianchi
equations and, in a generic frame, have the form:

D[εRγδ]αβ = 0 (108)

The traceless part of the curvature tensor, C is called the Weyl tensor, and has the
following expression in an arbitrary frame,

Cαβγδ = Rαβγδ −
1

n− 1
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ)

+
1

n(n− 1)
(gαγgβδ − gαδgβγ)R (109)

7For a thorough discussion and proof of this fact, refer to Spivak, [?], Vol. II.
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Observe that C verifies all the symmetry properties of the Riemann tensor:

Cαβγδ = −Cβαγδ = −Cαβδγ = Cγδαβ

Cαβγδ + Cαγδβ + Cαδβγ = 0 (110)

and, in addition, gαγCαβγδ = 0 .

We say that two metrics g and ĝ are conformal if ĝ = λ2g for some non zero
differentiable function λ. Then the following theorem holds (see Hawking- Ellis,
[?], chapter 2, section 2.6):

Theorem 3.1. Let ĝ = λ2g, Ĉ the Weyl tensor relative to ĝ and C the Weyl tensor
relative to g. Then

Ĉα
βγδ = Cα

βγδ .

Thus C is conformally invariant.

3.2. Isometries and conformal isometries, Killing and conformal Killing
vector fields.

Definition 3.3. A diffeomorphism Φ : U ⊂ M → M is said to be a conformal
isometry if, at every point p, Φ∗g = Λ2g, that is,

(Φ∗g)(X,Y )|p = g(Φ∗X,Φ∗Y )|Φ(p) = Λ2g(X,Y )|p
with Λ 6= 0. If Λ = 1, Φ is called an isometry of M.

Definition 3.4. A vector field K which generates a one parameter group of isome-
tries (respectively, conformal isometries) is called a Killing (respectively, conformal
Killing) vector field.

Let K be such a vector field and Φt the corresponding one parameter group. Since
the (Φt)∗ are conformal isometries, we infer that LKg must be proportional to the
metric g. Moreover LKg = 0 if K is a Killing vector field.

Definition 3.5. Given an arbitrary vector field X we denote (X)π the deformation
tensor of X defined by the formula

(X)παβ = (LXg)αβ = DαXβ + DβXα .

The tensor (X)π measures, in a precise sense, how much the diffeomorphism gener-
ated by X differs from an isometry or a conformal isometry. The following Propo-
sition holds, (see Hawking-Ellis, citeHawkEll, chapter 2, section 2.6):

Proposition 3.6. The vector field X is Killing if and only if (X)π = 0. It is
conformal Killing if and only if (X)π is proportional to g.

Remark: One can choose local coordinates such that X = ∂
∂xµ . It then immedi-

ately follows that, relative to these coordinates the metric g is independent of the
component xµ.

Proposition 3.7. On any pseudo-riemannian spacetime M, of dimension n =
p + q, there can be no more than 1

2 (p + q)(p + q + 1) linearly independent Killing
vector fields.
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Proof: Proposition 3.7 is an easy consequence of the following relation, valid for
an arbitrary vector field X, obtained by a straightforward computation and the use
of the symmetries of R.

DβDαXλ = RλαβδX
δ + (X)Γαβλ (111)

where

(X)Γαβλ =
1
2

(Dβπαλ + Dαπβλ −Dλπαβ) (112)

and π ≡ (X)π is the X deformation tensor.

If X is a Killing vector field equation (111) becomes

Dβ(DαXλ) = RλαβδX
δ (113)

and this implies, in view of the theorem of existence and uniqueness for ordinary
differential equations, that any Killing vector field is completely determined by the
1
2 (n+ 1)(n+ 2) values of X and DX at a given point. Indeed let p, q be two points
connected by a curve x(t) with tangent vector T . Let Lαβ ≡ DαXβ , Observe that
along x(t), X,L verify the system of differential equations

D
dt
X = T · L ,

D
dt
L = R(·, ·, X, T )

therefore the values of X,L along the curve are uniquely determined by their values
at p.

The n-dimensional Riemannian manifold which possesses the maximum number of
Killing vector fields is the Euclidean space Rn. Simmilarily the Minkowski space-
time Rn+1 is the Lorentzian manifold with the maximum numbers of Killing vec-
torfields.

3.8. Laplace-Beltrami operator. The scalar Laplace-Beltrami operator on
a pseudo-riemannian manifold M is defined by,

∆Mu(x) = gµνDµDνu (114)

where u is a scalar function on M. Or, in local coordinates,

∆Mu(x) =
1√
|g(x)|

∂µ(gµν
√
|g(x)|∂ν)u(x) (115)

The Laplace-Beltrami operator is called D’Alembertian in the particular case of a
Lorentzian manifold, and is then denoted by �M. On any pseudo-riemannian man-
ifold, ∆M is symmetric relative to the following scalar product for scalar functions
u, v:

(u, v)M =
∫
u(x)v(x)dvM
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Indeed the following identities are easily established by integration by parts, for
any two smooth, compactly supported8 functions u, v,

(−∆u, v)M =
∫
M

∇u · ∇v dvM = (u,−∆v)M (116)

where∇u·∇v = gij∂iu∂jv. In the particular case when u = v we derive, (−∆u, v)M =∫
M
|∇u|2, with |∇u|2 = ∇u · ∇u. Thus, −∆ = −∆M is symmetric for functions

u ∈ C∞0 (M). It is positive definite if the manifold M is Riemannian. This is not
the case for Lorentzian manifolds: �M is non-definite.

4. Geometry of space-like hypersurfaces

Consider a spacelike hypersurface Σ in M,g with unit future normal T . We define
the induced metric (or first fundamental form) g and second fundamental form k,

g(X,Y ) = g(X,Y ), k(X,Y ) = −g(DXT, Y ) ∀X,Y ∈ T (Σ) (117)

Remark that k is symmetric. Indeed since [X,Y ] ∈ T (Σ),

k(X,Y )− k(Y,X) = −g(T, [X,Y ]) = 0.

Denoting by ∇ the induced covariant derivative operator on Σ we have, for any
X,Y ∈ T (Σ),

DXY = ∇XY − k(X,Y )T (118)

To understand the geometric significance of k we extend T to a neighborhood U of
Σ by parallel transporting it along the geodesics perpendicular to Σ, i.e.

DTT = 0

Clearly we continue to have g(T, T ) = −1. Also, given any vectorfield X on Σ we
extend, it along the same geodesics, by solving the differential equation,

[T,X] = 0.

Observe that,

Tg(T,X) = g(DTT,X) + g(T,DTX) = g(T,DXT ) =
1
2
Xg(T, T ) = 0.

Since g(T,X) = 0 on Σ we infer that the extended vectorfields X remain orthogonal
to the extended T in the neighborhood U of Σ.

Let t be the proper time along these geodesics (i.e. T (t) = 1), with t = 0 on Σ, and
let Σt its level hypersurfaces, Observe that,

TX(t) = XT (t) = X(1) = 0.

Hence, since X is tangent to Σ and t = 0 on Σ we infer that X(t) = 0 in U . In
other words the extended vectors X are tangent to Σt. Clearly, the tangent space
of Σt is spanned by these extended vectorfields, and since they are perpendicular to

8This is automatically satisfied if the manifold M is compact.
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both T and the gradient gµνDµt we deduce that T and gµνDµt are proportional.
Since T (t) = 1 and g(T, T ) = −1 we infer that,

Tµ = −gµνDνt (119)

In particular t verifies the equation,

gµνDνtDµt = −1

Given the extended T and two such extended X,Y of tangent vectorfields on Σ we
have,

LTg(X,Y ) = Tg(X,Y ) = g(DTX,Y ) + g(DTY,X) = 2g(DXT, Y ) = −2k(X,Y ).

Denoting by g the restriction of g to Σt we deduce,

k(X,Y ) = −1
2
Tg(X,Y ). (120)

On the other hand, since [X,T ] = [Y, T ] = 0 we can compute the second variation
of g in the T direction as follows

TK(X,Y ) = −Tg(DXT, Y ) = −g(DTDXT, Y )− (DXT,DT , Y )
= −g(DXDTT, Y ) +R(X,T, Y, T )− (DXT,DY T )
= R(X,T, Y, T )− k2(X,Y )

where, in an arbitrary frame e1, . . . en on Σ,

k2(X,Y ) =
n∑
i=1

k(X, ei)k(Y, ei).

We have thus derived the second variation formula,

TK(X,Y ) = R(X,T, Y, T )− k2(X,Y ) (121)

Now, let (ei)i=1...n be an orthonormal frame on Σ. The frame e0 = T, e1, . . . en is
a spacetime orthonormal frame along Σ. We have,

Diej = ∇iej − kijT
DiT = −kijej

(122)

where Di denotes Dei . Given a 1 form A on our manifold we recall,

Ai;j = DjAi = DA(ei; ej) = ej(Ai)−ADiej

Ai;jm = DmDjAi = D2A(ei; ej , em)
= em(DjAi)−DDmejAi −DjADmei

If A is tangent to Σ (which we can extend smoothly to a neighborhood of Σ) we
derive, using (122),

Ai;j = Ai||j

Ai;jm = Ai;||jm + kimkjsA
s + kmjDTAi

Ai;mj = Ai;||mj + kijkmsA
s + kjmDTAi

Therefore, subtracting,

Ai;jm −Ai;mj = Ai;||jm −Ai;||mj + (kimkjs − kijkms)As
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On the other hand, in M

Ai;jm −Ai;mj = −Risjm

and in Σ,

Ai;||m −Ai||mj = −Risjm
We thus derive the Gauss equation,

Risjm = Risjm + kijkms − kimkjs (123)

Now, letting Tµ be the one form obtained by lowering the indices of T we derive,

Ti;mj = −kim||j + kmjDTT

Ti;jm = −kij||m + kjmDTT

Hence,

Ti;mj − Ti;jm = −(kim||j − kij||m)

from which we derive,

Riojm = ∇mkij −∇jkim (124)

We summarize the results obtained so far in the following:

Proposition 4.1. Let Σ be a spacelike hypersurface with induced metric g and
second fundamental form k.

(1) If X,Y, Z,W are arbitrary vectorfields tangent to Σ we have the Codazzi
equations,

∇Xk(Y, Z)−∇Y k(X,Z) = R(T,Z,X, Y ) (125)

and the Gauss equations,

R(X,Y, Z,W ) + k(X,Z)k(Y,W )− k(X,W )k(Y, Z) = R(X,Y, Z,W ) (126)

(2) Extend T and X ∈ T (Σ) to a neighborhood of Σ such that DTT = 0 and
[T,X]=0. We have the first and second variations of g,

Tg(X,Y ) = −2k(X,Y ), Tk(X,Y ) = R(X,T, Y, T ) (127)
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