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CHAPTER 1

Basic Tools of Analysis

1. Distribution Theory

This is a very short summary of distribution theory, for more exposure to the subject
I suggest F.G. Friedlander and M. Joshi’s excellent book Introduction to the Theory
of Distributions, [3]. Hörmander’s first volume of The Analysis of Linear Partial
Differential Operators, [5], in Springer can also be useful.

Notation. Throughout these notes we use the notation A . B to mean a ≤ cB
where c is a numerical constant, independent of A,B.

1.1. Test Functions. Distributions. We start with some standard nota-
tion. We denote vectors in Rn by x = (x1, . . . , xn) and set λx = (λx1, . . . , λxn),
x+ y = (x1 + y1, . . . , xn + yn). We denote by x · y the standard scalar product and
by |x| = (x · x)

1
2 the Euclidean length of x. Given a function f : Ω→ C we denote

by supp(f) the closure in Ω of the set where f(x) 6= 0. We denote by Ck(Ω) the set
of complex valued functions on Ω which are k times continuously differentiable and
by Ck0 (Ω) the subset of those which are also compactly supported. We also denote
by C∞(Ω) = ∩k∈NCk(Ω) the space of infinitely differentiable functions; C∞0 (Ω) the
subset of those which also have compact support. The latter plays a particularly
important role in the theory of distributions; it is called the space of test functions
on Ω.

Let Ω ⊂ Rn and f ∈ C∞(Ω). We denote by ∂if the partial derivative ∂f
∂xi

, i =
1, . . . , n. For derivatives of higher order we use the standard multi-index notation.
A multi-index α is an n-tuple α = (α1, . . . , αn) of nonnegative integers with length
|α| = α1+· · ·+αn. Set α+β = (α1+β1, . . . , αn+βn). We denote by α! the product
of factorials α1! · · ·αn!. Now set ∂αf = ∂α1

1 · · · ∂αnn f . Clearly ∂α+βf = ∂α∂βf .
Given two smooth functions u, v we have the Leibnitz formula,

∂α(u · v) =
∑

β+γ=α

α!
β!γ!

∂βu∂γv.

Taylor’s formula, around the origin, for a smooth function f : Rn → C can be
written as follows,

f(x) =
∑
|α|≤k

1
α!
∂αf(0)xα +O(|x|k+1) as x→ 0.

Here xα denotes the monomial xα = xα1
1 · · ·xαnn .

3
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Proposition 1.2. Let f ∈ Ck0 (Rn), 0 ≤ k < ∞. Let ρ be a test function, i.e.
ρ ∈ C∞0 (Rn) with supp(ρ) ⊂ B(0, 1), the ball centered at the origin of radius 1, and∫
ρ(x)dx = 1. We set ρε(x) = ε−nρ(x/ε) and let

fε(x) = f∗ρε(x) = ε−n
∫
f(y)ρ(

x− y
ε

)dy =
∫
f(x− εz)ρ(z)dz.

We have:

(1) The functions fε are in C∞0 (Rn) and supp(fε) ⊂ supp(f) +B(0, ε).
(2) We have ∂αfε−→∂αf uniformly as ε→ 0.

Proof : The first part of the proposition follows immediately from the definition
since the statement about supports is immediate and, by integration by parts, we
can transfer all derivatives of fε on the smooth part of the integrand ρε. To prove
the second statement we simply write,

∂αfε(x)− ∂αf(x) =
∫ (

∂αf(x− εz)− ∂αf(x)
)
ρ(z)dz.

Therefore, for |α| ≤ k,

|∂αfε(x)− ∂αf(x)| ≤
∫
|∂αf(x− εz)− ∂αf(x)||ρ(z)|dz

≤
∫
|ρ(z)|dz sup

|z|≤1

|∂αf(x− εz)− ∂αf(x)|

. sup
|z|≤1

|∂αf(x− εz)− ∂αf(x)|

The proof follows now easily in view of the uniform continuity of the functions ∂αf .

As a corollary of the Proposition one can easily check that the space of test functions
C∞0 (Ω) is dense in the spaces Ck(Ω) as well as Lp(Ω), 1 ≤ p <∞.

Definition 1.3. A distribution u ∈ D′(Ω) is a linear functional u : C∞0 (Ω) → C
verifying the following property:

For any compact set K ⊂ Ω there exists an integer N and a constant C = CK,N
such that for all φ ∈ C∞0 (Ω), with supp(φ) ⊂ K we have

| < u, φ > | ≤ C
∑
|α|≤N

sup |∂αφ|.

Equivalently a distribution u is a linear functional u : C∞0 (Ω)→ C which is contin-
uous (∗ ∗ ∗) in a certain nonmetrizable locally convex topology defined on C∞0 (Ω)
1. In this topology a sequence φj converges to 0 in C∞0 (Ω) if all the supports of φj

1This topology can be constructed as an inductive limit topology of Fréchet spaces CK , where
K ⊆ Ω is compact and CK is the space of all smooth functions supported in K, endowed with

a Fréchet space structure by the seminorms φ 7→ supK |∂αφ| for all multi-indices α. We do not,

however, need the precise definition.
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are included in a compact subset of Ω and, for each multi-index α, ∂αφj → 0 in
the uniform norm. We have in fact the following characterization of distributions:

Proposition 1.4. A linear form u : C∞0 (Ω) −→ C is a distribution in D′(Ω) iff
limj→∞ u(φj) = 0 for every sequence of test functions φj which converges to 0, in
C∞0 (Ω), as j →∞.

Proof : This proof can be found in Friedlander, section 1.3, Theorem 1.3.2.

Example 1: Any locally integrable function f ∈ L1
loc(Ω) defines a distribution,

< f, φ >=
∫
fφ, ∀φ ∈ C∞0 (Ω).

We can thus identify L1
loc(Ω) as a subspace of D′(Ω). This is true in particular for

the space C∞(Ω) ⊂ L1
loc(Ω).

Example 2: The Dirac measure with mass 1 supported at x0 ∈ Rn is defined
by,

< δx0 , φ >= φ(x0).
Remark: We shall often denote the action of a distribution u on a test function
by u(φ) instead of < u, φ >. Thus δx0(φ) = φ(x0).

Definition 1.5. A sequence of distributions uj ∈ D′(Ω) is said to converge, weakly,
to a distribution u ∈ D′(Ω) if, uj(φ)→ u(φ) for all φ ∈ C∞0 (Ω).

For example the sequence um = eimx converges weakly to 0 in D′(R) as m → ∞.
Also if f ∈ L1(Rn), with

∫
Rn f(x)dx = 1, the family of functions fλ(x) = λnf(λx)

converges weakly to δ0 as λ→∞.

1.6. Operations with distributions. The advantage of working with the
space of distributions is that while this space is much larger than the space of
smooth functions most important operations on test functions can be carried over
to distributions.

1. Multiplication with smooth functions: Given u ∈ D′(Ω) and f ∈ C∞(Ω)
we define,

< fu, φ >=< u, fφ >, ∀φ ∈ C∞0 (Ω).
It is easily verified that multiplication with a smooth function is a continuous
endomorphism of the space of distributions.

2. Convolution with a test-function: Consider, u ∈ D′(Rn), φ ∈ C∞0 (Rn).
Generalizing the convolution of 2 functions in a natural way, we define

u∗φ(x) =< uy, φ(x− y) >,

the subscript specifying that u is understood to be acting on functions of the variable
y. Observe that the definition coincides with the usual one if u is a locally integrable
function, u ∈ L1

loc(Rn).
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Remark: Observe that for every distribution u ∈ D′(Rn) and φ ∈ C∞0 (Rn) we
have u∗φ ∈ C∞(Rn). Indeed, e.g. letting ek denote a standard unit vector,

u∗φ(x+ hek)− u∗φ(x)
h

= h−1 < uy, φ(x+ hek − y)− φ(x− y) >

= < uy,

∫ 1

0

∂kφ(x+ thek − y)dt > .

Now if x ∈ K, for some compact set K ⊂ Rn, then for every sequence hi → 0,
the associated sequence of functions y 7→

∫ 1

0
∂kφ(x + thiek − y)dt, together with

all its derivatives, converge uniformly toward ∂kφ(x − y) and its corresponding
derivatives. Moreover they are all compactly supported with supports contained in
some compact set K ′. Therefore,

lim
h→0

u∗φ(x+ hek)− u∗φ(x)
h

= u∗∂kφ(x).

and thus u∗φ has continuous partial derivatives. We can continue in this manner
and conclude that in fact u∗φ ∈ C∞(Rn).

3. Differentiation of distributions: For every distribution u ∈ D′(Ω) we define

< ∂αu, φ >= (−1)|α| < u, ∂αφ > .

Again, it is easily verified that we have thus defined a continuous endomorphism
of the space of distributions. Of course, the operations above were defined so as to
extend the usual operations on smooth functions.

We can now define the action of a general linear partial differential operator on
distributions. Indeed let,

P (x, ∂) =
∑
|α|≤m

aα∂
α, aα ∈ C∞(Ω),

be such an operator. Then,

< P (x, ∂)u, φ >=< u,P (x, ∂)†φ >,

where P (x, ∂)† is the formal adjoint operator,

P (x, ∂)†v =
∑
|α|≤m

(−1)|α|∂α(aαv).

Observe that if uj ∈ D′(Ω) converges weakly to u ∈ D′(Ω) then P (x, ∂)uj converges
weakly to P (x, ∂)u.

Exercise. Show that for all u ∈ D′(Ω) there exists a sequence uj ∈ C∞0 (Ω) such
that uj → u as j → ∞ in the sense of distributions( weak convergence). Thus
C∞0 (Ω) is dense in D′(Ω), with respect to the weak topology of the latter.

1.7. Example of distributions on the real line.

1.) The simplest nontrivial distribution is the Dirac function δ0 = δ0(x), defined
by < δ0(x), φ >= φ(0).



1. DISTRIBUTION THEORY 7

2.) Another simple example is the Heaviside function H(x) equal to 1 for x > 0
and zero for x ≤ 0. Or, using the standard identification between locally integrable
functions and distributions,

< H(x), φ >=
∫ ∞

0

φ(x)dx.

Observe that H ′(x) = δ0(x).
3.) A more elaborate example is pv( 1

x ), or simply 1
x , called the principal value

distribution,

<
1
x
, φ >= lim

ε→0

( ∫ −ε
−∞

1
x
φ(x)dx+

∫ ∞
ε

1
x
φ(x)dx

)
.

Observe that log |x| is locally integrable and thus a distribution by the standard
identification. It is easy to check that d

dx log |x| = pv( 1
x ).

Exercise. Let, for z ∈ C with 0 < arg(z) < π, log z = log |z|+ iarg(z). We can
regard x → log z = log(x + iy) as a family of distributions depending on y ∈ R+.
For x 6= 0 we have limy→0+ log z = log |x| + iπ

(
1 −H(x)

)
. Show that as y → 0 in

R+, ∂x log z converges weakly to a distribution 1
x+i0 and,

1
x+ i0

= x−1 − iπδ0(x).

We now define an important family of distributions χz+, with z ∈ C, by analytic
continuation. For this we first recall the definition of the Gamma function,

Definition 1.8. For Re(z) > 0 we define

Γ(z) =
∫ ∞

0

e−ttz−1dt (1)

as well as the Beta function,

B(a, b) =
∫ 1

0

sa−1(1− s)b−1ds (2)

Clearly Γ(a) = aΓ(a− 1) and Γ(0) = 1. Thus Γ(n) = n!. Recall that the following
identity holds:

B(a, b) =
Γ(a) · Γ(b)
Γ(a+ b)

(3)

We also record for future applications,

Γ(a)Γ(1− a) = B(a, 1− a) =
π

sin(πa)
(4)

In particular Γ(1/2) = π1/2.

Exercise. Prove formulas (12) and (13). For help see Hörmander, [5] section 3.4.

Definition 1.9. For Re(a) > 0, we denote by ja(λ) the locally integrable function
which is identically zero for λ < 0 and

ja(λ) =
1

Γ(a)
λa−1, λ > 0. (5)
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The following proposition is well known,

Proposition 1.10. For all a, b, Re(a), Re(b) > 0,

ja ∗ jb = ja+b

Proof : We have,

ja ∗ jb(λ) =
1

Γ(a)
1

Γ(b)

∫ λ

0

µa−1(λ− µ)b−1dµ

=
1

Γ(a)
1

Γ(b)
λa+b−1

∫ 1

0

sa−1(1− s)b−1ds

=
B(a, b)

Γ(a) · Γ(b)
λa+b−1 =

1
Γ(a+ b)

λa+b−1 = ja+b(λ)

Proposition 1.11. There exists a family of distribution ja, defined for all a ∈ C,
which coincide with the functions ja for Re(a) > 0, such that, ja ∗ jb = ja+b,
d
dλja(λ) = ja−1(λ) and j0 = δ0, the Dirac delta function at the origin. Moreover
for all positive integers m, j−m(x) = ∂mx δ0(x).

Proof : The proof is based on the observation that d
dλja(λ) = ja−1(λ). Thus, for

a test function φ, ∫
R
ja−1(λ)φ(λ)dλ = −

∫
R
ja(λ)φ′(λ)dλ

Based on this observation we define, for every a ∈ C such that Re(a) + m > 0 as
distribution

< ja, φ >= (−1)m
∫ ∞

0

ja+m(λ)φ(m)(λ)dλ

In particular,

< j0, φ >= −
∫ ∞

0

j1(λ)φ′(λ)dλ = −
∫ ∞

0

φ′(λ)dλ = φ(0)

Hence j0 = δ0. It is also easy to see that ja∗jb = ja+b for all a, b ∈ C.

Remark: In applications one often sees the family of distributions χa+ = ja+1.
Clearly χa+ ∗χb+ = χa+b+1

+ and χ−1
+ = δ0. Observe also that χa+ is homogeneous of

degree a, i.e. , χa+(tλ) = taχa+(λ), for any positive constant t. This clearly makes
sense for Re(a) > −1 when χa+ is a function. Can you also make sense of it for all
a ∈ C ?

1.12. Support of a distribution. The support of a distribution can be easily
derived as follows:

Definition 1.13. For u ∈ D′(Ω), we define the complement of the support of u,

Ω\supp(u) = {x ∈ Ω |∃Vx 3 x open, such that < u, φ >= 0 ∀φ ∈ C∞0 (Vx)}.
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Lemma 1.14. If u ∈ D′(Ω) and φ is a test function with supp(φ) ⊂ Ω\supp(u),
then < u, φ >= u(φ) = 0.

Proof : This follows easily by a partition of unity argument. The argument can
be found in Friedlander, section 1.4.

Proposition 1.15. A distribution u ∈ D′(Rn) has compact support K ⊂ Rn iff
there exists N ∈ N such that ,∀φ ∈ C∞0 (Rn) we have

|u(φ)| ≤ C sup
x∈U

∑
|α|≤N

|∂αφ(x)|,

where U is an arbitrary open neighborhood of K.

Proof : This is seen by using a cutoff function which is identically 1 on the support
of the distribution.

Remark: Note that if we endow C∞(Rn) with the Frechet topology induced by the
family of seminorms given by φ→ supKi |∂

αφ|, with α ∈ Nn and Ki running over
a countable collection of compact sets exhausting Rn, then the space of compactly
supported distributions can be identified with C∞(Rn)∗, i.e. the space dual to
C∞(Rn).

We have the following useful fact concerning the structure of distributions supported
at one point.

Proposition 1.16. Let u ∈ D′(Rn) and assume that supp(u) ⊂ {0}. Then we
have u =

∑
|α|≤N aα∂

α(δ0), for some integer N , complex numbers aα and δ0 the
Dirac measure in Rn supported at 0.

Proof : See Friedlander, [3], Theorem 3.2.1 or Hörmander, [5], Theorem 2.3.4.

In this context, it is important to observe that the convolution of two distributions
cannot be defined in general, but only when certain conditions on the support of
the distributions are satisfied. We note in particular the fact that if u1, u2 ∈ D′(Rn)
one of which is compactly supported, then the convolution u1∗u2 can be defined.
Indeed, assuming u2 to be compactly supported, we simply define, (∗ ∗ ∗)

(u1∗u2)∗φ = u1∗(u2∗φ), ∀φ ∈ C∞0 (Rn).

Here, supp(u2∗φ) ⊂ {x + y : x ∈ supp(u2), y ∈ supp(φ)}, hence a compact set.
This definition extends the classical convolution for functions.

1.17. Pull back of distributions. Consider first the case of a C∞ diffeomor-
phism f : Ω → Ω′ and let u a distribution on Ω′. Then the pull-back f∗u is a
distribution in Ω defined by,

< f∗u, φ >=< u(y), g∗φ(y)|det Jg(y)| >, φ ∈ C∞0 (Ω)
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where g = f−1 and g∗φ(y) = φ(g(y)) and Jg(y) is the jacobian of the map y →
g(y). It is easy to see that this definition is meaningful and that it coincides with
the standard change of variable rule when u is a smooth function. Moreover the
derivatives of f∗u can be computed by the standard chain rule.

Next we consider the pull back corresponding to a function f : Ω → R. This
procedure allows us to use the definition of some distributions on the real line to
obtain interesting distributions in Rn.

Definition 1.18. Let f : Rn → R be a smooth map with surjective differential
everywhere. If u ∈ D′(R) we can define its pull-back f∗(u) as follows:

Let x ∈ Rn such that2 ∂x1f(x) 6= 0 on a neighborhood U 3 x. Hence the map
y ∈ U → (f(y1, y

′), y′) ∈ Rn, with y′ = (y2, . . . , yn), is a local diffeomorphism.
Now we set, for every test function φ supported in U,

f∗(u)(φ) = uy1
( ∫

φ(f(y1, y
′), y′)|∂y1f(y1, y

′)|−1dy′
)
,

In this definition, uy1 indicates that u operates on functions depending on the y1-
variable. Since we can proceed in this fashion for every point in Rn, we can define
the pullback of u via f globally by patching the local definitions together via a
partition of unity.

Example: If f is as above, then we can explicitly obtain the pullback of the
delta function δ0, namely f∗(δ0) = 1

|∇f |dσ. Here, dσ denotes the canonical surface
measure on the embedded sub-manifold f−1(0) ⊂ Rn and ∇f denoted the gradient
of f .

In connection with the above example, it is useful to observe that if f , g are
two smooth functions on Rn with non-vanishing differential everywhere, then the
following equality holds in the sense of distributions for all a, b ∈ Rn:∫

δ0(f(a)− x)δ0(g(b)− x)dx = δ0(f(a)− g(b)).

Both sides are to be interpreted as distributions on Rn×Rn. To check this, one com-
pletes the map (a, b) ∈ Rn × Rn → f(a)− g(b) ∈ R to a local diffeomorphism, e.g.
assuming that ∂a1f(a) 6= 0, ∂b1g(b) 6= 0, as follows: (a, b)→ (f(a)−g(b), g(b), a′, b′),
where a′, b′ denote (a2, . . . , an), (b2, . . . , bn). Using the above definition of the pull-
back of distributions and the fact that the determinant of the Jacobian of this map
is the product of the Jacobians of the maps a→ (f(a), a′), b→ (g(b), b′), the claim
easily follows.

Remark. One cannot define, in general, a meaningful, associative, product of
distributions. Why not? Produce an example of three distributions on the real line
whose product, if defined, could not be associative.

2by surjectivity of the differential, we may always assume this.
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1.19. Fundamental solutions. Given a linear partial differential operator
with constant coefficients P (∂) =

∑
|α|≤k aα∂

α, with aα ∈ C, we say that a dis-
tribution E is a fundamental solution if it verifies P (∂)E = δ0. If this is the case
then we can always find solution of the equation P (∂)u = f , where f ∈ D′(Rn)
is a compactly supported distribution, by setting u = E∗f . This follows easily
from the following proposition together with the observation that δ0∗u = u for any
u ∈ D′(Rn).

Proposition 1.20. Assume u, v ∈ D′(Rn) one of which is compactly supported.
Then,

P (∂)(u∗v) = P (∂)u∗v = u∗P (∂)v.

(∗ ∗ ∗) The question of the existence of such fundamental solutions was answered
(independently) by Malgrange and Ehrenpreis:

Theorem 1.21 (Ehrenpreis, Malgrange). Any linear partial differential operator
P (∂) with constant coefficients has a fundamental solution.

We omit the proof, which involves elementary Fourier and functional analysis.

In what follows we shall calculate the fundamental solution for some special im-
portant differential operators such as the Laplacian ∆ =

∑n
i=1 ∂

2
i in Rn, and the

D’Alembertian � = −∂2
t + ∆ in Rn+1. We also consider the Heat operator ∂t −∆

and Schrödinger operator i∂t + ∆.

1.) (∗ ∗ ∗) Laplace Operator ∆. The Laplace operator ∆ is invariant under trans-
lations and rotations, that is the group of rigid motions. Thus, it makes sense to
look for spherically symmetric solutions.

Proposition 1.22. Define, for all n ≥ 3, Kn(x) =
(
(2− n)ωn

)−1|x|2−n while, for
n = 2, K2(x) = (2π)−1 log |x|. Here ωn denotes the area of the unit sphere Sn−1.
Then, for all n ≥ 2,

∆Kn = δ0.

Remark. By a direct calculation, ∆Kn vanishes away from the origin and therefore
can be expressed as a sum of derivatives of δ0. By homogeneity considerations we
can easily infer that ∆Kn(x) = cδ0 for some constant c.

Proof : We prove the case n > 2; the proof for n = 2 is completely analogous. By
definition, we have for each test function φ,

〈∆Kn, φ〉 = 〈Kn,∆φ〉 = lim
ε↘0

∫
r≥ε

Kn(x)∆φ(x)dx
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where r = |x|. Letting Iε denote the integral under the limit, then integration by
parts yields

Iε = −
∫
r=ε

Kn∂rφdSε +
∫
r≥ε
∇Kn · ∇φ

=
∫
r=ε

(−Kn∂rφ+ ∂rKn · φ)dSε +
∫
r≥ε

∆Kn · φ

=
∫
r=ε

(−Kn∂rφ+ ∂rKn · φ)dSε

where dSε denotes the volume element of the sphere r = ε. The last step follows
since by direct calculation, ∆Kn vanishes away from the origin.

Letting dS denote the volume element of the unit sphere Sn−1, a rescaling yields

Iε = εn−1

∫
Sn−1

(−Kn(εω) · ∂rφ(εω) + ∂rKn(εω) · φ(εω))dS(ω)

= ((2− n)ωn)n−1ε

∫
Sn−1

∂rφ(εω)dS(ω) + ω−1
n

∫
Sn−1

φ(εω)dS(ω)

Letting ε ↘ 0, the first term vanishes, while the second term goes to φ(0), as
desired.

With some basic knowledge of differential geometry, we can shorten the above
computations. In polar coordinates x = rω, r > 0, |ω| = 1, ∆ takes the form,

∆ = ∂2
r +

n− 1
r

∂r + r−2∆Sn−1 ,

where ∆Sn−1 is the Laplace -Beltrami operator on the unit sphere Sn−1.

Exercise. Recall that the Laplace-Beltrami operator on a Riemannian manifold
with metric g is given, in local coordinates xi by

∆gφ =
1√
|g|
∂i
(
gij
√
|g|∂jφ).

Here gij are the components of the inverse metric g−1 relative to the coordi-
nates xi. The volume element dSg on M is given, in local coordinates, by dSg =√
|g|dx1dx2 . . . dxn. Observe that, on compact manifold M ,∫

M

∆gu vdSg =
∫
M

u∆gvdSg.

Exercise 2. Calculate the Laplace-Beltrami operator for the unit sphere Sn−1

and check the polar decomposition formula for ∆. For the particular case n = 3,
relative to the coordinates x1 = r cos θ1, x2 = r sin θ1 cos θ2, x3 = r sin θ1 sin θ2,
θ1 ∈ [0, π), θ2 ∈ [0, 2π) show that,

∆S2 = ∂2
θ1 + cotanθ1 ∂θ1 +

1
sin2 θ1

∂2
θ2 .

Moreover the area element dSω takes the form, dSω = r2 sin θ1dθ1dθ2.
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Proof (geometric derivation): For a smooth function φ(x) = φ(rω), in polar co-
ordinates r = |x|, ω ∈ Sn−1 unit sphere in Rn, we have

∆φ =
(
∂2
r +

n− 1
r

∂r + r−2∆Sn−1

)
φ

= r−(n−1)∂r(rn−1∂rφ
)

+ r−2∆Sn−1φ

Thus passing to polar coordinates x = rω, with dx = rn−1drdSω, in the integral,

< ∆Kn, φ > = < Kn,∆φ >

=
∫
|ω|=1

∫ ∞
0

Kn(r)∂r
(
rn−1∂rφ

)
drdSω +

∫
|ω|=1

∫ ∞
0

Kn(r)∆Sn−1φdrdSω

=
(
(2− n)ωn

)−1
∫
|ω|=1

∫ ∞
0

r−n+2∂r
(
rn−1∂rφ

)
drdSω

= −
∫ ∞

0

r−n+1
(
rn−1∂rφ

)
dr = −

∫ ∞
0

∂rφ = φ(0)

we infer that, for n ≥ 3, ∆Kn = δ0 as desired. The case n = 2 can be treated in
the same manner.

Remark : Observe that, up to a constant, the expression of Kn(x) can be easily
guessed by looking for spherically symmetric solutions K = K(|x|). Indeed, the
equation ∆K = 0 reduces to the ODE, K ′′(r) + n−1

r K ′(r) = 0.

According to the general theory we can now solve the Poisson equation ∆u = f ,
for any smooth compactly supported f , by the formula,

u(x) =
∫

Rn
Kn(x− y)f(y)dy =

∫
Rn
Kn(y)f(x− y)dy. (6)

For n ≥ 3 we observe that the solution given by (15) decays to zero as |x| → ∞.
Indeed, for large |x| we can write (15) in the form

u(x) = cn|x|−(n−1)

∫
Rn

(1− |y|
|x|

)−(n−1)f(y)dy . |x|−(n−1),

due to the fact that f has compact support. We claim that the equation ∆u = f
has a unique solutions u(x) which decays at ∞ as x→∞ and therefore it must be
represented by the integral formula (15). For n = 2, on the other hand, we only
have |u(x)| . log |x|. Observe however that

|∂iu(x)| .
∫

R2
|∂iK2(x− y)||f(y)|dy . |x|−1

since |∂K2(x− y)| . |x− y|−1.

Proposition 1.23. For any f ∈ C∞0 (Rn), n ≥ 3 the equation ∆u = f has a unique
smooth solution which vanishes at infinity, i.e. tends to zero as |x| → ∞. The
solution is represented by (15). For n = 2 the same equation has a unique smooth
solution u(x) with lim|x|→∞

|u(x)|
|x| = 0 and |∂u(x)| → 0 as |x| → ∞. The solution

is represented by (15), up to an additive constant.
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Proof : By linearity it suffices to take f = 0. For n ≥ 3 we have to show
that ∆u = 0, with u vanishing at infinity, implies that u = 0. The result is an
easy consequence of Liouville’s theorem which states that every bounded harmonic3

function in Rn is constant. Liouville’s theorem follows from the maximum principle
for ∆ according to which the extreme values of a harmonic function, i.e. a solution
to ∆u = 0, in a domain D must be attained at the boundary of D. We shall return
to both Liouville’s theorem and the maximum principle later. However you can try
to prove directly the version of the maximum principle needed here. In the case
n = 2 we can use the same argument to show that the derivatives of a solution u(x)
of ∆u = 0, with the properties mentioned in the proposition, must vanish.

We shall now give an alternative, direct, proof of the fact that the function u(x)
defined by (15) is a solution of ∆u = f . Indeed,

∆u(x) =
∫

Rn
Kn(y)∆yf(x− y)dy.

We would like to integrate by parts and make use of the fact that ∆Kn(x) = 0
on Rn \ {0}. We cannot do it directly because the singularity at the origin. We
circumvent this difficulty by the standard trick of decomposing the integral I(x)
on the right into a regular part Rε(x) =

∫
Rn\Be Kn(y)∆yf(x− y)dy and a singular

part Sε =
∫
Bε
Kn(y)∆yf(x − y)dy where ε > 0 is an arbitrary small number and

Bε is the closed ball of radius ε centered at the origin. For the singular part Sε we
have, for n ≥ 3,

|Sε(x)| . ε2‖∂2f‖L∞
and therefore converges to zero as ε→ 0.

For the regular part,

Rε(x) =
∫

Rn\Be
Kn(y)∆yf(x− y)dy

we are allowed to integrate by parts. Doing it carefully by keeping track of the
boundary terms on ∂Bε and powers of ε we easliy infer that |Rε(x) − f(x)| tends
to zero as ε→ 0, for all values of x.

2.) D’Alembertian operator � . We shall next look of a fundamental solution for
the wave operator,

� = −∂2
t + ∆ = −∂2

t + ∂2
r +

n− 1
r

∂r + r−2∆Sn−1

in Rn+1. We look for solutions of the form4 φ(t, x) = f(ρ) where ρ = (t2−|x|2)1/2, in
the region |x| < t. By a simple calculation we find f ′′(ρ)+ n

r f
′(ρ) = 0 with solutions

f(ρ) = aρ−
n−1

2 + b. Therefore a good candidate for a fundamental solution must
have the form E = (t2 − |x|2)−

n−1
2 in the region t > |x|. To extend this definition

to all space Rn+1 and derive a distribution supported in the region {(t, x) : |x| ≤ t}
we are led to look at the pull back f∗(χ−

n−1
2

+ ) of the one dimensional distribution

3Solutions to ∆u = 0 are called harmonic.
4In other words we look for solutions invariant under Lorentz transformations. We shall

discuss later and in more detail the geometric significance of the wave operator and its symmetries.
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χ
−n−1

2
+ , where f is the map f(t, x) = t2 − |x|2. For simplicity we write this as

χ
−n−1

2
+ (t2 − |x|2).

Note that the expression χ−
n−1

2
+ (t2−|x|2) is not exactly rigorous, since the gradient

of t2−|x|2 vanishes at the origin, and hence χ−
n−1

2
+ (t2−|x|2) defines a distribution

only on Rn+1 − {0}. A rigorous formulation requires a bit more care. For clarity
and convenience, in what follows, we will adopt a heuristic and informal approach
to deriving the fundamental solutions.

To make sure that the proposed fundamental distribution is supported in |x| ≤ t,
we set (informally)

E
(n+1)
+ (t, x) = cnH(t)χ−

n−1
2

+ (t2 − |x|2) (7)

with H(t) the Heavyside function supported on t ≥ 0 and cn a normalizing constant
to be determined. In fact cn = − 1

2π
1−n

2 .

Proposition 1.24. The distribution E
(n+1)
+ is supported in |x| ≤ t and verifies

�E(n+1)
+ = δ0.

In the following heuristic “proofs” of the proposition, we treat χ−
n−1

2
+ (t2 − |x|2) as

locally integrable functions on Rn+1. In reality, this is clearly not the case, and
hence the heuristic computations performed here will need to be rigorously justified.

Proof [for n = 3]: In this case we have to check that

E+(t, x) = −1
2
π−1H(t)δ0(t2 − |x|2) = − 1

4π
r−1δ(t− r)

with r = |x|. Thus, since �φ = −r−1(∂t + ∂r)(∂t − ∂r)(rφ) + ∆S2φ, we have with
ψ(t, rω) = (∂t − ∂r)

(
rφ(t, rω)

)
,

< E+,�φ > =
1

4π

∫
S2

∫ ∞
0

∫ ∞
0

δ(t− r)(∂t + ∂r)ψdtdrdSω

=
1

4π

∫
S2
dSω

( ∫ ∞
0

d

dr
ψ(r, r)dr

)
= −ψ(0, 0) = φ(0)

Thus, �E+ = δ0 as desired.

We shall now consider the general case. Let E(t, x) = H(t)χ−(n−1)/2
+ . We write,

for an arbitrary test function φ ∈ C∞0 (Rn+1),

< �E, φ >=
∫ ∞

0

∫
Rn
E(t, x)�φdtdx = lim

ε→0

∫ ∞
ε

∫
Rn
E(t, x)�φdtdx
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We integrate by parts in the slab region [ε,∞)× Rn,∫ ∞
ε

∫
Rn
E · (−∂2

t +
n∑
i=1

∂2
i )φ = +

∫ ∞
ε

∫
Rn

(∂tE∂tφ− ∂iE · ∂iφ) +
∫

Rn
E∂tφ(ε, x)

=
∫ ∞
ε

∫
Rn
�E · φ−

∫
Rn
∂tEφ(ε, x) +

∫
Rn
E∂tφ(ε, x)

= −
∫

Rn
∂tEφ(ε, x) +

∫
Rn
E∂tφ(ε, x)

since, away from from the tip t = |x| = 0, we have �
(
χ
−(n−1)/2
+ (t2 − |x|2)

)
= 0.

Why?

Now, making the change of variables x = εy and using the homogeneity5 of χ−(n−1)/2
+ ,∫

Rn
E∂tφ(ε, x) =

∫
Rn
χ
−(n−1)/2
+ (ε2 − |x|2)∂tφ(ε, x)dx

=
∫

Rn
χ
−(n−1)/2
+

(
ε2(1− |y|2)

)
∂tφ(ε, εy)εndy

= ε

∫
Rn
χ
−(n−1)/2
+ (1− |y|2)∂tφ(ε, εy)dy → 0 as ε→ 0

On the other hand,

∂tχ
(n−1)/2
+ (t2 − |x|2) = 2tχ−(n+1)/2

+ (t2 − |x|2).

Hence, ∫
Rn
∂tE · φ(ε, x) = 2ε

∫
Rn
χ
−(n+1)/2
+ (ε2 − |x|2)φ(ε, x)dx

= 2ε
∫

Rn
ε−(n+1)χ

−(n+1)/2
+ (1− |y|2)φ(ε, εy)εndy

= 2
∫

Rn
χ
−(n+1)/2
+ (1− |y|2)φ(ε, εy)dy

Now observe that the distibution χ−(n+1)/2
+ (1−|y|2) is supported in |y| ≤ 1. Choose

a test function ψ(y) in Rn equal to 1 for |y| ≤ 2 and supported in |y| ≤ 4. Clearly,

lim
ε→0

∫
Rn
∂tE · φ(ε, x) = 2 lim

ε→0

∫
Rn

χ
−(n+1)/2
+ (1− |y|2)φ(ε, εy)ψ(y)dy

= 2φ(0)
∫

Rn
χ
−(n+1)/2
+ (1− |y|2)ψ(y)dy

Therefore we conclude that,

< �E, φ >= −2Jnφ(0)

where Jn =
∫

Rn χ
−(n+1)/2
+ (1− |y|2)ψ(y)dy. To finish we only have to calculate J .

Lemma 1.25. For a function ψ ∈ C∞0 which is identically 1 in a neighborhood of
the origin, we have

Jn =
∫

Rn
χ
−(n+1)/2
+ (1− |y|2)ψ(y)dy =

1
2
c−1
n

5It is simple to check that, as distributions, χs+(λt) = λsχs+(t).
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where cn = 1/2π(1−n)/2.

Proof : We consider the cases n = 2, n = 3. For n = 3,

J3 =
∫

S2

∫ ∞
0

χ−2
+ (1− r2)r2ψ(rω)dr = −2−1

∫
S2

∫ ∞
0

d

dr

(
χ−1

+ (1− r2)
)
rψ(rω)dr

= 2−1

∫
S2

∫ ∞
0

δ(1− r2)
d

dr
(rψ(rω))dr = 4−1

∫
S2

∫ ∞
0

δ(1− r) d
dr

(rψ(rω))dr

= π

as desired.

For n = 2, since χ−1/2
+ (1 − s2) = 1

Γ(1/2) (1 − s2)−1/2 = π−1/2(1 − s2)−1/2 and the
derivatives of ψ vanish for r ≤ 2,

J2 = −2−1

∫
|ω|=1

∫ ∞
0

d

dr

(
χ−1/2(1− r2)

)
ψ(rω)dr

= 2−1 · 2π · χ−1/2(0)ψ(0) = π1/2.

Remark: As mentioned before, one needs to be more careful in order to express
the above fundamental solutions formally. For example, in the case n = 3, where
χ
−n−1

2
+ = δ0, we can write E(3+1)

+ rigorously as follows:

〈E(3+1)
+ , φ〉 = −

∫
R3

φ(|x|, x)
4π|x|

dx

Since r−1 defines a locally integrable function in R3, one can show that the above
defines a valid distribution on R3+1.

Finally, we can construct an analogous fundamental solution E(n−1)
− supported the

past cone |x| ≤ −t. In particular, fundamental solutions are not unique.

3.) Heat Operator H. We consider the heat operator H = ∂t −∆ acting on func-
tions defined on R× Rn = Rn+1. It makes sense to look for spherically symmetric
solutions to Hu = 0, that is functions u(t, x) = u(t, |x|) = u(t, r). It is easy to find
in this way the class of locally integrable solutions Ec(t, x) = cH(t) t−

n
2 e−|x|

2/4t,
with H(t) the heaviside function. Indeed H(Ec) = 0 for all (t,x) with t 6= 0. We
show below that, in the whole space, H(Ec) is proportional to δ0 and that we can
determine the constant c = cn = 2−nπ−

n
2 such that the corresponding E = Ec is a

fundamental solution of H, i.e. H(E) = δ0.
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Indeed, if φ ∈ C∞0 (Rn+1),

< H(E), φ > = < E,Htφ >= −
∫
E(t, x)(∂t + ∆)φ(t, x)dxdt

= − lim
ε→0+

∫ ∞
ε

∫
Rn
E(t, x)(∂t + ∆)φ(t, x)dxdt

= lim
ε→0+

∫ ∞
ε

∫
Rn

(∂t + ∆)E(t, x)φ(t, x)dxdt+ lim
ε→0+

∫
Rn
E(ε, x)φ(ε, x)dx

= lim
ε→0+

∫
Rn
E(ε, x)φ(x, ε)dx = cn lim

ε→0+
ε−n/2

∫
Rn
e−|x|

2/4εφ(x, ε)dx

We now perform the change of variables x = 2ε1/2y,

< H(E), φ > = 2ncn lim
ε→0+

∫
Rn
φ(ε, 2ε1/2y)e−|y|

2
dy = 2ncnφ(0, 0)

∫
Rn
e−|y|

2
dy

= φ(0, 0)

Exercise. Check that
∫

Rn e
−|y|2dy = πn/2.

This proves that

E(t, x) = (4πt)−n/2H(t) t−
n
2 e−|x|

2/4t (8)

is a fundamental solution for H.

4.) Schrödinger equation S. The Schrödinger operator, S = i∂t + ∆ has a funda-
mental solution which looks, superficially, exactly like that of the Heat operator,

E(t, x) = (4πit)−n/2H(t) ei|x|
2/4t (9)

Yet, of course, the presence of i in the exponential factor e−i|x|
2/4t makes a world

of difference.

Exercise Show that the locally integrable function E is indeed a fundamental
solution for S.

2. Distribution Theory

This is a very short summary of distribution theory, for more exposure to the subject
I suggest F.G. Friedlander and M. Joshi’s excellent book Introduction to the Theory
of Distributions, [3]. Hörmander’s first volume of The Analysis of Linear Partial
Differential Operators, [5], in Springer can also be useful.

Notation. Throughout these notes we use the notation A . B to mean a ≤ cB
where c is a numerical constant, independent of A,B.

2.1. Test Functions. Distributions. We start with some standard nota-
tion. We denote vectors in Rn by x = (x1, . . . , xn) and set λx = (λx1, . . . , λxn),
x+ y = (x1 + y1, . . . , xn + yn). We denote by x · y the standard scalar product and
by |x| = (x · x)

1
2 the Euclidean length of x. Given a function f : Ω→ C we denote
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by supp(f) the closure in Ω of the set where f(x) 6= 0. We denote by Ck(Ω) the set
of complex valued functions on Ω which are k times continuously differentiable and
by Ck0 (Ω) the subset of those which are also compactly supported. We also denote
by C∞(Ω) = ∩k∈NCk(Ω) the space of infinitely differentiable functions; C∞0 (Ω) the
subset of those which also have compact support. The latter plays a particularly
important role in the theory of distributions; it is called the space of test functions
on Ω.

Let Ω ⊂ Rn and f ∈ C∞(Ω). We denote by ∂if the partial derivative ∂f
∂xi

, i =
1, . . . , n. For derivatives of higher order we use the standard multi-index notation.
A multi-index α is an n-tuple α = (α1, . . . , αn) of nonnegative integers with length
|α| = α1+· · ·+αn. Set α+β = (α1+β1, . . . , αn+βn). We denote by α! the product
of factorials α1! · · ·αn!. Now set ∂αf = ∂α1

1 · · · ∂αnn f . Clearly ∂α+βf = ∂α∂βf .
Given two smooth functions u, v we have the Leibnitz formula,

∂α(u · v) =
∑

β+γ=α

α!
β!γ!

∂βu∂γv.

Taylor’s formula, around the origin, for a smooth function f : Rn → C can be
written as follows,

f(x) =
∑
|α|≤k

1
α!
∂αf(0)xα +O(|x|k+1) as x→ 0.

Here xα denotes the monomial xα = xα1
1 · · ·xαnn .

Proposition 2.2. Let f ∈ Ck0 (Rn), 0 ≤ k < ∞. Let ρ be a test function, i.e.
ρ ∈ C∞0 (Rn) with supp(ρ) ⊂ B(0, 1), the ball centered at the origin of radius 1, and∫
ρ(x)dx = 1. We set ρε(x) = ε−nρ(x/ε) and let

fε(x) = f∗ρε(x) = ε−n
∫
f(y)ρ(

x− y
ε

)dy =
∫
f(x− εz)ρ(z)dz.

We have:

(1) The functions fε are in C∞0 (Rn) and supp(fε) ⊂ supp(f) +B(0, ε).
(2) We have ∂αfε−→∂αf uniformly as ε→ 0.

Proof : The first part of the proposition follows immediately from the definition
since the statement about supports is immediate and, by integration by parts, we
can transfer all derivatives of fε on the smooth part of the integrand ρε. To prove
the second statement we simply write,

∂αfε(x)− ∂αf(x) =
∫ (

∂αf(x− εz)− ∂αf(x)
)
ρ(z)dz.

Therefore, for |α| ≤ k,

|∂αfε(x)− ∂αf(x)| ≤
∫
|∂αf(x− εz)− ∂αf(x)||ρ(z)|dz

≤
∫
|ρ(z)|dz sup

|z|≤1

|∂αf(x− εz)− ∂αf(x)|

. sup
|z|≤1

|∂αf(x− εz)− ∂αf(x)|
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The proof follows now easily in view of the uniform continuity of the functions ∂αf .

As a corollary of the Proposition one can easily check that the space of test functions
C∞0 (Ω) is dense in the spaces Ck(Ω) as well as Lp(Ω), 1 ≤ p <∞.

Definition 2.3. A distribution u ∈ D′(Ω) is a linear functional u : C∞0 (Ω) → C
verifying the following property:

For any compact set K ⊂ Ω there exists an integer N and a constant C = CK,N
such that for all φ ∈ C∞0 (Ω), with supp(φ) ⊂ K we have

| < u, φ > | ≤ C
∑
|α|≤N

sup |∂αφ|.

Equivalently a distribution u is a linear functional u : C∞0 (Ω) → C which is con-
tinuous if the space of test functions is endowed with the standard Frechet space
structure6. In this topology a sequence φj converges to 0 in C∞0 (Ω) if all the sup-
ports of φj are included in a compact subset of Ω and, for each multi-index α,
∂αφj → 0 in the uniform norm. We have in fact the following characterization of
distributions:

Proposition 2.4. A linear form u : C∞0 (Ω) −→ C is a distribution in D′(Ω) iff
limj→∞ u(φj) = 0 for every sequence of test functions φj which converges to 0, in
C∞0 (Ω), as j →∞.

Proof : This proof can be found in Friedlander, section 1.3, Theorem 1.3.2.

Example 1: Any locally integrable function f ∈ L1
loc(Ω) defines a distribution,

< f, φ >=
∫
fφ, ∀φ ∈ C∞0 (Ω).

We can thus identify L1
loc(Ω) as a subspace of D′(Ω). This is true in particular for

the space C∞(Ω) ⊂ L1
loc(Ω).

Example 2: The Dirac measure with mass 1 supported at x0 ∈ Rn is defined
by,

< δx0 , φ >= φ(x0).

Remark: We shall often denote the action of a distribution u on a test function
by u(φ) instead of < u, φ >. Thus δx0(φ) = φ(x0).

Definition 2.5. A sequence of distributions uj ∈ D′(Ω) is said to converge, weakly,
to a distribution u ∈ D′(Ω) if, uj(φ)→ u(φ) for all φ ∈ C∞0 (Ω).

6This is the topology induced by the countable family of seminorms φ 7→ supKi |∂
(α)φ|, where

Ki is a countable family of compact sets exhausting Ω, and α ranges over all natural multi-indices.

We do not need however the precise definition.
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For example the sequence um = eimx converges weakly to 0 in D′(R) as m → ∞.
Also if f ∈ L1(Rn), with

∫
Rn f(x)dx = 1, the family of functions fλ(x) = λnf(λx)

converges weakly to δ0 as λ→∞.

2.6. Operations with distributions. The advantage of working with the
space of distributions is that while this space is much larger than the space of
smooth functions most important operations on test functions can be carried over
to distributions.

1. Multiplication with smooth functions: Given u ∈ D′(Ω) and f ∈ C∞(Ω)
we define,

< fu, φ >=< u, fφ >, ∀φ ∈ C∞0 (Ω).

It is easily verified that multiplication with a smooth function is a continuous
endomorphism of the space of distributions.

2. Convolution with a test-function: Consider, u ∈ D′(Rn), φ ∈ C∞0 (Rn).
Generalizing the convolution of 2 functions in a natural way, we define

u∗φ(x) =< uy, φ(x− y) >,

the subscript specifying that u is understood to be acting on functions of the variable
y. Observe that the definition coincides with the usual one if u is a locally integrable
function, u ∈ L1

loc(Rn).

Remark: Observe that for every distribution u ∈ D′(Rn) and φ ∈ C∞0 (Rn) we
have u∗φ ∈ C∞(Rn). Indeed, e.g. letting ek denote a standard unit vector,

u∗φ(x+ hek)− u∗φ(x)
h

= h−1 < uy, φ(x+ hek − y)− φ(x− y) >

= < uy,

∫ 1

0

∂kφ(x+ thek − y)dt > .

Now if x ∈ K, for some compact set K ⊂ Rn, then for every sequence hi → 0,
the associated sequence of functions y 7→

∫ 1

0
∂kφ(x + thiek − y)dt, together with

all its derivatives, converge uniformly toward ∂kφ(x − y) and its corresponding
derivatives. Moreover they are all compactly supported with supports contained in
some compact set K ′. Therefore,

lim
h→0

u∗φ(x+ hek)− u∗φ(x)
h

= u∗∂kφ(x).

and thus u∗φ has continuous partial derivatives. We can continue in this manner
and conclude that in fact u∗φ ∈ C∞(Rn).

3. Differentiation of distributions: For every distribution u ∈ D′(Ω) we define

< ∂αu, φ >= (−1)|α| < u, ∂αφ > .

Again, it is easily verified that we have thus defined a continuous endomorphism
of the space of distributions. Of course, the operations above were defined so as to
extend the usual operations on smooth functions.
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We can now define the action of a general linear partial differential operator on
distributions. Indeed let,

P (x, ∂) =
∑
|α|≤m

aα∂
α, aα ∈ C∞(Ω),

be such an operator. Then,

< P (x, ∂)u, φ >=< u,P (x, ∂)†φ >,

where P (x, ∂)† is the formal adjoint operator,

P (x, ∂)†v =
∑
|α|≤m

(−1)|α|∂α(aαv).

Observe that if uj ∈ D′(Ω) converges weakly to u ∈ D′(Ω) then P (x, ∂)uj converges
weakly to P (x, ∂)u.

Exercise. Show that for all u ∈ D′(Ω) there exists a sequence uj ∈ C∞0 (Ω) such
that uj → u as j → ∞ in the sense of distributions( weak convergence). Thus
C∞0 (Ω) is dense in D′(Ω), with respect to the weak topology of the latter.

2.7. Example of distributions on the real line.

1.) The simplest nontrivial distribution is the Dirac function δ0 = δ0(x), defined
by < δ0(x), φ >= φ(0).
2.) Another simple example is the Heaviside function H(x) equal to 1 for x > 0
and zero for x ≤ 0. Or, using the standard identification between locally integrable
functions and distributions,

< H(x), φ >=
∫ ∞

0

φ(x)dx.

Observe that H ′(x) = δ0(x).
3.) A more elaborate example is pv( 1

x ), or simply 1
x , called the principal value

distribution,

<
1
x
, φ >= lim

ε→0

( ∫ −ε
−∞

1
x
φ(x)dx+

∫ ∞
ε

1
x
φ(x)dx

)
.

Observe that log |x| is locally integrable and thus a distribution by the standard
identification. It is easy to check that d

dx log |x| = pv( 1
x ).

Exercise. Let, for z ∈ C with 0 < arg(z) < π, log z = log |z|+ iarg(z). We can
regard x → log z = log(x + iy) as a family of distributions depending on y ∈ R+.
For x 6= 0 we have limy→0+ log z = log |x| + iπ

(
1 −H(x)

)
. Show that as y → 0 in

R+, ∂x log z converges weakly to a distribution 1
x+i0 and,

1
x+ i0

= x−1 − iπδ0(x).

We now define an important family of distributions χz+, with z ∈ C, by analytic
continuation. For this we first recall the definition of the Gamma function,
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Definition 2.8. For Re(z) > 0 we define

Γ(z) =
∫ ∞

0

e−ttz−1dt (10)

as well as the Beta function,

B(a, b) =
∫ 1

0

sa−1(1− s)b−1ds (11)

Clearly Γ(a) = aΓ(a− 1) and Γ(0) = 1. Thus Γ(n) = n!. Recall that the following
identity holds:

B(a, b) =
Γ(a) · Γ(b)
Γ(a+ b)

(12)

We also record for future applications,

Γ(a)Γ(1− a) = B(a, 1− a) =
π

sin(πa)
(13)

In particular Γ(1/2) = π1/2.

Exercise. Prove formulas (12) and (13). For help see Hörmander, [5] section 3.4.

Definition 2.9. For Re(a) > 0, we denote by ja(λ) the locally integrable function
which is identically zero for λ < 0 and

ja(λ) =
1

Γ(a)
λa−1, λ > 0. (14)

The following proposition is well known,

Proposition 2.10. For all a, b, Re(a), Re(b) > 0,

ja ∗ jb = ja+b

Proof : We have,

ja ∗ jb(λ) =
1

Γ(a)
1

Γ(b)

∫ λ

0

µa−1(λ− µ)b−1dµ

=
1

Γ(a)
1

Γ(b)
λa+b−1

∫ 1

0

sa−1(1− s)b−1ds

=
B(a, b)

Γ(a) · Γ(b)
λa+b−1 =

1
Γ(a+ b)

λa+b−1 = ja+b(λ)

Proposition 2.11. There exists a family of distribution ja, defined for all a ∈ C,
which coincide with the functions ja for Re(a) > 0, such that, ja ∗ jb = ja+b,
d
dλja(λ) = ja−1(λ) and j0 = δ0, the Dirac delta function at the origin. Moreover
for all positive integers m, j−m(x) = ∂mx δ0(x).



24 1. BASIC TOOLS OF ANALYSIS

Proof : The proof is based on the observation that d
dλja(λ) = ja−1(λ). Thus, for

a test function φ, ∫
R
ja−1(λ)φ(λ)dλ = −

∫
R
ja(λ)φ′(λ)dλ

Based on this observation we define, for every a ∈ C such that Re(a) + m > 0 as
distribution

< ja, φ >= (−1)m
∫ ∞

0

ja+m(λ)φ(m)(λ)dλ

In particular,

< j0, φ >= −
∫ ∞

0

j1(λ)φ′(λ)dλ = −
∫ ∞

0

φ′(λ)dλ = φ(0)

Hence j0 = δ0. It is also easy to see that ja∗jb = ja+b for all a, b ∈ C.

Remark: In applications one often sees the family of distributions χa+ = ja+1.
Clearly χa+ ∗χb+ = χa+b+1

+ and χ−1
+ = δ0. Observe also that χa+ is homogeneous of

degree a, i.e. , χa+(tλ) = taχa+(λ), for any positive constant t. This clearly makes
sense for Re(a) > −1 when χa+ is a function. Can you also make sense of it for all
a ∈ C ?

2.12. Support of a distribution. The support of a distribution can be easily
derived as follows:

Definition 2.13. For u ∈ D′(Ω), we define the complement of the support of u,

Ω\supp(u) = {x ∈ Ω |∃Vx 3 x open, such that < u, φ >= 0 ∀φ ∈ C∞0 (Vx)}.

Lemma 2.14. If u ∈ D′(Ω) and φ is a test function with supp(φ) ⊂ Ω\supp(u),
then < u, φ >= u(φ) = 0.

Proof : This follows easily by a partition of unity argument. The argument can
be found in Friedlander, section 1.4.

Proposition 2.15. A distribution u ∈ D′(Rn) has compact support K ⊂ Rn iff
there exists N ∈ N such that ,∀φ ∈ C∞0 (Rn) we have

|u(φ)| ≤ C sup
x∈U

∑
|α|≤N

|∂αφ(x)|,

where U is an arbitrary open neighborhood of K.

Proof : This is seen by using a cutoff function which is identically 1 on the support
of the distribution.

Remark: Note that if we endow C∞(Rn) with the Frechet topology induced by the
family of seminorms given by φ→ supKi |∂

αφ|, with α ∈ Nn and Ki running over
a countable collection of compact sets exhausting Rn, then the space of compactly
supported distributions can be identified with C∞(Rn)∗, i.e. the space dual to
C∞(Rn).
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We have the following useful fact concerning the structure of distributions supported
at one point.

Proposition 2.16. Let u ∈ D′(Rn) and assume that supp(u) ⊂ {0}. Then we
have u =

∑
|α|≤N aα∂

α(δ0), for some integer N , complex numbers aα and δ0 the
Dirac measure in Rn supported at 0.

Proof : See Friedlander, [3], Theorem 3.2.1 or Hörmander, [5], Theorem 2.3.4.

In this context, it is important to observe that the convolution of two distributions
cannot be defined in general, but only when certain conditions on the support of
the distributions are satisfied. We note in particular the fact that if u1, u2 ∈ D′(Rn)
one of which is compactly supported, then the convolution u1∗u2 can be defined.
Indeed, assuming u2 to be compactly supported, we simply define,

< u1∗u2, φ >=< u1, u2∗φ >, ∀φ ∈ C∞0 (Rn).

Here, supp(u2∗φ) ⊂ {x + y : x ∈ supp(u2), y ∈ supp(φ)}, hence a compact set.
This definition extends the classical convolution for functions.

2.17. Pull back of distributions. Consider first the case of a C∞ diffeomor-
phism f : Ω → Ω′ and let u a distribution on Ω′. Then the pull-back f∗u is a
distribution in Ω defined by,

< f∗u, φ >=< u(y), g∗φ(y)|det Jg(y)| >, φ ∈ C∞0 (Ω)

where g = f−1 and g∗φ(y) = φ(g(y)) and Jg(y) is the jacobian of the map y →
g(y). It is easy to see that this definition is meaningful and that it coincides with
the standard change of variable rule when u is a smooth function. Moreover the
derivatives of f∗u can be computed by the standard chain rule.

Next we consider the pull back corresponding to a function f : Ω → R. This
procedure allows us to use the definition of some distributions on the real line to
obtain interesting distributions in Rn.

Definition 2.18. Let f : Rn → R be a smooth map with surjective differential
everywhere. If u ∈ D′(R) we can define its pull-back f∗(u) as follows:

Let x ∈ Rn such that7 ∂x1f(x) 6= 0 on a neighborhood U 3 x. Hence the map
y ∈ U → (f(y1, y

′), y′) ∈ Rn, with y′ = (y2, . . . , yn), is a local diffeomorphism.
Now we set, for every test function φ supported in U,

f∗(u)(φ) = uy1
( ∫

φ(f(y1, y
′), y′)|∂y1f(y1, y

′)|−1dy′
)
,

In this definition, uy1 indicates that u operates on functions depending on the y1-
variable. Since we can proceed in this fashion for every point in Rn, we can define
the pullback of u via f globally by patching the local definitions together via a
partition of unity.

7by surjectivity of the differential, we may always assume this.
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Example: If f is as above, then we can explicitly obtain the pullback of the
delta function δ0, namely f∗(δ0) = 1

|∇f |dσ. Here, dσ denotes the canonical surface
measure on the embedded sub-manifold f−1(0) ⊂ Rn and ∇f denoted the gradient
of f .

In connection with the above example, it is useful to observe that if f , g are
two smooth functions on Rn with non-vanishing differential everywhere, then the
following equality holds in the sense of distributions for all a, b ∈ Rn:∫

δ0(f(a)− x)δ0(g(b)− x)dx = δ0(f(a)− g(b)).

Both sides are to be interpreted as distributions on Rn×Rn. To check this, one com-
pletes the map (a, b) ∈ Rn × Rn → f(a)− g(b) ∈ R to a local diffeomorphism, e.g.
assuming that ∂a1f(a) 6= 0, ∂b1g(b) 6= 0, as follows: (a, b)→ (f(a)−g(b), g(b), a′, b′),
where a′, b′ denote (a2, . . . , an), (b2, . . . , bn). Using the above definition of the pull-
back of distributions and the fact that the determinant of the Jacobian of this map
is the product of the Jacobians of the maps a→ (f(a), a′), b→ (g(b), b′), the claim
easily follows.

Remark. One cannot define, in general, a meaningful, associative, product of
distributions. Why not? Produce an example of three distributions on the real line
whose product, if defined, could not be associative.

2.19. Fundamental solutions. Given a linear partial differential operator
with constant coefficients P (∂) =

∑
|α|≤k aα∂

α, with aα ∈ C, we say that a dis-
tribution E is a fundamental solution if it verifies P (∂)E = δ0. If this is the case
then we can always find solution of the equation P (∂)u = f , where f ∈ D′(Rn)
is a compactly supported distribution, by setting u = E∗f . This follows easily
from the following proposition together with the observation that δ0∗u = u for any
u ∈ D′(Rn).

Proposition 2.20. Assume u, v ∈ D′(Rn) one of which is compactly supported.
Then,

P (∂)(u∗v) = P (∂)u∗v = u∗P (∂)v.

In what follows we shall calculate the fundamental solution for some special im-
portant differential operators such as the Laplacean ∆ =

∑n
i=1 ∂

2
i in Rn, and the

D’Alembertian � = −∂2
t + ∆ in Rn+1. We also consider the Heat operator ∂t −∆

and Schrödinger operator i∂t + ∆.

1.) Laplace Operator ∆. The Laplace operator ∆ is invariant under translations
and rotations, that is the group of rigid motions. In polar coordinates x = rω, r >
0, |ω| = 1, it takes the form,

∆ = ∂2
r +

n− 1
r

∂r + r−2∆Sn−1 ,

where ∆Sn−1 is the Laplace -Beltrami operator on the unit sphere Sn−1. We denote
by dSω the area element of the hypersurface Sn−1 and by ωn the total area of the
unit sphere.
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Exercise. Recall that the Laplace-Beltrami operator on a Riemannian manifold
with metric g is given, in local coordinates xi by

∆gφ =
1√
|g|
∂i
(
gij
√
|g|∂jφ).

Here gij are the components of the inverse metric g−1 relative to the coordi-
nates xi. The volume element dSg on M is given, in local coordinates, by dSg =√
|g|dx1dx2 . . . dxn. Observe that, on compact manifold M ,∫

M

∆gu vdSg =
∫
M

u∆gvdSg.

Exercise 2. Calculate the Laplace-Beltrami operator for the unit sphere Sn−1

and check the polar decomposition formula for ∆. For the particular case n = 3,
relative to the coordinates x1 = r cos θ1, x2 = r sin θ1 cos θ2, x3 = r sin θ1 sin θ2,
θ1 ∈ [0, π), θ2 ∈ [0, 2π) show that,

∆S2 = ∂2
θ1 + cotanθ1 ∂θ1 +

1
sin2 θ1

∂2
θ2 .

Moreover the area element dSω takes the form, dSω = r2 sin θ1dθ1dθ2.

Proposition 2.21. Define, for all n ≥ 3, Kn(x) =
(
(2− n)ωn

)−1|x|2−n while, for
n = 2, K2(x) = (2π)−1 log |x|. Here wn denotes the area of the unit sphere Sn−1.
Then, for all n ≥ 2,

∆Kn(x) = δ0.

Proof : Observe that ∆Kn(x) = 0 for all x ∈ Rn \ {0}. Thus, in the whole
space ∆Kn is supported at the origin and therefore can be expressed as a sum of
derivatives of δ0. By homogeneity considerations we can easily infer that ∆Kn(x) =
cδ0 for some constant c. Now, for a smooth function φ(x) = φ(rω), in polar
coordinates r = |x|, ω ∈ Sn−1 unit sphere in Rn, that is |ω| = 1, we have

∆φ =
(
∂2
r +

n− 1
r

∂r + r−2∆Sn−1

)
φ

= r−(n−1)∂r(rn−1∂rφ
)

+ r−2∆Sn−1φ

where ∆Sn−1 is the Laplace -Beltrami operator on Sn−1. Thus passing to polar
coordinates x = rω, with dx = rn−1drdSω, in the integral,

< ∆Kn, φ > = < Kn,∆φ >

=
∫
|ω|=1

∫ ∞
0

Kn(r)∂r
(
rn−1∂rφ

)
drdSω +

∫
|ω|=1

∫ ∞
0

Kn(r)∆Sn−1φdrdSω

=
(
(2− n)ωn

)−1
∫
|ω|=1

∫ ∞
0

r−n+2∂r
(
rn−1∂rφ

)
drdSω

= −
∫ ∞

0

r−n+1
(
rn−1∂rφ

)
dr = −

∫ ∞
0

∂rφ = φ(0)

we infer that, for n ≥ 3, ∆Kn = δ0 as desired. The case n = 2 can be treated in
the same manner.
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Remark : Observe that, up to a constant, the expression of Kn(x) can be easily
guessed by looking for spherically symmetric solutions K = K(|x|). Indeed, the
equation ∆K = 0 reduces to the ODE, K ′′(r) + n−1

r K ′(r) = 0.

According to the general theory we can now solve the Poisson equation ∆u = f ,
for any smooth compactly supported f , by the formula,

u(x) =
∫

Rn
Kn(x− y)f(y)dy =

∫
Rn
Kn(y)f(x− y)dy. (15)

For n ≥ 3 we observe that the solution given by (15) decays to zero as |x| → ∞.
Indeed, for large |x| we can write (15) in the form

u(x) = cn|x|−(n−1)

∫
Rn

(1− |y|
|x|

)−(n−1)f(y)dy . |x|−(n−1),

due to the fact that f has compact support. We claim that the equation ∆u = f
has a unique solutions u(x) which decays at ∞ as x→∞ and therefore it must be
represented by the integral formula (15). For n = 2, on the other hand, we only
have |u(x)| . log |x|. Observe however that

|∂iu(x)| .
∫

R2
|∂iK2(x− y)||f(y)|dy . |x|−1

since |∂K2(x− y)| . |x− y|−1.

Proposition 2.22. For any f ∈ C∞0 (Rn), n ≥ 3 the equation ∆u = f has a unique
smooth solution which vanishes at infinity, i.e. tends to zero as |x| → ∞. The
solution is represented by (15). For n = 2 the same equation has a unique smooth
solution u(x) with lim|x|→∞

|u(x)|
|x| = 0 and |∂u(x)| → 0 as |x| → ∞. The solution

is represented by (15), up to an additive constant.

Proof : By linearity it suffices to take f = 0. For n ≥ 3 we have to show
that ∆u = 0, with u vanishing at infinity, implies that u = 0. The result is an
easy consequence of Liouville’s theorem which states that every bounded harmonic8

function in Rn is constant. Liouville’s theorem follows from the maximum principle
for ∆ according to which the extreme values of a harmonic function, i.e. a solution
to ∆u = 0, in a domain D must be attained at the boundary of D. We shall return
to both Liouville’s theorem and the maximum principle later. However you can try
to prove directly the version of the maximum principle needed here. In the case
n = 2 we can use the same argument to show that the derivatives of a solution u(x)
of ∆u = 0, with the properties mentioned in the proposition, must vanish.

We shall now give an alternative, direct, proof of the fact that the function u(x)
defined by (15) is a solution of ∆u = f . Indeed,

∆u(x) =
∫

Rn
Kn(y)∆yf(x− y)dy.

8Solutions to ∆u = 0 are called harmonic.
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We would like to integrate by parts and make use of the fact that ∆Kn(x) = 0
on Rn \ {0}. We cannot do it directly because the singularity at the origin. We
circumvent this difficulty by the standard trick of decomposing the integral I(x)
on the right into a regular part Rε(x) =

∫
Rn\Be Kn(y)∆yf(x− y)dy and a singular

part Sε =
∫
Bε
Kn(y)∆yf(x − y)dy where ε > 0 is an arbitrary small number and

Bε is the closed ball of radius ε centered at the origin. For the singular part Sε we
have, for n ≥ 3,

|Sε(x)| . ε2‖∂2f‖L∞
and therefore converges to zero as ε→ 0.

For the regular part,

Rε(x) =
∫

Rn\Be
Kn(y)∆yf(x− y)dy

we are allowed to integrate by parts. Doing it carefully by keeping track of the
boundary terms on ∂Bε and powers of ε we easliy infer that |Rε(x) − f(x)| tends
to zero as ε→ 0, for all values of x.

2.) D’Alembertian operator � . We shall next look of a fundamental solution for
the wave operator,

� = −∂2
t + ∆ = −∂2

t + ∂2
r +

n− 1
r

∂r + r−2∆Sn−1

in Rn+1. We look for solutions of the form9 φ(t, x) = f(ρ) where ρ = (t2− |x|2)1/2,
in the region |x| < t. By a simple calculation we find f ′′(ρ) + n

r f
′(ρ) = 0 with

solutions f(ρ) = aρ−
n−1

2 +b. Therefore a good candidate for a fundamental solution
must have the form E = (t2 − |x|2)−

n−1
2 in the region t > |x|. To extend this

definition to all space Rn+1 and derive a distribution supported in the region {(t, x) :

|x| ≤ t} we are led to look at the pull back f∗(χ−
n−1

2
+ ) of the one dimensional

distribution χ−
n−1

2
+ , where f is the map f(t, x) = t2 − |x|2. For simplicity we write

this distribution as χ−
n−1

2
+ (t2 − |x|2). To make sure that we have a distribution

supported in |x| ≤ t we set,

E
(n+1)
+ (t, x) = cnH(t)χ−

n−1
2

+ (t2 − |x|2), (16)

with H(t) the Heavyside function supported on t ≥ 0 and cn a normalizing constant
to be determined. In fact cn = − 1

2π
1−n

2 .

Proposition 2.23. The distribution E
(n+1)
+ is supported in |x| ≤ t and verifies

�E(n+1)
+ = δ0.

Proof [for n = 3]: We first prove the proposition for the particular case of dimen-
sion n = 3. In that case we have to check that

E+(t, x) = −1
2
π−1H(t)δ0(t2 − |x|2) = − 1

4π
r−1δ(t− r)

9In other words we look for solutions invariant under Lorentz transformations. We shall
discuss later and in more detail the geometric significance of the wave operator and its symmetries.
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with r = |x|. Thus, since �φ = −r−1(∂t + ∂r)(∂t − ∂r)(rφ) + ∆S2φ, we have with
ψ(t, rω) = (∂t − ∂r)

(
rφ(t, rω)

)
,

< E+,�φ > =
1

4π

∫
S2

∫ ∞
0

∫ ∞
0

δ(t− r)(∂t + ∂r)ψdtdrdSω

=
1

4π

∫
S2
dSω

( ∫ ∞
0

d

dr
ψ(r, r)dr

)
= −ψ(0, 0) = φ(0)

Thus, �E+ = δ0 as desired.

We shall now consider the general case. Let E(t, x) = H(t)χ−(n−1)/2
+ . We write,

for an arbitrary test function φ ∈ C∞0 (Rn+1),

< �E, φ >=
∫ ∞

0

∫
Rn
E(t, x)�φdtdx = lim

ε→0

∫ ∞
ε

∫
Rn
E(t, x)�φdtdx

Remark. Properly speaking the integral in the above identity does not make
sense since E is not a locally integrable function. To be completely correct one has
to write,

< �E, φ >=< H(t)χ−(n−1)/2
+ (t2 − |x|2),�φ >= lim

ε→0
< H(t− ε)χ−(n−1)/2

+ (t2 − |x|2),�φ >

and then follow the same steps as below with the understanding that ∂tH(t− ε) =
δ(t− ε) and, for any test function ψ,

< δ(t− ε)χ−(n−1)/2
+ (t2 − |x|2), ψ(t, x) >=< χ

−(n−1)/2
+ (ε2 − |x|2), ψ(ε, x) > .

We integrate by parts in the slab region [ε,∞)× Rn,∫ ∞
ε

∫
Rn
E · (−∂2

t +
n∑
i=1

∂2
i )φ = +

∫ ∞
ε

∫
Rn

(∂tE∂tφ− ∂iE · ∂iφ) +
∫

Rn
E∂tφ(ε, x)

=
∫ ∞
ε

∫
Rn
�E · φ−

∫
Rn
∂tEφ(ε, x) +

∫
Rn
E∂tφ(ε, x)

= −
∫

Rn
∂tEφ(ε, x) +

∫
Rn
E∂tφ(ε, x)

since, away from from the tip t = |x| = 0, we have �
(
χ
−(n−1)/2
+ (t2 − |x|2)

)
= 0.

Why?

Now, making the change of variables x = εy and using the homogeneity10 of
χ
−(n−1)/2
+ ,∫

Rn
E∂tφ(ε, x) =

∫
Rn
χ
−(n−1)/2
+ (ε2 − |x|2)∂tφ(ε, x)dx

=
∫

Rn
χ
−(n−1)/2
+

(
ε2(1− |y|2)

)
∂tφ(ε, εy)εndy

= ε

∫
Rn
χ
−(n−1)/2
+ (1− |y|2)∂tφ(ε, εy)dy → 0 as ε→ 0

10It is simple to check that, as distributions, χs+(λt) = λsχs+(t).
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On the other hand,

∂tχ
(n−1)/2
+ (t2 − |x|2) = 2tχ−(n+1)/2

+ (t2 − |x|2).

Hence, ∫
Rn
∂tE · φ(ε, x) = 2ε

∫
Rn
χ
−(n+1)/2
+ (ε2 − |x|2)φ(ε, x)dx

= 2ε
∫

Rn
ε−(n+1)χ

−(n+1)/2
+ (1− |y|2)φ(ε, εy)εndy

= 2
∫

Rn
χ
−(n+1)/2
+ (1− |y|2)φ(ε, εy)dy

Now observe that the distibution χ−(n+1)/2
+ (1−|y|2) is supported in |y| ≤ 1. Choose

a test function ψ(y) in Rn equal to 1 for |y| ≤ 2 and supported in |y| ≤ 4. Clearly,

lim
ε→0

∫
Rn
∂tE · φ(ε, x) = 2 lim

ε→0

∫
Rn

χ
−(n+1)/2
+ (1− |y|2)φ(ε, εy)ψ(y)dy

= 2φ(0)
∫

Rn
χ
−(n+1)/2
+ (1− |y|2)ψ(y)dy

Therefore we conclude that,

< �E, φ >= −2Jnφ(0)

where Jn =
∫

Rn χ
−(n+1)/2
+ (1− |y|2)ψ(y)dy. To finish we only have to calculate J .

Lemma 2.24. For a function ψ ∈ C∞0 which is identically 1 in a neighborhood of
the origin, we have

Jn =
∫

Rn
χ
−(n+1)/2
+ (1− |y|2)ψ(y)dy =

1
2
c−1
n

where cn = 1/2π(1−n)/2.

Proof : We consider the cases n = 2, n = 3. For n = 3,

J3 =
∫

S2

∫ ∞
0

χ−2
+ (1− r2)r2ψ(rω)dr = −2−1

∫
S2

∫ ∞
0

d

dr

(
χ−1

+ (1− r2)
)
rψ(rω)dr

= 2−1

∫
S2

∫ ∞
0

δ(1− r2)
d

dr
(rψ(rω))dr = 4−1

∫
S2

∫ ∞
0

δ(1− r) d
dr

(rψ(rω))dr

= π

as desired.

For n = 2, since χ−1/2
+ (1 − s2) = 1

Γ(1/2) (1 − s2)−1/2 = π−1/2(1 − s2)−1/2 and the
derivatives of ψ vanish for r ≤ 2,

J2 = −2−1

∫
|ω|=1

∫ ∞
0

d

dr

(
χ−1/2(1− r2)

)
ψ(rω)dr

= 2−1 · 2π · χ−1/2(0)ψ(0) = π1/2.

3.) Heat Operator H. We consider the heat operator H = ∂t −∆ acting on func-
tions defined on R× Rn = Rn+1. It makes sense to look for spherically symmetric
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solutions to Hu = 0, that is functions u(t, x) = u(t, |x|) = u(t, r). It is easy to find
in this way the class of locally integrable solutions Ec(t, x) = cH(t) t−

n
2 e−|x|

2/4t,
with H(t) the heaviside function. Indeed H(Ec) = 0 for all (t,x) with t 6= 0. We
show below that, in the whole space, H(Ec) is proportional to δ0 and that we can
determine the constant c = cn = 2−nπ−

n
2 such that the corresponding E = Ec is a

fundamental solution of H, i.e. H(E) = δ0.

Indeed, if φ ∈ C∞0 (Rn+1),

< H(E), φ > = < E,Htφ >= −
∫
E(t, x)(∂t + ∆)φ(t, x)dxdt

= − lim
ε→0+

∫ ∞
ε

∫
Rn
E(t, x)(∂t + ∆)φ(t, x)dxdt

= lim
ε→0+

∫ ∞
ε

∫
Rn

(∂t + ∆)E(t, x)φ(t, x)dxdt+ lim
ε→0+

∫
Rn
E(ε, x)φ(ε, x)dx

= lim
ε→0+

∫
Rn
E(ε, x)φ(x, ε)dx = cn lim

ε→0+
ε−n/2

∫
Rn
e−|x|

2/4εφ(x, ε)dx

We now perform the change of variables x = 2ε1/2y,

< H(E), φ > = 2ncn lim
ε→0+

∫
Rn
φ(ε, 2ε1/2y)e−|y|

2
dy = 2ncnφ(0, 0)

∫
Rn
e−|y|

2
dy

= φ(0, 0)

Exercise. Check that
∫

Rn e
−|y|2dy = πn/2.

This proves that

E(t, x) = (4πt)−n/2H(t) t−
n
2 e−|x|

2/4t (17)

is a fundamental solution for H.

4.) Schrödinger equation S. The Schrödinger operator, S = i∂t + ∆ has a funda-
mental solution which looks, superficially, exactly like that of the Heat operator,

E(t, x) = (4πit)−n/2H(t) ei|x|
2/4t (18)

Yet, of course, the presence of i in the exponential factor e−i|x|
2/4t makes a world

of difference.

Exercise Show that the locally integrable function E is indeed a fundamental
solution for S.

3. Fourier transform

3.1. Basic properties. Recall that if f ∈ L1(Rn), then the Fourier transform
F(f) = f̂ is defined as

f̂(ξ) =
∫
f(x)e−ixξdx (19)
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In case that f̂ ∈ L1(Rn), we have the inversion formula

f(x) = (2π)−n
∫
f̂(ξ)eixξdξ, (20)

whose proof we shall indicate later. The inversion formula takes particularly con-
crete form in the case of the gaussian function G(x) = e−|x|

2/2.

Lemma 3.2. The following calculation holds true for functions of one variable and
a, b ∈ R, b > 0, ∫ ∞

−∞
eiaxe−bx

2
=
(π
b

)1/2
e−a

2/4b (21)

Thus in Rn, for t > 0 ∫
Rn
eix·ye−ty

2
=
(π
t

)n/2
e−|x|

2/4t (22)

In particular

F(G)(ξ) = (2π)n/2G(ξ) (23)

Proof : Make the change of variables in the complex domain, z = b1/2x− a
2b1/2

i,
and denote by Γ the contour Im(z) = − a

2b1/2
,∫ ∞

−∞
eiaxe−bx

2
dx =

e−a
2/4b

b1/2

∫
Γ

e−z
2
dz =

e−a
2/4b

b1/2

∫ ∞
−∞

e−x
2
dx

by a standard contour deformation argument. Now recall11 that the integral J =∫∞
−∞ e−x

2
dx = π1/2 which proves (21). Formula (22) now follows immediately.

The Fourier transform is linear and verifies the following simple properties:

• Fourier transform takes translations in physical space Tx0f(x) = f(x−x0)
into modulations in frequency space F(Tx0f)(ξ) = e−iξ·x0 f̂(ξ).

• Fourier transform takes modulations in physical spaceMξ0f(x) = eix·ξ0f(x)
into translation in frequency space F(Mξ0f)(ξ) = f̂(ξ − ξ0).

• Fourier transform takes scaling in physical space Sλf(x) = f(λx) into
a dual scaling in Fourier space, F(Sλf)(ξ) = λ−nf̂(ξ/λ). Observe that
Sλ(f) preserves size, i.e. ‖Sλf‖L∞ = ‖f‖L∞ while the dual scaling S∗λf =
λ−nf(x/λ) preserves mass, that is ‖S∗λf‖L1 = ‖f‖L1 .

• Fourier transform takes conjugation in physical space into conjugation
and reflection in frequency, i.e. F(f̄)(ξ) = f̂(−ξ).

• Fourier transform takes convolution in physical space into multiplication
in frequency space, f̂∗g = f̂ ĝ.

11For a quick proof of this observe that J2 =
R

R2 e
−|x|2dx = π by passing to polar

coordinates.
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• Fourier transform takes partial derivatives in physical space into multipli-
cation in frequency space, F(∂xjf)(ξ) = iξj f̂(ξ).

• Fourier transform takes multiplication by xj in physical space into the
partial derivative ∂ξj in frequency space, F(xjf)(ξ) = i∂ξj f̂(ξ).

• We also have the simple self duality relation,∫
f(x)ĝ(x)dx =

∫
f̂(x)g(x)dx.

Let Gλ,x0,ξ0(x) = eix·ξ0G((x−x0)/
√
λ) be a translated, modulated, rescaled Gauss-

ian. Then,

F(Gλ,x0,ξ0)(ξ) = λn/2e−i(ξ−ξ0)·x0

∫
e−i
√
λy·(ξ−ξ0)G(y)dy

= (πλ)n/2G
(√
λ(ξ − ξ0)

)
We can interpret this result as saying that Gλ,x0,ξ0 is localized at spatial position
x0, with spatial spread ∆x ≈

√
λ, and at frequency position ξ0 with frequency

spread ∆ξ = 1/
√
λ. Observe that ∆x · ∆ξ ≈ 1, corresponding to the uncertainty

principle.

Proposition 3.3 (Riemann Lebesgue). Given an arbitrary f ∈ L1(Rn) we have,
‖f̂‖L∞ . ‖f‖L1 . Moreover, f̂(ξ)→ 0 as |ξ| → ∞.

Proof : Only the last statement requires an argument. Observe that if f ∈
C∞0 (Rn), then we can use integration by parts to conclude that f̂ decays rapidly.
Indeed for any multi-index α, |α| = k ∈ N,

ξαf̂(ξ) = ik
∫
∂αx e

−ixξf(x)dx = (−i)k
∫
e−ixξ∂αx f(x)dx

|ξαf̂(ξ)| .
∫
|∂αx f(x)dx| ≤ Cα

for some constant Cα. Thus, |f̂(ξ)| . (1 + |ξ|)−k which proves the statement in
this case. For general f ∈ L1(Rn), given ε > 0, we can choose g ∈ C∞0 such that
||f − g||L1 ≤ ε

2 . From the preceding, we know that |ĝ(ξ)| ≤ ε
2 if |ξ| > M = Mε

sufficiently large and therefore,

sup
|ξ|>M

|f̂(ξ)| ≤ ‖f − g‖L1(Rn) + sup
|ξ|>M

|ĝ(ξ)| ≤ ε

The Fourier transform converts constant coefficient linear partial differential opera-
tors into multiplication with polynomials, as immediate consequence of the relations
∂̂xjf(ξ) = iξj f̂(ξ), x̂jf(ξ) = i∂ξj f̂(ξ). We would like to extend Fourier transforms
to distributions. However, since the space of test functions, i.e. C∞0 , is not preserved
by the Fourier transform, we need to restrict ourselves to a more limited class of
distributions, namely the dual of a space of test functions that is preserved under
the Fourier transform.



3. FOURIER TRANSFORM 35

Definition 3.4. A function φ ∈ C∞(Rn) is said to be rapidly decreasing if for all
multi indices α, β we have

sup
x∈Rn

|xα∂βφ(x)| <∞.

This so-called Schwarz space S(Rn) of rapidly decreasing functions is endowed in
the usual way with a natural Frechet topology. A sequence of functions φj converges
to zero in this topology if, for all multi-indices α, β, xα∂βφj converges uniformly to
zero. Note that S(Rn) contains the compactly supported functions C∞0 (Rn). Since
this is dense in the Lp(Rn) spaces, for 1 ≤ p < ∞, so is S(Rn). It is also easy to
check that C∞0 (Rn) is dense in S(Rn).

We have the following important fact, which is the reason for considering the
Schwarz space in our context:

Proposition 3.5. The Fourier transform is an isomorphism of S(Rn) onto itself
with inverse given by the inversion formula (20). Moreover we have the Plancherel
identity, for all f, g ∈ S(Rn),

(f, g)L2 =
∫

Rn
f(x)ḡ(x)dx = (2π)−n(f̂ , ĝ)L2 (24)

In particular we have the Parseval identity ‖f‖L2 = (2π)−n/2‖F(f)‖L2 .

Proof : Observe that |ξα∂βφ̂(ξ)| = |x̂β∂αφ| and that ∂αφ(x) decays faster than
|x|−|β|−n−1. Thus we easily infer that F maps S(Rn) into itself. Let Rf(x) =
f(−x) and define T = RF2. Observe that T commutes with partial derivatives ∂j
and multiplications by xj . Indeed, for all j = 1, . . . n,

T (∂jf) = ∂j(Tf), T (xjf) = xj(Tf) (25)

Lemma 3.6. An linear, continuous12, operator T : S(Rn) −→ S(Rn) which verifies
(25) must be of the form Tφ = cφ for some constant c.

Proof : Exercise.

To determine the constants we only have to remark that, in view of lemma 3.2 we
have T (G) =

(
(2π)n/2

)2
G = (2π)nG. Hence the constant c = (2π)n which ends

the proof of the inversion formula, and the proposition, for Schwartz functions.
The constant could also be determined directly by observing that G(x) = e−|x|

2/2

verifies the equation (xj + ∂xj )G = 0 and therefore also (ξj + ∂ξj )Ĝ = 0. Hence,
by uniqueness, Ĝ(ξ) = aG(ξ) for some constant a. Therefore, a = Ĝ(0) = (2π)n/2.
The Plancherel and Parseval identities are immediate consequences of the inversion
formula.

12That is T (φj)→ 0 whenever φj → 0 in S(Rn)
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Corollary 3.7. The following properties hold for all functions in S:.∫
φ̂ψdx =

∫
φψ̂dx∫

φψ̄dx = (2π)−n
∫
φ̂

¯̂
ψdx

φ̂∗ψ = φ̂ψ̂

φ̂ψ = (2π)−nφ̂∗ψ̂

As a corollary to the Parseval and Plancherel formulas we can extend our definition
of Fourier to L2(Rn) functions by a simple density argument. Indeed for any u ∈ L2

we can choose a sequence of S(Rn) ⊂ L1 functions uj converging gto u in the L2

norm. By Plancherel, ‖F(uj)−F(uk)‖L2 . ‖uj−uk‖L2 . Hence the sequence F(uj)
forms a Cauchy sequence in L2 and therefore converges to a limit which we may call
û. Clearly this definition does not depend on the particular sequence. Moreover
one can easily check that the Parseval identity extends to all L2 functions. Thus
we have proved,

Theorem 3.8. The Fourier transform is an isometry of the Hilbert space L2(Rn)
into itself.

We can extend the Fourier transform even further to a special class of distributions
defined on Rn.

Definition. We define a tempered distribution to be an element in the dual space
of the Schwarz space. Note that the tempered distributions embed continuously
into the space of ordinary distributions defined earlier. In analogy to the properties
of ordinary distributions, for every tempered distribution u, there exists a natural
number N and a constant C such that

| < u, φ > | ≤ C
∑

|α|, |β|≤N

sup |xα∂βφ|, φ ∈ S(Rn)

We can now easily define the Fourier transform of a tempered distribution, namely,

< û, φ >=< u, φ̂ > .

One easily checks that this defines a tempered distribution û for every tempered u.
Moreover all the properties of the Fourier transform, which have been verified for
Schwartz functions in S(Rn) can be easily extended to all tempered distributions.
In particular, since all Lp spaces are included in S ′(Rn) we have a definition of
Fourier transform for all such spaces. Observe that, in the case of L1 this definition
coincides with the definition given in (19).

The following simple, and very useful, formulas for the Fourier transform of the
Dirac measure δ0 make now sense:

F(δ0) = 1, F(1) = (2π)nδ0 (26)
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Observe also that if we denote by sign(x) the one dimensional tempered distribution
given by the locally integrable function x

|x| we have,

ŝign(ξ) = −2ipv(ξ) (27)

Indeed sign′(x) = 2δ0. Hence, iξ ŝign(ξ) = 2. Therefore, for any rapidly decreasing
φ, we have

i

∫
sign(x)x̂φ(x)dx = 2φ̂(0) = 2

∫
φ(x)dx.

Also, observe that ŝign(x) is an odd distribution in the sense that if φ is even,
φ(x) = φ(−x), then < ŝign, φ >= 0. Now given a general test function φ, write
φ = 1

2 (φ(x) + φ(−x)) + 1
2 (φ(x)− φ(−x)) = φev + φodd. Hence, from the preceding,

we infer that

< ŝign, φ >=< ŝign, x
( 1
x
φodd

)
>= −2i < pv(

1
x

), φ >

as desired.

3.9. Applications to the basic PDE’s.

3.10. Uncertainty principle and localization. On the real line let the
operators X,D defined by,

Xf(t) = tf(t), Df(t) = −if ′(t)

Observe that,
[D,X]f = DXf −XDf = −if

This lack of commutation is responsible for the following:

Proposition 3.11 (Heisenberg uncertainty principle). The following inequality
holds,

‖Xf‖L2 · ‖Df‖L2 ≥ 1
2
‖f‖2L2

Proof : Observe, using the commutator relation above,

0 ≤ ‖(aX + ibD)f‖2L2 = a2‖Xf‖2L2 + b2‖Df‖2L2 − ab‖f‖2L2

Now, pick a = ‖Df‖L2 and b = ‖Xf‖L2 .

The uncertainty principle, which can informally described as ∆x ·∆ξ ≥ 1/2 places
a limit on how accurately we can localize a function, or any other relevant object,
simultaneously in both space and frequency. Let us investigate these localizations
in more details.

1.) Physical space localization. If we want to localize a function f to a domain
D ⊂ Rn we may simply multiply f by the characteristic function χD. The problem
with this localization is that the resulting function χDf is not smooth even if f
is. To correct for this we choose φD ∈ C∞0 (D) in such a way that φD is not too
different from χD. In the particular case when D is a ball B(x0, R) centered at x0
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we can choose φD to be 1 on the ball B(x0, R) and zero outside the ball B(x0, 2R).
This leads to the following bounds for the derivatives of φD,

|∂αφD| . R−|α|.
In general given a domain D to which we can associate a length scale R ( such as
its diameter or distance from a fixed point in its interior), we can find a function
φD ∈ C∞0 (D) such that,

|∂αφD| . R−|α|, (28)

for all multi-indices α ∈ Nn.

2.) Frequency space localization. Just like before we can localize a function to a
domain D ⊂ Rn in frequency space by F−1(χDf̂). Once more, it often pays to use
a smoother version of cut-off, thus we set,

P̂Df(ξ) = φDf̂(ξ).

PD is an example of a Fourier multiplier operator, that is an operator of the type:

T̂mf(ξ) = m(ξ)f̂(ξ). (29)

with m = m(ξ) a given function called the symbol of the operator. Clearly,

Tmf(x) = f∗K(x) =
∫
f(x− y)K(y)dy (30)

where K, the kernel of T , is the inverse Fourer transform of m,

K(x) = (2π)−n
∫
eix·ξm(ξ)dξ.

Clearly any linear differential operator P (∂) is a multiplier with symbol P (iξ).

To compare the action, in physical space, between rough and smooth cut-off oper-
ators it suffices to look at the corresponding kernels K. Let I = [−1, 1] ⊂ R and
χI the rough cut-off (while ignoring the 2π constants). The corresponding kernel

K(x) =
∫ 1

−1

eix·ξdξ = 2
sinx

x

decays very slowly as |x| → ∞. Because of this the operator

F−1(χI f̂)(x) = 2
∫
sin(x− y)

(x− y)
f(y)dy

has very poor localization properties. Indeed, the operator spreads around to the
whole R any function supported in some set J ⊂ R. This situation corresponds to
a perfect localization in frequency space and a very bad one in physical space. The
exact opposite situation occurs when we do the rough cut-off localization χIf in
physical space.

Now let us consider the frequency cut-off operator PIf = F−1(φI f̂) whose kernel
is

K(x) =
∫

R
eix·ξφI(ξ)dξ.
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Though we cannot explicitly calculate K(x), as before, we can nevertheless get a
good handle on its properties. Clearly, to start with, K(x) . 1. This bound is as
good as we expect for |x| . 1. For |x| ≥ 1 we can do much better by exploiting the
rapid oscillations of the phase function eix·ξ and the smoothness of φI . Integrating
by parts, for |x| ≥ 1,

K(x) =
∫

R

( 1
ix

)j( d
dξ

)j
eix·ξφI(ξ)dξ =

∫
R

(−1
ix

)j
eix·ξ

( d
dξ

)j
φI(ξ)dξ

Thus, since all derivatives of φI are bounded, see (28), we have for all positive j,

|K(x)| . |x|−j .

that is K(x) is rapidly decreasing , unlike our previous case of the rough cut-off.
Returning to PIf we can now prove the following:

Lemma 3.12. Let I = [−1, 1], φI a smooth cut-off on I and PIf = F−1(φI f̂).
Then, if f is any L2 function supported on a set D ⊂ R,

|PI(f)(x)| . Cj‖f‖L1

(
1 + dist(x,D)

)−j
for all j ∈ N .

Thus PI spreads the support of any function f by a distance O(1) plus a rapidly
decreasing tail.

Exercise. Show that there exists no non-trivial function φ such that both φ and
F(φ) are compactly supported.

The above discussion can be easily extended to higher dimensions. In particular
we can get a qualitative description of functions in Rn whose Fourier support is
restricted to a ball BR = B(0, R) centered at the origin. Let φR be a smooth
cut-off for BR, that is supξ |∂αξ φR(ξ)| . R−|α| for any multi-index α. Observe that
we can in fact first pick φ a smooth cut-off for B1 and define φR(ξ) = φ(ξ/R) If f
is a function whose support is restricted to BR then f̂ = φRf̂ . Hence,

f(x) =
∫

Rn
f(y)KR(x− y)dy (31)

where K(x) = F−1(φR) i.e.,

KR(x) =
∫

Rn
eix·ξφR(ξ)dξ =

∫
Rn

(−1
ix

)α
∂αξ (eix·ξ)φR(ξ)dξ

=
∫

Rn

( 1
ix

)α
eix·ξ∂αξ φR(ξ)dξ

Thus, for any α, |α| = N , denoting by |BR| = cnR
n the volume of BR,

|x|N |KR(x)| .
∫

Rn
|∂αξ φR(ξ)| . R−N |BR| . R−N+n

Hence, |KR(x)| ≤ CNRn(|x|R)−N , for some constant CN which may depend on N .
On the other hand, for |x| . R−1, |KR(x)| . Rn. Hence, for every N ∈ N,

|KR(x)| . CNRn(1 + |x|R)−N .
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It is easy to check also that each derivative of KR costs us a factor of R, that is,

|∂αxKR(x)| . CNR|α|Rn(1 + |x|R)−N , α ∈ Nn (32)

Now back to (31) we have

|∂αf(x)| = |
∫

Rn
f(y) ∂αKR(x− y)dy| . R|α|+n

∫
Rn
|f(y)|(1 +R|x− y|)−Ndy

. R|α|+n‖f‖L1

Also, by Cauchy -Scwartz with 1
p + 1

p′ = 1,

|∂αf(x)| . ‖f‖Lp‖∂αKR‖Lp′ . R
|α|RnR−n/p

′
‖f‖Lp

. R|α|+n/p‖f‖Lp
We have just proved the following version (Lp−L∞ version) of the very important
Bernstein inequality,

Proposition 3.13. Assue that f is an Lp function which has its fourier transform
supported in the ball BR = B(0, R). Then f has infinitely many derivatives bounded
in L∞ and we have,

‖∂αf‖L∞(Rn) . R
n/p+|α|‖f‖Lp .

Remark. Observe that the proposition could have been proved by reducing it
to the particular case of R = 1. More precisely assume that the result is true
for R = 1 and consider a function f whose Fourier transform is supported in BR.
Let g(x) = R−nf(R−1x) and observe that, supp ĝ(ξ) = supp f̂(Rξ) ⊂ B1 and
therefore we have, ‖∂αg‖L∞(Rn) . ‖g‖L1 = R−nRn/p‖f‖Lp . Thus, ‖∂αf‖L∞(Rn) .
Rn/p+|α|‖f‖Lp .

4. Basic interpolation theory

4.1. Introduction. Consider the Fourier transform as a linear operator F :
S(Rn) → S(Rn). According to the Plancherel identity we have ‖F(f)‖L2 ≤
2πn/2‖f‖L2 . On the other hand, we have ‖F(f)‖L∞ ≤ ‖f‖L1 . Can we get other
bounds of the type ‖F(f)‖Lq . ‖f‖Lp ? It turns out that such estimates can
be easily established by interpolating between the two estimates mentioned above.
Complex interpolation allows us to conclude an Lp to Lq estimate for any values of
p and q such that p−1 + q−1 = 1 and q ≥ 2. This is known as the Young-Hausdorff
inequality. Interpolation theory is particularly useful for linear multiplier operators
of the form

T̂mf(ξ) = m(ξ)f̂(ξ)
with bounded multipler m. In view of Parseval’s identity it is very easy to check the
L2 − L2 estimate, ‖Tmf‖L2 . ‖f‖L2 . To obtain additional estimates we typically
use the integral representation (30) Tmf(x) = f∗K(x) =

∫
f(x−y)K(y)dy where K

is the inverse Fourier transform of m. If, for example, we can establish that K ∈ L1

than we easily deduce that ‖Tmf‖L1 . ‖f‖L1 , since ‖f∗K‖L1 ≤ ‖f‖L1 · ‖K‖L1 .
We thus have both L1 − L1 and L2 − L2 estimates for Tm. and it is tempting to
conclude we might have an Lp − Lp estimate for all 1 ≤ p ≤ 2. Such an estimate
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is indeed true and follows by interpolation. If on the other hand we can establish
that K ∈ L∞ then ‖f∗K‖L∞ . ‖f‖L1 and thus can prove, by interpolation, the
same Lp − Lq estimate as in the Hausdorff-Young inequality.

4.2. Review of Lp spaces. Given a measurable subset Ω ⊂ Rn the space
Lp(Ω), 1 ≤ p < ∞, consists in all measurables functions f : Ω → C with finite Lp

norm,

‖f‖Lp =
(∫

Ω

|f(x)|p dx
)1/p

<∞.

The space L∞(Ω) consists of all measurable functions, bounded almost everywhere,
that is,

‖f‖L∞ = ess supx∈Ω |f(x)| <∞.

For all values of 1 ≤ p ≤ ∞ the spaces Lp(Ω) are Banach spaces. The following is
called Hölder’s inequality

‖fg‖Lp ≤ ‖f‖Lq ‖g‖Lr , (33)

whenever 1/p = 1/q + 1/r. In particular, for p = 1,

‖fg‖L1 ≤ ‖f‖Lq ‖g‖Lq′

where q′ verifying 1
q′ = 1 − 1

q is the exponent dual to q. For all 1 ≤ q < ∞ the
space Lq

′
(Ω) is dual to Lq(Ω) while the dual of L∞(Ω) consists on the space of

finite Borel masures on Ω, which includes L1(Ω).

Exercise. Show that C∞0 (Ω) is dense in Lp(Ω) for all 1 ≤ p <∞.

Given a measurable function f and a positive number α, denote by Λ(f, α) the
distribution function of f defined by

Λ(f, α) = |{x ∈ Ω : |f(x)| > α}| .

For 1 ≤ p <∞ we have the obvious Chebyschev’s inequality

Λ(f, α) ≤ α−p ‖f‖pLp . (34)

We can write the Lp norm of f in terms of its distribution function. Indeed, the
integral

∫
|f |p is the measure of the set {(β, x) : 0 < β < |f(x)|p}, hence∫

|f(x)|pdx =
∫ ∞

0

Λ(|f |p, β)dβ = p

∫ ∞
0

αp−1Λ(f, α)dα, (35)

where the last integral is obtained from the substitution β = αp.

A measurable function f : Ω→ C is said to be simple if its range consists of a finite
number of points in C, that is f =

∑N
i=1 aiχAi for ai ∈ C and Ai ⊂ Ω measurable.

In this section we denote by S(Ω) the set of all simple functions in Ω. Recall that
S(Ω) is dense in Lp(Ω) for all 1 ≤ p ≤ ∞.
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Exercise. Let f(x, y) be a measurable function on Ω1 × Ω2 ⊂ Rn1 × Rn2 . Prove
the following version of the Minkowski’s inequality,∥∥∥∥∫

Ω2

f(x, y)dy
∥∥∥∥
Lpx(Ω1)

≤
∫

Ω2

‖f(x, y)‖Lpx(Ω1) dy,

for 1 ≤ p ≤ ∞.

4.3. Three lines lemma. The method of analytic interpolation, for linear
operators acting on Lp spaces, is based on a variant of the maximum modulus
theorem for a strip-like domain called the three lines lemma. Consider the strip-
like domain,

D = {z ∈ C : 0 < Re(z) < 1} .
We will denote by ABC the set of bounded continuous functions on the closure of
D which are analytic on D.

Lemma 4.4 (Three lines lemma). Let f ∈ ABC such that

|f(0 + ib)| ≤M0, |f(1 + ib)| ≤M1,

for all b ∈ R. Then for all 0 < a < 1 and b ∈ R,

|f(a+ ib)| ≤M1−a
0 Ma

1 .

Proof : We may assume that M0,M1 > 0. Let ε > 0 and define the analytic
function

Fε(z) = e−ε(1−z)z
f(z)

M1−z
0 Mz

1

.

Because of the exponential factor, Fε(z) decays rapidly to 0 as Im(z) → ±∞,
uniformly in D; it is then possible to find L = L(ε) > 0 such that |Fε(z)| ≤ 1
when |Im(z)| ≥ L. Since we also have |Fε(z)| ≤ 1 when Re(z) = 0 or Re(z) = 1,
it follows, from the maximum modulus principle applied to the rectangle DL =
D ∩ {|Im(z)| ≤ L}, that |Fε(z)| ≤ 1 for every z ∈ DL and therefore in D. This
means

|f(z)| ≤
∣∣∣eε(1−z)zM1−z

0 Mz
1

∣∣∣ = eεRe((1−z)z)M
1−Re(z)
0 M

Re(z)
1 .

but f is independent of ε and when ε→ 0 we obtain the result.

4.5. Stein-Riesz-Thorin interpolation.

Definition 4.6. We say that a family of linear operators Tz, indexed by z ∈ D, is
an analytic family of operators if,

(1) Tz maps simple functions into measurable functions;
(2) For any pair of simple functions f, g ∈ S(Ω), the map z 7→

∫
g(x)Tzf(x)dx

belongs to ABC .

Remark 4.7. The reason for choosing simple functions as test functions in the
previous definition is because they are easy to manipulate and they make a dense
set in Lp for every p ∈ [1,∞].
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Figure 1. Three Lines Lemma

Theorem 4.8. Let Tz be an analytic family of operators and assume there are
positive constants M0,M1 such that, for every b ∈ R,

‖Tibf‖Lq0 ≤M0 ‖f‖Lp0 , ‖T1+ibf‖Lq1 ≤M1 ‖f‖Lp1 ,
with 1 ≤ q0, p0, q1, p1 ≤ ∞. Then, for z = a + ib ∈ D, Tz extends to a bounded
operator from Lp to Lq and

‖Tzf‖Lq ≤M
1−a
0 Ma

1 ‖f‖Lp ,
where

1
p

=
1− a
p0

+
a

p1
,

1
q

=
1− a
q0

+
a

q1
.

Proof : Adopting a bilinear formulation we have to prove that∣∣∣∣∫ g(x)Tzf(x)dx
∣∣∣∣ ≤M1−a

0 Ma
1 , (36)

for every pair of simple functions f, g with ‖f‖Lp = ‖g‖Lq′ = 1. Fix such a pair
f, g and consider the related (analytic) families of simple functions

fz(x) = |f(x)|
p
p(z)−1f(x), gz(x) = |g(x)|

q′
q′(z)−1

g(x),

with the exponents,
1
p(z)

=
1− z
p0

+
z

p1
,

1
q′(z)

=
1− z
q′0

+
z

q′1
.

We can easily check that

|fib| ≤ |f |p/p0 , |f1+ib| ≤ |f |p/p1 , |gib| ≤ |g|q
′/q′0 , |g1+ib| ≤ |g|q

′/q′1 .

Here we use the convention that 1/∞ = 0, and in particular if p0 = p1 = ∞ then
p = p(z) =∞ and fz ≡ f , similarly q′0 = q′1 =∞ then q′ = q′(z) =∞ and gz ≡ g.
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It is immediate to verify that ‖fz‖
LRe(p(z))

= ‖f‖Lp = 1 and ‖gz‖
LRe(q′(z)) =

‖g‖Lq′ = 1.

Now consider the map defined on D,

h(z) =
∫
gz(x)Tzfz(x)dx.

It is not difficult to see from our construction and the linearity and analyticity
properties of Tz, that h ∈ ABC . By hypothesis (and Cauchy-Schwarz) we have
that |h(ib)| ≤ M0 and |h(1 + ib)| ≤ M1 for every b ∈ R. It follows from the

three-lines lemma that |h(z)| ≤M1−Re(z)
0 M

Re(z)
1 and in particular (36).

4.9. Young inequality. We often need to estimate integral operators of the
form

Tf(x) =
∫
k(x, y)f(y)dy, (37)

The simplest result of this type is given by Young’s theorem below.

Theorem 4.10 (Young). Let k(x, y) be a measurable function and assume that for
some 1 ≤ r ≤ ∞ we have

sup
x
‖k(x, · )‖Lr . 1, sup

y
‖k( · , y)‖Lr . 1.

Then, for 1 ≤ p ≤ r′ and

1 +
1
q

=
1
r

+
1
p
, (38)

we have

‖Tf‖Lq ≤ ‖f‖Lp . (39)

Proof : By Hölder inequality,

‖Tf‖L∞ ≤ ‖f‖Lr′ . (40)

On the other hand the dual operator T ∗ has the same form as T ,

T ∗g(y) =
∫
k(x, y)g(x)dx,

and hence,
‖T ∗g‖L∞ ≤ ‖g‖Lr′ ,

which by duality gives the other endpoint

‖Tf‖Lr ≤ ‖f‖L1 . (41)

Now, we can use Theorem 4.8, with Tz ≡ T , to interpolate between (40) and (41)
and obtain (39).

As an immediate consequence, when k is translation invariant, k(x, y) = k(x− y),
we obtain the well known estimate for convolutions:

‖k ∗ f‖Lq ≤ ‖k‖Lr ‖f‖Lp , (42)
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whenever the exponents 1 ≤ p, q, r ≤ ∞ satisfy (38).

Exercise. Prove, using complex interpolation, the Hausdorff-Young inequality for
the Fourier transform F ,

‖F(f)‖Lq . ‖f‖Lp , for all q ≥ 2, 1/q + 1/p = 1.

4.11. Marcinkiewicz interpolation. A slightly weaker condition than Lp

integrability for a function f is the so called weak-Lp property.

Definition 4.12. For 1 ≤ p < ∞, we say that f belongs to weak-Lp if Λ(f, α) .
α−p, for every α > 0. If p =∞ we let weak-L∞ coincide with L∞.

By Chebyschev’s inequality (34), any function in Lp is also in weak-Lp. The follow-
ing is the simplest example of real interpolation. It applies to sublinear operators,
that is,

|T (f + g)(x)| . |Tf(x)|+ |Tg(x)| ,

Theorem 4.13. Consider a sublinear operator T mapping measurable functions on
X to measurable functions on Y . Assume that T maps Lpi(X) into weak-Lpi(Y ),
with bound

Λ(Tf, α) . α−pi ‖f‖piLpi ,

for i = 1, 2 and 1 ≤ p1 < p2 ≤ ∞. Then, for any p, p1 < p < p2, T maps Lp(X)
into Lp(Y ), with the bound

‖Tf‖Lp . ‖f‖Lp ,

.

Proof : Given f ∈ Lp(X) and α > 0 we write f = fα + fα, where fα(x) = f(x)
if |f(x)| > α and fα(x) = f(x) if |f(x)| ≤ α. In particular fα ∈ Lp1 and fα ∈ Lp2 .

Consider first the case p2 <∞. By our assumptions on T we have

Λ(Tf, 2α) . Λ(Tfα, α) + Λ(Tfα, α) . α−p1 ‖fα‖p1Lp1 + α−p2 ‖fα‖p2Lp2 . (43)

Using formula (35) and Fubini’s theorem, we infer that∫
|Tf(x)|p dx .

∫∫
0<α<|f(x)|

|f(x)|p1αp−p1−1dαdx+
∫∫

|f(x)|≤α
|f(x)|p2αp−p2−1dαdx.

But
∫ |f(x)|

0
αp−p1−1dα ' |f(x)|p−p1 , since p−p1−1 > −1, and

∫∞
|f(x)| α

p−p2−1dα '
|f(x)|p−p2 , since p− p2 − 1 < −1, and the conclusion follows.

In the case of p2 =∞ the proof is actually simpler. We only have to observe that
|Tf(x)| � α implies |Tfα(x)| � α, since |Tfα(x)| . ‖fα‖L∞ ≤ α. Hence we can
replace (43) by

Λ(Tf,Cα) . Λ(Tfα, α) . α−p1 ‖fα‖p1Lp1 ,
where C is some positive constant, and the proof proceeds as before.
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5. Maximal function, fractional integration and applications

5.1. Maximal Function. A function f which is in Lp(Rn), for some 1 ≤ p ≤
∞, may possess very bad regularity properties. Given α > 0, the set of points x
where |f(x)| > α may merely be any measurable set (with finite measure if p <∞).
It is often desirable to replace f with a positive function which has (almost) the
same integrability properties of f but better local regularity. This is achieved by
considering maximal averages of f .

Definition 5.2. Given a measurable function on Rn we define its maximal function
by

Mf(x) = sup
x∈B

1
|B|

∫
B

|f(y)|dy.

Here the supremum is taken over all possible euclidean balls B containing x.

Remark 5.3. It follows immediately from the definition thatMf is lower semicon-
tinuous. Indeed, for every α ≥ 0, the sets Eα = {x ∈ Rn :Mf(x) > α} are always
open: if x ∈ Eα then there exists a ball B containing x such that

1
|B|

∫
B

|f(y)|dy > α, (44)

and this also means that Mf(y) > α for every y ∈ B, hence B ⊂ Eα.

By the triangle inequality we also see that f 7→ Mf is a subadditive operator,

M(f + g)(x) ≤Mf(x) +Mg(x). (45)

The averaging process may improve local regularity, but, because of the supremum,
it is not clear whether Mf preserves the integrability properties of f . If f is
essentially bounded, then Mf is bounded and

‖Mf‖L∞ ≤ ‖f‖L∞ . (46)

But, if f is an integrable function, it doesn’t follow that Mf is integrable. Take
for example f = χB ∈ L1, the characteristic function of a ball, then Mf(x) &
(1 + |x|)−n which barely fails to be in L1. Fortunately, the maximal function still
retains most of the information about the integrability properties of f .

Theorem 5.4. If f ∈ L1 then Mf is weakly in L1, in the sense that for α > 0 we
have

|Eα| = Λ(Mf(x), α) .
1
α
‖f‖L1 (47)

If f ∈ Lp with 1 < p ≤ ∞ then Mf ∈ Lp and we have

‖Mf‖Lp . ‖f‖Lp . (48)

Proof : The second part of the statement follows from the first and the L∞ bound-
edness of the maximal operator by Marcinkiewicz interpolation, Theorem 4.13.
Hence, we only need to prove (47).
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Let f ∈ L1 and fix α > 0. By the discussion in Remark 5.3 we can find a family
of balls B = {B}, such that Eα = ∪B∈BB and each ball B satisfies (44). If these
balls were all disjoint then it would be easy to conclude, since in that case

|Eα| ≤
∑
B∈B
|B| < 1

α

∑
B

∫
B

|f(y)|dy ≤ 1
α

∫
Rn
|f(y)|dy.

In general these balls are not disjoint and we have to be more careful.

Let K be a compact subset of Eα, then it is possibile to select a finite subfamily
B′ of balls in B that cover K. (This is sometimes known as the Vitali Covering
Lemma.) Using the covering lemma proved below, Lemma 5.5, we can select among
the balls in B′ another finite subfamily B′′ made of disjoint balls such that

|∪B′∈B′B′| .
∑

B′′∈B′′
|B′′|.

Then, proceeding as above, we find

|K| . 1
α
‖f‖L1 ,

and taking the supremum over all possible compact sets K we finally obtain (47).

Lemma 5.5. Let B1, . . . , BN be a finite collection of balls in Rn, then it is possible
to select a subcollection Bj1 , . . . , BjM , M ≤ N , of disjoint balls such that∣∣∪Nj=1Bj

∣∣ . M∑
k=1

|Bjk |.

Proof : We can assume that the balls Bj = B(xj , rj) are labeled so that the radii
are in nonincreasing order, r1 ≥ r2 ≥ · · · ≥ rN .

Take j1 = 1, so that Bj1 is the ball with largest radius. Then by induction, define
jk+1 to be the minimum index among those of the balls Bj which don’t intersect
with the previously chosen balls Bj1 , . . . , Bjk ; if there are no such balls then stop
at step k.

With this construction we have that each ball Bj intersects one of the chosen balls
Bjk with rj ≤ rjk , hence Bj ⊂ B(xjk , 3rjk). This implies that∣∣∪Nj=1Bj

∣∣ ≤ ∣∣∪Mk=1B(xjk , 3rjk)
∣∣ ≤ 3n

M∑
k=1

|Bjk |.

5.6. Lebesgue differentiation theorem. If a function f is continuous then,
clearly,

lim
r→0

1
|B(x, r)|

∫
B(x,r)

f(y)dy = f(x). (49)
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As an application of Theorem 5.4 we can show that this property continue to hold
for locally integrable functions.

Corollary 5.7 (Lebesgue’s differentiation theorem). If f ∈ L1
loc(Rn) then (49)

holds for almost every x.

Proof : Since the statement is local we can assume that f ∈ L1.

Let Ar be the averaging operator defined by Arf(x) = |B(x, r)|−1
∫
B(x,r)

f(y)dy.
The proof consist of two steps. First we prove that Arf → f in L1 as r → 0, and
then it will be enough to show that limr→0Arf(x) exists almost everywhere.

For the first step, given ε > 0, using the density of C0 in L1, we can always find a
compactly supported continuous function g which approximates f in L1 and have
‖Arf −Arg‖L1 ≤ ‖f − g‖L1 < ε uniformly in r. Then by the uniform continuity
of g, we know that Arg → g in L1 as r → 0, hence there exists an rε such that

‖Arf − f‖L1 ≤ ‖Arf −Arg‖L1 + ‖Arg − g‖L1 + ‖f − g‖L1 ≤ 3ε,

for r < rε.

For the second step, we define the oscillation of an L1 function f by

Ωf(x) = lim sup
r→0

Arf(x)− lim inf
r→0

Arf(x).

The oscillation is a subadditive operator, Ω(f+g) ≤ Ωf+Ωg and is bounded by the
maximal function operator, Ωf ≤ 2Mf , moreover the oscillation of a continuous
function vanishes. If g is a continuous function which appoximate f in L1 then we
have that

Ωf ≤ Ω(f − g) + Ωg = Ω(f − g) ≤ 2M(f − g).

We can apply now the weak-L1 property of the maximal function, and for any
positive α we find that

|{x : Ωf(x) > α}| ≤ |{x :M(f − g)(x) > α/2}| . 1
α
‖f − g‖L1 .

Since ‖f − g‖L1 can be arbitrarily small, we infer that set of points where the
oscillation of f is positive is of measure zero.

5.8. Fractional integration. Let T be an integral operator acting on func-
tions defined over Rn with kernel k as in (37). If the only information that we have
on k(x, y) is a decay estimate of the type

|k(x, y)| . |x− y|−γ ,

for some γ > 0, then Young’s inequality, Theorem 4.10, does not allow us to recover
a good control on Tf , since the function |x |−γ fails, barely, to be in Ln/γ . However,
the convolution has smoothing properties that imply some positive results which
are contained in the following important theorem, originally proved by Hardy and
Littlewood for n = 1 and then extended by Sobolev to n > 1.
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Theorem 5.9 (Hardy-Littlewood-Sobolev inequality). Let 0 < γ < n and 1 < p <
q <∞ such that

1− γ

n
=

1
p
− 1
q
, (50)

then ∥∥| · |−γ ∗ f∥∥
Lq(Rn)

. ‖f‖Lp(Rn) . (51)

Proof : We can split the convolution with the singular kernel into two parts:

Iγf(x) = | · |−γ ∗ f(x) =
∫
|y|≥R

f(x− y)
|y|γ

dy +
∫
|y|<R

f(x− y)
|y|γ

dy,

where the radius R is a positive constant to be chosen later We estimate the first
term simply by Hölder’s inequality,∣∣∣∣∣

∫
|y|≥R

f(x− y)
|y|γ

dy

∣∣∣∣∣ ≤ ‖f‖Lp
(∫
|y|≥R

|y|−γp
′
dy

)1/p′

. R
n
p′−γ ‖f‖Lp ,

where we need the integrability condition γp′ > n, which by (50) is equivalent to
q <∞.

For the second part we perform a dyadic decomposition around the singularity and
get an estimate in terms of the maximal function,∣∣∣∣∣

∫
|y|<R

f(x− y)
|y|γ

dy

∣∣∣∣∣ ≤
∞∑
k=0

∫
2−k−1≤ |y|R ≤2−k

|f(x− y)|
|y|γ

dy .

.
∞∑
k=0

1
(2−kR)γ

∫
|y|≤2−kR

|f(x− y)|dy .

.
∞∑
k=0

(2−kR)n−γMf(x) ' Rn−γMf(x),

where we need γ < n for the convergence of the last geometric series.

At this point we have found that for every x ∈ Rn and every R > 0,∣∣| · |−γ ∗ f(x)
∣∣ . R n

p′−γ ‖f‖Lp +Rn−γMf(x),

with constants independent of R and x. We optimize this inequality choosing, for
each x, a radius R = R(x) such that the two terms on the right hand side are equal,

R
n
p′−γ ‖f‖Lp = Rn−γMf(x),

i.e.,

R(x) =
(
‖f‖Lp
Mf(x)

)p/n
,

and since (n− γ)p/n = 1− p/q, we have

|Iγf(x)| . ‖f‖1−
p
q

Lp Mf(x)
p
q .

Then take the Lq norm on both sides,

‖Iγf‖Lq . ‖f‖
1− pq
Lp ‖Mf‖

p
q

Lp .
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If p > 1 we can conclude using the estimates for the maximal function (48).

Remark. The Hardy-Littlewood-Sobolev inequality has an equivalent bilinear
formulation, which reads∫∫

f(x)g(y)
|x− y|γ

dxdy . ‖f‖Lp1 ‖g‖Lp2 ,

for 0 < γ < n and 1 < p1, p2 <∞ such that
1
p′1

+
1
p′2

=
γ

n
.

Remark. Using the Hardy-Littlewood-Sobolev inequality, we now show that it is
possible to give a very short proof of the Sobolev inequality,

‖f‖Lq . ‖∂f‖Lp ,
for n/q = n/p− 1, in the non sharp regime p > 1. Assume f ∈ C∞0 (Rn). For every
unit vector ω we have

f(x) = −
∫ ∞

0

d

dr
f(x+ ωr)dr,

hence, if we integrate over the unit sphere, recalling that the volume element in Rn
in polar coordinates is dy = rn−1drdσω, we find that

|f(x)| .
∫
|∂f(y)|
|x− y|n−1

dy =
(
| · |1−n ∗ |∂f |

)
(x).

We take the Lq norm and use (51) to get

‖f‖Lq .
∥∥ | · |1−n ∗ |∂f |∥∥

Lq
. ‖ ∂f ‖Lp ,

whenever p > 1 and

1− n− 1
n

=
1
p
− 1
q
.

Exercise. Prove the Hilbert inequality,∫ ∞
0

∫ ∞
0

f(x)g(y)
x+ y

dxdy . ‖f‖Lp‖g‖Lq , 1/p+ 1/q = 1, p, q 6= 1

5.10. Sobolev Inequalities. In the previous section we have seen how to
estimate the Lq(Rn) norm of a function in terms of an Lp norm, 1− n−1

n = 1
p −

1
q ,

p > 1, of the gradient of f . We shall prove now a stronger version of this.

Theorem 5.11 (Galgliardo-Nirenberg-Sobolev). The inequality

‖f‖Lq(Rn) . ‖∂
mf‖Lp(Rn) , f ∈ C∞0 (Rn), (52)

holds for
1
q

=
1
p
− m

n
> 0, m ∈ N, (1 ≤ p < q <∞). (53)

While for q =∞, we have

‖f‖L∞(Rn) .
m∑
k=0

∥∥∂kf∥∥
Lp(Rn)

, f ∈ C∞0 (Rn), (54)
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when m > n/p.

Remark. We don’t need to remember the precise condition (53); it can be deduced
by a simple dimensional analysis. Since the estimate is homogeneous, it has to be
invariant under dilations, and (53) simply says that both sides in (52) have the
same scaling.

Remark. The following non-sharp version of estimate (52) also holds for all 1 ≤
p < q <∞ and 1/p−m/n < 1/q,

‖f‖Lq(Rn) .
∑
|α|≤m

‖∂αf‖Lp f ∈ C∞0 (Rn), (55)

Exercise. Show by an example that the inequality (54) fails to be true for m =
n/p. Prove (55) for m = 1, using the results of theorem 5.11.

Exercise. Show by a scaling argument that if the inequality (55) holds true for
1/p = 1/q −m/n < 0 then the homogeneous inequality (52) is also true.

Proof [Proof of (52)]: We obtain the cases with m > 1 by repeated iterations of
the case m = 1. Hence, we can assume m = 1 and, by (53),

1 ≤ p < n,
n

n− 1
≤ q =

np

n− p
<∞.

Once we have the estimate for p = 1 and q = n/(n − 1), then we get the cases
with p > 1 and q > n/(n − 1) by simply applying Hölder inequality. Indeed, let
q = λn/(n− 1), for some λ > 1, then

‖f‖λLq =
∥∥|f |λ∥∥

L
n
n−1
.
∥∥|f |λ−1∂f

∥∥
L1 ≤

∥∥|f |λ−1
∥∥
Lp′
‖∂f‖Lp ,

and we just have to check that

(λ− 1)p′ =
n−1
n q − 1

1− 1
n −

1
q

= q.

It only remains to prove the special case m = 1, p = 1, q = n/(n − 1). Following
Nirenberg, [15], one can show that for f ∈ C∞0 (Rn) we have

‖f‖
L

n
n−1 (Rn)

.
n∏
j=1

‖∂jf‖1/nL1(Rn) . (56)

When n = 1, this comes easily from writing

f(x) =
∫ x

−∞
f ′(y)dy.

When n = 2, we do the same with respect to to each variable and then multiply
and integrate:∫∫

|f(x1, x2)|2dx1dx2 ≤
∫∫ ∫

|∂1f(y1, x2)|dy1

∫
|∂2f(x1, y2)|dy2dx1dx2

= ‖∂1f‖L1 ‖∂2f‖L1 .
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When n ≥ 3 things become more tricky and, to separate the variables, we have to
make a repeated use of Hölder inequality. Let just look at the case n = 3. To ease
the notation set fj = ∂jf and

∫
φ(x)dxj =

∫
j
φ(x̂j). We start with

|f(x)| 32 ≤
(∫

1

|f1(·, x2, x3)|
) 1

2
(∫

2

|f2(x1, ·, x3)|
) 1

2
(∫

3

|f3(x1, x2, ·)|
) 1

2

.

Then integrate with respect to x1. The first factor on the right hand side doesn’t
depend on x1, while we use Hölder to separate the second from the third,∫

1

|f(·, x2, x3)| 32 ≤
(∫

1

|f1(·, x2, x3)|
) 1

2
(∫

1,2

|f2(·, ·, x3)|
) 1

2
(∫

1,3

|f3(·, x2, ·)|
) 1

2

.

Proceed similarly with the integration with respect to x2,∫
1,2

|f(·, ·, x3)| 32 ≤
(∫

1,2

|f1(·, ·, x3)|
) 1

2
(∫

1,2

|f2(·, ·, x3)|
) 1

2
(∫

1,2,3

|f3(·)|
) 1

2

,

and finally do the same with x3,∫
1,2,3

|f(·)| 32 ≤
(∫

1,2,3

|f1(·)|
) 1

2
(∫

1,2,3

|f2(·)|
) 1

2
(∫

1,2,3

|f3(·)|
) 1

2

.

When n > 3 the procedure is exacly the same.

Proof [Proof of (54)]: It clearly suffices to look at the case m = 1, since the cases
m > 1 will follow from it applying (52). Assume thus m = 1 and p > n, we want
to prove that

|f(0)| . ‖f‖Lp + ‖Df‖Lp .
Suppose first that f has support contained in the unit ball B = {|x| < 1}, then

f(0) = −
∫ 1

0

d

dr
f(rω)dr, ω ∈ Sn−1. (57)

Integrate with respect to ω and then apply Hölder,

|f(0)| .
∫
B

|∂f(x)|
|x|n−1

dx . ‖∂f‖Lp
(∫

B

dx
|x|(n−1)p′

)1/p′

. ‖∂f‖Lp , (58)

where the integrability condition needed here is (n − 1)p′ < n, which is precisely
p > n.

In general, fix a cutoff function φ ∈ C∞0 with support in B and φ(0) = 1, then in
view of the above, |f(0)| = |φ(0)f(0)| . ‖∂(φf)‖Lp . ‖f‖Lp + ‖∂f‖Lp .

5.12. Classical Sobolev spaces. The Sobolev inequalities of theorem (5.11)
lead us to the introduction of Sobolev spaces.

Definition 5.13. Let Ω be an open subset of Rn. Fix 1 ≤ p ≤ ∞ and let s ∈ N be
a non-negative integer. The space W s,p(Rn) consists of all locally integrable, real
(or complex) valued functions u on Ω such that for all multiindex α with |α| ≤ s
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the weak13 derivatives ∂αu belong to Lp(Ω). These spaces come equiped with the
norms,

‖u‖W s,p(Ω) =
( ∑
|α|≤s

‖∂αu‖pLp(Ω)

)1/p
, for 1 ≤ p <∞

‖u‖W s,∞(Ω) =
∑
|α|≤s

‖∂αu‖L∞(Ω)

We also denote by W k,p
0 (Ω) the closure of C∞0 (Ω) in W k,p(Ω).

In the particular case p = 2 we write Hs(Ω) = W s,2(Ω). Clearly H0(Ω) = L2(Ω).
We also write Hs

0(Ω) = W s,2
0 (Ω).

In the particular case p = ∞ we work with the smaller space Cs(Ω) ⊂ W s,∞(Ω),
the set of functions which are s times continuously differentiable and have bounded
‖ ‖W s,∞ norm.

Exercise. Show that for each s ∈ N and 1 ≤ p ≤ ∞ the spaces W s,p(Ω) are
Banach spaces.

There is a lot more to be said about Sobolev spaces in domains Ω ⊂ Rn. We refer
the reader to Evans, [1], chapter 5. For the time being we specialize to the case
Ω = Rn.

Exercise. Show that the spaces W k,p(Rn) and W k,p
0 (Rn) coincide. That means

that C∞0 is dense in W k,p(Rn).

The Sobolev inequalities proved in the previous subsection can be interpreted as
embedding theorems. Indeed (52) and (55) can be interpreted as saying that the
Sobolev space Wm,p(Rn) is included in the Lebesgue space Lq(Rn) as long as 1

p −
m
n ≤

1
q .

Proposition 5.14. The following inclusions are continuous

Wm,p(Rn) ⊂ Lq(Rn), if
1
p
− m

n
≤ 1
q
.

Moreover, for q = ∞, Wm,p(Rn) embeds into the space of bounded continuous
functions on Rn provided that m > n/p.

Proof : Follows from theorem 5.11 and the density of C∞0 (Rn) in Wm,p(Rn).

5.15. Hölder spaces. Together with Sobolev spaces Hölder spaces play a very
important role in Analysis, especially in connection to elliptic equations. Before
introducing these spaces we recall the definitions of the spaces Cm(Ω) of m times

13That is derivatives in the sense of distributions.



54 1. BASIC TOOLS OF ANALYSIS

continuously differentiable functions u : Ω→ R on an open domain Ω for which the
W s,∞ norm is bounded,

‖u‖Cm(Ω) =
∑
|α|≤m

‖∂αu(x)‖L∞(Ω) <∞.

Definition 5.16. Let Ω be an open domain in Rn We say that a function u : Ω→ R
is Hölder continuous with exponent 0 < γ ≤ 1 if,

[u]C0,γ(Ω) = sup
x 6=y∈Ω

|u(x)− u(y)|
|x− y|γ

<∞. (59)

The Hölder space Ck,γ(Ω) consists of all functions u ∈ Ck(Ω) for which the norm,

‖u‖Ck,γ(Ω) = ‖u‖Ck(Ω) +
∑
|α|=k

[∂αu]C0,γ(Ω). (60)

is finite.

Exercise. The space Ck,γ(Ω) is a Banach space.

The following stronger version of the Sobolev embedding in L∞ is important in
elliptic theory.

Theorem 5.17 (Morrey’s inequality). Assume n < p ≤ ∞. Then, for all u ∈
C∞0 (Rn),

‖u‖C0,γ(Rn) . ‖u‖W 1,p(Rn) (61)

provided that γ = 1− n/p.

Proof : See Evans, Partial Differential Equations, section 5.6.2. [1]

5.18. Fractional Hs- Sobolev spaces. Consider the Sobolev space

Hs(Rn) = {u ∈ L2 : ∂αu ∈ L2, ∀ |α| ≤ s}.

Proposition 5.19. The Sobolev space Hs(Rn) coincides with the set of all distri-
butions u ∈ S ′(RN ) for which û is locally integrable and,

‖u‖2Hs =
∫

RN
(1 + |ξ|2)s|û(ξ)|2 <∞ (62)

Proof : Follows easily from the Parseval identity.

Observe that the equivalent definition of proposition 5.19 makes sense not only for
positive integers but for all real numbers s. We can thus talk about Sobolev spaces
Hs for all real values of s. We shall also make use of the following homogeneous
Sobolev norm, for all s ≥ 0,

‖u‖2
Ḣs

=
∫

RN
|ξ|2s|û(ξ)|2 <∞ (63)
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Exercise. For s ∈ (0, 1) the space Hs(Rn) coincides with the space of locally
integrable functions such that,(∫

Rn

∫
Rn

|u(x)− u(x+ y)|2

|y|n+2s
dxdy + ‖u‖2L2(Rn)

)1/2

<∞ (64)

Exercise. Prove that, for s > n/2 the Sobolev space Hs(Rn) embeds in the space
of bounded continuous functions.

5.20. A Trace Theorem. The following theorem can be found, for example,
in Renardy and Rogers, [16], Section 6.4.8.

Theorem 5.21. Let s > 1/2 be real. Then there exists a continuous linear map
T : Hs(Rn) → Hs−1/2(Rn−1) called the trace operator, with the property that for
any smooth f , we have

Tf(x1, . . . , xn) = f(x1, . . . , xn−1, 0) (65)

Tf is the restriction of f to the hyperplane xn = 0.

Proof Take f smooth and g(x′) = f(x′, 0). Let f̃ be the Fourier transform of f in
xn only, and f̂ , ĝ be the Fourier transforms of f and g in Rn and Rn−1, respectively.
I.e.

f̃(x′, ξn) =
1√
2π

∫ ∞
−∞

f(x′, xn)e−ixnξndxn

By applying Fourier inversion (with xn = 0) and then the Fourier transform, we
get

g(x′) = f(x′, 0) =
1√
2π

∫ ∞
−∞

f̃(x′, ξm)

ĝ(ξ′) =
1√
2π

∫ ∞
−∞

f̂(x′, ξm)

We can then see, using our knowledge of fractional Hs spaces:

‖g‖Hs−1/2 .
∫

Rn−1
|ĝ(ξ′)|2(1 + |ξ′|2)s−1/2dξ′

.
∫

Rn−1

∣∣∣∣∫ ∞
−∞

f̂(ξ)dξn

∣∣∣∣2 (1 + |ξ′|2)s−1/2dξ′

.
∫

Rn−1
(1 + |ξ′|2)s−1/2

(∫ ∞
−∞
|f̂(ξ)|2(1 + |ξ|2)sdξn

)(∫ ∞
−∞

(1 + |ξ|2)−sdξn

)
dξ′

And since s > 1/2, we have∫ ∞
−∞

(1 + |ξ|2)sdξn =
∫ ∞
−∞

(1 + |ξ′|2 + |ξn|2)−sdξn

= (1 + |ξ′|2)−s+1/2

∫ ∞
−∞

(1 + y2)−sdξn

Plugging this into our above estimate for ‖g‖Hs−1/2 proves the result.



56 1. BASIC TOOLS OF ANALYSIS

Later on, we will see a strengthening of this result which uses Littlewood-Paley
theory.

6. Littlewood-Paley theory

In its simplest manifestation Littlewood-Paley theory is a systematic and very use-
ful method to understand various properties of functions f , defined on Rn, by
decomposing them in infinite dyadic sums f =

∑
k∈Z fk, with frequency local-

ized components fk, i.e. f̂k(ξ) = 0 for all values of ξ outside the dyadic annulus
2k−1 ≤ |ξ| ≤ 2k+1. Such a decomposition can be easily achieved by choosing a test
function χ(ξ) in Fourier space, supported in 1

2 ≤ |ξ| ≤ 2, and such that, for all
ξ 6= 0, ∑

k∈Z
χ(2−kξ) = 1. (66)

Indeed choose φ(ξ) to be a real radial bump function supported in |ξ| ≤ 2 which
equals 1 on the ball |ξ| ≤ 1. Then the function χ(ξ) = φ(ξ) − φ(2ξ) verifies the
desired properties.

We now define

P̂kf(ξ) = χ(ξ/2k)f̂(ξ) (67)

or, in physical space,

Pkf = fk = mk ∗ f (68)

where mk(x) = 2nkm(2kx) and m(x) the inverse Fourier transform of χ. Clearly,
from (66)

f =
∑
k∈Z

Pkf (69)

as desired. Observe that the Fourier transform of Pkf is supported in the dyadic
interval 2k−1 ≤ |ξ| ≤ 2k+1 and therefore,

Pk′Pkf = 0, ∀ k, k′ ∈ Z, |k − k′| > 2.

Therefore,

Pkf =
∑
k′∈Z

Pk′(Pkf) =
∑

|k−k′|≤1

Pk′Pkf

Thus, since Pk−1, Pk, Pk+1 do not differ much between themselves we can write
Pk =

∑
|k−k′|≤1 Pk′Pk ≈ P 2

k . It is for this reason that the cut-off operators Pk are
called, improperly, LP projections.

Denote PJ =
∑
k∈J Pk for all intervals J ⊂ Z. We write, in particular, P≤k =

P(−∞,k] and P<k = P≤k−1. Clearly, Pk = P≤k − P<k.

The following properties of these LP projections lie at the heart of the classical LP
theory:
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Theorem 6.1. The LP projections verify the following properties:

LP 1. Almost Orthogonality. The operators Pk are selfadjoint and verify
Pk1Pk2 = 0 for all pairs of integers such that |k1 − k2| ≥ 2. In particular,

‖f‖2L2 ≈
∑
k

‖Pkf‖2L2 (70)

LP 2. Lp-boundedness: For any 1 ≤ p ≤ ∞, and any interval J ⊂ Z,

‖PJf‖Lp . ‖f‖Lp (71)

LP 3. Finite band property. We can write any partial derivative ∂Pkf in the
form ∂Pkf = 2kP̃kf where P̃k is a cut-off operator14 which verifies property LP2.
In particular, for any 1 ≤ p ≤ ∞

‖∂Pkf‖Lp . 2k‖f‖Lp (72)

2k‖Pkf‖Lp . ‖∂f‖Lp (73)

LP 4. Bernstein inequalities. For any 1 ≤ p ≤ q ≤ ∞ we have the Bernstein
inequalities,

‖Pkf‖Lq . 2kn(1/p−1/q)‖f‖Lp , ∀ k ∈ Z (74)
‖P≤0f‖Lq . ‖f‖Lp . (75)

In particular,

‖Pkf‖L∞ . 2kn/p‖f‖Lp .

LP5. Commutator estimates Consider the commutator

[Pk , f ] · g = Pk(f · g)− f · Pkg

with f, g ∈ C∞0 (Rn). We have,

‖ [Pk , f ] · g‖Lp . 2−k‖∇f‖L∞‖g‖Lp .

LP6. Square function inequalities. Let Sf be the vector valued function Sf =
(Pkf)k∈Z. The quantity

Sf(x) = |Sf(x)| =
(∑
k∈Z
|Pkf(x)|2

)1/2 (76)

is known as the Littlewood-Paley square function. For every 1 < p <∞ there exists
constant(s), depending on p, such that for all f ∈ C∞0

‖f‖Lp . ‖Sf‖Lp . ‖f‖Lp (77)

14Associated with a slightly different test function χ̃ which remains supported in 1
2
≤ |ξ| ≤ 2,

but may fail to satisfy (66).
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Proof : Only the proof of LP6 is not straightforward and we postpone it until
next section. The proof of LP1 is immediate. Indeed we only have to check (70).
Clearly,

‖f‖2L2 = ‖
∑
k

Pkf‖2L2 =
∑

|k−k′|≤1

< Pkf, Pk′f >L2

≤
∑

|k−k′|≤1

‖Pkf‖L2‖Pk′f‖L2

.
∑
k

‖Pkf‖2L2

To show that
∑
k ‖Pkf‖2L2 . ‖f‖2L2 we only need to use Parseval’s identity together

with the definition of the projections Pk.

It suffices to prove LP2 for intervals of the form J = (−∞, k] ⊂ Z, that is to prove
Lp boundedness for P≤k. If χ(ξ) = φ(ξ)− φ(2ξ) then P̂≤kf = φ(ξ/2k)f̂(ξ). Thus

P≤kf = m̄k∗f,

where m̄k(x) = 2nkm̄(2kx) and m̄(x) is the inverse Fourier transform of φ. Observe
that ‖m̄k‖L1 = ‖m̄‖L1 . 1. Thus, using the convolution inequality (42),

‖P≤kf‖Lp ≤ ‖m̄k‖L1‖f‖Lp . ‖f‖Lp

as desired.

To prove LP3 we write ∂i(Pkf) = 2k(∂im)k∗f where (∂im)k(x) = 2nk∂im(2kx).
Clearly ‖(∂im)k‖L1 = ‖∂im‖L1 . 1. Hence,

‖∂i(Pkf)‖Lp . 2k‖f‖Lp

which establishes (72). To prove (73) we write f̂(ξ) =
∑n
j=1

ξj
i|ξ|2 ∂̂xjf(ξ). Hence,

2kP̂kf(ξ) =
n∑
j=1

2k
ξj
i|ξ|2

χ(ξ/2k)∂̂xjf(ξ) =
n∑
j=1

2kψj(ξ/2k)∂̂xjf(ξ)

where ψj(ξ) = ξj
i|ξ|2χ(ξ). Hence, in physical space,

2kPkf =
n∑
j=1

(jm)k∗∂jf

with (jm)k(x) = 2nk · jm(2kx) and jm the inverse Fourier transform of ψj . Thus,
as before,

2k‖Pkf‖Lp .
n∑
j=1

‖∂jf‖Lp = ‖∂f‖Lp

as desired.

Property LP4 is an immediate consequence of the physical space representation
(68) and the convolution inequality (42).

‖Pkf‖Lq = ‖mk∗f‖Lq . ‖mk‖Lr‖f‖Lp
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where 1 + q−1 = r−1 + p−1. Now,

‖mk‖Lr = 2nk
( ∫

Rn
|m(2kx)|rdx

)1/r = 2nk2−nk/r‖m‖Lr . 2nk(1−1/r) . 2nk(1/p−1/q)

It only remains to prove LP5. In view of (68) we can write,

Pk(fg)(x)− f(x)Pkg(x) =
∫

Rn
mk(x− y)

(
f(y)− f(x)

)
g(y)dy

On the other hand,

|f(y)− f(x)| .
∣∣ ∫ 1

0

d

ds
f(x+ s(y − x))ds

∣∣
. |x− y|‖∂f‖L∞

Hence,

|Pk(fg)(x)− f(x)Pkg(x)| . 2−k‖∂f‖L∞
∫

Rn
|m̄k(x− y)||g(y)|dy

where m̄k(x) = 2nkm̄(2kx) and m̄(x) = |x|m(x). Thus,

‖Pk(fg)− fPkg‖Lp . 2−k‖∂f‖L∞‖g‖Lp

We leave the proof of property LP6 for the next section.

Definition. We say that a Fourier multiplier operator P̃k is similar to a standard
LP projection Pk if its symbol χ̃k is a bump function adapted to the dyadic region
|ξ| ∼ 2k. More precisely we can write χ̃k(ξ) = χ̃( ξ

2k
) for some bump function χ̃

supported in the region c−12k . |ξ| ≤ c2k for some fixed c > 0.

Remark. Observe that the inequality ‖Pkf‖Lp . ‖f‖Lp holds for every other
operator P̃k similar to Pk. The same holds true for the properties LP3, LP4 and
LP5.

Remark: We have the following pointwise relation of the operator P̃k with the
maximal function:

|P̃≤kf | .Mf(x) (78)

Indeed we have, as before,

P̃≤kf = m̃k∗f,
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where m̃k(x) = 2nkm̃(2kx) and m̃(x) ∈ S(Rn). Therefore,

|P̃≤kf | . 2nk
∫
|f(y)|m̃

(
2k(x− y)

)
|dy . 2nk

∫
|f(y)|(1 + 2k|x− y|)−n−1dy

. 2nk
∫
B(x,2−k)

|f(y)|(1 + 2k|x− y|)−n−1dy

+ 2nk
∞∑
j=0

∫
2j≤2k|x−y|≤2j+1

|f(y)|(1 + 2k|x− y|)−n−1dy

. 2nk
( ∫

B(x,2−k)

|f(y)|dy +
∑
j≥0

2−(n+1)j

∫
|x−y|≤2j+1−k

|f(y)|dy
)

. Mf(x) +
∑
j>0

2−(n+1)j2nk2n(j+1−k) 1
|B(x, 2−k+j+1)|

∫
B(x,2−k+j+1)

|f(y)|dy

. Mf(x) + 2n
∑
j>0

2−jMf(x) .Mf(x)

as desired.

Properties LP3-LP4 go a long way to explain why LP theory is such a useful tool
for partial differential equations. The finite band property allows us to replace
derivatives of the dyadic components fk by multiplication with 2k. The Lp → L∞

Bernstein inequality is a dyadic remedy for the failure of the embedding of the
Sobolev space W

n
p ,p(Rn) to L∞(Rn). Indeed, in view of the finite band property,

the Bernstein inequality does actually imply the desired Sobolev inequality for each
LP component fk, the failure of the Sobolev inequality for f is due to the summation
f =

∑
k fk.

In what follows we give a few applications of LP -calculus.

1.) Interpolation inequalities. The following inequality holds true for arbitrary
functions in C∞0 (Rn) and any integers 0 ≤ i ≤ m:

‖∂if‖Lp . ‖f‖1−i/mLp ‖∂mf‖i/mLp (79)

To prove it we decompose f = P≤kf + P>kf = f≤k + f>k. Now, using LP2-LP4,
for any fixed value of k ∈ Z,

‖∂if‖Lp ≤ ‖∂if≤k‖Lp + ‖∂if>k‖Lp
≤ 2ki‖f‖Lp + 2k(i−m)‖∂mf‖Lp

Thus,

‖∂if‖Lp ≤ λi‖f‖Lp + λi−m‖∂mf‖Lp

for any λ ∈ 2Z. To finish the proof we would like to choose λ such that the two
terms on the right hand side are equal to each other, i.e.,

λ0 =
(
‖∂mf‖Lp
‖f‖Lp

)1/m
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since we are restricted to λ ∈ 2Z we choose the dyadic number λ ∈ 2Z such that,
λ ≤ λ0 ≤ 2λ Hence,

‖∂if‖Lp ≤ λi0‖f‖Lp +
( 2
λ0

)m−i‖∂mf‖Lp . ‖f‖1−i/mLp ‖∂mf‖i/mLp .

2.) Non-sharp Sobolev inequalities. We shall prove the following slightly improved
version of the inequality (55), for functions f ∈ C∞0 (Rn) and exponents 1 ≤ p <
q <∞ with 1/p−m/n < 1/q,

‖f‖Lq(Rn) . ‖f‖Lp + ‖∂mf‖Lp

We decompose f = P≤0f+
∑
k∈N Pkf = f<0 +

∑
k>0 fk. Thus, using LP4 and then

LP3,

‖f‖Lq ≤ ‖f<0‖Lq +
∑
k>0

‖fk‖Lq . ‖f‖Lp +
∑
k>0

2kn(1/p−1/q)‖f‖Lp

. ‖f‖Lp +
∑
k>0

2kn(m/n−ε)‖f‖Lp . ‖f‖Lp +
∑
k>0

2−knε‖∂mf‖Lp

. ‖f‖Lp + ‖∂mf‖Lp

3. Spaces of functions. The Littlewood-Paley theory can be used both to give
alternative descriptions of Sobolev spaces and introduce new, more refined, spaces
of functions. We first remark that, in view of the almost orthogonality property
LP1,

‖f‖2L2 = ‖
∑
k∈Z

Pkf‖2L2 .
∑
k∈Z
‖Pkf‖2L2∑

k∈Z
‖Pkf‖2L2 . ‖f‖L2

We can thus give an LP description of the homogeneous Sobolev norms ‖ ‖Ḣs(Rn)

‖f‖2
Ḣs
≈
∑
k∈Z

22ks‖Pkf‖2L2 (80)

For k ∈ Z+, define operator ∆k = Pk if k > 0, and ∆0 = P≤0. Also for the Hs

norms,

‖f‖2Hs ≈
∞∑
k=0

22ks‖∆kf‖2L2 (81)

The Littlewood- Paley decompositions can be used to define new spaces of functions
such as Besov spaces.

Definition: The Besov space Bsp,q(Rn) is the closure of C∞0 (Rn) relative to the
norm:

‖f‖Bsp,q = (
∞∑
k=0

2ksq‖∆kf‖qLp)
1
q (82)

The corresponding homogeneous Besov norm is defined by,

‖f‖Ḃsp,q = (
∑
k∈Z

2sqk‖Pkf‖qLp)
1
q , (83)
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One similarly define Triebel space F sp,q by reversing the Lp norm and lq norm in
(82). Thus, for example, the Hs norm is equivalent with the Besov norm Bs2,2.
Observe that, Hs ⊂ Bs2,1. One reason why the larger space Bs2,1 is useful is because
of the following

‖f‖L∞ . ‖f‖Ḃn/22,1
(84)

which follows trivially from the Bernstein inequality LP4. (84) will play a key role
in the following section. Another reason to use the Besov norms Bs2,1 will become
transparent in the next section where we discuss product estimates.

6.2. Product estimates. The LP calculus is particularly useful for nonlinear
estimates. Let f, g be two functions on Rn. Consider,

Pk(fg) =
∑

k′,k′′∈Z
Pk(Pk′fPk′′g) (85)

Now, since Pk′f has Fourier support in the set D′ = 2k
′−1 ≤ |ξ| ≤ 2k

′+1 and
Pk′′f has Fourier support in D” = 2k

′′−1 ≤ |ξ| ≤ 2k
′′+1 it follows that Pk′fPk′′g

has Fourier support in D′ + D′′. We only get a nonzero contribution in the sum
(85) if D′ + D′′ intersects 2k−1 ≤ |ξ| ≤ 2k+1. Therefore, writing fk = Pkf and
f<k = P<kf , and fJ = PJf for any interval J ⊂ Z we derive,

Lemma 6.3. Given functions f, g we have the following decomposition:

Pk(f · g) = HHk(f, g ) + LLk(f, g ) + LHk(f, g ) +HLk(f, g ) (86)

HHk(f, g ) =
∑

k′,k′′>k+5,|k′−k′′|≤3

Pk
(
fk′ · Pk′′g

)
LLk(f, g ) = Pk

(
f[k−5,k+5] · g[k−5,k+5]

)
LHk(f, g ) = Pk

(
f≤k−5 · g[k−3,k+3]

)
HLk(f, g ) = Pk

(
f[k−3,k+3] · g≤k−5

)
The term HHk(f, g ) corresponds to high-high interactions. That is each term in
the sum defining HHk(f, g ) have frequence ∼ 2m for some 2m >> 2k. We shall
write schematically,

HHk(f, g ) = Pk
( ∑
m>k

fm · gm
)

(87)

The term LLk(f, g ) consists of a finite number of terms which can be typically
ignored. Indeed they can be treated, in any estimates, like either a finite number
of HH terms or a finite number of LH and HL terms. We write, schematically,

LLk(f, g ) = 0 (88)

Finally the LHk and HLk terms consist of low high, respectively high-low, inter-
actions. We shall write schematically,

LHk(f, g ) = Pk
(
f<k · gk

)
(89)

HLk(f, g ) = Pk
(
fk · g<k

)
(90)
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Remark. In the correct expression of LHk given by (86) the terms of the form
f≤k−5 · gk′′ , k′′ ∈ [k − 3, k + 3], have Fourier supports in the dyadic region ∼ 2k.
Thus Pk can be safely ignored and we can write,

LHk(f, g ) ∼ f<k · gk.

We have thus established, the famous trichotomy formula,

Pk(f · g) = LHk(f, g) +HLk(f, g) +HHk(f, g) (91)

which is the basis of paradifferential calculus. In practice whenever we apply formula
(91) we have to recall that formulas (88)–(90) are only appproximate; the correct
definitions are given by (86). However in any estimates we can safely ignore the
additional terms as they are estimated precisely in the same way as the terms we
keep.

We shall now make use of the trichotomy formula to prove a product estimate.

Theorem 6.4. The following estimate holds true for all s > 0.

‖fg‖Hs . ‖f‖L∞‖g‖Hs + ‖g‖L∞‖f‖Hs (92)

Thus for all s > n/2,

‖fg‖Hs . ‖f‖Hs‖g‖Hs (93)

Proof : Recall the characterization (81) of the Hs norm using the LP projections.
Since s > 0 we only need to look at the positive frequencies Pk(fg) with k > 0.
We need to estimate the L2 norm of the square function

(∑
k>0 |2skPk(fg)|2

)1/2.
Clearly,(∑
k>0

|2skPk(fg)|2
)1/2
.
(∑
k>0

|2skLHk|2
)1/2 +

(∑
k>0

|2skHLk|2
)1/2 +

(∑
k>0

|2skHHk|2
)1/2

Now, using the pointwise bound (78)(∑
k>0

|2skLHk|2
)1/2 =

(∑
k>0

|f<k|2|2skgk|2
)1/2
. |Mf |

(∑
k>0

|2skgk|2
)1/2

Hence,

‖
(∑
k>0

22sk|LHk|2
)1/2‖L2 . ‖Mf‖L∞‖

(∑
k>0

22sk|gk|2
)1/2‖L2 . ‖f‖L∞‖g‖Hs

By symmetry we also have,

‖
(∑
k>0

22sk|HLk|2
)1/2‖L2 . ‖Mg‖L∞‖

(∑
k>0

22sk|fk|2
)1/2
. ‖g‖L∞‖f‖Hs

It only remains to estimate the high-high term. Using the Minkowski inequality for
l2 sequences,(∑

k>0

|2skHHk|2
)1/2 =

(∑
k>0

|2sk
∑
a≥0

Pk(fk+agk+a)|2
)1/2

≤
∑
a>0

(∑
k>0

|2skPk(fk+agk+a)|2
)1/2
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By Minkowski inequality in L2,

‖
(∑
k>0

|2skHHk|2
)1/2‖L2 .

∑
a>0

‖
(∑
k>0

|2skPk(fk+agk+a)|2
)1/2‖L2

Now, using once more the pointwise inequality (78)

|Pk(fk+agk+a)| ≤ M(|fk+agk+a|) .M
(
Mf · |gk+a|

)
(∑
k>0

|2skPk(fk+agk+a)|2
)1/2

. M
(
Mf ·

(∑
k>0

|2skgk+a|2
)1/2)

Thus, using the L2 boundedness of the maximal function,

‖
(∑
k>0

|2skHHk|2
)1/2‖L2 .

∑
a>0

‖M
(
Mf ·

(∑
k>0

|2skgk+a|2
)1/2)‖L2

. ‖f‖L∞
∑
a>0

‖
(∑
k>0

|2skgk+a|2
)1/2‖L2

. ‖f‖L∞
∑
a>0

2−as‖
(∑
k>0

|2s(k+a)gk+a|2
)1/2‖L2

. ‖f‖L∞‖g‖Hs

Therefore,

‖
(∑
k>0

|2skPk(fg)|2
)1/2‖L2 . ‖f‖L∞‖g‖Hs + ‖g‖L∞‖f‖Hs

as desired.

Exercise. Give a rigorous proof of theorem 6.4.

The proof given above can be generalized, using LP6, to W s,p spaces. In what
follows we give a somewhat simpler proof of theorem (6.4) which is very instructive.
The proof15 shows that it is sometimes better not to rely on the full decomposition
(86) but rather using decompositions sparingly whenever needed. Indeed, we write,

‖fg‖2
Ḣs

.
∑
k

22ks‖Pk(fg)‖2L2 .
∑
k

22ks‖Pk(f<kg)‖2L2 +
∑
k

22ks‖Pk(f≥kg)‖2L2

Now, ∑
k

22ks‖Pk(f≥kg)‖2L2 . ‖g‖2L∞
∑
k

22ks ‖f≥k‖2L2

. ‖g‖2L∞
∑
k

∑
k′≥k

22(k−k′)s‖2k
′sfk′‖2L2

= ‖g‖2L∞
∑
k′

( ∑
k≤k′

22(k−k′)s)‖2k′sfk′‖2L2

. ‖g‖2L∞‖f‖2Ḣs
To estimate

∑
k 22ks‖Pk(f≤kg)‖2L2 we shall decompose further, proceeding as in the

decomposition (86). But first observe that the term
∑
k 22ks‖Pk(f[k−3,k]g)‖2L2 can

15I thank Igor Rodnianski for pointing the argument to me.
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be treated precisely as
∑
k 22ks‖Pk(f>kg)‖2L2 . Indeed we might as well estimated∑

k 22ks‖Pk(f>k−3g)‖2L2 instead. Now,

Pk(f≤k−3g) =
∑
k′

Pk(f≤k−3gk′) =
∑

k′<k−2

Pk(f≤k−3gk′) +
∑

k−2≤k′≤k+2

Pk(f≤k−3gk′)

+
∑

k′>k+2

Pk(f≤k−3gk′)

Observe that the first and last term are zero, therefore,

Pk(f≤k−3g) =
∑

k−2≤k′≤k+2

Pk(f≤k−3gk′) ≈ Pk(f≤k−3gk).

Often, for simplicity, we simply write,

Pk(f<kg) ≈ f<k · gk (94)

Of course this formula is not quite right, but is morally right. Now,∑
k

22ks‖Pk(f<kg)‖2L2 =
∑
k

22ks‖f<kgk‖2L2

. ‖f‖2L∞
∑
k

22ks‖gk‖2L2 = ‖f‖2L∞‖g‖2Ḣs

as desired.

Remark. In view of (94) we have the following partial decomposition formula,

Pk(fg) = f<kgk + Pk(f≥kg) = LHk(f, g) + Pk(f≥kg) (95)

Contrast this with the full trichotomy decomposition (91).

Similar estimates, easier to prove, hold in Besov spaces. Indeed, for every s > 0 we
have,

‖fg‖Hs,1 . ‖f‖L∞‖g‖Hs,1 + ‖g‖L∞‖f‖Hs,1 (96)

Exercise. Prove estimate (96).

7. Wente’s Inequality

In this section we prove Wente’s inequality as an application of Littlewood-Paley
theory. In what follows given two functions f, g in R2 we consider the bilinear
expression (df ∧dg)∗ = ∂xf∂yg−∂yf∂xg, where ∗ denotes the trivial Hodge duality
in R2. By abuse of language we drop the dual sign below and write simply df ∧ dg
.

Theorem 7.1. On R2, assume f , g ∈ H1(R2), ∆u = (df ∧ dg). Then u ∈ L∞, in
fact continuous.

Remark. In fact df ∧dg If ∧ is replaced by ordinary multiplication, then the best
we can get is df · dg ∈ L1. This is obviously not enough to obtain that u ∈ L∞. It
turns out however that df ∧ dg has special structure which allows us to derive the
desired estimate.
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Proof : It is easy to see from finite band property that ∆ is a isometric operator
from Ḃsp,1 to Ḃs−2

p,1 . In fact we shall work with p = 2, In view of the Sobolev
inequality (84), it suffices to show that df ∧ dg ∈ Ḃ−1

2,1(R2). Using the trichotomy
formula and the fact that the LP projections Pk commute with d we write,

I = df ∧ dg = LHk +HLk +HHk

LHk = dP<kf ∧ dPkg
HLk = dPk ∧ dP<kg
HHk = Pk(

∑
m≥k

(dPmf ∧ dPmg)

By symmetry we only need to deal with LH and HH. The LH term is trivial to
estimate, without using the special structure of the wedge product. Using the
Bernstein inequality we write,

2−k‖LHk‖L2 . 2−k
∑
l<k

‖dPlf‖L∞‖dPk(g)‖L2

.
∑
l<k

2l−k‖DPlf‖L2‖DPkf‖L2

The proof now follows with the following discrete version of the Young inequality.

Lemma 7.2. Let f(k) ∈ l1(Z) and g(k), h(k) ∈ l2(Z). Then,∑
k,l

f(k − l)g(l)h(k) ≤ ‖f‖l1‖g‖L2‖h‖l2 .

Using the lemma, we derive,∑
k

2−k‖LHk‖L2 .
(∑

l

‖DPlf‖2L2

)1/2(
∑
k

‖DPkf‖2L2)1/2

. ‖Df‖L2‖Dg‖L2

We now consider HHk. It is here that we need to use the special structure of the
wedge product. In fact we shall simply use the identity, df ∧ dg = d(f ∧ dg). Thus,

HHk =
∑
m≥k

Pk(dPmf ∧ dPmg)

=
∑
m≥k

dPk(Pmf ∧ dPmg)

Thus, using the finite band property and Bernstein inequality,

‖HHk‖L2 . 22k‖Pmf ∧ dPmg‖L1

. 22k‖Pmf‖L2‖DPmg‖L2

. 22k−m‖DPmf‖L2‖DPmg‖L2

Therefore,

2−k‖HHk‖L2 . 2k−m‖DPmf‖L2‖DPmg‖L2

Thus, again, using the discrete Young inequality of the lemma above,∑
k

2−k‖LHk‖L2 . ‖Df‖L2‖Dg‖L2
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as desired.

8. An LP Trace Theorem

In this section, we provide another application of LP theory: a stronger version
of the the Trace Theorem, in Besov spaces. It is taken from Klainerman and
Rodnianski, “Sharp Trace Theorems for Null Hypersurfaces on Einstein Metrics
with Finite Curvature Flux”, see [9].

For simplicity, let I = [0, 1] and consider I × R2. We will use the mixed norm
notation:

‖f‖LqtLpx =
(∫ 1

0

‖f(t, ·)‖q
Lpx(R2)

dt

) 1
q

‖f‖LpxLqt =
(∫

R2
‖f(·, x)‖p

Lqt (I)
dx

) 1
p

with the obvious modifications if p =∞ or q =∞.

We will get the following trace-like estimate:

‖
∫
I

|∂tf |2dt‖B1
2,1
. ‖f‖2H2(I×R2) (97)

We observe that
‖g‖B1

2,1
. ‖∇g‖B0

2,1
+ ‖g‖L2

Thus, (97) follows from the “sharp bilinear trace” theorem below.

Theorem 8.1. For any smooth, scalar functions g,h on I × R2, we have

‖
∫
I

∂tg · hdt‖B0
2,1
. ‖g‖H1(I×R2) · ‖h‖H1(I×R2) (98)

Proof Immediately we see:

‖
∫
I

∂tg · hdt‖B0
2,1

=
∑
k≥0

‖Pk
∫ 1

0

∂tg · hdt‖L2
x

+ ‖P<0

∫ 1

0

∂tg · hdt‖L2
x

.
∑
k≥0

‖Pk
∫ 1

0

∂tg · hdt‖L2
x

We will then decompose g and h with respect to x; g =
∑
k Pkg =

∑
k gk, h =∑

k Pkh =
∑
k hk. Then we can decompose Pk

∫ 1

0
(∂tg · h) = Ak + Bk + Ck + Dk,

where

Ak = Pk

∫ 1

0

(∂tg)<k · h≥k

Bk = Pk

∫ 1

0

(∂tg)≥k · h<k
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Ck = Pk

∫ 1

0

(∂tg)<k · h<k

Dk = Pk

∫ 1

0

(∂tg)≥k · h≥k

As in the Trichotomy Formula, Ck is essentially zero (with the exception of finitely
many terms which can be subsumed in Ak, Bk, or Dk).

We now briefly sketch how to estimate each of Ak, Bk, Dk, leaving the details to be
filled in. Note that Pk trivially commutes with the integrals

∫ 1

0
dt and any partial

derivatives ∂t.

To estimate Ak, note that we can write (using LP2):

‖Ak‖L2
x
.

∑
k′<k≤k′′

∫ 1

0

‖(∂tg)k′ · hk′′‖L2
x
dt

We can then use Bernstein inequality LP4 and property LP3 on h to pull out the
power 2k

′−k′′ . Writing 2k
′−k′′ . 2(k′−k)/2+(k−k′′)/2, using LP1, and summing over

k, we can then get: ∑
k≥0

‖Ak‖L∞t L2
x
. ‖∂tg‖L∞t L2

x
· ‖∇h‖L∞t L2

x

To estimate Dk = Pk
∫ 1

0
(∂tg)≥k · h≥k, write

Dk = D1
k +D2

k =
∑

k≤k′≤k′′
Pk

∫ 1

0

(∂tg)k′ · hk′′ +
∑

k≤k′≤k′′
Pk

∫ 1

0

(∂tg)k′′ · hk′

D1
k can be estimated straightforwardly, without integration by parts. Use LP4 and

LP3 to write
‖D1

k‖L2
x
. 2k−k

′
‖∂tg‖L2

tL
2
x
· ‖∇h‖L2

tL
2
x

Then sum over k and use LP1 to get:∑
k≥0

‖D1
k‖L2

x
. ‖∂tg‖L2

tL
2
x
· ‖∇h‖L2

tL
2
x

To estimate D2
k we use integration by parts to transfer the ∂t from the high-

frequency gk′′ to the low-frequency hk′ . After integrating by parts we treat the
result exactly as D1

k. Thus, we need only estimate the boundary terms: ‖Ik(1) −
Ik(0)‖L2

x
. ‖Ik‖L∞t L2

x
, where

Ik =
∑

k≤k′<k′′
Pk(gk′′ · hk′)

We use the following lemma to do so:

Lemma 8.2. For any k,k’,k” we have

‖Pk(gk′ · hk′′)‖ . 2−
1
4 (|k′−k|+|k′′−k|)‖gk′‖‖hk′′‖
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Using this lemma, we integrate by parts and bound D2
k just as D1

k plus the boundary
term, and eventually get: ∑

k

‖D2
k‖L2

x
. ‖g‖H1 · ‖h‖H1

Now we estimate Bk by similarly decomposing to Bk =
∑
k′<k≤k′′ Pk

∫ 1

0
(∂tg)k′′ ·hk′ .

As above, we integrate by parts and use the lemma to estimate the boundary terms
Jk =

∑
k′<k≤k′′ Pk(gk′′) ·hk′). It is then not hard to manipulate and sum over k to

get ∑
k

‖Bk‖L2
x
. ‖g‖H1 · ‖h‖H1

Combining all the estimates for Ak, Bk, and Dk completes the proof of the theorem.

It only remains to prove the above Lemma which helped us estimate the boundary
terms. Without going into all the details, this is done by considering the three
cases:

k′ ≥ k′′ ≥ k, k′ ≥ k > k′′, k > k′ ≥ k′′

We note that the third (“low-low”) case is impossible. The other two cases are
bounded using LP3 and the the following (simple) calculus inequality:

‖f‖L∞t L2
x
. ‖∂tf‖

1
2
L2
tL

2
x
· ‖f‖

1
2
L2
tL

2
x

+ ‖f‖L2
tL

2
x

(99)

Estimating ‖Pk(gk′ · hk′′)‖L∞t L2
x

using (99) and LP3 yields the estimate in the
lemma.

Exercise. Fill in the missing steps in the proof of the above theorem.

9. Calderon-Zygmund theory

The following L2 identity
n∑

i,j=1

‖∂i∂ju‖2L2 = ‖∆u‖2L2 .

for any u ∈ C∞0 (Rn) can be easily established by integration by parts, see below in
(103). Thus,

‖∂2u‖L2 . ‖∆u‖L2 (100)

It is natural to ask whether such estimate still holds true for other Lp norms. It
turns out that the problem can be reduced to that of study the Lp boundedness
properties for a very important class of linear operators called Calderon-Zygmund.

Definition 9.1. A linear operator T acting on L2(Rn) is called a Calderon-Zygmund
operator if:

(1) T is bounded from L2 to L2.
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(2) There exists a measurable kernel k such that for every f ∈ L2 with com-
pact support and for x 6∈ suppf , we have

Tf(x) =
∫

Rn
k(x− y)f(y)dy,

where the integral converges absolutely for all x in the complement of
suppf .

(3) There exists constants C > 1 and A > 0 such that∫
|x|≥C|y|

|k(x− y)− k(x)|dx ≤ A, (101)

uniformly in y. For simplicity one can take C = 2.

Proposition 9.2. Assume that the kernel k(x) verifies, for all x 6= 0,

|k(x)| . |x|−n, |∂k(x)| . |x|−n−1 (102)

Then k verifies the cancellation condition (101).

Exercise. Prove the proposition.

Example 1. Hilbert transform Hf(x) =
∫
eix·ξ sign ξ f̂(ξ)dξ. By Plancherel it is

easy to check that H is a bounded linear operator on L2. On the other hand we
know that the inverse Fourier transform of sign ξ is proportional to the principal
value distribution pv(1/x). Hence, if x 6∈ suppf ,

Hf(x) = c

∫ +∞

−∞

1
x− y

f(y)dy.

It is easy to check that the kernel k(x) = 1
x verifies condition 3 above.

Example 2. Consider the equation ∆u = f in Rn, n ≥ 3, for f , smooth, com-
pactly supported. Recall, see (15), that any solution u, vanishing at16 ∞, can be
represented in the form, u = Kn∗f where Kn(x) = cn|x|2−n. Thus, if x 6∈ suppf ,
it makes sense to differentiate under the integral sign and derive,

∂i∂ju = ∂i∂jKn∗f =
∫

Rn
∂i∂jKn(x− y)f(y)dy.

It is easy to check that the kernel k(x) = ∂i∂jKn(x) verifies condition 3. To show
that the operators Rijf(x) =

∫
Rn ∂i∂jKn(x − y)f(y)dy are Calderon-Zygmund

operators, it only remains to check the L2 -boundedness property. This follows
easily from the equation ∆u = f . Indeed u = Kn∗f is the unique solution of
the equation vanishing at ∞. Moreover |u(x)| . |x|2−n, |∂u(x)| . |x|1−n and
Rijf = ∂i∂ju(x). Thus we can integrate by parts in the expression,∫

Rn
|f(x)|2dx =

∫
Rn

∆u(x)∆u(x)dx =
n∑

i,j=1

∫
Rn
|∂i∂ju(x)|2dx

=
n∑

i,j=1

∫
Rn
|Rijf(x)|2dx (103)

16In the case of n = 2 any solution whose first derivatives vanish at ∞.
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Hence for each pair 1 ≤ i, j ≤ n,

‖Rijf‖L2 ≤ ‖f‖L2 .

Thus the operators Rij are Calderon-Zygmund. We shall write schematically Rij =
∂i∂j(−∆)−1.

Theorem 9.3. Calderon-Zygmund operators are bounded from L1 into weak-L1.

As a consequence we derive,

Corollary 9.4. Calderon-Zygmund operators are bounded from Lp into Lp, for
any 1 < p <∞. They are not bounded, in general, for p = 1 and p =∞.

Proof : The boundedness over Lp for 1 < p < 2 follows from the weak-L1 and
the L2 boundedness by Marcinkiewicz interpolation. The cases p > 2 follow by
duality from the fact that the dual of a Calderon-Zygmund operator, with kernel
k(x), is again a Calderon-Zygmund operator, with kernel k(−x). More precisely, if
f, g have disjoint supports,∫

Rn
Tf(x)g(x)dx =

∫
Rn

∫
Rn
k(x− y)f(y)g(x)dx =

∫
Rn
f(y)T ∗g(y)dy

where

T ∗g(y) =
∫

Rn
k(−y + x)g(x)dx, ∀y 6∈ suppg.

On the other hand ‖T ∗f‖L2 = ‖Tf‖L2 . ‖f‖L2 . Hence T ∗ is indeed a CZ operator.
Now, using the duality between Lp and Lp

′
, 1/p+ 1/p′ = 1 and the fact that T ∗ is

Lp
′

bounded for p′ ≤ 2,

‖Tf‖Lp = sup
‖g‖

Lp
′≤1

|
∫

Rn
Tf(x)g(x)dx| = sup

‖g‖
Lp
′≤1

|
∫

Rn
f(x)T ∗g(x)dx|

= sup
‖g‖

Lp
′≤1

‖f‖Lp · ‖T ∗g‖Lp′ . ‖f‖Lp .

We shall prove the main theorem 9.3 in the next two subsections.

9.5. Calderon-Zygmund decompositions.

Definition 9.6. We define a dyadic cube in Rn to be a cube Q of the form

Q = [2ka1, 2k(a1 + 1)]× · · · × [2kan, 2k(an + 1)],

where k, a1, . . . , an ∈ Z. We then say that size (Q) = 2k. If Q is a dyadic cubes then
its parent is the only dyadic cube Q∗ such that Q ⊂ Q∗ and size (Q∗) = 2 size (Q)
and we say that Q is a child of Q∗.

Lemma 9.7 (Whitney decomposition). Any proper open set Ω in Rn can be covered
by a family Q = {Q} of disjoint dyadic cubes

Ω = ∪Q∈QQ,
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where each cube Q ∈ Q satisfies the property

size (Q) ≈ dist (Q, ∂Ω). (104)

Proof : For each x ∈ Ω denote by Qx the largest dyadic cube containing x with
the property: dist (Qx, ∂Ω) > size (Qx). If Q∗ denotes the parent of Qx then
dist (Q∗, ∂Ω) ≤ size (Q∗). By the triangular inequality it follows that

dist (Qx, δΩ) ≤
√
n size (Qx) + dist (Q∗, δΩ) ≤

(√
n+ 2

)
size (Qx).

Hence, Qx verifies (104). If y ∈ Qx then, by the maximality property of Qx and
Qy, we necessarily have Qy = Qx. Hence, the family Q = {Qx}x∈Ω is formed of
disjoint cubes and covers Ω.

Proposition 9.8 (Calderon-Zygmund decomposition). Let f ∈ L1(Rn) and α > 0.
Then it is possible to find a countable family of disjoint dyadic cubes Q = {Q} and
a decomposition f = g +

∑
Q∈Q bQ, such that:

‖g‖L∞ . α, (105a)

supp bQ ⊆ Q, (105b)∫
bQ(x)dx = 0, (105c)

‖bQ‖L1 . α|Q|, (105d)∑
Q

|Q| . 1
α
‖f‖L1 . (105e)

Proof : Let Q be the Whitney decomposition of the open set Ω = {Mf(x) > α}
as indicated in Lemma 9.7. For each Q, define fQ = |Q|−1

∫
Q
f(x)dx. Let

g(x) =

{
f(x), if x 6∈ Ω,
fQ, if x ∈ Q,

and bQ(x) = χQ(x)(f(x) − fQ) with χQ the characteristic function of the cube
Q. Of course we have f = g +

∑
Q bQ. The important property, which follows

from (104), is that each cube Q is contained inside a ball B which is not entirely
contained in Ω and with |Q| ≈ |B|. Let x ∈ B \ Ω, we have

|fQ| ≤
1
|Q|

∫
Q

|f(y)|dy . 1
|B|

∫
B

|f(y)|dy ≤Mf(x) ≤ α. (106)

We check now that this decomposition has the desired properties. For almost every
x outside Ω, by Lebesgue’s differentiation theorem, Corollary 5.7, we have |g(x)| ≤
Mf(x) ≤ α. When x ∈ Ω it follows from (106) that g(x) . α. Hence (105a) is
satisfied. Properties (105b) and (105c) are immediate consequences of the definition
of hQ. Property (105d) is implied by (106). Finally, (105e) is nothing but the weak
L1 property for Mf proved in Theorem 5.4.
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9.9. Proof of Theorem 9.3. Consider f ∈ L1 and α > 0. Let f = g +∑
Q bQ = g + b be the Calderon-Zygmund decomposition of f according to Theo-

rem 9.8. Since

{|Tf(x)| > α} ⊆ {|Tg(x)| > α/2} ∪ ({|Tb(x)| > α/2})

and in view of (105e) it is enough to prove separately that

|{|Tg(x)| > α/2}| . 1
α
‖f‖L1 , (107)

|{|Tb(x)| > α/2}| . 1
α
‖f‖L1 (108)

Estimate (107) follows from Chebyschev’s inequality, the boundedness of T on L2

and the uniform bound on g,

|{|Tg(x)| > α/2}| . 1
α2
‖Tg‖2L2 .

1
α2
‖g‖2L2 .

1
α
‖g‖L1 ≤

≤ 1
α

‖f‖L1 +
∑
Q

‖bQ‖L1

 . 1
α
‖f‖L1 +

∑
Q

|Q| . 1
α
‖f‖L1 .

It remains to derive (108). Since the family Q is countable we denote its members
by Qj , j ∈ N. For each Qj let y(j) be its center and take Q̂j to be the cube with
the same center but with the sides expanded by 2n1/2, such that for all x in the
complement of Q̂j ,

|x− y(j)| ≥ 2 max
y∈Qj

|y − y(j)|

Let Ω = ∪jQ̂j and F its complement. We denote bj = bQj . Since
∫
bjdy = 0 we

write, for x ∈ F ,

T (bj)(x) =
∫
Qj

(
k(x− y)− k(x− y(j))

)
bj(y)dy,

or, since the cubes Qj are disjoint,

T (bj)(x) =
∫
Qj

(
k(x− y)− k(x− y(j))

)
b(y)dy,

Thus, in view of (101),∫
F

|T (b)(x)|dx ≤
∑
j

∫
F

|T (b)(x)|dx .
∑
j

∫
x∈Rn\Q̂j

∫
y∈Qj

|k(x− y)− k(x− y(j))| |b(y)|,

=
∑
j

∫
y∈Qj

|bj(y)|
∫
x∈Rn\Q̂j

|k(x− y)− k(x− y(j))|

≤
∑
j

∫
y∈Qj

|b(y)|
∫
x∈Rn\{Q̂j−y(j)}

|k(x− (y − yj))− k(x)|

.
∑
j

∫
y∈Qj

|b(y)|
∫
|x|≥2|(y−yj)|

|k(x− (y − yj))− k(x)|

. A
∑
j

∫
y∈Qj

|b(y)| . ‖f‖L1
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Therefore,

|{x ∈ F : |Tb(x)| > α/2}|| . α−1‖f‖L1

On the other hand, the measure of the complement of F , i.e. Ω = ∪Q̂j is given by,

|Ω| ≤
∑
j

|Q̂j | .
∑
j

Qj . α
−1‖f‖L1 .

Hence,

|{x ∈ Rn : |Tb(x)| > α/2}|| . α−1‖f‖L1

as desired.

9.10. Michlin-Hörmander theorem. An important class of CZ operators
can bedefined by means of Fourier multiplier operators. Recall that these are
defined by Fourier transform,

T̂ f(ξ) = m(ξ)f̂(ξ), (109)

where m is a bounded function, called the multiplier. We can view these operators
as convolution operators, Tf = k ∗ f , where k̂ = m.

Theorem 9.11. Let l > n/2. Suppose m is a Fourier multiplier of class Cl on
Rn \ 0, such that ∣∣∂αξm(ξ)

∣∣ . |ξ|−|α|, ∀ξ ∈ Rn \ 0

for every multiindex α with |α| ≤ l. Then the operator defined by (109) is a
Calderon-Zygmund operator.

Proof : Consider the same dyadic partition of unity as that used in the LP pro-
jections,

1 =
∑
λ∈2Z

χλ(ξ) for ξ ∈ Rn \ 0,

generated by χ ∈ C∞0 with suppχ ⊆ {1/2 ≤ |ξ| ≤ 2}, and χλ(ξ) = χ(ξ/λ).

Decompose m into dyadic pieces, m =
∑
λmλ, where mλ = χλm. Since |∂γm(ξ)| .

|ξ|−|γ| and all derivatives of χ(ξ) are bounded,∣∣∂αξmλ(ξ)
∣∣ ≤ ∑

|β|+|γ|≤|α|

∣∣∂βχλ|ξ|−γ∣∣ . ∑
|β|+|γ|≤|α|

λ−|β|λ−|γ| ≈ λ−|α|.
(110)

Let kλ be the inverse Fourier transform of mλ. Since mλ has compact support kλ
is a smooth function. Moreover, for any integer N we have17

|kλ(x)| . |x|−N
∥∥∂Nmλ

∥∥
L1 . |x|−Nλn−N .

Now take N > n and sum over λ ∈ 2Z. Observe that
∑
λ kλ converges to a well

defined measurable function k on Rn\0, and it easy to see that k satisfies property 2
of Definition 9.1.

17Recall that, by integration by parts, we have
˛̨
F−1f(x)

˛̨
≤ |x|−N

‚‚‚∂Nξ f‚‚‚L1
,
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The boundedness of T on L2 follows immediately from the boundedness of m on
Rn.

For 0 ≤ j ≤ l, by Plancherel’s theorem and (110) we obtain∫
|x|2j |kλ(x)|2 dx '

∑
|α|=j

∫ ∣∣∂αξmλ(ξ)
∣∣2 dξ . λn−2j .

Let R > 0, using the case j = 0 we find that∫
|x|≤R

|kλ(x)|dx .
(∫
|kλ(x)|2 dx

)1/2

Rn/2 . (λR)n/2, (111)

while using the case j = l we find that∫
|x|≥R

|kλ(x)|dx .
(∫
|x|2l |kλ(x)|2 dx

)1/2
(∫
|x|>R

dx
|x|2l

)1/2

. (λR)n/2−l.
(112)

If we choose R = 1/λ, summing (111) and (112) we obtain ‖kλ‖L1 . 1 uniformly
in λ. We can apply the same procedure to ∂kλ, which has symbol ξmλ ≈ λmλ, to
prove that ‖∂kλ‖L1 . λ. Hence,∫

|x|�|y|
|kλ(x− y)− kλ(x)|dx ≤

∫ ∫ |y|
0

|∂kλ(x− ty/|y|)|dtdx (113)

= |y| · ‖∂kλ‖L1 . λ|y|, (114)

but also, by (112),∫
|x|�|y|

|kλ(x− y)− kλ(x)|dx ≤ 2
∫
|x|≥|y|

|kλ(x)|dx . (λ|y|)n/2−l .
(115)

We sum over λ using (113) when λ|y| ≤ 1 and (115) when λ|y| > 1, and obtain18∫
|x|�|y|

|k(x− y)− k(x)|dx . |y|
∑

λ≤|y|−1

λ+ |y|n/2−l
∑

λ>|y|−1

λn/2−l . 1.

as desired.

9.12. Square function estimates. We recall property LP6 for the square
function, Sf =

(∑
k |Pkf |2

)1/2,

Theorem 9.13 (Littlewood-Paley). We have,

‖f‖Lp . ‖Sf‖Lp . ‖f‖Lp (116)

for all 1 < p <∞.

18Here we used the following summation properties, in dyadic notation, for geometric series,P
λ≤L λ

α ' Lα and
P
λ≥L λ

−α ' L−α for α > 0.
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We give two proofs of this estimate.

Proof [first proof]: First we show using duality arguments that the first inequality
in (116) follows from the second one. Indeed using Plancherel’s theorem, the fact
that PkPk′ = 0 unless k ∼ k′, and Cauchy-Schwartz inequality we obtain∫

f(x)g(x)dx '
∫ ∑

k≈k′
Pkf(x)Pk′g(x)dx

.
∫ (∑

k

|Pkf(x)|2
)1/2(∑

k′

|Pk′g(x)|2
)1/2

dx ≤

. ‖Sf‖Lp ‖Sg‖Lp′ . ‖Sf‖Lp ‖g‖Lp′ .

The left inequality in (116) now follows by taking the sup over all g with ‖g‖Lp′ = 1.

To prove the right inequality in (116) we need to introduce the Rademacher func-
tions rk(t) defined on R as follows: for every k ≥ 0, k ∈ Z and t ∈ R set
rk(t) = r0(2kt), where r0(t) is the periodic function, r0(t + 1) = r0(t), such that
r0(t) = 1 for 0 ≤ t < 1/2 and r0(t) = −1 for 1/2 ≤ t < 1. These Rademacher
functions form an orthonormal sequence in L2[0, 1] and they form a sequence of
independent identically distributed random variables. The basic property that we
need is that the Lp norm of a linear combination of Rademacher function is equiv-
alent to the l2 norm of its coefficients.

Lemma 9.14. Given a sequence of real numbers {ak} satisfying
∑∞
k=0 a

2
k < ∞,

define

F (t) =
∞∑
k=0

akrk(t).

Then F ∈ L2([0, 1]) with ‖F‖L2 = (
∑∞
k=0 a

2
k)1/2. In addition, F ∈ Lp([0, 1]) for

1 < p <∞, and there exist constants Ap so that

A−1
p ‖F‖Lp ≤ ‖F‖L2 ≤ Ap ‖F‖Lp .

For a proof of this lemma see Stein, [18, Appendix D].

Define the operator Tt so that

Ttf =
∞∑
k=0

rk(t)Pkf

Clearly Tt is the Fourier multiplier operator with symbol mt(ξ) =
∑
k rk(t)χ(2−kξ),

where χ is the smooth cut-off function used to define the LP projections. For ξ 6= 0,
at most three of the terms in the sum defining mt(ξ) can be non-zero. We can then
easily verify that mt verifies the condition of Thm. 9.11. That is, that

|∂αξmt(ξ)| ≤ Cα|ξ|−|α|,

with constants Cα independent of t. Thus, by Calderon-Zygmund theory (specifi-
cally Corollary 9.4), we have:

‖Ttf‖Lp . ‖f‖Lp
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And so, (∫ 1

0

‖Ttf‖pLpdt
)1/p

. ‖f‖Lp

In addition, we can use Lemma 9.14 to see that:∫ 1

0

‖Ttf‖pLpdt =
∫ 1

0

∫
R
|
∑
k

rk(t)(Pkf)(x)|pdxdt

&
∫

R

(∑
k

|(Pkf)(x)|2
)p/2

dx

And so combining our results we get:

‖Sf‖Lp . ‖f‖Lp

(Note that this argument proves the theorem only in the one-dimensional case,
n = 1. It can, however, be extended to Rn as in Stein, Singular Integrals, Ch. IV,
Section 5.)

Proof [second proof]: We recall the definition for the vector-valued function,

Sf(x) =
(
Pkf(x)

)
k∈Z.

Clearly, if f ∈ S(Rn), for every x ∈ Rn, Sf(x) ∈ l2 and Sf(x) = |Sf(x)| denotes
the l2 norm of Sf(x). We claim that

Sf(x) =
∫

K(x− y)f(y)dy

is a an l2 -valued Calderon-Zygmund operator with the l2-valued kernel defined by,

K(x) =
(
Kk(x)

)
k∈Z, Kk(x) = 2nkχ̂(2kx)

Denote |K(x)| =
(∑

k |Kk(x)|2
)1/2, |∂K(x)| =

(∑
k |∂Kk(x)|2

)1/2. We easily
check that the l2− valued version of the condition (102) is verified,

|K(x)| . |x|−n |∂K(x)| . |x|−(n+1), for x 6= 0. (117)

On the other hand,

‖Sf‖L2 := ‖Sf‖L2 . ‖f‖L2 .

Thus S is indeed an l2 valued C-Z operator and therefore, in view of a straightfor-
ward extension of Theorem 9.3 and its corollary, we infer that,

‖Sf‖Lp := ‖|Sf |‖Lp = ‖Sf‖Lp . ‖f‖Lp

In view of the beginning of the first proof of our theorem we infer that also,

‖f‖Lp . ‖Sf‖Lp .
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Remark that, according to theorem 9.13, |
∑
k Pkf | ≈

(∑
k |Pkf |2

)1/2. A more
general principle asserts that if a sequence of functions f1, f2, . . . fk . . . oscillate at
different rates, that is any two phases are different, then |

∑
k fk| ≈

(∑
k |fk|2

)1/2.

The following version of the property LP6, and theorem 9.13, also holds true for
LP projections P̃k ∼ Pk. More precisely,

‖
(∑

k

|P̃kf |2
)1/2‖Lp . ‖f‖Lp , 1 < p <∞. (118)

This can be proved in the same manner as the inequality ‖Sf‖Lp . ‖f‖Lp by
introducing the l2 valued operator, S̃f = (P̃kf)k∈Z, and proceeding exactly as in
the second proof of theorem 9.13. Given an l2 valued vector function g = (gk)k∈Z
observe that

< S̃f,g >=
∫

Rn
S̃f(x) · ḡ(x)dx =

∫
Rn

∑
k

P̃kf(x)gk(x)dx =
∫

Rn
f(x)

∑
k

P̃kgk(x)dx

Thus,

S̃∗g =
∑
k

P̃kgk (119)

and therefore the estimate dual to (118) has the form, ‖S̃∗g‖Lp′ . ‖g‖Lp′ , for
1/p+ 1/p′ = 1. In other words,

‖
∑
k

P̃kgk‖Lp . ‖
(∑

k

|gk|2
)1/2‖Lp , 1 < p <∞. (120)

The following is an easy consequence of theorem 9.13.

Corollary 9.15. For 2 ≤ p <∞ we have

‖f‖2Lp .
∑
k∈Z
‖Pkf‖2Lp . (121)

For 1 < p ≤ 2 we have ∑
k∈Z
‖Pkf‖2Lp . ‖f‖

2
Lp . (122)

Proof : Recall that Sf(x)2 =
∑
k∈Z |Pkf |2. If p/2 ≥ 1, in view of LP6 and

Minkowski inequality, we have

‖f‖2Lp . ‖Sf‖
2
Lp = ‖

∑
k

|Pkf |2‖Lp/2 ≤
∑
k

∥∥ |Pkf |2 ∥∥Lp/2 =
∑
k

‖Pkf‖2Lp .

If p/2 ≤ 1, we make use instead of the reverse Minkowski inequality,

‖f‖2Lp & ‖
∑
k

|Pkf |2‖Lp/2 ≥
∑
k

∥∥ |Pkf |2 ∥∥Lp/2 =
∑
k

‖Pkf‖2Lp .

The reverse Minkowski inequality we have used here states that for 0 < q ≤ 1 and
a sequence of positive functions (fk)k∈Z

‖
∑
k

|fk|‖Lq ≥
∑
k

‖fk‖Lq . (123)
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We briefly sketch a proof of (123); it can be found in many books (e.g. Gar-
ling, Inequalities or DiBenedetto, Real Analysis, from which we take this particular
proof).

One way is to first prove a reverse Hölder inequality: For 0 < p < 1, q < 0,
1
p + 1

q = 1, f ∈ Lp, g ∈ Lq, we have
∫
|fg| ≥ ‖f‖Lp‖g‖Lq . This can be easily shown

by writing ‖f‖Lp =
(∫ |fg|p

|g|p

)1/p

and applying the usual Hölder inequality with the
exponents p̃ = 1/p > 1 and q̃ = 1/(1− p) > 1.

With this in hand, the reverse Minkowski inequality in two terms (‖|f |+ |g|‖Lq ≥
‖f‖Lq + ‖g‖Lq for 0 < q ≤ 1) follows (writing 1

q′ = 1− 1
q ):

‖|f |+ |g|‖qLq =
∫

(|f |+ |g|)q−1(|f |+ |g|)

≥
(∫

(|f |+ |g|)(q−1)q′
)1/q′

(‖f‖Lq + ‖g‖Lq )

≥ ‖|f |+ |g|‖q−1
Lq (‖f‖Lq + ‖g‖Lq )

9.16. W s,p- Sobolev spaces. We recall that we have defined the W s,p norm
of a function by,

‖f‖W s,p =
s∑
j=0

‖∂jf‖Lp .

We claim the following

Lemma 9.17. For any j ≥ 0, 1 < p <∞ we have,

‖∂jf‖Lp ≈ ‖
(∑

k

|2jkPkf |2
)1/2‖Lp

Proof : We first write,

‖∂jf‖Lp . ‖
∑
k

∂jPkf‖Lp

As in the proof of the property LP5, we can express ∇jPkf = 2jkP̃kPkf for some
Pk similar to Pk. Hence, using the estimate (120)

‖∂jf‖Lp . ‖
∑
k

2jkP̃kPkf‖Lp . ‖
(∑

k

|2jkPkf |2
)1/2‖Lp .

On the other hand, we can also write 2jkPkf = P̃k∂
jf for some other similar LP

projection. Then, in view of (118),

‖
(∑

k

|2jkPkf |2
)1/2‖Lp . ‖(∑

k

|P̃k∂jf |2
)1/2‖Lp . ‖∂jf‖Lp
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Using the lemma we can now find an equivalent definition using LP projections:

Proposition 9.18. For any 1 < p <∞ and any s ∈ N we have,

‖f‖W s,p ≈ ‖
∑
k

(1 + 2k)sPkf‖Lp . (124)

Moreover, for the homogeneous W s,p norm ‖f‖Ẇ s,p = ‖∂sf‖Lp ,

‖f‖Ẇ s,p ≈ ‖
∑
k

2ksPkf‖Lp . (125)

Observe that the expressions on the right hand side of (124) and (125) make sense
for every value s ∈ R. We can thus extend the definitions of W s,p, and Ẇ s,p spaces
to all real values s.

Additional characterizations of the homogeneous Sobolev norms ‖ ‖Ẇ s,p can be
given using the following,

Proposition 9.19. For 2 ≤ p <∞ and any s we have,(∑
k

2kps ‖Pkf‖pLp

)1/p

. ‖f‖Ẇ s,p .

(∑
k

22ks ‖Pkf‖2Lp

)1/2

.
(126)

For 1 < p ≤ 2 and s ∈ R we have(∑
k

22ks ‖Pkf‖2Lp

)1/2

. ‖f‖Ẇ s,p .

(∑
k

2kps ‖Pkf‖pLp

)1/p

.
(127)

Proof : If p/2 ≥ 1, by Theorem 9.13 and Minkowski inequality we have

‖f‖2Lp .

∥∥∥∥∥∑
k

|Pkf |2
∥∥∥∥∥
Lp/2

≤
∑
k

∥∥|Pkf |2∥∥Lp/2 =
∑
k

‖Pkf‖2Lp .

If p/2 ≤ 1, by Theorem 9.13 and the reverse Minkowski inequality we have

‖f‖2Lp &

∥∥∥∥∥∑
k

|Pkf |2
∥∥∥∥∥
Lp/2

≥
∑
k

∥∥|Pkf |2∥∥Lp/2 =
∑
k

‖Pkf‖2Lp .

The remaining details should be clear to fill in.

10. Midterm Exam

Problem 1.[Distributions in R] In R2 we set z = x + iy, ∂z = 1
2 (∂x − i∂y) and

∂z̄ = 1
2 (∂x + i∂y). Let E = π−1 1

z . Show that E is a fundamental solution for the
operator ∂z̄. Establish a connection bewteen this fact and the Cauchy formula for
analytic functions.
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Let f(z) be a an analytic function in the domain D+ = {z ∈ C : 0 < Im(z) < ε}
such that |f(z)| . |Im(z)|−N for all z ∈ D. Show that there exists a distribution
f+ = f(·+ i0) such that for every φ ∈ C∞0 (Rn),

lim
y→0,y>0

∫
R
f(x+ iy)φ(x)dx = < f+, φ >,

Similarly, for analytic functions defined on D− = {z ∈ C/ ) − ε < Im(z) < 0} we
can define a distribution f− = f(· − i0),

lim
y→0,y<0

∫
R
f(x+ iy)φ(x)dx = < f−, φ >

This defines, in particular when f = 1
z = 1

x+iy , the distributions (x + i0)−1 and
(x− i0)−1. Prove the formulas,

(x+ i0)−1 − (x− i0)−1 = −2πiδ0(x).

Show also that,

(x+ i0)−1 = x−1 − iπδ0(x)

where 1
x is the principal value distribution defined in the text.

Problem 2.[Fundamental solutions] Consider the operator Lu = ∆u + u in R3.
Find all solutions of Lu = 0 with spherical symmetry. Show that

K(x) = −cos |x|
4π|x|

is a fundamental solution for L.

Problem 3.[Initial value problem] Consider the initial value problems for the
following, four evolution equations in R× Rn,

∂tu = ∆u, u(0, x) = f(x) (128)

∂tu = i∆u, u(0, x) = f(x) (129)

∂2
t u = ∆u, u(0, x) = f(x), ∂tu(0, x) = g(x) (130)

∂2
t u = −∆u, u(0, x) = f(x), ∂tu(0, x) = g(x) (131)

In each of these cases write down solutions using the Fourier transform method. In
other words take the Fourier transform of each equation, set

û(t, ξ) =
∫
e−ix·ξu(t, x)dx,

and solve the resulting differential equation in t. Compare the results for the last
two equations. Show that (130) has solutions for all f, g ∈ S(Rn) while (131)
does not. Show however that if we only prescribe u(0, x) = f (this is the Dirichlet
problem for the Laplacian ∂2

t +∆ in Rn+1), then the problem has a unique solution
u, which decays to zero as |t| + |x| → ∞, for all functions f ∈ S(Rn). In all cases
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express19 the resulting solutions as integral operators applied to the initial data(in
physical space).

Problem 4.[Extension operator] Let H be the half space xn > 0 in Rn and
1 ≤ p ≤ ∞. Show that there exists an extension operator, that is a bounded linear
operator E : W 1,p(H)→W 1,p(Rn) such that for all u ∈W 1,p(H) we have Eu = u
a.e. in H and

‖Eu‖W 1,p(Rn) . ‖u‖W 1,p(H).

Extend the result to any s ∈ N. Can you extend the result to arbitrary domains
U ⊂ Rn ? What about domains with smooth boundaries ?

Problem 5.[Trace theorems] Let Rn−1 be a hyperplane in Rn, for example xn =
0. For any f ∈ S(Rn) let Rf denote the restriction of f to Rn−1.

i. Prove that, for any s > 1
2 ,

‖Rf‖L2(Rn−1) . ‖f‖Hs(Rn) (132)

ii. Show that the result is not true for s ≤ 1/2. Show however that the following
sharp trace theorem holds for all s > 0,

‖Rf‖Hs(Rn−1) . ‖f‖Hs+1/2(Rn) (133)

iii. Show that f is a function with Fourier support in the ball |ξ| . 2k for some
integer k then, for all 1 ≤ p ≤ ∞ and s > 1/p,

‖f‖Lp(Rn−1) . 2k/p‖f‖W s,p(Rn)

Can you deduce from here a trace result, in Lp norms, generalizing that of (132) ?
What about (133) ?

iv. Let H be the half space xn > 0. According to the above considerations we
can talk about the trace of a function in W 1,p(H) to the hyperplane xn = 0( Prove
this !). Show that a function f ∈ W 1,p(H) belongs20 to W 1,p

0 (H) if and only if its
trace to xn = 0 is zero.

Problem 6[Littlewood-Paley] Consider the spaces Λγ = C0,γ(Rn) with norm

‖f‖Λγ = ‖f‖L∞(Rn) + sup
x 6=y∈Rn

|u(x)− u(y)|
|x− y|γ

i. Show, using the Littlewood-Paley projections Pk, that

‖f‖Λγ ≈ ‖P≤0f‖L∞ + sup
k>0

2kγ‖Pk‖Lp .

ii. Define the Zygmund class Λ∗ of functions with norm,

‖f‖Λ∗ = ‖f‖L∞ + sup
x∈Rn, 0≤h≤1

|f(x+ h) + f(x− h)− 2f(x)|
h

19You will have to perform the inverse Fourier tarnsform, u(t, x) = F−1û(t, ξ). For the wave
equation this is more difficult, in general, but you can do it for dimension n = 3.

20recall that W 1,p
0 (H) is the closure of C∞0 (H) in W 1,p(H)
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Show that

‖f‖Λ∗ ≈ ‖P≤0f‖L∞ + sup
k>0

2k‖Pk‖Lp .

iii. Prove the product estimate in Besov spaces Bs = Hs,1, s > 0.

‖fg‖Bs . ‖f‖L∞‖g‖Bs + ‖g‖L∞‖f‖Bs .

Problem 7. Read on your own the section on Calderon-Zygmund operators. Indi-
cate how the theory can be extended to operators valued in a given Hilbert space,
such as l2.

11. Restriction Theorems

It is well known that when f ∈ L1(Rn) then its Fourier transform f̂ is a bounded
and continuous function, thus the restriction of f̂ to any hypersurface is perfectly
well defined. On the other hand, if f ∈ L2(Rn) then f̂ may be any function in L2,
hence defined only almost everywhere and completely arbitrary on sets of measure
zero like hypersurfaces.

Can one make sense of the restriction of f̂ to a smooth hypersurface S when f
belongs to some Lp with 1 < p < 2? This is a basic question in modern Fourier
analysis, which, as we shall see, turns out to be intimately tied to regularity prop-
erties of solutions to wave equations.

If we take S to be a hyperplane, we immediately see that the answer is negative.
Indeed, let f(x1, x

′) = u(x1)v(x′), f̂(ξ1, ξ′) = û(ξ1)v̂(ξ′), with x1, ξ1 ∈ R and
x′, ξ′ ∈ Rn−1. The restriction of f̂ to the hyperplane ξ1 = 0 is well defined only
when û(0) =

∫
u(x)dx is well defined. For any p > 1 it is always possible to find

u ∈ Lp(R) such that
∫
udx doesn’t make sense. We deduce that the restriction of

the Fourier transform on hyperplanes cannot be defined when p > 1.

The answer is different if we consider hypersurfaces which have non vanishing cur-
vature. For simplicity we consider the model case of the sphere.

11.1. The Stein-Tomas theorem. The following type of result was first
proved by Stein [], then extended by Tomas [] and given its final form again by
Stein [].

Theorem 11.2 (Stein-Tomas). Let S = Sn−1 be the standard unit sphere in Rn
and dσ its standard volume element. Let f ∈ Lp(Rn) with

1 ≤ p ≤ 2(n+ 1)
n+ 3

.

Then Rf = f̂
∣∣∣
S
∈ L2(S) and

‖Rf‖L2(S) . ‖f‖Lp(Rn) .
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This theorem has an equivalent dual formulation. Define the Stein operator to be
the dual of the Fourier restriction operator Rf = f̂

∣∣∣
S
,

Sg(x) = R∗g(x) =
∫

S
eix·ξg(ξ)dσξ ' (gdσ)∨(x),

where now g is a function defined on the sphere.

Theorem 11.3. Let f ∈ L2(S) and

2(n+ 1)
n− 1

≤ p ≤ ∞.

Then Sf ∈ Lp(Rn) and

‖Sf‖Lp(Rn) . ‖f‖L2(S) . (134)

Remark 11.4. It suffices to prove Theorem 11.3 for p = p∗ = 2(n + 1)/(n − 1).
Indeed for p > p∗, by Sobolev inequality we have

‖Sf‖Lp . ‖D
sSf‖Lp∗

for s = n(1/p∗ − 1/p) > 0, where (Dsu)∧(ξ) = |ξ|sû(ξ). But here

DsSf = S(| · |sf) = Sf.

Thus, if we can prove the theorem when p = p∗ then

‖Sf‖Lp . ‖Sf‖Lp∗ . ‖f‖L2(S)

Remark 11.5. The result remains true if we replace dσ by dµ = ψdσ, with ψ ∈
C∞0 (Rn), since the theorem implies

‖(fdµ)∨‖Lp . ‖fψ‖L2(S) . ‖f‖L2(S) .

Moreover, using a partition of unity, it suffices to prove Theorem 11.3 just for
Sf = (fdµ)∨, with dµ = ψdσ and ψ ∈ C∞0 (Rn) supported in a small neighborhood
of a point on the sphere. Though obvious, it is a very important fact that we can
localize the restriction estimate as we shall see in the future.

11.6. Knapp counterexample. The result of theorem 11.3 is false for any
p < p∗ in virtue of the following counterexample ([?]).

Define, for some small δ > 0, the region in phase space

D =
{
ξ ∈ Rn : |ξ1 − 1| < δ2, |ξ′| < δ

}
.

Let now f = χS∩D be the characteristic function of the cap S ∩D, then

‖f‖L2(S) = |S ∩D|1/2 ∼ δ(n−1)/2.

We can write

Sf(x) = eix1

∫
S∩D

eiφ(x,ξ)dσξ,

with phase φ(x, ξ) = x1(ξ1 − 1) + x′ · ξ′. It then possible to fix a region in physical
space,

R =
{
x ∈ Rn : |x1| <

π

6
δ−2, |x′| < π

6
δ−1
}
,
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such that for x ∈ R and ξ ∈ D we have |φ(x, ξ)| ≤ π/3, hence, when x ∈ R,

|Sf(x)| ≥ Re(e−ix1Sf(x)) =
∫

S∩D
cos(φ(x, ξ))dσξ ≥

1
2
|S ∩D|.

This implies that

‖Sf‖Lp
‖f‖L2

& |S ∩D|1/2|R|1/p ∼ δ
n−1

2 −
n+1
p .

For small values of δ, an estimate like (134) will necessarily require n−1
2 −

n+1
p ≥ 0,

which is possible only if p ≥ p∗ = 2(n+ 1)/(n− 1).

This example suggests that there is some sort of parabolic scaling property in the
structure of the operator S which comes from the nonvanishing curvature of the
sphere.

11.7. The importance of curvature. The restriction theorem and its dual
counterpart remain true if we replace the standard sphere Sn−1 by a compact
hypersurface H ⊂ Rn with non-vanishing Gauss curvature. The importance of
non-vanishing Gauss curvature is illustrated by the following result.

Lemma 11.8. Let H ⊂ Rn be a compact hypersurface with non-vanishing Gauss
curvature (i.e. with all its principal curvatures different from zero) and volume
element dσ. Then, for any smooth function ψ, we have,

|(ψdσ)∨(x)| . (1 + |x|)−
n−1

2 (135)

If exactly one principal curvature vanishes then we have instead,

|(ψdσ)∨(x)| . (1 + |x|)−
n−2

2

Proof The general proof is based on the method of stationary phase, see Stein’s
Harmonic Analysis book. For the particular case of the standard sphere H = Sn−1

and odd n the proof can be done by a direct computation in polar coordinates.

Exercise Prove the lemma for S2 ⊂ R3.

Remark 11.9. Another interesting observation links these restiction theorems to
partial differential equations. Indeed if u = dσ∨ ∗ f , then u is a solution of the
linear elliptic equation

∆u+ u = 0,

as we can be easily seen taking the Fourier transform,

F(u+ ∆u)(ξ) ' (1− |ξ|2)δ(1− |ξ|)f̂(ξ) = 0.

where δ is the Dirac distribution.
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11.10. TT ∗ principle. The following simple functional analysis result plays
an important role in restriction and Strichartz type estimates. Let B be a Banach
space and denote by B′ its dual. Let H be an Hilbert space with inner product
denoted by 〈·, ·〉. Consider a linear operator T : H → B′. Since we can identify
H with its dual, we can consider T to be the adjoint of the operator T ∗ : B → H
defined by

〈h, T ∗(x)〉 = Th(x).

Actually, T ∗ is the adjoint of T when B is reflexive, but for our purposes we shall
keep calling T ∗ the adjoint of T .

The TT ∗ principle states that the boundedness of T is equivalent to the bounded-
ness of TT ∗. More precisely we have:

Proposition 11.11. The following statements are equivalent:

(i) T : H → B′ is bounded and ‖T‖ = M ;
(ii) T ∗ : B → H is bounded and ‖T ∗‖ = M ;
(iii) TT ∗ : B → B′ is bounded and ‖TT ∗‖ = M2;
(iv) the bilinear form (x, y) 7→ 〈T ∗x, T ∗y〉 is bounded on B×B with norm M2.

The proof is a standard exercise in functional analysis.

11.12. TT ∗ formulation of the restriction theorem. The TT ∗ formula-
tion for the Stein operator corresponds to a convolution with the (inverse) Fourier
transform of the measure on the sphere. Formally, we have,

SS∗f(x) = SRf(x) =
∫

S
eix·ξ f̂(ξ)dσξ =

∫
Rn

∫
S
ei(x−y)·ξdσξ f(y)dy = dσ∨ ∗ f(x).

We are thus led to the following equivalent form of the restriction theorem,

‖dσ∨ ∗ f‖Lp(Rn) . ‖f‖Lp′ (Rn) , (136)

for p ≥ p∗.

One can give three distinct proofs of Theorem 11.3. We shall sketch the first proof
based on analytic interpolation. This is essentially the original proof of Stein and
Tomas. The second proof, based on introducing a time parameter and treating
Sf as an evolution operator allows us to regard the restriction theorem as part
of a more general framework which includes Strichartz estimates for various linear
PDE with constant coefficients. Finally the third approach, which only applies for
specific exponents, will allow us to to connect with bilinear estimates.

11.13. First proof: analytic interpolation. According to Remark 11.12
and Remark 11.4 it suffices to prove that Uf = dσ∨ ∗ f verifies

‖Uf‖Lp∗ (Rn) . ‖f‖Lp′∗ (Rn)
, (137)

where p∗ = 2(n+ 1)/(n− 1) and p′∗ = 2(n+ 1)/(n+ 3).
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In general, to obtain Lp
′ − Lp estimates directly is usually very complicated and

we don’t know any direct proof except in cases where p is a nice exponent like
p = 4, 6 (which happens only for n = 2 or n = 3). We would feel more comfortable
with L2−L2 type estimates, where Plancherel’s theorem is a powerful tool, or with
L1−L∞ type estimates, since pointwise decay estimates of oscillatory integrals can
be obtained from stationary phase methods. This suggests to use some interpolation
theory for Lp spaces. But, an L2 − L2 estimate for the operator U is ruled out by
the Knapp counterexample and a L∞−L1 one is too trivial and doesn’t answer to
our question. It is here that the Stein interpolation theorem, Thm. 4.8, shows its
power, since it allows us to obtain the Lp

′ − Lp estimate for U from L2 − L2 and
L∞ − L1 estimates for other (reasonable) operators different from U .

We will accomplish this by constructing a family of convolution operators Uzf =
µ∨z ∗f , with µz being distributions depending analytically in z. The parameter z will
essentially reflect the degree of homogeneity of the distribution µz. For this reason
it is natural to place our target at z = −1, requiring U−1 = U or µ−1 = dσ, since
dσ can be written as the pullback of a delta distribution (which is homogeneous of
degree −1) on the sphere: dσ ' δ(1− |ξ|)dξ.

An L2 − L2 estimate for Uz will follow if µz coincides with a bounded function,
indeed, by Plancherel’s theorem, we have

‖Uzf‖L2 ' ‖(Uzf)∧‖L2 '
∥∥∥µz · f̂∥∥∥

L2
. ‖µz‖L∞ ‖f‖L2 . (138)

To have µz(ξ) bounded we must require that µz(ξ) is essentially homogeneous of
degree 0, hence when z lies on the line Re(z) = 0.

An L1 −L∞ estimate for Uz will follow instead when µ∨z coincides with a bounded
function, since we directly have

‖Uzf‖L∞ . ‖µ
∨
z ‖L∞ ‖f‖L1 . (139)

To obtain (137) from the analytic interpolation of (138) and (139), we would like
the latter to happen on the line Re(z) = a, where a is chosen so that

−1 = θa+ (1− θ)0, 1
p∗

=
θ

∞
+

1− θ
2

,
1
p′∗

=
θ

1
+

1− θ
2

,

and this happens precisely when Re(z) = a = −(n+ 1)/2.

This argument leads to the precise version of the Stein analytic interpolation the-
orem that we are going to use.

Proposition 11.14. Let Uz be an analytic family of linear operators such that:

(i) U−1 = U ;
(ii) ‖Uzf‖L2 . ‖f‖L2 , uniformly on the line Re(z) = 0;
(iii) ‖Uzf‖L∞ . ‖f‖L1 , uniformly on the line Re(z) = −(n+ 1)/2.

Then it follows that
‖Uf‖Lp∗ . ‖f‖Lp′∗ .
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The above discussion showed that, when we write Uzf as the convolution µ∨z ∗ f ,
then the hypothesis of the proposition are fulfilled whenever µz is an analytic family
of distribution such that

(i’) µ−1 = dσ;
(ii’) µz(ξ) coincides with a bounded function, with a uniform bound on the

line Re(z) = 0;
(iii’) µ∨z (x) coincides with a bounded function, with a uniform bound on the

line Re(z) = −(n+ 1)/2.

It thus remains to define the distributions µz and verify these properties.

Inspired by the identity δ = χ−1
+ and dσξ ' δ(1 − |ξ|), we define our family of

distributions as

µz(ξ) = ez
2
χz+(1− |ξ|)ψ(|ξ|), (140)

where ψ ∈ C∞0 (R) is a cut-off function supported in a small neighborhood of 1, say
[1/2, 3/2], and ψ(1) = 1.

We recall that the homogeneous distributions χz+, when Re(z) > −1, coincide with
the functions:

χz+(t) =

{
tz/Γ(z + 1) if t ≥ 0,
0 if t < 0,

where the Gamma function is defined by Γ(z+ 1) =
∫∞

0
tze−tdt. From the identity

Γ(z + 1) = zΓ(z), it follows that

d
dt
χz+(t) = χz−1

+ (t). (141)

Using this formula, χz+ can be analytically continued for all z ∈ C by performing
repeated integrations by parts. To do this we first observe that for Re(z) > −1 and
φ ∈ C∞0 we have∫

χz+(t)φ(t)dt = −
∫
χz+1

+ (t)φ′(t)dt = . . . = (−1)m
∫
χz+m+ (t)φ(m)(t)dt.

Thus integrating by parts sufficiently many times we can make sense of
∫
χz+φdt

when Re(z) > −1−m for any m, and hence for all z. To see that χ−1
+ = δ it takes

just an integration by parts, indeed∫
χ−1

+ φdt = − 1
Γ(1)

∫ ∞
0

φ′(t)dt = φ(0).

For more information about χz+ and distribution theory one can consult the books
by Gel’fand and Shilov [4] or Hormander [5].

The factor ez
2

in the definition of µz is chosen in order to garantee a uniform
boundedness of our operators for large Im(z), indeed ez

2
decreases exponentially as

Im(z)→∞, uniformly on the strip −(n+ 1)/2 ≤ Re(z) ≤ 0. This permits to allow
the various constants in the following inequalities to have a polynomial growth in
terms of b = Im(z).
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Clearly µ−1 ' δ(1− |ξ|)ψ(|ξ|) ' dσ. This verifies (i’).

Condition (ii’) is immediately verified, since χ−z+ is always a bounded function
when Re(z) = 0. Condition (iii’) will follow from stationary phase arguments,
more generally we have:

Proposition 11.15.

|µ∨z (x)| . (1 + |x|)−Re(z)−1−n−1
2 . (142)

11.16. Second proof: evolution operators approach. In this section we
make the following assumption on f :

f ∈ C∞(S), suppf ⊂ {ξ1 > 1/2} . (143)

With this assumption we can relabel x1 = t as a time parameter and rewrite Sf as

Sf(t, x′) =
∫
|ξ′|<

√
3/2

eit
√

1−|ξ′|2eix
′·ξ′f(

√
1− |ξ′|2, ξ′) dξ′√

1− |ξ′|2

=
∫
eit
√

1−|ξ′|2eix
′·ξ′β(|ξ′|)g(ξ′)dξ′.

with β ∈ C∞0 supported in |ξ′| < 1 and g(ξ′) = f(
√

1− |ξ′|2, ξ′)/
√

1− |ξ′|2. Ob-
serve that ∫

|g(ξ′)|2dξ′ =
∫

S

|f(ξ)|2

|ξ1|2
dσξ ' ‖f‖2L2(S)

by the assumption on the support of f .

Theorem 11.17. Let β ∈ C∞0 (Rn−1) be supported in the unit ball {ξ ∈ Rn−1 :
|ξ| < 1} and consider the operator

Tg(t, x) =
∫
Rn−1

eit
√

1−|ξ|2eix·ξβ(ξ)g(ξ)dξ, t ∈ R, x ∈ Rn−1.

Let q, r be Lebesgue exponents verifing the conditions:

0 ≤ 2
q
≤ min {1, γ(r)} , (144)(

2
q
, γ(r)

)
6= (1, 1), (145)

where γ(r) = (n − 1)(1/2 − 1/r). Then the following estimate holds true for all
g ∈ C∞0 (Rn−1),

‖Tg‖LqtLrx(R×Rn−1) . ‖g‖L2(Rn−1) . (146)

where we use the mixed norm notation defined in section 7.

By Remark 11.5, Theorem 11.3 follows from the special case q = r = 2n+1
n−1 .

Remark 11.18. We can run again the Knapp example to prove the necessity of
condition (144), when q ≥ 2. Indeed let D ⊂ Rn−1 be the disk defined by |ξ| ≤ δ,
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for sufficiently small δ > 0, and take g = χD to be the characteristic function of D.
We write,

Tg(t, x) = eit
∫
D

eit(
√

1−|ξ|2−1)eix·ξβ(ξ)dξ

and observe that for |t| ≤ δ−2 and |x| ≤ δ−1 we have, with a fixed constant c > 0,
|Tg(t, x)| ≥ c. Indeed this follows easily from ξ| ≤ δ and |

√
1− |ξ|2 − 1| . δ2.

Therefore, if (146) holds true, we must have, for all sufficiently small δ > 0,

cδ−
2
q δ−

n−1
r . ‖Tg‖LqtLrx . ‖χD‖L2 . δ−

n−1
2

from which (144), q ≥ 2 follows.

Remark 11.19. The end-point restriction (145) can be removed when n 6= 3, due
to a well known result by Keel and Tao [14] (“Endpoint Strichartz Inequalities”).
The other restriction q ≥ 2, implicit in (144) will be discussed in the next chapter.

We start by calculating T ∗ and TT ∗.

< T ∗F, g > =< F, Tg >=
∫∫

FTgdtdx =

=
∫∫

F (t, x)
∫
e−it
√

1−|ξ|2e−ix·ξβ(ξ)g(ξ)dξdtdx =

=
∫
g(ξ)β(ξ)

(∫∫
e−it
√

1−|ξ|2e−ix·ξF (t, x)dtdx
)

dξ.

Hence
T ∗F (ξ) = β(ξ)

∫∫
e−it
√

1−|ξ|2e−ix·ξF (t, x)dtdx,

and

TT ∗F (t, x) =
∫
eit
√

1−|ξ|2eix·ξβ(ξ)T ∗F (ξ)dξ

=
∫∫

ei(t−s)
√

1−|ξ|2eix·ξ|β(ξ)|2F̂ (s, ξ)dξds,

where F̂ (s, ξ) =
∫
e−ix·ξF (s, x)dx. If we introduce the family of operators

U(t)f(x) =
∫
eit
√

1−|ξ|2eix·ξ|β(ξ)|2f̂(ξ)dξ,

we can write TT ∗ as a convolution operator,

TT ∗F (t, ·) =
∫
U(t− s)F (s, ·)ds. (147)

By Proposition 11.11, to show that T is a bounded operator from LqtL
r
x(Rn) to

L2(Rn−1) it suffices to prove that TT ∗ is a bounded operator from Lq
′

t L
r′

x (Rn) to
LqtL

r
x(Rn).

We shall first prove an estimate for U(t).

Proposition 11.20. Let 2 ≤ r ≤ ∞ and γ(r) = (n − 1)(1/2 − 1/r). Then U(t)
verifies the estimate

‖U(t)f‖Lr(Rn−1) . (1 + |t|)−γ(r) ‖f‖Lr′ (Rn−1) . (148)
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Proof Once we have proved the two extreme cases r = 2 and r =∞,

‖U(t)f‖L2(Rn−1) . ‖f‖L2(Rn−1) (149)

‖U(t)f‖L∞(Rn−1) . (1 + |t|)−(n−1)/2 ‖f‖L1(Rn−1) (150)

then the estimate follows from the standard Riesz interpolation theorem.

We obtain (149) immediately using Plancherel formula, since

(U(t)f)∧(ξ) ' eit
√

1−|ξ|2 |β(ξ)|2f̂(ξ).

To prove (150) we write

U(t)f(x) =
∫
Kt(x− y)f(y)dy,

where

Kt(x) =
∫
eix·ξeit

√
1−|ξ|2 |β(ξ)|2dξ

'
∫∫

eix·ξeitτδ(1− τ2 − |ξ|2)
√

1− |ξ|2|β(ξ)|2dτdξ

'
∫∫

ei(t,x)·(τ,ξ)δ(1− |(τ, ξ)|)β1(τ, ξ)dτdξ,
(
β1(τ, ξ) = τ |β(ξ)|2

)
,

= (β1dσn−1)∨ (t, x).

Hence Kt is just the Fourier transform of a measure supported on the sphere Sn−1,
for which we have the decay estimate

|Kt(x)| . (1 + |t|+ |x|)−(n−1)/2,

which implies (150).

We next apply Proposition 11.20 to (147),

‖TT ∗F (t, ·)‖Lrx .
∫

1
(1 + |t− s|)γ(r)

‖F (s, ·)‖Lr′x ds. (151)

Finally, we are in a position to apply the Hardy-Littlewood-Sobolev inequality and,
if 0 < γ(r) < 1, we obtain

‖TT ∗F‖LqtLrx . ‖F‖Lq′t Lr′x ,

when −γ(r) + 1 + 1/q = 1/q′, hence γ(r) = 2/q. Therefore we proved Theorem
11.17 in the case 0 < γ(r) = 2/q < 1.

On the other hand if q = 2 and γ(r) > 1 we have from (151),

‖TT ∗F‖L2
tL

r
x
. ‖F‖L2

tL
r′
x
,

by an application of the standard Hausdorff-Young inequality.

Finally, if 2/q < 1 and γ(r) > 2/q the result follows from the case γ(r) = 2/q using
Sobolev inequalities.
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11.21. Third proof: bilinear forms (n = 2 and n = 3). We present
now another method to prove the restriction theorem for the sphere that works
for the special cases n = 2, p = 6 or n = 3, p = 4. The idea is that when p
is an even integer, the restriction theorem can be viewed as an L2 estimate for a
multilinear form, which, through the Fourier transform, has a convolution structure
that provides some smoothing effects. The proofs given below are at the root of the
so called bilinear trilinear estimates, which play a fundamental role in the modern
theory of nonlinear wave and dispersive equations.

Let us see the case n = 3 first. We consider the Stein operator Sf = (fdσ)∨, and
use the fact that (Sf · Sf)∧ ' (fdσ) ∗ (fdσ). Let B(f, g) = Sf · Sg, then an L4

estimate for Sf corresponds to an L2 estimate for B(f, f). We have

B̂(f, g)(ξ) ' (fdσ) ∗ (gdσ)(ξ) =
∫
R3
δ(1− |ξ − η|)δ(1− |η|)f(ξ − η)g(η)dη,

and applying Cauchy-Schwarz with respect to the measure δ(1−|ξ−η|)δ(1−|η|)dη
we find

|B̂(f, g)(ξ)|2 ≤ B̂(1, 1)(ξ)B̂
(
|f |2, |g|2

)
(ξ).

Integrating with respect to ξ, we obtain

‖B(f, g)‖2L2(R3) . A ‖f‖
2
L2(S2) ‖g‖

2
L2(S2) , (152)

with

A = sup
ξ
|B̂(1, 1)(ξ)| = sup

ξ

∫
δ(1− |ξ − η|)δ(1− |η|)dη. (153)

Thus, to prove the theorem in this case it suffices to check that A is finite. It is
useful to carry out the explicit calculation of A(ξ) = B̂(1, 1)(ξ). For any dimension
n ≥ 2 we have:

Lemma 11.22.

A(ξ) =
∫
Rn

δ(1− |ξ − η|)δ(1− |η|)dη ' 1
|ξ|
(
4− |ξ|2

)n−3
2

+
. (154)

Proof

A(ξ) =
∫
δ(1− |ξ − η|)δ(1− |η|)dη '

∫
|η|=1

δ(1− |ξ − η|2)dση =

=
∫
|η|=1

δ(|ξ|2 − 2ξ · η)dση '
1
|ξ|

∫
|η|=1

δ

(
|ξ|
2
− ξ

|ξ|
· η
)

dση.

Because of the rotational symmetry, we may assume that ξ = (|ξ|, 0, . . . , 0), so that

A(ξ) ' 1
|ξ|

∫ π

0

δ

(
|ξ|
2
− cos θ

)
(sin θ)n−2dθ =

=
1
|ξ|

∫ 1

−1

δ

(
|ξ|
2
− u
)

(1− u2)
n−3

2 du =
1
|ξ|

(
1− |ξ|

2

4

)n−3
2

,

when |ξ|/2 ∈ [−1, 1].
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When n = 3, A(ξ) ' 1/|ξ| is singular only at ξ = 0, but we can avoid this difficulty
by assuming that f and g are supported in a small neighborhood of a point in
S2 (recall that without loss of generality we can localize the estimate on a small
cap on the sphere). Then the supremum in (153) can be taken over just all ξ ∈
supp(f) + supp(g), which is a set bounded away from 0. Hence we may restrict

to |ξ| ≥ C > 0 in (153) and the singularity disappears leaving A <∞.

From the L2 estimate (152) of the bilinear form B(f, g), it follows the L4 estimate
for the Stein operator Sf :

‖Sf‖2L4(R3) = ‖B(f, f)‖L2 ' A1/2 ‖f‖2L2(S2) ,

with the assumption that f is supported in a small cap on the sphere.

In the case n = 2 what we want is an L6 estimate for Sf . Since 6 = 3 × 2 we
can try to repeat the same calculation using this time a trilinear form, T (f, g, h) =
Sf · Sg · Sh, and the fact that ‖Sf‖3L6 = ‖T (f, f, f)‖L2 . We have

T̂ (f, g, h)(ξ) ' (fdσ) ∗ (gdσ) ∗ (hdσ)(ξ) =

=
∫∫

R2×R2
δ(1− |ξ − η − ζ|)δ(1− |η|)δ(1− |ζ|)f(ξ − η)g(η)h(ζ)dηdζ,

and applying Cauchy-Schwarz with respect to the measure δ(1−|ξ−η|)δ(1−|η|)δ(1−
|ζ|)dηdζ we find

|T̂ (f, g, h)(ξ)|2 ≤ T̂ (1, 1, 1)(ξ)T̂
(
|f |2, |g|2, |h|2

)
(ξ).

Integrating with respect to ξ, we obtain

‖T (f, g, h)‖2L2(R2) . A ‖f‖
2
L2(S1) ‖g‖

2
L2(S1) ‖h‖

2
L2(S1) , (155)

with

A = sup
ξ
|T̂ (1, 1, 1)(ξ)| = sup

ξ

∫∫
δ(1− |ξ − η|)δ(1− |η|)δ(1− |ζ|)dηdζ.

(156)

The convolution structure allows us to restrict ξ to the set suppf+ suppg+ supph,
and, if we make the hypothesis of f, g, h supported in a small cap of the sphere, we
can assume 1 ≤ |ξ| ≤ 3. Using Lemma 11.22 we can evaluate T (1, 1, 1) and show
that A is bounded,

T (1, 1, 1)(ξ) =
∫
B(1, 1)(ξ − ζ) δ(1− |ζ|)dζ ∼

∼
∫
|ξ−ζ|<2

δ(1− |ζ|)
(4− |ξ − ζ|2)1/2

dζ =
∫

ζ∈S1
|ξ−ζ|<2

dσζ
(3− 2ξ · ζ + |ξ|2)1/2

'

'
∫ 1

a(ξ)

da
(3− |ξ|2 + 2|ξ|a)1/2(1− a2)1/2

∼
∫ 1

a(ξ)

da
(a− a(ξ))1/2(1− a)1/2

' 1,

where a(ξ) = − 3−|ξ|2
2|ξ| . From the L2 estimate (155) of the trilinear form T (f, g, h),

it follows the L6 estimate for the Stein operator Sf :

‖Sf‖3L6(R2) = ‖T (f, f, f)‖L2 ' A1/2 ‖f‖3L2(S2) .
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We can also try to repeat the bilinear argument for n = 2. As before, for B(f, g) =
Sf · Sg we have

|B̂(f, g)(ξ)|2 ≤ B̂(1, 1)(ξ)B̂
(
|f |2, |g|2

)
(ξ).

Integrate with respect to ξ, and use Lemma 11.22 to evaluate B̂(1, 1),

‖B(f, g)‖2L2(R2) .
∫∫

δ(1− |ξ − η|)δ(1− |η|)
|ξ|(4− |ξ|2)1/2

|f(ξ − η)|2|g(η)|2dηdξ.

Change variable, ξ → ζ = ξ − η, and observe that when |η| = |ζ| = 1 we have

|ξ| = |η + ζ| ' (1 + η · ζ)1/2,

(4− |ξ|2)1/2 = (4− |η + ζ|2)1/2 ' (1− η · ζ)1/2,

hence

‖B(f, g)‖2L2(R2) .
∫∫

S1×S1

|f(ζ)|2|g(η)|2

(1− (η · ζ)2)1/2
dσηdσζ . (157)

This is an interesting formula. Observe that if the supports of f and g on S1 are
projectionally disjoint, i.e. don’t contain points in the same direction, then the
quantity 1 − (η · ζ)2 is bounded below by a positive constant and in this case we
obtain the bilinear restriction estimate

‖B(f, g)‖L2(R2) . ‖f‖L2(S1) ‖g‖L2(S1) .

We can consider also other types of bilinear forms which have a special struc-
ture that cancel the singularity in the denominator. Take for example Q(f, g) =
∂1Sf∂2Sg−∂2Sf∂1Sg, then taking the Fourier transform and proceeding as before
we see that

‖Q(f, g)‖2L2(R2) .
∫∫

S1×S1

|η1ζ2 − η2ζ1|2

(1− (η · ζ)2)1/2
|f(ζ)|2|g(η)|2dσηdσζ

. ‖f‖2L2(S1) ‖g‖
2
L2(S1) ,

since we have the identity |η1ζ2 − η2ζ1|2 = 1− (η · ζ)2 ≤ 1.

12. Strichartz inequalities for the wave equation

Strichartz inequalities are an important tool in the study of linear and nonlinear
wave equations. They are intimately tied to restriction theorems. In this chapter
we shall only consider the case of the standard linear wave equation. Similar in-
equalities hold true however for linear dispersive equations such as the Schrödinger,
linear KdV etc.

12.0.1. Homogeneous wave equation. Consider solutions u = u(t, x), t ∈ R, x ∈
Rn to the equation

�u = F, (158)
u(0, x) = f(x), ∂tu(0, x) = g(x), (159)
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with � the wave operator 2 = −∂2
t u + ∆. Clearly, a solution to eqrefeq:genwave

can be written as a superposition between a solution to the homogeneous wave
equation,

2u = 0, (160)

verifying the initial condition (159) at time t = 0, and a solution to the purely
inhomogeneous wave equation

2u = F, (161)

with zero initial data
u(0, x) = 0, ∂tu(x, 0) = 0.

We denote by W (t)h the fundamental solution of the homogeneous problem (160),
i.e. u(t, x) =

(
W (t)h

)
(x) is the unique solution of (160) which verifies the initial

conditions
u(0, x) = 0, ∂tu(0, x) = h(x)

By Duhamel’s principle any solution of the inhomogeneous equation can itself be
written as a superposition of solutions to the homogeneous equation according to
the formula,

u(t) =
∫ t

0

W (t− t′)F (t′)dt′, (162)

Before stating the main result of this section we make the following definition.

Definition 12.1. We say that the pair of real numbers (q, r) is an admissible wave
pair if they satisfy the conditions

q ≥ 2,
2
q
≤ (n− 1)

(
1
2
− 1
r

)
,

(q, r, n) 6= (2,∞, 3).

We are now ready to state the following.

Theorem 12.2. Suppose that n ≥ 2 and (q, r) is a wave admissible pair 21 with
r <∞.

(1) Assume the dimensional condition, 1
q + n

r = n
2 − γ. Then, if u verifies the

homogeneous equation (160) with initial conditions (159),

‖u‖LqtLrx + ‖u‖L∞t Ḣγx + ‖∂tu‖L∞t Ḣγ−1
x

. ‖f‖Ḣγ + ‖g‖Ḣγ−1 (163)

(2) Assume the dimensional condition,22 1
q + n

r = n
2 − γ = 1

q′ + n
r′ − 2, with q′

dual to q and r′ dual to r. Then, if u verifies the purely inhomogeneous
problem (12.0.1) with zero initial conditions, then on a finite time interval
[0, T ]:

‖u‖Lq([0,T ];Lr) + ‖u‖C([0,T ];Ḣγ) + ‖∂tu‖C([0,T ];Ḣγ−1) . ‖F‖Lq′ ([0,T ];Lr′ )(164)

21The case when r =∞ can also be included provided that we modify the spaces on the left

of the estimates below to appropriate Besov spaces.
22Thus, in fact, γ = 1/2.
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Figure 2. Admissable exponents for n ≥ 4

(3) We also have the following more general version of (164) for admissible
pairs (q1, r1), (q2, r2) with r1, r2 <∞ verifying the dimensional condition,

1
q1

+
n

r1
=
n

2
− γ =

1
q′2

+
n

r′2
− 2

Then,

‖u‖Lq1 ([0,T ];Lr1 ) + ‖u‖C([0,T ];Ḣγ) + ‖∂tu‖C([0,T ];Ḣγ−1) . ‖F‖
Lq
′
2 ([0,T ];Lr

′
2 )

(165)

Remark 12.3. For n ≥ 4, the region of admissable exponents corresponds to a
quadrilateral OEPQ in the plane (1/q, 1/r) with vertices O = (1/∞, 1/∞), E =
(1/∞, 1/2), P = (1/2, n−3

2(n−1) ) and Q = (1/2, 1/∞). When n = 3 the point P
coincides with Q and the region reduces to the triangle OEQ. When n = 2 we have
a smaller triangle OEQ2 where Q2 = (1/4, 1/∞).

For n = 3, the boundary of the triangular region is allowed except for the endpoint
P . For n ≥ 4, the boundary of the quadrilateral region is entirely allowed, as we
will note below.

The interesting cases are the ones on the segment EP and the ones on PQ close
to P , since all the others can be deduced from these using Sobolev embeddings.
The point E corresponds to the energy estimates. There are counterexamples that
exclude the point P when n = 3, while the inclusion of P in higher dimensions were
recently obtained by Keel and Tao [14].
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The standard Strichartz estimate23 corresponds to the point S = ( n−1
2(n+1) ,

n−1
2(n+1) ).

Remark 12.4. We remark that in even though the end-point case n = 3, q =∞, r =
2 is forbidden, the estimates holds in the spherically symmetric case. Indeed let φ
be a solution of the homogeneous wave equation �φ = 0 in R3+1 subject to the
initial conditions

φ(0, x) = 0, ∂tφ(0, x) = f(x)

and assume that f is spherically symmetric i.e. f(x) = f(|x|). Then,∫ ∞
0

‖φ(t, ·)‖2L∞(R3)dt ≤ c‖f‖
2
L2 . (166)

The proof is an immediate consequence of the Hardy–Littlewood maximal theorem24

in view of the fact that, for spherically symmetric f ,

φ(x, t) =
c

|x|

∫ |x|+t∣∣|x|−t∣∣ λf(λ) dλ.

Remark 12.5. We give an elementary example below to illustrate how the end point
result n = 3, q = ∞, r = 2 fails in the general case due to possible concentrations
along null rays. We show below that there exists a sequence of functions fn in
C∞0 (R3), with ‖fn‖L2 = 1 such that for the corresponding solutions φn,∫ ∞

0

|φn(t, t, 0, 0)|2 dt ≥ n. (167)

assume by contradiction that in fact, J :=
∫∞

0
φ(t, t, 0, 0)ϕ(t) dt < C for all f ∈

C∞0 (R3) with ‖f‖L2 = 1 and some ϕ ∈ S(R), ϕ 6≡ 0. In view of the formula (see
section on the fundamental solution of � in R3+1),

φ(t, x) = (4π)−1t

∫
|ξ|=1

f(x+ tξ) dξ

we find that,

J = (4π)−1

∫
R3
|y|−1f1(y1 + |y|, y2, y3)ϕ(|y|) dy

or, changing the variables z = y + (|y|, 0, 0)

J = (4π)−1

∫
z1>0

1
z1
f(z)ϕ

( |z|2
2z1

)
dz < c.

Since f is an arbitrary C∞0 (R3) function, ‖f‖L2 = 1, we must have that,

z → 1
z1
ϕ
( |z|2

2z1

)
is in L2(R3

+) which is false whenever ϕ 6≡ 0. In fact,∫
R3

+

1
z2

1

ϕ2
( |z|2

2z1

)
dz =

∫
R3

1
(y1 + |y|)|y|

ϕ2(|y|)dy = 2π
∫ ∞

0

ϕ2(λ)
∫ π

0

sin θ
1 + cos θ

dθ

diverges logarithmically if ϕ 6≡ 0.

23i.e. the one actually proved by Strichartz.
24This is obviously so in the region r ≤ t while for r ≥ t the argument is elementary.
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12.6. Fourier representation of solutions. We can solve the homogeneous
problem (160) by the Fourier method. To recall, If we apply the Fourier transform
with respect to the space variables, the initial value problem (160), (159) becomes
a Cauchy problem for an ordinary differential equation:

∂2
t û+ |ξ|2û = 0, û(0, ξ) = f̂(ξ), ∂tû(0, ξ) = ĝ(ξ),

which can be solved explicitly:

û(t, ξ) = cos (t|ξ|) f̂(ξ) + sin (t|ξ|) ĝ(ξ)
|ξ|

(168)

Thus the fundamental solution W (t)h, defined above, takes the form,

W (t)h(x) =
∫

Rn
eix·ξ

sin(t|ξ|)
|ξ|

ĥ(ξ)dξ. (169)

By Duhamel principle, see (162), the general solution of the inhomogeneou equation
�u = F can be expressed in the form,

u(t) = ∂tW (t)f +W (t)g +
∫ t

0

W (t− s)F (s)ds. (170)

let D = (−∆)1/2 be the operator whose symbol in Fourier space is given by |ξ|.
Observe that,

(DW (t))f(x) = (W (t)Df)(x) =
∫

Rn
eix·ξ sin t|ξ|)f̂(ξ)dξ.

Since sin t|ξ| and cos t|ξ| are bounded the operators ∂tW (t) andDW (t) mapHs(Rn)
in itself. In particular, solutions u of (160), (159) preserves the (Sobolev) regularity
of the initial data f and g. More precisely, If f,D−1g ∈ Hs for some s ∈ R, then
u(t), D−1∂tu(t) ∈ Hs uniformly for t ∈ R. We can also write,

‖u‖L∞t Ḣγx + ‖∂tu‖L∞t Ḣγ−1
x

. ‖f‖Ḣγ + ‖g‖Ḣγ−1

which provides the easy part of estimate25 (163). Therefore to prove (163) it suffices
to prove,

‖u‖LqtLrx . ‖f‖Ḣγ + ‖g‖Ḣγ−1 (171)

for and wave admissible pair (q, r).

We also remark that,

∂tW (t)h(x) =
∫

Rn
eix·ξ cos(t|ξ|)ĥ(ξ)dξ

and,

D−1W (t)h(x) =
∫

Rn
eix·ξ

cos(t|ξ|)
|ξ|

ĥ(ξ)dξ

We can rewrite (168) as

û(t, ξ) = eit|ξ|f̂+(ξ) + e−it|ξ|f̂−(ξ),

25Another derivation, based on energy identities, is given in the next subsection.
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where f± = 1
2

(
f ±D−1g

)
. It follows that u = u+ + u− where

u± =
∫
ei(x·ξ±t|ξ|)f̂±(ξ)dξ

Observe that to prove (171) it suffices to prove,

‖u+‖LqtLrx . ‖f+‖Ḣγ (172)

and a similar estimate for f−.

12.7. Energy estimates. We will derive a simple L2 estimate for general
solutions of �u = F by integration by parts. It all follows from the simple algebraic
identity:

−1
2
∂t(|∂tu|2 + |∇u|2) + ∂i(∂tu∂iu) = ∂tu · F (173)

where |∇u|2 =
∑n
i=1(∂iu)2 and ∂i = ∂xi . Integrating with respect to x, and

assuming that u and its derivatives vanish26 at infinity we derive,

∂t

∫
Rn

(
(∂tu)2 + |∇u|2

)
dx = 2

∫
Rn
∂tu · Fdx

Thus integrating in t,

‖∂tu(t)‖2L2 + ‖∇u(t)‖2L2 ≤ ‖∂tu(0)‖2L2 + ‖∇u(0)‖2L2 + 2
∫ t

0

∫
Rn
∂tu · Fdxds

which we rewrite, with |∂u|2 = |∂tu|2 + |∇u|2,

‖∂u(t)‖2L2 = ‖∂u(0)‖2L2 + 2
∫ t

0

∫
Rn
∂tu · Fdxds. (174)

In particular, applying Hölder,

‖∂u(t)‖2L2 ≤ ‖∂u(0)‖2L2 + 2
∫ t

0

‖∂tu(s)‖L2‖F (s)‖L2ds

from which we derive the inhomogeneous energy estimate,

sup
t∈[0,T ]

‖∂u(t)‖L2 . ‖∂u(0)‖L2 +
∫ T

0

‖F (s)‖L2ds (175)

Now let Ds be the operator Ds = (−∆)s/2 whose symbol in Fourier space is given
by |ξ|s. Since Ds commutes with � we easily derive,

‖∂Dsu(t)‖2L2 = ‖∂Dsu(0)‖2L2 + 2
∫

Rn
∂tD

su ·DsFdx

We can write, using Plancherel with respect to the x variables,∫
Rn
∂tD

su ·DsFdx =
∫

Rn
∂tD

2su · Fdx,

Therefore, by Hölder, in the slab DT = [0, T ]× Rn,

sup
t∈[0,T ]

‖∂Dsu(t)‖2L2 ≤ ‖∂Dsu(0)‖2L2 + 2‖D2s∂tu‖LqtLrx(DT )‖F‖Lq′t Lr′x (DT )

26This can easily be justified by the finite propagation speed property of solutions to the
wave equation
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Choosing s = −1 we infer that,

sup
t∈[0,T ]

‖∂D−1/2u(t)‖2L2 ≤ ‖∂D−1/2u(0)‖2L2 + 2‖D−1∂tu‖LqtLrx(DT )‖F‖Lq′t Lr′x (DT )

We apply this energy estimate to solution of the inhomogeneous problem (12.0.1)
with zero initial conditions. We also assume that the dimensional condition 1

q + n
r =

n
2 − γ = 1

q′ + n
r′ − 2 is verified. That implies γ = 1

2 . We thus have,

sup
t∈[0,T ]

‖∂D−1/2u(t)‖2L2 ≤ 2‖D−1∂tu‖LqtLrx(DT )‖F‖Lq′t Lr′x (DT )

Assume for a moment that we can prove the estimate,

‖D−1∂tu‖LqtLrx(DT ) . ‖F‖Lq′t Lr′x (DT )
(176)

Then,

sup
t∈[0,T ]

‖∂D−1/2u(t)‖L2 . ‖F‖
Lq
′
t L

r′
x (DT )

which is equivalent to,

sup
t∈[0,T ]

(
‖u(t)‖Ḣγ) + ‖∂tu‖Ḣγ−1)

)
. ‖F‖Lq′ ([0,T ];Lr′ )

thus proving half of estimate (164). Therefore the inhomogeneous estimate (164)
reduces to proving,

‖u‖Lq([0,T ];Lr) + ‖D−1∂tu‖Lq([0,T ];Lr) . ‖F‖Lq′ ([0,T ];Lr′ ) (177)

12.8. Homogenous Case. In this section we prove estimate (172) and thus
complete the proof for the homogeneous Strichartz estimate of theorem 12.2. Using
the space-time Fourier transform, i.e. Fourier transform with respect to both t and
x,

ũ+(τ, ξ) = δ(τ − |ξ|)f̂+(ξ), ũ−(τ, ξ) = −δ(τ + |ξ|)f̂−(ξ), (178)

These are the components of ũ living on the forward null cone C+ = {τ = |ξ|} and
on the backward null cone C− = {τ = −|ξ|}, respectively. Thus we can interpret
(172) from the point of view of a restriction theorem for the half light cones C+ or
C−. We next show that it suffices to prove (172) for the case when f̂+ is included
in fixed dyadic piece. More precisely, dropping the label + it suffices to show that,

‖u+
k ‖LqtLrx . 2kγ‖f+

k ‖L2 (179)

where u+ =
∑
k∈2Z u

+
k , u+

k = Pku
+, f+

k = Pkf
+ and Pk the standard LP projec-

tions with respect to the spatial variables x.

To show that (180) implies (172) is highly nontrivial27 as we need to rely on corollary
9.15 adapted to the mixed norms LqtLrx with both q and r larger than 2. Thus,

‖u+‖2LqtLrx .
∑
k∈Z
‖u+

k ‖
2
LqtL

r
x
.
∑
k∈Z

22kγ‖f+
k ‖

2
L2 . ‖f+‖Ḣγ

27Without using corollary 9.15 we would only derive a weaker estimate with the Besov norm
Ḃγ2,1 replacing Ḣγ norm on the right.
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Finally we observe, using a simple scaling argument, that (180) follows from,

‖u+
0 ‖LqtLrx . ‖f+

0 ‖L2 (180)

We now define the truncated cone operator C to be the operator

Cf(t, x) =
∫
eit|ξ|eix·ξχ(ξ)f̂(ξ)dξ, (181)

where χ is a cut-off function supported in 1.2 ≤ |ξ| ≤ 2, such as the one used in
the definition of the LP projections, see (66). The operator C can be viewed as the
adjoint of the restriction of the Fourier transform to a truncated cone,

Ĉ∗F (ξ) = χ(ξ) F̃ (|ξ|, ξ)
Estimate (180) is an immediate consequence of the following theorem.

Theorem 12.9. Let (q, r), (q1, r1), (q2, r2) be admissable pairs of exponents. Then
we have the estimates

‖Cf‖LqtLrx . ‖f‖L2 , (182)

and also

‖CC∗F‖Lq1t Lr1x . ‖F‖Lq′2t L
r′2
x

. (183)

Composing C with C∗ we derive,

CC∗F (t, x) '
∫
ei[(t−s)|ξ|+(x−y)·ξ]|β(ξ)|2F (s, y)dsdydξ,

which can be rewritten as the convolution

CC∗F (t, ·) =
∫
U(t− s)F (s, ·)ds, (184)

with the evolution operator

U(t)f(x) =
∫
ei(t|ξ|+x·ξ)|χ(ξ)|2f̂(ξ)dξ. (185)

(Observe that U is essentially the same operator as C !) By the TT ∗ principle, we
know that the estimate (182) is equivalent to the following estimate for CC∗,

‖CC∗F‖LqtLrx . ‖F‖Lq′t Lr′x . (186)

which is also equivalent to the polarized form (183). Thus, to prove the theorem it
suffices to prove (186). As in the second proof of the restriction theorem presented
in the previous section to prove (186) we need to prove the following properties for
the evolution operators U(t).

Proposition 12.10. Let χ(ξ) be a fixed C∞0 (Rn) function supported in 1/2 ≤ |ξ| ≤
2 and,

U(t)f(x) =
∫
ei(t|ξ|+x·ξ)χ(ξ)f̂(ξ)dξ. (187)

Then,

‖U(t)f‖L2 . C‖f‖L2 (188)

‖U(t)f‖L∞ . (1 + |t|)−
n−1

2 ‖f‖L1 (189)
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from which, interpolating, for all 2 ≤ r ≤ ∞,

‖U(t)f‖Lr . (1 + |t|)−
n−1

2 (1− 2
r )‖f‖Lr′ (190)

Moreover, if in addition, χ = χµ is supported in a cube of size µ, then (189) can
be strengthened to

‖U(t)f‖L∞ . µ(1 + |t|)−
n−1

2 ‖f‖L1 (191)

Proof We prove directly the stronger version (191). We only need to check (??).
We write,

U(t)f = Kt ∗ f, Kt(x) =
∫
ei(x·ξ+t|ξ|)χµ(ξ)dξ

It suffices to show that,

|Kt(x)| . µ 1
(1 + |t|+ |x|)

In the regions |x| < |t|/2 and |x| ≥ 2|t| we integrate by parts k times with respect to

the operator L = −i
∑
j

xj+t
ξj
|ξ

|x+t ξ|ξ| |2
∂ξj , such that L(ei(x·ξ+t|ξ|)) = ei(x·ξ+t|ξ|). We also

make use of the straightforward estimate, |∂αξ χµ(ξ)| . µ−|α| to derive, |Kt(x)| .
(1 + |t|)−kµn−k or, choosing k = n−1

2 ,

|Kt(x)| . (1 + |t|)−
n−1

2 µ
n+1

2 .

On the other hand, in the region |t| ≈ |x|, we write, with β(|ξ|) vanishing on the
support of hµ,

Kt(x) =
∫ 1+2µ

1−2µ

eitλχ(λ)
∫
|ξ|=λ

eix·ξhµ(ξ)dσ(ξ)

We now need to rely on the following estimate,

sup
1/2≤λ≤2

|
∫
|ξ|=λ

eix·ξh(ξ)dσ(ξ)| . (1 + |x|)−
n−1

2 (192)

which follows easily from the decay of the Fourier transform of measures supported
on Sn−1 discussed in the previous section, see lemma 11.8. Therefore, for |t| ∼ |x|,

|Kt(x)| . µ(1 + |x|)−
n−1

2 . µ(1 + |t|)−
n−1

2

as desired.

We are now ready to prove (186) by following the same argument as in the second
proof of the restriction theorem. Indeed, in view of (184) and (190) we derive,

‖CC∗F‖Lrx(t) .
∫ +∞

−∞
(1 + |t− s|)−γ(r)‖F (s)‖Lr′x ds (193)

where γ(r) = −n−1
2 (1 − 2

r ). We are now precisely in the same situation as in the
second proof of the restriction theorem, see the argument following formula (151).
If 0 < γ(r) < 1 we can apply the Hardy-Littlewood-Sobolev inequality to obtain

‖CC∗F‖LqtLrx . ‖F‖Lq′t Lr′x ,
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when −γ(r) + 1 + 1/q = 1/q′, hence γ(r) = 2/q. This proves (180), and thus
theorem 12.9, in the case 0 < γ(r) = 2/q < 1. If q = 2 and γ(r) > 1 we have from
(193),

‖CC∗F‖L2
tL

r
x
. ‖F‖L2

tL
r′
x
,

by an application of the standard Hausdorff-Young inequality.

Finally, if 2/q < 1 and γ(r) > 2/q the result follows from the case γ(r) = 2/q using
Sobolev inequalities. Due to the fact that one of the principal curvatures of the
light cone vanishes, the Strichartz estimates for the wave equation is not as strong
as it could be. Using the improved dispersive estimate (191) we can however derive
a stronger statement ,which is very useful in applications.

Proposition 12.11. Let 0 < µ < 1. Let f be an L2 function with Fourier transform
supported in a cube of size µ at a distance 1 from the origin. Let (q, r) be an
admissable pair of exponents for the Strichartz estimates. Then

‖Cf‖LqtLrx . µ
( 1

2−
1
r ) ‖f‖L2 . (194)

The proof is based on the improved dispersive estimate (191). Interpolating it with
(188) we derive,

‖U(t)f‖Lr . µ1− 2
r (1 + |t|)−

n−1
2 (1− 2

r )‖f‖Lr′
The proof the continues exactly as above to derive,

‖CC∗F‖LqtLrx . µ
1− 2

r ‖F‖
Lq
′
t L

r′
x
,

and therefore, by the TT ∗ argument, ‖Cf‖LqtLrx . µ
( 1

2−
1
r ) ‖f‖L2 , as desired. As a

straightforward corollary to the proposition we derive:

Theorem 12.12. Consider a general solution of �u = 0 with data f, g supported,
in Fourier space, on a cube of size µ situated in a dyadic shell of size λ, with λ
much larger than µ, say λ ≥ 8µ. Then,

‖u‖LqtLrx . µ
1− 2

r

(
‖f‖Ḣγ + ‖f‖Ḣγ−1

)
(195)

Proof The proof follows easily by a scaling argument from the proposition above.

Finally we state below another result, which follows easily from the decay estimate
(189).

Theorem 12.13. Let u be a free wave, i.e. solution of the homogeneous equation
�u = 0, with initial data (f, g). Then,

‖u(t)‖L∞ . |t|−
n−1

2

∑
λ∈2Z

(
λ
n+1

2 ‖fλ‖L1 + λ
n−1

2 ‖gλ‖L1

)
= |t|−

n−1
2

(
‖f‖

Ḃ
n+1/2
1,1

+ ‖g‖
Ḃ
n−1/2
1,1

)
.

The uniform decay rate |t|−n−1
2 , for large t, plays a very important role in the study

of nonlinear perturbations of the standard wave equation.
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12.14. Inhomogeneous Strichartz estimates. We have already reduced
the inhomogeneous Strichartz estimate (164) of theorem 12.2 to estimate (177).
Proceeding as in the case of the homogeneous estimates we can now reduce (177)
to the case when the spatial Fourier transform of F is supported in the unit dyadic
ring 1/2 ≤ |ξ| ≤ 2. Moreover, decomposing u as before in the ± parts it suffices to
prove the estimates separately for u+ and u−. Therefore we need to prove,

‖u+|Lq([0,T ];Lr) + ‖D−1∂tu
+‖Lq([0,T ];Lr) . ‖F‖Lq′ ([0,T ];Lr′ ) (196)

We have,

u+(t, ·) =
∫ t

0

U(t− s)F (s, ·)ds

D−1∂tu+(t, ·) =
∫ t

0

∂tD
−1U(t− s)F (s, ·)ds

Since, in view of the dyadic restriction, ∂tD−1U(t) ∼ U(t) it suffices to prove
the estimate for ‖u+|Lq([0,T ];Lr). Clearly, u+ differs from CC∗F in (184) only by
the restriction of the interval of integration to [0, t]. In view of this fact we write
u+ = (CC∗)RF . We are thus led to the following theorem, from which (196) and
thus (164).

Theorem 12.15. Let U(t) defined as in (187) and let

(CC∗)RF (t, ·) =
∫ t

0

U(t− s)F (s, ·)ds

Then, for all admissible pairs (q1, r1), (q2, r2),

‖(CC∗)RF‖Lq1t Lr1x ([0,T ]×Rn) . ‖F‖
L
q′2
t L

r′2
x ([0,T ]×Rn)

(197)

Proof The proof is straightforward in the case (q1, r1) = (q2, r2) = (q, r). Indeed
in this case we can simply repeat the proof of estimate (186) and just take into
account the limits of integration. We have also treated the case when q1 = ∞,
r1 = 2, see the subsection on energy estimates. The other non-diagonal case cases
are a little more difficult and will be treated in the more general abstract setting
discuss later in this section. The proof we have given covers however the most
interesting case of estimate (164). We have thus given complete proofs for the first
two parts of theorem 12.2

12.16. Necessity of the admissibility conditions. To understand what
is the optimal range of exponents q and r we consider the analog of the Knapp
counterexample in the context of the truncated cone operator C defined in (181).

For some small δ > 0, let

D = {ξ ∈ Rn : |ξ1 − 1| < 1/2, |ξ′| < δ} ,

and consider f = χD. We have

Cf(t, x) = ei(t+x1)

∫
D

ei[t(|ξ|−ξ1)+(t+x1)(ξ1−1)+x′·ξ′]dξ,
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and observe that

|ξ| − ξ1 =
|ξ′|2

|ξ|+ ξ1
. δ2.

We can then choose a region of space-time R defined by

|t| . δ−2, |t+ x1| . 1, |x′| . δ−1,

such that, when (t, x) ∈ R and ξ ∈ D, then the oscillatory factor inside the last
integral can be treated as a constant. Hence, |Cf(t, x)| & |D| for (t, x) ∈ R and we
have

‖Cf‖LqtLrx
‖f‖L2

&
|D| ‖χR‖LqtLrx
|D|1/2

∼ δ
n−1

2 −
2
q−

n−1
r .

In the limit δ → 0, an estimate of the form (186) will necessarily imply that q and
r satisfy the condition

2
q
≤ (n− 1)

(
1
2
− 1
r

)
. (198)

The other restriction on the range for q, i.e. q ≥ 2 is a consequence of the invari-
ance of the operator CC∗ under time translations. Indeed for translation invariant
operators we have the following general result due to Hörmander, [7].

Proposition 12.17. Let T : Lp(Rn) → Lq(Rn) be a (non trivial) linear operator
which commutes with translations, in the sense that (Tf) ◦ τy = T (f ◦ τy), where
τy(x) = x + y, for x, y ∈ Rn. If T is bounded from Lp to Lq then we necessarily
have q ≥ p.

The proof is based on the following lemma.

Lemma 12.18. Let f ∈ Lp(Rn), then

lim
|y|→∞

‖f + f ◦ τy‖Lp = 21/p ‖f‖Lp .

Proof For every R > 0 consider the decomposition f = gR + hR, where gR(x) =
f(x) if |x| < R and 0 if |x| ≥ R, and hR(x) = 0 if |x| < R and f(x) if |x| ≥ R.
Then

lim
R→∞

‖gR‖Lp = ‖f‖Lp , lim
R→∞

‖hR‖Lp = 0.

For R = |y|/2 we have

f + f ◦ τy = gR + gR ◦ τy + hR + hR ◦ τy.
The functions gR and gR ◦ τy have disjoint supports, so that

‖gR + gR ◦ τy‖pLp = ‖gR‖pLp + ‖gR ◦ τy‖pLp = 2 ‖gR‖pLp ,
while

lim
|y|→∞

‖hR + hR ◦ τy‖Lp ≤ lim
|y|→∞

2 ‖hR‖Lp = 0,

hence
lim
|y|→∞

‖f + f ◦ τy‖Lp = lim
|y|→∞

21/p ‖gR‖Lp = 21/p ‖f‖Lp .
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Proof [Proof of Proposition 12.17] Let C > 0 be the optimal constant for the
estimate

‖Tf‖Lq ≤ C ‖f‖Lp , ∀f ∈ Lp.
Then by linearity and the translation invariance,

‖Tf + (Tf) ◦ τy‖Lq ≤ C ‖f + f ◦ τy‖Lp .
When |y| → ∞, applying the lemma we obtain

21/q ‖Tf‖Lq ≤ C21/p ‖f‖Lp , ∀f ∈ Lp.

The optimality of C implies that 2
1
p−

1
q ≥ 1, hence q ≥ p.

The proposition generalizes easily to vector valued Lp spaces and if we consider
CC∗ as an operator from Lq

′
(R;Lr

′

x ) to Lq(R;Lrx), then we must have q ≥ q′,
which is the condition q ≥ 2.

12.19. A general, abstract framework. It turns out that the method of
proving Strichartz estimates described above applies to many other equations, such
as Schrödinger, KdV etc. It thus pays to have a general framework which applies
to all these cases.

Let (X,dµ) be a measure space and H a Hilbert space. Consider a family (U(t))t∈R
of operators U(t) : H → L2(X), which describes the evolution of some system with
data in H. We assume that this evolution satisfies the following two properties:

• for all t ∈ R and f ∈ H we have the energy estimate:

‖U(t)f‖L2(X) . ‖f‖H ; (199)

• for all t 6= s and g ∈ L1(X) we have the dispersive inequality:

‖U(t)U∗(s)g‖L∞(X) . |t− s|
−γ0 ‖g‖L1(X) , (200)

for some γ0 > 0.

Interpolating between (199) and (200) we obtain the estimate

‖U(t)U∗(s)g‖Lr(X) . |t− s|
−γ(r) ‖g‖Lr′ (X) , (201)

for r ≥ 2, where

γ(r) = γ0

(
1− 2

r

)
.

Theorem 12.20. If the evolution operator U(t) satisfies (199) and (200), then the
estimates

‖U(t)f‖LqtLrX . ‖f‖H , (202)

hold for all q, r ≥ 2 verifing:
2
q

= γ(r), (q, r, γ0) 6= (2,∞, 1). (203)

Remark 12.21. This form of the Strichartz inequalities applies to linear dispersive
equations such as Schrödinger.
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Proof If we consider the operator T : H → LqtL
r
X defined by Tf(t, x) = (U(t)f)(x)

then it is easy to verify that the dual of T is the operator T ∗ : Lq
′

t L
r′

X → H given
by T ∗F =

∫
U∗(s)F (s, ·)ds. By the TT ∗ method, (202) is then equivalent to the

estimate ∥∥∥∥∫ U(t)U∗(s)F (s)ds
∥∥∥∥
LqtL

r
X

. ‖F‖
Lq
′
t L

r′
X

. (204)

By duality and symmetry considerations, this is in turn equivalent to

|B(F,G)| . ‖F‖
Lq
′
t L

r′
X

‖G‖
Lq
′
t L

r′
X

, (205)

where B(F,G) is the bilinear form

B(F,G) =
∫∫

s<t

〈U∗(t)F (t), U∗(s)G(s)〉dtds. (206)

From the bilinear version of (201) we have that

|B(F,G)| .
∫∫ ‖F (t)‖Lr′ ‖G(s)‖Lr′

|t− s|γ(r)
dsdt. (207)

If γ(r) < 1, we can apply the Hardy-Littlewood-Sobolev inequality and obtain
(205). This concludes the proof for the cases q = 2/γ(r) > 2.

The endpoint case, corresponding to γ(r) = 2/q = 1, is allowed when r < ∞. Its
proof will be described in the next section.

Remark 12.22. If we strengthen the dispersive condition (200) to

‖U(t)U∗(s)g‖L∞(X) . (1 + |t− s|)−γ0 ‖g‖L1(X) , (208)

then (207) can be improved to

|B(F,G)| .
∫∫ ‖F (t)‖Lr′ ‖G(s)‖Lr′

(1 + |t− s|)γ(r)
dsdt. (209)

Now we can obtain (205) from Young’s inequality when 2/q = 1/p and (1 +
|t|)−γ(r) ∈ Lp(R), i.e. γ(r)p > 1. Hence, (208) allows us to extend the Strichartz
estimates (202) in Theorem 12.20 to the range

2
q
≤ γ(r), (q, r, γ0) 6= (2,∞, 1). (210)

This case applies to the linear wave equations.

Remark 12.23. We observe that there is a natural scaling associated to the objects
in this abstract formulation. More precisely, the estimates (202) in Theorem 12.20
are invariant under the change of scale defined by

U(t)← U(t/λ), U∗(s)← U∗(s/λ), dµ← λγ0dµ, 〈f, g〉H ← λγ0〈f, g〉H .
(211)

We can also consider the endpoint case.

q = 2, r =
2γ0

γ0 − 1
, γ0 > 1.
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This, in fact, is more difficult than the previous non-endpoint case, and requires
a two-parameter estimate which is better than the one-parameter family given by
the interpolation (201). This proof is presented in the previously mentioned paper
by Keel and Tao, “Endpoint Strichartz Estimates”. We omit it here.

12.24. Inhomogeneous estimates. Saying that an operator T maps the
Hilbert space H into LqtLrX , is equivalent to saying that its dual T ∗ maps Lq

′

t L
r′

X

into H, and is also equivalent to saying that the TT ∗ operator maps Lq
′

t L
r′

X into
LqtL

r
X . If the pair (q, r) is allowed to vary in a set E of admissable exponents, we

can view TT ∗ as a composition of two operators associated with different pairs of
exponents. It follows that TT ∗ actually satisfies a larger set of mapping properties,
since it maps Lq̃

′

t L
r̃′

X into LqtLrX , for any couple of pairs (q, r), (q̃, r̃) ∈ E.

The operator Tf(t) = U(t)f defined in the previous subsection can be viewed as the
solution of some homogenous, translation invariant, linear evolution equation. The
solution of the corresponding inhomogenoues problem, using Duhamel’s principle,
would be represented by the retarded operator

RF (t) =
∫
s<t

U(t)U∗(s)F (s)ds.

Observe that operator R looks very similar to the TT ∗ operator, which is given by

TT ∗F (t) =
∫
U(t)U∗(s)F (s)ds.

The restriction s < t in the definition of R, however, destroys the composition
structure of TT ∗. Fortunately, all the mapping properties of TT ∗, which we have
derived above, can be transfered to R.

Theorem 12.25. The operator R maps Lq̃
′

t L
r̃′

X into LqtLrX , for any couple of pairs
(q, r), (q̃, r̃) for which the Strichartz estimate 202 holds.

Proof First of all observe that in the proof of theorem 12.20 we have actually
proved the diagonal case (q, r) = (q̃, r̃). Indeed, the bilinear form defined in (206)
can be written as B(F,G) =

∫∫
R(F ) ·Gdxdt and (205) is the dual formulation of

the mapping property for R.

The non diagonal cases with 1
q + 1

q̃ < 1 follow from the mapping properties of TT ∗

by using a general argument about integral operators due to Christ and Kiselev
(see [] and []) which we summarize in Proposition 12.27 below.

It remains to consider the cases with q = q̃ = 2 and r 6= r̃, under the assumption
that the evolution U(t) satisfies the stronger dispersive inequality (208) with γ0 > 1.
Since, we have already proved the case r = r̃, by interpolation it is enough to
consider the extreme case: r = r∗ = 2γ0

γ0−1 , r̃ =∞, and show that

|B(F,G)| . ‖F‖
L2
tL

r′∗
X

‖G‖L2
tL

1
X
.
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This estimate follows by decomposing B(F,G) into dyadic pieces, B =
∑
λ∈2Z Bλ,

where

Bλ(F,G) =
∫∫

λ/2≤|t−s|≤2λ

〈U∗(t)F (t), U∗(s)G(s)〉dtds, (212)

The desired conclusion follows immediately from the lemma below.

Lemma 12.26. Let Bλ(F,G) be the bilinear form defined in (212). Then, there
exists an ε > 0 such that

|Bλ(F,G)| . min
{
λ, λ−1

}ε ‖F‖
L2
tL

r′∗
X

‖G‖L2
tL

1
X
.

Proof We may assume that F and G are supported on disjoint time intervals of
length O(λ) separated by a distance O(λ). Then Bλ(F,G) = 〈T ∗F, T ∗G〉H . We
use the energy estimate to bound ‖T ∗F‖H and the Strichartz estimate with q = 2
and r =∞ to bound ‖T ∗G‖H , so that

|Bλ(F,G)| . ‖F‖L1
tL

2
X
‖G‖L2

tL
1
X
.

We then apply Holder inequality and use the assumption on the support of F to
obtain

|Bλ(F,G)| . λ1/2 ‖F‖L2
tL

2
X
‖G‖L2

tL
1
X
.

We can also write Bλ(F,G) =
∫∫∫

F (t) ·U(t)U∗(s)G(s)dxdsdt and make use of the
dispersive inequality,

|Bλ(F,G)| . (1 + λ)−γ0 ‖F‖L1
tL

1
X
‖G‖L1

tL
1
X
.

Again, we apply Holder inequality and use the assumption on the support of F and
G to obtain

|Bλ(F,G)| . λ

(1 + λ)γ0
‖F‖L2

tL
1
X
‖G‖L2

tL
1
X
.

Hence, Bλ is bounded on L2
tL

2
X ×L2

tL
1
X with constant λ1/2 and on L2

tL
1
X ×L2

tL
1
X

with constant λ
(1+λ)γ0 . By standard interpolation of Lp spaces we obtain that Bλ

is bounded on L2
tL

r′∗
X × L2

tL
1
X with constant Cλ, where

Cλ = λθ/2
(

λ

(1 + λ)γ0

)1−θ

,
1
r′∗

=
θ

2
+

1− θ
1

, r∗ =
2γ0

γ0 − 1
.

Simplyfing the expression we find that

Cλ =
λ
γ0+1
2γ0

1 + λ
. min

{
λ, λ−1

}ε
,

with

ε = min
{
γ0 + 1

2γ0
, 1− γ0 + 1

2γ0

}
=
γ0 − 1

2γ0
=

1
r∗

> 0.
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12.26.1. Integral operators with restricted kernel. In this subsection we give a
self contained exposition of the results of Christ-Kisselev mentioned above. Con-
sider an integral operator with a measurable kernel K(s, t),

Tf(t) =
∫

R
K(s, t)f(s)ds,

and its restricted version associated with the kernel K(s, t)χ(s < t),

Rf(t) =
∫
s<t

K(s, t)f(s)ds.

If T maps Lp into Lq and 1 ≤ p < q ≤ ∞ then we have that R also maps Lp into
Lq. An equivalent formulation of this fact is given in the following proposition.

Proposition 12.27. Let K(s, t) be a measurable function on R ×R. Let B(f, g)
be the bilinear form with kernel K,

B(f, g) =
∫∫

K(s, t)f(s)g(t)dsdt,

and B̃(f, g) the bilinear form with kernel restricted to the region s < t,

B̃(f, g) =
∫∫

s<t

K(s, t)f(s)g(t)dsdt.

Let p, q ≥ 1, with the condition
1
p

+
1
q
> 1. (213)

If B is bounded on Lp × Lq,
|B(f, g)| . ‖f‖Lp ‖g‖Lq ,

then B̃ is also bounded on Lp × Lq,∣∣∣B̃(f, g)
∣∣∣ . ‖f‖Lp ‖g‖Lq .

Remark 12.28. There are cases for which equality in condition (213) is not allowed.
Consider for the example the case of the Hilbert transform, which corresponds to
the kernel K(s, t) = 1

s−t , with p = q = 2.

Proof Let f ∈ Lp and g ∈ Lq with ‖f‖Lp = ‖g‖Lq = 1.

Define F (t) =
∫
s<t
|f(s)|pds. F is a continuous non-decreasing function which

maps [−∞,+∞] onto [0, 1]. In particular, the inverse image of an interval of the
type I = [a, b] ⊂ [0, 1] will be an interval of the same type, F−1(I) = [A,B], with
F (A) = a, F (B) = b, and

∫ B
A
|f(s)|pds = F (B)− F (A) = b− a. Hence,

‖f‖Lp(F−1(I)) = |I|1/p. (214)

Consider now a Whitney decomposition of the set Ω =
{

(x, y) ∈ R2 : x < y
}

into
disjoint dyadic squares, as in Lemma 9.7, Ω = ∪QQ, where each square Q = I × J
has the property

dist (I, J) ≈ |I| = |J | = λ, (215)



13. L2 BILINEAR ESTIMATES 111

for some dyadic value of λ. If we look only at those squares needed to cover the
triangle Ω ∩ [0, 1]2, then λ ≤ 1/2.

Observe that s < t implies that either F (s) < F (t) or f ≡ 0 almost everywhere on
the interval [s, t]. Hence, we can write

B̃(f, g) =
∫∫

F (s)<F (t)

K(s, t)f(s)g(t)dsdt =
∑
Q

B(χF−1(I)f, χF−1(J)g).

Using the boundedness of B on Lp × Lq we obtain∣∣∣B̃(f, g)
∣∣∣ .∑

Q

‖f‖Lp(F−1(I)) ‖g‖Lq(F−1(J)) .

Now we use (214), (215) and the fact that, for each given dyadic interval J , the
number of intervals I for which I × J is one of the squares in the decomposition of
Ω is bounded by a universal constant. Hence,∣∣∣B̃(f, g)

∣∣∣ . ∑
λ≤1/2

λ
1
p

∑
|J|=λ

‖g‖Lq(F−1(J)) .

Next, we apply Hölder’s inequality to the summation over the dyadic intervals J of
length λ and since there are λ−1 of them in [0, 1] we have∣∣∣B̃(f, g)

∣∣∣ . ∑
λ≤1/2

λ
1
pλ
− 1
q′ ‖g‖Lq =

∑
λ≤1/2

λ
1
p+ 1

q−1 . 1.

13. L2 bilinear estimates

13.1. Bilinear proofs of some Strichartz estimates. Consider the ho-
mogeneous wave equation �u = 0 in R1+3. The Strichartz estimate (163) with
q = r = 4 and γ = 1/2. Takes the form,

‖u‖L4(R1+3) . ‖f‖Ḣ1/2 + ‖g‖Ḣ−1/2

Writing u = u+ + u− it suffices to prove,

‖u+‖L4(R1+3) . ‖f+‖Ḣ1/2 (216)

where

u+(t, x) =
∫
eix·ξ+t|ξ|f̂(ξ)dξ

Clearly,

‖u+‖2L4(R1+3) = ‖u+ · u+‖L2 = ‖ũ+ ∗ ũ+‖L2

Now, recalling (178), and dropping the index +,

ũ ∗ ũ(τ, ξ) =
∫ ∫

δ(τ − λ− |ξ − η|)f̂(ξ − η)δ(λ− |η|)f̂(η)dλdη

=
∫
δ((τ − |η| − |ξ − η|)f̂(η)f̂(ξ − η)dη

Clearly, (216) follows from the following:
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Theorem 13.2. The bilinear operator,

B(F,G) =
∫
δ(τ − |η| − |ξ − η|) F (ξ − η)

|ξ − η|1/2
G(η)
|η|1/2

dη.

verifies the estimate,

‖B(F,G)‖L2(R1+3) . ‖F‖L2(R3)‖G‖L2(R1+3) (217)

Proof By Cauchy-Schwartz,

|B(F,G)(τ, ξ)|2 . J(τ, ξ)
∫
δ(τ − |η| − |ξ − η|)|F (ξ − η)|2|G(η)|2dη

J(τ, ξ) =
∫
δ(τ − |η| − |ξ − η|) 1

|ξ − η|
1
|η|
dη

It suffices to show that J is uniformly bounded. Indeed, if that is the case,

‖B(F,G)‖L2(R1+3) . sup
τ,ξ

J(τ, ξ)
∫ ∫

δ(τ − |η| − |ξ − η|)F (ξ − η)|2|G(η)|2dηdτdξ

. sup
τ,ξ

J(τ, ξ)‖F‖2L2‖G‖2L2

Therefore the bilinear estimate is an immediate consequence of the uniform bound-
edness of J . This follows from the following more general lemma below.

Lemma 13.3. Let F be an arbitrary function of two variables and JF the integral

J∓F (τ, ξ) =
∫

Rn
δ(τ − |η| ∓ |ξ − η|)F (|η|, |ξ − η|)

Then,

J−F (τ, ξ) = (τ2 − |ξ|2)
n−3

2

∫ 1

−1

F
( τ + s|ξ|

2
,
τ + s|ξ|

2
)

(τ2 − x2|ξ|2)(1− |x|2)
n−3

2 dx,

(218)

J+
F (τ, ξ) = (τ2 − |ξ|2)

n−3
2

∫ ∞
1

F
( τ + s|ξ|

2
,
τ + s|ξ|

2
)
(τ2 − x2|ξ|2)(1− |x|2)

n−3
2 dx

(219)

Proof : Observe that in the case ∓ = − the measure δ(τ−|η|−|ξ−η|) is supported
on the ellipsoid of revolution with foci at 0 and ξ, E(τ, ξ) = {η ∈ Rn : |η|+ |ξ − η| = τ} ,.
In this case |ξ| ≤ τ . In the ∓ = + the measure δ(τ−|η|+ |ξ−η|) is supported in the
hyperboloid of revolution with foci at 0 and ξ,H(τ, ξ) = {η ∈ Rn : |η| − |ξ − η| = τ} ,
which is an unbounded hypersurface with infinite volume. In this case |ξ|2 ≤ τ2.
In the sense of distributions, we have the identity

δ(τ − |η| ∓ |ξ − η|) = δ
( (τ − |η|)2 − |ξ − η|2

2(τ − |η|)
)

= 2(τ − |η|)δ
(
(τ − |η|)2 − |ξ − η|2

)
= 2(τ − |η|)δ

(
τ2 − |ξ|2 − 2τλ+ 2λξ cos θ)

= 2(τ − |η|)δ
(
τ2 − |ξ|2 − 2τλ+ 2a|ξ|)
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with a the cosine of the angle between η and ξ. Thus, for fixed τ and ξ we must
have, on the support of the measure,

a = −τ
2 − |ξ|2 − 2τλ

2|ξ|λ
(220)

Observe that in the ellipsoidal case a can take any values in the interval [−1, 1] and
thus, since λ = τ2−|ξ|2

2(τ−a|ξ|) , we have τ−|ξ|
2 ≤ λ ≤ τ+|ξ|

2 . On the other hand, in the
hyperboloidal case when |ξ|2 > τ2, we must also have the restriction,

τ

|ξ|
≤ a.

and thus, λ = −τ2+|ξ|2
2(−τ+a|ξ|) ≥

τ+|ξ
2 .

Thus, since dη = λn−1dλdSω = (1− a2)
n−3

2 λn−1dλdSω′ ,

J−F =
1
|ξ|

∫ τ+|ξ|
2

τ−|ξ|
2

F (λ, τ − λ)(τ − λ)λn−2
[
1−

(τ2 − |ξ|2 − 2τλ
2|ξ|λ

)]n−3
2 dλ

=
(τ2 − |ξ|2)

n−3
2

|ξ|n−2

∫ τ+|ξ|
2

τ−|ξ|
2

F (λ, τ − λ)(τ − λ)λ
[(τ + |ξ|

2
− λ

)(
λ− τ − |ξ|

2
)]n−3

2

At last we perform the change of variables x = 2λ−τ
|ξ| to derive the desired formula

(218). The proof for (219) follows in the same manner.

13.4. Improved Bilinear Strichartz. Consider two solutions of the homo-
geneous wave equations, �u = �v = 0. For simplicity, and without loss of general-
ity, we assume that u, v verify the reduced initial data at t = 0,

u(0, x) = f(x), v(0, x) = g(x), ∂tu(0, x) = ∂tv(0, x) = 0.

We consider estimates of the form,

‖D−b(uv)‖
L
q/2
t L

r/2
x

. ‖f‖Ḣa‖g‖Ḣa

with (q, r) an acceptable pair. By dimensional analysis and recalling the exponent
γ = n(( 1

2 −
1
r ))− 1

q in (163), we must have,

2a = −b+ 2
(
n(

1
2
− 1
r

)− 1
q

)
= −b+ 2γ (221)

We decompose the product u · v by the trichotomy formula,

u · v =
∑
µ<λ

uµvλ +
∑
µ<λ

vµuλ +
∑
µ≤λ

Pµ(uλvλ)

= (u · v)LH + (u · v)HL + (u · v)HH
Here µ, λ ∈ 2Z, uλ = Pλu and Pλ the usual LP projections. Now,

‖D−b(uv)LH‖Lq/2t L
r/2
x

≤
∑
µ≤λ

λ−b‖uµvλ‖Lq/2t L
r/2
x
≤
∑
µ≤λ

λ−b‖uµ‖LqtLrx‖vλ‖LqtLrx
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in view of the Strichartz estimates of the previous section

‖uµ‖LqtLrx . µ
(γ−a)‖fµ‖Ḣa = µb/2‖fµ‖Ḣa

‖vλ‖LqtLrx . λ
(γ−a)‖gk‖Ḣa = λb/2‖gλ‖Ḣα

and therefore, for b > 0,

‖D−b(uv)LH‖Lq/2t L
r/2
x

.
∑
µ≤λ

(µ
λ

)b‖fµ‖Ḣa‖gλ‖Ḣa
. ‖f‖Ḣa‖g‖Ḣa

By symmetry,

‖D−b(uv)LH‖Lq/2t L
r/2
x

. ‖f‖Ḣa‖g‖Ḣa

It thus only remains to estimate the high-high term ‖(u · v)HH‖Lq/2t L
r/2
x

. This
requires a more subtle argument based on theorem ??. We write,

‖D−b(u · v)HH‖Lq/2t L
r/2
x
.
∑
µ≤λ

µ−b‖Pµ(uλvλ)‖
L
q/2
t L

r/2
x

If we use the standard Strichartz estimate, i.e.,

‖Pµ(uλvλ)‖
L
q/2
t L

r/2
x

. ‖uλ‖LqtLrx‖vλ‖LqtLrxλ
2(γ−a)‖f‖Ḣa‖g‖Ḣa

= λb‖f‖Ḣa‖g‖Ḣa (222)

we would derive,

‖D−b(u · v)HH‖Lq/2t L
r/2
x
.
∑
µ≤λ

λbµ−b‖f‖Ḣa‖g‖Ḣa

which diverges. We need to replace (222) by a stronger estimate which takes into
account the presence of Pµ in front of uλvλ. To achieve this, we need first to exploit
some orthogonality properties. We decompose the the data fλ, gλ, in Fourier space,
into pieces supported on cubes of size µ, fλ =

∑
Q fQ, gλ =

∑
Q gQ and denote by

uQ, vQ the corresponding solutions. Clearly the decomposition commutes with the
wave operator �. Thus, uλ ∼

∑
Q uQ, vλ ∼

∑
Q vQ and

Pµ(uλ · vλ) ∼
∑
Q1,Q2

Pµ
(
uQ1vQ2

)
Observe that Pµ(uQ1uQ2) 6= 0 only if Q1 + Q2 intersects the region of frequencies
of size µ where Pµ is supported. For each cube Q1, of size µ, there are only a finite
number (which depends only on n) of cubes Q2 for which this happens. Morally,
by enlarging the cubes if necessary we may assume that Q2 = −Q1 and thus,

Pµ(uλ · vλ) ∼
∑
Q

uQv−Q.

Hence,

‖Pµ(uλvλ)‖
L
q/2
t L

r/2
x
.
∑
Q

‖uQv−Q‖LqtLrx .
∑
Q

‖uQ‖LqtLrx ‖v−Q‖LqtLrx .

We are now in a position to apply theorem 12.12. Thus,

‖uQ‖LqtLrx .
(µ
λ

) 1
2−

1
r ‖fQ‖Ḣγ
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and similarly for v−Q. Hence,

‖Pµ(uλvλ)‖
L
q/2
t L

r/2
x

.
(µ
λ

)1− 2
r
∑
Q

‖fQ‖Ḣγ‖gQ‖Ḣγ

.
(µ
λ

)1− 2
r ‖fλ‖Ḣγ‖gλ‖Ḣγ

.
(µ
λ

)1− 2
r λ2γ−2a‖fλ‖Ḣa‖gλ‖Ḣa

.
(µ
λ

)1− 2
r λb‖fλ‖Ḣa‖gλ‖Ḣa

and, consequently,

‖D−b(u · v)HH‖Lq/2t L
r/2
x

.
∑
µ<λ

(µ
λ

)1− 2
r−b‖fλ‖Ḣa‖gλ‖Ḣa

. ‖f‖Ḣa‖g‖Ḣa
provided that b < 1 − 2

r . We have just proved the following bilinear estimate, see
[13].

Theorem 13.5. The following estimate 28 holds for solutions �u = �v = 0, any
admissible pair (q, r) and any 0 ≤ b < 1− 2

r ,

‖D−b(u · v)
L
q/2
t L

r/2
x

. ‖u[0]‖Ḣa‖v[0]‖Ḣa (223)

provided that the dimensional condition,

a = − b
2

+ γ, γ = n(
1
2
− 1
r

)− 1
q

(224)

13.6. Bilinear estimates for null forms. In this subsection we discuss the
simplest bilinear estimates for null quadratic forms, see [8], [11], [12] and [2].

Definition 13.7. Let u, v be two smooth solutions of � = �v = 0 on Rn+1. The
standard null quadratic forms are Q0(u, v) = −∂tu ∂tv +

∑n
i=1 ∂iu∂iv, as well as

Qij(u, v) = ∂iu∂jv − ∂iv∂ju, and Q0i(u, v) = ∂iu∂tv − ∂iv∂tu for i, j = 1, . . . , n.

Theorem 13.8. For any null form Q and any solutions to � = �v = 0 on Rn+1,
n ≥ 2, we have,

‖Q(u, v)‖L2(Rn+1) . ‖u[0]‖Ḣ1(Rn)‖v[0]‖
H
n+1

2 (Rn)
(225)

Remark 13.9. Without loss of generality, it suffices to consider the reduced initial
value problems

u(0, x) = f(x), v(0, x) = g(x), ∂tu(0, x) = ∂tv(0, x) = 0 (226)

In what follows we show how to deduce the estimate (13.8) from a more general
form of bilinear estimates presented in the next section.

Definition 13.10. Let Dα, Dα
+ and Dα

− be the operators in Rn+1 defined by the
multipliers with symbols, respectively

|ξ|α , (|τ |+ |ξ|)α,
∣∣|τ | − |ξ|∣∣α.

28Here ‖u[0]‖Ḣa = ‖u(0)‖Ḣa + ‖∂tu(0)‖Ḣa
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Observe that we can write, for any smooth functions u, v,

2Q0(u, v) = �(uv)−�uv − u�u

Thus, if �u = �v = 0, using Plancherel,

‖Q0(u, v)‖L2(Rn+1) ≤ 1
2
‖�(uv)‖L2(Rn+1) =

1
2

(2π)−n‖(τ2 − |ξ|2)ũv‖L2(Rn+1)

. ‖D+D−(uv)‖L2(Rn+1)

Therefore,

‖Q0(u, v)‖L2(Rn+1) ≤ ‖D+D−(uv)‖L2(Rn+1) (227)

Thus, in the case of the null form Q0, theorem 13.8 reduces to,

‖D+D−(uv)‖L2(Rn+1) . ‖u[0]‖Ḣ1(Rn)‖v[0]‖
H
n+1

2 (Rn)
(228)

which is a special case of theorem 13.15.

Below we show that similar estimates hold true for the other null forms, Qij , Q0i.

Remark 13.11. Given a solution u of �u = 0 with initial data u(0, x) = f(x),
∂tu(0, x) = 0 we denote by u′ the solution of the same equation with data u′(0, x) =
f ′(x), ∂tu′(0, x) = 0 where f ′ = F−1(|f̂ |). Observe, of course, that ‖f ′‖Ḣa =
‖‖f‖Ḣa and thus, from the point of view of the L2 type estimates we are considering
u and u′ are indistinguishable.

Proposition 13.12. Let u, v be smooth solutions of the homogeneous wave equation
with initial . The following estimates hold true:

‖Qij(u, v)‖L2(Rn+1) . ‖D1/2D
1/2
− (D1/2u′ ·D1/2v′)‖L2(Rn+1) (229)

‖Q0i(u, v)‖L2(Rn+1) . ‖D1/2
+ D

1/2
− (D1/2u′ ·D1/2v′)‖L2(Rn+1) (230)

Proof : We first decompose, as before, u = u+ + u−, v = v+ + v− We write, in
Fourier variables,

˜Qij(u+, v±)(τ, ξ) =
∫
qij(η, ξ − η)δ(τ − |η| ± |ξ − η|)f̂(η)ĝ(ξ − η)dη

where qij(η, ξ−η) = ηi(ξ−η)j−ηj(ξ−η)i = (ξ∧η)ij We now rely on the following
simple lemma.

Lemma 13.13. The following inequalities hold true,

|ξ ∧ η| . |ξ|1/2|η|1/2|ξ + η|1/2(|ξ|+ |η| − |ξ + η|)1/2 (231)

|ξ ∧ η| . |ξ|1/2|η|1/2|ξ + η|1/2(|ξ + η| −
∣∣|ξ| − |η|∣∣)1/2 (232)

We have indeed,

4|ξ ∧ η|2 = 4(|ξ||η| − ξ · η)(|ξ||η|+ ξ · η)
= ((|ξ|+ |η| − |ξ + η|)((|ξ|+ |η|+ |ξ + η|)

(|ξ + η| −
∣∣|ξ| − |η|∣∣)(|ξ + η|+

∣∣|ξ| − |η|∣∣)
from which the lemma immediately follows.
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Therefore, in both cases, | ˜Qij(u+, v±)(τ, ξ)| can be bounded by the expression,∫
|qij(η, ξ − η)| δ(τ − |η| ± |ξ − η|)|f̂(η)| |ĝ(ξ − η)|dη

.
∣∣|τ | − |ξ|∣∣1/2|ξ|1/2 ∫ δ(τ − |η| ± |ξ − η|) |η|1/2|ξ − η|1/2|f̂(η)| |ĝ(η)|dη

= D1/2D
1/2
− (D1/2u′D1/2v′)

as desired.

According to proposition 13.12, theorem 13.8 reduces, for Q = Qij , resp. Q = Q0i,
to the statements,

‖D1/2D
1/2
− (u · v)‖L2(Rn+1) . ‖u[0]‖Ḣ1/2 · ‖u[0]‖Ḣn/2

‖D1/2
+ D

1/2
− (u · v)‖L2(Rn+1) . ‖u[0]‖Ḣ1/2 · ‖u[0]‖Ḣn/2

which are particular cases of theorem 13.15.

13.14. General Bilinear Estimates. In this section we investigate the space-
time regularity properties of products of solutions to the homogeneous wave equa-
tion. Let Dα, Dα

+ and Dα
− be the multipliers with symbols

|ξ|α , (|τ |+ |ξ|)α,
∣∣|τ | − |ξ|∣∣α

respectively. We are interested in blinear estimates of the form∥∥∥Dβ0D
β+
+ D

β−
− (uv)

∥∥∥
L2(R1+n)

. ‖Dα1u[0]‖L2 ‖Dα2v[0]‖L2 (233)

*** discuss history of this type of estimates with references

Theorem 13.15. Estimate (233) holds true, for arbitrary solutions of the homoge-
neous equations �u = �v = 0, in any space dimensions n ≥ 2. if and only if the
exponents α1, α2, β0, β+, β− satisfy the following conditions:

β0 + β+ + β− = α1 + α2 −
n− 1

2
, (234)

β− ≥ −
n− 3

4
, (235)

β0 > −
n− 1

2
, (236)

αi ≤ β− +
n− 1

2
, i = 1, 2, (237)

α1 + α2 ≥
1
2
, (238)

(αi, β−) 6=
(
n+ 1

4
,−n− 3

4

)
, i = 1, 2, (239)

(α1 + α2, β−) 6=
(

1
2
,−n− 3

4

)
. (240)
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*** discuss special cases

As before, it suffices to prove the theorem for the case when u, v verify the standard
initial value problem

u(0, x) = f(x), v(0, x) = g(x), ∂tu(0, x) = ∂tv(0, x) = 0.

We also need to decompose, u = u++u−, v = v++v− with, ũ±(τ, ξ) = δ(τ∓|ξ|)f̂(ξ),
ṽ±(τ, ξ) = δ(τ ∓ |ξ|)ĝ(ξ) Thus, taking the spacetime Fourier transform,

ũ+v+(τ, ξ) =
∫
δ(τ − η − |ξ − η|)f̂(ξ − η)ĝ(η)dη (241)

ũ+v−(τ, ξ) =
∫
δ((τ + |η| − |ξ − η|)f̂(η)ĝ(ξ − η)dη (242)

ũ−v+(τ, ξ) =
∫
δ((τ − |η|+ |ξ − η|)f̂(η)ĝ(ξ − η)dη

ũ−v−(τ, ξ) =
∫
δ((τ + |η|+ |ξ − η|)f̂(η)ĝ(ξ − η)dη

In the proof below, by symmetry, it will suffice to consider the cases u+v±. The
two integrals look similar but have different behaviors: (241) is an integration over
the ellipsoid of revolution with foci at 0 and ξ,

E(τ, ξ) = {η ∈ Rn : |η|+ |ξ − η| = τ} , (243)

which is a compact manifold; (242) is an integration over the hyperboloid of revo-
lution with foci at 0 and ξ,

H(τ, ξ) = {η ∈ Rn : |η| − |ξ − η| = τ} , (244)

which is an unbounded manifold with infinite volume. Also, notice that ũ+v+ is
supported on the region τ ≥ |ξ|, while ũ+v− is supported on the region |τ | ≤ |ξ|.

We decompose uv by the trichotomy formula,

u+v± ∼
∑
µ<λ

u+
µ v
±
λ +

∑
µ<λ

u+
λ v
±
µ +

∑
µ≤λ

Pµ(u+
λ v
±
λ ) (245)

= Σ1 + Σ2 + Σ3 (246)

With the exception of some end points the bilinear estimates of theorem 13.15
follow from their following dyadic version.

Theorem 13.16. Let 0 < µ . λ and γ > −n−3
4 . Then,∥∥Dγ

−
(
u+
λ v
±
µ

)∥∥
L2(R1+3)

. µ(γ+n−1
2 ) ‖fλ‖ · ‖gµ‖ (247)

∥∥Dγ
−Pµ(u+

λ v
+
λ )
∥∥
L2(R1+3)

. µ
n−1

2 λγ ‖fλ‖ · ‖gλ‖ (248)

∥∥Dγ
−Pµ(u+

λ v
−
λ )
∥∥
L2(R1+3)

. µγ+n−2
2 λ

1
2 ‖fλ‖ · ‖gλ‖ (249)

Assuming theorem 13.16 to be true we prove below a slightly weaker version of
theorem 13.15. In fact we replace the main non-scaling conditions (235)– (238) by
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the following,

β− > −
n− 3

4
, (250)

β0 > −
n− 1

2
, (251)

αi < β− +
n− 1

2
, i = 1, 2, (252)

α1 + α2 >
1
2
. (253)

Proof : We have, Σ1 =
∑
µ<λ u

+
µ v
±
λ . Clearly,

‖Dβ0D
β+
+ D

β−
− Σ1‖L2 .

∑
µ<λ

λβ0+β+‖Dβ−
− (uµvλ)‖L2

Using the dyadic estimate (247) with γ = β− we derive,

‖Dβ−
− (uµvλ)‖L2 .

∑
µ<λ

‖uµvλ‖L2 .
∑
µ<λ

µβ−+n−1
2 λ−α1µ−α2‖Dα1fλ‖‖Dα2gµ‖

Therefore,

‖Dβ0D
β+
+ D

β−
− Σ1‖L2 .

∑
µ<λ

λβ0+β+−α1µ
(n−1)

2 +β−−a2‖Dα1fλ‖ ‖Dα2gµ‖

We now apply condition (252) which we write in the form, ε := (n−1)
2 +β−−α2 > 0.

According to the dimensional condition (234),

β0 + β+ − α1 = −
( (n− 1)

2
+ β− − α2

)
= −ε

Therefore,

‖Dβ0D
β+
+ D

β−
− Σ1‖L2 .

∑
µ<λ

(µ
λ

)ε‖Dα1fλ‖‖Dα2gµ‖ . ‖Dα1f‖ ‖Dα2g‖

as desired. The term Σ2 can be estimated in precisely the same manner.

To estimate Σ3 we write,

‖Dβ0D
β+
+ D

β−
− Σ3‖L2 .

∑
µ≤λ

µβ0‖Dβ+
+ D

β−
− Pµ(u+

λ v
±
λ )‖L2

The operator D+ behaves differently in the cases ++ and +−. We first estimate
in the ++ case , when the symbol |τ |+ |ξ| is dominated by |τ which is no better in
size than λ. Thus, applying (248) with γ = β−,

‖Dβ+
+ D

β−
− Pµ(u+

λ v
+
λ )‖L2 . λβ+λβ−µ

n−1
2 λ−α1λ−α2‖Dα1fλ‖ ‖Dα2gλ‖

from which,

‖Dβ0D
β+
+ D

β−
− Σ3‖L2 .

∑
µ≤λ

µβ0+n−1
2 λβ++β−−α1−α2‖Dα1fλ‖ ‖Dα2gλ‖

We now use (251), i.e. β0 > −n−1
2 , to set ε = β0 + n−1

2 > 0 , and the scaling
condition (234) to write,

ε := β0 +
n− 1

2
= −β+ − β− − α1 − α2
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Thus,

‖Dβ0D
β+
+ D

β−
− Σ3‖L2 .

∑
µ≤λ

(µ
λ

)ε‖Dα1fλ‖ ‖Dα2gλ‖ .
∑
λ

‖Dα1fλ‖ ‖Dα2gλ‖

≤ ‖Dα1f‖ ‖Dα2g‖
as desired.

In the (+−) case ˜Pµ(u+
λ v
−
λ ) is supported in the region |τ | ≤ |ξ| where the symbol

|τ |+ |ξ| is dominated by |ξ| ∼ µ. Hence, applying (249) with γ = β−,

‖Dβ+
+ D

β−
− Pµ(u+

λ v
−
λ )‖L2 . µβ+λ1/2µβ−

n−2
2 λ−α1λ−α2‖Dα1fλ‖ ‖Dα2gλ‖

and thus,

‖Dβ0D
β+
+ D

β−
− Σ3‖L2 .

∑
µ≤λ

µβ0+β++β−
n−2

2 λ
1
2−α1−α2‖Dα1fλ‖ ‖Dα2gλ‖

We now make use of condition (253) according to which ε = α1 + α2 − 1
2 > 0.

Hence, in view of the scaling condition,

β0 + β+ + β−
n− 2

2
= ε

and thus,

‖Dβ0D
β+
+ D

β−
− Σ3‖L2 .

∑
µ≤λ

(µ
λ

)ε‖Dα1fλ‖ ‖Dα2gλ‖ . ‖Dα1f | ‖Dα2g‖

as desired.

We give below a sketch of the proof of theorem 13.16

Proof : We start with a proof of (247). By Cauchy -Schwartz,

|Dγ
−(uλ · vµ)|2 . Jλ,µ(τ, ξ) ·

∫
δ(τ − |η| ∓ |ξ − η|) |f̂λ(η)|2 |ĝµ(ξ − η)|2 dη

Jλ,µ(τ, ξ) := ||τ | − |ξ||2γ
∫
δ(τ − |η| ∓ |ξ − η|)χλ(η)χµ(ξ − η)dη

where χµ is a fixed C∞ function, 0 ≤ |χµ| ≤ 1, supported in the dyadic piece
|ξ| ∼ µ. We claim that the proof of (247) reduces to the proof of the bound,

|Jλ,µ(τ, ξ)| . µ2(γ+1) (254)

Indeed, assuming this to be true, we deduce,

‖Dγ
−(uλ · vµ)‖2L2 . µ2(γ+1)

∫ ∫
δ(τ − |η| ∓ |ξ − η|) |f̂λ|2(η)|ĝµ(ξ − η)|2dηdξdτ

. µ2(γ+1) · ‖fλ‖2L2 · ‖gµ‖2L2

To prove estimate (254) we observe that, on the support of the corresponding
integral we have |η| ± |ξ − η| = τ . Thus,∣∣τ − |ξ|∣∣ =

∣∣|η| ± |ξ − η| − |ξ|∣∣ ≤ |ξ − η|+ ∣∣|η| − |ξ|∣∣
≤ 2|ξ − η| . µ.
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Thus,

|Jλ,µ(τ, ξ)| . µγ
∫
|ξ−η|.µ,|η|∼λ

δ(τ − |η| ± |ξ − η|)dη

Since µ << λ we also must have ξ ∼ λ on the support of the integral. We can
always rescale the integral and thus assume that µ << 1 and |ξ| ∼ 1.

Estimate (254) follows easily from the following,

Lemma 13.17. Let |µ << 1. Then, for all ξ, such that 1/2 ≤ |ξ| ≤ 2, and all
τ 6= |ξ|, ∫

|η|.µ
δ(τ − |η| ± |ξ − η|)dη .

∣∣|τ | − |ξ|∣∣n−3
2 µ

n+1
2 (255)

Proof : Consider first the ++ case, when |ξ| ≤ τ ≤ 4. We can Introduce polar
coordinates and write the integral (255) in the form,

I :=
∫

Sn−1

∫ µ

0

δ(τ − λ− |ξ − λω|)λn−1dλdA(ω)

Clearly, on the support of the measure, |ξ−λω|2 = (τ −λ)2. We can thus solve for
λ and find, λ = τ2−|ξ|2

τ−ξ·ω . We are led to

Thus, writing τ − ξ · ω = τ − x|ξ| with x = cos θ the cosine of the angle between ξ
and ω,

I =
∫ 1

−1

(
min(µ,

τ2 − |ξ|2

τ − x|ξ|
)
)n−1

(1− x2)

We split λn−1 = λ
n+1

2 · λn−3
2 . Thus,

I . µ
n+1

2 (τ2 − |ξ|2|)
n−3

2

∫
Sn−1

1

(τ − ξ · ω)
n−3

2

dω

. µ
n+1

2 (τ2 − |ξ|2|)
n−3

2 . µ
n+1

2 (τ − |ξ|)
n−3

2

since τ > |ξ|.

In the +− we have 1 ≤ |τ | ≤ |ξ| and the integral (255) becomes,

I :=
∫

Sn−1

∫ µ

0

δ(τ − λ+ |ξ − λω|)λn−1dλdAω

Proceeding as before, |ξ − λω|2 = (τ − λ)2, thus λ(ξ, ω) = τ2−|ξ|2
τ−ξ·ω and,

I . µ
n+1

2 (|ξ| − |τ |)
n−3

2

∫
ω∈Sn−1; λ(x,ω)≤µ

1

(|τ − ξ · ω|)n−3
2

dω





CHAPTER 2

BASIC TOOLS IN LINEAR PDE

1. Laplace Equation in Rn

The Laplace operator ∆ = ∆Rn = ∂2
1 +∂2

2 +. . .+∂2
n is the Laplace Beltrami operator

of the euclidean space Rn. Recall that the latter comes equipped with the standard
coordinates x = (x1, x2, . . . xn) relative to which the euclidean metric has the form,

ds2 = (dx1)2 + (dx2)2 + . . . (dxn)2.

Recall that the form of the euclidean metric is invariant relative to translations

Tx0(x) = x+ x0, x0 ∈ Rn

and rotations,
O(x) = Oijx

j , O ·Ot = I.

Thus T and O are isometries of the euclidean metric. In addition to these the
Euclidean space admits as conformal isometries the dilations Sλx = λx and the
inversion Rx = |x|−2x.

Exercise: For any function u : Rn → R let S∗λu(x) = u(Sλx) and R∗u(x) =
|x|2−nu(Rx). Check that,

∆(S∗λu) = λ2S∗λ(∆u), ∀x ∈ Rn

|x|2−n∆(R∗u)(x) = R∗(∆u)(x), ∀x ∈ Rn \ 0.

In particular, if u is harmonic, i.e. ∆u = 0, so are S∗λu and R∗u. Recall from Ch.
1 that the fundamental solution of ∆ is given by,

Kn(x) =
(
(2− n)ωn

)−1|x|2−n, for n ≥ 3

K2(x) = (2π)−1 log |x|.

We gather together the elementary properties of harmonic functions in the follow-
ing:

Theorem 1.1. Let D ⊂ Rn be a bounded, connected open set.

i.) Mean Value Property. Let u ∈ C2(D). If u is harmonic then, for each ball
B(x,R) ⊂ D with boundary S(x, r),

u(x) = |S(x, r)|−1

∫
S(x,r)

u(y)dA(y) (256)

= |B(x, r)|−1

∫
B(x,r)

u(y)dy. (257)

123
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Conversely, if (256) is verified, for all B(x,R) ⊂ D, then u is harmonic.

ii.) Strong Maximum Principle. If u ∈ C2(D) ∩ C0(D), is harmonic in D then,

max
D̄

u = max
∂D

u.

Moreover if the maximum is reached at some interior point x0 ∈ D then u is
constant in D. A similar statement holds for the minimum of u.

iii.) Uniqueness of Dirichlet Problem. The Dirichlet problem in D,

∆u = f, u|∂D = g,

with f ∈ C(D) and g ∈ C(∂D) has a unique solution u ∈ C2(D) ∩ C0(D̄).

iv.) Local regularity estimate. If u is harmonic in D and B = B(x0, r) ⊂ D,

|∂αu(x0)| . r−n−|α|‖u‖L1(B). (258)

As a consequence we deduce that any harmonic function in u ∈ C2(D) must in fact
be smooth, u ∈ C∞(D). By keeping track of the precise constants in (258) one can
in fact show that in fact u is real analytic in D. Another consequence of (258) is
Liouville’s theorem, according to which any bounded harmonic function u : Rn → R
must be constant.

v.) Harnack inequality. If K ⊂ D is compact, then there exists a constant C
depending on K such that, for all non-negative harmonic functions u in D

sup
K
u ≤ C inf

K
u.

Proof : To prove i.) let

φx(r) = |S(x, r)|−1

∫
S(x,r)

u(y)dSy = |S(0, 1)|−1

∫
S(0,1)

u(x+ rz)dAz

d

dr
φx(r) = |S(0, 1)|−1

∫
S(0,1)

∂u(x+ rz) · zdAz

On the other hand, by Green’s formula,∫
B(x,r)

∆u(y)dy =
∫
S(x,r)

∂u(y) · y − x
r

dSy = rn−1

∫
S(0,1)

∂u(x+ rz) · zdAz

= |S(0, 1)|rn−1 d

dr
φx(r)

Hence,

d

dr
φx(r) = |S(x, r)|−1

∫
B(x,r)

∆u(y)dy = 0. (259)

So φx(r) is a constant, so φx(r) = limt→0 φx(t) = u(x). For the other statement,∫
B(x,r)

u(y)dy =
∫ r

0

( ∫
S(x,s)

u(y)dSy
)
ds = u(x)ωn

∫ r

0

sn−1ds = |B(x, r)|u(x)

as desired.
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To prove ii.) assume that u(x0) = supD̄ u for some x0 ∈ D. Then, for any 0 < r <
d(x0, ∂D), the mean value property implies,

M = u(x0) = |B(x, r)|−1

∫
B(x,r)

u(y)dy ≤M

with equality holding only if u ≡M in B(x,R). From this, we see that {x : u(x) =
M} is both open and closed in D, and therefore equal to D. This proves the
strong “moreover” statement, from which the weaker first statement follows. For
the analogous result for minima, replace u by −u.

Statement iii.) is an immediate consequence of and ii.) and the linearity of the
Dirichlet problem.

To prove iv.) we proceed by induction with respect to |α|. The case |α| = 0 follows
easily from (257). Indeed, for every B(y, r′) ⊂ D,

|u(y)| ≤ |B(y, r′)|−1‖u‖L1(B(y,r′)) = ω−1
n (r′)−n‖u‖L1(B(y,r′)) (260)

To understand how the induction works it suffices to understand the case |α| = 1.
Note that if u is harmonic, then so is ∂iu. Apply (257) to ∂iu and any r > 0 for
which B(x0, r) ⊂ D,

∂iu(x0) =
1

|B(x0, r/2)|

∫
B(x0,r/2)

∂iu(y)dy =
1

|B(x0, r/2)|

∫
S(x0,r/2)

ni(y)u(y)dSy

with ni(y) the exterior unit normal to y ∈ S(x0, r/2). Hence,

|∂iu(x0)| ≤ nω−1
n (2/r)nwn(r/2)n−1‖u‖L∞(S(x0,r/2))

≤ 2n
r
‖u‖L∞(S(x0,r/2))

Now, since for any y ∈ S(x0, r/2) we have B(y, r/2) ⊂ B(x, r) ⊂ D, we make use
of estimate (260) with r′ = r/2 to infer that,

|∂iu(x0)| ≤ 2n
r
ω−1
n (r/2)−n‖u‖L1(B(x0,r)) = cr−n−1‖u‖L1(B(x0,r))

with the constant c = n2n+1

ωn
. The general case can be done by induction in the

same way. The fact that u is smooth then follows easily. The analyticity of u
can be shown by simply writing down the Taylor series and noting its convergence
using these bounds and the exact constants (see Evans [1] section 2.2 for details).
Liouville’s theorem follows by letting r →∞ with |α| = 1.

It remains to prove v), the Harnack inequality. Let r denote 1
3d(K, ∂D). Let x, y ∈

K with |x− y| ≤ r. According to (257), since u is non-negative and B(x, 2r) ⊂ D,

u(x) = |B(x, 2r)|−1

∫
B(x,2r)

u(z)dz ≥ |B(y, r)|
|B(x, 2r)|

(
|B(y, r)|−1

∫
B(y,r)

u(z)dz
)

= 2−nu(y)

Hence, for all x, y ∈ K with |x − y| ≤ r, we must have 2nu(x) ≥ u(y). Since K is
compact we can cover it by a chain of finitely many balls B1, . . . , BN of radius r
such that Bi ∩Bi+1 6= ∅. Thus, recursively,

u(x) ≥ 2−nNu(y), ∀x, y ∈ K.
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Exercise. (Evans, [1], Ch. 2). We say v ∈ C2(D) is subharmonic if −∆v ≤ 0 in
D.

(a) Prove for subharmonic v that

v(x) ≤ |B(x, r)|−1

∫
B(x,r)

v(y)dy

(b) Prove that therefore maxD̄ v = max∂D v

(c) Let φ:R→ R be smooth and convex (i.e. φ(tx+(1−t)y) ≤ tf(x)+(1−t)f(y),
∀x, y ∈ R, t ∈ [0, 1]). Assume u is harmonic and v = φ(u). Prove v is harmonic.

(d) Prove v := |∂u|2 is subharmonic, wheneven u is harmonic.

1.2. Representation formulae. The formula u = Kn∗f with Kn the funda-
mental solution of the Laplacian, allows us to solve the Poisson’s equation ∆u = f
in the whole space Rn. Can we get similar formulas for other domains D ∈ Rn ?
We first check the following integration by parts formula, called Green’s identity∫

D

(
v∆u−∆vu

)
dx =

∫
∂D

(
v
du

dn
− udv

dn

)
(261)

where du
dn denotes the derivative with respect to the exterior unit normal n to

∂D. We apply the idenitity to K(y) = Kn(y − x0) and make use of the fact that
∆yKn(x0 − y) = δx0 to derive1,

u(x0) =
∫
D

K(y − x0)∆u(y)dy −
∫
∂D

(
K(y − x0)

du

dny
(y)− u(y)∂nyK(y − x0)

)
dSy

(262)

for any x0 ∈ D and any function u ∈ C2(D̄).

Assume that ∆u = f and that the boundary values of u on ∂D are given. We need
to eliminate the term on the right hand side of (??) which contains the normal
derivative of u; without that term, (262) would allow us to solve for u. We can do
that by introducing, as correction, a harmonic function ψx0(y) which such that the
Green’s function for D,

G(x0, y) = Kn(y − x0) + ψx0(y) (263)

verifies

∆yG(x0, y) = δx0 , G(x0, y) = 0 on ∂D (264)

Thus, using formula (262) with Kn(y − x0) replaced by G(x0, y) we infer that,

u(x0) =
∫
D

G(x0, y)∆u(y)dy +
∫
∂D

d

dny
G(x0, y)u(y)dSyu(y)

)
(265)

1To prove it we need to show that the singularity of K(y − x0) at y = x0 does not create
problems. One does that by replacing D with D \ B(x0, ε) and then let ε → 0. See Evans, [1],

section 2.2 for details.
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Recall that d
dny

G(x0, y) is the derivative in the direction to the exterior normal
ny at a point p ∈ ∂D. In practice it is not at all easy to find such corrections.
There are however two important examples when this can be done by symmetry
consideratins.

1.) Dirichlet problem for a half space. Let ,

Rn+ = {x = (x1, x2, . . . , xn)/ xn > 0}

Let x ∈ Rn+ and consider its reflection x relative to the hyperspace xn = 0. It is
then easy to show that G(x, y) = K(y − x)−K(y − x̄) is a Green function for Rn+.
Thus, since the exterior normal derivative at xn = 0 is given by ∂n we easily find
the Poisson’s Kernel for Rn+

P+(x, y) = ∂nG(x, y) =
2xn
ωn
|x− y|−n (266)

Thus,

u(x) =
∫
xn=0

P+(x, y)g(y)dy (267)

is a solution to the Dirichlet problem in Rn+:

∆u = 0, u = g on xn = 0. (268)

Proposition 1.3. Assume g ∈ C0(Rn−1)∩L∞(Rn−1). The the function u defined
by (267) is a bounded harmonic function in Rn+ and verifies

u(x)→ g(x0) as x→ x0 ∀x0 ∈ ∂Rn+.

Exercise: Prove proposition (1.3) by observing that P+(x, y) is a positive har-
monic function in y, for all x ∈ Rn+ and y ∈ ∂Rn+. Moreover, for all x ∈ Rn+, we
have

∫
∂Rn+

P+(x, y)dy = 1.

Exercise. Rederive formula (267) using the Fourier transform.

2.) Dirichlet problem for a ball. Let D = B(0, a), the ball centered at 0 of radius
a. Let x0 be an arbitrary point of D. Let x∗0 = a2 x0

|x0|2 be the inverse of x0 relative
to the sphere |x| = a. Observe that for any x on the boundary of D we have,
|x−x∗0 |
|x−x0| = a

|x0| . Thus,

G(x0, x) = K(x0 − x)−
( a

|x0|
)2−n

K(x∗0 − x) (269)

vanishes for x ∈ ∂D. Moreover the correction
(
a
|x0|
)2−n

K(x∗0 − x) is clearly har-
monic in the domain D = B(0, a). After a simple computation we infer from (265)
that,

u(x) =
∫
|y|=a

H(x, y)g(y)dSy, H(x, y) =
1
aωn

a2 − |x|2

|y − x|n
(270)

is a solution to the Dirichlet problem,

∆u = 0 in B(0, a), u = g on S(0, a).
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Proposition 1.4. Let g be continuous on S(0, a). Then the function u(x) defined
by (270) for |x| < a, is continuous for |x| ≤ a and harmonic in |x| < a.

Exercise. Prove the above proposition by taking advantage of the fact that H
is a positive harmonic function in |x| < a for all y ∈ S(0, a). We also have,∫
|y|=aH(x, y)dSy = 1.

1.5. A-priori estimates for ∆ in Rn. First recall the L2 identity,
n∑

i,j=1

‖∂i∂ju‖2L2 = ‖∆u‖2L2 , (271)

for any u ∈ C∞0 (Rn). According to the Calderon-Zygmund theory (see the discus-
sion at the beginning of chapter 1, section 9) we also have, for any 1 < p <∞,

‖∂i∂ju‖Lp . ‖∆u‖Lp . (272)

The cases p = 1 and ∞ are exceptional. It turns out, in particular, that the
estimate (272) is false for p =∞. This is due to a logarithmic loss of derivatives in
the estimate and can be circumvented in various ways. The simplest2, introduced
by Schauder, is based on the Hölder norms with fractional exponents 0 < γ < 1

[f ]C0,γ = sup
x 6=y

f(x)− f(y)
|x− y|γ

,

see chapter 1, section 5.15. Using these norms one finds the Schauder estimate,

[∂2u]C0,γ ≤ cα[∆u]C0,γ . (273)

The proof of (273) can be derived from the identity,

∂i∂ju(x) =
∫

Rn
∂i∂jK(x− y)

(
f(y)− f(x)

)
dy (274)

where f = ∆u.

Exercise. Prove formula (274) and the Schauder estimate (273).

We can also derive first derivative estimates applying the Hardy-Littlewood-Sobolev
inequalities of Theorem 5.9 to the representation,

∂u =
∫

Rn
∂Kn(x− y)∆u(y)dy,

Thus, since |∂Kn(x− y)| . |x− y|1−n, we derive for 1 < p < q <∞,

‖∂u‖Lq . ‖∆u‖Lp , 1/q = 1/p− 1/n. (275)

2Other refinements, which also work for L1, are based on more complicated spaces such
BMO, Hardy or Besov spaces.
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1.6. Dirichlet problem for general domains. The methods developed in
the treatment of the Dirichlet problem in a given domain D have had a huge im-
pact throughout the field of partial differential equations. There are four major
approaches to the Dirichlet problem in a given domain. These are known under the
following names:
A. Variational method ( Dirichlet Principle),
B. Perron’s method( subsolutions and supersolutions)
C. Method of continuity
D. Potential theory

1.7. Energy methods and Dirichlet Principle. Consider the Dirichlet
boundary value problem,

−∆u = f in D, u|∂D = g. (276)

We have already proved uniqueness with the help of the maximum principle. In
what follows we give an alternative prove of uniqueness based on integration by
parts, or energy method. Consider two C2(D̄) solutions u1, u2 and set v = u1 − u2.
Then clearly,

∆v = 0, v|∂D = 0.

Therefore, by integration by parts,

0 =
∫
D

v∆v =
∫
D

|∂v|2

Thus v must be constant in D̄ and zero on the boundary; that is v = 0.

The energy metod can also be used to construct solutions to (276). This is based
on the idea that solutions of (276) are minimizer of a functional. To see this we
define the Dirichlet Integral,

I[w] =
∫
D

(
1
2
|∂w|2 − wf)dx. (277)

with w belonging to the set of admissible functions,

A = {w ∈ C2(D̄) : w|∂D = g}.

Theorem 1.8. A function u ∈ A is a solution of the Dirichlet problem (276) if and
only if u minimizes the Dirichlet integral among all functions in A,

I[u] = min
w∈A

I[w] (278)

Proof : Assume that u is a solution of (276) and w ∈ A. Since (u − w)|∂D = 0
we derive by integration by parts,

0 = −
∫
D

(∆u− f)(u− w) =
∫
D

(
∂u · ∂(u− w)− f(u− w)

)
dx

=
∫
D

(|∂u|2 − uf)dx−
∫
D

∂u · ∂wdx+
∫
D

wfdx
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Hence, using the inequality |∂u · ∂w| ≤ 1
2 |∂u|

2 + 1
2 |∂w|

2,∫
D

(|∂u|2 − uf)dx =
∫
D

∂u · ∂wdx−
∫
D

wfdx

≤ 1
2

∫
D

|∂u|2 +
1
2

∫
D

|∂w|2 −
∫
D

wfdx

Thus, I[u] ≤ I[W ] as desired.

Conversely assume that (278) holds and consider the function J(ε) = I[u + εw].
Since J(0) is a minimum value for J we must have J ′(0) = 0. By a simple integration
by parts we derive 0 = J ′(0) =

∫
D

(−∆u − f)wdx. Since this is true for all w ∈
C∞0 (D) we infer that −∆u = f in D.

It turns out however that the functional I[w] cannot be easily minimized in the
class A of admissible functions. The avoidance of this difficulty has led to some of
the most exciting developments in PDE last century. Here are the main ideas.

Step 1. It is easy to see that the general solution of (276) can be reduced to the
case g = 0.

Step 2. Instead of the admissible set A, with g = 0, we consider the Sobolev
space H1

0 (D). Consider also the bilinear form,

(u, v)H1
0 (D) =< u, v >=

∫
D

∂u · ∂vdx. (279)

Observe that H1
0 (D) is a Hilbert space relative to the scalar product < u, v >=

(u, v)H1
0 (D). Clearly, if u is a C2(D̄) solution of (276) then, for every v ∈ H1

0 (D),

< u, v >= (f, v).

with (f, v) =
∫
f(x)v(x)dx denoting the standard inner product in L2(D).

Definition. We say that u ∈ H1
0 (D) is a weak solution of (276) if,

< u, v >= (f, v) (280)

for all v ∈ H1
0 (D).

Step 3. To find a weak solution of the Dirichlet problem we only need to use
a little bit of Hilbert space theory. The idea is to consider the linear functional
F [v] = (f, v) =

∫
D
f(x)v(x)dx defined on the Hilbert space H1

0 (D). According to
the Riesz representation theorem in Hilbert spaces to find a weak solution of our
Dirichlet problem it suffices to show that our linear functional F [v] is bounded on
H1

0 (D). This reduces to a simple functional inequality,

‖v‖L2(D) . ‖v‖H1
0 (D), (281)

called the Poincaré inequality.

Theorem 1.9 (Poincaré inequality). Let D be a bounded open set in Rn and u ∈
W 1,p

0 (D), 1 ≤ p < n. Then we have the estimate,

‖u‖Lq(D) . ‖∂u‖Lp(D). (282)
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for each q ∈ [1, p∗] with p∗ = np
n−p .

Proof : By definition, there exists a sequence uk ∈ C∞0 (D) which converges to u
in W 1,p(D). We extend each function um to be zero on Rn \ D̄. According to the
sharp Gagliardo-Nirenberg-Sobolev inequality of Theorem 5.11 we have,

‖um‖Lp∗ (D) . ‖um‖Lp∗ (Rn) . ‖∂um‖Lp(D)

Taking m→∞, we infer that

‖u‖Lp∗ (D) . ‖∂u‖Lp(D)

Since |D| <∞, this holds by the Hölder inequality for q ∈ [1, p∗].

One can prove this inequality for functions v ∈ C∞0 (D). Thus, F [v] is a bounded
linear functional on C0∞(D) and therefore can be extended by density to the Hilbert
space H1

0 (D).

Step 4. We now have a weak solution u ∈ H1
0 (D) of our Dirichlet problem.

Clearly u is a distribution in D, u ∈ D′(D), and we have

−∆u = f,

in the sense of distributions. We expect to be able to show that u is in fact better
than H1

0 (D). In fact, recalling the regularity results of the previous paragraph, we
expect that if f ∈ L2(D) then u ∈ H2

loc(D).

Theorem 1.10 (Interior regularity). Assume that f ∈ L2(D) and that u ∈ H1(D)
is a weak solution of −∆u = f in D, i.e. < u, v >= (f, v) for all v ∈ H1

0 (D). Then
u ∈ H2

loc(D) and, for every V ⊂ D,

‖u‖H2(V ) . ‖f‖L2(D) + ‖u‖L2(D) (283)

Proof : Choose open sets V ⊂⊂ W ⊂ D and a test function 0 ≤ ζ ≤ 1 equal to
one on V and zero on Rn \W . Since u is a weak solution we have∫

D

∂iu∂ivdx =
∫
D

fvdx (284)

We introduce the difference quotients,

∂
(h)
k u =

u(x+ hek)− u(x)
h

, h 6= 0.

Observe that for all w ∈ L2(D), supported in W̄ we have,∫
D

v(x)∂(−h)
k w(x) = −

∫
D

∂
(h)
k v(x)w(x)

for all sufficiently small h 6= 0.
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Now set v = −∂(−h)
k (ζ2∂

(h)
k u) in (283). Thus,∫

D

∂iu∂ivdx = −
∫
D

∂iu∂i
(
∂

(−h)
k (ζ2∂

(h)
k u)

)
=

∫
D

∂i∂
(h)
k u∂i

(
(ζ2∂

(h)
k u)

)
= 2

∫
D

ζ∂iζ ∂
(h)
k ∂iu ∂

(h)
k u+

∫
D

ζ2 ∂
(h)
k ∂iu∂

(h)
k ∂iu = I1 + I2

I2 =
∫
D

ζ2|∂(h)
k ∂u|2

I2 ≤ C

∫
D

ζ|∂(h)
k ∂u| |∂(h)

k u|

≤ cε

∫
D

ζ2|∂(h)
k ∂u|2cε−1

∫
D

|∂(h)
k u|2 ≤

∫
D

ζ2|∂(h)
k ∂u|2 + cε−1

∫
D

|u|2

Therefore, chosing ε such that Cε = 1
2 ,∫

D

∂iu∂ivdx ≥
1
2

∫
D

ζ2|∂(h)
k ∂u|2 − C

∫
D

|∂u|2

Thus, in view of (284), and our choice of ζ, we deduce∫
V

|∂(h)
k ∂u|2 ≤

∫
D

ζ2|∂(h)
k ∂u|2 .

∫
D

|∂u|2 +
∫
D

|f |2 (285)

for all k = 1, . . . n and all sufficiently small h 6= 0. Using (285) it is easy to conclude
that ∂u ∈ H1(V ) and therefore u ∈ H2(V ) as desired. Moreover,

‖u‖H2(V ) . ‖f‖L2(D) + ‖u‖H1(D) (286)

To end the proof of theorem 1.10 we only need to replace ‖u‖H1(D) in (286) by
‖u‖L(D). We first remark that we can replace the right hand side in (286) with
‖f‖L2(W ) + ‖u‖H1(W ). To eliminate ‖u‖H1(W ) we choose a new cut-off 0 ≤ ζ ≤ 1
supported in D and equal to 1 on W . Setting v = ζ2u in (284),

∫
D
∂iu∂ivdx =∫

D
fvdx, we easily check that∫

D

|ζ|2|∂u|2dx . ‖f‖2L2(D) + ‖u‖2L2(D)

Hence,

‖u‖H1(W ) . ‖f‖L2(D) + ‖u‖L2(D),

as desired.

Step 5. Having proved that f ∈ L2(D) implies u ∈ H2
loc(D) we would like to

show that if f is more regular so is u.

Theorem 1.11 (Higher interior regularity). Assume that u is a weak solution of
−∆u = f in D and f ∈ Hm(D). Then u ∈ Hm+2

loc (D) and we have the estimate,

‖u‖H2+m(D) . ‖f‖Hm(D) + ‖u‖L2(D) (287)
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Proof : Consider again (284) and take v = (−1)|α|∂αṽ with ṽ ∈ C∞0 (W ) and
|α| = m. As before V ⊂⊂W ⊂ D. Clearly, integrating by parts,

< ũ, ṽ >= (f̃ , ṽ

where ũ = (−1)|α|∂αu, f̃ = (−1)|α|∂αf . According to theorem 1.10, ũ ∈ H2(V )
and,

‖∂αu‖H2(V ) . ‖f̃‖L2(W ) + ‖ũ‖L2(W ) . ‖f‖Hm+1(D) + ‖u‖Hm(D).

Hence,

‖u‖Hm+2(V ) . ‖f‖Hm(D) + ‖u‖Hm(D),

and the proof of the theorem proceeds now by induction on m.

Step 6. So far we have established interior regularity but have no informations
about the behavior of u on the boundary of D. In particular we cannot yet show
that u|∂D = 0 in the traditional sense. Clearly, to achieve this, we need more
regualrity information about the boundary of D.

Theorem 1.12 (Boundary regularity). Assume that u ∈ H1
0 (D) is a weak solution

of −∆u = f, u|∂D = 0 with f ∈ L2(D). Assume also that ∂D is C2 regular. Then
u ∈ H2(D) and

‖u‖H2(D) . ‖f‖L2(D) + ‖u‖L2(D) (288)

Moreover if f ∈ Hm(D) and ∂D is Cm+2 then u ∈ Hm+2(D) and,

‖u‖H2+m(D) . ‖f‖Hm(D) + ‖u‖L2(D) (289)

Proof : We only sketch the proof for the particular case when D is a half ball
U = B(0, 1) ∩ Rn+, where Rn+ = {(x1, . . . , xn)/xn ≥ 0}. Proceeding exactly in
a similar manner as for the interior estimates of theorem 1.10 we can first derive
estimates for the tangential derivatives finite difference derivatives of u i.e.,∫

V

|∂(h)
k ∂u|2dx .

∫
D

|f |2dx+
∫
D

|∂u|2dx (290)

where V = B(0, 1/3) ∩ Rn+ and k = 1, 2, . . . n − 1. This can be achieved with the
help of the smooth cutoff function 0 ≤ ζ ≤ 1, ζ = 1 on B(0, 1/3) and ζ = 0 on
Rn \ B(0, 2/3) and choosing v = −∂(−h)

k (ζ2∂
(h)
k u) in the identity < u, v >= (f, v).

One can easily infer from (291) that,
n−1∑
i,j=1

‖∂i∂ju‖L2(V ) +
n−1∑
i=1

‖∂i∂nu‖L2(V ) . ‖f‖L2(D) + ‖u‖H2(D).

To derive the remaining estimate for ∂2
nu we only have to observe that, since −δu =

f we have,

‖∂2
nu‖L2(V ) . ‖

n−1∑
i,j=1

‖∂i∂ju‖L2(V ) . ‖f‖L2(D) + ‖u‖H2(D).

Hence, in fact,

‖u‖H2(V ) . ‖f‖L2(D) + ‖u‖H1(D) (291)
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We can then proceed, as we did for the interior estimates, to eliminate ‖u‖H1(D) in
favor of ‖u‖L2(D).

The higher derivatives estimate (289) can be proved in a similar manner, see proof
of theorem 1.11.

2. Dirichlet problem on compact Riemannian manifolds

Let M be a compact Riemannian manifold and consider the problem,

−∆Mu = f (292)

Let C∞(M) denote the space of smooth functions on M. For two such functions
u, v, we have,

−
∫
M

∆uvdvM =
∫
M

DiuDiv dvM :=< u, v > (293)

Observe that < u, u >= 0 if and only if u is a constant. We say that two continuous
functions are equivalent if they differ by a constant. We consider the space of classes
of equivalence of C∞(M) functions on M modulo constants. Let Ḣ1(M) be the
completion of this space relative to the scalar product < u, v >. We also introduce
the Sobolev space H1(M) which is defined as the completion of C∞(M) relative to
the norm

‖u‖2H1(M) = (u, u)+ < u, u > .

Definition. We say that u ∈ Ḣ1(M) is a weak solution of (292), for f ∈ L2(M),
if, for all v ∈ Ḣ1(M),

< u, v >= (f, v),

with (f, v) = (f, v)M =
∫
M
fvdvM.

Clearly weak solutions must be unique. Indeed if u1, u2 are two solutions and
u = u1 − u2 then < u, v >= 0 for all v ∈ Ḣ1(M), hence < u, u >= 0 and thus u1

and u2 are equivalent.

To prove existence we have to show that the linear functional v → (f, v) is contin-
uous on the Hilbert space Ḣ1(M). Since

|(f, v)| . ‖f‖L2(M)‖v‖L2(M),

we need to check an inequality of the form,

‖v − v̄‖L2(M) . ‖Dv‖L2(M) (294)

where v̄ the average of v defined by,

v̄ =
1
|M|

∫
M

v dvM,

and |M | the volume of M . The proof of this version of the Poincaré inequality is
based on the Rellich compactness theorem.
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Theorem 2.1 (Rellich compactness). The embedding of H1(M) ⊂ L2(M) is com-
pact operator, i.e every bounded sequence in H1(M) has an accumulation point in
L2(M).

We use Rellich’s theorem to prove estimate (294).

Proof of (294). In view of the definition of Ḣ1(M) it suffices to prove (294) for
functions v ∈ C∞(M). By contradiction assume that (294) is false. Thus there
exists functions vk ∈ C∞(M) veifying

‖vk − v̄k‖L2(M) > k‖Dvk‖L2(M)

Let

wk =
vk − v̄k

‖vk − v̄k‖L2(M)
.

Clearly w̄k = 0 and ‖wk‖L2(M) = 1. Moreover,

‖Dwk‖L2(M) < 1/k (295)

Thus wk is a vounded sequence of functions in H1(M). By the Rellich theorem
there exists a subsequence wj = wkj which converges to a function w in L2(M).
Clearly, w̄ = 0 and ‖w‖L2(M) = 1. On the other hand, according to (295), for any
φ ∈ C∞(M) and any smooth one form A, using the integrations by formula,

‖
∫
M

fdiv AdvM = −
∫
M

Df ·AdvM, (296)

∫
M

wdiv A = lim
j→∞

∫
M

wjdiv A = − lim
j→∞

∫
M

Dwj ·A

On the other hand,

|
∫
M

Dwj ·A . ‖Dwj‖L2(M)‖A‖L2(M) . 1/k‖A‖L2(M)

Hence,

lim
j→∞

∫
M

Dwj ·A = 0

Thus, for every smooth one form A,

0 =
∫
M

wdiv A

and therefore w must be a constant scalar function. Since w̄ = 0 it follows that
w = 0 which is in contradiction with ‖w‖L2(M) = 1.

Exercise. Prove Rellich’s theorem.



136 2. BASIC TOOLS IN LINEAR PDE

2.2. Regularity theorey. We start with an a-priori energy estimate on man-
ifolds which is the exact analogue of (271). We shall prove the following,

Lemma 2.3 ( Bochner identity). The following identity holds for a scalar function
u ∈ C∞(M), ∫

M

|D2u|2 +
∫
M

RijDiuDju =
∫
M

|∆u|2 (297)

with Rij = gabRiajb the Ricci curvature of M.

Proof :

Da(∆u) = Da(DcDcu) = DcDaDcu+ [Da, Dc]Dcu

= DcDcDau+RcdacDdu

= ∆(Dau)−RadDdu

Thus,∫
M

|∆u|2 = −
∫
M

Da(∆u) ·Dau = −
∫
M

∆Dau ·Dau+RabDauDbu

=
∫
M

|D2u|2 +
∫
M

RabDauDbu

as desired.

Remark. If M is 2-dimensional we have, Rab = gabK with K the Gauss curvature
of M. Thus, in that case,∫

M

|D2u|2 +
∫
M

K|Du|2 =
∫
M

|∆u|2.

subsectionMaximum Principle for second order elliptic equations We consider a
second order elliptic operator in the form,

Lu = −aij∂i∂ju+ bi∂iu+ cu (298)

where the coefficients a, bc are continuous and verify the ellipticity condition,

aij(x)ξiξj ≥ m|ξ|2 (299)

We also assume that aij are symmetric, i.e. aij = aji.

Theorem 2.4 (Weak maximum principle). Assume D is a open bounded doamin
in Rn and u ∈ C2(D) ∩ C0(D̄) such that, for c = 0, u is a subsolution

Lu(x) ≤ 0, x ∈ D.
Then,

max
D̄

u = max
∂D

u.

Proof Assume first that LU < 0 in D and there exists x0 ∈ D such that u(x0) =
maxuD̄. Since x0 is a point of maximum we must have ∂u(x0) = 0 and, as a
matrix, the hessian ∂2u(x0) is negative definite, i.e. ∂2u(x0) ≤ 0. Since the matrix
A = (aij)i,j=1...n is positive definite it is diagonalizable. Let O = (Oij)i,j=1,...j be
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an orthogonal matrix such that, OAOT = D with D the diagonal matrix with
strictly positive entries d1, . . . dn. Writing, y = x0 + O(x − x0), or in components
yi = xi(0) + Oij(x

j − xj(0), we derive ∂xiu = Oai ∂yau, ∂2
xixju = OaiO

b
j∂

2
yaybu. Hence

at x0,

aij∂2
xixju = aijOaiO

b
j∂

2
yaybu = (O ·A ·OT )ab∂2

yaybu

= Dab∂2
yaybu =

∑
k

dk∂
2
ykyku ≤ 0

since for each k we have, at x0, dk ≥ 0 and ∂2
ykyk ≤ 0. Consequently at the point

x0,
Lu = −aij∂2

iju+ bi∂iu ≥ 0,

which contradicts our assumption.

To treat the general case let

uε(x) = u(x) + εeλx
1

where ε > 0 and λ > 0 sufficeintly large. According to the uniform ellipticity
condition we have aii(x) ≥ m > 0. Now, at all points of U ,

Luε = Lu+ εL(eλx
1
≤ εeλx

1(
− λ2a11 + λb1

)
≤ εeλx

1(
− λ2m+ λ‖b‖L∞

)
< 0

provided λ > 0 sufficiently large.

3. Minkowski space

3.1. Basic definitions. The n+1 dimensional Minkowski space, which we de-
note by Rn+1, consists of the manifold Rn+1 together with a Lorentz metric m and
a distinguished system of coordinates xα, α = 0, 1, . . . n, called inertial, relative
to which the metric has the diagonal form mαβ = diag(−1, 1, . . . , 1). Two iner-
tial systems of coordinates are connected to each other by translations or Lorentz
transformations. We use standard geometric conventions of lowering and raising
indices relative to m, and its inverse m−1 = m, as well as the usual summation
convention over repeated indices. The coordinate vectorfields ∂

∂xα are denoted by
∂α, an arbitrary vectorfield is denoted by X = Xα∂α with Xα = Xα(x0, . . . , xn).
Observe that by lowering indices relative to m we get X0 = −X0 and Xi = Xi

for all i = 1, . . . , n. We denote by D the flat covariant derivative of Rn+1, that is
Dαωβ = ∂αωβ for an arbitrary 1- form w = ωαdx

α. We also split the spacetime co-
ordinates xα into the time component x0 = t and space components x = xi, . . . xn.
Note that t0 = −t and xi = xi for i = 1, . . . , n.

A vector X is said to be timelike, null or spacelike according to whether m(X,X)
is < 0, = 0 or > 0. Accordingly a smooth curve xα(s) is said to be timelike,
null or spacelike if its tangent vector dxα

ds is timelike, null or spacelike at every
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one of its points. A causal curve may be timelike or null. Similarly a hyper-
surface u(x0, . . . xn) = 0 is said to be spacelike, null or timelike if its normal
Nα = −mαβ∂βu is, respectively, timelike, null or spacelike. The metric induced by
m on a spacelike hypersurface is necessarily positive definite, that is Riemannian.
A function t(x0, x1, . . . , xn) is said to be a time function if its level hypersurfaces
t = t are spacelike. On a null hypersurface the induced metric is degenerate relative
to the normal direction, i.e. m(N,N) = 0. In particular function u = u(x0, . . . xn)
whose level surfaces u = u are null must verify the Eikonal equation

mαβ∂αu∂βu = 0 (300)

Equation (300) can also be written in the form DNN = 0. We call N a null geodesic
generator of the level hypersurfaces of u.

A causal curve can be either timelike and null at any of its points. The canonical
time orientation of Rn+1 is given by the vectorfield T0 = ∂0. A timelike vector X is
said to be future oriented if m(X,T0) < 0 and past oriented if m(X,T0) > 0. The
causal future J+(S) of a set S consists of all points in Rn+1 which can be connected
to S by a future directed causal curve. The causal past J−(S) is defined in the
same way. Thus, for a point p = (t, x), J +(p) = {(t ≥ t0, x)/|x − x0| ≤ t − t0}.
Given a smooth domain D, its future set J +(D) may, in general, have a nonsmooth
boundary, due to caustics.

We consider conservative domains J +(D1) ∩ J−(D2) with D1 ⊂ Σ1, D2 ⊂ Σ2,
spacelike hypersurfaces. The domain is regular if both D1, D2 are regular and
its non- spacelike boundaries N1 ⊂ ∂(J +(D1)) \ D1 and N2 ⊂ ∂(J−(D2)) \ D2

are smooth. In the particular case, when D1 = Σ1 and D = D2 ⊂ Σ2, we obtain
J +(Σ1)∩J−(D), called domain of dependence of D relative to Σ1, consisting of all
points in the causal past ofD ⊂ Σ2, to the future of Σ1. Similarily J +(D)∩J−(Σ2),
with D ⊂ Σ1 is called the domain of dependence of influence of D relative to
Σ2. Particularly useful examples are given in terms of a time function t with
Σ1 = {(t, x)/t(t, x) = t1}, Σ2 = {(t, x)/t(t, x) = t1} two, nonintersecting, level
hypersurfaces, Σ2 lying in the future of Σ1.

A pair of null vectorfields L,L form a null pair if m(L,L) = −2. A null pair
en = L, en+1 = L together with vectorfields e1, . . . en−1 such that m(L, ea) =
m(L, ea) = 0 and m(ea, eb) = δab, for all a, b = 1, . . . , n− 1, is called a null frame.
The null pair,

L = ∂t + ∂r, L = ∂t − ∂r, (301)

with r = |x| and ∂r = xi/r∂i, is called canonical. Simmilarly a null frame
e1, . . . en+1 with en = L, en+1 = L is called a canonical null frame. In that case
e1, . . . , en−1 form, at any point, an orthonormal basis for the the sphere St,r, of con-
stant t and r, passing through that point. Observe also that L is the null geodesic
generator associated to u = t− r while L the null geodesic of u = t+ r.

3.2. Conformal Killing vectorfields. Let xµ be an inertial coordinate sys-
tem of Minkowski space Rn+1. The following are all the isometries and conformal
isometries of Rn+1.
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1. Translations: for any given vector a = (a0, a1, ...., an) ∈ Rn+1,

xµ → xµ + aµ

2. Lorentz rotations: Given any Λ = Λρσ ∈ O(1, n),

xµ → Λµν x
ν

3. Scalings: Given any real number λ 6= 0,

xµ → λxµ

4. Inversion: Consider the transformation xµ → I(xµ), where

I(xµ) =
xµ

(x, x)

defined for all points x ∈ Rn+1 such that (x, x) 6= 0.

The first two sets of transformations are isometries of Rn+1, the group generated
by them is called the Poincarè group. The last two type of transformations are
conformal isometries. the group generated by all the above transformations is called
the Conformal group. In fact the Liouville theorem, whose infinitesimal version will
be proved later on, states that it is the group of all the conformal isometries of Rn+1.

We next list the Killing and conformal Killing vector fields which generate the above
transformations.

i. The generators of translations in the xµ directions, µ = 0, 1, ..., n:

Tµ =
∂

∂xµ

ii. The generators of the Lorentz rotations in the (µ, ν) plane:

Lµν = xµ∂ν − xν∂µ

iii. The generators of the scaling transformations:

S = xµ∂µ

iv. The generators of the inverted translations 3:

Kµ = 2xµxρ
∂

∂xρ
− (xρxρ)

∂

∂xµ

3Observe that the vector fields Kµ can be obtained applying I∗ to the vector fields Tµ.
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We also list below the commutator relations between these vector fields,

[Lαβ ,Lγδ] = ηαγLβδ − ηβγLαδ + ηβδLαγ − ηαδLβγ
[Lαβ ,Tγ ] = ηαγTβ − ηβγTα

[Tα,Tβ ] = 0
[Tα,S] = Tα

[Tα,Kβ ] = 2(ηαβS + Lαβ)
[Lαβ ,S] = [Kα,Kβ ] = 0
[Lαβ ,Kγ ] = ηαγKβ − ηβγKα

(302)

Denoting P(1, n) the Lie algebra generated by the vector fields Tα,Lβγ and K(1, n)
the Lie algebra generated by all the vector fields Tα,Lβγ ,S,Kδ we state the fol-
lowing version of the Liouville theorem,

Theorem 3.3. The following statements hold true.

1) P(1, n) is the Lie algebra of all Killing vector fields in Rn+1.

2) If n > 1, K(1, n) is the Lie algebra of all conformal Killing vector fields in Rn+1.

3) If n = 1, the set of all conformal Killing vector fields in R1+1 is given by the
following expression

f(x0 + x1)(∂0 + ∂1) + g(x0 − x1)(∂0 − ∂1)

where f, g are arbitrary smooth functions of one variable.

Proof: The proof for part 1 of the theorem follows immediately, as a particular
case, from Proposition (0.15). From (399) as R = 0 and X is Killing we have

DµDνXλ = 0 .

Therefore, there exist constants aµν , bµ such that Xµ = aµνx
ν + bµ. Since X is

Killing DµXν = −DνXµ which implies aµν = −aνµ. Consequently X can be
written as a linear combination, with real coefficients, of the vector fields Tα, Lβγ .

Let now X be a conformal Killing vector field. There exists a function Ω such that
(X)πρσ = Ωηρσ (303)

From (399) and (400) it follows that

DµDνXλ =
1
2

(Ω,µηνλ + Ω,νηµλ − Ω,ληνµ) (304)

Taking the trace with respect to µ, ν, on both sides of (304) we infer that

�Xλ = −n− 1
2

Ωλ

DµXµ =
n+ 1

2
Ω (305)

and applying Dλ to the first equation, � to the second one and subtracting we
obtain

�Ω = 0 (306)
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Applying Dµ to the first equation of (305) and using (306) we obtain

(n− 1)DµDλΩ =
n− 1

2
(DµDλΩ +DλDµΩ) = −�(DµXλ +DλXµ)

= −(�Ω)ηµλ = 0 (307)

Hence for n 6= 1, DµDλΩ = 0. This implies that Ω must be a linear function of xµ.
We can therefore find a linear combination, with constant coefficients, cS + dαKα

such that the deformation tensor of X − (cS + dαKα) must be zero. This is the
case because (S)π = 2η and (Kµ)π = 4xµη. Therefore X − (cS + dαKα) is Killing
which, in view of the first part of the theorem, proves the result.

Part 3 can be easily derived by solving (303). Indeed posing X = a∂0 + b∂1, we
obtain 2D0X0 = −Ω, 2D1X1 = Ω and D0X1 + D1X0 = 0. Hence a, b verify the
system

∂a

∂x0
=

∂b

∂x1
,
∂b

∂x0
=

∂a

∂x1
.

Hence the one form adx0 + bdx1 is exact, adx0 + bdx1 = dφ, and ∂2a
∂x02 = ∂2b

∂x12 , that
is �φ = 0. In conclusion

X =
1
2

(
∂φ

∂x0
+

∂φ

∂x1

)
(∂0 + ∂1) +

1
2

(
∂φ

∂x0
− ∂φ

∂x1

)
(∂0 − ∂1)

which proves the result.

Remark. Expresse relative to the canonical null pair,

T0 = 2−1(L + L), S = 2−1(uL + u L), K0 = 2−1(u2 L + u2 L).
(308)

Both T0 = ∂t and K0 = (t2+|x|2)∂t+2txi∂i are causal. This makes them important
in deriving energy estimates. Observe that S is causal only in J +(0) ∪ J−(0).

3.4. Null hypersurfaces. Null hypersurfaces are particularly important as
they correspond to the propagation fronts of solutions to the wave or Maxwell
equation in Minkowski space4. The simplest way to describe the geometry of a
null hypersurfaces is to start with a codimension one hypersurface S0 ⊂ Σ0, where
Σ0 is a fixed spacelike hypersurface of Mn+1. At every point p ∈ S0 there are
precisely two null directions ortogonal to the tangent space Tp(S0). Let L denote
a smooth null vectorfield orthogonal to S0 and consider the congruence of null
geodesics5 generated by the integral curves of L. As long as these null geodesics
do not intersect the congruence forms a smooth null hypersurface N . We can also
extend L, by parallel transport, to all points of N . Clearly DLL = 0, m(L,L) = 0,
moreover m(L,X) = 0 for every vector X tangent to N . Observe also that L is
uniquely defined up to multiplication by a conformal factor depending only on S0.
Define, for all vectorfields X,Y tangent to N ,

γ(X,Y ) = m(X,Y ), χ(X,Y ) = m(DXL, Y ) (309)

They are both symmetric tensors, called, respectively, the first and second null fun-
damental forms of N . Observe that χ is uniquely defined up to the same conformal

4Or more generally on a Lorentz spacetime.
5These are in fact straight lines in Minkowski space.
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factor associated to L. Clearly γ(L,X) = χ(L,X) = 0 for all X tangent to N ,
therefore they both depend, at a fixed p ∈ N , only on a fixed hyperplane transver-
sal to Lp. Define s, called affine parameter, by the condition L(s) = 1, s = 0 on S0.
Its level surfaces defines the geodesic foliation of N . Given coordinates w = (ωa),
a = 1, . . . n− 1 on S0 we can parametrize points on Ss by the flow xµ(s, ω) defined
by dxµ

ds = Lµ with xµ(0, ω) the point on S0 of coordinates w. Let,

γab = γ(
∂

∂ωa
,
∂

∂ωa
), χab = χ(

∂

∂ωa
,
∂

∂ωb
)

denote the components of γ and χ relative to these coordinates. One can easily
check that d

dsγab = 2χab. The volume element of Ss is given by

daSs =
√
|γ|dω1 . . . dwn−1

with γ the determinant of the metric γ. Observe that d
ds log |γ| = γab ddsγab = 2trχ,

with trχ = γabχab the expansion coefficient of the null hypersurface. Thus,

d

ds

√
|γ| = trχ

√
|γ|.

The rate of change of the total volume |Ss| is given by the following formula,

d

ds
|Ss| =

∫
Ss

trχdaSs . (310)

We also remark that χ verifies the following Ricatti type equation,

d

ds
χ+ χ2 = 0 (311)

which can be explicitely integrated. Thus one can verify that trχ(s, ω0) may become
−∞ at a finite value of s > 0 if trχ(0, ω0) < 0 at some point of S0. This occurence
corresponds to the formation of a caustic.

An arbitrary foliation Sv on N can be parametrized by v(s, ω) with (s, ω) the
geodesic coordinates defined above. We call Ω = dv

ds the null lapse function of the
foliation and denote by γ′ and χ′ the restiction of γ, χ to Sv. If X is a vectorfield
tangent to the geodesic foliation Ss then X ′ = X − Ω−1X(v)L is tangent to Sv.
Thus, if X,Y are tangent to Ss then γ(X,Y ) = γ(X ′, Y ′) and χ(X ′, Y ′) = χ(X,Y ).
Relative to the coordinates (v, ω) we have

γ′ab = γab, χ′ab = χab.

To define the volume element on a null hypersurface N we choose an arbitrary
foliation v with null lapse function dv

ds = Ω and induced metric γ and set

daN = Ω−1daSvdv (312)

where daSv denotes the area element of Sv induced by γ. The definition does not
depend on the particular foliation.
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3.5. Energy momentum tensor. An energy momentum tensor in Rn+1 is
a symmetric two tensor Qαβ verifying the positive energy condition,

Q(X,Y ) ≥ 0,

for all X,Y causal, future oriented. We say that Q is divergenceless if,

DβQαβ = 0 (313)

Given an arbitrary vectorfield X,

Dα(QαβXβ) = QαβDαXβ =
1
2
Qαβ (X)παβ ,

where (X)π = LXm denotes the deformation tensor of X. Recall that (X)παβ =
∂αXβ + ∂βXα. In the particular case when X is a Killing vectorfield, that is
(X)π = 0, we derive

Dα(QαβXβ) = 0. (314)

The same identity holds if X is conformal Killing and Q is traceless, that is
mαβQαβ = 0.

A typical conservation law is obtained when we integrate the latter identity, and
apply Stokes theorem, on a regular conservative spacetime domain( see section 3.1)
J +(D1)∩J−(D2) with smooth spacelike boundaries Di ⊂ Σi and null boundaries
Ni, i = 1, 2. We denote by T1, T2 the future unit normals to the spacelike hyper-
surfaces Σ1,Σ2 and chose the null normals L1, L2 such that m(Li, Ti) = −1 along
the boundaries Di ⊂ Σi, i = 1, 2. For simplicity we denote both timelike normals
by T and both null normals by L whenever there is no possibility of confusion.

Proposition 3.6. Assume that Qαβ is a divergenceless energy momentum tensor
and X a Killing vectorfield in a neighborhood of the regular conservative domain
J (D1, D2) as above. Then,∫

N2

Q(X,L) +
∫
D2

Q(X,T ) =
∫
N1

Q(X,L) +
∫
D1

Q(X,T ) (315)

The integrals are taken with respect to the area elements daN along the null hyper-
surfaces N1,N2 and the area elements of the Riemannian metrics induced by m on
Σ1,Σ2. Observe that all integrands are positive if X is causal. The identity (315)
remains valied if X is conformal Killing and Q is traceless.

Proof : Let Pα = QαβX
β . According to eqrefeq:cons-law1 we have DαPα = 0.

The result simplifies for domains of dependence J +(Σ1)∩J−(D ⊂ Σ2), or influence
J +(D ⊂ Σ1) ∩ J−(Σ2), with Σ2 in the future of Σ1. We normalize L by the
condition m(L, T ) = −1 on ∂D ⊂ Σ2 where T denotes the unit normal to Σ1,Σ2.

Corollary 3.7. If Q is divergenceless, X is Killing and D ⊂ Σ2,∫
N
Q(X,L) +

∫
D⊂Σ2

Q(X,T ) =
∫
J−(D)∩Σ1

Q(X,T ) (316)
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Similarily, if D ⊂ Σ1,∫
N
Q(X,L) +

∫
D⊂Σ1

Q(X,T ) =
∫
J+(D)∩Σ2

Q(X,T ) (317)

The identity remains true if X is conformal Killing and Q is traceless.

4. Wave Equation in Rn+1

We rely on the notations and results of section 3.1. The wave operator in Minkowski
space Rn+1 is defined by � = mαβ∂α∂β = −∂2

t +
∑n
i=1 ∂

2
i . It is the simplest

scalar operator invariant with respect to the Poincaré group, consisting of both
translations and Lorentz transformations, i.e. the group of isometries of Rn+1. To
solve the wave equation means to find solutions φ(t, x) which verify �φ = 0. The
Cauchy problem6 for � consists in finding solutions to �φ = 0 with prescribed φ
and normal derivative of φ on a given spacelike hypersurface Σ0. In the particular
case when Σ0

Definition. The energy momentum tensor (see section 3.5) of a solution �φ = 0
is given by,

Qαβ = Qαβ [φ] = ∂αφ∂βφ−
1
2
mαβ

(
mµν∂µφ∂νφ). (318)

Proposition 4.1. The tensor Q is symmetric and divergenceless, ∂βQαβ = 0.
Moreover, for any time-like or null(that is causal), future oriented, vectorfields
X,Y , we have,

Q(X,Y ) > 0.

Proof : The only part which is not immediate is the positivity of Q. Take X,Y
arbitrary future oriented causal vectors. The 2-plane which they generate intersects
the light cone through the origin along two distinct null directions. Choose L,L two
null, future oriented, vectors along the these directions such that < L, L >= −2.
Choose also vectors (ea)1=1,...n−1 such that they form a null frame together with
L,L. Observe that,

Q(L,L) = |L(φ)|2, Q(L,L) = |L(φ)|2, Q(L,L) = |∇φ|2 =
∑

a=1,...n−1

|ea(φ)|2

On the other hand both X,Y are linear combinations of L,L with positive coeffi-
cients.

It is easy to observe that We are thus in a position to apply proposition 3.6 and
its corollary, see section 3.5, concerning conservation laws associated to Q. In
particular we derive the following,

6more generally one may consider, in addition to the Cauchy problem on Σ0 a boundary
condition on the timelike boundary of a spacetime domain ⊂ Rn+1.
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Theorem 4.2 (Noëther theorem). Consider an arbitrary solution of �φ = 0, a
Killing vectorfield X and any domain of dependence J−(D ⊂ Σ2)∩J +(Σ1) ⊂ Rn+1

with Σ1,Σ2 spacelike hypersurfaces, Σ2 ⊂ J +(Σ1), and regular null boundary N .
Then, with Q = Q[φ] as above and L, T as in corollary 3.7 (section 3.5),∫

N
Q(X,L) +

∫
D

Q(X,T ) =
∫
J−(D)∩Σ1

Q(X,T ) (319)

When X = T0 = ∂t we obtain the law of conservation of energy. For X = Ti = ∂i,
i = 1, . . . , n we derive conservation of linear momentum while with X = Oij =
xi∂j −xj∂i ( see section ??) we derive the conservation law of angular momentum.

Observe that,

Q(T0, T ) =
1
2
(
|∂tφ|2 + |Dφ|2

)
.

where |Dφ| denotes the norm of the gradient of φ along Σt. Also Q(L, T0) =
1
2

(
|Lφ|2 + |∇φ|2) with |∇φ| the norm of the gradient of φ restricted to the n − 1

dimensional surfaces Σt ∩N .

Corollary 4.3. Consider D ⊂ Σ2 ⊂ J +(Σ1). Assume that φ and its normal
derivative T (φ) vanish on J−(D) ∩ Σ1 and that �φ = 0 in a neighborhood of the
domain of dependence J−(D) ∩ J +(Σ1). Then φ ≡ 0 in J−(D) ∩ J +(Σ1).

Corollary 4.4 (Huygens Principle). Any solution of �φ = 0 with initial data
supported in the closure of a domain in D ⊂ Σ1 is supported in J−(F ) ∪ J +(F ).

4.5. Representation formulas. The above uniqueness results applies in par-
ticular to the standard initial value problem (i.v.p.) for the equation,

�φ = F, φ(0, x) = f(x), ∂tφ(0, x) = g(x) (320)

According to the results of the previous section any two solutions of (320) must
coincide. By the principle of superposition7 to solve (320) it suffices to consider,
separately,

Case 1. F = 0 and f, g arbitrary,

Case 2. f = g = 0 and F arbitrary.

Case 1 can be further reduced to what is called reduced i.v.p.,

�φ = 0, φ(0, x) = f(x), ∂tφ(0, x) = 0. (321)

Exercise. Show how to deduce the general homogeneous solution of case 1 from
the reduced problem.

We have already found a fundamental solution for �,

E
(n+1)
+ (t, x) = cnH(t)χ−

n−1
2

+ (t2 − x2), (322)

7that is linearity of �
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We can now show, using the results of the previous section, that E(n+1)
+ is the

unique fundamental solution of �, supported in the upper half plane t ≥ 08.

The fundamental solution takes a particularly simply form for n = 3 and n = 2.
Indeed, for n = 3, χ−1

+ = δ0, the one dimensional Dirac measure supported at the
origin. In that case the solution to the reduced initial value problem takes the form,

φ(t, x) =
1

4πt

∫
|x−y|=t

g(y)dSy (323)

For n = 2 we have χ−1/2
+ (λ) = λ

−1/2
+ , with λ+ the positive part of λ. In all other

odd dimensions, n ≥ 3, the fundamental solution E+ can be expressed in terms of
derivatives of δ0. The case of even dimensions can be reduced to odd dimensions
by the so called method of descent. In particular, for two space dimensions the
solution to the reduced Initial value problem takes the form,

φ(t, x) =
1

2πt

∫
|x−y|≤t

1√
t2 − |x− y|2

g(y)dy (324)

Exercise. Derive (324) from (323) by interpreting solutions φ(t, x1, x2) of �φ = 0
in R1+2 as solutions φ(t, x1, x2, x3) of �φ = 0 in R1+3 which are constant in x3.

Remark. It is a remarkable fact that in all odd space dimensions9 the funda-
mental solution is supported on the boundary of the future null cone of the origin,
{(t ≥ 0, x)/t2 − |x|2 = 0}. This is called Strong Huygens Principle.

The fundamental solution allows us to find explicit representations for (321). There
are three other known methods of solving directly (321), without the a-priori knowl-
edge of the fundamental solution.
Fourier transform. The best known method is based on taking the Fourier
transform of equation (321) with respect to the space variables. Thus, denoting
by φ̂(t, ξ) the Fourier transform of φ(t, x) in x, one derives ∂2

t φ̂ + |ξ|2φ̂ = 0 and
φ̂(0) = f̂ , ∂tφ̂(0) = 0. Hence, solving the differential equation and using the
inversion formula for the Fourier transform,

φ(t, x) = (2π)−n
∫

Rn
cos (t|ξ|)eix·ξ f̂(ξ)dξ (325)

Plane waves. The method is based on the observation that if gω(x) = g(x · ω),
for ω ∈ Sn−1, then φ(t, x) = 2−1

(
gω(x · ω + t) + gω(x · ω − t)

)
verifies (321) with

f = gω. On the other hand, for odd n ≥ 3, an arbitrary smooth function f can
be expressed in the form 10 f(x) = cn

∫
|ω|=1

gω(x)dSω with gω(x) =
∫

Rn |(x − y) ·
ω| ∆(n+1)/2

y f(y)dy. Alternatively one can reexpress (325) using polar coordinates.

8in fact it is supported in the future null cone with vertex at the origin, |x| ≤ t.
9while for even dimensions the support of the fundamental solution extends to the interior

of the cone
10For some constant cn. Indeed

R
Rn |(x− y)ω| = an|x− y| for some constant an. Also, using

the fundamental solution of ∆, ∆(n+1)/2|x− y| = bnδ0(x− y) for another constant bn.
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Thus, for odd n,

φ(t, x) = (2π)−n
∫
|ω|=1

dSω

∫ ∞
0

cos (tλ)eiλ(x·ω)f̂(λω)λn−1dλ

=
1
2

(2π)−n
∫
|ω|=1

dSω

∫ ∞
−∞

cos (tλ)eiλ(x·ω)f̂(λω)λn−1dλ

=
1
4

(2π)−n
∫
|ω|=1

dSω

∫ ∞
−∞

(eiλ(t+x·ω) + eiλ(t−x·ω))f̂(λω)λn−1dλ

=
1
4

(2π)−n
∫

Rn
f(y)dy

∫
|ω|=1

dSω
( ∫ ∞
−∞

(eiλ(t+(x−y)·ω) + eiλ(t−(x−y)·ω)
)
λn−1dλ

)
=

1
4

(2π)−n+1

∫
|ω|=1

∫
Rn

(
δ

(n−1)
0 (t+ (x− y) · ω) + δ

(n−1)
0 (t− (x− y) · ω)

)
f(y)dy

where δ(n−1)
0 denotes the n− 1 derivative11 of the Dirac measure δ0. Therefore,

φ(t, x) =
∫
|ω|=1

dn−1

dtn−1

(
p+(f, ω) + (−1)n−1p−(f, ω)

)
(t, x)dSω (326)

where p±(f, ω) define the plane waves, p±(f, ω)(t, x) = 4−1(2π)−n+1
∫

(x−y)·ω=∓ t f(y) dSy.
In the particular case of dimension n = 1 we derive

φ(t, x) = 2−1
(
f(x− t) + f(t+ x)

)
. (327)

Spherical means. One considers the spherical means of a function g in Rn,
Mg(x, r) = |S(x, r)|−1

∫
S(x,r)

g(y)dSy with S(x, r) the sphere of radius r centered
at x and |S(x, r)| its area. It is easy to see that Mg(x, r) verifies the Darboux
equation (∂2

r + n−1
r ∂r)Mg = ∆Mg. If φ verifies (321) then Mφ(t, r, x) verifies the

Euler -Poisson-Draboux equation

∂2
t (Mφ) = (∂2

r +
n− 1
r

∂r)Mφ, Mφ(0, r, x) = Mf (r, x), ∂tMφ(0, r, x) = 0.

This can be explicitely solved for odd values of n. In the particular case n = 3,12

φ(t, x) = ∂t
(
(4πt)−1

∫
|x−y|=t

f(y)dSy
)

(328)

Formulas (325)–(328) can be easily extended to �φ = 0, φ(0, x) = f, ∂tφ(0, x) =
g(x). To solve the inhomogeneous problem �φ = F one needs to rely on the fol-
lowing,

Duhamel Principle. The solution to �φ = F, φ(0) = φt(0) = 0 can be expressed
in the form, φ(t, x) =

∫ t
0

Φs(t, x)ds where, for every 0 ≤ s ≤ t, Φs(t, x) verifies
�Φs = 0 with initial data at time s, Φs(s, x) = 0, ∂tΦs(s, x) = F (t, x).

11in the sense of distributions
12Clearly (328) can also be derived from (325), by evaluating

R
cos (t|ξ|)ei(x−y)·ξdξ.
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4.6. A-priori estimates. We can see from both representation formulas (326)
and (328) that the solutions φ(t, x) of �φ = 0 in Rn+1, n > 1, lose derivatives
in the uniform L∞ norm relative to the space variables x. One can show that this
phenomenon, due to focusing of waves, holds true any Lp norm with p 6= 2. For
p = 2, on the other hand, the law of conservation of energy gives,

‖∂tφ(t)‖2L2(Rn) +
n∑
i=1

‖∂iφ(t)‖2L2(Rn) =
n∑
i=1

‖∂if‖2L2(Rn) (329)

This follows easily from theorem 4.2 applied to D = Σ2 and Σ1,Σ2 level hypersur-
faces of the standard time function t = x0. This global energy identity can also be
derived, by Plancherel formula, from the Fourier representation formula (325).

In particular we have the energy inequalities

‖∂tφ(t)‖L2 , ‖∇φ(t)‖L2 ≤ ‖∇f‖L2 .

Thus, if f ∈ H1(Rn) the solution φ remains in H1(Rn) for any later time t ≥ 0.
Morever, using the fact that all partial derivatives ∂i commute with �, one can
easily show that,

sup
t≥0
‖∂φ(t)‖Hs ≤ ‖f‖Hs+1 (330)

In particular f ∈ Hs(Rn) implies φ(t) ∈ Hs(Rn). Also, for every positive integer
k, ∂kt φ(t) ∈ Hs−k(Rn). Thus, in particular, f ∈ C∞ implies φ ∈ C∞. Singularities
of f , however, propagate , along null hypersurfaces, to all spacetime. This fact
is in sharp contrast to solutions of the boundary value problem for the Laplace
equation( see section ? ) ∆φ = 0, in a regular open domain D ⊂ Rn, which
are automatically in C∞(D), independent of the regularity at the boundary of D.
Precise information about the propagation of singularities can be given using wave
front sets and bicharacteristics.

Estimate (330) to derive a global uniform bound for φ. Indeed, using the Sobolev
inequality in Rn, ‖g‖L∞ . ‖g‖Hs(Rn), with s > n/2, we infer that,

‖∂φ‖L∞(Rn+1) . ‖f‖Hs+1(Rn), s > n/2 (331)

Thus L2 bounds for sufficiently many derivatives of the initial data f assures the
uniform boundedness of solution φ of (321). What is significant in this derivation
of uniform boundedness is its a-priori character, that is we did not need to appeal
to the exact form of solutions. This plays a fundamental role in dealing with more
complicated situations, when the exact form solutions is impossible to establish.
In fact one can use an extension of the method presented above, called invariant
vectorfield method to derive not just uniform boundedness but also uniform decay.
Indeed one can see from the explicit representation in terms of spherical means
that solutions φ(t, x) to (321), corresponding to sufficiently smooth, compactly
supported, data, decay uniformly in time like t−(n−1)/2. One can derive this fact,
by a-priori estimates, observing that � commutes not only with the coordinate
derivatives Tα = ∂α but also with the Killing vectorfields Oαβ , that is [�,Oαβ ] = 0.
Morever, [�,S] = −2�. Thus if Γk denotes any product of k vectorfields T,O,S,

�φ = 0⇒ �Γkφ = 0.
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As in the derivation13 of (330), we infer that

‖∂Γkφ(t)‖L2 ≤ Ik(f),

for a constant depending on f and k. Denoting

Es[∂φ](t) =
∑

Γ,0≤k≤s

‖∂Γkφ(t)‖L2 ,

we infer that,
Es[∂φ](t) . Is(f).

Finally, using a global Sobolev inequality for s > n/2, t ≥ 0,

|∂φ(t, x)| . (1 + t+ |x|)−(n−1)/2(1 + |t− |x|)−1/2 Is(f). (332)

In particular, if Is(f) is finite,

‖∂φ(t)‖L∞ . (1 + t)−(n−1)/2

as desired. In fact (332) provides more information, most of the energy of φ propa-
gates along the boundary of the outgoing null cones t−|x| = u, for t ≥ 0. Moreover
one can easily show that, relative to a canonical null frame L,L, ea, a = 1, . . . , n−1,
the derivatives L(φ), ea(φ) decay as t−(n+1)/2 as t→∞, while L(φ) improves only
by a power of the degenerate weight u. This simple fact explains the improved
behavior of null forms,

Qαβ(φ, ψ) = ∂αφ∂βψ − ∂βφ∂αψ, Q0(φ, ψ) = mαβ∂αφ∂βψ. (333)

One can easily show that, for any solutions �φ = �ψ = 0 and any null form Q, we
have ‖Q(φ, ψ)(t)‖L2(Rn+1) = O(t−(n+1)/2) as t→∞.14

13taking into account that f is smooth, compactly supported. One only needs, in fact, bounds

for some weighted Sobolev norms of f .
14This distinguishes null forms from typical bilinear expressions in ∂φ, ∂ψ for which the

corresponding decay rate is only O(t−(n−1)/2).





CHAPTER 3

Equations Derived by the Variational Principle

1. Basic Notions

In this section we will discuss some basic examples of nonlinear wave equations
which arise variationally from a relativistic Lagrangian. The fundamental objects
of a relativistic field theory are

• Space-time (M,g) which consists of an n + 1 dimensional manifold M
and a Lorentz metric g; i.e . a nondegenerate quadratic form with signa-
ture (−1, 1, . . . , 1) defined on the tangent space at each point of M. We
denote the coordinates of a point in M by xα, α = 0, 1, . . . , n.

Throughout most of this chapter the space-time will in fact be the
simplest possible example - namely, the Minkowski space-time in which
the manifold is Rn+1 and the metric is given by

ds2 = mαβdx
αdxβ = −dt2 +

(
dx1
)2

+ · · ·+ (dxn)2 (334)

with t = x0,mαβ = diag(−1, 1, . . . , 1). Recall that any system of coordi-
nates for which the metric has the form (334) is called inertial. Any two
inertial coordinate systems are related by Lorentz transformations.

• Collection of fields ψ = ψ(1), ψ(2), . . . , ψ(p) which can be scalars, ten-
sors, or some other geometric objects1 such as spinors, defined on M.

• Lagrangian density L which is a scalar function on M depending only
on the tensorfields ψ and the metric2 g.

We then define the corresponding action S to be the integral,

S = S[ψ,g : U ] =
∫
U
L[ψ]dvg

where U is any relatively compact set of M. Here dvg denotes the volume element
generated by the metric g. More precisely, relative to a local system of coordinates
xα, we have

dvg =
√
−gdx0dx1 · · · dxn =

√
−gdx

with g the determinant of the matrix (gαβ).

By a compact variation of a field ψ we mean a smooth one-parameter family of
fields ψ(s) defined for s ∈ (−ε, ε) such that,

1For simplicity we restrict ourselves to covariant tensors.
2as well as its inverse g−1

151
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(1) At s = 0, ψ(0) = ψ.
(2) At all points p ∈M \ U we have ψ(s) = ψ.

Given such a variation we denote δψ := ψ̇ := dψ(s)

ds

∣∣∣
s=0

. Thus, for small s,

ψ(s) = ψ + sψ̇ +O(s2)

A field ψ is said to be stationary with respect to S if, for any compact variation
(ψ(s),U) of ψ, we have

d

ds
S(s)

∣∣∣
s=0

= 0

where,
S(s) = S[ψ(s),g;U ]

We write this in short hand notation as
δS
δψ

= 0

Action Principle, also called the Variational Principle, states that an acceptable
solution of a physical system must be stationary with respect to a given Lagrangian
density called the Lagrangian of the system. The action principle allows us to derive
partial differential equations for the fields ψ called the Euler-Lagrange equations.
Here are some simple examples:

1. Scalar Field Equations :

One starts with the Lagrangian density

L[φ] = −1
2
gµν∂µφ∂νφ− V (φ)

where φ is a complex scalar function defined on (M,g) and V (φ) a given real
function of φ.

Given a compact variation (φ(s),U) of φ, we set S(s) = S[φ(s),g;U ]. Integration
by parts gives,

d

ds
S(s)

∣∣∣
s=0

=
∫
U

[−gµν∂µφ̇∂νφ− V ′(φ)φ̇]
√
−gdx

=
∫
U
φ̇[�gφ− V ′(φ)]dvg]

where �g is the D’Alembertian,

�gφ =
1√
−g

∂µ

(
gµν
√
−g ∂νφ

)
.

In view of the action principle and the arbitrariness of φ̇ we infer that φ must satisfy
the following Euler-Lagrange equation

�gφ− V ′(φ) = 0, (335)
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Equation (335) is called the scalar wave equation with potential V (φ).

CONFORMAL PROPERTIES 2. Wave Maps :

The wave map equations will be defined in the context of a space-time (M,g), a
Riemannian manifold N with metric h, and a mapping

φ : M −→ N.

We recall that if X is a vectorfield on M then φ∗X is the vectorfield on N defined
by φ∗X(f) = X(f ◦φ). If ω is a 1-form on N its pull-back φ∗ω is the 1-form on M
defined by φ∗ω(X) = ω(φ∗X), where X is an arbitrary vectorfield on M. Similarly
the pull-back of the metric h is the symmetric 2-covariant tensor on M defined by
the formula (φ∗h)(X,Y ) = h(φ∗X,φ∗Y ). In local coordinates xα on M and ya on
N , if φa denotes the components of φ relative to ya, we have,

(φ∗h)αβ(p) =
∂φa

∂xα
∂φb

∂xβ
hab(φ(p)) = 〈 ∂φ

∂xα
,
∂φ

∂xβ
〉

where < ·, · > denotes the Riemannian scalar product on N .

Consider the following Lagrangian density involving the map φ,

L = −1
2

Trg(φ∗h)

where Trg(φ∗h) denotes the trace relative to g of φ∗h. In local coordinates,

L[φ] = −1
2
gµνhab(φ)

∂φa

∂xµ
∂φb

∂xν
.

By definition wave maps are the stationary points of the corresponding action.
Thus by a a straightforward calculation,

0 =
d

ds
S(s)

∣∣∣
s=0

= I1 + I2 (336)

I1 = −1
2

∫
U

gµν
∂hab(φ)
∂φc

φ̇c ∂µφ
a∂νφ

b√−gdx

I2 = −
∫
U

gµνhab(φ)∂µφ̇a∂νφb
√
−gdx

After integrating by parts, relabelling and using the symmetry in b, c, we can rewrite
I2 in the form,

I2 =
∫
U
φ̇a
(
hab(φ)�gφ

b + gµν
∂hab
∂φc

∂µφ
c∂νφ

b

)
dvg (337)

=
∫
U
φ̇a
(
hab(φ)�gφ

b +
1
2
gµν

(
∂hab
∂φc

+
∂hac
∂φb

)
∂µφ

b∂νφ
c

)
dvg

Also, relabelling indices

I1 = −1
2

∫
U

gµν
∂hbc
∂φa

φ̇a ∂µφ
b∂νφ

c dvg.
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Therefore,

0 = I1 + I2

=
∫
U
φ̇a
(
hab�gφ

b + ∂µφ
b∂νφ

cgµν
1
2

(
∂hab
∂φc

+
∂hac
∂φb

− ∂hbc
∂φa

))
dvg

=
∫
U
φ̇a
(
had�gφ

d + ∂µφ
b∂νφ

cgµν
1
2
hdshad ·

(
∂hsb
∂φc

+
∂hsc
∂φb

− ∂hbc
∂φs

))
dvg

=
∫
U
φ̇ahad

(
�gφ

d + ∂µφ
b∂νφ

cgµνΓdbc
)
dvg

where Γdbc = 1
2h

ds
(
∂hsb
∂φc + ∂hsc

∂φb
− ∂hbc

∂φs

)
are the Christoffel symbols corresponding

to the Riemannian metric h. The arbitrariness of φ̇ yields the following equation
for wave maps,

�gφ
a + Γabc gµν∂µφb∂νφc = 0 (338)

Example: Let N be a two dimensional Riemannian manifold endowed with a

metric h of the form,

ds2 = dr2 + f(r)2dθ2

Let φ be a wave map from M to N with components φ1, φ2, relative to the r, θ
coordinates. Then, Γ1

11 = Γ2
11 = Γ1

12 = Γ2
22 = 0 and Γ1

22 = −f ′(r)f(r), Γ2
12 = f ′(r)

f(r) .
Therefore,

�gφ
1 = f ′(r)f(r)gµν∂µφ2∂νφ

2

�gφ
2 = −f

′(r)
f(r)

gµν∂µφ1∂νφ
2

The equations of wave maps can be given a simpler formulation when N is a sub-
manifold of the Euclidean space Rm. In this case, the metric h is the Euclidean
metric so the first term in (336) vanishes.

d

ds
S(s)

∣∣∣
s=0

= −
∫
U

gαβ〈 ∂φ
∂xα

,
∂φ̇

∂xβ
〉dvg

=
∫
U
< �φ, φ̇ > dvg

where 〈 ·, · 〉 is the Euclidean scalar product and � the D’Alembertian operator on
M. Thus the Euler-Lagrange equations take the form,

(�φ(p))T = 0 (339)

where T here means the projection onto the tangent space of N at φ(p).

In the special case when N ⊂ Rm is a hypersurface, we can rewrite (339) in a
more concrete form. Let ν be the unit normal on N and k the second fundamental
form k(X,Y ) = 〈DXν, Y 〉, with DX the standard covariant derivative of Euclidean
space. The hypersurface N is defined (locally) as the level set of some real valued
f . Differentiating the equation f(φ(x)) = 0 with respect to local coordinates xµ on
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M yields 0 =< ν(φ), ∂µφ > along M. Hence,

0 = ∂µ < ν(φ), ∂µφ >=< �φ, ν > +gµν < ∂νν(φ), ∂µφ >
= < 2φ, ν > +gµν < ∇φ∗(Eν)ν, φ∗ (Eµ) >

Where φ∗ (Eµ) = ∂φi

∂xµ
∂
∂yi is the pushforward of Eµ = ∂

∂xµ . In particular, φ∗(Eµ) is
tangent to N . Therefore,

< �φ, ν >= −k(φ∗(Eα), φ∗(Eα)) (340)

In view of (??) the equation for wave maps becomes,

�φ = −k(φ∗(Eα), φ∗(Eα))N

In the case when N is the standard sphere Sm−1 ⊂ Rm, k(X,Y ) = − < X,Y >
and the equation for wave maps becomes, in coordinates xα, ya,

�φa = −φagαβ < ∂φ

∂xα
,
∂φ

∂xβ
>

3. Maxwell equations:

An electromagnetic field F is an exact two form on a four dimensional manifold
M. That is, F is an antisymmetric tensor of rank two such that

F = dA (341)

where A is a one-form on M called a gauge potential or connection 1-form. Note
that A is not uniquely defined - indeed if χ is an arbitrary scalar function then the
transformation

A −→ Ã = A+ dχ (342)

yields another gauge potential Ã for F . This degree of arbitrariness is called gauge
freedom, and the transformations (342) are called gauge transformations.

The Lagrangian density for electromagnetic fields is

L[F ] = −1
4
FµνF

µν .

Any compact variation (F(s),U) of F can be written in terms of a compact variation
(A(s),U) of a gauge potential A, so that F(s) = dA(s). Write

Ḟ =
d

ds
F(s)

∣∣∣
s=0

, Ȧ =
d

ds
A(s)

∣∣∣
s=0

so that relative to a coordinate system xα we have Fµν = ∂µAν−∂νAµ and therefore
Ḟµν = ∂µȦν − ∂νȦµ. The action principle gives

0 =
d

ds
S(s)

∣∣∣
s=0

= −1
2

∫
M

ḞµνF
µνdvg

= −1
2

∫
U

(∂µȦν − ∂νȦµ)Fµνdvg

= −
∫
U
∂µȦνF

µνdvg =
∫
U
Ȧν

(
1√
−g

∂ν
(√
−gFµν

))
dvg
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Note that the second factor in the integrand is just DµF
µν where D is the covariant

derivative on M corresponding to g. Hence the Euler-Lagrange equations take the
form

DνF
µν = 0. (343)

Together, (341) and (343) constitute the Maxwell equations.

Exercise. Given a vector field Xα on M, show

DαX
α =

1√
−g

∂α
(√
−gXα

)
We can write the Maxwell equations in a more symmetric form by using the Hodge
dual of F ,

?Fµν =
1
2
∈µναβ Fαβ

and by noticing that (343) is equivalent to d ?F = 0. The Maxwell equations then
take the form

dF = 0, d ?F = 0 (344)

or, equivalently,

DνF
µν = 0, Dν

?Fµν = 0 (345)

Note that since Lorentz transformations commute with both the Hodge dual and
exterior differentiation, the Lorentz invariance of the Maxwell equations is explicit
in (344).

Definition. Given X an arbitrary vector field, we can define the contractions

Eα = (iXF )α = XµFαµ

Hα = (iX ?F )α = Xµ ?Fαµ

called, respectively, the electric and magnetic components of F . Note that both
these one-forms are perpendicular to X.

We specialize to the case when M is the Minkowski space and X = d
dx0 = d

dt . As
remarked, E,H are perpendicular to d

dt , so E0 = H0 = 0. The spatial components
are by definition

Ei = F0i

Hi = ?F0i =
1
2
∈0ijk F

jk =
1
2
∈ijk F jk

We now use (344) to derive equations for E and H from above, which imply

Dν
?Fµν = 0 (346)

and (343), respectively. Setting µ = 0 in both equations of (345) we derive,

∂iEi = 0, ∂iHi = 0 (347)

Setting µ = i and observing that Fij =∈ijk Hk, ?Fij = − ∈ijk Ek we write

0 = −∂0Ei + ∂jFij = ∂0Ei+ ∈ijk ∂jHk = ∂tEi + (∇×H)i
0 = ∂tHi− ∈ijk ∂jEk = ∂tHi − (∇× E)i
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Therefore,

∂tE +∇×H = 0 (348)
∂tH −∇× E = 0 (349)

Alongside (348) and (349) we can assign data at time t = 0,

Ei(0, x) = E
(0)
i , Hi(0, x) = H

(0)
i

Exercise. Show that the equations (347) are preserved by the time evolution
of the system (348)-(349). In other words if E(0), H(0) satisfy (347) then they are
satisfied by E,H for all times t ∈ R.

4. Yang-Mills equations :

The Lagrangians of all classical field theories exhibit the symmetries of the space-
time. In addition to these space-time symmetries a Lagrangian can have symmetries
called internal symmetries of the field. A simple example is the complex scalar
Lagrangian,

L = −1
2
mαβ∂αφ∂βφ− V (|φ|)

where φ is a complex valued scalar defined on the Minkowski space-time Rn+1,
φ̄ its complex conjugate. We note that L is invariant under the transformations
φ → eiθφ with θ a fixed real number. It is natural to ask whether the Lagrangian
can be modified to allow more general, local phase transformations of the form
φ(x) → eiθ(x)φ(x). It is easy to see that under such transformations, the La-
grangian fails to be invariant, due to the term mαβ∂αφ∂βφ. To obtain an in-
variant Lagrangian one replaces the derivatives ∂αφ by the covariant derivatives
D

(A)
α φ ≡ φ,α + iAαφ depending on a gauge potential Aα. We can now easily check

that the new Lagrangian

L = −1
2
mαβD(A)

α φD̄
(A)
β φ− V (|φ|)

is invariant relative to the local transformations,

φ(xα)→ eiθ(x)φ(xα) , Aα → Aα − θ,α
called gauge transformations.

Remark that the gauge transformations introduced above fit well with the definition
of the electromagnetic field F . Indeed setting F = dA we notice that F is invariant.
This allows us to consider a more general Lagrangian which includes F ,

L = −1
4
FαβF

αβ − 1
2
mαβφ,αφ̄,β − V (|φ|)

called the Maxwell-Klein-Gordon Lagrangian.

The Yang-Mills Lagrangian is a natural generalization of the Maxwell-Klein-Gordon
Lagrangian to the case when the group SU(1), corresponding to the phase trans-
formations of the complex scalar φ, is replaced by a more general Lie group G. In
this case the role of the gauge potential or connection 1-form is taken by a G valued
one form A = Aµdx

µ defined on M. Here G is the Lie algebra of the Lie group G.
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Let [ ·, · ] its Lie bracket and < ·, · > its Killing scalar product. Typically the Lie
group G is one of the classical groups of matrices, i.e. a subroup of either Mat(n,R)
or Mat(n,C). We pause briefly to recall some facts about the relavent Lie groups
and their Lie algebras.

(1) The orthogonal groups O(p, q). These are the groups of linear transfor-
mations of Ren which preserve a given nondegenerate symmetric bilinear
form of signature p, q, p + q = n. We denote by Rn

p,q the corresponding
space. The case p = 0 is that of the Euclidean case, the group is then
simply denoted by O(n). The case p = 1, q = n is that of the Minkowski
space-time Rn+1, the group O(1, n) is the Lorentz group. In general let
Q be the diagonal matrix whose first p diagonal elements are −1 and the
remaining ones are +1. Then,

O(p, q) = {L ∈ Mat(n,R)|LTQL = Q}
= {L ∈ Mat(n,R)|LMLT = M}

Note that for L ∈ O(p, q), det(L) = ±1.
Recall that the special orthogonal groups SO(p, q) are defined by

SO(p, q) = {L ∈ O(p, q)|det L = 1}.
They correspond to all orientation preserving isometries of Rn

p,q. Both
O(p, q) and SO(p, q) have as Lie algebra3

SO(p, q) = {A ∈ Mat(n,R)|AQ+QAT = 0}.
and that dimRO(p, q) = dimRSO(p, q) = n(n− 1)/2. The Lie bracket on
SO(p, q) is the usual Lie bracket of matrices,

i.e. [A,B] = AB −BA and we have the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 (350)

and its Killing scalar product < A,B >= −Tr(ABT ) (where Tr is the
usual trace for matrices) enjoys the compatibility condition

< A, [B,C] >= − < [A,B], C > (351)

(2) The unitary groups U(p, q). These are the complex analogues of the
orthogonal groups. They are the groups of all linear transformations of
Cn which preserve a given nondegenerate hermitian bilinear form. Denote
by Cnp,q the corresponding space. Then, with the matrix Q as above,

U(p, q) = {U ∈ Mat(n,C) | U∗QU = Q}
and,

SU(p, q) = {U ∈ U(p, q) | detU = 1},
The corresponding Lie algebras are,

U(p, q) = {A ∈ Mat(n,C) | AQ+QA∗ = 0},
SU(p, q) = {A ∈ U(p, q) | trMA = 0},

where the trace trQA = QijAij . The Lie bracket is again the usual one for
matrices. The Killing scalar product is given by < A,B >= −Tr(AB∗).
Remark also that dimRU(p, q) = n2, dimRSU(p, q) = n2 − 1.

3Recall that the Lie algebra of a Lie group G is simply the tangent space to G at the origin.
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In the Yang-Mills theory one is interested in compact Lie groups with a positive
definite Killing form. This is the case for the groups O(n), SO(n), U(n), SU(n).

In a given system of coordinates the connection 1-form A has the form, Aµdxµ and
we define the (gauge) covariant derivative of a G-valued tensor ψ by

D(A)
µ ψ = Dµψ + [Aµ, ψ] (352)

where D is the covariant derivative on M. Observe that (352) is invariant under
the following gauge transformations, for a given G-valued gauge potential A and a
G- valued tensor ψ,

ψ̃ = U−1ψU, Ãα = U−1AαU +
(
DαU

−1
)
U (353)

with U ∈ G.

Proposition 1.1.

D(Ã)
µ ψ̃ = U−1

(
D(A)
µ ψ

)
U

= D̃Aψ

Proof : This just requires some patience. First we will show

Dα

(
U−1ψU

)
= U−1

(
Dαψ + [ψ,U(DαU

−1)]
)
U

Indeed

Dα

(
U−1ψU

)
=

(
DαU

−1
)
ψU + U−1 (Dαψ)U + U−1ψ (DαU)

= U−1
(
− (DαU)U−1ψ + Dαψ + ψ (DαU)U−1

)
U

= U−1
(
Dαψ + [ψ, (DαU)U−1]

)
U

as desired. Hence

D(Ã)
α ψ̃ = Dαψ̃ + [Ãα, ψ̃]

= U−1
(
Dαψ + [ψ,U

(
DαU

−1
)
]
)

+
[
U−1AαU +

(
DαU

−1
)
U,U−1ψU

]
= U−1

(
Dαψ + [ψ, (DαU)U−1] + [Aα, ψ] +

[
U
(
DαU

−1
)
, ψ
])
U

= U−1 (Dαψ + [Aα, ψ])U = D̃(A)
α ψ

As in Riemmanian geometry, commuting two (gauge) covariant derivatives produces
a fundamental object called the curvature, here denoted by F

DαDβψ −DβDαψ = [Fαβ , ψ] (354)

where the components Fαβ of the curvature can be deduced by the following
straightforward computation:

DαDβψ = Dα (Dβψ) + [Aα,Dβψ]
= Dα (Dβψ + [Aβ , ψ]) + [Aα,Dβψ + [Aβ , ψ]]
= DαDβψ + [DαAβ , ψ] + [Aβ ,Dαψ] + [Aα,Dβψ] + [Aα, [Aβ , ψ]]
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So that

(DαDβ −DβDα)ψ = [DαAβ −DβAα, ψ]
+ [Aα, [Aβ , ψ]]− [Aβ , [Aα, ψ]]︸ ︷︷ ︸

[[Aα,Aβ ],ψ]

Therefore,

Fαβ = DαAβ −DβAα + [Aα, Aβ ] (355)

We leave it to the reader to show that the curvature tensor F is invariant under
gauge transformations. That is,

F̃ (Ã)
(
≡ U−1F (Ã)U

)
= F (A)

and that F satisfies the Bianchi identity

DαFβγ + DγFαβ + DβFγα = 0 (356)

We are finally ready to present the generalization of the Maxwell theory provided
by the Yang-Mills Lagrangian:

L[A] = −1
4
< F

(A)
αβ , F

(A)αβ >G (357)

We derive the Euler-Lagrange equations just as in the Maxwell theory,

0 =
d

ds
S(s)

∣∣∣
s=0

= −1
2

∫
U
< Ḟαβ , F

αβ >G dvg

= −1
2

∫
U
< DαȦβ −DβȦα + [Ȧα, Aβ ] + [Aα, Ȧβ ], Fαβ >G dvg

= −
∫
U
< DαȦβ , F

αβ > + < [Aα, Ȧβ ], Fαβ >G dvg

=
∫
U
< Ȧβ ,DαF

αβ >G + < Ȧβ ,
[
Aα, F

αβ
]
>G dvg

which implies

DνF
µν = 0 (358)

Together, (356) and (358) form the Yang-Mills equations.

Note that the equations are invariant under the group of gauge transformations.
A solution of the Yang-Mills equations, then, is an equivalence class of gauge-
equivalent potentials Aα whose curvature F satisfies (358).

In our later treatment of Yang-Mills, we will almost always specify a representative
of a solution’s equivalence class by imposing additional constraints - called gauge
conditions - on A. There are three standard ways of doing this, each yielding its
own rendition of the Yang-Mills equations with its own faults and advantages:

• Coulomb Gauge is defined by,

∇iAi(t, x) = 0 (t, x) ∈ Rn+1 (359)



1. BASIC NOTIONS 161

To simplify notation, first write (358) in terms of the current J .

DβFαβ = Jα = −
[
Aβ , Fα,β

]
(360)

When α = 0 (359) allows us to write (360) as

J0 = ∂iF0i = ∂i (∂0Ai − ∂iA0 + [A0, Ai])−∆A0 + ∂i[A0, Ai]

giving us for the time component of A:

∆A0 = 2 [∂iA0, Ai] + [A0, ∂tAi] + [Ai, [A0, Aj ]] (361)

When α = i, (360) reads

Ji = −∂t + ∂jFij = −∂t (∂iA0 + [Ai, A0]) + ∂j (∂iAj − ∂jAi + [Ai, Aj ])

and after simplifying,

2Ai = −∂t∂iA0 − 2 [Aj , ∂jAi] + [Aj , ∂iAj ] + [∂tAi, Aj ]
+2 [A0, ∂tAi]− [A0, ∂iA0]− [Aj , [Aj , Ai]] + [A0, [A0, Ai]] (362)

• Lorentz Gauge is specified by,

∂µAµ(t, x) = 0 (t, x) ∈ R3+1 (363)

Appealing in its symmetric treatment of the time and space components
of A, , the Lorentz gauge also allows (358) to be written as a system of
wave equations:

DβFαβ = Dβ (∂αAβ − ∂βAα + [Aα, Aβ ])

= −2Aα + ∂β [Aα, Aβ ] + [Aβ , ∂αAβ ]− [Aβ , ∂βAα] +
[
Aβ , [Aα, Aβ ]

]
The system can be written schematically in the form

2Φ = Φ · ∂Φ + Φ3

Again, it is not at all clear that one can transform an arbitrary solution
into the Lorentz gauge. In addition, we will have a hard time finding good
estimates for this purely hyperbolic system of nonlinear wave equations.

• Temporal Gauge is specified by the condition A0 = 0.

5. The Einstein Field Equations:

According to the general relativistic variational principle the space-time metric g
is itself stationary relative to an action,

S =
∫
U
Ldvg.

Here U is a relatively compact domain of (M,g) and L, the Lagrangian, is assumed
to be a scalar function on M whose dependence on the metric should involve no
more than two derivatives4. It is also assumed to depend on the matterfields ψ =
ψ(1), ψ(2), . . . ψ(p) present in our space-time.

4In fact we only require that the corrsponding Euler-Lagrange equations should involve no
more than two derivatives of the metric.
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In fact we write,
S = SG + SM

with,

SG =
∫
U
LGdvg

SM =
∫
U
LMdvg

denoting, respectively, the actions for the gravitational field and matter. The mat-
ter Lagrangian LM depends only on the matterfields ψ, assumed to be covariant
tensorfields, and the inverse of the space-time metric gαβ which appears in the
contraction of the tensorfields ψ in order to produce the scalar LM . It may also
depend on additional positive definite metrics which are not to be varied 5.

Now the only possible candidate for the gravitational Lagrangian LG, which should
be a scalar invariant of the metric with the property that the corresponding Euler-
Lagrange equations involve at most two derivatives of the metric, is given6 by the
scalar curvature R. Therefore we set,

LG = R.

Consider now a compact variation (g(s),U) of the metric g. Let ġµν = d
dsgµν |s=0.

Thus for small s, gµν(s) = gµν + sġµν +O(s2). Also, gµν(s) = gµν − sġµν +O(s2)
where ġµν = gαµgβν ġαβ . Then,

d

ds
SG(s)

∣∣∣
s=0

=
∫
U

Ṙdvg +
∫
U

R ˙dvg

Now,
˙dvg =

1
2
gµν ġµνdvg

Indeed, relative to a coordinate system, dvg =
√
−gdx0dx1 . . . dxn Thus, the above

equality follows from,
ġ = ggαβġαβ ,

with g the determinant of gαβ . On the other hand, writing R = gµνRµν and using

the formula d
dsg

µν
(s)

∣∣∣
s=0

= −ġµν , we calculate, Ṙ = −ġµνRµν + gµνṘµν . Therefore,

d

ds
SG(s)

∣∣∣
s=0

= −
∫
U

(Rµν − 1
2
gµνR)ġµνdvg +

∫
U

gµνṘµνdvg (364)

To calculate Ṙµν we make use of the following Lemma,

Lemma 1.2. Let gµν(s) be a family of space-time metrics with g(0) = g and
d
dsg(0) = ġ. Set also, d

dsRαβ(s)|s=0 = Ṙαβ. Then,

Ṙµν = DαΓ̇αµν −DµΓ̇ααν

5This is the case of the metric h in the case of wave maps or the Killing scalar product in

the case of the Yang-Mills equations.
6up to an additive constant
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where Γ̇ is the tensor,

Γ̇αβγ =
1
2
gαλ(Dβġγλ + Dγ ġβλ −Dλġβγ)

Proof : Since both sides of the identity are tensors it suffices to prove the formula
at a point p relative to a particular system of coordinates for which the Christoffel
symbols Γ vanish at p. Relative to such a coordinate system the Ricci tensor has
the form Rµν = DαΓαµν −DµΓααν .

Returning to (364) we find that since gµνṘµν can be written as a space-time di-
vergence of a tensor compactly supported in U the corresponding integral vanishes
identically. We therefore infer that,

d

ds
SG(s)

∣∣∣
s=0

= −
∫
U

Eµν ġµνdvg (365)

where Eµν = Rµν − 1
2gµνR. We now consider the variation of the action integral

SM with respect to the metric. As remarked before LM depends on the metric g
through its inverse gµν . Therefore if we denote SM (s) = SM [ψ,g(s);U ] we have,
writing dv̇g = 1

2gµν ġµνdvg,

d

ds
SM (s)

∣∣∣
s=0

= −
∫
U

∂LM
∂gµν

ġµνdvg +
∫
U
LMdv̇g

= −
∫
U

(
∂LM
∂gµν

− 1
2
gµνLM )ġµνdvg

Definition. The symmetric tensor,

Tµν = −
(
∂LM
∂gµν

− 1
2
gµνLM

)
is called the energy-momentum tensor of the action SM .

With this definition we write,
d

ds
SM (s)

∣∣∣
s=0

=
∫
U

Tµν ġµνdvg (366)

Finally, combining 365 with 366, we derive for the total action S,
d

ds
S(s)

∣∣∣
s=0

= −
∫
U

(Eµν −Tµν)ġµνdvg

Since ġµν is an arbitrary symmetric 2-tensor compactly supported in U we derive
the Einstein field equation,

Eµν = Tµν

Recall that the Einstein tensor E satisfies the twice contracted Bianchi identity,

DνEµν = 0



164 3. EQUATIONS DERIVED BY THE VARIATIONAL PRINCIPLE

This implies that the energy-momentum tensor T is also divergenceless,

DνTµν = 0 (367)

which is the concise, space-time expression for the law of conservation of energy-
momentum of the matter-fields.

2. The energy-momentum tensor

The conservation law (367) is a fundamental property of a matterfield. We now
turn to a more direct derivation.

We consider an arbitrary Lagrangian field theory with stationary solution ψ. Let
Φs be the one-parameter group of local diffeomorphisms generated by a given vec-
torfield X. We shall use the flow Φ to vary the fields ψ according to

gs = (Φs)∗g
ψs = (Φs)∗ψ.

From the invariance of the action integral under diffeomorphisms,

S(s) = S[ψs,gs; M] = SM [ψ,g; M].

So that

0 =
d

ds
S(s)

∣∣∣
s=0

=
∫
M

δS
δψ
dvg +

∫
M

Tµν ġµνdvg (368)

The first term is clearly zero, ψ being a stationary solution. In the second term,
which represents variations with respect to the metric, we have

ġµν =
d

ds
(gs)µν

∣∣∣
s=0

= LXgµν = DµXν + DνXµ

Therefore

0 =
∫
M

TµνLXgµνdvg = 2
∫
M

TµνDνXµdvg = −2
∫
M

DνTµνXµdvg

As X was arbitrary, we conclude

DνTµν = 0. (369)

This is again the law of conservation of energy-momentum.

We list below the energy-momentum tensors of the field theories discussed before.
We leave it to the reader to carry out the calculations using the definition.

(1) The energy-momentum for the scalar field equation is,

Tαβ =
1
2

(
φ,αφ,β −

1
2
gαβ(gµνφ,µφ,ν + 2V (φ))

)
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(2) The energy-momentum for wave maps is given by,

Tαβ =
1
2

(
< φ,α, φ,β > −

1
2
gαβ(gµν < φ,µ, φ,ν >)

)
where < , > denotes the Riemannian inner product on the target mani-
fold.

(3) The energy-momentum tensor for the Maxwell equations is,

Tαβ = F ·µα Fβµ −
1
4
gαβ(FµνFµν)

(4) The energy-momentum tensor for the Yang-Mills equations is,

Tαβ =< F ·µα , Fβµ > −
1
4
gαβ(< Fµν , F

µν >)

An acceptable notion of the energy-momentum tensor T must satisfy the following
properties in addition of the conservation law (369),

(1) T is symmetric
(2) T satisfies the positive energy condition that is, T(X,Y ) ≥ 0 , for any

future directed time-like vectors X,Y .

The symmetry property is automatic in our construction. The following proposition
asserts that the energy-momentum tensors of the field theories described above
satisfy the positive energy condition.

Proposition 2.1. The energy-momentum tensor of the scalar wave equation sat-
isfies the positive energy condition if V is positive. The energy- momentum tensors
for the wave maps, Maxwell equations and Yang-Mills satisfy the positive energy
condition.

Proof : To prove the positivity conditions consider two vectors X,Y , at some
point p ∈ M, which are both causal future oriented. The plane spanned by X,Y
intersects the null cone at p along two null directions7. Let L,L be the two future
directed null vectors corresponding to the two complementary null directions and
normalized by the condition

< L,L >= −2

i.e. they form a null pair. Since the vectorfields X,Y are linear combinations
with positive coefficients of L,L, the proposition will follow from showing that
T(L,L) ≥ 0, T(L,L) ≥ 0 and T(L,L) ≥ 0. To show this we consider a frame at
p formed by the vectorfields E(n+1) = L, E(n) = L and E(1), . . . , E(n−1) with the
properties,

< E(i), E(n) >=< E(i), E(n+1) >= 0

and
< E(i), E(j) >= δij

for all i, j = 1, . . . , n− 1. A frame with these properties is called a null frame.

7If X,Y are linearly dependent any plane passing through their common direction will do.
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(1) We now calculate, in the case of the wave equation,

T(L,L) =
1
2
E(φ)2

T(L,L) =
1
2
L(φ)2.

which are clearly non-negative. Now,

T(L,L) =
1
2

[L(φ)L(φ) + (gµνφ,µφ,ν + 2V (φ))]

and we aim to express gµνφ,µφ,ν relative to our null frame. To do this,
observe that relative to the null frame the only nonvanishing components
of the metric gαβ are,

gn(n+1) = −2 , gii = 1 i = 1, . . . , n− 1

and those of the inverse metric gαβ are

gn(n+1) = −1
2

, gii = 1 i = 1, . . . , n− 1

Therefore,
gµνφ,µφ,ν = −L(φ)L(φ) + |∇/ φ|2

where

|∇/ φ|2 = (E(1)(φ))2 + (E(2)(φ))2 + . . . E(n−1)(φ)2.

Therefore,

T(L,L) =
1
2
|∇/ φ|2 + V (φ).

(2) For wave maps we have, according to the same calculation.

T (E,E) =
1
2
< E(φ), E(φ) >

T (E,E) =
1
2
< E(φ), E(φ) >

T (E,E) =
1
2

n−1∑
i=1

< E(i)(φ), E(i)(φ) > .

The positivity of T is then a consequence of the Riemannian metric h on
the target manifold N .

(3) To show positivity for the energy momentum tensor of the Maxwell equa-
tions in 3 + 1 dimensions we first write the tensor in the more symmetric
form

Tαβ =
1
2

(Fα µFβµ + ?Fα
µ ?Fβµ) (370)

where ?F is the Hodge dual of F , i.e. ?Fαβ = 1
2 ∈αβµν F

µν .
Exercise. Check formula (370).
We introduce the following null decomposition of F at every point

p ∈M,

αA = FA4 , αA = FA3

ρ =
1
2
F34 , σ =

1
2
?F34.
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which completely determines the tensor F . Here the indices A = 1, 2
correspond to the directions E1, E2 tangent to the sphere while the indices
3, 4 correspond to E3 = L and E4 = L. We then calculate that for ?F ,

?FA4 = − ?αA = , ?FA3 = ?αA
?F34 = 2σ , ??F34 = −2ρ

where ?αA =∈AB αB . Here ∈AB is the volume form on the unit sphere,
hence ∈AB= 1

2 ∈AB34, i.e. ∈11=∈22= 0, ∈12= −ε21 = 1. With this
notation we calculate,

T (E(4), E(4)) =
1
2

2∑
A=1

(
F4A · F4A +

1
4
?F4A · ?F4A

)

=
1
2

2∑
A=1

(αA · αA + ?αA · ?αA)

=
2∑

A=1

αA · αA = |α|2 ≥ 0.

Similarly,

T (E(3), E(3)) =
2∑

A=1

αA · αA = |α|2 ≥ 0

and in the same vein we find

T (E,E) = ρ2 + σ2 ≥ 0

which proves our assertion.
(4) The positivity of the energy-momentum tensor of the Yang- Mills equa-

tions is proved in precisely the same manner as for the Maxwell equations,
using the positivity of the Killing scalar product < ·, · >G .

Another important property which the energy momentum tensor of a field theory
may satisfy is the trace free condition, that is

gαβTαβ = 0.

It turns out that this condition is satisfied by all field theories which are conformally
invariant.

Definition. A field theory is said to be conformally invariant if the corresponding
action integral is invariant under conformal transformations of the metric

gαβ −→ g̃αβ = Ωgαβ

Ω a positive smooth function on the space-time.

Proposition 2.2. The energy momentum tensor T of a conformally invariant field
theory is traceless.
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Proof : Consider an arbitrary smooth function f compactly supported in U ⊂M.
Consider the following variation of a given metric g,

gµν(s) = esfgµν .

Let S(s) = SU [ψ,g(s)]. In view of the covariance of S we have S(s) = S(0). Hence,

0 =
d

ds
S(s)|s=0 =

∫
U
Tµν ġµνdvg

where

ġµν =
d

ds
gµν(s)

∣∣∣∣
s=0

= fgµν .

Hence,
∫
U (Tµνgµν) fdvg = 0 and since f is arbitrary we infer that,

trT = gµνTµν ≡ 0.

We can easily check that the Maxwell and the Yang-Mills equations are conformally
invariant in 3× 1-dimensions. The wave maps field theory is conformally invariant
in dimension 1 + 1, i.e. if the space-time M is two-dimensional8.

Remark: The action integral of the Maxwell equations, S =
∫
U FαβF

αβdvg is
conformally invariant in any dimension provided that we also scale the electro-
magnetic field F . Indeed if g̃αβ = Ω2gαβ then dvg̃ = Ωn+1dvg and if we also set
F̃αβ = Ω−

n−3
2 Fαβ we get

S̃[F̃ , g̃] =
∫
F̃αβF̃γδg̃αγ g̃βδdvg̃

=
∫
FαβFγδgαγgβδdvg

= S[F,g].

We finish this section with a simple observation concerning conformal field theories
in 1+1 dimensions. We specialize in fact to the Minkowski space R1+1 and consider
the local conservation law, ∂µTνµ = 0. Setting ν = 0, 1 we derive

∂0T00 + ∂1T01 = 0, ∂0T01 + ∂1T11 = 0 (371)

Since the energy-momentum tensor is trace-free, we get T00 = T11 = A, say. Set
T01 = T10 = B. Therefore (??) implies that both A and B satisfy the linear
homogeneous wave equation;

2A = 0 = 2B. (372)

Using this observation it is is easy to prove that smooth initial data remain smooth
for all time.

For example, wave maps are conformally invariant in dimension 1 + 1. In this case

A = T00 =
1
2

(< ∂tφ, ∂tφ > + < ∂xφ, ∂xφ >) ,

8Similarly for the linear scalar wave equation
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Given data in C∞0 (R), (372) implies that the derivatives of φ remain smooth for all
positive times. This proves global existence.

3. Conservation Laws

The energy-momentum tensor of a field theory is intimately connected with con-
servations laws. This connection is seen through Noether’s principle,

Noether’s Principle: To any one-parameter group of transformations preserving
the action there corresponds a conservation law.

We illustrate this fundamental principle as follows: Let S = S[ψ,g] be the action
integral of the fields ψ. Let χt be a 1-parameter group of isometries of M, i.e.,
(χt)∗g = g. Then

S[(χt)∗ψ,g] = S[(χt)∗ψ, (χt)∗g]
= S[ψ,g].

Thus the action is preserved under ψ → (χt)∗ψ. In view of Noether’s Principle we
ought to find a conservation law for the corresponding Euler-Lagrange equations9.
We derive these laws using the Killing vectorfield X which generates χt.

We begin with a general calculation involving the energy-momentum tensor T of ψ
and an arbitrary vectorfield X. P the one-form obtained by contracting T with X.

Pα = TαβX
β

Since T is symmetric and divergence-free

DαPα = (DαTαβ)Xβ + Tαβ

(
DαXβ

)
=

1
2
Tαβ (X)παβ

where (X)παβ is the deformation tensor of X.
(X)παβ = (LXg)αβ = DαXβ + DβXα

Notation. We denote the backward light cone with vertex p = (t̄, x̄) ∈ Rn+1 by

N−(t̄, x̄) = {(t, x)
∣∣0 ≤ t ≤ t̄; |x− x̄| = t̄− t}.

The restriction of this set to some time interval [t1, t2], t1 ≤ t2 ≤ t̄, will be written
N−[t1,t2](t̄, x̄). These null hypersurfaces are null boundaries of,

J−1(t̄, x̄) = {(t, x)
∣∣ 0 ≤ t ≤ t̄; |x− x̄| ≤ t̄− t}

J−[t2,t1](t̄, x̄) = {(t, x)
∣∣t2 ≤ t ≤ t1; |x− x̄| ≤ t̄− t}

We shall denote by St = St(t̄, x̄) and Bt = Bt(t̄, x̄) the intersection of the time slice
Σt with N−, respectively J−.

9The same argument holds for conformal isometries acting on a conformally invariant field
theory. We therefore also expect conservation laws in such a setting.
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At each point q = (t, x) along N−(p) , we define the null pair (E+, E−) of future
oriented null vectors

L = E+ = ∂t +
xi − x̄i

|x− x̄|
∂i, L = E− = ∂t −

xi − x̄i

|x− x̄|
∂i

Observe that both L,L are null and < L,L >= −2.

The following is a simple consequence of Stoke’s theorem, in the following form.

Proposition 3.1. Let Pµ be a one-form satisfying ∂µPµ = F. Then10, for all
t1 ≤ t2 ≤ t̄,∫

Bt2

〈P, ∂t〉+
∫
N−[t1,t2](p)

〈P,E−〉 =
∫
Bt1

〈P, ∂t〉 −
∫
J−[t1,t2](p)

Fdtdx (373)

where, ∫
N−[t1,t2](p)

〈P,E−〉 =
∫ t2

t1

dt

∫
St

〈P,E−〉 dat.

Applying this proposition to Stoke’s theorem to (373 ) we get

Theorem 3.2. Let T be the energy-momentum tensor associated to a field theory
and X an arbitrary vector field. Then

∫
Bt2

T(∂t, X) +
∫
N−[t1,t2](p)

T(E−, X) =
∫
Bt1

T(∂t, X) (374)

−
∫
J−[t1,t2](p)

Tαβ (X)παβdtdx

In the particular case when X is Killing, its deformation tensor π vanishes identi-
cally. Thus,

Corollary 3.3. If X is a killing vectorfield,∫
Bt2

T(∂t, X) +
∫
N−[t1,t2](p)

T(L,X) =
∫
Bt1

T(∂t, X) (375)

Moreover (375) remains valid if T is traceless and X is conformal Killing.

The identity (375) is usually applied to time-like future-oriented Killing vectorfields
X in which case the positive energy condition for T insures that all integrands in
(??) will be positive. We know that, up to a Lorentz transformation the only
Killing, future oriented timelike vectorfield is a constant multiple of ∂t. Choosing
X = ∂t (375) becomes,∫

Bt2

T(∂t, ∂t) +
∫
N−[t1,t2](p)

T(E−, ∂t) =
∫
Bt1

T(∂t, ∂t) (376)

10The brackets 〈·, ·〉 in (373) denote inner product with respect to the Minkowski metric.
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In the case of a conformal field theory we can pick X to be the future timelike,
conformal Killing vectorfield X = K0 = (t2 + |x|2)∂t + 2txi∂i. Thus,∫

Bt2

T(∂t,K0) +
∫
N−[t1,t2](p)

T(L,K0) =
∫
Bt1

T(∂t,K0) (377)

In (376) the term T(∂t, ∂t) is called energy density while T(E−, ∂t) is called energy
flux density . The corresponding integrals are called energy contained in Bt1 , and
Bt2 and, respectively, flux of energy through N−. The coresponding terms in (377)
are called conformal energy densities, fluxes etc.

Equation (376) can be used to derive the following fundamental properties of rela-
tivistic field theories.

(1) Finite propagation speed
(2) Uniqueness of the Cauchy problem

Proof : The first property follows from the fact that, if
∫
Bt1

T(∂t, ∂t) is zero at
time t = t1 then both integrals

∫
Bt2

T(∂t, ∂t) and
∫
N−[t1,t2]

T(E−, ∂t) must vanish

also. In view of the positivity properties of the T it follows that the corresponding
integrands must also vanish. Taking into account the specific form of T, in a
particular theory, one can then show that the fields do also vanish in the domain
of influence of the ball Bt1 . Conversely, if the initial data for the fields vanish in
the complement of Bt1 , the the fields are identically zero in the complement of the
domain of influence of of Bt1 .

The proof of the second property follows immediately from the first for a linear
field theory. For a nonlinear theory one has to work a little more.

Exercise. Formulate an initial value problem for each of the field theories we
have encountered so far, scalar wave equation (SWE), Wave Maps (WM), Maxwell
equations (ME) and Yang-Mills (YM). Proof uniqueness of solutions to the initial
value problem, for smooth solutions.

The following is another important consequence of (376) and (377). To state the
results we introduce the following quantities,

E(t) =
∫

Rn
T (∂t, ∂t) (t, x)dx (378)

Ec(t) =
∫

Rn
T (K0, ∂t) (t, x)dx (379)

Theorem 3.4 (Global Energy). For an arbitrary field theory, if E(0) <∞, then

E(t) = E(0) (380)

Moreover, for a conformal field theory, if Ec(0) <∞,

Ec(t) = Ec(0) (381)
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Proof : Follows easily by applying (376) and (377) to past causal domains J−(p)
with p = (t̄, 0) between t1 = 0 and t2 = t and letting t̄→ +∞.

3.5. Energy dissipation. In this section we shall make use of the global
conformal energy identity (381) to show how energy dissipates for a filed theories
in Minkowski space. Consider a conformal field theory defined on all of Rn+1. At
each point of Rn+1, with t ≥ 0, define the standard null frame where

L = E+ = ∂t + ∂r

L = E− = ∂t − ∂r.
Observe that the conformal Killing vectorfield K0 = (t2 + r2)∂t + 2rt∂r can be
expressed in the form,

K0 =
1
2
[
(t+ r)2E+ + (t− r)2E−.

]
Thus,

Ec(t) =
∫

Rn

1
4

(t+ r)2T++ +
1
4

(t− r)2T−− +
(
(t+ r)2 + (t− r)2

)︸ ︷︷ ︸
2(t2+r2)

T+−dx.

=
∫

Rn

1
4

(t+ r)2T++ +
1
2

(t2 + r2)T+− +
1
4

(t− r)2T−−dx (382)

Ec(0) =
∫

Rn
T(∂t,K0)(0, x)dx =

∫
Rn
|x|2T(∂t, ∂t)dx

According to (381) we have Ec(t) = Ec(0). Assuming that Ec(0) =
∫

Rn |x|
2T(∂t, ∂t)dx

is finite we conclude that, ∫
Rn

T++(t, ·)dx .
Ec(0)
t2∫

Rn
T+−(t, ·)dx .

Ec(0)
t2

.

The remaining term in (382) contains the factor (t − r)2 which is constant along
outgoing null directions r = t+ c. Hence for any 0 < ε < 1∫

|x|>(1+ε)t

T−− = O(t−2)∫
|x|<(1−ε)t

T−− = O(t−2).

We conclude that most of the energy of a conformal field is carried by the T−−
component and propagates near the light cone.



CHAPTER 4

APPENDIX: BASIC GEOMETRIC NOTIONS

In what follows we give a short overview of the basic notions in Riemannian and
Lorentzian geometry. These will allow us to extend some of the basic facts about
the standard Laplace, Heat and Wave equations, to manifolds. It will also allow us
later to discuss more complicated nonlinear geometric equations.

0.6. Pseudo-riemannian metrics, tensor fields. A pseudo-riemannian man-
ifold 1, or simply a spacetime, consist of a pair (M,g) where M is an orientable
p+ q-dimensional manifold and g is a pseudo-riemannian metric defined on it, that
is a smooth, a non degenerate, 2-covariant symmetric tensor field of signature (p, q).
This means that at each point p ∈M one can choose a basis of p+q vectors, {e(α)},
belonging to the tangent space TMp, such that

g(e(α), e(β)) = ηαβ (383)

for all α, β=0, 1, ..., n , where η is the diagonal matrix with −1 in the first p entries
and +1 in the last q entries. If X is an arbitrary vector at p expressed, in terms of
the basis {e(α)}, as X = Xαe(α), we have

g(X,X) = −(X1)2 − . . .− (Xp)2 + (Xp+1)2 + ....+ (Xp+q)2 (384)

The case when p = 0 and q = n corresponds to Riemannian manifolds of dimension
n. The other case of interest for us is p = 1, q = n which corresponds to a Lorentzian
manifolds of dimension n+ 1. The primary example of Riemannian manifold is the
Euclidean space Rn. Any other Riemannian manifold looks, locally, like Rn. Sim-
ilarly, the primary example of a Lorentzian manifold is the Minkowski spacetime,
the spacetime of Special Relativity. It plays the same role, in Lorentzian geometry,
as the Euclidean space in Riemannian geometry. In this case the manifold M is
diffeomorphic to Rn+1 and there exists globally defined systems of coordinates, xα,
relative to which the metric takes the diagonal form −1, 1, ..., 1. All such systems
are related through Lorentz transformations and are called inertial. We shall denote
the Minkowski spacetime of dimension n+ 1 by (Rn+1,m).

Relative to a given coordinate system xµ, the components of a pseudo-riemannian
metric take the form

gµν = g(∂µ, ∂ν)

1We assume that our reader is already familiar with the basics concepts of differential ge-

ometry such as manifolds, tensor fields, covariant, Lie and exterior differentiation. For a short
introduction to these concepts see Chapter 2 of Hawking and Ellis, “The large scale structure of

space-time”, [6]

173
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where ∂µ = ∂
∂xµ are the associated coordinate vectorfields. We denote by gµν the

components of the inverse metric g−1 relative to the same coordinates x, and by |g|
the determinant of the matrix gµν . The volume element dvM of M is expressed, in
local coordinates, by

√
|g|dx =

√
|g|dx1 . . . dxn. Thus the integral

∫
M
fdvM of a

function f , supported in coordinate chart U ⊂M is defined by
∫
U
f(x)

√
|g(x)|dx.

The integral on M of an arbitrary function f is defined by making a partition of
unity subordinated to a covering of M by coordinate charts. One can easily check
that the definition is independent of the particular system of local coordinates.

In view of (384) we see that a Lorentzian metric divides the vectors in the tangent
space TMp at each p, into timelike, null or spacelike according to whether the
quadratic form

(X,X) = gµνX
µXν (385)

is, respectively, negative, zero or positive. The set of null vectors Np forms a double
cone, called the null cone of the corresponding point p. The set of timelike vectors
Ip forms the interior of this cone. The vectors in the union of Ip and Np are called
causal. The set Sp of spacelike vectors is the complement of Ip ∪Np.

A frame e(α) verifying (383) is said to be orthonormal. In the case of Lorentzian
manifolds it makes sense to consider, in addition to orthonormal frames, null frames.
These are collections of vectorfields2 eα consisting of two null vectors en+1, en and
orthonormal spacelike vectors (ea)a=1,... ,n−1 which verify,

g(en, en) = g(en+1, en+1) = 0 , g(en, en+1) = −2
g(en, ea) = g(en+1, ea) = 0 , g(ea, eb) = δab

One-forms A = Aαdx
α are sections of the cotangent bundle of M. We denote

by A(X) the natural pairing between A and a vectorfield X. We can raise the
indices of A by Aα = gαβAβ . A′ = Aα∂α defines a vectorfield on M and we have,
A(X) = g(A′, X). Covariant tensors A of order k are k-multilinear forms on TM.

Notation: We will use the following notational conventions: We shall use bold-
face characters to denote important tensors such as the metric g, and the Riemann
curvature tensor R. Their components relative to arbitrary frames will also be de-
noted by boldface characters. Thus, given a frame {e(α)} we write gαβ = g(eα, eβ),
Rαβγδ = R(eα, eβ , eγ , eδ) and, for an arbitrary tensor T ,

Tαβγδ... ≡ T (eα, eβ , eγ , eδ, ...)

We shall not use boldface characters for the components of tensors, relative to a
fixed system of coordinates. Thus, for instance, in (385) gµν = g( ∂

∂xµ ,
∂
∂xν ). In the

case of a Riemannian manifold we use latin letters i, j, k, l, . . . to denote indices
of coordinates x1, x2, . . . , xn or tensors. For a Lorentzian manifold we use greek
letters α, β, γ, . . . to denote indices 0, 1, . . . , n.

2We write eα instead of e(α) to simplify the notation, whenever there can be no confusion.
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We will review the following topics below:

1.) Lie brackets of vectorfields. Frobenius theorem

2.) Lie derivative of a tensorfield

3.) Multilinear forms and exterior differentiation

4.) Connections and covariant derivatives

5.) Pseudo-riemannian metrics. Riemannian and Lorentzian geometry.

6.) Levi-Civita connection associated to a pseudo-riemannian metric.

7.) Parallel transport, geodesics, exponential map, completeness

8.) Curvature tensor of a pseudo-riemannian manifold. Symmetries. First and
second Bianchi identities.

9.) Isometries and conformal isometries. Killing and conformal Killing vector-
fields.

0.7. Covariant derivatives, Lie derivatives. We recall here the three fun-
damental operators of the differential geometry on a Riemann or Lorentz manifold:
the exterior derivative, the Lie derivative, and the Levi-Civita connection with its
associated covariant derivative.

0.7.1. The exterior derivative. Given a scalar function f its differential df is
the 1-form defined by

df(X) = X(f)
for any vector field X. This definition can be extended for all differential forms on
M in the following way:

i) d is a linear operator defined from the space of all k-forms to that of k+1-forms
on M. Thus for all k-forms A,B and real numbers λ, µ

d(λA+ µB) = λdA+ µdB

ii) For any k-form A and arbitrary form B

d(A ∧B) = dA ∧B + (−1)kA ∧ dB
iii) For any form A,

d2A = 0 .
We recall that, if Φ is a smooth map defined from M to another manifold M′, then

d(Φ∗A) = Φ∗(dA) .

Finally if A is a one form and X,Y arbitrary vector fields, we have the equation

dA(X,Y ) =
1
2

(
X(A(Y ))− Y (A(X))−A([X,Y ])

)
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where [X,Y ] is the commutator X(Y ) − Y (X). This can be easily generalised to
arbitrary k forms, see Spivak’s book, Vol.I, Chapter 7, Theorem 13. [17]

0.7.2. The Lie derivative. Consider an arbitrary vector field X. In local coor-
dinates xµ, the flow of X is given by the system of differential equations

dxµ

dt
= Xµ(x1(t), ..., xp+q(t)) .

The corresponding curves, xµ(t), are the integral curves of X. For each point p ∈M
there exists an open neighborhood U , a small ε > 0 and a family of diffeomorphism
Φt : U →M, |t| ≤ ε, obtained by taking each point in U to a parameter distance
t, along the integral curves of X. We use these diffeomorphisms to construct, for
any given tensor T at p, the family of tensors (Φt)∗T at Φt(p) .

The Lie derivative LXT of a tensor field T , with respect to X, is:

LXT |p ≡ lim
t→0

1
t

(T |p − (Φt)∗T |p) .

It has the following properties:

i) LX linearly maps (p, q)-tensor fields into tensor fields of the same type.

ii) LX commutes with contractions.

iii) For any tensor fields S, T ,

LX(S ⊗ T ) = LXS ⊗ T + S ⊗ LXT .

If X is a vector field we easily check that

LXY = [X,Y ]

by writing (LXY )i = − d
dt ((Φt)∗Y )i

∣∣∣
t=0

and expressing (Φt)∗Y )i
∣∣∣
p

= ∂xi(Φt(q))
∂xj(q) Y j

∣∣∣
q
,

where q = Φ−t(p). (See [6], Hawking and Ellis, section 2.4 for details.)

If A is a k-form we have, as a consequence of the commutation formula of the
exterior derivative with the pull-back Φ∗,

d(LXA) = LX(dA) .

For a given k-covariant tensorfield T we have,

LXT (Y1, . . . , Yk) = XT (Y1, . . . , Yk)−
k∑
i=1

T (Y1, . . . ,LXYi, . . . , Yk)

We remark that the Lie bracket of two coordinate vector fields vanishes,[
∂

∂xµ
,
∂

∂xν

]
= 0.

The converse is also true, namely, see Spivak, [17], Vol.I, Chapter 5,
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Proposition 0.8. If X(0), ...., X(k) are linearly independent vector fields in a neigh-
bourhood of a point p and the Lie bracket of any two of them is zero then there exists
a coordinate system xµ, around p such that X(ρ) = ∂

∂xρ for each ρ = 0, ..., k .

The above proposition is the main step in the proof of Frobenius Theorem. To state
the theorem we recall the definition of a k-distribution in M. This is an arbitrary
smooth assignment of a k-dimensional plane πp at every point in a domain U of
M. The distribution is said to be involute if, for any vector fields X,Y on U with
X|p, Y |p ∈ πp, for any p ∈ U , we have [X,Y ]|p ∈ πp. This is clearly the case for
integrable distributions3. Indeed if X|p, Y |p ∈ TNp for all p ∈ N , then X,Y are
tangent to N and so is also their commutator [X,Y ]. The Frobenius Theorem
establishes that the converse is also true4, that is being in involution is also a
sufficient condition for the distribution to be integrable,

Theorem 0.9. (Frobenius Theorem) A necessary and sufficient condition for a
distribution (πp)p∈U to be integrable is that it is involute.

0.9.1. The connection and the covariant derivative. A connection D is a rule
which assigns to each vectorfield X a differential operator DX . This operator maps
vector fields Y into vector fields DXY in such a way that, with α, β ∈ R and f, g
scalar functions on M,

a) DfX+gY Z = fDXZ + gDY Z

b) DX(αY + βZ) = αDXY + βDXZ (386)
c) DXfY = X(f)Y + fDXY

Therefore, at a point p,

DY ≡ Y α; β θ(β) ⊗ e(α) (387)

where the θ(β) are the one-forms of the dual basis respect to the orthonormal frame
e(β). Observe that Y α;β = θ(α)(De(β)Y ). On the other side, from c),

DfY = df ⊗ Y + fDY

so that
DY = D(Y αe(α)) = dY α ⊗ e(α) + Y αDe(α)

and finally, using df(·) = e(α)(f)θ(α)(·),

DY =
(
e(β)(Y α) + Y γθ(α)(De(β)e(γ))

)
θ(β) ⊗ e(α) (388)

Therefore

Y α;β = e(β)(Y α) + ΓαβγY
γ

and the connection is, therefore, determined by its connection coefficients,

Γαβγ = θ(α)(De(β)e(γ)) (389)

3Recall that a distribution π on U is said to be integrable if through every point p ∈ U there

passes a unique submanifold N , of dimension k, such that πp = TNp.
4For a proof see Spivak, citeSpivak, Vol.I, Chapter 6.
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which, in a coordinate basis, are the usual Christoffel symbols and have the expres-
sion

Γµρν = dxµ(D ∂
∂xρ

∂

∂xν
)

Finally

DXY =
(
X(Y α) + ΓαβγX

βY γ
)
e(α) (390)

In the particular case of a coordinate frame we have

DXY =
(
Xµ ∂Y

ν

∂xµ
+ ΓνρσX

ρY σ
)

∂

∂xν

A connection is said to be a Levi-civita connection if Dg = 0. That is, for any
three vector fields X,Y, Z,

Z(g(X,Y )) = g(DZX,Y ) + g(X,DZY ) (391)

A very simple and basic result of differential geometry asserts that for any given
metric there exists a unique affine connection associated to it.

Proposition 0.10. There exists a unique connection on M, called the Levi-Civita
connection, which satisfies D g = 0. The connection is torsion free, that is,

DXY −DYX = [X,Y ] .

Moreover, relative to a system of coordinates, xµ, the Christoffel symbol of the
connection is given by the standard formula

Γµρν =
1
2
gµτ (∂ρgντ + ∂νgτρ − ∂τgνρ) .

Exercise: Prove the proposition yourself, without looking in a book.

So far we have only defined the covariant derivative of a a vector field. We can
easily extend the definition to one forms A = Aαdx

a by the requirement that,

X(A(Y )) = DXA(Y ) +A(DXY ),

for all vectorfields X,Y . Given a k-covariant tensor field T we define its covariant
derivative DXT by the rule,

DXT (Y1, . . . , Yk) = XT (Y1, . . . , Yk)−
k∑
i=1

T (Y1, . . . ,DXYi, . . . , Yk)

We can talk about DT as a covariant tensor of rank k + 1 defined by,

DT (X,Y1, . . . , Yk) = DXT (Y1, . . . , Yk).

Given a frame eα we denote by Tα1... ,αk;β = DT (eβ , ea1 , . . . , eαk) the components
of DT relative to the frame. By repeated covariant differentiation we can define
D2T, . . .DmT. Relative to a frame eα we write,

Dβ1 . . .DβmTα1...αk = Tα1...αk;β1...βm = DmT (eβ1 . . . , eβm , eα1 , ..., eαk).



4. APPENDIX: BASIC GEOMETRIC NOTIONS 179

The fact that the Levi-Civita connection is torsion free allows us to connect covari-
ant differentiation to the Lie derivative. Thus, if T is a k-covariant tensor we have,
in a coordinate basis,

(LXT )σ1...σk = XµTσ1...σk;µ +Xµ
;σ1
Tµσ2...σk + ....+Xµ

;σk
Tσ1...σk−1µ .

The covariant derivative is also connected to the exterior derivative according to
the following simple formula. If A is a k-form, we have5 A[σ1...σk;µ] = A[σ1...σk,µ]

and
dA =

∑
Aσ1...σk;µdx

µ ∧ dxσ1 ∧ dxσ2 ∧ .... ∧ dxσk .

Given a smooth curve x : [0, 1] → M, parametrized by t, let T =
(
∂
∂t

)
x

be the
corresponding tangent vector field along the curve. A vector field X, defined on
the curve, is said to be parallelly transported along it if DTX = 0. If the curve
has the parametric equations xν = xν(t), relative to a system of coordinates, then
Tµ = dxµ

dt and the components Xµ = Xµ(x(t)) satisfy the ordinary differential
system of equations

D
dt
Xµ ≡ dXµ

dt
+ Γµρσ(x(t))

dxρ

dt
Xσ = 0 .

The curve is said to be geodesic if, at every point of the curve, DTT is tangent
to the curve, DTT = λT . In this case one can reparametrize the curve such that,
relative to the new parameter s, the tangent vector S =

(
∂
∂s

)
x

satisfies DSS= 0 .
Such a parameter is called an “affine parameter”. The affine parameter is defined
up to a transformation s = as′+b for a, b constants. Relative to an affine parameter
s and arbitrary coordinates xµ the geodesic curves satisfy the equations

d2xµ

ds2
+ Γµρσ

dxρ

ds

dxσ

ds
= 0 .

A geodesic curve parametrized by an affine parameter is simply called a geodesic.
In Lorentzian geometry timelike geodesics correspond to world lines of particles
freely falling in the gravitational field represented by the connection coefficients. In
this case the affine parameter s is called the proper time of the particle.

Given a point p ∈ M and a vector X in the tangent space TpM, let x(t) be the
unique geodesic starting at p with “velocity” X. We define the exponential map:

expp : TpM→M .

This map may not be defined for all X ∈ TpM. The theorem of existence and
uniqueness for systems of ordinary differential equations implies that the exponen-
tial map is defined in a neighbourhood of the origin in TpM. If the exponential
map is defined for all TpM, for every point p the manifold M is said geodesically
complete. In general if the connection is a Cr connection6 there exists an open
neighbourhood U0 of the origin in TpM and an open neighbourhood of the point

5[σ1...σk;µ] indicates the antisymmetrization with respect to all indices (i.e. 1
k!

(alternating

sum of the tensor over all permutations of the indices)) and “, µ” indicates the ordinary derivative

with respect to xµ.
6A Cr connection is such that if Y is a Cr+1 vector field then DY is a Cr vector field.
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p in M, Vp, such that the map expp is a Cr diffeomorphism of U0 onto Vp. The
neighbourhood Vp is called a normal neighbourhood of p.

0.11. Riemann curvature tensor, Ricci tensor, Bianchi identities. In
the flat spacetime if we parallel transport a vector along any closed curve we obtain
the vector we have started with. This fails in general because the second covariant
derivatives of a vector field do not commute. This lack of commutation is measured
by the Riemann curvature tensor,

R(X,Y )Z = DX(DY Z)−DY (DXZ)−D[X,Y ]Z (392)

or written in components relative to an arbitrary frame,

Rα
βγδ = θ(α)

(
(DγDδ −DδDγ)e(β)

)
(393)

Relative to a coordinate system xµ and written in terms of the gµν components,
the Riemann components have the expression

Rµνρσ =
∂Γµσν
∂xρ

−
∂Γµρν
∂xσ

+ ΓµρτΓτσν − ΓµστΓτρν (394)

The fundamental property of the curvature tensor, first proved by Riemann, states
that if R vanishes identically in a neighbourhood of a point p one can find families
of local coordinates such that, in a neighbourhood of p, gµν = ηµν

7.

The trace of the curvature tensor, relative to the metric g, is a symmetric tensor
called the Ricci tensor,

Rαβ = gγδRαγβδ

The scalar curvature is the trace of the Ricci tensor

R = gαβRαβ .

The Riemann curvature tensor of an arbitrary spacetime (M,g) has the following
symmetry properties,

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ

Rαβγδ + Rαγδβ + Rαδβγ = 0 (395)

The second identity in (395) is called the first Bianchi identity.

It also satisfies the second Bianchi identities, which we refer to here as the Bianchi
equations and, in a generic frame, have the form:

D[εRγδ]αβ = 0 (396)

The traceless part of the curvature tensor, C is called the Weyl tensor, and has the
following expression in an arbitrary frame,

Cαβγδ = Rαβγδ −
1

n− 1
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ)

+
1

n(n− 1)
(gαγgβδ − gαδgβγ)R (397)

7For a thorough discussion and proof of this fact, refer to Spivak, [17], Vol. II.
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Observe that C verifies all the symmetry properties of the Riemann tensor:

Cαβγδ = −Cβαγδ = −Cαβδγ = Cγδαβ

Cαβγδ + Cαγδβ + Cαδβγ = 0 (398)

and, in addition, gαγCαβγδ = 0 .

We say that two metrics g and ĝ are conformal if ĝ = λ2g for some non zero
differentiable function λ. Then the following theorem holds (see Hawking- Ellis,
[6], chapter 2, section 2.6):

Theorem 0.12. Let ĝ = λ2g, Ĉ the Weyl tensor relative to ĝ and C the Weyl
tensor relative to g. Then

Ĉα
βγδ = Cα

βγδ .

Thus C is conformally invariant.

0.13. Isometries and conformal isometries, Killing and conformal
Killing vector fields. Definition. A diffeomorphism Φ : U ⊂M →M is said
to be a conformal isometry if, at every point p, Φ∗g = Λ2g, that is,

(Φ∗g)(X,Y )|p = g(Φ∗X,Φ∗Y )|Φ(p) = Λ2g(X,Y )|p
with Λ 6= 0. If Λ = 1, Φ is called an isometry of M.

Definition. A vector field K which generates a one parameter group of isome-
tries (respectively, conformal isometries) is called a Killing (respectively, conformal
Killing) vector field.

Let K be such a vector field and Φt the corresponding one parameter group. Since
the (Φt)∗ are conformal isometries, we infer that LKg must be proportional to the
metric g. Moreover LKg = 0 if K is a Killing vector field.

Definition. Given an arbitrary vector field X we denote (X)π the deformation
tensor of X defined by the formula

(X)παβ = (LXg)αβ = DαXβ + DβXα .

The tensor (X)π measures, in a precise sense, how much the diffeomorphism gener-
ated by X differs from an isometry or a conformal isometry. The following Propo-
sition holds, (see Hawking-Ellis, citeHawkEll, chapter 2, section 2.6):

Proposition 0.14. The vector field X is Killing if and only if (X)π = 0. It is
conformal Killing if and only if (X)π is proportional to g.

Remark: One can choose local coordinates such that X = ∂
∂xµ . It then immedi-

ately follows that, relative to these coordinates the metric g is independent of the
component xµ.

Proposition 0.15. On any pseudo-riemannian spacetime M, of dimension n =
p + q, there can be no more than 1

2 (p + q)(p + q + 1) linearly independent Killing
vector fields.
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Proof: Proposition 0.15 is an easy consequence of the following relation, valid for
an arbitrary vector field X, obtained by a straightforward computation and the use
of the symmetries of R.

DβDαXλ = RλαβδX
δ + (X)Γαβλ (399)

where

(X)Γαβλ =
1
2

(Dβπαλ + Dαπβλ −Dλπαβ) (400)

and π ≡ (X)π is the X deformation tensor.

If X is a Killing vector field equation (399) becomes

Dβ(DαXλ) = RλαβδX
δ (401)

and this implies, in view of the theorem of existence and uniqueness for ordinary
differential equations, that any Killing vector field is completely determined by the
1
2 (n+ 1)(n+ 2) values of X and DX at a given point. Indeed let p, q be two points
connected by a curve x(t) with tangent vector T . Let Lαβ ≡ DαXβ , Observe that
along x(t), X,L verify the system of differential equations

D
dt
X = T · L ,

D
dt
L = R(·, ·, X, T )

therefore the values of X,L along the curve are uniquely determined by their values
at p.

The n-dimensional Riemannian manifold which possesses the maximum number of
Killing vector fields is the Euclidean space Rn. Simmilarily the Minkowski space-
time Rn+1 is the Lorentzian manifold with the maximum numbers of Killing vec-
torfields.

0.16. Laplace-Beltrami operator. The scalar Laplace-Beltrami operator
on a pseudo-riemannian manifold M is defined by,

∆Mu(x) = gµνDµDνu (402)

where u is a scalar function on M. Or, in local coordinates,

∆Mu(x) =
1√
|g(x)|

∂µ(gµν
√
|g(x)|∂ν)u(x) (403)

The Laplace-Beltrami operator is called D’Alembertian in the particular case of a
Lorentzian manifold, and is then denoted by �M. On any pseudo-riemannian man-
ifold, ∆M is symmetric relative to the following scalar product for scalar functions
u, v:

(u, v)M =
∫
u(x)v(x)dvM
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Indeed the following identities are easily established by integration by parts, for
any two smooth, compactly supported8 functions u, v,

(−∆u, v)M =
∫
M

∇u · ∇v dvM = (u,−∆v)M (404)

where∇u·∇v = gij∂iu∂jv. In the particular case when u = v we derive, (−∆u, v)M =∫
M
|∇u|2, with |∇u|2 = ∇u · ∇u. Thus, −∆ = −∆M is symmetric for functions

u ∈ C∞0 (M). It is positive definite if the manifold M is Riemannian. This is not
the case for Lorentzian manifolds: �M is non-definite.

8This is automatically satisfied if the manifold M is compact.
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[5] Lars Hörmander, The Analysis of Linear Partial Differential Operators, Volume I. Springer-
Verlag, 1983.

[6] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time Cambridge University

Press, 1973.
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