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Abstract. We address an old open question in convex geometry that dates
back to the work of Minkowski: what are the equality cases of the monotonicity
of mixed volumes? The problem is equivalent to that of providing a geometric
characterization of the support of mixed area measures. A conjectural charac-
terization was put forward by Schneider (1985), but has been verified to date
only for special classes of convex bodies. In this paper we resolve one direction
of Schneider’s conjecture for arbitrary convex bodies in Rn, and resolve the full
conjecture in R3. Among the implications of these results is a mixed counter-
part of the classical fact, due to Monge, Hartman–Nirenberg, and Pogorelov,
that a surface with vanishing Gaussian curvature is a ruled surface.

1. Introduction and main results

The foundation for the modern theory of convex geometry was laid by Minkowski
in a seminal 1903 paper [11] and in a longer manuscript from around the same time
that was published posthumously [12]. A number of basic questions that were raised
in these works remain open to this day. The aim of the present paper is to signif-
icantly advance what is known about one of these problems: the characterization
of the equality cases of the monotonicity of mixed volumes. We also discuss impli-
cations to the related notion of mixed Hessian measures, and to mixed analogues
of the solution of homogeneous Monge-Ampère equations.

1.1. Mixed volumes and the monotonicity problem. For any convex bodies
K1, . . . ,Km in Rn and λ1, . . . , λm ≥ 0, the volume

Voln(λ1K1 + · · ·+ λmKm) =
m∑

i1,...,in=1
Vn(Ki1 , . . . ,Kin)λi1 · · ·λin

is a homogeneous polynomial. Its coefficients Vn(C1, . . . , Cn), calledmixed volumes,
are important geometric parameters that capture many familiar quantities (volume,
surface area, mean width, projection volumes, . . .) as special cases [2, 21].

One of the simplest properties of mixed volumes is their monotonicity: if K ⊆ L
and C1, . . . , Cn−1 are convex bodies in Rn, then

Vn(K,C1, . . . , Cn−1) ≤ Vn(L,C1, . . . , Cn−1). (1.1)

This paper is concerned with the following open problem of Minkowski [12, §28].

Problem 1.1. When does equality hold in (1.1)?
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Figure 1.1. A cap body of B: i.e., the convex hull of B with a finite or countable
number of points so that the cones emanating from the points are disjoint.

The analogous question for volume is trivial: K ⊆ L and Vol(K) = Vol(L) > 0
imply K = L. In contrast, (1.1) has a rich family of equality cases that gives rise
to surprising phenomena. Let us illustrate this with an example in R3. Thoughout
this paper, B always denotes the Euclidean unit ball.

Example 1.2. For any convex body K in R3, the surface area and mean width can
be expressed as V3(K,K,B) = 1

3S(K) and V3(K,B,B) = 2π
3 W(K), respectively.

Thus (1.1) gives rise to the geometric inequalities

2π inr(K) W(K) ≤ S(K) ≤ 2π outr(K) W(K),

where inr(K) and outr(K) denote the inradius and outradius of K. The equality
cases in these inequalities correspond to solutions of variational problems: among
all convex bodies in R3 with unit outradius (inradius), which maximize (minimize)
the ratio of surface area to mean width? Even though the two inequalities arise in
a completely symmetric manner, their extremals are very different.
• A convex body in R3 with unit outradius maximizes the ratio of surface area to

mean width if and only if it is a translate of the Euclidean unit ball B.
• A convex body in R3 with unit inradius minimizes the ratio of surface area to
mean width if and only if it is a translate of a cap body of B (Figure 1.1).

This special case of Problem 1.1 is due to Favard [4], see [21, Theorem 7.6.17].

The following reformulation of Problem 1.1 will be the main focus of this paper.
Recall that the support function hK of a convex body K in Rn is defined by

hK(u) = sup
x∈K
〈u, x〉.

Geometrically, hK(u) is the (signed) distance to the origin of the supporting hyper-
plane of K with outer normal direction u ∈ Sn−1. Mixed volumes can be expressed
in terms of the support function of one of the bodies as

Vn(K,C1, . . . , Cn−1) = 1
n

∫
hK dSC1,...,Cn−1 ,

where SC1,...,Cn−1 is the mixed area measure on Sn−1. Now note that if K ⊆ L,
then hL − hK ≥ 0 pointwise, and thus the following are equivalent:
a. Equality holds in (1.1).
b. K and L have the same supporting hyperplanes with outer normal direction in

the support of the measure SC1,...,Cn−1 .
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We can therefore reformulate Problem 1.1 as follows.

Problem 1.3. Provide a geometric characterization of supp SC1,...,Cn−1 .

Beside its fundamental interest in convex geometry, Problem 1.3 is closely con-
nected with the long-standing problem of providing a complete characterization of
the equality cases of the Alexandrov–Fenchel inequality for general convex bodies
[19, 23], and has further implications that will be discussed in §1.4.

While Problem 1.3 has to date been resolved only for special classes of convex
bodies, a precise conjectural picture that is consistent with all known cases was put
forward by Schneider in 1985 [19]. We presently discuss Schneider’s conjecture and
recall the previously known results in this direction.

1.2. Schneider’s conjecture. To motivate the conjectural picture, it is instruc-
tive to first consider the special case that C1, . . . , Cn−1 are all polytopes. In this
setting, the mixed area measure SC1,...,Cn−1 is atomic with [21, (5.22)]

SC1,...,Cn−1({u}) = Vn−1(F (C1, u), . . . , F (Cn−1, u)) (1.2)

for all u ∈ Sn−1, where F (C, u) denotes the exposed face of C with normal direc-
tion u (see §2.2). Thus to understand the support of the mixed area measure of
polytopes, it suffices to understand when mixed volumes are positive. The latter is
classical and admits an elementary proof, see [21, Theorem 5.1.8].

Fact 1.4. The following are equivalent for convex bodies C1, . . . , Cn in Rn.
a. Vn(C1, . . . , Cn) > 0.
b. There exist segments Ii ⊆ Ci, i ∈ [n] with linearly independent directions.
c. dim

(∑
i∈I Ci

)
≥ |I| for all I ⊆ [n].

The above ingredients suffice to provide a satisfactory answer to Problem 1.3 for
polytopes: combining (1.2) and Fact 1.4 yields

supp SC1,...,Cn−1 =
{
u ∈ Sn−1 : dim

(
F (CI , u)

)
≥ |I| for all I ⊆ [n− 1]

}
whenever C1, . . . , Cn−1 are convex polytopes in Rn, where we define

CI =
∑
i∈I Ci.

However, this conclusion fails to extend to general convex bodies: for example, if
C1, . . . , Cn−1 are strictly convex, then dim(F (CI , u)) = 0 for all u, I.

It was realized by Schneider [19] that the characterization remains meaningful
for general convex bodies if F (C, u) is replaced by the “tangent space” T (C, u)⊥
of C with normal direction u, where the touching cone T (C, u) is defined as the
unique face of a normal cone of C so that T (C, u) contains u in its relative interior.
Equivalent formulations of the following definition are given in §2.4.

Definition 1.5. Let C1, . . . , Cn−1 be convex bodies in Rn. Then u ∈ Sn−1 is called
(C1, . . . , Cn−1)-extreme if dim

(
T (CI , u)⊥

)
≥ |I| for all I ⊆ [n− 1].

Conjecture 1.6 (Schneider). Let C1, . . . , Cn−1 be convex bodies in Rn. Then

supp SC1,...,Cn−1 = cl
{
u ∈ Sn−1 : u is (C1, . . . , Cn−1)-extreme

}
.
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Figure 1.2. Illustration of a normal direction u of a convex body C in R2 that is
C-extreme but not C-exposed. In this case, the “tangent space” T (C, u)⊥ is only
tangent to the boundary of C in one direction.

To date, Conjecture 1.6 has been verified only for special classes of convex bodies.
In particular, the conjecture is known to hold in the following cases:
• C1, . . . , Cn−1 are convex polytopes, as explained above [19];
• C1 = · · · = Ck and Ck+1, . . . , Cn−1 are smooth and strictly convex [18, 19];1

• C1, . . . , Cn−1 are zonoids [20, 23, 8] or “polyoids” [8];
• various combinations of the above cases [23, 8].
The proofs of all these results rely crucially on the special structure of the bodies
involved. While all known cases are consistent with Conjecture 1.6, none of the
known results to date sheds any light on its validity for general convex bodies.

1.3. Main results.

1.3.1. Upper bound. Our first main result proves one half of Conjecture 1.6 in
full generality: supp SC1,...,Cn−1 is always included in the closure of the set of
(C1, . . . , Cn−1)-extreme directions. We will in fact prove a significantly stronger
result of which this is a consequence, as we now explain.

The notion of a “tangent space” of C with normal direction u is somewhat
ambiguous in cases where u does not lie in the relative interior of a normal cone
of C. This situation is illustrated in Figure 1.2: in this case T (C, u)⊥ is only
tangent to the body in one direction. This situation can be avoided by replacing
the touching cone T (C, u) by the normal cone N(C,F (C, u)) of C at F (C, u) (that
is, the smallest normal cone of C that contains u) in Definition 1.5.

Definition 1.7. Let C1, . . . , Cn−1 be convex bodies in Rn. Then u ∈ Sn−1 is called
(C1, . . . , Cn−1)-exposed if dim

(
N(CI , F (CI , u))⊥

)
≥ |I| for all I ⊆ [n− 1].

The following is the first main result of this paper.

Theorem 1.8. For any convex bodies C1, . . . , Cn−1 in Rn, we have

SC1,...,Cn−1

({
u ∈ Sn−1 : u is not (C1, . . . , Cn−1)-exposed

})
= 0.

This result immediately implies the following.

1The strict convexity assumption is not needed and can be removed along the lines of [23, §14].
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Corollary 1.9. For any convex bodies C1, . . . , Cn−1 in Rn, we have

supp SC1,...,Cn−1 ⊆ cl
{
u ∈ Sn−1 : u is (C1, . . . , Cn−1)-exposed

}
⊆ cl

{
u ∈ Sn−1 : u is (C1, . . . , Cn−1)-extreme

}
.

Proof. By the definition of the support of a measure, the first inclusion is equivalent
to the statement that the interior of the set of non-(C1, . . . , Cn−1)-exposed direc-
tions has SC1,...,Cn−1 -measure zero. This follows trivially from Theorem 1.8. For
the second inclusion, it suffices to note that as T (C, u) is a subset of N(C,F (C, u)),
any (C1, . . . , Cn−1)-exposed direction is a fortiori (C1, . . . , Cn−1)-extreme. �

1.3.2. Lower bound. Our second main result fully resolves Conjecture 1.6 in R3.
This will again follow as a consequence of a somewhat more general result.

Theorem 1.10. For any convex bodies K,L in Rn, we have

supp SK,...,K,L = cl
{
u ∈ Sn−1 : u is (K, . . . ,K, L)-extreme

}
.

In particular, this fully resolves Conjecture 1.6 in dimension n = 3.

The works of Minkowski [11, 12] were set exclusively in R3, and thus Theorem
1.10 resolves Minkowski’s monotonicity problem in its original setting. The obstacle
to fully resolving Conjecture 1.6 in higher dimensions will be explained in §1.5.

Remark 1.11. Using the methods of [19, 20, 23, 8], one can readily generalize The-
orem 1.10 by combining it with previously known cases; e.g., one may consider
SK,L,C1,...,Cn−3 where C1, . . . , Cn−3 are smooth. We do not spell out such varia-
tions on Theorem 1.10 as they do not shed any new light on Conjecture 1.6.

Remark 1.12. While Theorem 1.10 considers a special case of mixed area measures
in Rn, we emphasize the result holds for arbitrary convex bodies K,L, in contrast
to previous results that were restricted to special classes of bodies.

On the other hand, Theorem 1.10 is new even in the special case that the sup-
port functions of K,L are smooth. At first sight, this setting would appear to be
far easier than the general case, as the mixed area measure has a simple explicit
formula: if C1, . . . , Cn−1 have smooth support functions, then

dSC1,...,Cn−1 = Dn−1(D2hC1 , . . . , D
2hCn−1) dω,

where ω denotes the Lebesgue measure on Sn−1, D2hC(u) denotes the restriction
of the Hessian ∇2hC(u) in Rn to u⊥, and the mixed discriminant Dn(M1, . . . ,Mn)
of n-dimensional matrices Mi is defined analogously to mixed volumes as

det(λ1M1 + · · ·+ λnMn) =
∑

i1,...,in

Dn(Mi1 , . . . ,Min)λi1 · · ·λin ;

see, e.g., [22, §2]. Thus using the analogue of Fact 1.4 for mixed discriminants due
to Panov [15, Theorem 1] yields the characterization

supp SC1,...,Cn−1 = cl
{
u ∈ Sn−1 : rank

(
D2hCI

(u)
)
≥ |I| for all I ⊆ [n− 1]

}
for any convex bodies C1, . . . , Cn−1 in Rn with smooth support functions. However,
this is not a satisfactory characterization since it is analytic rather than geometric
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in nature. The problem of deducing Conjecture 1.6 from this analytic description is
closely related to classical problems on the solution of homogeneous Monge-Ampère
equations, which will be discussed in §1.4.3 below. At present, Theorem 1.10 is the
only general result in this direction even in the case of smooth support functions.

1.4. Implications.

1.4.1. Extreme and exposed directions. An unexpected implication of Theorem 1.8
is that it sheds light on the relation between extreme and exposed directions.

Corollary 1.13. If Conjecture 1.6 holds for given convex bodies C1, . . . , Cn−1 in
Rn, then every (C1, . . . , Cn−1)-extreme direction u ∈ Sn−1 is a limit u = limk uk
of (C1, . . . , Cn−1)-exposed directions uk ∈ Sn−1.

Proof. Theorem 1.8 and Conjecture 1.6 imply that the closures of the sets of
(C1, . . . , Cn−1)-extreme and (C1, . . . , Cn−1)-exposed directions coincide. �

Thus, for example, Theorem 1.10 implies that

cl
{
u ∈ Sn−1 : u is (K,L)-extreme

}
= cl

{
u ∈ Sn−1 : u is (K,L)-exposed

}
for any convex bodies K,L in R3.

Another special case of Corollary 1.13 gives a new proof of the following result. A
vector u ∈ Sn−1 is called an r-extreme normal direction of K if dimT (K,u) ≤ r+1,
and is called an r-exposed normal direction if dimN(K,F (K,u)) ≤ r+1. It is clear
that these definitions are equivalent to u being (K[n − r − 1], B[r])-extreme and
(K[n− r− 1], B[r])-exposed, respectively, where C[k] denotes that C is repeated k
times. Since Conjecture 1.6 holds in this setting [18], it follows that any r-extreme
normal direction of a convex body is the limit of r-exposed normal directions. This
fact was previously established by a direct argument in [21, Theorem 2.2.9].

1.4.2. Mixed Hessian measures. We now describe an analogue of mixed area mea-
sures for convex functions rather than convex bodies. Such measures are readily
obtained [7] by polarizing the Monge-Ampère measure [5, Chapter 1], and have
been investigated (in a somewhat more general setting) by Trudinger and Wang
[24] as part of their study of nonlinear Dirichlet problems.

In the following, we fix an open convex set Ω ⊆ Rn, and denote by Conv(Ω) the
set of all proper convex functions f on Rn with Ω ⊆ dom f . If f1, . . . , fn ∈ Conv(Ω)
are smooth, their mixed Hessian measure is the measure on Ω with density

dHf1,...,fn

dx
= Dn(∇2f1, . . . ,∇2fn)

with respect to the Lebesgue measure. The definition of Hf1,...,fn
can be extended

to arbitrary f1, . . . , fn ∈ Conv(Ω) by continuity [24, Theorem 2.4].
For any f ∈ Conv(Ω) and x ∈ Ω, denote by L(f, x) the largest convex subset

of Ω on which f is affine and that has x in its relative interior. The set L(f, x)
is the analogue for convex functions of the notion of a touching cone for convex
bodies (indeed, the support function hC is affine on every normal cone of C; for the
precise relation between mixed Hessian measures and mixed area measures, see [7,
Corollary 4.2]). In the following, we let L̄(f, x) = span{L(f, x)− x}.

We can now transcribe Conjecture 1.6 to the setting of mixed Hessian measures.
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Definition 1.14. Let f1, . . . , fn ∈ Conv(Ω). Then a point x ∈ Ω is called
(f1, . . . , fn)-extreme if dim

(
L̄(fI , x)⊥

)
≥ |I| for all I ⊆ [n].

Conjecture 1.15. Let f1, . . . , fn ∈ Conv(Ω). Then

supp Hf1,...,fn
= cl

{
x ∈ Ω : x is (f1, . . . , fn)-extreme

}
.

It can be shown using results of Hug–Mussnig–Ulivelli [7] that Conjecture 1.6
and Conjecture 1.15 are in fact equivalent; see §5. By the same technique, we can
readily transcribe the main results of this paper to mixed Hessian measures.
Corollary 1.16. For any f1, . . . , fn ∈ Conv(Ω), we have

supp Hf1,...,fn
⊆ cl

{
x ∈ Ω : x is (f1, . . . , fn)-extreme

}
.

Moreover, for any f, g ∈ Conv(Ω), we have

supp Hf,...,f,g = cl
{
x ∈ Ω : x is (f, . . . , f, g)-extreme

}
.

In particular, this fully resolves Conjecture 1.15 in dimension n = 2.
1.4.3. A mixed Hartman–Nirenberg–Pogorelov theorem. A classical fact that dates
back to Monge [9, §23.7], and in more precise form to Hartman and Nirenberg [6]
and Pogorelov [16, §IX.4], is that a surface with vanishing Gauss curvature is a
ruled surface: it is foliated by straight lines and planar regions.

More concretely, let f : D → R be a smooth (not necessarily convex) function on
D ⊂ R2. The graph of f defines a surface in R3, whose Gauss curvature vanishes if

det(∇2f) = 0 on D, (1.3)

that is, if f it a solution of the homogeneous Monge-Ampère equation on D. That
det(∇2f(x)) = 0 means that ∇2f(x) has a nontrivial kernel—that is, the second
derivative of f vanishes in some direction—but this local condition does not in
itself imply that f must be affine in that direction. It is a nontrivial fact that when
det(∇2f) vanishes in an open domain D, this local condition can be integrated to
yield the global property that D is foliated by regions on which f is affine. The
following formulation is due to Hartman and Nirenberg [6, §3].
Theorem 1.17 (Hartman–Nirenberg). Let D ⊂ R2 be an open connected set, let
f : D → R be of class C2, and suppose that (1.3) holds. Let

R = {x ∈ D : ∇2f = 0 in a neighborhood of x}.

Then for every x ∈ D\R, there is an affine line x ∈ L ⊂ R2 so that f is affine on
the connected component I of L ∩D that contains x, and I ∩R = ∅.

It is clear that f is affine on every connected component of the open set R; these
are the planar regions of the surface defined by f . Theorem 1.17 states that the
non-planar part of the surface is foliated by lines that extend to the boundary. Such
a result for non-smooth surfaces is due to Pogorelov [16, §IX.4].

The problems investigated in this paper may be viewed as mixed analogues of
these classical results. More concretely, given two smooth functions f : D → R and
g : D → R on a domain D ⊆ R2, we aim to characterize when

D2(∇2f,∇2g) = 0 on D. (1.4)
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∇2f=0 ∇2g=0

D

Figure 1.3. Illustration of of Corollary 1.18. Outside the planar regions of f and
g, the domain D is foliated by lines on which f and g are simultaneously affine.

When f = g, this is precisely (1.3). However, the case f 6= g can be of a very
different nature, as D2(M1,M2) = 0 need not have any implication for the kernels
of M1,M2: for example, (1.4) holds when f(x) = ‖x‖2 and g is any harmonic
function on D, neither of which define ruled surfaces.

When M1,M2 are positive semidefinite, however, their kernels do characterize
when D2(M1,M2) = 0: this holds if and only if M1 = 0, or M2 = 0, or kerM1 =
kerM2 with dim kerMi = 1 [15]. Therefore, by analogy with the local-to-global
phenomenon captured by Theorem 1.17, it is natural to conjecture that (1.4) has
the following solution for convex f, g: each x ∈ D is either contained in a planar
region of f or of g, or in an affine line on which f and g are simultaneously affine;
see Figure 1.3. That this is the case is a consequence of Theorem 1.10.

Corollary 1.18. Let Ω ⊆ R2 be an open convex set and D ⊆ Ω be an open
connected set. Let f, g ∈ Conv(Ω) be of class C2, and suppose that (1.4) holds. Let

R ={x ∈ D : ∇2f = 0 in a neighborhood of x} ∪
{x ∈ D : ∇2g = 0 in a neighborhood of x}.

Then for every x ∈ D\R, there is an affine line x ∈ L ⊂ R2 so that f and g are
both affine on the connected component I of L∩D that contains x, and I ∩R = ∅.

We have formulated Corollary 1.18 for smooth convex functions to emphasize
the analogy with Theorem 1.17. However, the result is an immediate consequence
of the following result in the nonsmooth case.

Corollary 1.19. Let Ω ⊆ R2 be an open convex set and D ⊆ Ω be an open
connected set. Let f, g ∈ Conv(Ω) satisfy Hf,g(D) = 0, and define

R = {x ∈ D : dimL(f, x) = 2 or dimL(g, x) = 2}.

Then for every x ∈ D\R, there is an affine line x ∈ L ⊂ R2 so that f and g are
both affine on the connected component I of L∩D that contains x, and I ∩R = ∅.

1.5. On higher dimensions. The proof of Theorem 1.8 is based on an argument
with a geometric measure theory flavor that will be explained in §3. This argument
works in the same manner in any dimension. In contrast, Theorem 1.10 is restricted
to special mixed area measures that fully capture only the three-dimensional case.
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The reason for this is not merely technical in nature: there is a fundamental obstacle
that arises in higher dimensions, as we presently explain.

The proof of Theorem 1.10 is based on the following simple observation that will
be proved in §2.4 below. Here PE denotes the orthogonal projection onto E.

Lemma 1.20. Let K,C1, . . . , Cn−2 be convex bodies in Rn, and let u ∈ Sn−1 be a
(K,C1, . . . , Cn−2)-extreme direction. Then there exists v ∈ T (K,u)⊥ so that u is a
(Pv⊥C1, . . . ,Pv⊥Cn−2)-extreme direction.

Lemma 1.20 states that the property of being an extreme direction is preserved
under projection. Therefore, if it were true that

u ∈ supp SP
v⊥C1,...,Pv⊥Cn−2

?=⇒ u ∈ supp SK,C1,...,Cn−2 , (1.5)

then the lower bound in Conjecture 1.6 would follow by induction on the dimension
(and thus the full conjecture would follow by Theorem 1.8). Unfortunately, it turns
out that (1.5) does not always hold. In fact, we will provide an essentially complete
understanding of the behavior of the support under projection.

Theorem 1.21. Let K,C1, . . . , Cn−2 be convex bodies in Rn.
a. If dimT (K,u) = 1 or dimT (K,u) = n − 1, the following holds: if there exists

v ∈ T (K,u)⊥ so that u ∈ supp SP
v⊥C1,...,Pv⊥Cn−2 , then u ∈ supp SK,C1,...,Cn−2 .

b. If 1 < dimT (K,u) < n − 1, it can be the case that u ∈ supp SP
v⊥C1,...,Pv⊥Cn−2

for every v ∈ T (K,u)⊥, but u 6∈ supp SK,C1,...,Cn−2 .

Only the case dimT (K,u) = 1 will be needed for the proof of Theorem 1.10; this
case will be proved in §4. The case dimT (K,u) = n − 1 and part b. are included
to clarify the basic obstruction to extending the lower bound to higher dimensions;
their proofs are postponed until §6.

Theorem 1.21 shows that performing induction on the dimension by projection
must fail in dimensions n ≥ 4. Thus further progress on the lower bound in Con-
jecture 1.6 will likely require a fundamentally new ingredient.

1.6. Organization of this paper. The remainder of this paper is organized as fol-
lows. In §2, we recall some basic notions of convex geometry that appear throughout
the paper, and we establish some elementary facts that will be used in the sequel.
The main results of this paper, Theorems 1.8 and 1.10, are proved in §3 and §4,
respectively. The corresponding results for mixed Hessian measures and the mixed
Hartman-Nirenberg-Pogorelov problem are developed in §5. Finally, the behavior
of the support of mixed area measures in higher dimensions is discussed in §6.

2. Preliminaries

The aim of this section is to recall a number of basic notions of convex geometry
and to establish some elementary facts that will be used throughout this paper.
Our standard reference on convexity is the excellent monograph [21].
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2.1. Basic notions. By a convex body we mean a nonempty compact convex set.
We denote by Kn the set of all convex bodies in Rn, by Knn the set of all convex
bodies in Rn with nonempty interior, and Kn(o) the set of all convex bodies in Rn
that contain the origin in their interior.

For K ∈ Kn, we denote by relintK the relative interior and by relbdK the
relative boundary of K, that is, the interior (boundary) of K viewed as a convex
body in the affine hull of K. The polar dual body of K ∈ Kn(o) is defined by

K◦ = {u ∈ Rn : 〈u, x〉 ≤ 1 for all x ∈ K}.

The polar is an involution K◦◦ = K. Moreover,

hK◦(x) = ‖x‖K for all x ∈ Rn,

where the Minkowski functional of K is defined by ‖x‖K = inf{λ > 0 : x ∈ λK}.
For any u ∈ Rn and t ∈ R, we define

H+
u,t = {x ∈ Rn : 〈u, x〉 ≥ t},

H−u,t = {x ∈ Rn : 〈u, x〉 ≤ t},
Hu,t = {x ∈ Rn : 〈u, x〉 = t}.

For u ∈ Sn−1 and ε > 0, B(u, ε) denotes the open ε-ball in Sn−1 with center u.

2.2. Facial structure.

2.2.1. Faces and exposed faces. A face F of a convex body K ∈ Kn is a convex
subset of K such that x, y ∈ K and x+y

2 ∈ F implies x, y ∈ F . For u ∈ Sn−1,

F (K,u) = {x ∈ K : 〈u, x〉 = hK(u)} = K ∩Hu,hK(u)

is called the exposed face of K with normal direction u. Exposed faces are additive
under Minkowski addition, that is,

F (K + L, u) = F (K,u) + F (L, u) (2.1)

for all K,L ∈ Kn and u ∈ Sn−1; see [21, Theorem 1.7.5].

2.2.2. Normal cones. For any x ∈ K, the normal cone of K at x is defined by

N(K,x) = {u ∈ Rn : 〈u, x〉 = hK(u)}.

This is precisely the dual notion to an exposed face. Dual to (2.1), we have

N(K + L, x+ y) = N(K,x) ∩N(L, y) (2.2)

for all K,L ∈ Kn and x ∈ K, y ∈ L; see [21, Theorem 2.2.1].
The metric projection map pK : Rn → K sends each x ∈ Rn to the point in K

that is closest to x. The metric projection is closely related to the normal cone:

p−1
K (x) = x+N(K,x)

for every x ∈ K; see [21, p. 81].
Let F be a face of K. Then every point x ∈ relintF yields the same normal

cone N(K,x), which will also be denoted as N(K,F ); see [21, p. 83]. Since relative



ON MINKOWSKI’S MONOTONICITY PROBLEM 11

interior distributes over Minkowski addition [17, Corollary 6.6.2], the property (2.2)
extends to N(K + L,F (K + L, u)) = N(K,F (K,u)) ∩N(L,F (L, u)).

2.2.3. Touching cones. For any u ∈ Sn−1, the touching cone T (K,u) is defined
as the unique face of N(K,F (K,u)) that contains u in its relative interior. The
distinction between touching and normal cones is illustrated in Figure 1.2.

Remark 2.1. Since N(K,F (K,u)) is itself a face of every normal cone N(K,x) that
contains u, the touching cone T (K,u) can be equivalently defined as the unique face
of any normal cone of K so that T (K,u) contains u in its relative interior.

Just as normal cones are dual to exposed faces, touching cones are dual to faces.
This duality can be made precise as follows [25, §1.2.3]. For any K ∈ Kn(o), the map
F 7→ R+F = {λx : λ ≥ 0, x ∈ F} defines a bijection

{faces of K◦} ∼−→ {touching cones of K}.

The restriction of this map to the set of exposed faces of K◦ defines a bijection

{exposed faces of K◦} ∼−→ {normal cones of K}.

The inverse map is given by T 7→ T ∩ bdK◦ for any touching cone T of K.

2.3. Properties of touching cones. A number of elementary properties of touch-
ing cones will be needed throughout this paper. We record their proofs here. We
begin with the following simple observation.

Lemma 2.2. Let v ∈ T (K,u). Then T (K, v) is the unique face of T (K,u) that
contains v in its relative interior.

Proof. By definition, T (K,u) is a face of N(K,x) for some x ∈ K. Let F be the
unique face of T (K,u) that contains v in its relative interior. Then F is also a face
of N(K,x) [21, Theorem 2.1.1], and thus F = T (K, v) by Remark 2.1. �

Our next observation is the analogue of (2.2) for touching cones.

Lemma 2.3. Let K,L ∈ Kn and u ∈ Sn−1. Then

T (K + L, u) = T (K,u) ∩ T (L, u).

Proof. We first note that u is in the relative interior of T (K,u) ∩ T (L, u), as the
relative interior distributes over finite intersections [17, Theorem 6.5]. On the
other hand, let T (K,u) be a face of N(K,x), and let T (L, u) be a face of N(L, y).
Then clearly a, b ∈ N(K,x) ∩ N(L, y) with a+b

2 ∈ T (K,u) ∩ T (L, u) implies that
a, b ∈ T (K,u) ∩ T (L, u). Thus we have shown that T (K,u) ∩ T (L, u) is a face of
N(K+L, x+y) = N(K,x)∩N(L, y), which concludes the proof by Remark 2.1. �

Next, we clarify the behavior of touching cones under projection.

Lemma 2.4. Let K ∈ Kn and u, v ∈ Sn−1 with u ∈ v⊥. Then

T (Pv⊥K,u) = T (K,u) ∩ v⊥,

where we view Pv⊥K as a convex body in v⊥.
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Proof. Let T (K,u) be a face of N(K,x), and note that

N(Pv⊥K,Pv⊥x) = {w ∈ v⊥ : 〈w, x〉 = hK(w)} = N(K,x) ∩ v⊥.

It follows by the same argument as in the proof of Lemma 2.3 that u is in the
relative interior of T (K,u) ∩ v⊥ and that T (K,u) ∩ v⊥ is a face of N(K,x) ∩ v⊥.
This concludes the proof by Remark 2.1. �

We finally record an implication between normal and touching cone inclusion.

Lemma 2.5. Let K,L ∈ Kn and x ∈ bdK, y ∈ bdL with N(K,x) ⊆ N(L, y).
Then T (K,u) ⊆ T (L, u) for every u ∈ N(K,x).

Proof. It follows by the argument in the proof of Lemma 2.3 and by Remark 2.1
that u is in the relative interior of T (K,u)∩ T (L, u), and that T (K,u)∩ T (L, u) is
a face of N(K,x) ∩N(L, y) = N(K,x). Thus T (K,u) ∩ T (L, u) = T (K,u). �

2.4. Extreme directions. The notion of a (C1, . . . , Cn−1)-extreme direction was
defined in Definition 1.5. This notion has a number of equivalent formulations that
are analogous to the equivalent conditions of Fact 1.4.

Lemma 2.6. Let C1, . . . , Cn−1 ∈ Kn and u ∈ Sn−1. The following are equivalent:
a. u is (C1, . . . , Cn−1)-extreme.
b. dim

(∑
i∈I T (Ci, u)⊥

)
≥ |I| for all I ⊆ [n− 1].

c. There exist lines Li ⊆ T (Ci, u)⊥, i ∈ [n−1] with linearly independent directions.

Proof. By Lemma 2.3, a. states that

dim
(⋂

i∈I T (Ci, u)
)

= dim
(
T (CI , u)

)
≤ n− |I|

for all I, while b. states that

dim
(⋂

i∈I spanT (Ci, u)
)
≤ n− |I|

for all I. The equivalence of these two conditions follows from the fact that u is in
the relative interior of each T (Ci, u). The equivalence of b. and c. is a general fact
of linear algebra that is proved, e.g., in [20, Lemma 2.3]. �

We emphasize that the counterpart of Lemma 2.6 for (C1, . . . , Cn−1)-exposed
directions does not hold: it may happen that the normal cones N(Ci, F (Ci, u)) do
not have any common point in their relative interiors, and thus their intersection
may have strictly smaller dimension than the intersection of their linear spans. That
Definition 1.7 provides the natural notion of a (C1, . . . , Cn−1)-exposed direction will
become evident from the proof of Theorem 1.8.

On the other hand, Lemma 2.6 extends readily to its counterpart for convex
functions that was defined in Definition 1.14.

Lemma 2.7. Let Ω ⊆ Rn be an open convex set, and let f1, . . . , fn ∈ Conv(Ω) and
x ∈ Ω. The following are equivalent:
a. x is (f1, . . . , fn)-extreme.
b. dim

(∑
i∈I L̄(fi, x)⊥

)
≥ |I| for all I ⊆ [n].

c. There exist lines Li ⊆ L̄(fi, x)⊥, i ∈ [n] with linearly independent directions.
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Proof. The proof is identical to that of Lemma 2.6 using that

L(fI , x) =
⋂
i∈I L(fi, x).

To verify this is the case, note that as

fI
(
y+z

2 )− fI(y)+fI(z)
2 =

∑
i∈I

(
fi
(
y+z

2 )− fi(y)+fi(z)
2

)
and each term in the sum is nonnegative, fI is affine on a set A if and only if fi
is affine on A for every i ∈ I. The claim therefore follows from the fact that the
relative interior distributes over finite intersections [17, Theorem 6.5]. �

We can now prove Lemma 1.20 in the introduction.

Proof of Lemma 1.20. Let u be (K,C1, . . . , Cn−2)-extreme. By Lemma 2.6, there
exist lines L0 ⊆ T (K,u)⊥ and Li ⊆ T (Ci, u)⊥, i = 1, . . . , n − 2 with linearly
independent directions. Let L0 = Rv. Then the lines Pv⊥L1, . . . ,Pv⊥Ln−2 have
linearly independent directions. Moreover, since each element of Pv⊥Li is a linear
combination of an element of Li and v, we have

Pv⊥Li ⊆ T (Ci, u)⊥ + Rv =
(
T (Ci, u) ∩ v⊥

)⊥ = T (Pv⊥Ci, u)⊥

by Lemma 2.4. Thus u is (Pv⊥C1, . . . ,Pv⊥Cn−2)-extreme by Lemma 2.6. �

2.5. Mixed volumes and mixed area measures. The most basic properties
of mixed volumes Vn(C1, . . . , Cn) and mixed area measures SC1,...,Cn−1 are that
they are additive and 1-homogeneous in each argument Ci, symmetric in their
arguments Ci, and that they are nonnegative and translation invariant. For the
theory of mixed volumes and mixed area measures, we refer to the monograph [21].

Let f = hK−hL be a difference of support functions of convex bodies K,L ∈ Kn.
By multilinearity, we can uniquely extend the definitions of mixed volumes and
mixed area measures to such functions by defining [21, §5.2]

Vn(f, C1, . . . , Cn−1) = Vn(K,C1, . . . , Cn−1)− Vn(L,C1, . . . , Cn−1),
Sf,C1,...,Cn−2 = SK,C1,...,Cn−2 − SL,C1,...,Cn−2 .

If f1, . . . , fn are differences of support functions, we can iterate this construction
to define Vn(f1, . . . , fn) and Sf1,...,fn−1 . Note that these functional extensions of
mixed volumes and mixed area measures are no longer necessarily nonnegative.
Any f ∈ C2(Sn−1) is a difference of support functions [21, Lemma 1.7.8].

We now recall the behavior of mixed volumes under projection onto a hyperplane
[21, Theorem 5.3.1]: for any v ∈ Sn−1, we have

nVn([0, v], C1, . . . , Cn−1) = Vn−1(Pv⊥C1, . . . ,Pv⊥Cn−1).

Since hPEC = hC |E , this implies that

nVn([0, v], f1, . . . , fn−1) = Vn−1(f1|v⊥ , . . . , fn−1|v⊥)

for any differences of support functions f1, . . . , fn−1.
In the opposite direction, we will require the following.
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Lemma 2.8. Let C1, . . . , Cn−2 ∈ Kn, and let u, v ∈ Sn−1 with u ∈ v⊥. Then
u ∈ supp SP

v⊥C1,...,Pv⊥Cn−2 implies that u ∈ SB,C1,...,Cn−2 .

Proof. The projection formula for mixed volumes implies that [23, Remark 8.6]

(n− 1) S[0,v],C1,...,Cn−2 = SP
v⊥C1,...,Pv⊥Cn−2 (2.3)

if we view the right-hand side as a measure on Rn that is supported in v⊥. The result
follows as supp S[0,v],C1,...,Cn−2 ⊆ supp SB,C1,...,Cn−2 by [21, Lemma 7.6.15]. �

Finally, for any C ∈ Kn, the area measure SC[n−1] has the representation

SC[n−1](A) = Hn−1(n−1
C (A)

)
, (2.4)

for A ⊆ Sn−1 [21, §5.1], where Hn−1 denotes the (n− 1)-Hausdorff measure and

n−1
C (A) =

⋃
u∈A

F (C, u) ⊆ bdC

is the set of points in bdC that have a normal direction in A.

3. Proof of the upper bound

The main aim of this section is to prove the following.

Theorem 3.1. For any K,L ∈ Kn and k = 0, . . . , n− 2, we have

SK[k+1],L[n−k−2]
({
u ∈ Sn−1 : dimN(K,F (K,u)) ≥ n− k

})
= 0.

Let us first explain why this suffices to conclude the proof of Theorem 1.8.

Proof of Theorem 1.8. By definition,{
u ∈ Sn−1 : u is not (C1, . . . , Cn−1)-exposed

}
=

n−2⋃
k=0

⋃
|I|=k+1

{
u ∈ Sn−1 : dimN(CI , F (CI , u)) ≥ n− k

}
.

Thus it suffices to show that

SC1,...,Cn−1

({
u ∈ Sn−1 : dimN(CI , F (CI , u)) ≥ n− k

})
= 0

for all k and I ⊆ [n− 1] with |I| = k + 1. But as SC1,...,Cn−1 ≤ SCI [|I|],CIc [n−1−|I|]
by the additivity of mixed area measures, this follows from Theorem 3.1. �

The remainder of this section is devoted to the proof of Theorem 3.1. We begin
by sketching the main idea behind the proof.

3.1. Outline of the proof. We begin with an elementary observation: the con-
clusion of Theorem 3.1 is equivalent to the statement that for all ` > k

SK[`],L[n−`−1]
({
u ∈ Sn−1 : dimN(K,F (K,u)) ≥ n− k

})
= 0,

since the set inside the measure increases if we replace k by ` − 1. Thus the
conclusion of Theorem 3.1 is also equivalent to

S(K+tL)[n−1]
({
u ∈ Sn−1 : dimN(K,F (K,u)) ≥ n− k

})
= O(tn−k−1)
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as t ↓ 0, since S(K+tL)[n−1] =
∑n−1
`=0

(
n−1
`

)
tn−`−1SK[`],L[n−`−1]. We aim to establish

such a property by exploiting the representation (2.4) of S(K+tL)[n−1](A) as the
area of the set of boundary points of K + tL with a normal direction in A.

The basic intuition behind the proof is that the set of points in bdK that have
a normal direction u with dimN(K,F (K,u)) ≥ n − k is expected to behave as a
k-dimensional set. Thus the corresponding boundary points ofK+tL are contained
in an L-shaped “tube” with radius t around a k-dimensional subset of bdK, which
therefore has area O(tn−k−1) regardless of the choice of L.

That the set of k-singular boundary points of K—that is, boundary points with
normal cone of dimension at least n−k—has dimension k is made precise by classical
results of Anderson and Klee [1], see also [21, Theorem 2.2.5]: they show that this
set can be covered by countably many compact sets of finite k-Hausdorff measure.
This does not suffice for our purposes, however, since it is unclear whether this
covering of a subset of bdK can be obtained by pulling back a covering of the
corresponding normal directions in Sn−1. To make the argument work, we must
first prove the existence of such a cover that behaves nicely under the Gauss map.
We can subsequently make precise the idea that an L-shaped “tube” around any
element of this cover has area of order O(tn−k−1), concluding the proof.

3.2. A Lipschitz cover of k-singular points. The aim of this section is to prove
the following result, which refines the results of [1] and [21, Theorem 2.2.5].
Proposition 3.2. Fix K ∈ Kn and k ∈ {0, . . . , n − 1}. Then there exists a
family of Lipschitz maps um : [0, 1]k → bdK such that every face F of K with
dimN(K,F ) ≥ n− k is contained in Im um for some m ∈ N.

We begin with some basic notations. The affine Grassmannian Graff(n, k) is
defined as the set of all k-dimensional affine subspaces of Rn. Denote by Mn−k,n
the set of all (n− k)× n matrices with rank n− k. Then the map

H : Mn−k,n × Rn → Graff(n, k)

defined by
H(M,y) = {x ∈ Rn : M(x− y) = 0}

is surjective. The following trivial fact will be used below.
Fact 3.3. Consider M ∈ Mn−k,n so that M = [M1 |M2 ] with M1 ∈ R(n−k)×(n−k)

invertible and M2 ∈ R(n−k)×k. Define g : Rk ×Mn−k,n × Rn → Rn−k as

g(z;M,y) = M−1
1 (My −M2z).

Then
H(M,y) =

{(
g(z;M,y), z

)
: z ∈ Rk

}
.

In the following, we denote by 0p the vector in Rp and by 0p×q the matrix in
Rp×q all of whose entries are zero, and by Ip the identity matrix in Rp×p. We also
recall that pK denotes the metric projection map of K, see §2.2.2.

The following is the key step in the proof of Proposition 3.2.
Lemma 3.4. Fix K ∈ Kn and k ∈ {0, . . . , n − 1}, and let S be a closed ball with
K ⊂ intS. For every face F of K with dimN(K,F ) = n− k, there is a nonempty
open set O ⊆ Mn−k,n × Rn so that F ⊆ pK(H(M,y) ∩ S) for all (M,y) ∈ O.
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Proof. Since the statement is invariant under rotation and translation of K, we can
assume without loss of generality that

N(K,F ) ⊆ Rn−k × {0k}, F = {0n−k} × F ′ ⊂ {0n−k} × Rk.

We will first find a single point (M∗, y∗) that satisfies the desired conclusion, and
then show it is stable under perturbation.

To construct (M∗, y∗), we choose any y∗ ∈ relintN(K,F ) of sufficiently small
norm so that F + y∗ ⊂ intS, and let M∗ = [ In−k | 0(n−k)×k ] ∈ Mn−k,n. Then

F + y∗ ⊂ H(M∗, y∗) ∩ S,

which implies that F ⊆ pK(H(M∗, y∗) ∩ S) (see §2.2.2).
By construction, y∗ = (y′∗, 0k) for some y′∗ ∈ Rn−k. Fix an open neighborhood

U ′ of y′∗ such that U = U ′ × {0k} ⊂ N(K,F ) and F +U ⊂ S. In the following, we
adopt the notation defined in Fact 3.3. Note first that

g(z;M∗, y∗) = y′∗

for all z ∈ Rk. By continuity of the map g and as In−k is invertible, there is an
open neighborhood Õ ⊂ Rk ×Mn−k,n × Rn of F ′ × {M∗} × {y∗} so that

g(z;M,y) ∈ U ′ and M1 is invertible for all (z,M, y) ∈ Õ.

By the generalized tube lemma [14, §26, Ex. 9], there exists an open neighborhood
O ⊂ Mn−k,n × Rn of (M∗, y∗) so that F ′ ×O ⊂ Õ.

Denote by n(x;M,y) = (g(x′;M,y), 0k) for any x = (0n−k, x′) ∈ F . The choice
of U ′, the construction of Õ, and Fact 3.3 ensure that

x+ n(x;M,y) ∈ H(M,y) ∩ S, n(x;M,y) ∈ N(K,F )

for all (M,y) ∈ O and x ∈ F . Thus F ⊆ pK(H(M,y) ∩ S) for all (M,y) ∈ O. �

We can now complete the proof of Proposition 3.2.

Proof of Proposition 3.2. Fix a closed ball S that contains K in its interior. For
every ` ∈ {0, . . . , k}, M ∈ Mn−`,n, and y ∈ Rn, the set H(M,y)∩S is either empty
or a closed ball of dimension at most k. In the latter case, we can certainly find a
Lipschitz map f : [0, 1]k → H(M,y) so that H(M,y) ∩ S ⊆ Im f .

Let (fm)m∈N be a family of such maps obtained by applying this construction
to all ` ∈ {0, . . . , k} and all (M,y) in a countable dense subset of Mn−`,n × Rn.
Lemma 3.4 ensures that every face F of K with dimN(K,F ) = n − ` ≥ n − k is
contained in Im um for some m, where we define um = pK ◦ fm. It remains to note
that um is Lipschitz as pK is Lipschitz [21, Theorem 1.2.1]. �

3.3. Proof of Theorem 3.1. Throughout the proof of Theorem 3.1, fixK,L ∈ Kn,
k ∈ {0, . . . , n− 2}, and a family (um)m∈N of Lipschitz maps um : [0, 1]k → bdK as
in Proposition 3.2. Define the sets Am ⊆ Sn−1 as

Am =
{
v ∈ Sn−1 : F (K, v) ⊆ Im um

}
.
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Then Proposition 3.2 ensures that{
v ∈ Sn−1 : dimN(K,F (K, v)) ≥ n− k

}
⊆
⋃
m∈N

Am.

By the argument in §3.1, it suffices to show that

S(K+tL)[n−1](Am) = O(tn−k−1) as t ↓ 0

for every m ∈ N.

Proof of Theorem 3.1. The representation (2.4) yields

S(K+tL)[n−1](Am) = Hn−1

( ⋃
v∈Am

F (K + tL, v)
)
.

By the definition of Am and (2.1), we have⋃
v∈Am

F (K + tL, v) ⊆ (Im um + tL) ∩ bd(K + tL).

Let [0, 1]k =
⋃Nt

i=1Bi be a covering of [0, 1]k by Nt = O(t−k) balls Bi of radius t.
Then Im um ⊆

⋃Nt

i=1 um(Bi), and we can estimate

S(K+tL)[n−1](Am) ≤
Nt∑
i=1
Hn−1((um(Bi) + tL) ∩ bd(K + tL)

)
.

Note that um(Bi) + tL is contained in a ball B̃i of radius (Lip(um) + diam(L))t.
As K1 ∩ bdK2 ⊆ bd(K1 ∩K2) for any convex bodies K1,K2, we obtain

Hn−1((um(Bi) + tL) ∩ bd(K + tL)
)
≤ Hn−1(bd

(
B̃i ∩ (K + tL)

))
.

Now recall that Hn−1(bdC) = nVn(B,C, . . . , C) for every C ∈ Kn [21, (5.53)], so
Hn−1(bdK1) ≤ Hn−1(bdK2) for any convex bodies K1 ⊆ K2. Thus

Hn−1(bd
(
B̃i ∩ (K + tL)

))
≤ Hn−1(bd B̃i

)
= ctn−1

with c = (Lip(um) + diam(L))n−1Hn−1(Sn−1). We therefore obtain

S(K+tL)[n−1](Am) ≤ ctn−1Nt = O(tn−k−1),

concluding the proof. �

4. Proof of the lower bound

The aim of this section is to prove Theorem 1.10. We again begin by sketching
the main idea behind the proof before proceeding to the details.

4.1. Outline of the proof. We aim to characterize supp SK[n−2],L for K,L ∈ Kn
by induction on the dimension n. The basic principle for doing so was explained
in §1.5, but the procedure cannot be implemented directly as (1.5) does not always
hold. Instead, we will perform the induction in an indirect manner that requires
only the case dimT (K,u) = 1 of (1.5), which holds by Theorem 1.21.
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Remark 4.1. In the following, we will take for granted that Conjecture 1.6 is known
to hold for the area measure SK[n−1], that is, that

supp SK[n−1] = cl
{
u ∈ Sn−1 : dimT (K,u) = 1

}
.

This is a well known result, see, e.g., [21, Lemma 4.5.2]; we include a short proof
in Corollary 4.5 below that follows trivially from the methods used in the proof of
Theorem 1.21. Note that this implies, in particular, that supp SK[n−2],L is charac-
terized for n = 2, which serves as the base case of our induction on n.

Let us now sketch the idea behind the induction. By Corollary 1.9 and as the
support of a measure is a closed set, it suffices to show that any (K[n − 2], L)-
extreme direction u ∈ Sn−1 is contained in supp SK[n−2],L. We fix such a direction
u in the following. Let us consider two nearly complementary cases.
1. If dimT (K,u) = 1, then the approach described in §1.5 can be applied directly:

Lemma 1.20 yields v ∈ u⊥ so that u is (Pv⊥K[n−3],Pv⊥L)-extreme, and thus the
induction hypothesis implies that u ∈ supp SP

v⊥K[n−3],P
v⊥L

. We now conclude
that u ∈ supp SK[n−2],L by the case dimT (K,u) = 1 of Theorem 1.21.

2. Now suppose that dimT (K,u′) > 1 for all u′ in a neighborhood of u. Then we
have u 6∈ supp SK[n−1]. It therefore suffices to show that

u ∈ supp
(
SK[n−2],L + SK[n−1]

)
= supp SK[n−2],K+L.

To this end, note that it is easily checked using Definition 1.5 that the fact that
u is (K[n − 2], L)-extreme implies that it is also (K[n − 2],K + L)-extreme, as
well as that dimT (K + L, u) = 1. We can therefore once again proceed as in
§1.5 to achieve the desired conclusion using Theorem 1.21.

These two cases almost, but not quite, suffice to prove Theorem 1.10: the above
arguments leave the case that dimT (K,u) > 1, but u lies on the boundary of the
set of u′ with dimT (K,u′) = 1, unresolved.

To handle this boundary case, we will use to our advantage the fact that the
measure SC1,...,Cn−1 does not uniquely determine the convex bodies C1, . . . , Cn−1.
We will show in §4.3 how one can modify the bodyK so that it satisfies the condition
of the second case above, without changing the mixed area measure SK[n−2],L. Then
the second case suffices to complete the proof of Theorem 1.10 (and, somewhat
surprisingly, the first case no longer needs to be considered separately).

4.2. The case dimT (K,u) = 1 of Theorem 1.21. Before we proceed to the proof
of Theorem 1.10, we must prove the case dimT (K,u) = 1 of Theorem 1.21 that is
needed here. The remaining parts of Theorem 1.21 will be proved in §6.

The proof relies on a characterization of directions u with dimT (K,u) = 1,
which is dual to the characterization of extreme boundary points of a convex body
in [21, Lemma 1.4.6]. Only the implication a⇒ b will be used in the sequel.

Lemma 4.2. For any K ∈ Kn and u ∈ Sn−1, the following are equivalent.
a. dimT (K,u) = 1.
b. For every ε > 0, there exists K ′ ∈ Knn so that K ⊂ K ′, hK′(u) > hK(u), and
hK′(v) = hK(v) for all v ∈ Sn−1\B(u, ε).
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Proof. We first prove a ⇒ b. As the statement is invariant under translation, we
assume without loss of generality that relintK contains the origin.

If dimK ≤ n−2, then dimT (K,u) > 1 for all u and there is nothing to prove. If
dimK = n− 1, then dimT (K,u) = 1 implies that u ∈ K⊥. Let K ′ = conv{K, tu}
with t > 0. Then hK′(u) = t > 0 = hK(u). Moreover, for every ε > 0, we can
choose t > 0 so that hK′ = hK on Sn−1\B(u, ε), since as t ↓ 0 the normal direction
of each supporting hyperplane of K ′ that does not touch K converges to u.

It remains to consider the case that dimK = n, so that K ∈ Kn(o). By the duality
explained in §2.2.3, dimT (K,u) = 1 implies that

T (K,u) ∩ bdK◦ = {x} with x = u

‖u‖K◦

is a 0-dimensional face of K◦. By [21, Lemma 1.4.6], there exists for every ε > 0 a
choice of v ∈ Sn−1 and t ∈ R+ so that x ∈ intH+

v,t and

K◦ ∩H+
v,t ⊂ R+B(u, ε).

Now define K ′ = (K◦ ∩H−v,t)◦ ⊃ K. Then

hK′(v) = ‖v‖K◦∩H−v,t
= ‖v‖K◦ = hK(v)

for all v ∈ Sn−1\B(u, ε). Moreover, as x 6∈ K◦ ∩H−v,t, we have

hK′(u) = ‖u‖K◦∩H−v,t
> ‖u‖K◦ = hK(u),

which concludes the proof of a⇒ b.
To prove the converse implication b ⇒ a, suppose that dimT (K,u) > 1. Since

u ∈ relintT (K,u), we can find distinct v1, v2 ∈ T (K,u) so that u = v1+v2
2 . Now

assume for sake of contradiction that the conclusion of part b holds, and choose
ε > 0 sufficiently small that v1, v2 6∈ B(u, ε). Then

hK(u) = hK(v1) + hK(v2)
2 = hK′(v1) + hK′(v2)

2 ≥ hK′(u),

where we used that hK is affine on T (K,u) in the first equality, and that hK′ is
convex in the inequality. This entails a contradiction, concluding the proof. �

Recall the following classical result [21, Theorems 7.3.1 and 7.4.2].

Theorem 4.3 (Alexandrov–Fenchel inequality). For any K,L,C1, . . . , Cn−2 ∈ Kn

Vn(K,L,C1, . . . , Cn−2)2 ≥ Vn(K,K,C1, . . . , Cn−2) Vn(L,L,C1, . . . , Cn−2).

If in addition Vn(K,L,C1, . . . , Cn−2) > 0, then equality holds if and only if

SK,C1,...,Cn−2 = Vn(K,K,C1, . . . , Cn−2)
Vn(K,L,C1, . . . , Cn−2) SL,C1,...,Cn−2 .

The following is the main observation of this section.

Lemma 4.4. Let K,C1, . . . , Cn−2 ∈ Kn and u ∈ Sn−1 with dimT (K,u) = 1. If
u 6∈ supp SK,C1,...,Cn−2 , then u 6∈ supp SL,C1,...,Cn−2 for every L ∈ Kn.
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Proof. As we assume that u 6∈ supp SK,C1,...,Cn−2 , there exists ε > 0 so that
SK,C1,...,Cn−2(B(u, ε)) = 0. Let K ′ ⊃ K be the convex body that is provided
by part b of Lemma 4.2 for this choice of ε.

Suppose that Vn(K ′,K,C1, . . . , Cn−2) = 0. Recall that dimK ′ = n by construc-
tion, while dimK ≥ n − 1 as dimT (K,u) = 1. Thus by Fact 1.4, there exists
I ⊆ [n−2] so that dimCI < |I|. Then Fact 1.4 readily yields that SL,C1,...,Cn−2 = 0
for every L ∈ Kn, concluding the proof in this case.

We may therefore assume that Vn(K ′,K,C1, . . . , Cn−2) > 0. Note that by con-
struction hK′ = hK on Sn−1\B(u, ε) ⊇ supp SK,C1,...,Cn−2 , so that

Vn(K ′,K,C1, . . . , Cn−2) = Vn(K,K,C1, . . . , Cn−2).

Therefore

Vn(K ′,K,C1, . . . , Cn−2)2 = Vn(K ′,K,C1, . . . , Cn−2) Vn(K,K,C1, . . . , Cn−2)
≤ Vn(K ′,K ′, C1, . . . , Cn−2) Vn(K,K,C1, . . . , Cn−2),

where we used that K ⊆ K ′. Thus Theorem 4.3 yields ShK′−hK ,C1,...,Cn−2 = 0. In
particular, integrating the function hL with respect to this measure yields

0 = Vn(L, hK′ − hK , C1, . . . , Cn−2) = 1
n

∫
(hK′ − hK) dSL,C1,...,Cn−2

for every L ∈ Kn. Since the function hK′−hK is nonnegative on Sn−1 and is strictly
positive in a neighborhood of u, we conclude that u 6∈ supp SL,C1,...,Cn−2 . �

The following follows directly.

Proof of the case dimT (K,u) = 1 of Theorem 1.21. The conclusion is immediate
by choosing L = [0, v] in Lemma 4.4 and applying the projection formula in §2.5. �

As a further simple illustration of the utility of Lemma 4.4, let us give another
proof of the following well known result (see, e.g., [21, §4.5]).

Corollary 4.5. For any K ∈ Kn, we have

supp SK[n−1] = cl
{
u ∈ Sn−1 : dimT (K,u) = 1

}
.

Proof. As the upper bound holds by Corollary 1.9, it suffices to show that every
u ∈ Sn−1 with dimT (K,u) = 1 satisfies u ∈ supp SK[n−1]. Suppose the latter does
not hold. Then we may repeatedly apply Lemma 4.4 with L = B to conclude that
u 6∈ SB[n−1]. But this entails a contradiction, as SB[n−1] is the Lebesgue measure
on Sn−1 by (2.4) and thus supp SB[n−1] = Sn−1. �

4.3. Proof of Theorem 1.10. As was explained in §4.1, the main difficulty in
the proof is to modify K so that it has the desired properties without changing the
mixed area measure. We begin with a useful observation.

Lemma 4.6. Let K ∈ Kn, E ⊆ Sn−1, and f : E → R such that

K =
⋂
v∈E

H−v,f(v).

Then every u ∈ Sn−1 with dimT (K,u) = 1 is in the closure of E.
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Proof. Let u ∈ Sn−1 with dimT (K,u) = 1, and suppose that u 6∈ clE. Choose
ε > 0 so that B(u, ε) ∩ E = ∅, and let K ′ ⊃ K be the resulting convex body that
is provided by part b of Lemma 4.2. Then hK′(v) = hK(v) for all v ∈ E and thus

K ′ ⊆
⋂
v∈E

H−v,hK′ (v) =
⋂
v∈E

H−v,hK(v) ⊆
⋂
v∈E

H−v,f(v) = K,

where we used the obvious fact that hK(v) ≤ f(v) for every v ∈ Sn−1. This entails
a contradiction, since hK′(u) > hK(u). �

We can now construct the desired modification of K.

Lemma 4.7. Let K,C1, . . . , Cn−2 ∈ Kn, u ∈ Sn−1, and ε > 0 so that B(u, ε) lies
strictly inside a hemisphere. Suppose that SK,C1,...,Cn−2(B(u, ε)) = 0. Then

K̂ =
⋂

v∈Sn−1\B(u,ε)

H−v,hK(v) ⊇ K

is a convex body that satisfies the following properties.
a. SK̂,C1,...,Cn−2

= SK,C1,...,Cn−2 .

b. dimT (K̂, v) > 1 for every v ∈ B(u, ε).
c. If in addition u ∈ supp SB,C1,...,Cn−2 , then T (K̂, u) ⊆ T (K,u).

Proof. We first note that as B(u, ε) lies strictly inside a hemisphere, it follows that
K̂ ⊆

⋂
v∈Sn−1\B(u,ε)H

−
v,‖hK‖∞ is compact and thus K̂ ∈ Kn.

We now prove part a. Suppose first that dimK = n. Then we can proceed as
in the proof of Lemma 4.4. Indeed, if Vn(K̂,K,C1, . . . , Cn−2) = 0, then Fact 1.4
yields I ⊆ [n− 2] with dimCI < |I|, and thus SK̂,C1,...,Cn−2

= SK,C1,...,Cn−2 = 0. If
Vn(K̂,K,C1, . . . , Cn−2) > 0, then the Alexandrov–Fenchel argument of Lemma 4.4
extends verbatim to the present setting as hK̂(v) = hK(v) for all v ∈ Sn−1\B(u, ε).
This concludes the proof of part a for dimK = n.

If dimK < n, define Kt = K + tB̂, where B̂ = conv{B, su} and s > 1 is chosen
so that N(B̂, su) = R+ clB(u, ε). Then SB̂,C1,...,Cn−2

(B(u, ε)) = 0 by Theorem 1.8,
so we can apply part a to Kt to conclude that SK̂t,C1,...,Cn−2

= SKt,C1,...,Cn−2 . The
conclusion of part a follows by the continuity of mixed area measures [21, p. 281],
as Kt → K and K̂t → K̂ as t ↓ 0 [21, Lemma 7.5.2].

Part b follows directly from the definition of K̂ by Lemma 4.6 and as Sn−1\B(u, ε)
is closed (as B(u, ε) is an open ball by definition).

To prove part c, note that integrating both sides of part a with respect to hB ,
and using that mixed volumes are symmetric in their arguments, yields∫

(hK̂ − hK) dSB,C1,...,Cn−2 =
∫
hB dShK̂−hK ,C1,...,Cn−2 = 0.

Since hK̂ − hK ≥ 0 and u ∈ supp SB,C1,...,Cn−2 , this implies that hK̂(u) = hK(u).
As K ⊆ K̂, it follows that F (K,u) ⊆ F (K̂, u). Now fix any x ∈ F (K,u). Since
x ∈ bdK∩bd K̂ and K ⊆ K̂, any supporting hyperplane of K̂ that contains x must
also be a supporting hyperplane of K, so we must have u ∈ N(K̂, x) ⊆ N(K,x).
The conclusion of part c now follows from Lemma 2.5. �
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We can now conclude the proof of Theorem 1.10.

Proof of Theorem 1.10. Let K,L ∈ Kn. As the upper bound is provided by Corol-
lary 1.9, it suffices to show that every (K[n− 2], L)-extreme direction u ∈ Sn−1 is
contained in supp SK[n−2],L. We will do so by induction on the dimension n. The
base case n = 2 is provided by Corollary 4.5; we assume in the remainder of the
proof that the result has been proved up to dimension n− 1.

Fix a (K[n− 2], L)-extreme direction u ∈ Sn−1, and assume for sake of contra-
diction that u 6∈ supp SK[n−2],L. Then there exists ε > 0 sufficiently small so that
SK[n−2],L(B(u, ε)) = 0. Let K̂ be the modified body of Lemma 4.7. Then applying
part a of Lemma 4.7 repeatedly yields SK̂[n−2],L = SK[n−2],L. In particular,

u 6∈ supp SK̂[n−2],L.

We must now establish the following.

Claim. The vector u is (K̂[n− 2], L)-extreme.

Proof. As u is (K[n − 2], L)-extreme, Lemma 1.20 yields v ∈ T (K,u)⊥ so that u
is (Pv⊥K[n− 3],Pv⊥L)-extreme. Thus u ∈ supp SP

v⊥K[n−3],P
v⊥L

by the induction
hypothesis, which implies u ∈ supp SB,K[n−3],L by Lemma 2.8. Part c of Lemma 4.7
therefore yields T (K̂, u) ⊆ T (K,u), which readily implies the claim. �

We now proceed as was explained in §4.1. We have

u 6∈ supp SK̂[n−1]

by Corollary 4.5 and part b of Lemma 4.7. Therefore

u 6∈ supp
(
SK̂[n−2],L + SK̂[n−1]

)
= supp SK̂[n−2],K̂+L.

On the other hand, as u is (K̂[n − 2], L)-extreme, u is also (K̂[n − 2], K̂ + L)-
extreme and dimT (K̂+L, u) = 1. By Lemma 1.20, there exists v ∈ u⊥ so that u is
(Pv⊥K̂[n− 2])-extreme, and thus u ∈ supp SP

v⊥K̂[n−2] by Corollary 4.5. The case
dimT (K,u) = 1 of Theorem 1.21 now yields u ∈ supp SK̂[n−2],K̂+L. This entails a
contradiction, concluding the proof. �

5. Mixed Hessian measures

The aim of this section is to derive the implications of our main results for mixed
Hessian measures. In particular, we will prove Corollaries 1.16 and 1.19.

It should be emphasized that mixed area and Hessian measures are not really
distinct notions: mixed areas measures of convex bodies in Rn are a special case
of mixed Hessian measures of convex functions on Rn [7, Corollary 4.2], while
mixed Hessian measures of convex functions on Rn are a special case of mixed area
measures of convex bodies in Rn+1 [7, Corollary 4.9]. Such connections were used
in [3, 7] to translate some previously known special cases of Conjecture 1.6 to the
setting of mixed Hessian measures. Some care is needed, however, in extending
these connections to the general setting considered here.
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5.1. From mixed area to mixed Hessian measures. The aim of this section
is to recall how mixed Hessian measures can be obtained as a special case of mixed
area measures. The construction in this section is taken from [7].

Denote by Convcd(Rn) the class of lower-semicontinuous proper convex functions
g : Rn → (−∞,∞] such that dom g is compact, and let

Conv∗cd(Rn) = {g∗ : g ∈ Convcd(Rn)}.

Here g∗ denotes the convex conjugate

g∗(x) = sup
y∈Rn

{〈x, y〉 − g(y)}.

Let f ∈ Conv∗cd(Rn). Then f∗ ∈ Convcd(Rn), as any lower-semicontinuous convex
function g satisfies g∗∗ = g [21, Theorem 1.6.13]. As f∗ is lower-semicontinuous,

epi(f∗) = {(x, t) ∈ Rn+1 : f∗(x) ≤ t}

is a closed convex set, where we write (x, t) ∈ Rn+1 with x ∈ Rn and t ∈ R.

Definition 5.1. For every f ∈ Conv∗cd(Rn), define Kf ∈ Kn+1 as

Kf = epi(f∗) ∩ {(x, t) ∈ Rn+1 : t ≤ rf}

where rf = maxx∈dom f∗ f
∗(x) <∞.

In the following, we denote by Sn− the negative hemisphere in Sn:

Sn− = {(y, t) ∈ Sn : t < 0}.

Then the map φ : Rn → Sn− defined by

φ(x) =
(

x√
1 + ‖x‖2

,− 1√
1 + ‖x‖2

)
is a homeomorphism with inverse φ−1(y, t) = −yt . The following result, which is a
restatement of [7, Corollary 4.9], relates the pushforward φ∗Hf1,...,fn

of the mixed
Hessian measure to the mixed area measure SKf1 ,...,Kfn

restricted to Sn−.

Lemma 5.2. Let f1, . . . , fn ∈ Conv∗cd(Rn). Then the measures φ∗Hf1,...,fn
and

SKf1 ,...,Kfn
|Sn
−
are mutually absolutely continuous with

dφ∗Hf1,...,fn

dSKf1 ,...,Kfn

(φ(x)) = 1√
1 + ‖x‖2

.

In particular, supp Hf1,...,fn
= φ−1(Sn− ∩ supp SKf1 ,...,Kfn

)
.

5.2. Extreme directions and localization. In order to translate our main re-
sults to the setting of mixed Hessian measures, we must clarify the connection
between L(f, x) and T (Kf , u). We begin with the following simple lemma.

Lemma 5.3. For any f ∈ Conv∗cd(Rn) and x ∈ Rn, we have f(x) = hKf
(x,−1).

Proof. We readily compute

hKf
(x,−1) = sup

(y,t):f∗(y)≤t≤rf

{〈y, x〉 − t} = sup
y
{〈y, x〉 − f∗(y)} = f(x)
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by the definition of Kf . �

Consequently, we have the following.
Lemma 5.4. For any f ∈ Conv∗cd(Rn) and x ∈ Rn, we have

L(f, x) = φ−1(Sn− ∩ T (Kf , φ(x))
)
.

Proof. Any convex set B ⊆ Rn defines a convex cone A = R+φ(B) in R+S
n
−. We

claim that f is affine on B if and only if hKf
is linear on A: indeed,

f

(
t

t+ t′
x+ t′

t+ t′
x′
)

= t

t+ t′
f(x) + t′

t+ t′
f(x′) ⇐⇒

hKf
(tx+ t′x′,−t− t′) = hKf

(tx,−t) + hKf
(t′x′,−t′)

for any x, x′ ∈ B and t, t′ > 0 by Lemma 5.3.
Now note that for any convex cone A in R+S

n
−, the convex set B ⊆ Rn defined

by B = φ−1(A ∩ Sn−) satisfies A = R+φ(B). Thus the relation between A and
B defines a bijection between convex sets in Rn and convex cones in R+S

n
−. The

definition of L(f, x) therefore implies that R+φ(L(f, x)) is the largest convex cone
in R+S

n
− that contains φ(x) in its relative interior on which hKf

is linear, that is,

R+φ(L(f, x)) = T (Kf , φ(x)) ∩ R+S
n
−.

The conclusion follows by inverting this identity. �

Lemma 5.4 immediately yields the following corollary.
Corollary 5.5. Let f1, . . . , fn ∈ Conv∗cd(Rn). Then x ∈ Rn is (f1, . . . , fn)-extreme
if and only if φ(x) ∈ Sn is (Kf1 , . . . ,Kfn

)-extreme.
We are now nearly ready to prove our main results on mixed Hessian measures.

There is, however, one additional technical point that must be dispensed with first.
The reduction from mixed Hessian measures to mixed area measures requires us to
work with functions in Conv∗cd(Rn), while our results are formulated in the more
general setting of functions in Conv(Ω) for some open convex set Ω ⊆ Rn. The
following localization lemma reduces the the latter setting to the former one.
Lemma 5.6. Let Ω ⊆ Rn be an open convex set and Ω′ ⊂ Ω be convex and compact.
Then for any f ∈ Conv(Ω), there exists g ∈ Conv∗cd(Rn) so that f = g on Ω′.
Proof. Recall that the indicator IA of a convex set A is defined by

IA(x) =
{

0 for x ∈ A,
+∞ for x 6∈ A.

By [21, Theorem 1.5.3], f is Lipschitz on Ω′ with Lipschitz constant `. Define

g = ((f + IΩ′)∗ + I`B)∗.

As dom(f +IΩ′) = Ω′ is compact, (f +IΩ′)∗ is a continuous convex function on Rn.
Thus (f + IΩ′)∗ + I`B ∈ Convcd(Rn) and therefore g ∈ Conv∗cd(Rn).

Now note that f + IΩ′ is lower-semicontinuous, and thus

f(x) = sup
y∈Rn

{
〈y, x〉 − (f + IΩ′)∗(y)

}
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for x ∈ Ω′. By [17, Theorem 23.5], the supremum is attained by y ∈ ∂f(x) ⊆
∂(f + IΩ′)(x), where ∂f is the subdifferential. As ‖y‖ ≤ ` by [17, Theorem 24.7],

f(x) = sup
‖y‖≤`

{
〈y, x〉 − (f + IΩ′)∗(y)

}
= g(x)

for every x ∈ Ω′, concluding the proof. �

Fix f1, . . . , fn ∈ Conv(Ω) and x ∈ Ω, and let Ω′ = clB(x, ε) for some ε > 0.
Construct the functions g1, . . . , gn ∈ Conv∗cd(Rn) as in Lemma 5.6. Then clearly

Hf1,...,fn
|B(x,ε) = Hg1,...,gn

|B(x,ε), T (fi, x) ∩B(x, ε) = T (gi, x) ∩B(x, ε).

In particular, the properties that u ∈ supp Hf1,...,fn or that u is (f1, . . . , fn)-extreme
are unchanged if we replace f1, . . . , fn by g1, . . . , gn.

Corollary 5.7. Conjecture 1.6 implies Conjecture 1.15.

Proof. Since the statements of both conjectures are local in nature, it suffices by
the remark following Lemma 5.6 to assume that f1, . . . , fn ∈ Conv∗cd(Rn). The
conclusion now follows directly from Lemma 5.2 and Corollary 5.5. �

Remark 5.8. Conjectures 1.6 and 1.15 are in fact equivalent; the converse implica-
tion to Corollary 5.7 can be readily read off from [7, Corollary 4.2].

The proof of Corollary 1.16 is completely analogous.

Proof of Corollary 1.16. The result follows from Theorems 1.8 and 1.10 by exactly
the same argument as in the proof of Corollary 5.7. �

We conclude by proving Corollary 1.19. In the proof, we will use without com-
ment that Lemma 2.2 extends directly to the convex function setting.

Proof of Corollary 1.19. As Hf,g(D) = 0, Corollary 1.19 shows that none of the
points in D are (f, g)-extreme. Thus for any x ∈ D\R, it must be the case that
L(f, x) and L(g, x) are both one-dimensional with the same direction.

Let L be the affine line in R2 that contains both L(f, x) and L(g, x), and let I
be the connected component of L ∩ D that contains x. We claim that I must be
contained in both L(f, x) and L(g, x). Indeed, suppose this is not the case. Then
there must exist y ∈ I ∩ relbd(L(f, x) ∩ L(g, x)). Therefore {y} is a face of either
L(f, x) or L(g, x). By Lemma 2.2, this implies that

min{dimL(f, y),dimL(g, y)} = 0, max{dimL(f, y),dimL(g, y)} ≤ 1.

But then y is (f, g)-extreme, which entails a contradiction.
As I is contained in both L(f, x) and L(g, x), it follows from Lemma 2.2 that

L(f, y) = L(f, x) and L(g, y) = L(g, x) for all y ∈ I. Thus I ∩R = ∅. �

Note that Corollary 1.18 is merely a specialization of Corollary 1.19 to the case
that f, g are smooth, and therefore does not require a separate proof.
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6. Support and projection

The main aim of this final part of the paper is to clarify the behavior of the
supports of mixed area measures under projection. As was explained in §1.5, this
presents a basic obstacle to extending the proof of Theorem 1.10 to more general
situations. In the first two sections, we will prove the remaining cases of Theo-
rem 1.21. In the last section, we present a simple example further illuminates some
aspects of the structure of (C1, . . . , Cn−1)-extreme directions.

6.1. The case dimT (K,u) = n−1 of Theorem 1.21. LetK ∈ Kn, u ∈ Sn−1 with
dimT (K,u) = n − 1. What is special about this situation is that, for sufficiently
small ε > 0, the touching cone T (K,u) bisects B(u, ε). Thus for all v ∈ B(u, ε), it
must be the case that T (K, v) ∩B(u, ε) lies entirely on one side of the hyperplane
that contains T (K,u). This property makes it possible to flexibly deform K in the
direction T (K,u)⊥, as we will presently explain.

Recall that the Minkowski difference of K,L ∈ Kn is defined as

K ÷ L = {x ∈ Rn : x+ L ⊆ K}.

The proof will be based on the following result of Schneider.

Lemma 6.1. Let K ∈ Knn and L ∈ Kn, and define

Kt =
{
K + tL for t ≥ 0,
K ÷ (−t)L for t < 0.

Suppose that for every x ∈ bdK, there is y ∈ bdL with N(K,x) ⊆ N(L, y). Then

d

dt
hKt

(u)
∣∣∣∣
t=0

= hL(u)

for every u ∈ Sn−1. Moreover, there exists δ > 0 so that

‖hKt
− hK‖∞ ≤ δ|t|

for all sufficiently small |t|.

Proof. The first statement is given in [21, Lemma 7.5.4] for K,L ∈ Knn; however,
its proof only uses that K ∈ Knn and extends verbatim to any L ∈ Kn. The second
statement is trivial for t ≥ 0, and is proved in [21, p. 425] for t < 0. �

The assumption of Lemma 6.1, which is formulated in terms of normal cones, is
automatically implied by the corresponding property of touching cones.

Lemma 6.2. Let K,L ∈ Kn, and suppose that T (K, v) ⊆ T (L, v) for all v ∈ Sn−1.
Then for every x ∈ bdK, there is y ∈ bdL with N(K,x) ⊆ N(L, y).

Proof. Given any x ∈ bdK, we can choose v ∈ relintN(K,x) and y ∈ relintF (L, v).
Then N(K,x) = T (K, v) ⊆ T (L, v) ⊆ N(L, y). �

Now let K ∈ Kn, u ∈ Sn−1 with dimT (K,u) = n−1, and w ∈ T (K,u)⊥∩Sn−1.
Choose ε > 0 sufficiently small that T (K,u) bisects B(u, ε). Then for every v ∈
B(u, ε), we have that T (K, v) ∩B(u, ε) is contained either in H+

w,0, Hw,0, or H−w,0.
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The latter sets are precisely the touching cones of the interval [0, w]. This suggests
that we aim to apply Lemma 6.1 with L = [0, w].

There are two problems with this idea. First, only the intersection of the touching
cones of K with B(u, ε), rather than the touching cones themselves, are guaranteed
to be contained in a touching cone of [0, w]. Second, Lemma 6.1 requires that K
has nonempty interior, which we have not assumed. The following lemma shows
that we can modify K in such a way that the conditions of Lemma 6.1 are satisfied,
without changing the part of its boundary with normal directions in B(u, ε).

Lemma 6.3. Fix K ∈ Kn and u ∈ Sn−1 with dimT (K,u) = n − 1, and let
w ∈ T (K,u)⊥ ∩Sn−1. Choose ε > 0 sufficiently small that T (K,u) bisects B(u, ε).
Then there exists K̃ ∈ Knn with the following properties.
a. F (K̃, v) = F (K, v) for all v ∈ B(u, ε).
b. T (K̃, v) ⊆ T ([0, w], v) for all v ∈ Sn−1.

Proof. Let B̂ = conv{B, su}, where s > 1 is chosen so thatN(B̂, su) = R+ clB(u, ε).
We define K̃ = K + B̂ − su. Then clearly

F (K̃, v) = F (K, v) + F (B̂, v)− su = F (K, v)

for all v ∈ B(u, ε), which verifies part a. Now note that

T (K̃, v) = T (K, v) ∩ T (B̂, v)

=
{
T (K, v) ∩ R+ clB(u, ε) for v ∈ B(u, ε),
R+v for v ∈ Sn−1\B(u, ε).

As T (K,u) ∩ R+ clB(u, ε) = w⊥ ∩ R+ clB(u, ε) bisects B(u, ε) and as any two
touching cones of K are either equal or disjoint, part b follows readily. �

We finally recall the following well known fact, see, e.g., [8, Lemma 2.12].

Lemma 6.4. Let K,L,C1, . . . , Cn−2 ∈ Kn and A ⊆ Sn−1. If F (K, v) = F (L, v)
for all v ∈ A, then SK,C1,...,Cn−2 |A = SL,C1,...,Cn−2 |A.

We can now conclude the proof.

Proof of the case dimT (K,u) = n− 1 of Theorem 1.21. FixK,C1, . . . , Cn−2 ∈ Kn
and u ∈ Sn−1 so that dimT (K,u) = n− 1, and let w ∈ T (K,u)⊥ ∩ Sn−1. Suppose
that u 6∈ supp SK,C1,...,Cn−2 . Then there exists ε > 0 so that T (K,u) bisects B(u, ε)
and SK,C1,...,Cn−2(B(u, ε)) = 0. Construct K̃ as in Lemma 6.3.

By Lemma 6.4 and part a of Lemma 6.3, we have SK̃,C1,...,Cn−2
(B(u, ε)) = 0.

In particular, if f ∈ C2(Sn−1) is chosen such that f(v) > 0 for v ∈ B(u, ε) and
f(v) = 0 for v ∈ Sn−1\B(u, ε), then we can write∫

hK̃ dSf,C1,...,Cn−2 =
∫
f dSK̃,C1,...,Cn−2

= 0.

Now define K̃t as in Lemma 6.1 with K ← K̃ and L← [0, w]. Then∫
hK̃t

dSf,C1,...,Cn−2 =
∫
f dSK̃t,C1,...,Cn−2

≥ 0



28 VAN HANDEL AND WANG

for all t sufficiently small. In particular, this integral is minimized at t = 0. By
Lemma 6.2 and part b of Lemma 6.3, the assumption of Lemma 6.1 is satisfied.
Thus a routine application of dominated convergence yields∫

h[0,w] dSf,C1,...,Cn−2 = d

dt

∫
hK̃t

dSf,C1,...,Cn−2

∣∣∣∣
t=0

= 0.

The projection formula (see §2.5) now yields∫
f dSP

w⊥C1,...,Pw⊥Cn−2 = 0,

so that u 6∈ supp SP
w⊥C1,...,Pw⊥Cn−2 . We have therefore proved the contrapositive

of the desired statement, concluding the proof. �

6.2. The case 1 < dimT (K,u) < n− 1. We first prove part b of Theorem 1.21 in
the special case that dimT (K,u) = 2. The construction is then readily adapted to
any 1 < dimT (K,u) < n− 1 at the end of the proof.

The idea of the proof is to construct K ∈ Kn with the following properties:
a. dimT (K,u′) = 2 for all u′ in a neighborhood of u.
b. For every v ∈ T (K,u)⊥, the union of the touching cones T (K,u′) that are

contained in v⊥ has Hausdorff dimension at most n−2. Thus dimT (Pv⊥K,u′) =
dim(T (K,u′) ∩ v⊥) = 1 on a dense set of u′ in a neighborhood of u.

Therefore, by Corollary 4.5, u ∈ supp SP
v⊥K[n−2] for all v ∈ T (K,u)⊥ but u 6∈

supp SK[n−1], which proves part b of Theorem 1.21 when dimT (K,u) = 2.
It is somewhat more convenient to construct the polar body L = K◦. The main

part of the argument is contained in the following lemma. Throughout this section,
we denote by e1, . . . , en the coordinate basis of Rn.

Lemma 6.5. For every n ≥ 4, there exists L ∈ Kn(o) with the following properties.
a. [e1 − en, e1 + en] is a 1-face of L.
b. There is a neighborhood O ⊂ bdL of e1 so that every y ∈ O lies in the relative

interior of a 1-face Fy of L.
c. For every (n− 1)-dimensional subspace E of Rn that contains [e1 − en, e1 + en],

the union of all the faces Fy ⊂ E has Hausdorff dimension at most n− 3.

Proof. Let U be the Euclidean unit ball in Rn−1 and define

M =
{
x ∈ Rn−1 : x2

1 + · · ·+ x2
n−2 + (xn−1 − tf(x1, . . . , xn−2))2 ≤ 1

}
,

where f is a smooth function to be chosen below such that f(1, 0, . . . , 0) = 0. We
choose t > 0 sufficiently small so that M is strictly convex.

In the following, we will identify U and M with their natural embedding into
e⊥n ⊂ Rn. We now define the convex body L ∈ Kn(o) as

L = conv
(
M − en, U + en

)
.

We must check that this body satisfies all the desired properties.
Part a. It is readily seen that F (U, e1) = F (M, e1) = {e1}. Therefore He1,1 is a

supporting hyperplane of L and F (L, e1) = L ∩He1,1 = [e1 − en, e1 + en].
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Part b. Choose O = B(e1, ε) ∩ bdL with ε < 1. By construction, every extreme
point of L is contained either in bdM − en or bdU + en. Thus every y ∈ O is a
non-extreme boundary point of L, and is therefore in the relative interior of a face
Fy of L with dimFy ≥ 1. But Fy ∩ (bdU + en) and Fy ∩ (bdM − en) must be
singletons, as U and M are strictly convex. Thus dimFy = 1 for all y ∈ O.

Part c. Let y ∈ O and w ∈ N(L, y)∩Sn−1. By part b, the exist points a ∈ bdM
and b ∈ bdU so that Fy = [a− en, b+ en] ⊆ F (L,w). Therefore

F (M,u) = {a} and F (U, u) = {b} with u =
Pe⊥n w
‖Pe⊥n w‖

,

where we used that U and M are strictly convex. By the definition of M , that u is
a normal vector to M at the boundary point a implies that

u = Γ(a)
‖Γ(a)‖ with Γ(a) =


a1 − (an−1 − tf(a)) t∂1f(a)

...
an−2 − (an−1 − tf(a)) t∂n−2f(a)

an−1 − tf(a)

 .
On the other hand, clearly b = u.

Let E be an (n− 1)-dimensional subspace of Rn that contains [e1 − en, e1 + en].
Then there exists a vector (v2, . . . , vn−1) 6= 0 so that

E = {x ∈ Rn : v2x2 + · · ·+ vn−1xn−1 = 0}.

That Fy ⊂ E requires that a, b ∈ E, which yields the system of equations

a2
1 + · · ·+ a2

n−2 + (an−1 − tf(a))2 = 1, (6.1)
v2a2 + · · ·+ vn−1an−1 = 0, (6.2)
(v2∂2f(a) + · · ·+ vn−2∂n−2f(a))(an−1 − tf(a)) + vn−1f(a) = 0. (6.3)

It is natural to expect that the set S of solutions a ∈ Rn−1 of this system of 3
equations has Hausdorff dimension at most n − 4. We choose the function f in
the definition of L so that this is indeed the case for every choice of the vector v.
An explicit construction of such a function may be found in Appendix A, but its
precise form is irrelevant for what follows.

To complete the proof, note that we have shown that every Fy has the form[
a− en, Γ(a)

‖Γ(a)‖ + en
]
for a ∈ S. As the map a 7→ Γ(a)

‖Γ(a)‖ is locally Lipschitz,⋃
y∈O

Fy =
{
λ(a− en) + (1− λ)

(
Γ(a)
‖Γ(a)‖ + en

)
: a ∈ S, λ ∈ [0, 1]

}
is the image by a locally Lipschitz function of a set S× [0, 1] of Hausdorff dimension
at most n−3, and thus has dimension at most n−3 itself by [10, Theorem 7.5]. �

We can now prove part b of Theorem 1.21 in the case dimT (K,u) = 2.

Corollary 6.6. There exists K ∈ Kn(o) and u ∈ Sn−1 with dimT (K,u) = 2 so that
u ∈ supp SP

v⊥K[n−2] for every v ∈ T (K,u)⊥, but u 6∈ supp SK[n−1].
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Proof. Let K = L◦, where L is the convex body provided by Lemma 6.5 and let
u = e1. Then part a of Lemma 6.5 and the duality between faces and touching
cones (see §2.2.3) yields T (K,u) = R+[e1 − en, e1 + en], and thus dimT (K,u) = 2.
Moreover, by the same argument, part b of Lemma 6.5 shows that there exists
ε > 0 sufficiently small so that dimT (K,u′) = 2 for all u′ ∈ B(u, ε). Therefore,
u 6∈ supp SK[n−1] follows directly from Corollary 4.5.

Finally, by the same duality argument, part c of Lemma 6.5 shows that for every
v ∈ T (K,u)⊥, the union of all the touching cones T (K,u′) ⊂ v⊥ with u′ ∈ B(u, ε)
has Hausdorff dimension at most n− 2. Therefore,

dimT (Pv⊥K,u′) = dim(T (K,u′) ∩ v⊥) = 1

for a dense subset of u′ ∈ B(u, ε) ∩ v⊥, where we used Lemma 2.4. In particular,

u ∈ cl
{
u′ ∈ Sn−1 ∩ v⊥ : dimT (Pv⊥K,u′) = 1

}
,

and thus u ∈ supp SP
v⊥K[n−2] by Corollary 4.5. �

We now finally extend the argument to the general case.

Proof of part b of Theorem 1.21. Let N ≥ 4 and 1 < k < N − 1. We aim to con-
struct bodies K,C1, . . . , CN−2 ∈ KN and u ∈ SN−1 with dimT (K,u) = k so that
u ∈ supp SP

v⊥C1,...,Pv⊥CN−2 for every v ∈ T (K,u)⊥, but u 6∈ supp SK,C1,...,CN−2 .
To this end, let n = N − k + 2, and construct K̄ ∈ Kn and ū ∈ Sn−1 as in

Corollary 6.6. Let K,u be their natural embedding in span{e1, . . . , en} ⊆ RN , and

C1 = · · · = Cn−2 = K, Ci = [0, ei+2] for i = n− 1, . . . , N − 2.

Note that, by construction,

T (K,u) = T (K̄, ū)× RN−n.

Thus dimT (K,u) = k. On the other hand, by the projection formula (2.3),
the mixed area measures SK,C1,...,CN−2 and SP

v⊥C1,...,Pv⊥CN−2 reduce to the n-
dimensional case in Corollary 6.6, concluding the proof. �

Remark 6.7. The bodies K,C1, . . . , CN−2 ∈ KN in the above proof have empty
interior. However, the construction can be modified as in the proof of Lemma 6.3
to obtain K,C1, . . . , CN−2 ∈ KNN that yield the same conclusion.

6.3. On the continuity of extreme directions. The construction of the pre-
vious section illustrates that the support of mixed area measures can be poorly
behaved under projection. One is therefore led to seek other approaches to Conjec-
ture 1.6 that are based on a direct analysis of convex bodies in Rn. The aim of this
section is to record an elementary example that illustrates a basic challenge that
arises even in the most well-behaved situations.

A tantalizing setting for understanding Conjecture 1.6 is the special case that
hC1 , . . . , hCn−1 are smooth, since in this case there is an analytic description of the
support that was explained in Remark 1.12. The problem remains open even in this
setting. This is particularly surprising since the methods of Hartman and Nirenberg
[6] provide powerful information. In particular, [6, §3, Lemma 2] implies that for
every convex body K with hK ∈ C2(Sn−1), there is a dense open set of u ∈ Sn−1
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dimL(f,x)=0
dimL(g,x)=2

dimL(f,x)=2
dimL(g,x)=0

dimL(f,x)=dimL(g,x)=1

Figure 6.1. Illustration of Example 6.8.

for which rank(D2hK(u)) = dim(T (K,u)⊥). Thus the analytic characterization of
Remark 1.12 agrees with Conjecture 1.6 at almost all points.

In the setting of Hartman and Nirenberg (e.g., for the proof of Theorem 1.17), the
above property suffices to obtain the desired conclusion by a continuity argument.
A basic problem in the mixed setting, however, is that even when all v ∈ B(u, ε)
are not (C1, . . . , Cn−1)-extreme, the set I that witnesses the failure of extremality
(cf. Definition 1.5) can vary with v in a discontinuous fashion.

Example 6.8. Since it leads to simpler expressions, we formulate the example in
terms of mixed Hessian measures; the example can be translated to an analogous
example of mixed area measures using the correspondence in §5.

Let Ω = R× (−1, 1) ⊂ R2. The function h ∈ Conv(Ω) defined by

h(x1, x2) = x2
1

1− x2
2

is strictly convex whenever x1 6= 0. We can now define f, g ∈ Conv(Ω) by setting
f(x1, x2) = h(x1, x2)1x1>0 and g(x1, x2) = h(x1, x2)1x1<0. The structure of the
sets L(f, x) and L(g, x) in different regions of Ω is illustrated in Figure 6.1.

We readily see that every x ∈ Ω is not (f, g)-extreme, and thus Hf,g = 0 by
Corollary 1.16. However, the regions {x1 < 0}, {x1 = 0}, and {x1 > 0} all require
a different set I to witness non-extremality (i.e., so that dim(L̄(fI , x)⊥) < |I|).

The discontinuous behavior that is illustrated by this example provides a basic
obstacle to various approaches for the analysis of mixed area measures.

Appendix A. An explicit construction for Lemma 6.5

The aim of this appendix is to construct a function f with the properties required
in the proof of Lemma 6.5. Any sufficiently generic choice of f is expected to achieve
the same conclusion; we exhibit one explicit example for concreteness.

Lemma A.1. Define the function

f(x1, . . . , xn−2) = (x1 − 1) exp
(
n−2∑
j=2

(x3
j + jxj)

)
.

Then for any (v2, . . . , vn−1) 6= 0 and t > 0, the solution set S of the system of
equations (6.1)–(6.3) has Hausdorff dimension at most n− 4.
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Proof. It is clear that the only solution of (6.1) with a1 = 1 is a = e1. We therefore
consider in the sequel only solutions with a1 6= 1. Then (6.3) can be simplified to(

n−2∑
j=2

vj(3a2
j + j)

)
(an−1 − tf(a)) = −vn−1. (A.1)

We must now consider two distinct cases.
Case 1. If vn−1 6= 0, then (6.2) yields

an−1 = −
n−2∑
j=2

vjaj
vn−1

.

Moreover, as vn−1 6= 0, both factors on the left-hand side of (A.1) are nonzero.
Substituting the definition of f and the previous equation in (A.1), we obtain

a1 = g(a2, . . . , an−2) = 1+1
t

(
vn−1∑n−2

j=2 vj(3a2
j + j)

−
n−2∑
j=2

vjaj
vn−1

)
exp

(
−
n−2∑
j=2

(a3
j+jaj)

)
.

Finally, combining (6.1), (A.1), and the previous equation yields

h(a2, . . . , an−2) = 1−g(a2, . . . , an−2)2−a2
2−· · ·−a2

n−2−
v2
n−1(∑n−2

j=2 vj(3a2
j + j)

)2 = 0.

Thus we have shown that

S\{e1} ⊆ S̄ =
{
a ∈ Rn−1 :

n−2∑
j=2

vj(3a2
j + j) 6= 0, h(a2, . . . , an−2) = 0,

a1 = g(a2, . . . , an−2), an−1 = −
n−2∑
j=2

vjaj
vn−1

}
.

Now note that h is a function of n − 3 variables that is real analytic on dom h =
{(a2, . . . , an−2) :

∑n−2
j=2 vj(3a2

j + j) 6= 0}, and thus the subset of dom h on which
h vanishes has Hausdorff dimension at most n − 4 [13]. Since a1 and an−1 are
functions of a2, . . . , an−2 that are locally Lipschitz on dom h, it follows that the set
S̄ and thus also S has Hausdorff dimension at most n− 4 [10, Theorem 7.5].

Case 2. Now suppose that vn−1 = 0. Then (A.1) yields S\{e1} = S1 ∪ S2 with

S1 =
{
a ∈ S\{e1} : an−1 = tf(a1, . . . , an−2)

}
,

S2 =
{
a ∈ S\{e1} :

n−2∑
j=2

vj(3a2
j + j) = 0

}
.

We consider S1 and S2\S1 separately.
To control S1, note that (6.1) and (6.2) imply that

S1 ⊆

{
a ∈ Rn−1 :

n−2∑
j=1

a2
j = 1,

n−2∑
j=2

vjaj = 0, an−1 = tf(a1, . . . , an−2)
}
.
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In other words, (a1, . . . , an−2) lie in the intersection of a sphere with a hyperplane,
which has dimension n−4. As an−1 is a locally Lipschitz function of (a1, . . . , an−2),
also S1 has Hausdorff dimension at most n− 4 [10, Theorem 7.5].

To control S2, let 2 ≤ ` ≤ n− 2 so that v` 6= 0. As
∑n−2
j=2 vj(3a2

j + j) = 0 by the
definition of S2 and as

∑n−2
j=2 vjaj = 0 by (6.2), we obtain

q(a2, . . . , a`−1, a`+1, . . . , an−2) =

3
`−1∑
j=2

vja
2
j + 3

n−2∑
j=`+1

vja
2
j + 3v`

(
`−1∑
j=2

vjaj
v`

+
n−2∑
j=`+1

vjaj
v`

)2

+
n−2∑
j=2

jvj = 0.

Note that q is a quadratic function of n − 4 variables. Thus its zero set can have
Hausdorff dimension n− 4 only if q vanishes identically. In that case we must have∑n−2
j=2 jvj = 0 and either v2 = · · · = v`−1 = v`+1 = · · · = vn−2 = 0, or vr = −v` for

some 2 ≤ r ≤ n− 2, r 6= ` and vj = 0 for 2 ≤ j ≤ n− 2, j 6= `, r. Clearly no such v
exists, so the zero set of q has Hausdorff dimension at most n− 5.

Now note that by (6.2), we can write

a` = −
`−1∑
j=2

vjaj
v`
−

n−2∑
j=`+1

vjaj
v`

,

while (6.1) implies that

an−1 = tf(a1, . . . , an−2)±

√√√√1−
n−2∑
j=1

a2
j .

Note in particular that the latter equation implies that
∑n−2
j=1 a

2
j < 1 on the com-

plement of S1. Thus S2\S1 ⊆ S+ ∪ S− with

S± =
{
a ∈ Rn−1 :

n−2∑
j=1

a2
j < 1, q(a2, . . . , a`−1, a`+1, . . . , an−2) = 0,

a` = −
`−1∑
j=2

vjaj
v`
−

n−2∑
j=`+1

vjaj
v`

, an−1 = tf(a1, . . . , an−2)±

√√√√1−
n−2∑
j=1

a2
j

}
.

Since the zero set of q has Hausdorff dimension at most n−5 and as a` and an−1 are
functions of a1, . . . , a`−1, a`+1, . . . , an−2 that are locally Lipschitz for

∑n−2
j=1 a

2
j < 1,

the sets S± have Hausdorff dimension at most n− 4 [10, Theorem 7.5]. �
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