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Abstract

A strong converse shows that no procedure can beat the asymptotic (as
blocklength n → ∞) fundamental limit of a given information-theoretic
problem for any fixed error probability. A second-order converse strength-
ens this conclusion by showing that the asymptotic fundamental limit cannot
be exceeded by more than O( 1√

n
). While strong converses are achieved in

a broad range of information-theoretic problems by virtue of the “blowing-
up method”—a powerful methodology due to Ahlswede, Gács and Körner
(1976) based on concentration of measure—this method is fundamentally
unable to attain second-order converses and is restricted to finite-alphabet
settings. Capitalizing on reverse hypercontractivity of Markov semigroups
and functional inequalities, this paper develops the “smoothing-out” method,
an alternative to the blowing-up approach that does not rely on finite alpha-
bets and that leads to second-order converses in a variety of information-
theoretic problems that were out of reach of previous methods.
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1 Introduction

1.1 Overview

What are the fundamental limits of a given data science problem? The investiga-
tion of such questions typically follows a two-sided analysis. In the achievability
part, one shows the existence of a procedure achieving a certain performance,
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e.g., error probability. In the converse part, one shows that no procedure can ac-
complish better performance than a certain lower bound. This basic structure is
common to a wide range of problems that span information theory, statistics, and
computer science. While the study of achievability generally depends strongly on
the special features of the problem at hand, many converse bounds that arise in
different areas rely essentially on information-theoretic methods.

Frequently, the upper and lower bounds on optimal performance provided by
the achievability and converse analyses do not coincide. Starting with Shannon
(1948) [47], the emphasis in information theory has been on the analysis of the
fundamental limits in the asymptotic regime of long blocklengths. In that regime,
the gap between many existing achievability and converse bounds does vanish and
sharp answers can be found to questions such as the maximal transmission rate
over noisy channels and the minimal data compression rate subject to a fidelity
constraint. The last decade has witnessed a number of information-theoretic re-
sults (e.g., [42, 22, 23]), which are applicable in the non-asymptotic regime. These
results are strongly motivated by the need to understand the relevance of asymp-
totic limits to practical systems that may be subject to severe delay constraints, or
scenarios where the alphabet size or the number of users is large compared to the
number of channels or sources [42, 39, 21, 41].

The development of a non-asymptotic information theory has required new
and improved methods for investigating fundamental limits. In principle, it is not
clear that the quantities that determine the fundamental limits in the asymptotic
regime can accurately describe the performance at blocklengths of interest in real-
istic applications (e.g., 1000 bits). This has led to the development of nonasymp-
totic bounds that capture more sophisticated distributional information on the rel-
evant information quantities. Unfortunately, however, such bounds are often diffi-
cult to compute. A less accurate but more tractable approach to understanding per-
formance at smaller blocklengths is to focus attention on so-called second-order
analysis, originally pioneered by Wolfowitz [55] and Strassen [50] in the 1960s
and significantly refined in recent years. In such bounds, the fundamental limits
in the first-order (linear in the blocklength) asymptotics are sharpened by inves-
tigating the deviation from this asymptotic behavior to second order (square-root
of the blocklength). In particular, in those situations where the first- and second-
order asymptotics can be established precisely, the resulting bounds have often
proven to be quite accurate except for very short blocklengths.

While precise second-order results are available in various basic information-
theoretic problems, more complicated setups, particularly those arising in mul-
tiuser information theory, have so far eluded second-order analysis. One of the
challenges that emerged from this line of work is the development of second-
order converses. Several existing approaches to obtaining second-order converses
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are briefly reviewed in Section 1.2; however, to date, a variety of information-
theoretic problems have remained out of reach of such methods. On the other
hand, the powerful general methodology introduced in 1976 by Ahlswede, Gács,
and Körner [3] and exploited extensively in the classical book [11] (see also the
recent survey [45]) has proven instrumental for proving converses in network in-
formation theory. Although this widely used technique yields converse results in
a broad range of problems almost as a black box, it is fundamentally unable to
yield second-order converses and is restricted to finite-alphabet settings.

Inspired by a result by Margulis [33], the method of Ahlswede, Gács, and
Körner is based on a remarkable application of the concentration of measure phe-
nomenon on the Hamming cube [25, 6], which is known in information theory
as the “blowing-up lemma”. Historically, this is probably the very first appli-
cation of modern measure concentration to a data science problem. One of the
main messages of this paper is that, surprisingly, measure concentration turns
out not to be the right approach after all in this original application. Instead, we
will revisit the theory of Ahlswede, Gács, and Körner based not on the violent
“blowing-up” operation, but on a new and more pacifist “smoothing out” princi-
ple that exploits reverse hypercontractivity of Markov semigroups and functional
inequalities. With this gentler touch, we are able to eliminate the inefficiencies of
the blowing-up method and obtain second-order converses, essentially for free, in
many information-theoretic problems that were out of reach of previous methods.

1.2 Weak, strong, and second-order converses

As a concrete basis for discussion, let us consider the basic setup of single-user
data transmission through noisy channels, in which there is a three-way trade-
off between code size, blocklength, and error probability. Suppose we wish to
transmit an equiprobable message W ∈ {1, . . . ,M} through a noisy channel
with given blocklength n.3 We encode each possible message using a codebook
c1, . . . , cM ∈ X n. What is the largest possible sizeM of the codebook that can be
decoded with error probability (averaged over equiprobable codewords and chan-
nel randomness) at most ε? For memoryless channels and in various more general
situations, the maximum code size M∗(n, ε) satisfies [42]

lnM∗(n, ε) = nC + Q−1(1− ε)
√
nV + oε(

√
n), (1.1)

where the capacity C and dispersion V determine the precise first- and second-
order asymptotics, and Q−1(·) is the inverse Gaussian tail probability function.
For memoryless channels (PY n|Xn = P⊗nY |X ), channel capacity and dispersion are

3A channel is a sequence of random transformations {PY n|Xn} indexed by blocklength n.
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given, respectively, by the quantities [47, 42, 20]

C = max
PX

I(X;Y ), (1.2)

V = Var [ıX;Y (X;Y )] , (1.3)

where ıX;Y (a; b) = log
dPY |X=a

dPY
(b), I(X;Y ) = E[ıX;Y (X;Y )] is the mutual

information, and (1.3) is evaluated for a PX that attains the maximum in (1.2).
To prove a result such as (1.1), we must address two separate questions. The

achievability part (that is, the inequality ≥) requires us to show existence of a
codebook c1, . . . , cM that attains the prescribed error probability. This is usually
accomplished using the probabilistic method due to Shannon [47] which analyzes
the error probability not of a particular code, but rather its average when the code-
books are randomly drawn from an auxiliary distribution. For many problems in
information theory with known first-order asymptotics, an achievability bound
with∼

√
n second-order term can be derived using random coding in conjunction

with other techniques [52, 59, 54].
In contrast, the converse part (that is, the inequality ≤) claims that no code

can exceed the size given in (1.1) for the given error probability ε. The simplest
and most widely used tool in converse analyses is Fano’s inequality [15], which
yields, in the memoryless case, the following estimate:

lnM∗(n, ε) ≤ n

1− ε
C +

h(ε)

1− ε
, ε ∈ (0, 1). (1.4)

Such a bound is called a weak converse: it yields the correct first-order asymptotics
in the limit of vanishing error probability, namely,

lim
ε↓0

lim
n→∞

1

n
lnM∗(n, ε) ≤ C. (1.5)

However, (1.4) does not rule out that transmission rates exceedingC may be feasi-
ble for any given nonzero error probability ε. To that end we need a more powerful
result known as the strong converse, namely,

lnM∗(n, ε) ≤ nC + oε(n), ε ∈ (0, 1), (1.6)

which can be proved by a variety of methods (e.g., [57, 49, 56, 3, 53, 42, 44]). Our
interest in this paper is on the even stronger notion of a second-order converse

lnM∗(n, ε) ≤ nC +Oε(
√
n), ε ∈ (0, 1), (1.7)

which not only implies a strong converse (1.6) but yields the
√
n behavior in (1.1).

We caution that second-order converses do not always yield the sharpest possible
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constant in the
√
n-term; however, they aim to capture at least qualitatively various

features of the sharp second-order asymptotics illustrated by (1.1).
Of course, the basic data transmission problem that we have discussed here for

sake of illustration is particularly simple, as the exact second-order asymptotics
(1.1) are known. This is not the case in more complicated information-theoretic
problems. In particular, there are many problems in multiuser information theory
for which either only weak converses are known, or, at most, strong converses
have been obtained using the blowing-up method. It is precisely in such situations
that new powerful and robust methods for obtaining second-order converses are
needed. Next, we briefly discuss the three main approaches that have been devel-
oped in the literature for addressing such problems.

1. The goal of the single-shot method (e.g., [48, 53, 42, 22, 23, 44, 51]) is to ob-
tain non-asymptotic achievability and converse bounds without imposing any
probabilistic structure on either sources or channels. Therefore, only the essen-
tial features of the problem come into play. Those non-asymptotic bounds are
expressed not in terms of average quantities such as entropy or mutual infor-
mation, but in terms of information spectra, namely the distribution function
of information densities such as ıX;Y (X;Y ). When coupled with the law of
large numbers or the ergodic theorem and with central-limit theorem tools,
the bounds become second-order tight. The non-asymptotic converse bounds
for single-user data transmission boil down to the derivation of lower bounds
on the error probability of Bayesian M -ary hypothesis testing followed by
anonymization of the actual codebook. Often, those lower bounds are obtained
by recourse to the analysis of an associated auxiliary binary hypothesis test-
ing problem. This converse approach has been successfully applied to some
problems of multiuser information theory such as Slepian-Wolf coding, multi-
ple access channels [18], and broadcast channels [38]. Its application to other
network setups is however a work in progress.

2. Type class analysis has been used extensively since [49] and was popularized
by [11] mainly in the context of error exponents; however, it applies also to
second-order analysis (see, e.g., [51]). The idea behind this method is that to
obtain lower bounds, we may consider a situation where the decoder is artifi-
cially given access to the type (empirical distribution) of the source or channel
sequences. Conditioned on each type, the distribution is equiprobable on the
type class, so the evaluation of the conditional error probability is reduced to a
combinatorial problem (this has been referred to as the “skeleton” or “combi-
natorial kernel” of the information-theoretic problem [1]). However, this com-
binatorial problem is not easily solved in side information problems (without
additional ideas such as the blowing-up lemma). Moreover, by its nature, the
method of types is restricted to finite alphabets and memoryless channels.
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3. The method using the blowing-up lemma (BUL) of Ahlswede-Gács-Körner
[3, 11, 45] uses a completely different idea to attain converse bounds: rather
than try to reduce the given converse problem to a simpler one (e.g., to a binary
hypothesis testing problem or a codebook that uses a single type), the BUL
method is in essence a general technique for bootstrapping a strong converse
from a weak converse. Even when the error probability ε is fixed, the concen-
tration of measure phenomenon implies that all sequences except those in a set
of vanishing probability differ in at most a fraction o(1) of coordinates from
a correctly decoded sequence. One can therefore effectively reduce the regime
of fixed error probability to one of vanishing error probability, where a weak
converse suffices, with negligible cost. The advantage of this method is that it
is very broadly applicable. However, as will be discussed below, quantitative
bounds obtained from this method are always suboptimal and second-order
converses are fundamentally outside its reach. Moreover, the perturbation ar-
gument used in this approach is restricted to finite alphabets.

The single-shot and type class analysis methods yield second-order converses, but
there are various problems in network information theory that have remained so
far outside their reach. In contrast, the BUL method has been successful in estab-
lishing strong converses for a wide range of problems, including all settings in [11]
with known single-letter rate region; see [11, Ch. 16]. For some problems in net-
work information theory, such as source coding with compressed side information
[11], BUL remained hitherto the only method for establishing a strong converse
[51, Section 9.2]. However, the generality of the method comes at the cost of an
inherent inefficiency, which prevents it from attaining second-order converses and
prevents its application beyond the finite alphabet setting.

In this paper, we will show that one can have essentially the best of both
worlds: the inefficiency of the blowing-up method can be almost entirely over-
come by revisiting the foundation on which it is based. The resulting theory pro-
vides a canonical approach for proving second-order asymptotic converses and is
applicable to a wide range of information-theoretic problems (including problems
with general alphabets) for which no such results were known.

1.3 “Blowing up” vs “smoothing out”

In order to describe the core ingredients of our approach, let us begin by delving
into the main elements of the blowing-up method of Ahlswede, Gács and Körner
(a detailed treatment in a toy example will be given in Section 2).

The concentration of measure phenomenon is one of the most important ideas
in modern probability [25, 6]. It states that for many high-dimensional probability
measures, almost all points in the space are within a small distance of any set of
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fixed probability. This basic principle may be developed in different settings and
has numerous important consequences; for example, it implies that Lipschitz func-
tions on high-dimensional spaces are sharply concentrated around their median, a
fact that will not be used in the sequel (but is crucial in many other contexts). The
following modern incarnation of the concentration property used in the work of
Ahlswede-Gács-Körner is due to Marton [35]; see also [45, Lemma 3.6.2].

Lemma 1.1 (Blowing-up lemma). Denote the r-blowup of A ⊆ Yn by

Ar := {vn ∈ Yn : dn(vn,A) ≤ r}, (1.8)

where dn is the Hamming distance on Yn. Then

P⊗n[Ar] ≥ 1− e−c2 for r =

√
n

2

(√
ln

1

P⊗n[A]
+ c

)
, (1.9)

for any c > 0 and any probability measure P on Y .

For example, if n = 5×109 and P⊗n[A] = e−100, we can achieve P⊗n[Ar] ≥
1−e−100 by letting r = 106 = 0.0002n. Asymptotically, if P⊗n[A] does not van-
ish, then P⊗n[Ar]→ 1 as long as r �

√
n. In other words, the rather remarkable

fact is that we can drastically increase the probability of a set by perturbing only
a very small (≈ n−1/2) fraction of coordinates of each of its elements.

Ahlswede, Gács and Körner realized how to leverage the BUL to prove strong
converses. Suppose one is in a situation where a weak converse, such as (1.4), can
be proved through Fano’s inequality or any other approach. This can be done in
all information-theoretic problems with known first-order asymptotics. However,
a weak converse only yields the correct first-order constant when the error prob-
ability ε is allowed to vanish, while we are interested in the regime of constant
ε. Let A be the set of correctly decoded sequences, whose probability is 1 − ε.
By the blowing-up lemma, a very slight blow-up Ar of this set will already have
probability 1−o(1). We now apply the weak converse argument usingAr instead
of A. On the one hand, this provides the desired first-order term in (1.4), as 1− ε
is replaced by 1 − o(1). On the other hand, we must pay a price in the argument
for replacing the true decoding set A by its blowup Ar. If r = o(n), the latter
turns out to contribute only to lower order and thus a strong converse is obtained.

The beauty of this approach is that it provides a very general recipe for up-
grading a weak converse to a strong converse, and is therefore widely applicable.
However, the method has (at least) two significant drawbacks:

• It is designed to yield a strong converse, not the stronger second-order asymp-
totic converse. Therefore, it is not surprising that it fails to yield second-order
behavior that we expect from (1.1): when optimized, the BUL method appears
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unable to give a bound better than O(
√
n log

3
2 n) (e.g., [45, Thm. 3.6.7]). This

is already suggested by Lemma 1.1 itself: to obtain a ∼
√
n second-order term

from (1.4), we would need Ar to have probability at least 1 − O(n−1/2). That
would require perturbing at least r ∼

√
n log n coordinates, which already

gives rise to additional logarithmic factors. Thus, the blowing-up operation is
too crude to recover the correct second-order behavior. In Appendix A, we will
show that this is not an inefficiency in the blowing-up lemma itself, but is in fact
an insurmountable problem of any method that is based on set enlargement.

• The argument relies essentially on the finite-alphabet setting. This is not be-
cause of the blowing-up lemma, which works for any alphabet Y , but because
we must control the price paid for replacing A by Ar. While Lemma 1.1 gives
a lower bound on P⊗n[Ar] as a function of P⊗n[A], we can also upper bound
P⊗n[Ar] as a function of P⊗n[A] by the following simple argument, which
relies crucially on the finiteness of the alphabet.

Lemma 1.2. Suppose that |Y| <∞ and that P (a) > 0 for all a ∈ Y . Then

r ln
r

neK
≤ ln

P⊗n[A]

P⊗n[Ar]
≤ 0. (1.10)

where K = |Y|
mina∈Y P (a) . Therefore, if r = o(n), then

lim
n→∞

1

n
ln

P⊗n[A]

P⊗n[Ar]
= 0. (1.11)

Proof. The right inequality in (1.10) follows from A ⊂ Ar. The set Ar is the
overlapping union of spheres centered at the elements of A, each of which con-
tains fewer than

(
n
r

)
|Y|r elements. This fact, along with the crude bound

P⊗n(yn)

P⊗n(zn)
≥
(

min
a∈Y

P (a)

)dn(yn,zn)

(1.12)

yields

P⊗n[Ar] ≤
(
n

r

)
KrP⊗n[A]. (1.13)

Then, the left inequality in (1.10) follows from
(
n
r

)
≤
(
en
r

)r.
The main contribution of this paper is to show that the shortcomings of the

blowing-up method can be essentially eliminated while retaining its wide appli-
cability. This is enabled by two key ideas that play a central role in our theory.
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1. Functional inequalities. To prove a weak converse such as (1.4), one must re-
late the relevant information-theoretic quantity (e.g., mutual information) to
the error probability (i.e., the probability of the decoding sets). This connec-
tion is generally made using a data processing inequality. However, in BUL-
type methods, we no longer work directly with the original decoding sets, but
rather with a perturbation of these that has better properties. Thus, there is also
no reason to restrict attention to sets: we can replace the decoding set by an ar-
bitrary function, and then control the relevant information functionals through
their variational characterization (that is, by convex duality). Unlike the data
processing inequality, such variational characterizations are in principle sharp
and provide a lot more freedom in how to approximate the decoding set.

2. “Smoothing out” vs. “blowing up”. Once one makes the psychological step of
working with functional inequalities, it becomes readily apparent that the idea
of “blowing up” the decoding sets is much more aggressive than necessary to
obtain a strong converse. What turns out to matter is not the overall size of
the decoding set, but only the presence of very small values of the function
used in the variational principle. Modifying the indicator function of a set to
eliminate its small values can be accomplished by a much smaller perturbation
than is needed to drastically increase its probability: this basic insight explains
the fundamental inefficiency of the classical BUL approach.

To implement this idea, we must identify an efficient method to improve the
positivity of an indicator function. To this end, rather than “blowing up” the
set by adding all points within Hamming distance r, we will “smooth out” the
indicator function by averaging it locally over points at distance∼ r. More pre-
cisely, this averaging will be performed by means of a suitable Markov semi-
group, which enables us to apply the reverse hypercontractivity phenomenon
[5, 37] to establish strong positivity-improving properties. Such hypercontrac-
tivity phenomenon replaces, in our approach, the much better known concen-
tration of measure phenomenon that was exploited in the BUL method. We
will show, moreover, that Markov semigroup perturbations are much easier to
control than their blowing-up counterparts, so that our method extends readily
to general alphabets, Gaussian channels, and channels with memory.

When combined, the above ideas provide a powerful machinery for developing
second-order converses. For example, in the basic data transmission problem that
we discussed at the beginning of Section 1.2, our method yields

lnM∗(n, ε) ≤ nC + 2

√
ln

1

1− ε
√
n(α− 1) + ln

1

1− ε
(1.14)

(cf. Theorem 3.2), where α is a certain quantity closely related to the disper-
sion. When compared to the exact second-order asymptotics (1.1), we see that the
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second-order term has the correct scaling not only in the blocklength n → ∞,

but also in the error probability ε → 1 (as Q−1(1 − ε) ∼
√

2 ln 1
1−ε as ε → 1).

However, our method does not recover the exact dispersion in (1.1); nor does it
capture the fact that in the small error regime ε < 1

2 , the second-order term in (1.1)
is in fact negative (the second-order term in (1.14) is always positive). While the
latter features are not directly achievable by the methods of this paper, they can
be addressed by combining our methods with type class analysis [27]. The details
of such a refined analysis are beyond the scope of this paper.

Let us remark that there are various connections between the notions of (re-
verse) hypercontractivity and concentration of measure; see, e.g., [4] and [24, p.
116] in the continuous case and [36, 37] in the discrete case. However, our present
application of reverse hypercontractivity is different in spirit: we are not using it
to achieve concentration but only a much weaker effect, which is the key to the ef-
ficiency of our method. The sharpness and broad applicability of our method sug-
gests that this may be the “right” incarnation of the pioneering ideas of Ahlswede-
Gács-Körner: one might argue that the blowing-up method succeeded in its aims,
in essence, because it approximates the natural smoothing-out operation.

1.4 Organization

We have sketched the main ideas behind our approach in broad terms. To describe
the method in detail, it is essential to get our hands dirty. To this end, we develop
both the blowing-up and smoothing-out approaches in Section 2 in the simplest
possible toy example: that of binary hypothesis testing. While this problem is
amenable to a (completely classical) direct analysis, we view it as the ideal peda-
gogical setting in which to understand the main ideas behind our general theory.

The remainder of the paper is devoted to implementing these ideas in increas-
ingly nontrivial situations.

In Section 3, we use our approach to strengthen Fano’s inequality with an
optimal O(

√
n) second-order term. We develop both the discrete and the Gaus-

sian cases, and illustrate their utility in applications to broadcast channels and the
output distribution of good channel codes.

In Section 4, we use our approach to strengthen a basic image size charac-
terization bound of [3], obtaining a O(

√
n) second-order term. The theory is de-

veloped once again both in the discrete and the Gaussian cases. We illustrate the
utility of our results in applications to hypothesis testing under communication
constraints, and to source coding with compressed side information.

The paper concludes with two appendices. In Appendix A, we show that
no method based on set enlargement can achieve second-order converses. Thus
the functional viewpoint of this paper is essential. Finally, Appendix B contains



12

proofs of some technical results used in section 4.

1.5 Notation

We end this section by collecting common notation that will be used throughout
the paper. First, we record two conventions that will always be in force:

• All information-theoretic quantities (such as entropy, relative entropy, mutual
information, etc.) will be defined in base e.

• In all variational formulas (such as (2.12), (4.8), (4.19), (4.22), etc.) it is implicit
in the notation that we optimize only over functions or measures for which each
term of the expression inside the supremum are finite.

We use standard information-theoretic notations for relative entropy D(P‖Q),
conditional relative entropy D(PX|U‖QX|U |PU ) = D(PX|UPU‖QX|UPU ), mu-
tual information I(X;Y ), entropy H(X), and differential entropy h(X).

We denote by H+(Y) the set of nonnegative Borel measurable functions on
Y , and byH[0,1](Y) the subset ofH+(Y) with range in [0, 1]. For a measure ν and
f ∈ H+(Y), we write ν(f) :=

∫
f dν and ‖f‖pp = ‖f‖pLp(ν) =

∫
|f |p dν. We

will frequently use ‖f‖L0(ν) := limq↓0 ‖f‖Lq(ν) = exp(ν(ln f)) for a probability
measure ν. The measure of a set is denoted as ν[A], and the restriction of a mea-
sure to a set is denoted µ|C [A] := µ[A∩C]. A random transformationQY |X , map-
ping measures on X to measures on Y , is viewed as an operator mappingH+(Y)
toH+(X ) according to QY |X(f) := E[f(Y )|X = ·] where (X,Y ) ∼ QXY . The
notation U − X − Y denotes that the random variables U,X, Y form a Markov
chain. The cardinality of Y is denoted |Y|, and ‖xn‖ denotes the Euclidean norm
of a vector xn ∈ Rn. Finally, yi denotes the ith element of a sequence or vector,
while yi denotes the components up to the ith one (yj)j≤i.

2 Prelude: Binary Hypothesis Testing

2.1 Setup

The most elementary setting in which the ideas of this paper can be developed
is the classical problem of binary hypothesis testing. It should be emphasized
that our theory does not prove anything new in this setting: due to the Neyman-
Pearson lemma, the exact form of the optimal tests is known and thus the analysis
is amenable to explicit computation (we will revisit this point in Section 2.4).
Nonetheless, the simplicity of this setting makes it the ideal toy example in which
to introduce and discuss the main ideas of this paper.
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In the binary hypothesis testing problem, we consider two competing hypothe-
ses: data is drawn from a probability distribution on Y , which we know is either
P or Q. Our aim is to test, on the basis of a data sample, whether it was drawn
from P orQ. More precisely, a (possibly randomized) test is defined by a function
f ∈ H[0,1](Y): when a data sample y ∈ Y is observed, we decide hypothesis P
with probability f(y), and decide hypothesisQ otherwise. Thus, we must consider
two error probabilities:

πP |Q := Q(f) = the probability that P is decided when Q is true

πQ|P := 1− P (f) = the probability that Q is decided when P is true

We aim to investigate the fundamental tradeoff between πP |Q and πQ|P in the
case of product measures P ← P⊗n, Q ← Q⊗n; in other words, what is the
smallest error probability πP⊗n|Q⊗n that may be achieved by a test that satisfies
πQ⊗n|P⊗n ≤ ε ∈ (0, 1)? In this setting, the exact first-order and second-order
asymptotics are due to Chernoff [9] and Strassen [50], respectively, resulting in

ln
1

πP⊗n|Q⊗n
= nD(P‖Q) + Q−1(1− ε)

√
nV (P‖Q) + oε(

√
n), (2.1)

where V (P‖Q) = VarP (ln dP
dQ).

The achievability (≤) part of (2.1) is straightforward (see Section 2.4), so the
main interest in the proof is to obtain the converse (≥). In this section, we will
illustrate both the blowing-up method of Ahlswede, Gács and Körner and the new
approach of this paper in the context of this simple problem, and compare the
resulting bounds to the exact second-order asymptotics (2.1).

2.2 The blowing-up method

For simplicity, to illustrate the blowing-up method in the context of the binary
hypothesis testing problem, we restrict attention to deterministic tests f = 1A
for some A ⊆ Y (that is, we decide hypothesis P if y ∈ A and hypothesis Q
otherwise). This is not essential, but it simplifies the analysis.

As we mentioned, the blowing-up method is a general technique for upgrading
weak converses to strong converses. In the present setting, a weak converse (for
any (P,Q), not necessarily product measures) follows in a completely elementary
manner from the data processing property of relative entropy.

Lemma 2.1 (Weak converse bound for binary hypothesis testing). Let P,Q be
probability measures on Y andA ⊆ Y define the set of observations for which the
deterministic test decides P . If πQ|P = P [Ac] ≤ ε, then πP |Q = Q[A] satisfies

ln
1

πP |Q
≤ D(P‖Q) + ln 2

1− ε
. (2.2)
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Proof. By the data processing property of relative entropy, we have

D(P‖Q) ≥ P [A] ln
P [A]

Q[A]
+ P [Ac] ln

P [Ac]
Q[Ac]

(2.3)

≥ (1− ε) ln
1

Q[A]
− h(P [Ac]), (2.4)

where h(ε) := −ε ln ε−(1−ε) ln(1−ε) ≤ ln 2 is the binary entropy function.

Specializing to product measures P ← P⊗n, Q← Q⊗n, Lemma 2.1 yields

ln
1

πP⊗n|Q⊗n
≤ nD(P‖Q) + ln 2

1− ε
(2.5)

for any test that satisfies πQ⊗n|P⊗n ≤ ε. While this is sufficient to conclude
the weak converse [if πQ⊗n|P⊗n → 0, then πP⊗n|Q⊗n cannot vanish faster than
exp(−nD(P‖Q))] it falls short of recovering the correct first-order asymptotics
in the regime of fixed ε, as we saw in (2.1).

The remarkable idea of Ahlswede, Gács and and Körner is that the argument
of Lemma 2.1 can be significantly improved by applying the data processing ar-
gument (2.4) not to the test set A satisfying

πQ⊗n|P⊗n = P⊗n[Ac] ≤ ε, (2.6)

but to its blow-up Ar. Then

ln
1

Q⊗n[Ar]
≤ nD(P‖Q) + ln 2

P⊗n[Ar]
. (2.7)

We must now control both the gain and the loss caused by the blowup. On the one
hand, by the blowing-up Lemma 1.1, P⊗n[Ar] = 1 − o(1) as long as r �

√
n,

which eliminates the 1 − ε factor in the weak converse (2.5). On the other hand,
assuming finite alphabets we can invoke Lemma 1.2 with r � n and P ← Q
(we may assume without loss of generality that Q is positive on Y) to obtain the
strong converse

ln
1

πP⊗n|Q⊗n
≤ nD(P‖Q) + oε(n). (2.8)

With a little more effort, we can optimize the argument over r and quantify the
magnitude of the lower-order term.

Proposition 2.2. Assume |Y| <∞. Any deterministic test between P⊗n andQ⊗n

on Yn such that πQ⊗n|P⊗n ≤ ε ∈ (0, 1) satisfies

ln
1

πP⊗n|Q⊗n
≤ nD(P‖Q) +O(

√
n log

3
2 n). (2.9)
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Proof. By the blowing-up Lemma 1.1, we have (since 3 >
√

2− 1√
n

)

P⊗n[Ar] ≥ 1− e−r2/n for all r ≥ 3

√
n ln

1

1− ε
. (2.10)

Assembling (1.10) (with P ← Q), (2.7) and (2.10) we obtain

ln
1

πP⊗n|Q⊗n
≤ nD(P‖Q) + ln 2

1− e−r2/n
+ r ln

Ken

r
. (2.11)

Choosing r �
√
n log n results in (2.9).

Re-examining the proof of Proposition 2.2, we can easily verify that no other
choice for the growth of r with n may accelerate the decay of the slack term
in (2.9). While the blowing-up method almost effortlessly turns a weak converse
into a strong one, it evidently fails to result in a second-order converse. The rather
crude bounds provided by Lemmas 1.1 and 1.2 may be expected to be the obvi-
ous culprits. It will shortly become evident, however, that the inefficiency of the
method lies much deeper than expected: the major loss occurs already in the very
first step (2.3) where we apply the data processing inequality. We will in fact show
in Appendix A that any method based on the data processing inequality necessar-
ily yields a slack term at least of order ∼

√
n log n. To surmount this obstacle, we

have no choice but to go back to the drawing board.

2.3 The smoothing-out method

The aim of this section is to introduce the key ingredients of the new method
proposed in this paper. As will be illustrated throughout this paper, this method
yields second-order converses while retaining the broad range of applicability of
the blowing-up method. In the following, there will be no reason to restrict atten-
tion to deterministic tests f = 1A as in the previous section, so we will consider
arbitrary randomized tests f ∈ H[0,1] from now on.

2.3.1 Functional inequalities

To prove a converse, we must relate the relevant information-theoretic quantity
D(P‖Q) to the properties of any given test f . This was accomplished above by
means of the data processing inequality (2.3). However, as was indicated at the
end of the previous section, this already precludes us from obtaining sharp quanti-
tative bounds. The first idea behind our approach is to replace the data processing
argument by a different lower bound: we will use throughout this paper functional
inequalities associated to information-theoretic quantities by convex duality. In
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the present setting, the relevant inequality follows from the Donsker-Varadhan
variational principle for relative entropy [12] (see, e.g., [45, (3.4.67)])

D(P‖Q) = sup
g∈H+

{P (ln g)− lnQ(g)}. (2.12)

Unlike the data processing inequality, which can only attain equality in trivial sit-
uations, the variational principle (2.12) always attains its supremum by choosing
g ← dP

dQ . Therefore, unlike the data processing inequality, in principle an applica-
tion of (2.12) need not entail any loss.

What we must now show is how to choose the function g in (2.12) to capture
the properties of a given test f . Tempting as it is, the choice g ← f is dismal: for
example, in the case of deterministic tests f = 1A, generally P (ln 1A) = −∞
and we do not even obtain a weak converse. Instead, inspired by the blowing-up
method, we may apply (2.12) to a suitably chosen perturbation of f . Let us first
develop the argument abstractly so that we may gain insight into the requisite
properties. Suppose we can design a mapping T : H[0,1] → H[0,1] (which plays
the role of the blowing-up operation in the present setting) that satisfies:

1. For any test f ∈ H[0,1] on Yn with P⊗n(f) ≥ 1− ε, we have

P⊗n(lnTf) ≥ −oε(n). (2.13)

2. For any test f ∈ H[0,1] on Yn, we have

lnQ⊗n(Tf) ≤ lnQ⊗n(f) + o(n). (2.14)

Setting g ← Tf in (2.12) and using (2.13) and (2.14), we immediately deduce a
strong converse: for any test f ∈ H[0,1] such that πQ⊗n|P⊗n := P⊗n(1− f) ≤ ε,
the error probability πP⊗n|Q⊗n := Q⊗n(f) satisfies (2.8). Besides replacing the
data processing inequality by the variational principle, the above logic parallels
the blowing-up method: (2.13) plays the role of the blowing-up Lemma 1.1, while
(2.14) plays the role of the counting estimate (1.11).

Nonetheless, this apparently minor change of perspective lies at the heart of
our theory. To explain why it provides a crucial improvement, let us pinpoint the
origin of the inefficiency of the blowing-up method. The purpose of the blowing-
up operation is to increase the probability of a test: given P⊗n(f) ≥ 1 − ε, one
designs a blow-up f 7→ f̃ so that P⊗n(f̃) = 1− o(1). However, when we use the
the sharp functional inequality (2.12) rather than the data processing inequality,
we do not need to control P⊗n(f̃), but rather P⊗n(ln f̃). The latter is dominated
by the small values of f , not by its overall magnitude. Therefore, an efficient
perturbation of f should not seek to blow it up but only to boost its small values,
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which may be accomplished at a much smaller cost than the blowing-up operation.
It is precisely this insight that will allow us to eliminate the inefficiency of the
blowing-up method and attain sharp second-order bounds.

In order to take full advantage of this insight, we must understand how to
design efficient perturbations f 7→ Tf . The second key ingredient of our method
is its main workhorse: a general mechanism to implement (2.13) and (2.14) so that
their speed of decay will be such that the slack term in (2.8) is in fact O

(
n−1/2

)
.

2.3.2 Simple semigroups

The essential intuition that arises from the above discussion is that in order to ob-
tain efficient bounds in (2.13) and (2.14), we must design an operation f 7→ Tf
that is positivity-improving: it boosts the small values of f sufficiently to ensure
that P⊗n(lnTf) is not too small. In this subsection we design a suitable transfor-
mation T , and in Section 2.3.3 we show that it achieves the desired goal.

Let Y be an arbitrary alphabet and let P be any probability measure thereon.
We say (Tt)t≥0 is a simple semigroup4 with stationary measure P if

Tt : H+(Y)→ H+(Y), f 7→ e−tf + (1− e−t)P (f). (2.15)

In the i.i.d. case Y ← Yn, P ← P⊗n we consider their tensor product

Tt := [e−t + (1− e−t)P ]⊗n. (2.16)

We will use T = Tt, for a suitable choice of t, as a positivity-improving operation.
It is instructive to examine the effect of the operator in (2.16) on indica-

tor functions. For that purpose, we introduce the following ad-hoc notation: if
(vn, wn) ∈ Yn × Yn and I ⊂ {1, . . . , n}, then vnIwn ∈ Yn is defined by

(vnIwn)i =

{
vi, i ∈ I
wi, i ∈ Ic. (2.17)

Then, using

(aQ+ (1− a)P )⊗n =
∑

I⊂{1,...,n}

an−|I|(1− a)|I|P⊗IQ⊗I
c
, (2.18)

the application of the operator in (2.16) to the indicator function becomes

Tt1A(yn) = E[1A(ZnIyn)], (2.19)

4Readers who are unfamiliar with semigroups may ignore this terminology; while the semigroup
property plays an important role in the proof of Theorem 2.3, it is not used directly in this paper.
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where I is a random subset of {1, . . . , n} obtained by including each element
independently with probability 1− e−t (in particular, |I| ∼ Binom(n, 1− e−t)),
and Zn ∼ P⊗n is independent of I. In contrast, the blowing-up operation may be
expressed in terms of indicator functions as

1Ar(y
n) = max

|I|≤r
max
zn∈Yn

1A(znIyn). (2.20)

From this perspective, we see that the semigroup operation is a smoothing out
counterpart of the blowing-up operation: while the blowing-up operation max-
imizes the function over a local neighborhood of size r, the semigroup opera-
tion averages the function over a random neighborhood of size r ≈ n(1 − e−t).
What we will gain from smoothing is that it increases the small values of f (it is
positivity-improving) without increasing the total mass P⊗n(Ttf) = P⊗n(f), so
that the mass under Q⊗n cannot grow too much. In contrast, blowing-up is de-
signed to increase the mass P⊗n(f); but then the mass under Q⊗n becomes large
as well, which yields the suboptimal rate achieved by the blowing-up method.

2.3.3 Reverse hypercontractivity

It is intuitively clear that Tt is positivity improving: it maps any nonnegative func-
tion to a strictly positive function. But the goal of lower bounding P⊗n(lnTf) is
more ambitious. This idea already appears in the probability theory literature in a
very different context: it was realized long ago by Borell [5] that Markov semi-
groups possess very strong positivity-improving properties, which are described
quantitatively by a reverse form of the classical hypercontractivity phenomenon.
While Borell was motivated by applications in quantum field theory, we will show
in this paper that reverse hypercontractivity provides a powerful mechanism that
appears almost tailor-made for our present purposes.

We will presently describe an important generalization of Borell’s ideas to
general alphabets due to Mossel et al. [37], and show how it may be combined
with the above ideas to obtain sharp non-asymptotic converses.

Theorem 2.3 (Reverse hypercontractivity). [37]. Let (Tt)t≥0 be a simple semi-
group (2.15) or an arbitrary tensor product of simple semigroups. Then

‖Ttf‖Lq ≥ ‖f‖Lp (2.21)

for any 0 < q < p < 1, f ∈ H+, and t ≥ ln 1−q
1−p . In particular, letting q ↓ 0, we

have
P (lnTtf) ≥ log ‖f‖Lp(P ). (2.22)
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An estimate of the form (2.13) is almost immediate from (2.22). On the other
hand, the estimate (2.14) will now follow from a simple change of measure ar-
gument. The following result combines these ingredients to derive a second-order
converse for binary hypothesis testing.

Theorem 2.4. Any test between P⊗n and Q⊗n such that πQ⊗n|P⊗n ≤ ε satisfies

ln
1

πP⊗n|Q⊗n
≤ nD(P‖Q) + 2

√
ln

1

1− ε
√
n(α− 1) + ln

1

1− ε
, (2.23)

where α =
∥∥dP
dQ

∥∥
∞ ≥ 1.

Proof. We establish (2.13) and (2.14) by choosing T = Tt as defined by (2.16).
We fix any t > 0 initialy and optimize at the end of the proof.

Fix any test f ∈ H[0,1](Yn). To establish (2.13), note that by (2.22)

P⊗n(lnTtf) ≥ ln ‖f‖
L1−e−t (P⊗n)

(2.24)

≥ 1

1− e−t
lnP⊗n(f) (2.25)

≥
(

1

t
+ 1

)
lnP⊗n(f), (2.26)

where (2.25) used that f ∈ [0, 1] and (2.26) follows from et ≥ 1 + t.
On the other hand, to establish (2.14), we argue as follows:

Q⊗n(Ttf) = Q⊗n((e−t + (1− e−t)P )⊗nf) (2.27)

= (e−tQ+ (1− e−t)P )⊗nf (2.28)

≤ (e−t + α(1− e−t))nQ⊗n(f) (2.29)

≤ e(α−1)ntQ⊗n(f), (2.30)

where α = ‖dPdQ‖∞ ≥ 1, and (2.27) is just the definition of Tt.
Now assume that the test f satisfies πQ⊗n|P⊗n := P⊗n(1 − f) ≤ ε. Setting

P ← P⊗n, Q← Q⊗n, and g ← Ttf in (2.12), we obtain for all t > 0

ln
1

πP⊗n|Q⊗n
≤ nD(P‖Q) +

(
1

t
+ 1

)
ln

1

1− ε
+ (α− 1)nt (2.31)

using (2.26) and (2.30). Minimizing (2.31) with respect to t yields (2.23).

Beside resulting in a second-order converse, the smoothing-out method has an
additional major advantage over the blowing-up method: the change-of-measure
argument (2.30) is purely measure-theoretic in nature and sidesteps the counting
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Blowing-up method Smoothing-out method
Connecting information

measures and
observables

Data processing
property (2.3) Convex duality (2.12)

Lower bound w.r.t. a
given measure

Concentration of
measure (Lemma 1.1)

Reverse
hypercontractivity

(Theorem 2.3)

Upper bound w.r.t.
reference measure

Counting argument
(Lemma 1.2)

Change of measure
(2.29) [or scaling
argument (3.21)]

Table 1: Main ingredients of the blowing-up and smoothing-out approaches.

argument of Lemma 1.2. No analogue of the latter can hold beyond the finite al-
phabet case: indeed, in general alphabets even the blowup of a set of measure zero
will have positive measure, ruling out any estimate of the form (1.11). In contrast,
the result of Theorem 2.4 holds for any alphabet Y and requires only a bounded
density assumption. Even the latter assumption is not an essential restriction and
can be eliminated in specific situations by working with semigroups other than
(2.16). A particularly important example that will be developed in detail later on
in this paper is the case of Gaussian measures (see, for example, Section 3.2).

The proof of Theorem 2.4 illustrates the approach of this paper in its simplest
possible setting. However, the basic ideas that we have introduced here form the
basis of a general recipe that will be applied repeatedly in the following sections to
obtain second-order converses in a broad range of applications. The comparison
between the key ingredients of the blowing-up method and the smoothing-out
approach proposed in this paper is summarized in Table 1.

2.3.4 Beyond product measures

Throughout this paper we focus for simplicity on stationary memoryless systems,
that is, those defined by product measures. However, our approach is by no means
limited to this setting. For the benefit of the interested reader, let us briefly sketch
in the context of Theorem 2.4 what modifications would be needed to adapt our
approach to general dependent measures. For an entirely different application of
our approach in a dependent setting, see [27].

Consider the problem of testing between two arbitrary (non-product) hypothe-
ses Pn, Qn on Yn. To adapt the proof of Theorem 2.4, we need to introduce a hy-
percontractive semigroup with stationary measure Pn. A natural candidate in this
general setting is the so-called Gibbs sampler Ttf(yn) = Eyn [f(Y n

t )], where the
Markov process Y n

t is defined by replacing each coordinate with an independent
draw from its conditional distribution PYi|Y\i (where Y\i := (Yj)j 6=i) at indepen-
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dent exponentially distributed intervals. It was shown in [37] that any semigroup
that satisfies a modified log-Sobolev inequality is reverse hypercontractive. In par-
ticular, such inequalities may be established for the Gibbs sampler under rather
general weak dependence assumptions [8, 34].

On the other hand, we need to establish an upper bound on Qn(Ttf). This
may be done as follows. The Gibbs sampler satisfies the differential equation [8]

d

dt
Ttf(yn) =

n∑
i=1

{PYi|Y\i=y\i(Ttf)− Ttf(yn)}. (2.32)

We may therefore estimate for any f ∈ H+(Yn)

d

dt
Qn(Ttf) =

n∑
i=1

{Qn(PYi|Y\i(Ttf))−Qn(Ttf)} ≤ (α−1)nQn(Ttf), (2.33)

where we used the tower property of conditional expectations and we defined

α := max
i

∥∥∥∥PYi|Y\iQYi|Y\i

∥∥∥∥
∞
. (2.34)

Solving the differential inequality yields precisely the same estimate Qn(Ttf) ≤
e(α−1)ntQn(f) as was obtained in (2.30) in the product case.

Putting together these estimates, we obtain for any test with πQn|Pn ≤ ε that

ln
1

πPn|Qn
≤ nD(Pn‖Qn) +

√
C ln

1

1− ε
√
n(α− 1) + ln

1

1− ε
, (2.35)

where C is the modified log-Sobolev constant of Pn. This extends our approach
for the memoryless case to any dependent situation where a modified log-Sobolev
inequality is available for Pn. A deeper investigation of dependent processes is
beyond the scope of this paper.

2.4 Achievability and optimality

Theorem 2.4 gives a non-asymptotic converse bound for binary hypothesis testing.
To understand whether it is accurate, we also need an upper bound (achievability).
Such a bound was already stated in (2.1). To motivate the following discussion, it
is instructive to give a quick proof of the achievability part of (2.1).

Lemma 2.5. There exist a sequence of binary hypothesis tests with πQ⊗n|P⊗n ≤ ε
such that

ln
1

πP⊗n|Q⊗n
≥ nD(P‖Q) + Q−1(1− ε)

√
nV (P‖Q) + oε(

√
n), (2.36)

provided that V (P‖Q) := VarP (ln dP
dQ) <∞.
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Proof. For typographical convenience we will write D := D(P‖Q) and V :=
V (P‖Q). By the central limit theorem

lim
n→∞

P⊗n
[
ıP⊗n‖Q⊗n ≥ nD + Q−1(1− ε)

√
nV
]

= 1− ε, (2.37)

where we have defined the relative information

ıP⊗n‖Q⊗n(yn) := ln
dP⊗n

dQ⊗n
(yn) =

n∑
i=1

ln
dP

dQ
(yi) (2.38)

whose mean and variance with yn ∼ P⊗n are nD and nV , respectively. We may
therefore choose a deterministic sequence an = oε(

√
n) such that the determinis-

tic test fn = 1An defined by

A = {yn ∈ Yn : ıP⊗n‖Q⊗n(yn) ≥ nD + Q−1(1− ε)
√
nV − an} (2.39)

satisfies πQ⊗n|P⊗n ≤ ε for all n. But a simple Chernoff bound now yields

πP⊗n|Q⊗n ≤ e−nD−Q−1(1−ε)
√
nV+anQ⊗n(e

ıP⊗n‖Q⊗n ), (2.40)

and the proof is completed by noting that Q⊗n(e
ıP⊗n‖Q⊗n ) = 1.

Comparing the achievability bound (2.36) with our converse (2.23), we see
that the main features of the second-order term are captured faithfully by the
smoothing-out method, although it fails to recover the precise constant in the
second-order term: V (P‖Q) is replaced by its natural uniform bound V (P‖Q) ≤∥∥dP
dQ

∥∥
∞ − 1 in our converse.5 Beside the optimal order scaling ∼

√
n, we recall

that the bound behaves correctly as a function of ε (up to universal constant) for
large error probabilities ε→ 1; cf. the disucussion following (1.14).

As is illustrated by Lemma 2.5, the achievability analysis is conceptually sim-
ple in the binary hypothesis testing case thanks to the Neyman-Pearson lemma
which identifies the optimal test. However, in information theory optimal proce-
dures are very seldom known explicitly. Thus, the methodology we have intro-
duced says nothing new about binary hypothesis testing. The point of the present
method, however, is that it applies broadly in situations where such a direct anal-
ysis is far out of reach. In particular, in the general setting of Section 4 the present
approach is currently the only known method to achieve sharp second-order con-
verses in a variety of multiuser information theory problems.

5To see this, use x ln2 x ≤ (x− 1)2 to show VarP (ln
dP
dQ

) ≤ Q( dP
dQ

ln2 dP
dQ

) ≤ P ( dP
dQ
− 1).
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3 Second-Order Fano’s Inequality

The aim of this section is to develop the smoothing-out methodology for channel
coding problems, of which a basic example was discussed in Section 1.2.

Weak converses for channel coding problems can be obtained in great gen-
erality (cf. [14]): this is the domain of Fano’s inequality [15], one of the most
basic results in information theory, which gives an implicit upper bound on the er-
ror probability of an M -ary hypothesis testing problem. For discrete memoryless
channels, when combined with a list decoding argument, the blowing-up method
strengthens Fano’s inequality to a strong converse with∼

√
n log

3
2 n second-order

term [3, 35, 43, 45]. In this section, we will show that the smoothing-out method
results in a strong form of Fano’s inequality that not only attains the optimal∼

√
n

second-order term, but is applicable to a much broader class of channels. The
power of this machinery will be illustrated in two typical applications.

Before we turn to the main results of this section, it is instructive to give a
short proof of a basic form of Fano’s inequality. Although we state it and prove it
for deterministic decoding, it also holds for stochastic decoders.

Lemma 3.1 (Fano’s inequality). Let W ∈ {1, . . . ,M} be an equiprobable mes-
sage to be transmitted over a noisy channel PY |X . Let c1, . . . , cM ∈ X be the
codewords corresponding to W , and let D1, . . . ,DM ⊆ Y be the disjoint decod-
ing sets. Suppose the average probability of correct decoding satisfies

1

M

M∑
m=1

PY |X=cm [Dm] ≥ 1− ε. (3.1)

Then

lnM ≤ I(W ;Y ) + ln 2

1− ε
, (3.2)

where Y is the output of the channel PY |X with input X = cW .

Proof. Let Ŵ be the decoded message, that is, Ŵ = cm when the output Y ∈
Dm. The bound can be shown by reduction to an auxiliary binary hypothesis test-
ing problem: P ← PWŴ , Q ← PW ⊗ PŴ . Then the conclusion follows by ap-
plying Lemma 2.1 with A = {(x, x̂) : x = x̂} since I(W ; Ŵ ) ≤ I(W ;Y ).

The proof of Fano’s inequality highlights the connection between the chan-
nel coding problems investigated in this section and the simple hypothesis testing
problem of Section 2. In particular, it suggests that the weak converse (3.2) may
be strengthened to a strong converse of the form lnM ≤ I(W ;Y n) + O(

√
n)

in the setting of memoryless channels PY |X ← PY n|Xn := P⊗nY |X . Unfortunately,
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the latter does not follow from the strong converse obtained in Section 2 for bi-
nary hypothesis testing. Indeed, the framework of Section 2 does not apply as the
measures P,Q that appear in the proof of Lemma 3.1 are not product measures
even when the channel is memoryless. To sidestep this hurdle we will apply the
smoothing-out operation conditionally on Xn: that is, we will introduce semi-
groups for which the channel PY n|Xn=xn is the stationary measure. The main ad-
ditional challenge that arises is that the semigroup depends on the channel input
xn and must therefore be controlled uniformly in xn.

3.1 Bounded probability density case

In this section, we consider a random transformation PX|Y from X to Y and
denote by PY n|Xn=xn := PY |X=x1 ⊗ · · · ⊗ PY |X=xn the corresponding n-fold
memoryless random transformation. The main assumption of this section is that
there exists a reference probability measure ν on Y such that

α := sup
x∈X

∥∥∥∥dPY |X=x

dν

∥∥∥∥
∞
∈ [1,∞). (3.3)

This assumption is automatically satisfied in the finite alphabet setting |Y| < ∞,
in which case we may choose ν to be equiprobable and consequently α ≤ |Y|.
However, the present setting is much more general: it applies to an arbitrary output
alphabet Y and requires only the existence of bounded densities.

The main result of this section is the following strong form of Fano’s inequal-
ity (cf. Lemma 3.1) exhibiting a

√
n second-order term..

Theorem 3.2. Assume (3.3) holds. Let W ∈ {1, . . . ,M} be an equiprobable
message, let c1, . . . , cM ∈ X n be the codewords corresponding to W , and let
D1, . . . ,DM ⊆ Yn be disjoint decoding sets. Suppose that

M∏
m=1

P
1
M

Y n|Xn=cm
[Dm] ≥ 1− ε. (3.4)

Then

lnM ≤ I(W ;Y n) + 2

√
ln

1

1− ε
√
n(α− 1) + ln

1

1− ε
, (3.5)

where Y n is the output of the memoryless channel PY n|Xn = P⊗nY |X with input
Xn = cW .

Remark 3.3. The geometric average criterion (3.4) is stronger than the average
error criterion (3.1) in Fano’s inequality, but is weaker than the maximal error
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criterion minm PY n|Xn=cm [Dm] ≥ 1 − ε. Both the average and maximal error
criteria are commonly used in information theory, and our assumption (3.4) is
intermediate between these two conventional criteria.

It is natural to ask whether the strong Fano inequality (3.5) remains valid even
under the average error criterion, like the classical Fano inequality. This is not the
case. In [31], a general notion of “α-decodability” is introduced which subsumes
the geometric average criterion, the average error criterion, and the maximum
error criterion as the special cases α = 0, 1,−∞. It is shown there that α = 0 is
the critical value for the existence of a strong Fano inequality. In this sense, the
assumption (3.4) of Theorem 3.2 is essentially the best possible.

While the strong Fano inequality itself cannot hold under the average error
criterion, it is possible in some applications of this inequality to upgrade the sub-
sequent results to hold under the average error criterion by an additional argument
known as codebook expurgation. The idea behind this method is that if the aver-
age error criterion is met, then the maximal error criterion will be satisfied on a
large subset of the codebook obtained by throwing out the worst half of the code-
words (e.g., [10, Theorem 7.7.1]). By combining this device with Theorem 3.2
we can, for example, recover a strong converse under the average error criterion
for the basic channel coding problem of Section 1.2. The expurgation argument
cannot be applied directly to Theorem 3.2, however, as I(W ;Y n) may change
significantly when we throw out codewords. Whether or not an expurgation argu-
ment is feasible depends on the manner in which Theorem 3.2 is used in a given
application.

Before we turn to the proof of Theorem 3.2, let us prepare for the smoothing-
out argument that will appear therein. For any x ∈ X , denote by (Tx,t)t≥0 the
simple Markov semigroup on Y with stationary measure PY |X=x:

Tx,tf := e−tf + (1− e−t)PY |X=x(f). (3.6)

We denote by
Txn,t := Tx1,t ⊗ · · · ⊗ Txn,t (3.7)

the corresponding product semigroup with stationary measure PY n|Xn=xn .
Unlike the simpler setting of Section 2, the semigroup Txn,t depends on xn. To

work around this issue, we introduce a linear operator Λt : H+(Yn) → H+(Yn)
that dominates Txn,t uniformly over xn:

Λt := [e−t + α(1− e−t)ν]⊗n. (3.8)

Note that Λt is not a Markov semigroup; in particular, its total mass satisfies

Λt1 =
(
e−t + α(1− e−t)

)n ≤ e(α−1)nt. (3.9)

However, Λt dominates the semigroups Txn,t in the following sense.
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Lemma 3.4. Assume (3.3) holds. Then for any f ∈ H+(Yn)

sup
xn∈Xn

Txn,tf ≤ Λtf. (3.10)

Proof. The result follows immediately from the definition of Txn,t, Λt, and α
upon noting that PY |X=x(g) ≤ αν(g) whenever g ≥ 0.

We are now ready for the proof of Theorem 3.2.

Proof of Theorem 3.2. Let fm := 1Dm and t > 0 to be optimized later. Note that

I(W ;Y n) =
1

M

M∑
m=1

D(PY n|Xn=cm‖PY n) (3.11)

≥ 1

M

M∑
m=1

PY n|Xn=cm(ln Λtfm)− 1

M

M∑
m=1

lnPY n(Λtfm) (3.12)

where (3.12) is from the variational formula (2.12).
We can lower bound the first term in (3.12) as follows:

1

M

M∑
m=1

ln ‖Λtfm‖L0(PY n|Xn=cm )

≥ 1

M

M∑
m=1

ln ‖Tcm,tfm‖L0(PY n|Xn=cm ) (3.13)

≥ 1

1− e−t
1

M

M∑
m=1

lnPY n|Xn=cm(fm) (3.14)

≥ −
(

1

t
+ 1

)
ln

1

1− ε
(3.15)

where (3.13) is from (3.10); (3.14) is from Theorem 2.3 and f ∈ [0, 1]; and (3.15)
is from (3.4) and et ≥ 1 + t. For the second term in (3.12), we can estimate

− 1

M

M∑
m=1

lnPY n(Λtfm) ≥ − lnPY n

(
1

M

M∑
m=1

Λtfm

)
(3.16)

≥ lnM − (α− 1)nt (3.17)

using Jensen’s inequality,
∑

m fm ≤ 1, and (3.9). Combining (3.12), (3.15), and
(3.17) and optimizing over t > 0 concludes the proof.
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3.2 Gaussian case

The strong Fano inequality of the previous section applies in principle to arbitrary
alphabets X ,Y . However, in certain situations the bounded density assumption
(3.3) may be overly restrictive, particularly when the alphabets are unbounded. In
this section, we will adapt the argument of the previous section to the prototypical
example where this issue arises, namely, Gaussian channels. Beside the intrinsic
utility of the result, this will illustrate the broader applicability of the smoothing-
out method beyond the simple semigroup setting exploited so far.

Throughout this section, we consider the random transformation PY |X=x =
N (x, 1) from R to R, so that the corresponding memoryless channel is defined
by PY n|Xn=xn = N (xn, In). In this setting, we have the following Gaussian ana-
logue of Theorem 3.2. For later applications to broadcast channels, we consider
a slight extension of the setting of Theorem 3.2 to allow stochastic encoders that
use log2 L random bits.

Theorem 3.5. Let PY |X=x = N (x, 1). Consider any encoding function φ : [M ]×
[L]→ Rn and disjoint decoding sets D1, . . . ,DM ⊆ Rn. Suppose that∏

w,v

P
1
ML

Y n|Xn=φ(w,v)[Dw] ≥ 1− ε. (3.18)

Then

lnM ≤ I(W ;Y n) +

√
2 ln

1

1− ε
√
n+ ln

1

1− ε
, (3.19)

where Y n is the output of the channel PY n|Xn with input Xn = φ(W,V ), and
(W,V ) is equiprobable on [M ]× [L].

In the Gaussian setting, it is natural to work not with simple semigroups but
rather with the Ornstein-Uhlenbeck semigroup with stationary measureN (xn, In):

Txn,tf(yn) := E[f(e−tyn + (1− e−t)xn +
√

1− e−2tV n)], (3.20)

where V n ∼ N (0n, In). In this setting, Borell [5] showed that reverse hypercon-
tractivity (2.21) holds under the even weaker assumption t ≥ 1

2 ln 1−q
1−p .

The proof will proceed a little differently than in Section 3.1. Here, the ana-
logue of Λt in (3.8) is simply T0n,t. Instead of Lemma 3.4, we will exploit a simple
change-of-variable formula: for any f ≥ 0, t > 0 and xn ∈ Rn, we have

PY n|Xn=xn(lnT0n,tf) = PY n|Xn=e−txn(lnTe−txn,tf), (3.21)

which can be verified directly from (3.20).
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Proof of Theorem 3.5. Let fw = 1Dw for w ∈ [M ]. Define also X̄n = etXn, and
denote by Ȳ n the output of the channel PY n|Xn with input Xn ← X̄n. Note that

D(PȲ n|W=w‖PȲ n)

≥ 1

L

L∑
v=1

PY n|Xn=etφ(w,v)(lnT0n,tfw)− lnPȲ n(T0n,tfw) (3.22)

=
1

L

L∑
v=1

PY n|Xn=φ(w,v)(lnTφ(w,v),tfw)− lnPȲ n(T0n,tfw) (3.23)

for each w, where the key step (3.23) used (3.21).
The summand in the first term of the right side of (3.23) can be bounded using

reverse hypercontractivity for the Ornstein-Uhlenbeck semigroup (3.20) as

PY n|Xn=φ(w,v)(lnTφ(w,v),tfw) ≥ 1

1− e−2t
lnPY n|Xn=φ(w,v)(fw). (3.24)

Therefore, using assumption (3.18), we obtain

1

ML

∑
w,v

PY n|Xn=φ(w,v)(lnTφ(w,v),tfw) ≥ − 1

1− e−2t
ln

1

1− ε
. (3.25)

On the other hand, by Jensen’s inequality,

1

M

M∑
w=1

lnPȲ n(T0n,tfw) ≤ lnPȲ n

(
1

M

M∑
w=1

T0n,tfw

)
≤ ln

1

M
, (3.26)

where we used
∑

w fw ≤ 1. Thus, averaging over w in (3.23), we find

lnM ≤ I(W ; Ȳ n) +
1

1− e−2t
ln

1

1− ε
. (3.27)

We must now bound I(W ; Ȳ n) in terms of I(W ;Y n). To this end, let Gn ∼
N (0n, In) be independent of Xn and note that

h(Ȳ n) = h(etXn +Gn) (3.28)

= h(Xn + e−tGn) + nt (3.29)

≤ h(Y n) + nt, (3.30)

where (3.30) can be seen from the entropy power inequality. On the other hand,

h(Ȳ n|W = w)− h(Y n|W = w)

= I(Ȳ n;Xn|W = w)− I(Y n;Xn|W = w) ≥ 0 (3.31)



29

for everyw, where the equality follows as h(Ȳ n|Xn,W = w) = h(Y n|Xn,W =
w) = h(Gn) and nonnegativity can be seen from [17, Theorem 1]. Combining
(3.27), (3.30), and (3.31) and using et ≥ 1 + t yields

lnM ≤ I(W ;Y n) +

(
1

2t
+ 1

)
ln

1

1− ε
+ nt, (3.32)

and the conclusion follows by optimizing over t.

Remark 3.6. If the geometric average criterion (3.18) is replaced by the stronger
maximal error criterion, a Gaussian Fano inequality with∼

√
n second-order term

can also be obtained using the information spectrum method and the Gaussian
Poincaré inequality; see [43, Theorem 8]. However, beside the stronger assump-
tion, the resulting bound is much less explicit and does not recover the correct
dependence of the second-order term on the error probability as ε→ 1.

3.3 Application: output distribution of good channel codes

As a very first application, let us note that Theorem 3.2 effortlessly gives a sharp
non-asymptotic converse for the basic data transmission example of Section 1.2
for discrete memoryless channels. Since by the data processing inequality

I(W ;Y n) ≤ n sup
PX

I(X;Y ) =: nC,

the maximal code size satisfies

lnM∗(n, ε) ≤ nC + 2

√
|Y| ln 1

1− ε
√
n+ ln

1

1− ε
, (3.33)

where we chose the reference measure ν in (3.3) to be uniform on Y .
It was observed in [19, 46] that if a code is close to achieving the upper bound

(3.33) , this places a strong constraint on what the transmitted message looks like.
In particular, it was shown there that if an (n,M, ε)-code satisfies

lnM = nC + o(n), (3.34)

then it is necessarily the case that

1

n
D(PY n‖P ?Y n) = o(ε), (3.35)

wherePY n is the channel output distribution induced by the codebook andP ?Y n :=
P ?⊗nY and P ?Y is the unique maximal mutual information output distribution (note
that corresponding optimal input distribution need not be unique). That is, the
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output distribution of a good code must approximate the capacity-achieving output
distribution in the small error probability regime. Such a necessary condition for
good channel codes sometimes provides guidelines for their design.

Theorem 3.2 enables us to develop a sharp quantitative form of this phe-
nomenon for any discrete memoryless channel.

Theorem 3.7. Consider a discrete memoryless channel PY |X with capacity C.
An (n,M, ε) code (under the maximal error criterion) satisfies

D(PY n‖P ?Y n) ≤ nC − lnM + 2

√
|Y| ln 1

1− ε
√
n+ ln

1

1− ε
(3.36)

where P ?Y n is the unique capacity achieving output distribution defined above.

Two second-order bounds on the approximation errorD(PY n‖P ?Y n) were pre-
viously derived in [43]. In [43, Theorem 7], an analogue of Theorem 3.7 is ob-
tained using the blowing-up method; as usual, this results in a suboptimal second-
order term. However, in [43, Theorem 6] (see [45, Theorem 3.6.6] for a sharper
formulation) a result analogous to Theorem 3.7 is obtained with sharp second-
order term under the following assumption (the Burnashev condition [7]):

sup
x,x′

∥∥∥∥ dPY |X=x

dPY |X=x′

∥∥∥∥
∞
<∞. (3.37)

Theorem 3.7 shows that the Burnashev condition is unnecessary: the result holds
for any discrete memoryless channel. Its proof is completely straightforward; one
simply follows the steps in [43, (64)-(66)] using the optimal second-order Fano
inequality (Theorem 3.2) in lieu of the blowing-up argument.

Proof of Theorem 3.7. It suffices to note that

D(PY n‖P ?Y n) = D(PY n|Xn‖P ?Y n |PXn)− I(Xn;Y n) (3.38)

≤ nC − I(Xn;Y n), (3.39)

where (3.38) is a well-known identity, and (3.39) follows from the saddle point
property of the capacity-achieving distribution [43, eq. (19)]. It remains to bound
I(Xn;Y n) using Theorem 3.2, where we choose ν in (3.3) to be uniform on
Y .

Remark 3.8. We have stated the above form of Theorem 3.7 for simplicity. With-
out any additional difficulty, the finite alphabet assumption may be weakened to a
bounded density assumption (3.3) and the maximal error criterion may be weak-
ened to the geometric average criterion (3.4). A Gaussian counterpart of Theo-
rem 3.7 can also be obtained in a similar manner using Theorem 3.5, strengthening
the result of [43, Theorem 8] to the geometric average criterion.
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Transmitter

Receiver 1

Receiver 2

(W1,W2)

Ŵ1

Ŵ2

PY |X

PZ|X

Figure 1: The broadcast channel

Remark 3.9. By codebook expurgation (cf. Remark 3.3), one can slightly modify
the strong channel coding converse (3.33) to remain valid even under the average
error criterion. In contrast, the proof of Theorem 3.7 relied on the sharper bound
on I(W ;Y n) given in Theorem 3.2, and thus the codebook expurgation method
does not apply in this setting. It is shown in [31] that the geometric average cri-
terion developed here is (in a particular sense) the weakest criterion under which
Theorem 3.7 may hold, so that our approach is optimal also in this sense.

3.4 Application: broadcast channels

Determining the capacity region of general broadcast channels is a long-standing
open problem in information theory [13]. The general setting is illustrated in
Figure 3.4. A transmitter wishes to send messages (W1,W2), equiprobable on
[M1]× [M2], to two respective receivers, using n repetitions of the random trans-
formations PY |X and PZ|X . A code consisting of codewords cu,v ∈ X n (with
u ∈ [M1], v ∈ [M2]) is said to be an (n,M1,M2, ε)-code under the average error
criterion, if the receivers can reconstruct Ŵ1 and Ŵ2 from the outputs of their
respective channels with error probabilities

P[Ŵ1 6= W1] ≤ ε, P[Ŵ2 6= W2] ≤ ε. (3.40)

The problem of understanding precisely what codebook sizes M1,M2 can be
transmitted with a given error probability remains, in general, an open problem.
However, we will consider the case of degraded broadcast channels which is
much better understood. The additional structural assumption in this case is that
PZ|X equals the concatenation of PY |X and a certain random transformation PZ|Y
(or the other way around). In particular, in the setting of Gaussian broadcast chan-
nels, this additional assumption is always satisfied.

The aim of this section is to show how to obtain second-order converses for
both Gaussian and discrete degraded broadcast channels using our methods, im-
proving the best previously known bounds. To avoid digressions unrelated to the
topic of this paper, we will only sketch how Theorems 3.2 and 3.5 enter the proofs.
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The subsequent manipulations of the first-order terms (using the chain rule and the
entropy power inequality) are standard; we refer to [13] for the omitted steps and
for matching achievability results. The maximal error criterion for the broadcast
channel reads as

max
w1,w2

P[Ŵ1 6= W1|(W1,W2) = (w1, w2)] ≤ ε, (3.41)

max
w1,w2

P[Ŵ2 6= W2|(W1,W2) = (w1, w2)] ≤ ε. (3.42)

The reduction to the average error criterion for the broadcast channel can also
be done by a codebook expurgation argument, albeit more sophisticated than the
single-user setting; see [13, Problem 8.11].

We now introduce the following geometric average decodability criterion for
the broadcast channel, which interpolates the average and the maximal error cri-
teria above (see Remark 3.3).∏

w1,w2

P
1

M1M2 [Ŵ1 = W1|(W1,W2) = (w1, w2)] ≥ 1− ε, (3.43)

∏
w1,w2

P
1

M1M2 [Ŵ2 = W2|(W1,W2) = (w1, w2)] ≥ 1− ε. (3.44)

The geometric average criterion integrates seamlessly with our proof, which does
not involve an expurgation argument.

We begin by stating the Gaussian result. In the stationary memoryless Gaus-
sian broadcast channel, it is assumed that PY n|Xn = P⊗nY |X and PZn|Xn = P⊗nZ|X
with PY |X=x = N (x, σ2

1) and PZ|X=x = N (x, σ2
2). We assume moreover that

the codewords c ∈ Rn must satisfy the power constraint ‖c‖2 ≤ nP . The signal-
to-noise ratios (SNR) of the two channels are then defined by Si := P/σ2

i .

Theorem 3.10. Consider a stationary memoryless Gaussian broadcast channel
with SNRs S1, S2 ∈ (0,∞). Suppose there exists an (n,M1,M2, ε)-code (under
the geometric average criterion). Then

lnM1 ≤ nC(αS1) +

√
2n ln

1

1− ε
+ ln

1

1− ε
, (3.45)

lnM2 ≤ nC
(

(1− α)S2

αS2 + 1

)
+

√
2n ln

1

1− ε
+ ln

1

1− ε
(3.46)

for some α ∈ [0, 1], where C(t) := 1
2 ln(1 + t).
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Proof. We first use Theorem 3.5 to obtain6

lnM1 ≤ I(W1;Y n|W2) +

√
2n ln

1

1− ε
+ ln

1

1− ε
, (3.47)

lnM2 ≤ I(W2;Zn) +

√
2n ln

1

1− ε
+ ln

1

1− ε
. (3.48)

To see (3.47), we first apply Theorem 3.5 to obtain:

lnM1 ≤ I(W1;Y n|W2 = w2) +

√
2n ln

1

1− εw2

+ ln
1

1− εw2

, (3.49)

where we defined

εw2 = 1−
∏
w1

P
1
M1 [Ŵ1 = W1|(W1,W2) = (w1, w2)].

Then we obtain (3.47) by averaging (3.49) overw2 and applying Jensen’s inequal-
ity:

1

M2

∑
w2

√
2n ln

1

1− εw2

≤
√

2n
1

M2
·
∑
w2

ln
1

1− εw2

(3.50)

=

√√√√2n ln
1∏

w2
(1− εw2)

1
M2

(3.51)

≤
√

2n ln
1

1− ε
, (3.52)

where we used the fact that∏
w2

(1− εw2)
1
M2 =

∏
w1,w2

P
1

M1M2 [Ŵ1 = W1|(W1,W2) = (w1, w2)] ≥ 1− ε.

Now it remains to bound the mutual informations I(W1;Y n|W2) and I(W2;Zn)
by the respective capacities; the proof of this part of the argument is identical that
of the weak converse [13, Theorem 5.3], and we omit the details.

The analogous result in the discrete case is as follows.
6Note that as no power constraint is assumed in Theorem 3.5, its conclusion extends verbatim

to channels with arbitrary positive variance by scaling.
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Theorem 3.11. Consider a degraded discrete memoryless broadcast channel (PY |X , PZ|X)
and (n,M1,M2, ε)-code (under the geometric average criterion). Then

lnM1 ≤ nI(X;Y |U) + 2

√
|Y|n ln

1

1− ε
+ ln

1

1− ε
, (3.53)

lnM2 ≤ nI(U ;Z) + 2

√
|Z|n ln

1

1− ε
+ ln

1

1− ε
(3.54)

for some distribution PUX .

Proof. The steps are identical to those of Theorem 3.10, modulo the (trivial) gen-
eralization of Theorem 3.2 to allow stochastic encoders as we did in Theorem 3.5.
The omitted manipulations of the mutual information terms follow identically the
proof of the weak converse in this setting [13, Theorem 5.2].

Theorem 3.11 appears to be the first second-order converse for the discrete
degraded broadcast channel, improving the suboptimal converse obtained by the
blowing-up method [3] (cf. [45, Theorem 3.6.4]). Our approach further extends
beyond finite alphabets to the bounded density setting (3.3). For the Gaussian
broadcast channel, a strong converse with ∼

√
n second-order term was previ-

ously obtained in [16] via the information spectrum method. The present bound
(3.46) is sharper; in particular, it has the correct asymptotic dependence not only
on n→∞ but also on the error probability ε→ 1.

4 Second-Order Image Size Characterization

The aim of this section is to develop the smoothing-out methodology for coding
problems in network information theory that are proved by the “image size charac-
terization” method. This powerful machinery was introduced in the original work
of Ahlswede, Gács and Körner [3] for proving a strong converse for source coding
with side information (cf. Section 4.5), and was further developed systematically
in the classic monograph of Csiszár and Körner [11, chapters 15–16] to enable the
analysis of a wide variety of source and channel networks.

Unfortunately, the general formulation of the image size method may appear
rather technical at first sight, particularly if the reader is unfamiliar with the clas-
sical theory developed in [11]. To make the theory more accessible, we will first
provide some motivating discussion and background in Section 4.1. The main
results of this section, which give second-order forms of the image-size character-
ization method in discrete and Gaussian cases, are given in Sections 4.2 and 4.3,
respectively. Finally, we will illustrate the application of our framework in two
representative applications in Sections 4.4 and 4.5.
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It should be emphasized that in order to keep this paper to a reasonable length,
we treat here only the more basic setting of the image size problem that appears
in the original paper [3]. However, our methods extend in full generality to the
theory developed in [11], which yields the strong converse property of all source-
channel networks with known first-order rate region. In the terminology of [11],
the problem considered here only contains a “forward channel” while the gen-
eral theory allows for the addition of a “reverse channel”; in fact, besides yielding
second-order converses and extending to general alphabets, our methods have the
further advantage of simplifying certain technical aspects in dealing with the re-
verse channel. A detailed development of our framework for the most general
form of the image size characterization problem may be found in [26, Chapter 5].

4.1 Synopsis

4.1.1 A motivating example

Before we introduce the general setting for image size characterization, it is in-
structive to motivate its form through a simple application. To this end, let us
begin by describing a variant of the binary hypothesis testing problem, due to
Ahlswede and Csiszár [2], in which the image size problem arises naturally. After
we have developed the general results, we will return to this example and provide
a second-order converse using our methods in Section 4.4.

Suppose
we are given a joint probability measure QXY , and we obtain n independent

observations drawn from either QXY or from QX ⊗ QY . We would like to con-
struct an optimal hypothesis test between these two alternatives:

H0 : Q⊗nXY ,

H1 : Q⊗nX Q⊗nY . (4.1)

When stated in this form, this is just a special case of the general binary hypothesis
testing problem discussed in Section 2. In particular, for any test B ⊆ X n × Yn
with error probability π1|0 := Q⊗nXY [Bc] ≤ ε, we would like to understand how
small an error probability π0|1 := Q⊗nX Q⊗nY [B] can be achieved (we will focus
here on deterministic tests for simplicity). In other words, the aim of the binary
hypothesis testing problem is to understand the quantity

min
QXnY n [B]≥1−ε

QXnQY n [B]. (4.2)

Both a second-order converse (lower bound) and the matching achievability argu-
ment (upper bound) follow immediately from the results in Section 2.
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StatisticianEncoder H0/H1

Y n

W

Xn

Figure 2: Hypothesis testing with a communication constraint.

We now, however, add a new ingredient. Suppose only Y n is directly revealed
to the statistician; the data Xn is observed elsewhere, and must be communicated
to the statistician through a (noiseless) communication channel with limited ca-
pacity. That is, an encoder must encode the data Xn into a message W ∈ [M ]
that is transmitted noiselessly to the statistician; the capacity of the channel lim-
its the size of the codebook to M ∈ N. This situation is illustrated in Figure 2.
The communication constraint may be described by restricting the original binary
hypothesis testing problem to a special class of tests of the form

B =
M⋃
i=1

(Ai × Bi) ⊆ X n × Yn, (4.3)

where Ai = {W = i} is the set of strings Xn for which the message i is trans-
mitted to the statistician, and Bi is the set of strings Y n for which the statisti-
cian declares H0 given that the message i was received. In this setting, we aim
to understand the interplay between the channel capacity and the attainable error
probabilities of the test. That is, the aim of the hypothesis testing problem with
communication constraint is to understand the quantity

min
QXnY n [B]≥1−ε, B as in (4.3)

QXnQY n [B]. (4.4)

In accordance with the theme of this paper, we will be concerned here with the
converse direction only; the achievability argument may be found in [2].

In Section 4.4, we will give a second-order converse for the problem in (4.4).
For the purposes of the present motivating discussion, it will be convenient for
simplicity to consider the stronger maximum error criterion variant7 of this prob-
lem: how small can QXnQY n [B|Xn] be made for communication-constrained
tests (4.3), given that QXnY n [B|Xn] ≥ 1 − ε? By applying (4.3), this question
can be reformulated as follows: if we have

max
xn∈Ai

QY n|Xn=xn [Bci ] ≤ ε, (4.5)

7In Section 4.4 we reduce the original problem to such a variant by expurgation (cf. Remark 3.3);
however, for reasons explained in Section 4.1.3, this must be done carefully to attain the correct rate.
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how small can QY n [Bi] be made? In this formulation, it is not entirely clear how
the codebook size M enters the picture. However, note that as there are only M
codewords, at least one of the codewords must have large probability QXn [Ai] ≥
1/M . Therefore, a lower bound for the maximal error variant of (4.4) naturally
reduces to the problem of understanding the following quantity:

min
QXn [QY n|Xn [B′]≥1−ε]≥1/M

QY n [B′]. (4.6)

The latter problem, which was originally considered in [3], is the most basic form
of the image size characterization problem that is studied in this section.8

The motivation we have given here for the image size problem may appear
rather specific to binary hypothesis testing with a communication constraint. How-
ever, just as ideas from binary hypothesis testing form the basis for a wide variety
of coding problems, the image size problem turns out to arise in a broad range of
problems in network information theory. After developing the general theory, we
will discuss in some detail two applications: the present hypothesis testing prob-
lem with communication constraint (Section 4.4) and source coding with com-
pressed side information (Section 4.5). Further applications are discussed in [11,
Chapter 16]. Another interesting application to the problem of common random-
ness generation is developed in detail in [26, Section 4.4].

4.1.2 The image size problem

We now turn to the formulation of the basic objects and results that will be inves-
tigated in this section.

In the following, let QY |X be a given random transformation, and let ν and
µn be positive measures on Y and X n, respectively. The general problem that will
be investigated in this section is how to lower bound the ν⊗n-measure of a set
A ⊆ Y n in terms of its “(1 − ε)-preimage” under QY n|Xn := Q⊗nY |X . Instead of
the formulation in (4.6), we find it convenient to introduce a Lagrange multiplier
c and investigate the following unconstrained version of the problem: given any
c > 0 and ε ∈ (0, 1), find an upper bound on the quantity

sup
A⊆Yn

{lnµn[QY n|Xn [A] > 1− ε]− c ln ν⊗n[A]}. (4.7)

To understand the behavior of this quantity, we begin by defining the information
measure that controls it to first order.

8The name arises from the fact that we think of Bi as an “(1−ε)-image” ofAi under the random
transformation QY n|Xn [11].
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Definition 4.1. Given positive measures µ on X and ν on Y , a random transfor-
mation QY |X , and constant c > 0, we define

d(µ,QY |X , ν, c) := sup
PX

{cD(PY ‖ν)−D(PX‖µ)} (4.8)

where the probability measures PX , PY satisfy PX → QY |X → PY .

Remark 4.2. The quantity (4.8) was called “Brascamp-Lieb divergence” in [29].
Let us also note that the largest c > 0 for which d(QX , QY |X , QY , c) = 0 is the
reciprocal of the strong data processing constant of QY |X , cf. [28].

To establish the natural connection between (4.7) and (4.8), let us begin by
proving a weak converse. Evidently the method of proof has much in common
with that of Lemma 2.1 and is completely elementary (cf. [3, (19)-(21)]).

Lemma 4.3 (weak converse). If ν is a probability measure, then

lnµn[QY n|Xn [A] > 1− ε]− c(1− ε) ln ν⊗n[A]

≤ d(µn, Q
⊗n
Y |X , ν

⊗n, c) + c ln 2 (4.9)

for every set A ⊆ Yn and c > 0, ε ∈ (0, 1), QY |X , and positive measure µn.

Proof. Define the event B and probability measure QXn by

B = {xn : QY n|Xn=xn [A] > 1− ε}, QXn [C] =
µn[B ∩ C]
µn[B]

, (4.10)

and let QY n be defined by QXn → QY n|Xn → QY n . Then

D(QXn‖µn) = ln
1

µn[B]
, (4.11)

while by the data processing inequality

D(QY n‖ν⊗n) ≥ QY n [A] ln
QY n [A]

ν⊗n[A]
+QY n [Ac] ln

QY n [Ac]
ν⊗n[Ac]

(4.12)

≥ (1− ε) ln
1

ν⊗n[A]
− h(QY n [Ac]). (4.13)

Thus,

d(µn, Q
⊗n
Y |X , ν

⊗n) ≥ cD(QY n‖ν⊗n)−D(QXn‖µn) (4.14)

≥ c(1− ε) ln
1

ν⊗n[A]
− ln

1

µn[B]
− c ln 2, (4.15)

which is (4.9).
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Lemma 4.3 is a weak converse due to the extraneous factor 1 − ε in front of
ln ν⊗n[A] in (4.9), which prevents us from attaining the optimal rate in the regime
of nonvanishing error probability. Instead, we aim to prove a strong converse

lnµn[QY n|Xn [A] > 1− ε]− c ln ν⊗n[A]

≤ d(µn, Q
⊗n
Y |X , ν

⊗n, c) + oε(n). (4.16)

Ahlswede, Gács and Körner [3] used the blowing-up method to establish (4.16) for
finite alphabets. As usual, such an argument can only attain a suboptimal second-
order term. In the follows subsections, we will use the smoothing-out method to
obtain new sharp forms of (4.16) that attain both the O(

√
n) second-order term,

and that may be extended beyond the finite-alphabet setting. In particular, we
develop the relevant theory for discrete channels in Section 4.2, and for Gaussian
channels in Section 4.3.

4.1.3 The first-order term

Before we proceed to the main results of this section, we must discuss an inde-
pendent issue that plays an important role in applications of image size character-
izations. Consider the motivating example of hypothesis testing with a communi-
cation constraint discussed above. A lower bound in (4.6) is readily obtained by
applying Lemma 4.3 or (4.16) with µn = Q⊗nX . When all measures in d(·) are
product measures, it is readily evaluated by means of the tensorization property

d(Q⊗nX , Q⊗nY |X , Q
⊗n
Y , c) = n d(QX , QY |X , QY , c) (4.17)

(a simple proof may be found, for example, in [28]). Thus, to first order, the quan-
tity defined in (4.6) grows linearly in n with rate d(QX , QY |X , QY , c) (with the
optimal choice of Lagrange multiplier c). This is in fact the correct growth rate of
(4.6), as is demonstrated in [3, Theorem 1]. Unfortunately, however, this quantity
does not give the correct first-order rate for the hypothesis testing problem with
communication constraint: the best achievability result for the latter has a strictly
smaller rate than is suggested by the above arguments.

It turns out that the origin of this inefficiency does not lie in (4.16) itself, but
rather in the initial argument that reduced the information-theoretic problem to
the study of the quantity (4.6). When the argument is developed in detail, we will
see that it is not necessary to consider the probability of codewords under the
full measure QXn , but only under the restriction of this measure to any set C of
sufficiently high probability. While the information-theoretic problem is not af-
fected by throwing out a small probability event, doing so has a significant effect
on the resulting bounds. In particular, as was noted in [3] in the finite alphabet
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setting, the best possible improvement to the first-order rate is obtained by choos-
ing µn = QXn |Cn to be the restriction to a set Cn of typical sequences. As we
will show in Appendices B.1 and B.2 for the discrete and Gaussian cases, respec-
tively,9 such a choice of µn in fact gives rise to the estimate

d(µn, Q
⊗n
Y |X , ν

⊗n, c) ≤ n d?(QX , QY |X , ν, c) +O(
√
n) (4.18)

where the modified rate d?(·) is defined as follows.

Definition 4.4. Given a probability measure QX on X , a positive measure ν on
Y , a random transformation QY |X , and constant c > 0, we define

d?(QX , QY |X , ν, c) :=

sup
PUX : PX=QX

{
cD(PY |U‖ν|PU )−D(PX|U‖QX |PU )

}
(4.19)

where the joint distribution of U,X, Y is given by PUXY := PUXQY |X .

We observe that it follows immediately from Definitions 4.1 and 4.4 that
d?(QX , QY |X , ν, c) ≤ d(QX , QY |X , ν, c). Therefore, restricting to a typical set
always results in an improved bound. It will turn out that the rate (4.19) captures
precisely the correct first-order behavior of the information-theoretic applications
in which image size characterizations will be applied. Moreover, as we are able
to establish in (4.18) a second-order term of order O(

√
n), the combination of

such an estimate with the smoothing-out method enables us to attain second-order
converses for applications of the image size problem. As the methods needed to
establish (4.18) are unrelated to the main topic of this paper, we focus presently
on the smoothing-out method and relegate the proof of (4.18) to Appendix B.

4.2 Discrete case

The aim of this section is to established a non-asymptotic form of the strong con-
verse for image size characterization (4.16) in the finite alphabet setting. We will,
in fact, initially work in the more general bounded density setting as in Section 3.1.
We specialize subsequently to the finite alphabet setting only in order to achieve
the appropriate characterization (4.18) of the first-order term.

9The claim in (4.18) is the main theme of the conference paper [29] and the journal paper [30].
The proof of (4.18) in the present paper is based on the concentration of the empirical distribution of
Xn, which is similar in spirit to [29]. The proof in [30] adopts a different convex analysis argument
which establishes (4.18) for general distributions and also determines the exact prefactor in the
O(
√
n) term. However, for conceptual simplicity we do not adopt the approach of [30] in the

present paper.
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For the time being, let X ,Y be general alphabets, letQY |X be a random trans-
formation from X to Y , and let ν be a probability measure on Y . We define, as
usual, QY n|Xn := Q⊗nY |X , and introduce the bounded density assumption

α := sup
x∈X

∥∥∥∥dQY |X=x

dν

∥∥∥∥
∞
∈ [1,∞). (4.20)

The basic result of this section is the following quantitative form of (4.16).

Theorem 4.5. For any positive measure µn on X n, f ∈ H[0,1](Yn), η ∈ (0, 1),
and c > 0, we have

lnµn[QY n|Xn(f) ≥ η]− c ln ν⊗n(f)

≤ d(µn, QY n|Xn , ν⊗n, c) + 2c

√
ln

1

η

√
n(α− 1) + c ln

1

η
. (4.21)

The proof of Theorem 4.5 relies on similar ideas to the proof of Theorem 3.2.
As a first step, we must develop a variational characterization for the quantity d(·),
generalizing the variational formula (2.12) for relative entropy.

Proposition 4.6. In the setting of Definition 4.1,

d(µ,QY |X , ν, c) = sup
f∈H+(Y)

{
lnµ(ecQY |X(ln f))− c ln ν(f)

}
. (4.22)

Proof. There are several proofs in the literature (cf. [28]); here we give a short
proof using (2.12). First, for any f , define a probability measure PX by

dPX
dµ

=
ecQY |X(ln f)

µ(ecQY |X(ln f))
, (4.23)

and define PY by PX → QY |X → PY . Then by (2.12), we have

lnµ(ecQY |X(ln f))− c ln ν(f)

≤ lnµ(ecQY |X(ln f)) + cD(PY ‖ν)− cPY (ln f) (4.24)

= cD(PY ‖ν)−D(PX‖µ). (4.25)

This proves the ≥ part of (4.22).
Conversely, for any PX , we have using (2.12)

cD(PY ‖ν)−D(PX‖µ)

≤ cD(PY ‖ν)− PX(cQY |X(ln f)) + lnµ(ecQY |X(ln f)) (4.26)

= lnµ(ecQY |X(ln f))− c ln ν(f) (4.27)

where we chose f = dPY
dν . This proves the ≤ part of (4.22).
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We can now complete the proof of Theorem 4.5. In the following, we will use
the same semigroup device as in Section 3.1: we define the simple semigroup

Tx,tf := e−tf + (1− e−t)QY |X=x(f) (4.28)

and its product Txn,t := Tx1,t⊗· · ·⊗Txn,t, and we define the corresponding dom-
inating operator Λt according to (3.8). We recall, in particular, the key properties
(3.9) and (3.10) that will also be used in the present proof.

Proof of Theorem 4.5. We begin by noting that, by the variational principle given
in Proposition 4.6, we can estimate∫

‖g‖L0(QY n|Xn=xn )dµn(xn) =

∫
eQY n|Xn (ln g)dµn (4.29)

≤ ed(µn,QY n|Xn ,ν
⊗n,c)‖g‖L1/c(ν⊗n) (4.30)

for any function g ∈ H+(Yn) for which the integrals are finite.
Now take g = (Λtf)c and observe that by (3.9),

‖g‖L1/c(ν⊗n) ≤ e
c(α−1)nt[ν⊗n(f)]c. (4.31)

On the other hand, ∫
‖g‖L0(QY n|Xn=xn )dµn(xn)

=

∫
‖Λtf‖cL0(QY n|Xn=xn )dµn(xn) (4.32)

≥
∫
‖f‖c

L1−e−t (QY n|Xn=xn )
dµn(xn) (4.33)

≥
∫
QY n|Xn(f)

c
1−e−t dµn (4.34)

≥ η
c

1−e−t µn[QY n|Xn(f) ≥ η], (4.35)

where (4.33) used (3.10) and reverse hypercontractivity (Theorem 2.3); (4.34)
used that f ∈ [0, 1]; and (4.35) follows from Markov’s inequality. Putting together
the estimates (4.30), (4.31), and (4.35), we have shown that for every t > 0

lnµn[QY n|Xn(f) ≥ η]− c ln ν⊗n(f)

≤ d(µn, QY n|Xn , ν⊗n, c) +
c

1− e−t
ln

1

η
+ c(α− 1)nt. (4.36)

The desired inequality (4.21) follows using 1
1−e−t ≤

1
t + 1 and optimizing over

t.
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As was explained in Section 4.1.2, it is essential for applications of Theo-
rem 4.5 to make a judicious choice of measure µn in order to attain the correct
first-order rate of the information-theoretic problems of interest. To this end, we
now specialize to the case of finite alphabets and state a ready-to-use result along
these lines. The precise construction of µn may be found in Appendix B.1.

Corollary 4.7. Let |X | < ∞, QX be a probability measure on X , ν be a proba-
bility measure on Y , and QY |X be a random transformation. Define

βX :=
1

minxQX(x)
∈ [1,∞), (4.37)

and define α as in (4.20). Then for any δ ∈ (0, 1) and n > 3βX ln |X |δ , we may
choose a set Cn ⊆ X n with Q⊗nX [Cn] ≥ 1− δ such that

lnµn[QY n|Xn(f) ≥ η]− c ln ν⊗n(f)

≤ n d?(QX , QY |X , ν, c) +A
√
n+ c ln

1

η
(4.38)

for all f ∈ H[0,1](Yn), c > 0, η ∈ (0, 1), where we defined µn := Q⊗nX |Cn and

A := ln(αcβc+1
X )

√
3βX ln

|X |
δ

+ 2c

√
(α− 1) ln

1

η
. (4.39)

Proof. This follows immediately by combining Theorem 4.5 and Theorem B.1 in
Appendix B.1 (note that αY defined in the Appendix satisfies αY ≤ α).

While the formulation of Theorem 4.5 and Corollary 4.7 is closer in spirit to
the formulation of the image-size characterization problem in [3, 11], it is worth
noting that our approach naturally gives rise to a somewhat sharper variant of these
results that can sometimes be used to obtain cleaner bounds in converse proofs. In
particular, it is not really necessary to apply the Markov inequality (4.35); we may
work directly in applications with the following smoother version of the problem
(stated, for future reference, in the setting of Corollary 4.7).

Corollary 4.8. Let βX , α, δ, n and µn be as in Corollary 4.7. Then

ln

∫
Q
c
(

1+
1
t

)
Y n|Xn (f) dµn − c ln ν⊗n(f)

≤ n d?(QX , QY |X , ν, c) + c(α− 1)nt+ ln(αcβc+1
X )

√
3nβX ln

|X |
δ

(4.40)

for every c, t > 0 and f ∈ H[0,1](Yn).

Proof. Simply omit the use of Markov’s inequality (4.35) and the subsequent op-
timization over t in the proof of Theorem 4.5.

In the sequel, we will illustrate both Corollaries 4.7 and 4.8 in applications.
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4.3 Gaussian case

Beside giving rise to O(
√
n) second-order terms, another key advantage of the

smoothing-out method is that it is applicable beyond the finite alphabet setting.
We will presently further illustrate this feature by developing a Gaussian analogue
of the image size theory of the previous section, opening the door to systematic
extension of many applications of this methodology to the Gaussian setting. The
basic result of this section is the following Gaussian version of Theorem 4.5.

Theorem 4.9. Let QY |X=x = N (x, 1) and ν be Lebesgue on R. Then we have

lnµn[QY n|Xn(f) > η]− c ln ν⊗n(f)

≤ d(µn, QY n|Xn , ν⊗n, c) + c

√
2n ln

1

η
+ c ln

1

η
(4.41)

for any positive measure µn on Rn, f ∈ H[0,1](Rn), η ∈ (0, 1), and c > 0.

The proof uses some ideas that were introduced in Section 3.2. In particular,
in this section Txn,t will denote the Ornstein-Uhlenbeck semigroup (3.20), and we
will again exploit heavily the change-of-variables formula (3.21).

Proof of Theorem 4.9. Denote by µ̄n the dilation of µn by the factor et, that is,

µ̄n[etC] := µn[C] (4.42)

for any set C. Applying Proposition 4.6, we can estimate∫
eQY n|Xn (ln g)dµ̄n ≤ ed(µ̄n,QY n|Xn ,ν

⊗n,c)‖g‖L1/c(Rn) (4.43)

for any function g ∈ H+(Rn) for which the integrals are finite.
Now take g = (T0n,tf)c and observe that

‖g‖L1/c(Rn) = ‖T0n,tf‖cL1(Rn) (4.44)

= ecnt‖f‖cL1(Rn) (4.45)

= ecnt[ν⊗n(f)]c, (4.46)



45

where (4.45) can be verified using Fubini’s theorem and (3.20). On the other hand,∫
eQY n|Xn (ln g)dµ̄n =

∫
ecQY n|Xn=xn (lnT0n,tf)dµ̄n(xn) (4.47)

=

∫
e
cQY n|Xn=e−txn (lnTe−txn,tf)

dµ̄n(xn) (4.48)

=

∫
‖Te−txn,tf‖cL0(QY n|Xn=e−txn )dµ̄n(xn) (4.49)

≥
∫
‖f‖c

L1−e−2t (QY n|Xn=e−txn )
dµ̄n(xn) (4.50)

≥
∫
‖f‖

c
1−e−2t

L1(QY n|Xn=e−txn )
dµ̄n(xn) (4.51)

≥ η
c

1−e−2t µ̄n[xn : QY n|Xn=e−txn(f) > η] (4.52)

= η
c

1−e−2t µn[QY n|Xn(f) > η], (4.53)

where (4.48) follows from the change of variables formula (3.21); (4.50) is from
(2.21) (with the sharp constant for Gaussian hypercontractivity, see secion 3.2);
(4.51) used that f ∈ [0, 1]; and (4.53) follows from the definition (4.42) of µ̄n.

Combining (4.43), (4.46), and (4.53), we obtain

lnµn[QY n|Xn(f) > η]− c ln ν⊗n(f)

≤ d(µ̄n, QY n|Xn , ν⊗n, c) + inf
t>0

{
c

1− e−2t
ln

1

η
+ cnt

}
(4.54)

≤ d(µ̄n, QY n|Xn , ν⊗n, c) + c

√
2n ln

1

η
+ c ln

1

η
, (4.55)

where (4.55) used 1
1−e−2t ≤ 1

2t + 1.
To conclude the proof, it remains only to show that

d(µ̄n, QY n|Xn , ν⊗n, c) ≤ d(µn, QY n|Xn , ν⊗n, c), (4.56)

for which we use the following modification of the argument that led to (3.31).
When PXn and µn are both scaled by et, the relative entropyD(PXn‖µn) remains
unchanged. On the other hand, as D(PY n‖ν⊗n) = −h(PY n), the same argument
as was used in (3.31) yields D(PȲ n‖ν⊗n) ≤ D(PY n‖ν⊗n). Substituting these
observations into Definition 4.1 concludes the proof of (4.56).

We finally state a ready-to-use Gaussian analogue of Corollary 4.7. The pre-
cise construction of µn may be found in Appendix B.2.
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Corollary 4.10. Let QXY be any nondegenerate Gaussian measure, and let ν be
the Lebesgue measure on R. Then for any δ ∈ (0, 1) and n ≥ 20 ln 2

δ , we may
choose a set Cn ⊆ Rn with Q⊗nX [Cn] ≥ 1− δ such that

lnµn[QY n|Xn(f) > η]− c ln ν⊗n(f)

≤ n d?(QX , QY |X , ν, c) +

√
6n ln

2

δ
+ c

√
2n ln

1

η
+ c ln

1

η
(4.57)

for all f ∈ H[0,1](Rn), c > 0, η ∈ (0, 1), where we defined µn := Q⊗nX |Cn .

Proof. For QX = N (0, σ2) and QY |X=x = N (x, 1), this follows immediately
by combining Theorem 4.9 and Theorem B.4 in Appendix B.2.

For a general Gaussian measure QXY , we argue as follows. Suppose first that
QY |X=x = N (ax, a2) for some a 6= 0. We can reduce to the case already proved
by applying (4.57) with Ỹ := Y

a , f̃(yn) = f(ayn); as ν⊗n(f) = |a|nν⊗n(f̃) and

d?(QX , QỸ |X , ν, c) = d?(QX , QY |X , ν, c) + c ln |a| (4.58)

(the latter follows directly from Definition 4.4), it is readily verified that the con-
clusion of Corollary 4.10 remains valid for any a 6= 0. Now suppose that we
further scale X,Y simultaneously by some factor b 6= 0; then clearly both sides
of (4.57) remain unchanged. As any nondegenerate Gaussian measure may be
obtained by scaling X and Y in this manner, the proof is complete.

4.4 Application: hypothesis testing with a communication constraint

We now revisit the hypothesis testing problem with communication constraint
introduced in Section 4.1.1, and show how the general framework of Section 4.2
enables us to achieve a second-order converse in this setting. Let us note that the
first-order term in the following result gives the correct rate for this problem: the
matching achievability argument can be found in [2].

Theorem 4.11. Let |X | < ∞, and consider the hypothesis testing problem with
communication constraint defined in Section 4.1.1. Let B be any test of the form
(4.3) that uses at most M codewords and satisfies π1|0 := Q⊗nXY [Bc] ≤ ε. Then
the error probability π0|1 := Q⊗nX Q⊗nY [B] satisfies

lnπ0|1 ≥− n sup
U : U−X−Y

{
I(U ;Y ) : I(U ;X) ≤ 1

n
lnM

}
(4.59)

−
(

2 ln(αβ)

√
3β ln

4|X |
1− ε

+ 2

√
α ln

4

1− ε

)√
n− 2 ln

4

1− ε

for n > 3β ln 4|X |
1−ε , where β := maxx

1
QX(x) and α := maxx

∥∥∥dQY |X=x

dQY

∥∥∥
∞

.
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Proof. We proceed in three steps.
Step 1. We begin with an expurgation argument. Suppose the test B of the

form (4.3) satisfies π1|0 ≤ ε and π0|1 = ρ. We claim that for any ε′ ∈ (0, 1 − ε),
we can modify the coding scheme such that the error under H0 is below ε + ε′,
and the error under H1 is below ρ

ε′ conditioned on each message.
Indeed, assume without loss of generality that the messages i = 1, . . . ,M are

ordered such that QXnQY n [B|W = i] is increasing in i. Let

i† := min{i : QXn [W > i] ≤ ε′}, (4.60)

and define a new test B′ that always declares H1 upon receiving i > i†, and
coincides with B otherwise. Then B′ satisfies

QXnY n [B′c] = QXnY n [Bc ∩ {W ≤ i†}] +QXn [W > i†] ≤ ε+ ε′. (4.61)

On the other hand, as QXnQY n [B′|W = i] = QXnQY n [B|W = i] for i ≤ i† and
as we assumed this quantity is increasing in i, we can estimate

ε′QXnQY n [B′|W = i] ≤ QXnQY n [B ∩ {W ≥ i†}] ≤ ρ (4.62)

for all i = 1, . . . ,M (this is trivial for i > i† as then QXnQY n [B′|W = i] = 0).
Thus, the claimed properties are satisfied for the modified test B′.

Step 2. Our aim is to apply Corollary 4.8 to the modified test B′. Fix for the
time being any δ ∈ (0, 1− ε− ε′), and define µn as in Corollary 4.7. Then

1− ε− ε′ ≤
∫
QXnY n [B′|Xn] dQXn ≤

∫
QXnY n [B′|Xn] dµn + δ (4.63)

by (4.61). Thus, we may bound, for any c ≥ 1,

(1− ε− ε′ − δ)c(1+ 1
t
) ≤

∫
(QXnY n [B′|Xn])c(1+ 1

t
) dµn, (4.64)

where we used Jensen’s inequality and the fact that µn is a sub-probability mea-
sure.

Now denote by B′i ⊆ Yn the set of sequences yn for which the test B′ declares
H0 upon receiving message i (cf. (4.3)). Then we may crudely estimate

(1− ε− ε′ − δ)c(1+ 1
t
)

≤
M∑
i=1

∫
(QY n|Xn [B′i])c(1+ 1

t
) dµn (4.65)

≤ end?(QX ,QY |X ,QY ,c)+c(α−1)nt+ln(αcβc+1)
√

3nβ ln
|X|
δ

M∑
i=1

(QY n [B′i])c (4.66)
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for n > 3β ln |X |δ and t > 0, where we used Corollary 4.8 in (4.66). But as
QY n [B′i] ≤

ρ
ε′ by (4.62), we may rearrange the above estimate to obtain

ln ρ ≥− n

c
d?(QX , QY |X , QY , c)−

lnM

c

− (α− 1)nt−
(

1 +
1

t

)
ln

1

1− ε− ε′ − δ

− ln(αcβc+1)

c

√
3nβ ln

|X |
δ
− ln

1

ε′
. (4.67)

Finally, making the convenient choices

ε′ =
1− ε

2
, δ =

1− ε
4

, (4.68)

recalling that ρ = π0|1, and optimizing over t > 0 yields

lnπ0|1 ≥−
n

c
d?(QX , QY |X , QY , c)−

lnM

c
(4.69)

−
(

2 ln(αβ)

√
3β ln

4|X |
1− ε

+ 2

√
(α− 1) ln

4

1− ε

)√
n− 2 ln

4

1− ε

for n > 3β ln 4|X |
1−ε and c ≥ 1.

Step 3. To achieve the correct first-order rate it remains to optimize (4.69)
over c ≥ 1. To this end, let us denote the rate parameter that appears in (4.59) by

θ(R) := sup
U : U−X−Y

{I(U ;Y ) : I(U ;X) ≤ R}. (4.70)

When we choose ν = QY in Definition 4.4, the latter may be written as

1

c
d?(QX , QY |X , QY , c) = sup

U : U−X−Y

{
I(U ;Y )− 1

c
I(U ;X)

}
(4.71)

= sup
0≤R≤ln |X |

{
θ(R)− R

c

}
, (4.72)

where we used that I(U ;X) ≤ ln |X |. But is not hard to show that θ(R) is a
concave function of R, cf. [2, Lemma 1]. Thus, we obtain for any R′ ≥ 0

inf
c≥1

{
1

c
d?(QX , QY |X , QY , c) +

R′

c

}
= (4.73)

inf
c>0

{
1

c
d?(QX , QY |X , QY , c) +

R′

c

}
= θ(R′), (4.74)

where we used in the first line that d?(QX , QY |X , QY , c) = 0 for c ≤ 1 by
the data processing inequality I(U ;Y ) ≤ I(U ;X); and we used the minimax
theorem in (4.74). Setting R′ = 1

n lnM completes the proof.
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Figure 3: Source coding with compressed side information

4.5 Application: source coding with compressed side information

In this section, we revisit one of the original applications of the blowing-up method:
the problem of source coding with compressed side information [58, 3]. Using the
methods of this section, we will obtain second-order converses for the discrete
and Gaussian variants of this problem. The present setting is a typical example
of side information problems, whose converses have so far proved to be particu-
larly elusive in non-asymptotic information theory (see, e.g., [51, Section 9.2]).
Using the smoothing-out method, second-order converses can now be obtained by
a straightforward replacement of the classical blowing-up analysis. For second-
order achievability bounds for side information problems, we refer the reader to
[54].

The problem that we investigate in this section is illustrated in Figure 3. Two
correlated memoryless sources Xn, Y n with distribution QXnY n = Q⊗nXY are
encoded into messages W1 ∈ [M1],W2 ∈ [M2], respectively, and transmitted to a
decoder. The (noiseless) communication channels are rate-constrained in that they
limit the sizes M1,M2 of the two codebooks. The decoder aims to reconstruct
the source Y n with error probability at most ε (the side information Xn is not
reconstructed, but helps decode Y n due to the correlation between the sources).
We aim to understand the fundamental interplay between M1,M2 and ε.

We begin by developing a second-order converse in the finite alphabet setting.

Theorem 4.12. Let |X |, |Y| < ∞, ε ∈ (0, 1), and n ≥ 3βX ln 4|X |
1−ε , where βX

is defined in (4.37). Then for any encoders f : X n → [M1], g : Yn → [M2], and
decoder Ŷ n : [M1]× [M2]→ Yn such that P[Y n 6= Ŷ n] ≤ ε, we have

lnM2 ≥ n inf
U : U−X−Y

{
H(Y |U) : I(U ;X) ≤ 1

n
lnM1

}
(4.75)

−
(

2 ln(|Y|βX)

√
3βX ln

4|X |
1− ε

+ 2

√
|Y| ln 2

1− ε

)√
n− 2 ln

4

1− ε
.

Note that the first term on the right-hand side of (4.75) corresponds precisely
to the rate region for the present problem (see, e.g., [13, Theorem 10.2]).
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Proof. The proof follows from Corollary 4.7 using similar steps as in [3, Theo-
rem 3]. Define for every i ∈ [M1] the set

Bi := {yn ∈ Yn : yn = Ŷ n(i, g(yn))} (4.76)

of correctly decoded sequences yn, given that the side information message i was
received. Then we have by assumption

QXn [QY n|Xn [Bf(Xn)]] ≥ 1− ε. (4.77)

Thus, for any ε′ ∈ (ε, 1), we obtain

QXn [QY n|Xn [Bf(Xn)] ≥ 1− ε′] ≥ 1− ε

ε′
(4.78)

by applying Markov’s inequality to QXn [1−QY n|Xn [Bf(Xn)] > ε′].

Fix for the time being any δ ∈ (0, 1− ε
ε′ ) such that n > 3βX ln |X |δ , and define

µn as in Corollary 4.7. Then

µn[QY n|Xn [Bf(Xn)] ≥ 1− ε′] ≥ 1− ε

ε′
− δ. (4.79)

As f takes at most M1 possible values, there exists i∗ such that

µn[QY n|Xn [Bi∗ ] ≥ 1− ε′] ≥
1− ε

ε′ − δ
M1

(4.80)

by the union bound. On the other hand, if we let ν be the uniform distribution on
Y , then we can estimate by the definition of Bi

ν⊗n[Bi] = |Y|−n|Bi| ≤M2|Y|−n (4.81)

for every i. Applying Corollary 4.7 with f = 1Bi∗ , η = 1− ε′ yields

ln
1− ε

ε′ − δ
M1

− c lnM2|Y|−n

≤ lnµn[QY n|Xn [Bi∗ ] ≥ 1− ε′]− c ln ν⊗n[Bi∗ ] (4.82)

≤ n d?(QX , QY |X , ν, c) +A
√
n+ c ln

1

1− ε′
, (4.83)

where A is defined in (4.39). Rearranging yields

lnM1 + c lnM2 ≥− n{d?(QX , QY |X , ν, c)− c ln |Y|}

−
√
n

(
ln(|Y|cβc+1

X )

√
3βX ln

4|X |
1− ε

+ 2c

√
|Y| ln 2

1− ε

)
− c ln

2

1− ε
− ln

4

1− ε
, (4.84)
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for n > 3βX ln 4|X |
1−ε , where we made the choices ε′ = 1+ε

2 and δ = 1
2(1− ε

ε′ ).
It remains to manipulate the first-order terms. Note first that

d?(QX , QY |X , ν, c)− c ln |Y| = sup
U : U−X−Y

{−cH(Y |U)− I(U ;X)} (4.85)

= d?(QX , QY |X , QY , c)− cH(QY ), (4.86)

which follows readily from Definition 4.4 and (4.71). We may therefore follow
verbatim the arguments in Step 3 of the proof of Theorem 4.11 to optimize (4.84)
over c ≥ 1, which readily completes the proof of (4.75).

We now give a analogue of Theorem 4.12 for Gaussian sources under quadratic
distortion. We note again that the first-order term of (4.87) corresponds to the
known rate region for this problem (e.g., let D2 →∞ in [13, Theorem 12.3]).

Theorem 4.13. Let X = Y = R, QXY = N (0,
( 1 ρ
ρ 1

)
), and D > 0, ε ∈ (0, 1),

n ≥ 20 ln 8
1−ε . Then for any encoders f : Rn → [M1], g : Rn → [M2], and

decoder Ŷ n : [M1]× [M2]→ Rn such that P[‖Y n − Ŷ n‖2 > nD] ≤ ε, we have

lnM2 ≥
n

2
ln

1− ρ2 + ρ2e−
2
n

lnM1

D
− 4

√
ln

8

1− ε
√
n− 2 ln

4

1− ε
. (4.87)

Proof. Define for every i ∈ [M1] the set

Bi := {yn ∈ Rn : ‖yn − Ŷ n(i, g(yn))‖2 ≤ nD} (4.88)

of correctly decoded sequences yn, given that the side information message i was
received. Let ε′ ∈ (ε, 1), δ ∈ (0, 1 − ε

ε′ ) such that n ≥ 20 ln 2
δ , define µn as in

Corollary 4.10, and let ν be the Lebesgue measure on R. Repeating verbatim the
arguments in the proof of Theorem 4.12, we find that there exists i∗ such that

µn[QY n|Xn [Bi∗ ] ≥ 1− ε′] ≥
1− ε

ε′ − δ
M1

. (4.89)

On the other hand, in the present setting, we estimate by the union bound

ν⊗n[Bi] ≤M2Vol(Ball(0,
√
nD)) ≤M2(2πeD)n/2. (4.90)

Applying Corollary 4.10 with f = 1Bi∗ , η = 1− ε′ and rearranging yields

lnM1 + c lnM2 ≥− n{d?(QX , QY |X , ν, c) + c
2 ln(2πeD)}

−
√
n

(√
6 ln

8

1− ε
+ c

√
2 ln

2

1− ε

)
− c ln

2

1− ε
− ln

4

1− ε
(4.91)
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for n ≥ 20 ln 8
1−ε , where we made the choices ε′ = 1+ε

2 and δ = 1
2(1− ε

ε′ ).
It remains to manipulate the first-order terms. To this end, we first note that

using (B.43) in Appendix B.2 and the subsequent discussion, we may compute

d?(QX , QY |X , ν, c) + c
2 ln(2πeD)

= sup
σ∈[0,1]

{
1

2
lnσ2 − c

2
ln

1− ρ2 + ρ2σ2

D

}
(4.92)

=
c

2
ϑ∗
(
− 1

c

)
, (4.93)

where ϑ∗ is the convex conjugate of the convex function ϑ(x) := ln 1−ρ2+ρ2e−x

D
for x ≥ 0 and ϑ(x) := +∞ for x < 0. Therefore, by convex duality

inf
c>0

1

c

{
d?(QX , QY |X , ν, c) + c

2 ln(2πeD) +
1

n
lnM1

}
(4.94)

= −1

2
ϑ

(
2

n
lnM1

)
= −1

2
ln

1− ρ2 + ρ2e−
2
n

lnM1

D
. (4.95)

We claim that the same conclusion follows if we take the infimum over c ≥ 1
only. Indeed, it is readily verified that the function inside the supremum in (4.92)
is increasing in σ2 for any c < 1, so that d?(QX , QY |X , ν, c) + c

2 ln(2πeD) =

− c
2 ln 1

D for c < 1. Thus, the infimum in (4.94) cannot be attained for c < 1. The
proof is now readily completed using (4.95) by optimizing (4.91) over c ≥ 1.
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A Data processing cannot yield second-order converses

The aim of this appendix is to explain the claim made in Section 2.2 that second-
order converses are fundamentally outside the reach of any method that is based
on the data processing inequality: in particular, the inefficiency of the blowing-up
method already appears in the very first step in the argument. This claim is little
more than the Neyman-Pearson lemma in the following disguise.

Lemma A.1. Let P,Q be probability measures on Y such that
∥∥ ln dP

dQ

∥∥
∞ < ∞.

Then for every δ > 0, there existsCδ > 0 independent of n so that any set Ã ⊆ Yn
with P⊗n[Ã] ≥ 1− n−δ must satisfy lnQ⊗n[Ã] ≥ −nD(P‖Q) + Cδ

√
n lnn.
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Let us first explain why this lemma rules out obtaining sharp bounds by data
processing. Suppose we start our argument by applying the data processing in-
quality (2.3) to an arbitrary set Ã. Then we obtain (cf. (2.7))

lnQ⊗n[Ã] ≥ −nD(P‖Q)

P⊗n[Ã]
− ln 2. (A.1)

In order to deduce from this a non-asymptotic converse with ∼
√
n second-order

term, we must introduce some operation A 7→ Ã that associates to any determin-
istic test A with P⊗n[A] ≥ 1− ε a set Ã with the following properties:

P⊗n[Ã] ≥ 1−O(n−1/2), Q⊗n[Ã] ≤ eO(
√
n)Q⊗n[A]. (A.2)

But Lemma A.1 shows such an operation cannot exist. Indeed, letA be a test with
P⊗n[A] = 1− ε and lnQ⊗n[A] ≤ −nD(P‖Q)+O(

√
n) as in Lemma 2.5. Then

by Lemma A.1, any set Ã such that P⊗n[Ã] ≥ 1−O(n−1/2) satisfies

Q⊗n[Ã] ≥ e−nD(P‖Q)+C
√
n lnn ≥ eC

√
n lnn+O(

√
n)Q⊗n[A], (A.3)

which contradicts the desired property of the mapping A 7→ Ã. The same argu-
ment shows that converses obtained from the data processing inequality can attain
at best a second-order term of order no smaller than ∼

√
n log n.

We conclude this appendix with the proof of Lemma A.1.

Proof of Lemma A.1. By the Neyman-Pearson lemma, among all sets Ã such that
P⊗n[Ã] ≥ 1− n−δ, the probability Q⊗n[Ã] is minimized by

Ã = {yn ∈ Yn : ıP⊗n‖Q⊗n(yn) ≥ nD(P‖Q)− γ}, (A.4)

where γ is chosen so that P⊗n[Ã] = 1 − n−δ. It therefore suffices to prove a
suitable lower bound on Q⊗n[Ã] for this particular choice of Ã.

We will twice use the classical Kolmogorov lower bound for the tail of sums
of independent random variables [40, p. 266]. First, this bound implies

P⊗n[ıP⊗n‖Q⊗n ≥ nD(P‖Q)−
√
δV (P‖Q)

√
n lnn] ≤ 1− n−δ (A.5)

for n sufficiently large (depending on δ, V (P‖Q), ‖ ln dP
dQ‖∞), where V (P‖Q) :=

VarP (ln dP
dQ). This shows that we must have γ ≥ γn :=

√
δV (P‖Q)

√
n lnn.

On the other hand, we can now estimate

Q⊗n[Ã] = P⊗n
(
e
−ıP⊗n‖Q⊗n1{ıP⊗n‖Q⊗n≥nD(P‖Q)−γ}

)
(A.6)

≥ e−nD(P‖Q)+
√
δV (P‖Q)/4

√
n lnn×

P⊗n[nD(P‖Q)− 1
2γn ≥ ıP⊗n‖Q⊗n ≥ nD(P‖Q)− γ]. (A.7)
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But applying again (A.5), we find that

P⊗n[nD(P‖Q)− 1
2γn ≥ ıP⊗n‖Q⊗n ≥ nD(P‖Q)− γ] (A.8)

≥ 1− n−δ − P⊗n[ıP⊗n‖Q⊗n ≥ nD(P‖Q)− 1
2γn] ≥ n−δ/4 − n−δ. (A.9)

Consequently lnQ⊗n[Ã] ≥ −nD(P‖Q)+
√
δV (P‖Q)/4

√
n lnn+O(lnn).

B Brascamp-Lieb divergence: auxiliary results

B.1 Proof of (4.18) in the discrete case

The aim of this section is to prove the following result.

Theorem B.1. Let |X | < ∞, QX be a probability measure on X , ν be a proba-
bility measure on Y , and QY |X be a random transformation. Define

βX :=
1

minxQX(x)
, (B.1)

αY :=

∥∥∥∥dQYdν
∥∥∥∥
∞
. (B.2)

Then for every δ ∈ (0, 1) and n > 3βX ln |X |δ , we may choose a set Cn ⊆ X n
with Q⊗nX [Cn] ≥ 1− δ such that

d(µn, Q
⊗n
Y |X , ν

⊗n, c)

≤ n d?(QX , QY |X , ν, c) + ln(αcY β
c+1
X )

√
3nβX ln

|X |
δ

(B.3)

for every c > 0, where we defined µn := Q⊗nX |Cn .

Let us fix in the sequel (QX , QY |X , ν) and c > 0, and define

φ(PX) := d?(PX , QY |X , ν, c) (B.4)

for any PX � QX . The idea behind the proof Theorem B.1 is roughly as follows.
Using the chain rule of relative entropy, we will show that d(µn, Q

⊗n
Y |X , ν

⊗n, c)

can be bounded by a quantity of the form nφ(PX), where PX is a mixture of
empirical measures of sequences in the support of µn. Thus, if we choose Cn to be
the set of sequences with empirical measure close to QX , then Q⊗nX [Cn] will be
large by the law of large numbers and φ(PX) ≈ φ(QX) = d?(QX , QY |X , ν, c),
completing the proof.

To make these ideas precise, we require quantitative forms of the continuity
of φ and of the law of large numbers. The former is provided by the following
lemma. Here we adopt the same notations as in Theorem B.1.
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Lemma B.2. If PX ≤ (1 + ε)QX for some ε ∈ [0, 1), then

φ(PX) ≤ φ(QX) + ε ln(βc+1
X αcY ). (B.5)

Proof. Let PX be as in the statement, and let PU |X be a maximizer for (4.19)
(we assume its existence for notational simplicity only; if a maximizer does not
exist, the argument is readily adapted to work with near-maximizers). We now
modify this distribution by allowing U to take an additional value as follows: let
Ũ = U ∪ {?}, X̃ = X , and define PŨX̃ by

PŨ :=
1

1 + ε
PU +

ε

1 + ε
δ?; (B.6)

PX̃|Ũ=u := PX|U=u, ∀u ∈ U ; (B.7)

PX̃|Ũ=? :=
1 + ε

ε

(
QX −

1

1 + ε
PX

)
(B.8)

where δ? is a point mass on ?. Observe that PX̃ = QX ,

D(PX̃|Ũ‖QX |PŨ ) =
1

1 + ε
D(PX|U‖QX |PU )

+
ε

1 + ε
D

(
1 + ε

ε
QX −

1

ε
PX

∥∥∥∥QX) (B.9)

≤ D(PX|U‖QX |PU ) + ε lnβX (B.10)

where we used D(P‖QX) ≤ lnβX for every probability measure P , and

cD(PỸ |Ũ‖ν|PŨ ) =
c

1 + ε
D(PY |U‖ν|PU )

+
cε

1 + ε
D

(
1 + ε

ε
QY −

1

ε
PY

∥∥∥∥ ν) (B.11)

≥ cD(PY |U‖ν|PU )− cε ln(βXαY ), (B.12)

where we used 1
1+ε ≥ 1− ε and

D(PY |U‖ν|PU ) = D(PY |U‖QY |PU ) + PY (ln dQY
dν ) (B.13)

≤ D(PX|U‖QX |PU ) + PY (ln dQY
dν ) (B.14)

≤ ln(βXαY ), (B.15)

where (B.14) follows from the data processing inequality and (B.15) follows since
D(PX|U‖QX |PU ) ≤ lnβX . The proof is concluded by subtracting (B.10) from
(B.12).
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As a quantitative form of the law of large numbers, we will use the following
standard result (see, e.g., [6]).

Lemma B.3 (Chernoff Bound for Bernoulli variables). Assume that X1, . . . , Xn

are i.i.d. Ber(p). Then for any ε ∈ (0,∞)

P

[
n∑
i=1

Xi ≥ (1 + ε)np

]
≤ e−

1
3

min{ε2,ε}np. (B.16)

We can now conclude the proof of Theorem B.1.

Proof of Theorem B.1. We denote by P̂Xn the empirical measure of Xn ∼ Q⊗nX .
Let n > 3βX ln |X |δ and define

εn :=

√
3βX
n

ln
|X |
δ
∈ (0, 1), (B.17)

Cn := {xn : P̂xn ≤ (1 + εn)QX}. (B.18)

As for each x ∈ X

P[P̂Xn(x) > (1 + εn)QX(x)] ≤ e−
n
3
QX(x)ε2n ≤ δ

|X |
(B.19)

by Lemma B.3, it follows by the union bound that Q⊗nX [Cn] ≥ 1− δ.
Now consider any probability measure PXn � µn := Q⊗nX |Cn . Then we can

estimate, following essentially [29, Lemma 9],

cD(PY n‖ν⊗n)−D(PXn‖µn)

= cD(PY n‖ν⊗n)−D(PXn‖Q⊗nX ) (B.20)

= c
n∑
i=1

D(PYi|Y i−1‖ν|PY i−1)−
n∑
i=1

D(PXi|Xi−1‖QX |PXi−1) (B.21)

≤ c
n∑
i=1

D(PYi|Xi−1‖ν|PXi−1)−
n∑
i=1

D(PXi|Xi−1‖QX |PXi−1) (B.22)

= n[cD(PYI |IXI−1‖ν|PIXI−1)−D(PXI |IXI−1‖QX |PIXI−1)] (B.23)

≤ nφ(PXI ). (B.24)

(B.20) follows from the fact that PXn is supported on Cn; (B.21) is the chain rule
of relative entropy; (B.22) follows from the convexity of relative entropy since
Yi −Xi−1 − Y i−1 under PXnY n ; in (B.23) we defined I to be a random variable
uniformly distributed on {1, . . . , n} and independent of Xn, Y n; and in (B.24) φ
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is defined in (B.4). But note that PXI = PXn(P̂Xn) ≤ (1 + εn)QX as PXn is
supported on Cn. Thus, (B.24), Lemma B.2 and (B.4) yield

d(µn, Q
⊗n
Y |X , ν

⊗n, c) = sup
PXn�µn

{cD(PY n‖ν⊗n)−D(PXn‖µn)} (B.25)

≤ nd?(QX , QY |X , ν, c) + ln(βc+1
X αcY )nεn, (B.26)

and the proof is complete.

B.2 Proof of (4.18) in the Gaussian case

We now prove the following Gaussian analogue of Theorem B.1.

Theorem B.4. Let QX = N (0, σ2), let QY |X=x = N (x, 1), and let ν be the
Lebesgue measure on R. Then for any δ ∈ (0, 1) and n ≥ 20 ln 2

δ , we may choose
a set Cn ⊆ Rn with Q⊗nX [Cn] ≥ 1− δ such that

d(µn, Q
⊗n
Y |X , ν

⊗n, c) ≤ nd?(QX , QY |X , ν, c) +

√
6n ln

2

δ
(B.27)

for any c > 0, where we defined µn := Q⊗nX |Cn .

In the Gaussian case, the choice of typical set Cn is rather simple: it is a spher-
ical shell of radius ∼

√
n and width O(1). Controlling the probability of such a

spherical shell is a standard exercise (cf. [6, p. 43]).

Lemma B.5 (Chi-square tail bound). For Xn ∼ N (0, In) and any t > 0

P[|‖Xn‖2 − n| ≥ 2
√
nt+ 2t] ≤ 2e−t. (B.28)

We now turn to the proof of Theorem B.4.

Proof of Theorem B.4. Define

A :=

√
6 ln

2

δ
, (B.29)

Cn := {xn : n−A
√
n ≤ 1

σ2 ‖xn‖2 ≤ n+A
√
n}. (B.30)

Then we have QnX [Cn] ≥ 1− δ for n ≥ 20 ln 2
δ by Lemma B.5.

We proceed similarly to the proof of Theorem B.1 (following essentially [29,
Theorem 13]). Consider any probability measure PXn � µn := Q⊗nX |Cn . Then

cD(PY n‖ν⊗n)−D(PXn‖µn)

= cD(PY n‖ν⊗n)−D(PXn‖Q⊗nX ) (B.31)

= cD(PY n‖ν⊗n)−D(PXn‖ν⊗n) + PXn(ln
dQ⊗nX
dν⊗n ) (B.32)

≤ h(PXn)− ch(PY n)− nh(QX) + 1
2A
√
n, (B.33)
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where in (B.31) we used that PXn is supported on Cn; (B.32) follows from the
definition of relative entropy; and (B.33) follows by substituting the explicit form
of the Gaussian density dQX

dν and using the definition of Cn.
We now proceed to estimate using the chain rule

h(PXn)− ch(PY n)

=
n∑
i=1

{h(Xi|Xi−1)− ch(Yi|Y i−1)} (B.34)

≤
n∑
i=1

{h(Xi|Xi−1)− ch(Yi|Xi−1)} (B.35)

= n{h(XI |IXI−1)− ch(YI |IXI−1)} (B.36)

≤ nF ((1 + A√
n

)σ2), (B.37)

where in (B.35) we used concavity of differential entropy; in (B.36) we defined I
to be uniformly distributed on {1, . . . , n} and independent of everything else; and
in (B.37) we used that Var(XI) ≤ (1 + A√

n
)σ2 by the definition of Cn, with

F (M) := sup
PUX : Var(X)≤M

{h(X|U)− c h(Y |U)} (B.38)

(this quantity plays the role of φ(PX) in the present setting). But note that by the
scaling property of the differential entropy, we readily obtain

nF ((1 + A√
n

)σ2) = nF (σ2) + 1−c
2 n ln(1 + A√

n
) ≤ nF (σ2) + 1

2A
√
n. (B.39)

Combining (B.33), (B.37), and (B.39), we have shown

d(µn, Q
⊗n
Y |X , ν

⊗n, c) = sup
PXn�µn

{cD(PY n‖ν⊗n)−D(PXn‖µn)} (B.40)

≤ nF (σ2)− nh(QX) +A
√
n. (B.41)

To conclude the proof, it remains to show that

F (σ2)− h(QX) = d?(QX , QY |X , ν, c). (B.42)

To this end, we note that arguing as in (B.32), we may write Definition 4.4 as

d?(QX , QY |X , ν, c) = sup
PUX : PX=QX

{h(X|U)− c h(Y |U)} − h(QX). (B.43)

Thus, the inequality ≥ in (B.42) is immediate from the definition (B.38). For
the converse direction we require the fact, proved in [28, Theorem 14], that for
Gaussian channels the supremum in (B.38) is achieved for PUX such that U = 0
and X is Gaussian. In particular, F (σ2) = h(X) − ch(Y ) with X ∼ N (0, a2)
for some a ≤ σ. Thus, choosing PUX in (B.43) so that X = U + Z with Z ∼
N (0, a2), U ∼ N (0, σ2 − a2), and U,Z independent yields ≤ in (B.42).
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[17] D. Guo, S. Shamai, and S. Verdú. Mutual information and minimum mean-square
error in Gaussian channels. IEEE Trans. Inf. Theory, 51(4):1261–1282, 2005.

[18] T. S. Han. Information-Spectrum Methods in Information Theory. Springer, 2003.
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[44] Y. Polyanskiy and S. Verdú. Arimoto channel coding converse and Rényi diver-
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