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Abstract

In the late 1800s, Minkowski discovered the importance of a new kind of geometric
object that we now call a convex set. He soon developed a rich theory for under-
standing such sets, laying the foundations of convex geometry that are widely used
to this day. Among the most surprising observations of Minkowski’s theory is that
the classical isoperimetric theorem—which states that the ball has the smallest sur-
face area among all bodies of a given volume—is just one special case of a much
more general phenomenon. When one fixes geometric parameters other than vol-
ume, Minkowski discovered that the resulting “bubbles” can be strikingly bizarre.
A complete understanding of such objects has been a long-standing problem. In
this survey, we briefly discuss the history of and recent progress on these questions,
as well as some of their unexpected interactions with other areas.

1 Introduction

Hermann Minkowski (1864–1909) had already achieved fame
at the young age of 18 when he was awarded the Grand Prix
of the Académie des Sciences in Paris for his work on number
theory. At that time, he was interested in classical arithmetic
questions on positive definite quadratic forms that arose from
the work of Lagrange, Gauss, and Hermite. Minkowski re-
alized that such problems can be approached geometrically
by reasoning about the volume of the ellipsoid defined by the
quadratic form. By replacing the ellipsoid by an arbitrary
symmetric convex body, Minkowski obtained a powerful new
tool to investigate number-theoretic questions [20].

H. Minkowski

The unexpected emergence of the notion of convex bodies in the geometry
of numbers motivated Minkowski to investigate these objects for their own sake,
culminating in a remarkable 1903 paper [25] that recently celebrated its 120th

birthday. This paper not only laid the foundation for the field of convex geometry
[31], but also introduced important ideas that had a major impact on other areas
of mathematics: e.g., the Minkowski problem that led to seminal work on the
theory of nonlinear PDEs [27, 12]; one of the earliest investigations of the stability
of geometric inequalities [15, 14]; and a fundamental log-concavity phenomenon
that is closely connected to recent breakthroughs in combinatorics [19].

At the same time, some questions that arise from Minkowski’s work remain
open to this day. This survey reports on recent progress on one of these questions.
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2 The Alexandrov-Fenchel inequality

At the heart of Minkowski’s theory of convex bodies lies the observation that n-
dimensional volume is a polynomial of convex bodies in Rn: more precisely, given
any convex bodies (nonempty compact convex sets) in Rn, we have

Vol(λ1K1 + · · ·+ λmKm) =

m∑
i1,...,in=1

λi1 · · ·λin V(Ki1 , . . . ,Kin)

for all λ1, . . . , λm ≥ 0. The coefficients V(C1, . . . , Cn) of this polynomial, called
mixed volumes, form a large family of geometric parameters of convex bodies: for
example, volume, surface area, mean width, projection volumes, and many other
natural quantities are all special cases of mixed volumes.

Given the ubiquity of mixed volumes, it is unsurprising that inequalities
between mixed volumes play a central role in understanding the geometry of convex
bodies. The most important result of this kind is the following.

Theorem 2.1 (Alexandrov-Fenchel inequality). We have

V(K,L,C1, . . . , Cn−2)2 ≥ V(K,K,C1, . . . , Cn−2)V(L,L,C1, . . . , Cn−2).

for any convex bodies K,L,C1, . . . , Cn−2 in Rn.

In spite of its name, this inequality was first proved by Minkowski [25] in
dimension n = 3, and was extended by Alexandrov [1, 2] to general n using
fundamentally new ideas (Fenchel independently announced the result but did not
publish a proof). It lies at the heart of many applications of mixed volumes in
convex geometry and in other areas of mathematics. The following basic question
already appears in the original papers of Minkowski and Alexandrov:

Question 2.2. When does the Alexandrov-Fenchel inequality achieve equality?

To illustrate the significance of this question, let us discuss a classical example
that appears in the work of Minkowski [25] and Bol [3].

Example 2.3. Let K be any convex body in R3, and denote by B the Euclidean
unit ball. Then a special instance of the Alexandrov-Fenchel inequality reads

V(B,K,K)︸ ︷︷ ︸
surface area

2 ≥ V(B,B,K)︸ ︷︷ ︸
mean width

V(K,K,K)︸ ︷︷ ︸
volume

provides a lower bound on the surface area among all convex bodies K in R3 of a
given volume and mean width. In particular, equality is attained precisely when
the surface area K is minimized among all convex bodies of a given volume and
mean width. The characterization of such bodies may therefore be viewed as a
“very remarkable” [25, p. 447] generalization of the classical isoperimetric theorem.
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In the present very special case, Question 2.2 was settled by
Minkowski [25] and Bol [3]: the extremal bodies K are cap
bodies obtained by taking the convex hull of a Euclidean ball
with a finite or countable number of points outside it, so that
the resulting cones do not overlap. In stark contrast to the
situation in classical isoperimetric problems, we note that the
extremal bodies are non-unique, non-smooth, non-symmetric,
and can have highly irregular surface structure. A cap body

The unusual features of Example 2.3 already hint at the fact that the extremal
bodies associated to more general cases of the Alexandrov-Fenchel inequality are
likely to possess a rich structure. Unfortunately, the methods used by Minkowski
and Bol exploit special features of this specific example, and shed little light on
the general situation. While it was frequently mentioned in the literature, further
progress on this problem remained elusive for decades, and there was some belief by
experts that no meaningful geometric characterization is possible. The situation
was summed up, e.g., in the classic monograph of Burago and Zalgaller [6, §20.5]:
“a conclusive study of all these situations when the equality sign holds has not been
carried out, probably because they are too numerous.”

This would have likely remained the case if it were not for the crucial insight
of R. Schneider, who formulated a detailed conjectural picture for the equality
cases of the Alexandrov-Fenchel inequality in 1985 [30]. Schneider’s conjectures
made it possible, for the first time, to imagine what a geometric solution might look
like. This spurred renewed interest in the problem, leading to the characterization
of equality in some special cases (most notably for zonoids); we refer to [31, §7.6]
for a survey of results obtained prior to the new results to be discussed below.
However, the most important cases of the problem remained open.

3 New progress on the equality cases

3.1 Where lies the difficulty?

It is often the case that a characterization of equality cases can be read off in
a natural manner from the proof of an inequality: one simply concatenates the
conditions for equality arising from each step of the proof. Before we explain recent
progress on Question 2.2, let us explain why such an approach fails here.

The classical approach to the Alexandrov-Fenchel inequality uses a continu-
ity argument due to Hilbert [17, Chapter XIX]. The basic scheme of the proof
(presented here in an oversimplified manner) is as follows.

1. First, prove that whenever C1, . . . , Cn−2 are smooth bodies, there can be no
nontrivial equality cases of the Alexandrov-Fenchel inequality.

2. Next, prove that the inequality holds in a special case that is amenable to
explicit computation (e.g., when C1 = · · · = Cn−2 = B are Euclidean balls.)

3. Finally, continuously deform the special case C1 = · · · = Cn−2 = B to general
smooth bodies C1, . . . , Cn−2. As equality can never hold, the direction of the
inequality must be preserved by continuity.
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Once the inequality has been proved for smooth bodies, it extends to arbitrary
convex bodies by a routine approximation argument.

It may seem surprising that the Alexandrov-Fenchel inequality possesses a
rich and intricate family of equality cases, when the absence of nontrivial equality
cases plays a fundamental role in its proof. However, the proof works with smooth
bodies which indeed cannot achieve equality—e.g., the cap bodies of Example 2.3
are evidently non-smooth. The nontrivial equality cases only emerge in the limiting
case of non-smooth bodies, about which the proof provides no information: in the
limit all the objects that appear in the proof become singular, and the structure
of the equality cases is encoded in the structure of the singularities. The core
difficulty of the problem lies in the development of tools that make it possible to
make sense of and understand these singularities.

The singular behavior of the Alexandrov-Fenchel inequality for non-smooth
bodies in fact creates two distinct sets of challenges.

• Analytic singularities: the surfaces of convex bodies can be highly irregular;
consider, for example, a cap body as in Example 2.3 with a countable number
of caps that form a fractal structure.1 This requires one to work with highly
irregular analytic objects, such as singular elliptic operators.

• Combinatorial singularities: perhaps the most important case for applica-
tions (cf. section 4) is when C1, . . . , Cn−2 are convex polytopes. In this case
the problem is essentially discrete in nature. Nonetheless, the interactions be-
tween the combinatorial structures of the polytopes C1, . . . , Cn−2 give rise to a
complicated set of singularities that encode the equality cases.

Major progress on both fronts was achieved in recent work of the authors, which
provides a complete solution to Question 2.2 in two opposite cases: in the com-
binatorial setting where no analytic difficulties arise, and in the analytic setting
where no combinatorial difficulties arise. These results are described below. How-
ever, a full solution to Question 2.2 for arbitrary convex bodies would require us
to handle the combinatorial and analytic aspects simultaneously. Considerable
challenges remain toward achieving this still unfulfilled aim.

Remark 3.1. Beside the classical proof of the Alexandrov-Fenchel inequality by
Hilbert’s continuity method, several other proofs are now known; see, e.g., [33]
and the references therein. However, none of the known proofs can avoid the
singularities described above, which appear to be fundamental to the problem.

3.2 The combinatorial setting

The equality cases of the Alexandrov-Fenchel inequality are fully characterized in
[35] in the setting where C1, . . . , Cn−2 are arbitrary convex polytopes. This may
be viewed as a complete solution to the combinatoral aspect of the problem. As
anticipated, the equality cases are numerous and their detailed technical descrip-
tion is beyond the scope of this survey. Instead, we aim here to give an informal
flavor of the result, and refer to [35, §2 and §13] for a complete statement.

1The authors were surprised to learn from Serge Cantat at the 2024 ICBS that such objects
arise naturally in the study of certain questions of birational geometry [7, §2.2.7].
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Theorem 3.2 (Informal statement). When C1, . . . , Cn−2 are convex polytopes, the
equality cases of Theorem 2.1 arise by a superposition of three distinct mechanisms:

(1) translation and scaling;
(2) the relative positions of the normal cones of bdC1, . . . ,bdCn−2;
(3) the relative positions of the affine hulls aff C1, . . . , aff Cn−2.

The informal statement of Theorem 3.2 is difficult to interpret in the absence
of the relevant definitions. To give a flavor of its meaning, we now illustrate the
first two mechanisms, and highlight in particular the role played by the bodies
K,L in Theorem 2.1 which is implicit in the informal statement.

Mechanism (1) simply arises from the fact that the Alexandrov-Fenchel in-
equality is invariant under translation and scaling of any of the bodies involved.
We therefore trivially achieve equality when K,L differ by translation and scaling
(that is, when L = aK + v for some a > 0, v ∈ Rn).

To give a flavor of mechanism (2), we provide a simple example.

Example 3.3. Let K,L,C be convex polytopes in R3 defined as follows:

K = L = C =

Then equality V(K,L,C)2 = V(K,K,C)V(L,L,C) holds due to mechanism (2).
There are three kinds of normal cones of bdC: the normal cones of a facet, of
an edge, and of a corner of C. Mechanism (2) yields equality when K,L have
the same supporting hyperplanes with any normal direction that is not normal
to a corner of C. Thus we achieve equality when K,L are copies of C with their
corners sliced off in an essentially arbitrary manner: slicing a corner only affects
the supporting hyperplanes in normal directions to a corner of C. However these
are not the only equality cases: for example, we may add additional mass to the
sliced-off corners without destroying equality.

The three-dimensional case is especially simple. In higher-dimensional situa-
tions, the statement of mechanism (2) is analogous but more complicated: equality
arises when K,L have the same supporting hyperplanes with any normal direction
that is (B,C1, . . . , Cn−2)-extreme, where the latter notion is determined by the
relative positions of the normal cones of the different bodies C1, . . . , Cn−2 [30].

Mechanisms (1) and (2) were conjectured by Schneider [30]. However, Schnei-
der’s conjectures turn out to be incomplete: mechanism (3) is responsible for new
equality cases that were not previously conjectured. The latter rather complicated
equality cases occur only in certain situations in which some of C1, . . . , Cn−2 have
empty interior. We omit further discussion of these cases here.

3.3 The analytic setting

The combinatorial singularities that form the major difficulty in the proof of The-
orem 3.2 arise from the interactions between the normal fans of the different bod-
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ies C1, . . . , Cn−2. From this perspective, the 3-dimensional Example 3.3 that we
have chosen for ease of visualization is rather simple, as there is only one body
C1 = · · · = Cn−2 = C and thus no combinatorial singularities arise.2

However, if we aim to understand the equality cases of the Alexandrov-
Fenchel inequality for arbitrary convex bodies, we must also resolve the analytic
singularities which arise even when there are no combinatorial singularities. In the
latter setting, the problem was completely resolved in [34].

Theorem 3.4 (Informal statement). The characterization of Theorem 3.2 extends
to the setting where C1 = · · · = Cn−2 = C is an arbitrary convex body.

Note, in particular, that Theorem 3.4 fully resolves Question 2.2 in dimension
n = 3, which was the setting originally considered by Minkowski in [25].

To give a flavor of the statement of Theorem 3.4, we again discuss a simple
example. Let K,L,C be convex bodies in R3 defined as follows:

K = L = C =

Even though these bodies are not polytopes, equality arises here for precisely the
same reason as in Example 3.3: the bodies K and L have the same supporting
hyperplanes with any normal direction that is not normal to a corner of C. It
should be clear by now that the same mechanism also explains the cap body
theorem of Minkowski and Bol that was described in Example 2.3.

While the works [34, 35] separately resolve analytic and combinatorial sin-
gularities, it remains a major problem to handle both phenomena simultaneously.
The proof of Theorem 3.4 requires certain quantitative estimates (relying in part
on a method due to Kolesnikov and Milman [21]) that are highly specific to the
special case C1 = · · · = Cn−2. In contrast, the method of proof of Theorem 3.2 is
in principle very general and not specific to polytopes, but the analytic difficulties
in extending it to general convex bodies remain to be resolved.

4 Combinatorial applications

A sequence of nonnegative numbers N1, . . . , Nn ≥ 0 is said to be log-concave if

N2
i ≥ Ni+1Ni−1 for all i = 2, . . . , n− 1.

It has long been observed that many integer sequences that arise in combinatorics
appear to be log-concave, but a general understanding of this phenomenon was
achieved only very recently in a remarkable series of works due to Huh et al.,
see, e.g., [19, 4]. However, one of the earliest results in this direction, which we
presently describe, was obtained by Stanley in 1981 [32, Theorem 3.1].

2This special case of Theorem 3.2 was proved by Schneider [31, Theorem 7.6.21] prior to [35].
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Example 4.1. Let P = {x, y1, . . . , yn} be any partially ordered set, and let Ni be
the number of linear extensions of P (i.e., different ways to complete the partial
order to a total order) so that x ∈ P has rank i. Stanley’s result, which confirms
a conjecture of Rivest and Chung-Fishburn-Graham, is the following.

Theorem 4.2 (Stanley). The sequence N1, . . . , Nn+1 is log-concave.

The key insight behind the proof of this theorem is that one can represent

Ni = n!V(K, . . . ,K︸ ︷︷ ︸
i−1

, L, . . . , L︸ ︷︷ ︸
n+1−i

)

for suitably constructed convex polytopes K,L (which depend on P ). Theorem 4.2
then follows immediately from the Alexandrov-Fenchel inequality.

Given a log-concave sequence, the equality condition

N2
i = Ni+1Ni−1 ⇐⇒ Ni+1

Ni
=

Ni
Ni−1

corresponds to a geometric progression in the sequence. Thus a characterization
of the equality cases provides information on where and what kind of geometric
progressions can appear in a log-concave sequence.

The equality characterization of the Alexandrov-Fenchel inequality opens the
door to answering such questions. In the setting of Theorem 4.2, this has been
accomplished in [35, §15] as an application of Theorem 3.2. Let us give an informal
statement; here we write P<y := {z ∈ P : z < y} and P>y := {z ∈ P : z > y}.

Theorem 4.3 (Informal statement). In Theorem 4.2, only flat geometric progres-
sions Ni+1 = Ni = Ni−1 arise at the following locations:

Ni

i

: flat
: strictly log-concave

|P<x| n+ 2−miny<x |P>y| miny>x |P<y| n+ 2− |P>x|

The phenomenon exhibited by Theorem 4.3 may be viewed as a combinatorial
cousin of Minkowski’s bizarre “bubbles” of Example 2.3. It is particularly striking
that we can achieve not only a qualitative understanding of the kind of geometric
progressions that can appear in these log-concave sequences, but we can even
compute explicitly where in the sequence the geometric progressions appear. This
stands in contrast to the numbers Ni themselves, which are known to be hard to
compute in a complexity-theoretic sense [5].

The fact that only flat progressions arise in the setting of Theorem 4.3 is es-
sentially a coincidence: other kinds of progressions can arise in other inequalities.
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Theorem 3.2 has been further used in [24, 38] to characterize geometric progres-
sions that arise in other combinatorial inequalities for partially ordered sets that
arise from the Alexandrov-Fenchel inequality. One surprising outcome of these
results is that all three equality mechanisms in Theorem 3.2 turn out to arise nat-
urally in combinatorial applications: these are not merely esoteric boundary cases
the arise only in “weird” geometric examples!

Remark 4.4. Given that Theorem 4.2 is a direct consequence of the Alexandrov-
Fenchel inequality, one may expect that Theorem 4.3 is a direct consequence of
Theorem 3.2. The difficulty here is that the latter provides geometric information
on the polytopes K,L that appear in Example 4.1, but it is not immediately
clear how this geometric structure is reflected in the combinatorial structure of
the poset P . The main challenge in the proof of Theorem 4.3 and related results
is to translate between the geometric and combinatorial aspects of the problem.

The study of log-concavity for the combinatorial problems discussed above
is made possible by the fact that the relevant combinatorial quantities can be
represented as mixed volumes. However, for other problems where log-concavity
has been conjectured, such a representation is not available.

Many classical conjectures of this kind were recently resolved in an impressive
series of works reviewed in [19, 4]. One interpretation of the basic insight behind
these breakthroughs is that while most combinatorial problems cannot be refor-
mulated in terms of mixed volumes, one can often still prove Alexandrov-Fenchel
type inequalities directly in combinatorial applications, so that the log-concavity
property arises essentially by the same mechanism (this viewpoint is particularly
evident in an approach proposed by Chan and Pak [8]). Whether such a common
mechanism can also explain the appearance of geometric progressions in a broad
range of combinatorial problems remains to be fully understood.

5 Further questions and developments

5.1 Universality

While the Alexandrov-Fenchel inequality belongs to convex geometry, a surprising
series of discoveries (starting from work of Khovanskii and Teissier in the 1970s)
have led to the realization that close analogues of the Alexandrov-Fenchel inequal-
ity arise in several other areas of mathematics:

• in algebraic geometry [36], [22, §1.6];
• in complex geometry [16, 23];
• in combinatorics [19, 4, 8].

Not only these inequalities themselves, but also the proofs of these inequalities,
have many common features, and seem to arise from the same basic mechanism.
It therefore appears that there is a certain universal aspect to Alexandrov-Fenchel
type inequalities: they are not specific to one mathematical setting, but rather
arise in many different settings that share a common algebraic structure.
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At first sight, the characterization of equality cases of the Alexandrov-Fenchel
inequality in Theorem 3.2 appears to be overtly convex geometric in nature. This
suggests that, in contrast to the inequality itself, these equality conditions may be
specific to the convex geometric setting. This is not necessarily the case, however:
it is possible to reformulate the three mechanisms of Theorem 3.2 in a purely alge-
braic fashion, as was sketched in [35, §16.2]. Moreover, many of the core arguments
in the proof of Theorem 3.2 are primarily algebraic in nature. These observations
lead us to conjecture that the mechanisms for equality are similarly universal, so
that analogues of Theorem 3.2 should arise in other areas of mathematics where
Alexandrov-Fenchel type inequalities appear.

Significant progress in this direction was recently achieved by Hu and Xiao
[18], who proved a partial extension of Theorem 3.2 in algebraic and complex ge-
ometry under certain positivity assumptions. Their work provides strong evidence
for the universal nature of the equality cases of Alexandrov-Fenchel inequalities.
The paper [18] also clarifies the full conjectural picture of the equality cases, which
was sketched rather informally in [35], in the context of algebraic geometry.

It should be noted that the first instance of an Alexandrov-Fenchel inequal-
ity outside convexity long predates the above developments: Alexandrov already
proved a linear algebraic analogue in 1938 [2], whose equality cases were fully
settled in a largely overlooked paper by A. A. Panov [29]. The linear algebraic
setting is in many ways fundamentally simpler than the convex geometric one; for
example, mechanism (2) of Theorem 3.2, which is the main source of nontrivial
equality cases in the convex geometric setting, is completely absent in the linear
algebraic setting. Nonetheless, Panov’s results are entirely consistent with the
general conjectural picture (as discussed in [35, 18]) and provides another data
point in support of the universal behavior of the equality cases.

5.2 Complexity

Stanley’s inequality N2
i ≥ Ni+1Ni−1 of Theorem 4.2 is a combinatorial inequality,

i.e., an inequality between quantities that count the number of certain combinato-
rial structures (in this case, linear extensions of a partially ordered set). However,
its proof is highly non-combinatorial in nature. It is natural to wonder whether it is
possible to give a direct combinatorial proof of such inequalities. For example, we
may ask whether one can construct an explicit injection ι : Ei+1 × Ei−1 → Ei × Ei
(here Ei denotes the set of linear extensions of P so that x has rank i), whose
existence would immediately imply the desired inequality.

This tantalizing question turns out to be extremely subtle. On the one
hand, consider the following apparently innocuous variation on the same problem:
rather than count linear extensions, i.e., order-preserving injective maps from P
to {0, . . . , n}, we drop the injectivity assumption and count all order-preserving
maps. In this case, the analogue of Theorem 4.2 admits a direct combinatorial
proof by an explicit injection [13]. On the other hand, no such proof has ever been
found for Theorem 4.2, suggesting a combinatorial proof of this inequality may be
impossible. It is far from clear, however, how to even meaningfully formalize the
latter as a mathematical statement, let alone how to prove it.
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Questions of this kind are the subject of a far-reaching research program of
Igor Pak [28], which aims to formalize and prove such results through computa-
tional complexity theory. A precise explanation of these ideas is beyond our scope,
but let us outline one consequence in the present context. If we aim to disprove
the existence of an explicit injection, we must formalize what “explicit” means. In
combinatorial proofs, explicit injections are typically defined by a relatively sim-
ple rule or algorithm. It is therefore natural to formalize the problem as asking
whether there exists an injection ι so that both ι and ι−1 can be computed in
polynomial time. The question whether such an injection can exist in the setting
of Theorem 4.2 remains open. However, in a significant achievement, Chan and
Pak proved in [10] that a generalization3 of Theorem 4.2 that appears in the same
paper of Stanley [32, Theorem 3.1] cannot be proved in this manner.

Theorem 5.1 (Chan-Pak; informal statement). Assuming a standard complexity-
theoretic hypothesis (a strengthening of P 6= NP), the generalized Stanley inequality
cannot be proved by an explicit injection in the above sense.

Theorem 5.1 is merely a corollary of a much deeper statement that is proved
in [10]. This provides the first natural example of a combinatorial inequality that
provably does not admit a combinatorial proof.

The proof of Theorem 5.1 is intimately connected to the topic of this survey.
If an explicit injection were to exist, there would be a certificate for the inequality
to be strict (namely an element that is not in the image of ι) that can be verified
in polynomial time by the assumption on ι. It therefore suffices to establish hard-
ness of verifying the equality condition. In particular, as the generalized Stanley
inequality is proved using the Alexandrov-Fenchel inequality as in Theorem 4.2,
the proof of Theorem 5.1 shows that it can be computationally hard to verify the
equality condition of the Alexandrov-Fenchel inequality.

It may seem counterintuitive that there can be an explicit geometric descrip-
tion of the equality cases (Theorem 3.2) that is not computationally effective.
There is however no contradiction between these statements.

Example 5.2. Instead of the Alexandrov-Fenchel inequality, consider the follow-
ing caricature of a geometric inequality for convex bodies K,L:

Vol(K)2 + Vol(L)2 ≥ 2 Vol(K) Vol(L).

This trivial inequality is equivalent to (Vol(K) − Vol(L))2 ≥ 0. In particular,
equality holds if and only if Vol(K) = Vol(L). The latter provides a complete
geometric understanding of the equality condition: it is clear that the coincidence
of the volumes of two convex bodies is merely a matter of scaling, and does not
constrain any other geometric features of these bodies.

On the other hand, volumes of convex polytopes are the subject of many
hardness results in complexity theory. In particular, it follows from [11, Theo-
rem 1.4(4)] (see also [9]) that is hard to verify the coincidence of the volumes of
two convex polytopes. Thus it is hard to verify the equality condition of the above
inequality, despite that it can be described explicitly in geometric terms.

3The generalized Stanley inequality differs from Theorem 4.2 in that Ni now counts only linear
extensions for which in addition some other elements yi1 , . . . , yik have fixed ranks j1, . . . , jk.
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The Alexandrov-Fenchel inequality bears no resemblance to this trivial in-
equality. Nonetheless, hidden in the statement of mechanism (3) of Theorem 3.2
is a certain coincidence between mixed volumes that is analogous to the equality
condition in the above example. It turns out that mechanism (3) cannot arise in
the setting of Theorem 4.2, which explains the simple form of Theorem 4.3. But
mechanism (3) can indeed arise in the generalized Stanley inequality [24], which
hints at where one should look for hard instances of its equality conditions. The
actual implementation of this program in the proof of Theorem 5.1 is independent
of Theorem 3.2, and requires many new complexity-theoretic ideas.

5.3 Further open problems

5.3.1 Minkowski’s monotonicity problem

One of the most basic properties of mixed volumes is that they are monotone: if
K,L,C1, . . . , Cn−1 are convex bodies in Rn, then

K ⊆ L =⇒ V(K,C1, . . . , Cn−1) ≤ V(L,C1, . . . , Cn−1).

Even though this inequality is far simpler than the Alexandrov-Fenchel inequality,
the geometric characterization of its equality cases remains an open problem. Also
this question dates back to Minkowski [26, Ch. XXV].

In contrast to the equality cases of the Alexandrov-Fenchel inequality, the
solution to Minkowski’s monotonicity problem is straightforward for convex poly-
topes. Motivated by the solution in the case of polytopes, R. Schneider formulated
a precise conjecture for general convex bodies, see [30] and [31, Conjecture 7.6.14].
One direction of this conjecture was recently settled for arbitrary convex bodies
[37], but only special cases of the converse direction have been verified to date.

5.3.2 Stability of the Alexandrov-Fenchel inequality

Suppose that the left- and right-hand sides of the Alexandrov-Fenchel inequality
are nearly equal. Must K,L,C1, . . . , Cn−2 then be close to one of the equality
cases described by Theorem 3.2? This is the question of stability. Concretely, a
stability form of the Alexandrov-Fenchel inequality is an inequality of the form

V(K,L, C)2 − V(K,K, C)V(L,L, C) ≥ ∆(K,L, C),

where C = (C1, . . . , Cn−2) and ∆(K,L, C) is a geometric quantity that “explicitly”
quantifies the distance of K,L, C to the equality cases.

No useful inequality of this kind is known for general convex bodies, and it
may be difficult to imagine what such an inequality could even look like given the
large number of equality cases. Mechanism (3) of Theorem 3.2 is especially com-
plex, and there is no plausible conjecture for its stability. However, the stability
question is already of considerable interest if we restrict attention, e.g., to convex
bodies with nonempty interior, in which case mechanism (3) cannot arise. In this
setting, a natural conjecture on stability of the Alexandrov-Fenchel inequality is
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formulated in [34, Remark 7.2]. There is no progress to date toward proving such
an inequality (or even a weak inequality as in [34, Theorem 6.1]).

The stability problem is of interest for two reasons. On the one hand, under-
standing the stability of geometric inequalities is a fundamental question [15, 14].
On the other hand, a sufficiently strong quantitative refinement of the Alexandrov-
Fenchel inequality for “nice” bodies (e.g., smooth bodies or polytopes) could pro-
vide an approach toward fully resolving Question 2.2 for arbitrary convex bodies
by approximation. This approach forms the basis for the proof of Theorem 3.4,
but the plausibility of such an approach in the general setting remains unclear.

5.3.3 Local Alexandrov-Fenchel inequalities

We finally formulate an apparently fundamental question that has not previously
appeared in print. The following discussion presupposes that the reader is familiar
with some basic notions of convex geometry [31].

It is a basic fact that mixed volumes can be represented as

V(K,C1, . . . , Cn−1) =
1

n

∫
hK dSC1,...,Cn−1

,

where hK is the support function of K and SC1,...,Cn−1
is a measure on Sn−1

called the mixed area measure. While there is no explicit formula for SC1,...,Cn−1

in general, there are two special cases where explicit representations are available:

• When C1, . . . , Cn−1 are convex polytopes, SC1,...,Cn−1 is atomic with

dSC1,...,Cn−1

dH0
(u) = V(F (C1, u), . . . , F (Cn−1, u)),

where F (C, u) is the exposed face of C with normal direction u.

• When hC1
, . . . , hCn−1

∈ C∞, SC1,...,Cn−1
is absolutely continuous with

dSC1,...,Cn−1

dHn−1
(u) = D(D2hC1(u), . . . , D2hCn−1(u)),

where D(M1, . . . ,Mn−1) is the mixed discriminant of matrices M1, . . . ,Mn−1.

In both cases, the density ρC1,...,Cn−1
of SC1,...,Cn−1

with respect to a suitable
reference measure on Sn−1 (the Hausdorff measures H0 or Hn−1, respectively)
satisfies a pointwise analogue of the Alexandrov-Fenchel inequality:

(ρK,L,C1,...,Cn−3
)2 ≥ ρK,K,C1,...,Cn−3

ρL,L,C1,...,Cn−3
. (5.1)

This follows from the Alexandrov-Fenchel inequality in the case of polytopes, and
from the Alexandrov mixed discriminant inequality in the smooth case.

Given that such a property holds in two opposite extremes, one may ask
whether this is a general property of mixed area measures. To formulate the
question precisely, fix arbitrary convex bodies K,L,C1, . . . , Cn−3 in Rn, and let µ
be any measure on Sn−1 with respect to which all relevant mixed area measures
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are absolutely continuous (e.g., µ = SM,...,M where M = K+L+C1 + · · ·+Cn−3).

Now define ρK,L,C1,...,Cn−3
:=

dSK,L,C1,...,Cn−3

dµ . Then does (5.1) hold µ-a.e.?
This apparently simple question presents the most basic obstruction toward

the extension of the method of proof of Theorem 3.2 to general convex bodies. It
has so far defied all attempts at its resolution.
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