COMPUTING EXTREME SINGULAR VALUES
OF FREE OPERATORS
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ABSTRACT. A recent development in random matrix theory, the intrinsic free-
ness principle, establishes that the spectrum of very general random matrices
behaves as that of an associated free operator. This reduces the study of such
random matrices to the deterministic problem of computing spectral statis-
tics of the free operator. In the self-adjoint case, the spectral edges of the
free operator can be computed exactly by means of a variational formula due
to Lehner. In this note, we provide variational formulas for the largest and
smallest singular values in the non-self-adjoint case.

1. INTRODUCTION

Let X be a d X d random matrix with jointly Gaussian entries. Without loss of
generality, such a matrix can always be represented as

n
X =ao+ Y aigi,
i=1

where g1,..., g, are i.i.d. standard Gaussian variables and aq,...,a, € C¥*? are
deterministic matrices. Since no structural assumptions are made, the entries of
such matrices can be highly nonhomogeneous and dependent.

Nonetheless, recent advances in random marix theory make it possible to under-
stand the spectrum of such matrices under surprisingly minimal assumptions. To
this end, define the deterministic operator

$ZGO®1+ZCM®52’7 (L.1)
i=1
where s1,...,8, is a free semicircular family (cf. [6] or [1, §4.1]). The intrinsic

freeness principle |1, 2] establishes that under mild conditions, the spectral statistics
of X and x nearly coincide: in the self-adjoint case, the spectra of X and x are close
in the Hausdorff distance, while in the general case the same is true for the singular
value spectrum. The universality principles of [3] further extend these conclusions
to a large family of non-Gaussian random matrices.

The power of these results lies in the fact that they reduce the study of com-
plicated random matrices to the deterministic problem of computing the spectrum
of a free operator, which is accessible using free probability theory. In particular,
when z is self-adjoint, the following variational principle due to Lehner [5] (see §2.2)
provides an explicit formula for the spectral edges of x. In the following, we write
Amax () = supsp(x) and Apin(x) = inf sp(z) = —Apax(—2).
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Theorem 1.1 (Lehner). Let z be as in (1.1) with ag,...,a, € CZX9. Then

n
Amax(x) = ;2% )\max (ao + 2_1 + 2; aizai> )
i=
where z € C¥X<. Moreover, the infimum can be restricted to those z such that the
Matriz in Amax (- - +) s a multiple of the identity.

Lehner’s formula is extremely useful in applications that require a precise under-
standing of the spectral edges of nonhomogeneous and dependent random matrices.
For example, several such applications can be found in [2].

When z is not self-adjoint, one is typically interested in the largest and smallest
singular values Spayx(z) = supsp((zz*)/?) and syin(2) = infsp((zz*)'/?), respec-
tively. More generally, in problems related to sample covariance matrices, one is
interested in the spectral edges of the operator zx* +b® 1 with b € C4X4. We
emphasize at the outset that the computation of these quantities is in principle fully
settled in [5, §5.2]: Lehner provides a recipe for computing the operator norm of
any noncommutative quadratic polynomial of a free semicircular family with matrix
coeflicients, of which the above quantities are special cases. However, this general
recipe gives rise to complicated and in some cases inexplicit variational formulas
that prove to be difficult to use in concrete situations.

The aim of this note is to obtain much simpler explicit formulas, in the spirit of
Theorem 1.1, for the spectral edges of the operator zz* +b® 1 in the case that z is
centered (that is, ap = 0 in (1.1)). This setting may be viewed as a matrix-valued
analogue of the free Poisson distribution, as will be explained in §5 below. Even
though this is a special case of the more general problem considered by Lehner, it
is one that arises frequently in applications, and tractable formulas for the spectral
edges are essential for the analysis of concrete models.

1.1. Main result. The following setting will be considered throughout the remain-
der of this note. Fix d,m,n € N, deterministic matrices ay,...,a, € C**™, and a

self-adjoint deterministic matrix b € CZ%%. Define the operator

x:ZaiQ@si, (1.2)
i=1

where s1,...,s, is a free semicircular family.

Theorem 1.2. For x as in (1.2), we have

n n -1
* _ . —1 * *
Amax(z2* +b® 1) = ;I>1f(‘) Amax (b +z7+ E 1 a; (1 - E 1 ajzaj> ai>
1= j=

Zja;fzaj<1
and
n n -1
Amin (22" + b0 ® 1) = sup Amin <b +27 4 Z a; <1 — Z a;za]) a’{) ,
z2<0 X -
=1 j=1

where z € CZX9. Moreover, the infimum (supremum) can be restricted to those z
such that the matriz in Apax(-++) (Amin(--+)) is a multiple of the identity.
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As an immediate corollary, we obtain variational formulas for the largest and
smallest singular values spax () and spyin () of .

Corollary 1.3. For x as in (1.2), we have

n —1
st = (S (1 Sen) )
j=1

Zja;zaj<1
and
n n -1
smin(x)2 = SUp Amin (z_l + Z a; (1 — Z a}*zaJ) af).
z<0 i=1 j=1
Proof. Apply Theorem 1.2 with b = 0. O

1.2. A reduction principle. We now state a reduction principle that facilitates
the application of Theorem 1.2 to models with symmetries. An analogous result in
the setting of Theorem 1.1 appears in [2, Lemma 7.1].

Lemma 1.4. Let A be a x-subalgebra of C™*™ and B be a x-subalgebra of C4*¢
such that the following conditions hold:

beB, Zaiyaf € B forall ye A, Za;fzaj e A forall z€B.

i=1 j=1

Then for x as in (1.2), all the conclusions of Theorem 1.2 remain valid if the
infimum (supremum) is taken only over z € B.

Let us illustrate this reduction principle in a special case that is important in
applications. Let X be a d x m random matrix with independent centered Gaussian
entries X;; ~ N(0, O',L-zj). The associated free model z is given by

d m
x = Z Z Oij 62'6; X Sij (13)

i=1 j=1

where (8i;)ic[d),je[m] are free semicircular variables and ey, ez, ... denote the stan-
dard basis vectors in C? or C™. Then we have the following.

Corollary 1.5. Let x have independent entries as in (1.3), and let b be a diagonal
matriz with diagonal entries by, ..., bq. Then we have

1 o2
)\max(l'x* + b ® 1) = lnf max bl + =4 i i
min; v; >0 1€[d] V; Z _ Ek:e O'kj'Uk
max; >, Uijvk<l JE[mM]

and

Amin(zz* +b®1) = sup min (b +—+ Z — Zke U;%ﬂk)’

max; v; <0 i€[d]

where v € RY. Moreover, the infimum (supremum) can be restricted to those v such
that the vector in the maximum (minimum) is a multiple of the constant vector 1.
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Proof. Let A and B be the x-algebras of diagonal matrices in C™*™ and C%*¢,
respectively. Then it is readily verified that the assumptions of Lemma 1.4 are
satisfied, and the conclusion follows by restricting the variational principles of The-
orem 1.2 to diagonal matrices z with diagonal entries vy, ..., vq4. O

An application of Corollary 1.5 to phase transitions of nonhomogeneous sample
covariance matrices is developed in [2, §3.6 and §8.5].

1.3. Organization of this note. In §2, we recall some results of matrix algebra
and the formulas of Lehner that will be used in the proofs. The first variational
formula of Theorem 1.2 is proved in §3, and the second variational formula is proved
in §4. The last statement of Theorem 1.2 and Lemma 1.4 are proved in §5.

2. PRELIMINARIES

2.1. Matrix algebra. The following two theorems of matrix algebra will play an

important role in our proofs. The first is a classical result on Schur complements.
Lemma 2.1 (Schur complements). Let A € CI1 x4 B e Chxdz D e Cd2x and
A B

M =
3

and assume that D is invertible. Define the Schur complement
M/D = A— BD 'B*.
Then
M >0 if and only if D>0 and M/D > 0.
Moreover, if M and M/D are invertible, we have

(M/D)~! —(M/D)"*BD~1

-1 _
M= =1_p-1p«(M/D)-* D'+ D-'B*(M/D)"'BD|"

The first statement can be found in [8, Theorem 1.12] and the second statement
can be found in [8, Theorem 1.2].

The second result is a simple matrix inversion identity that is closely related to
the Schur complement. Its correctness is readily verified algebraically.

Lemma 2.2 (Matrix inversion lemma). Let B € C#1*% qnd D € Cd2X%2. Then
(1-BD'B*)"'=14 B(D - B*B)"'B*,
provided that all the inverses in this identity exist.

2.2. Lehner’s formulas. Theorem 1.1 is essentially [5, Corollary 1.5], but it is
phrased there in a slightly different manner. For completeness, we spell out the
straightforward translation to the form given here.

Proof of Theorem 1.1. Choose ¢ > 0 so that ag + ¢1 > 0 and x + ¢1 > 0 (this is
possible since x is a bounded operator). By [5, Corollary 1.5], we have

n
ag +cl + 274+ Zaizai ,
i=1

|l 4 c1|| = inf
z>0
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where the infimum may also be restricted to those z such that the matrix inside
the norm is a multiple of the identity. The conclusion follows by applying to both
sides of this identity the elementary fact, that if y is self-adjoint and y + ¢1 > 0,
then ||y + c1]] = Amax(y + ¢1) = Amax(y) + c. O

For the proof of the second formula of Theorem 1.2, we will need a more general
form Theorem 1.1. To state it, we must first recall a standard construction of a
free semicircular family on the free Fock space, cf. [6, pp. 102-108]. Let

o0
F(C") = P
k=0
be the free Fock space over C", where by convention (C")®° denotes the one-
dimensional Hilbert space spanned by the vacuum state Q. For i = 1,...,n, we
define the creation operator I; on F(C™) by

li(a:1®---®xn) =6, 011 Q- Q Ty,

where eq,..., e, is the coordinate basis in C", and we define

Then sq,...,s, is a free semicircular family. Moreover, we have the identities
n
i=1

where pq denotes the orthogonal projection on (C™)®°.
We now state a generalization of Theorem 1.1 to self-adjoint linear combinations
of the operators [;, po with matrix coefficients.

Theorem 2.3 (Lehner). Let ag,b € C&%4 and ay,...,a, € C¥*?. Then
n n
Amax <a0 ®1+b@pa+ Y (ai@li+a] ®l;‘)) = inf Ao <a0 +2 Y a;‘zm) :
z
i=1 2 Tsp i=1

where z € C¥X<. Moreover, the infimum can be restricted to those z such that the
Matriz in Amax (- - +) s a multiple of the identity.

Proof. This follows from [5, Theorem 1.8] as in the above proof of Theorem 1.1 and
with the substitution z + b « 2~ 1. ]

We finally recall a classical dilation result that will be used in conjunction with
Lehner’s formulas; cf. [1, Lemma 4.9].

Lemma 2.4. Lety: Hy — Hy be a bounded linear operator between Hilbert spaces
Hi and Hy, and let 3 be the bounded operator on Hy & Ho defined by

|0y
y_L/ 0]

Then sp(3j) U {0} = sp((yy*)'/?) U —sp((yy*)*/?) U {0}.
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3. THE UPPER EDGE

The aim of this section is to prove the first variational formula of Theorem 1.2.
This formula will be deduced from Theorem 1.1 by a linearization argument. As we
will see, however, the reduction to the simple form given in Theorem 1.2 requires a
careful analysis of the resulting optimization problem.

Let us note at the outset that as Apax(y + ¢1) = Amax(y) + ¢ for any ¢ € R,
the variational formula in Theorem 1.2 is unchanged if we replace b by b+ c1. By
choosing ¢ large enough, we may assume without loss of generality that b > 0. This
assumption will henceforth be made throughout this section. In particular, this
enables us to write b = agpag for some agy € Cdxd,

We begin with a reduction to the setting of Theorem 1.1.

Lemma 3.1. Let r = m + 2d and

O O a3®1 n
0 0 T* =EL0+ZC~M®81‘,
i=1

i‘ =
a®1 x 0
where fori=1,...,n we define the r X r matrices
0 0 aj 0 0 0
a=10 0 0], a=10 0 af
a 0 O 0 a; O
Then Amax (%) = Amax(z2* +b®@ 1)1/2,
Proof. This follows directly from Lemma 2.4. O

Theorem 1.1 immediately yields the following.
Corollary 3.2. Define
fE) =ao+ 2"+ aiza;.
i=1

Then we have

% 1/2 _ ) — . ~
Amax (22" +b® 1) inf Amax (f(2)) ;r;fo f(%?_lgm Amax (f(2)),

where the infimum is taken over Z € CJ\".
Next, we identify some consequences of the identity f(Z) = AL.

Lemma 3.3. Write Z € CL" in the block decomposition of Lemma 3.1 as

p uvr V2
Z=|v] ¢ w
vy w' oz

Let A > 0, and suppose that Z > 0 and f(Z) = A1. Then

n n n -1
z >0, Za;zaj < A1, Ao+ 271+ Zai ()\1 — Za;‘-za]) al < AL.
j=1 i=1 j=1
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Proof. We begin by noting that

0 0 af n [0 0 0
fEH=10 0 0|+z"+) |0 alza; ajw*a}
ap 0 O i=1 awa;  a;qa;
To compute Z~!, we express
- p V q w
z= |:V>s< Z:| ’ Z = |:U}* Z:| ) V= [’Ul ’U2}

and apply Lemma 2.1. Using that f(Z) = A1 yields
(2/2)7" = A1,
0 aj] —(2/2)"'VZ =0,

* k0 kK
a;za; a;jw*a;

Z7N w27V 2) TV Y { ] = AL
=1

a;wa;  a;qa;

Plugging the first two equations into the last equation yields

1{0 0 " [a*za; a*w*a’
-1 - ekt i i
Z A [0 b] + Z [aiwai a;qa; } AL

i=
where we used that b = apaj. We note that the above equations are all well defined,
as £ > 0 ensures that Z > 0 and 2/Z > 0 by Lemma 2.1.

Next, we compute Z ! using Lemma 2.1 and plug the resulting expression into
the last equation display. Then we obtain

(Z)2)™' + Za;‘zai = A1, (3.1)
i=1
4w (Z) ) T e T+ Zaiqaf = AL. (3.2)
i=1

Moreover, as Z > 0, we have z > 0 and Z/z > 0. This yields the desired inequality
AL —Y".afza; = (Z/z)~' > 0 by (3.1). Finally, by (3.1) and the definition of Z/z,

-1
n
q>q—wztwt =7/ = ()\1 - Zafzaz) 5

i=1
and thus the last inequality in the statement follows from (3.2). O

The idea of the proof is now to show that given any Z as in Lemma 3.3, we can
find a matrix with a smaller value for the variational principle of Corollary 3.2.

Lemma 3.4. Let A > 0 and z € C¥X¢ such that z > 0 and >_jajza; < AL. Define

A1+ A 20 za0 0 A lagz
g z) = 0 (/\1 — Zj a;zaj)il 0
A lzag 0 z
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Then g(\;z) > 0 and

Al 0 0
flgxz)) =0 Al 0
0 0 Ao+ '+ a(M - a;fzaj)_laf
In particular, if Z is as in Lemma 3.3, then f(g(X;2)) < f(2).
Proof. Express 2 = g(); z) in block form as

P A+ A 2afzag W
N w* Y

with

Y =
z

N -1
(A1 - Z](’)ajzaj) 0] , W=1[0 Alajz].

Then Y >0 and 2/Y = A7'1 > 0, so that 2 > 0 by Lemma 2.1.
We can further use Lemma 2.1 to compute

Al 0 —ag
F7l=10 - >ojajza; 0
—ay 0 A b+ 271

The identity for f(%) now follows readily. Finally, if Z is as in Lemma 3.3, we obtain
f(2) < A1 = f(Z2) using the last inequality of Lemma 3.3. O

We can now prove the first part of Theorem 1.2.

Proposition 3.5. For z as in (1.2), we have

n n -1
* _ . —1 * *
Amax(z2" +b®1) = ;r;% )\max<b+z + Elai (1 — Elajzaj) ai>.
im =

>ja5za;<1
Proof. Corollary 3.2 and Lemma 3.4 yield

* 1/2 _ ; z
Amax(z2" +b®1) )1\2% %I;% Amax(f(2))
FG=a
S . .
> )I\I;% ;1'>1f(; Amax(f(g(Av Z)))
Zja;zaj <A1

> i0f Auax(£(2)) = Anax(22” + 5@ 1)1/2.
Therefore, the expression for f(g();z)) in Lemma 3.4 yields

Amax (22" +b® 1)1/2 = inf inf Amax(f(g(A;2))) =

A>0 z>0
>ojajza; <A1
n —1
inf inf max < A, Amax | A0+ 271+ g a; [ A1 — E ajza; a; | p.
A>0 z>0 - - .
>ojajza;<A1 z Jj=1

The conclusion follows readily by replacing z <~ Az in the inner infimum and using
that infyso max{\, A"'c} = ¢'/2 for ¢ > 0. O
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4. THE LOWER EDGE

The aim of this section is to prove the second variational formula of Theorem 1.2.
The basic structure of the proof is similar to that of the first variational formula.
However, the complication that arises in the present case is that we must rely on a
more involved linearization argument that appears in [5, §5.2].

To this end, define the operator

L=[1®po 1@} 1L - 100, 191,]

in C'*(2n+1) @ C?*4 @ B(F(C™)), and define the matrix
wi 0 .0

0 Z"ff —a1a} —ayal

0 —a1a] —aa),
T = 107 1

0 —apaj —apal

L 0 —anaj (:,Ofi’ —apal |

in CCr X+ @ CIxd where ag € C¥ ¢ will be chosen shortly. Then (2.1) yields
L(T®1)L* = apay ® 1 — zz™.

Now recall, as was explained at the beginning of §3, that the variational formula
that we aim to prove is unchanged if we replace b by b 4 c1 for any ¢ € R. By
choosing c to be sufficiently negative, we may assume without loss of generality that
we can write —b = apaf > 0 for some ag € C%d and that moreover T is positive
definite. This is assumed henceforth throughout this section.

Since T is positive definite, it can be expressed as T = RR* where

M,

{lll 0 Nl
R=|Vn B=|:
0 B|’ :

M,

Ny

for some matrix B € C?"9*27d that we expressed in block form with blocks M;, N; €
C?*2nd Then we obtain the following analogue of Corollary 3.2.

Lemma 4.1. Let s = 2(n + 1)d, define the s X s matrices

Lo 0 a 00 0
Ao = 0 0 0f, Ai=10 0 M;
vl o 0N 0

fori=1,...,n, and define

F(Z)=2Z""+)_ A;ZA,.

i=1
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Then
. . 2 . . .
(“Amin(zz" +b®1)) "~ = él;fo Amax(F(Z)) = ;\r;fo ér;fo Amax (F(2)).
Z 1> A Z 1> A
F(Z)=A1

Proof. Note that we can write

Ag@pa+ )y (Aieli+A;el) = [L(R®1) ( ®0) :
i=1
so that Lemma 2.4 yields
n
/\max<AO ®pQ+Z (A ®1; + A} ®lf)> =
i=1
)\max (L<T & 1)L*)1/2 = (_/\min(xm* + b ® 1))1/2

The conclusion now follows from Theorem 2.3.
We can now proceed in a similar manner as in §3.

Lemma 4.2. Write Z € C{%® in the block decomposition of Lemma 4.1 as

P ViV
Z=\|vy Q@ W
vy Wtz

Let A\ > 0, and suppose that Z >0, Z=1 > Ag, and f(Z) = 1. Then

aoag

1 n
—1 *
z P E NjzN;j <AL,

j=1

and
n

n -1
Y M, ()\1 — ZN;zNj> M; <M.
i=1

j=1
Proof. We begin by noting that

[0 0 0
F(Z)y=2z""+> |0 NyzN; N;W*M;
i=1 [0 M;WN; M;QM;

To compute Z~1, we express

PV w
7 = |:V* Z0:| ; ZO = |:V[C/2* Z:| ; V= [Vl VQ}

and apply Lemma 2.1. Using that F(Z) = A1 yields V =0, P = A~'1, and

" [ N*2N; N W*M?*
—1 i 1 1 i |
7+ 2 [, ont | =

where we note that Z > 0 implies that Zy > 0.



COMPUTING EXTREME SINGULAR VALUES OF FREE OPERATORS 11

Next, computing Z; ! using Lemma, 2.1, we obtain

(Zo/2)"" + > NjzN; = A1, (4.1)
j=1
2T W (Zo/2) T W Y D MiQM; = AL (4.2)

i=1
with 2 > 0 and Zp/z > 0. This yields the desired inequality A1 — >0 ) Nj2N; =
(Zo/2)~! > 0 by (4.1). Moreover, by (4.1) and the definition of Zy/z,

n -1
Q>Q-Wz'W*=2y/z= </\1 — ZN;zNj> ,

Jj=1

and thus the last inequality in the statement follows from (4.2).
Finally, note that as P = A~!'1 and V = 0, the condition Z~! > Ay becomes

{)\1 C*}>O O 1 [0]
c zy! ’  Vn+1 |ao]’

so that Lemma 2.1 implies that A1 —C*ZyC > 0. Thus % < A1. As we assumed

that apag > 0, the matrix ag is invertible, and thus taking the inverse of both sides

and rearranging yields the desired inequality z~' > %‘;‘fﬁ’ . O

The above lemma gives rise to the following value reduction principle.

Lemma 4.3. Let A > 0, z € CX4 with =1 > L1 %2 > =1 N;j2Nj < AL. Define

A nt+17
A1 0 0
Ghz)=| 0  (A1-X7 N:=N)™' 0
0 0 z

Then G(\;2) > 0, G(\,2)~ > Ay, and

Al 0 0
FGO:z) = |0 A1 0
0 0 =z '+ MM\ -0 NizNy) My
In particular, if Z is as in Lemma 4.2, then F(G(X;2)) < F(Z).

Proof. The only conclusion of the lemma that does not follow immediately from
the definitions is G(\,2)~! > Ag, that is, that

*

Al 0 o \/211

0 Al — Z?zl N;ZN]' 0 > 0.
—— 0 271

vn+1

By Lemma 2.1, this is equivalent to

1 A=Y NizN; 0 ]1 {0

n+1

Al — 0 ap] 0 21 a

>0
z
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‘:L‘fi’ by the argument

given at the end of the proof of Lemma 4.2. |

which is further equivalent to the assumption that z=! > %

We readily deduce the following.
Corollary 4.4. For x as in (1.2), we have

n n -1
—Amin(z2* +b®1) = 1infO . Amax <Zl + E M, (1 — E NJT"zNj> M;)
1 aga ‘ -

z e i=1 j=1

>;NjzN;<1

Proof. Apply Lemmas 4.1 and 4.3 exactly as in the proof of Proposition 3.5. O

Unlike in §3, the complication that now arises is that Corollary 4.4 depends only
implicitly on the matrices a1, ..., a,,b that define the operator on the left-hand
side. We must therefore further simplify the variational principle to arrive at the
explicit form that is stated in Theorem 1.2. To this end, define the matrices

Ny ay
=], A= |
N, an
in C"*! @ C?2nd and C**! @ C¥*™, respectively. Then we have the following.

Lemma 4.5. Let 27! > % Then 3 ; N7zN; <1 and

n

n -1
ZMi (1 — ZN;Z]\G) M} =
i=1 j=1
n - - aga \ -
v * 1 w [ ,—1 _ “0% . *
eSSy s

1

Proof. We first note that MZvNJ’»“ = faz-a;f and MiM;k = vaN;‘ = 1¢:j% faia;f by
the definition of M;, N;. We can therefore write

1®z1—NN*:1®<z1—aoao>+AA*>O,
n+1

which yields the desired inequality
STNN; = N*(1®2)N =N*(1@2"' —= NN*+ NN*)'N

j=1
—1-(1+N" (1@ =NN)T'N) <1

by Lemma 2.2. Next, we rearrange the previous equation display as

-1
n
(1 - ZN;ZN]) —14+N*(1®z"' = NN*)7'N.
j=1
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* * * aoa:; *
As M;N* = a;A* and M, M} = L — aiaj, we can compute

n n -1
> M, (1 - ZN;‘ZNJ) M; =
i=1 j=1

—1
A* (1 ® (z—1 - “(f()l) +AA*> A 11 at.
n

Applying Lemma 2.2 again yields the conclusion. ([l

n
n « +
—Qapa E a;
n+1 0 — 7
i=

We can now prove the second part of Theorem 1.2.

Proposition 4.6. For z as in (1.2), we have

n n -1
)\min(xx* + b (024 1) = Sup )\min <b + 2_1 + Z a; (1 — Z a;za]) af) .
j=1

2<0 i—1
Proof. This follows readily from Corollary 4.4, Lemma 4.5, and agaj = —b, where
we make the substitution 27! — 2220 . 1 O

n+1
5. THE MATRIX CAUCHY TRANSFORM

It remains to prove the last part of Theorem 1.2, viz., that the variational princi-
ples can be restricted to z such that the matrix on the right-hand side is a multiple
of the identity. This will be deduced from another result that is useful in its own
right. Lemma 1.4 will follow as a byproduct of the proof.

Define an analytic function

G :C\sp(zz* +b®1) — C™4,
the matriz Cauchy transform of xx* +b® 1, by
G(\) = (id®T) {()\ —rx" - b® 1)_1}.

Here 7 is the trace on the C*-probability space (A, 7) in which the free semicircular
family s1,..., sy, is defined. The following is the main result of this section.

Theorem 5.1. For every A € C\conv(sp(zz* +b® 1)), we have

n n -1
b+G()\)71+Zai (IZa;G()\)aJ) a; = A1,
i=1 j=1

In particular, both inverses in this equation exist.

In the case that d = 1 (that is, when the coefficients a;, b are scalar), the equation
in Theorem 5.1 reduces to the well known equation for the Cauchy transform of
the free Poisson distribution [6, pp. 203-206]. This explains the assertion made
in the introduction that the operators considered in this note may be viewed as
matrix-valued analogues of the free Poisson distribution.
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Proof of Theorem 5.1. When |)| is sufficiently large that g(A\) = (A —b® 1)~}
satisfies ||g(A)]|[|Jza*]] < 1, G(A\) has a convergent power series expansion

o0

G() = D1 @ 7)[g(N) (e (V)"

k=0

Let us fix such a A\ until further notice, and define
Cr=(1d®7) [(azx*g(}\))k] ,
Dy =(1id®T) {x*g()\) (mx*g()\))kx] .

Reasoning as in the proof of |7, Lemma 4.4] and using that the trace of a product
of an odd number of semicircular variables vanishes, we obtain the recursions

E
=

aiDya;(A —b) " Cr_1_y,

M-

Il
=

Ck+1 = Zalaf()\ - b)ilck —+
i=1

~

?

S
—= O

Dy = aj(A\=b)""Cra; +

i=1 =

af(A—b)"'Cla; Dy

M-

(=)

i=1

for k > 0 with initial condition Cy = 1. Summing these recursions over k yields

A—bG) =1+ zn: aH(\a G(\), (5.1)
HO\) =1+ zn: a:GNa; H(N), (5.2)

where we define

H):=1+Y Dy=1+ (id®7’)[m*()\— va* —b® 1)_1$].
k=0
We have therefore established the validity of (5.1)—(5.2) for all A € C with |}
sufficiently large. However, since both G and H are analytic, the validity of these
equations extends to every A € C\sp(zz* +b® 1).

Now note that as Im t& = —% for t € R, it follows from the definitions
of G(\) and H()) that Im G(\) and Im H(X) are negative definite when Im A > 0
and positive definite when Im A < 0. Thus G(\) and H(\) are invertible whenever
Im A # 0 by [4, Lemma 3.1]. Consequently, (5.2) yields

H\) = <1 - zn:a;fG()\)a]) ) (5.3)
j=1

and substituting this expression into (5.1) and multiplying on the right by G(\)~*
yields the conclusion in the case that Im A # 0.

It remains to consider the cases where A is real. If A > Apax(zz* + b ® 1), then
G(X\) and H (M) are positive definite and hence invertible by their definition, and
the proof is concluded as above. If A < A\pin(za* + b ® 1), then G()) is negative
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definite and thus 1 — . ajG(A)a; is positive definite. Together with (5.2), this
implies that G(X\) and H(\) are invertible, and we again conclude as above. O

We can now conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. The two variational principles were proved above in Propo-
sitions 3.5 and 4.6, respectively. It is convenient to write

—1
n n
h(z)=b+z"1 + Za,; (1 - Za?zcg) a;,
i=1 j=1

so that the two variational principles may by expressed as

)‘max(mm* +b® 1) = 11’>l% )\max(h(z))a
Zjazjzaj <1

Amin (2% + b ® 1) = sup Amin(h(2)).
2<0

It remains to prove the last assertion of the theorem.
Let us first consider the second variational principle. Clearly

Amin(z2* +b0® 1) = sup Amin(h(2)) > sup sup  Amin(h(2)),
2<0

since we restrict the supremum to a smaller set. On the other hand, fix any ¢ > 0
and let g = Apin (z2*+b®1)—e. Then G(p) < 0 and h(G(p)) = pl by the definition
of the matrix Cauchy transform and Theorem 5.1, respectively. Therefore

sup sup )\mm(h(z)) > )\mm(h(G(,U))) = Amin(l‘m* +b® 1) —E&.
0

Letting € | 0 shows that

Amin (22" +0® 1) =sup sup  Amin(h(2)),
AER  2<0
h(z)=A1
which is the desired conclusion.

For the first variational principle, let € > 0 and p = Apax(z2* +b®1) 4. Then
G(p) > 0 and h(G(p)) = p1 by the definition of the matrix Cauchy transform and
Theorem 5.1. Moreover, that }_; ajG(u)a; < 1 follows from (5.3) since H(p) > 0
by its definition. The proof for the first variational principle can now be completed
in the identical manner as for the second variational principle. ([

We conclude by proving Lemma 1.4. A similar result in the setting of Theo-
rem 1.1 appears in [2, Lemma 7.1], but the proof given here is entirely different.

Proof of Lemma 1.4. Under the assumptions of Lemma 1.4, it is readily verified
from the recursions in the proof of Theorem 5.1 that C, € B and Dy € A for all
k > 0. Thus G(A) € B and H()\) € A for all A € C\sp(zz* + b® 1). The rest of
the proof now proceeds exactly as in the proof of the last part of Theorem 1.2. [
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