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Abstract. A recent development in random matrix theory, the intrinsic free-
ness principle, establishes that the spectrum of very general random matrices
behaves as that of an associated free operator. This reduces the study of such
random matrices to the deterministic problem of computing spectral statis-
tics of the free operator. In the self-adjoint case, the spectral edges of the
free operator can be computed exactly by means of a variational formula due
to Lehner. In this note, we provide variational formulas for the largest and
smallest singular values in the non-self-adjoint case.

1. Introduction

Let X be a d× d random matrix with jointly Gaussian entries. Without loss of
generality, such a matrix can always be represented as

X = a0 +

n∑
i=1

aigi,

where g1, . . . , gn are i.i.d. standard Gaussian variables and a0, . . . , an ∈ Cd×d are
deterministic matrices. Since no structural assumptions are made, the entries of
such matrices can be highly nonhomogeneous and dependent.

Nonetheless, recent advances in random marix theory make it possible to under-
stand the spectrum of such matrices under surprisingly minimal assumptions. To
this end, define the deterministic operator

x = a0 ⊗ 1 +

n∑
i=1

ai ⊗ si, (1.1)

where s1, . . . , sn is a free semicircular family (cf. [6] or [1, §4.1]). The intrinsic
freeness principle [1, 2] establishes that under mild conditions, the spectral statistics
of X and x nearly coincide: in the self-adjoint case, the spectra of X and x are close
in the Hausdorff distance, while in the general case the same is true for the singular
value spectrum. The universality principles of [3] further extend these conclusions
to a large family of non-Gaussian random matrices.

The power of these results lies in the fact that they reduce the study of com-
plicated random matrices to the deterministic problem of computing the spectrum
of a free operator, which is accessible using free probability theory. In particular,
when x is self-adjoint, the following variational principle due to Lehner [5] (see §2.2)
provides an explicit formula for the spectral edges of x. In the following, we write
λmax(x) = sup sp(x) and λmin(x) = inf sp(x) = −λmax(−x).
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Theorem 1.1 (Lehner). Let x be as in (1.1) with a0, . . . , an ∈ Cd×ds.a. . Then

λmax(x) = inf
z>0

λmax

(
a0 + z−1 +

n∑
i=1

aizai

)
,

where z ∈ Cd×ds.a. . Moreover, the infimum can be restricted to those z such that the
matrix in λmax(· · ·) is a multiple of the identity.

Lehner’s formula is extremely useful in applications that require a precise under-
standing of the spectral edges of nonhomogeneous and dependent random matrices.
For example, several such applications can be found in [2].

When x is not self-adjoint, one is typically interested in the largest and smallest
singular values smax(x) = sup sp((xx∗)1/2) and smin(x) = inf sp((xx∗)1/2), respec-
tively. More generally, in problems related to sample covariance matrices, one is
interested in the spectral edges of the operator xx∗ + b ⊗ 1 with b ∈ Cd×ds.a. . We
emphasize at the outset that the computation of these quantities is in principle fully
settled in [5, §5.2]: Lehner provides a recipe for computing the operator norm of
any noncommutative quadratic polynomial of a free semicircular family with matrix
coefficients, of which the above quantities are special cases. However, this general
recipe gives rise to complicated and in some cases inexplicit variational formulas
that prove to be difficult to use in concrete situations.

The aim of this note is to obtain much simpler explicit formulas, in the spirit of
Theorem 1.1, for the spectral edges of the operator xx∗+ b⊗1 in the case that x is
centered (that is, a0 = 0 in (1.1)). This setting may be viewed as a matrix-valued
analogue of the free Poisson distribution, as will be explained in §5 below. Even
though this is a special case of the more general problem considered by Lehner, it
is one that arises frequently in applications, and tractable formulas for the spectral
edges are essential for the analysis of concrete models.

1.1. Main result. The following setting will be considered throughout the remain-
der of this note. Fix d,m, n ∈ N, deterministic matrices a1, . . . , an ∈ Cd×m, and a
self-adjoint deterministic matrix b ∈ Cd×ds.a. . Define the operator

x =

n∑
i=1

ai ⊗ si, (1.2)

where s1, . . . , sn is a free semicircular family.

Theorem 1.2. For x as in (1.2), we have

λmax(xx∗ + b⊗ 1) = inf
z>0∑

ja
∗
j zaj<1

λmax

(
b+ z−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jzaj

)−1

a∗i

)

and

λmin(xx∗ + b⊗ 1) = sup
z<0

λmin

(
b+ z−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jzaj

)−1

a∗i

)
,

where z ∈ Cd×ds.a. . Moreover, the infimum (supremum) can be restricted to those z
such that the matrix in λmax(· · ·) (λmin(· · ·)) is a multiple of the identity.



COMPUTING EXTREME SINGULAR VALUES OF FREE OPERATORS 3

As an immediate corollary, we obtain variational formulas for the largest and
smallest singular values smax(x) and smin(x) of x.

Corollary 1.3. For x as in (1.2), we have

smax(x)2 = inf
z>0∑

ja
∗
j zaj<1

λmax

(
z−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jzaj

)−1

a∗i

)

and

smin(x)2 = sup
z<0

λmin

(
z−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jzaj

)−1

a∗i

)
.

Proof. Apply Theorem 1.2 with b = 0. �

1.2. A reduction principle. We now state a reduction principle that facilitates
the application of Theorem 1.2 to models with symmetries. An analogous result in
the setting of Theorem 1.1 appears in [2, Lemma 7.1].

Lemma 1.4. Let A be a ∗-subalgebra of Cm×m and B be a ∗-subalgebra of Cd×d
such that the following conditions hold:

b ∈ B,
n∑
i=1

aiya
∗
i ∈ B for all y ∈ A,

n∑
j=1

a∗jzaj ∈ A for all z ∈ B.

Then for x as in (1.2), all the conclusions of Theorem 1.2 remain valid if the
infimum (supremum) is taken only over z ∈ B.

Let us illustrate this reduction principle in a special case that is important in
applications. Let X be a d×m random matrix with independent centered Gaussian
entries Xij ∼ N(0, σ2

ij). The associated free model x is given by

x =

d∑
i=1

m∑
j=1

σij eie
∗
j ⊗ sij (1.3)

where (sij)i∈[d],j∈[m] are free semicircular variables and e1, e2, . . . denote the stan-
dard basis vectors in Cd or Cm. Then we have the following.

Corollary 1.5. Let x have independent entries as in (1.3), and let b be a diagonal
matrix with diagonal entries b1, . . . , bd. Then we have

λmax(xx∗ + b⊗ 1) = inf
minj vj>0

maxj
∑

k σ
2
kjvk<1

max
i∈[d]

(
bi +

1

vi
+
∑
j∈[m]

σ2
ij

1−
∑
k∈[d] σ

2
kjvk

)

and

λmin(xx∗ + b⊗ 1) = sup
maxj vj<0

min
i∈[d]

(
bi +

1

vi
+
∑
j∈[m]

σ2
ij

1−
∑
k∈[d] σ

2
kjvk

)
,

where v ∈ Rd. Moreover, the infimum (supremum) can be restricted to those v such
that the vector in the maximum (minimum) is a multiple of the constant vector 1.
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Proof. Let A and B be the ∗-algebras of diagonal matrices in Cm×m and Cd×d,
respectively. Then it is readily verified that the assumptions of Lemma 1.4 are
satisfied, and the conclusion follows by restricting the variational principles of The-
orem 1.2 to diagonal matrices z with diagonal entries v1, . . . , vd. �

An application of Corollary 1.5 to phase transitions of nonhomogeneous sample
covariance matrices is developed in [2, §3.6 and §8.5].

1.3. Organization of this note. In §2, we recall some results of matrix algebra
and the formulas of Lehner that will be used in the proofs. The first variational
formula of Theorem 1.2 is proved in §3, and the second variational formula is proved
in §4. The last statement of Theorem 1.2 and Lemma 1.4 are proved in §5.

2. Preliminaries

2.1. Matrix algebra. The following two theorems of matrix algebra will play an
important role in our proofs. The first is a classical result on Schur complements.

Lemma 2.1 (Schur complements). Let A ∈ Cd1×d1s.a. , B ∈ Cd1×d2 , D ∈ Cd2×d2s.a. , and

M =

[
A B

B∗ D

]
,

and assume that D is invertible. Define the Schur complement

M/D = A−BD−1B∗.

Then
M > 0 if and only if D > 0 and M/D > 0.

Moreover, if M and M/D are invertible, we have

M−1 =

[
(M/D)−1 −(M/D)−1BD−1

−D−1B∗(M/D)−1 D−1 +D−1B∗(M/D)−1BD−1

]
.

The first statement can be found in [8, Theorem 1.12] and the second statement
can be found in [8, Theorem 1.2].

The second result is a simple matrix inversion identity that is closely related to
the Schur complement. Its correctness is readily verified algebraically.

Lemma 2.2 (Matrix inversion lemma). Let B ∈ Cd1×d2 and D ∈ Cd2×d2s.a. . Then

(1−BD−1B∗)−1 = 1 +B(D −B∗B)−1B∗,

provided that all the inverses in this identity exist.

2.2. Lehner’s formulas. Theorem 1.1 is essentially [5, Corollary 1.5], but it is
phrased there in a slightly different manner. For completeness, we spell out the
straightforward translation to the form given here.

Proof of Theorem 1.1. Choose c > 0 so that a0 + c1 ≥ 0 and x + c1 ≥ 0 (this is
possible since x is a bounded operator). By [5, Corollary 1.5], we have

‖x+ c1‖ = inf
z>0

∥∥∥∥∥a0 + c1 + z−1 +

n∑
i=1

aizai

∥∥∥∥∥,
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where the infimum may also be restricted to those z such that the matrix inside
the norm is a multiple of the identity. The conclusion follows by applying to both
sides of this identity the elementary fact, that if y is self-adjoint and y + c1 ≥ 0,
then ‖y + c1‖ = λmax(y + c1) = λmax(y) + c. �

For the proof of the second formula of Theorem 1.2, we will need a more general
form Theorem 1.1. To state it, we must first recall a standard construction of a
free semicircular family on the free Fock space, cf. [6, pp. 102–108]. Let

F(Cn) :=

∞⊕
k=0

(Cn)⊗k

be the free Fock space over Cn, where by convention (Cn)⊗0 denotes the one-
dimensional Hilbert space spanned by the vacuum state Ω. For i = 1, . . . , n, we
define the creation operator li on F(Cn) by

li(x1 ⊗ · · · ⊗ xn) := ei ⊗ x1 ⊗ · · · ⊗ xn,

where e1, . . . , en is the coordinate basis in Cn, and we define

si := li + l∗i .

Then s1, . . . , sn is a free semicircular family. Moreover, we have the identities

l∗i lj = 1i=j1,

n∑
i=1

lil
∗
i = 1− pΩ, (2.1)

where pΩ denotes the orthogonal projection on (Cn)⊗0.
We now state a generalization of Theorem 1.1 to self-adjoint linear combinations

of the operators li, pΩ with matrix coefficients.

Theorem 2.3 (Lehner). Let a0, b ∈ Cd×ds.a. and a1, . . . , an ∈ Cd×d. Then

λmax

(
a0⊗1+b⊗pΩ +

n∑
i=1

(
ai⊗ li+a∗i ⊗ l∗i

))
= inf

z>0
z−1>b

λmax

(
a0 +z−1 +

n∑
i=1

a∗i zai

)
,

where z ∈ Cd×ds.a. . Moreover, the infimum can be restricted to those z such that the
matrix in λmax(· · ·) is a multiple of the identity.

Proof. This follows from [5, Theorem 1.8] as in the above proof of Theorem 1.1 and
with the substitution z + b← z−1. �

We finally recall a classical dilation result that will be used in conjunction with
Lehner’s formulas; cf. [1, Lemma 4.9].

Lemma 2.4. Let y : H1 → H2 be a bounded linear operator between Hilbert spaces
H1 and H2, and let ỹ be the bounded operator on H1 ⊕H2 defined by

ỹ =

[
0 y∗

y 0

]
.

Then sp(ỹ) ∪ {0} = sp((yy∗)1/2) ∪ −sp((yy∗)1/2) ∪ {0}.
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3. The upper edge

The aim of this section is to prove the first variational formula of Theorem 1.2.
This formula will be deduced from Theorem 1.1 by a linearization argument. As we
will see, however, the reduction to the simple form given in Theorem 1.2 requires a
careful analysis of the resulting optimization problem.

Let us note at the outset that as λmax(y + c1) = λmax(y) + c for any c ∈ R,
the variational formula in Theorem 1.2 is unchanged if we replace b by b+ c1. By
choosing c large enough, we may assume without loss of generality that b > 0. This
assumption will henceforth be made throughout this section. In particular, this
enables us to write b = a0a

∗
0 for some a0 ∈ Cd×d.

We begin with a reduction to the setting of Theorem 1.1.

Lemma 3.1. Let r = m+ 2d and

x̃ =

 0 0 a∗0 ⊗ 1

0 0 x∗

a0 ⊗ 1 x 0

 = ã0 +

n∑
i=1

ãi ⊗ si,

where for i = 1, . . . , n we define the r × r matrices

ã0 =

 0 0 a∗0
0 0 0

a0 0 0

 , ãi =

0 0 0

0 0 a∗i
0 ai 0

 .
Then λmax(x̃) = λmax(xx∗ + b⊗ 1)1/2.

Proof. This follows directly from Lemma 2.4. �

Theorem 1.1 immediately yields the following.

Corollary 3.2. Define

f(z̃) = ã0 + z̃−1 +

n∑
i=1

ãiz̃ãi.

Then we have

λmax(xx∗ + b⊗ 1)1/2 = inf
z̃>0

λmax(f(z̃)) = inf
λ>0

inf
z̃>0

f(z̃)=λ1

λmax(f(z̃)),

where the infimum is taken over z̃ ∈ Cr×rs.a. .

Next, we identify some consequences of the identity f(z̃) = λ1.

Lemma 3.3. Write z̃ ∈ Cr×rs.a. in the block decomposition of Lemma 3.1 as

z̃ =

 p v1 v2

v∗1 q w

v∗2 w∗ z

 .
Let λ > 0, and suppose that z̃ > 0 and f(z̃) = λ1. Then

z > 0,

n∑
j=1

a∗jzaj < λ1, λ−1b+ z−1 +

n∑
i=1

ai

(
λ1−

n∑
j=1

a∗jzaj

)−1

a∗i ≤ λ1.
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Proof. We begin by noting that

f(z̃) =

 0 0 a∗0
0 0 0

a0 0 0

+ z̃−1 +

n∑
i=1

0 0 0

0 a∗i zai a∗iw
∗a∗i

0 aiwai aiqa
∗
i

 .
To compute z̃−1, we express

z̃ =

[
p V

V ∗ Z

]
, Z =

[
q w

w∗ z

]
, V =

[
v1 v2

]
and apply Lemma 2.1. Using that f(z̃) = λ1 yields

(z̃/Z)−1 = λ1,[
0 a∗0

]
− (z̃/Z)−1V Z−1 = 0,

Z−1 + Z−1V ∗(z̃/Z)−1V Z−1 +

n∑
i=1

[
a∗i zai a∗iw

∗a∗i
aiwai aiqa

∗
i

]
= λ1.

Plugging the first two equations into the last equation yields

Z−1 +
1

λ

[
0 0

0 b

]
+

n∑
i=1

[
a∗i zai a∗iw

∗a∗i
aiwai aiqa

∗
i

]
= λ1,

where we used that b = a0a
∗
0. We note that the above equations are all well defined,

as z̃ > 0 ensures that Z > 0 and z̃/Z > 0 by Lemma 2.1.
Next, we compute Z−1 using Lemma 2.1 and plug the resulting expression into

the last equation display. Then we obtain

(Z/z)−1 +

n∑
i=1

a∗i zai = λ1, (3.1)

z−1 + z−1w∗(Z/z)−1wz−1 + λ−1b+

n∑
i=1

aiqa
∗
i = λ1. (3.2)

Moreover, as Z > 0, we have z > 0 and Z/z > 0. This yields the desired inequality
λ1−

∑
i a
∗
i zai = (Z/z)−1 > 0 by (3.1). Finally, by (3.1) and the definition of Z/z,

q ≥ q − wz−1w∗ = Z/z =

(
λ1−

n∑
i=1

a∗i zai

)−1

,

and thus the last inequality in the statement follows from (3.2). �

The idea of the proof is now to show that given any z̃ as in Lemma 3.3, we can
find a matrix with a smaller value for the variational principle of Corollary 3.2.

Lemma 3.4. Let λ > 0 and z ∈ Cd×ds.a. such that z > 0 and
∑
j a
∗
jzaj < λ1. Define

g(λ; z) =

λ−11 + λ−2a∗0za0 0 λ−1a∗0z

0
(
λ1−

∑
j a
∗
jzaj

)−1
0

λ−1za0 0 z

 .
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Then g(λ; z) > 0 and

f(g(λ; z)) =

λ1 0 0

0 λ1 0

0 0 λ−1b+ z−1 +
∑
i ai
(
λ1−

∑
j a
∗
jzaj

)−1
a∗i

 .
In particular, if z̃ is as in Lemma 3.3, then f(g(λ; z)) ≤ f(z̃).

Proof. Express ẑ = g(λ; z) in block form as

ẑ =

[
λ−11 + λ−2a∗0za0 W

W ∗ Y

]
with

Y =

[(
λ1−

∑
j a
∗
jzaj

)−1
0

0 z

]
, W =

[
0 λ−1a∗0z

]
.

Then Y > 0 and ẑ/Y = λ−11 > 0, so that ẑ > 0 by Lemma 2.1.
We can further use Lemma 2.1 to compute

ẑ−1 =

 λ1 0 −a∗0
0 λ1−

∑
j a
∗
jzaj 0

−a0 0 λ−1b+ z−1

 .
The identity for f(ẑ) now follows readily. Finally, if z̃ is as in Lemma 3.3, we obtain
f(ẑ) ≤ λ1 = f(z̃) using the last inequality of Lemma 3.3. �

We can now prove the first part of Theorem 1.2.

Proposition 3.5. For x as in (1.2), we have

λmax(xx∗ + b⊗ 1) = inf
z>0∑

ja
∗
j zaj<1

λmax

(
b+ z−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jzaj

)−1

a∗i

)
.

Proof. Corollary 3.2 and Lemma 3.4 yield

λmax(xx∗ + b⊗ 1)1/2 = inf
λ>0

inf
z̃>0

f(z̃)=λ1

λmax(f(z̃))

≥ inf
λ>0

inf
z>0∑

ja
∗
j zaj<λ1

λmax(f(g(λ; z)))

≥ inf
z̃>0

λmax(f(z̃)) = λmax(xx∗ + b⊗ 1)1/2.

Therefore, the expression for f(g(λ; z)) in Lemma 3.4 yields

λmax(xx∗ + b⊗ 1)1/2 = inf
λ>0

inf
z>0∑

ja
∗
j zaj<λ1

λmax(f(g(λ; z))) =

inf
λ>0

inf
z>0∑

ja
∗
j zaj<λ1

max

{
λ, λmax

(
λ−1b+ z−1 +

∑
i

ai

(
λ1−

n∑
j=1

a∗jzaj

)−1

a∗i

)}
.

The conclusion follows readily by replacing z ← λz in the inner infimum and using
that infλ>0 max{λ, λ−1c} = c1/2 for c ≥ 0. �
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4. The lower edge

The aim of this section is to prove the second variational formula of Theorem 1.2.
The basic structure of the proof is similar to that of the first variational formula.
However, the complication that arises in the present case is that we must rely on a
more involved linearization argument that appears in [5, §5.2].

To this end, define the operator

L =
[
1⊗ pΩ 1⊗ l∗1 1⊗ l1 · · · 1⊗ l∗n 1⊗ ln

]
in C1×(2n+1) ⊗ Cd×d ⊗B(F(Cn)), and define the matrix

T =



a0a
∗
0

n+1 0 · · · 0

0
a0a

∗
0

n+1 − a1a
∗
1 −a1a

∗
n

0 −a1a
∗
1 −a1a

∗
n

...
. . .

...
0 −ana∗1 −ana∗n
0 −ana∗1 · · · a0a

∗
0

n+1 − ana
∗
n


in C(2n+1)×(2n+1)⊗Cd×d, where a0 ∈ Cd×d will be chosen shortly. Then (2.1) yields

L(T ⊗ 1)L∗ = a0a
∗
0 ⊗ 1− xx∗.

Now recall, as was explained at the beginning of §3, that the variational formula
that we aim to prove is unchanged if we replace b by b + c1 for any c ∈ R. By
choosing c to be sufficiently negative, we may assume without loss of generality that
we can write −b = a0a

∗
0 > 0 for some a0 ∈ Cd×d, and that moreover T is positive

definite. This is assumed henceforth throughout this section.
Since T is positive definite, it can be expressed as T = RR∗ where

R =

[
a0√
n+1

0

0 B

]
, B =


M1

N1

...
Mn

Nn


for some matrix B ∈ C2nd×2nd that we expressed in block form with blocksMi, Ni ∈
Cd×2nd. Then we obtain the following analogue of Corollary 3.2.

Lemma 4.1. Let s = 2(n+ 1)d, define the s× s matrices

A0 =
1√
n+ 1

 0 0 a∗0
0 0 0

a0 0 0

 , Ai =

0 0 0

0 0 M∗i
0 Ni 0


for i = 1, . . . , n, and define

F (Z) = Z−1 +

n∑
i=1

A∗iZAi.
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Then(
−λmin(xx∗ + b⊗ 1)

)1/2
= inf

Z>0
Z−1>A0

λmax(F (Z)) = inf
λ>0

inf
Z>0

Z−1>A0

F (Z)=λ1

λmax(F (Z)).

Proof. Note that we can write

A0 ⊗ pΩ +

n∑
i=1

(
Ai ⊗ li +A∗i ⊗ l∗i

)
=

[
0 (R⊗ 1)∗L∗

L(R⊗ 1) 0

]
,

so that Lemma 2.4 yields

λmax

(
A0 ⊗ pΩ +

n∑
i=1

(
Ai ⊗ li +A∗i ⊗ l∗i

))
=

λmax

(
L(T ⊗ 1)L∗

)1/2
=
(
−λmin(xx∗ + b⊗ 1)

)1/2
.

The conclusion now follows from Theorem 2.3. �

We can now proceed in a similar manner as in §3.

Lemma 4.2. Write Z ∈ Cs×ss.a. in the block decomposition of Lemma 4.1 as

Z =

 P V1 V2

V ∗1 Q W

V ∗2 W ∗ z

 .
Let λ > 0, and suppose that Z > 0, Z−1 > A0, and f(Z) = λ1. Then

z−1 >
1

λ

a0a
∗
0

n+ 1
,

n∑
j=1

N∗j zNj < λ1,

and

z−1 +

n∑
i=1

Mi

(
λ1−

n∑
j=1

N∗j zNj

)−1

M∗i ≤ λ1.

Proof. We begin by noting that

F (Z) = Z−1 +

n∑
i=1

0 0 0

0 N∗i zNi N∗i W
∗M∗i

0 MiWNi MiQM
∗
i

 .
To compute Z−1, we express

Z =

[
P V

V ∗ Z0

]
, Z0 =

[
Q W

W ∗ z

]
, V =

[
V1 V2

]
and apply Lemma 2.1. Using that F (Z) = λ1 yields V = 0, P = λ−11, and

Z−1
0 +

n∑
i=1

[
N∗i zNi N∗i W

∗M∗i
MiWNi MiQM

∗
i

]
= λ1,

where we note that Z > 0 implies that Z0 > 0.
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Next, computing Z−1
0 using Lemma 2.1, we obtain

(Z0/z)
−1 +

n∑
j=1

N∗j zNj = λ1, (4.1)

z−1 + z−1W ∗(Z0/z)
−1Wz−1 +

n∑
i=1

MiQM
∗
i = λ1. (4.2)

with z > 0 and Z0/z > 0. This yields the desired inequality λ1 −
∑n
j=1N

∗
j zNj =

(Z0/z)
−1 > 0 by (4.1). Moreover, by (4.1) and the definition of Z0/z,

Q ≥ Q−Wz−1W ∗ = Z0/z =

(
λ1−

n∑
j=1

N∗j zNj

)−1

,

and thus the last inequality in the statement follows from (4.2).
Finally, note that as P = λ−11 and V = 0, the condition Z−1 > A0 becomes[

λ1 C∗

C Z−1
0

]
> 0, C = − 1√

n+ 1

[
0

a0

]
,

so that Lemma 2.1 implies that λ1−C∗Z0C > 0. Thus a
∗
0za0
n+1 < λ1. As we assumed

that a0a
∗
0 > 0, the matrix a0 is invertible, and thus taking the inverse of both sides

and rearranging yields the desired inequality z−1 > 1
λ
a0a

∗
0

n+1 . �

The above lemma gives rise to the following value reduction principle.

Lemma 4.3. Let λ > 0, z ∈ Cd×ds.a. with z−1 > 1
λ
a0a

∗
0

n+1 ,
∑n
j=1N

∗
j zNj < λ1. Define

G(λ; z) =

λ−11 0 0

0
(
λ1−

∑n
j=1N

∗
j zNj

)−1
0

0 0 z

 .
Then G(λ; z) > 0, G(λ, z)−1 > A0, and

F (G(λ; z)) =

λ1 0 0

0 λ1 0

0 0 z−1 +
∑n
i=1Mi

(
λ1−

∑n
j=1N

∗
j zNj

)−1
M∗i

 .
In particular, if Z is as in Lemma 4.2, then F (G(λ; z)) ≤ F (Z).

Proof. The only conclusion of the lemma that does not follow immediately from
the definitions is G(λ, z)−1 > A0, that is, that λ1 0 − a∗0√

n+1

0 λ1−
∑n
j=1N

∗
j zNj 0

− a0√
n+1

0 z−1

 > 0.

By Lemma 2.1, this is equivalent to

λ1− 1

n+ 1

[
0 a∗0

] [λ1−∑n
j=1N

∗
j zNj 0

0 z−1

]−1 [
0

a0

]
> 0,
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which is further equivalent to the assumption that z−1 > 1
λ
a0a

∗
0

n+1 by the argument
given at the end of the proof of Lemma 4.2. �

We readily deduce the following.

Corollary 4.4. For x as in (1.2), we have

−λmin(xx∗ + b⊗ 1) = inf
z−1>

a0a∗
0

n+1∑
jN

∗
j zNj<1

λmax

(
z−1 +

n∑
i=1

Mi

(
1−

n∑
j=1

N∗j zNj

)−1

M∗i

)
.

Proof. Apply Lemmas 4.1 and 4.3 exactly as in the proof of Proposition 3.5. �

Unlike in §3, the complication that now arises is that Corollary 4.4 depends only
implicitly on the matrices a1, . . . , an, b that define the operator on the left-hand
side. We must therefore further simplify the variational principle to arrive at the
explicit form that is stated in Theorem 1.2. To this end, define the matrices

N =

N1

...
Nn

 , A =

a1

...
an


in Cn×1 ⊗ Cd×2nd and Cn×1 ⊗ Cd×m, respectively. Then we have the following.

Lemma 4.5. Let z−1 >
a0a

∗
0

n+1 . Then
∑
j N
∗
j zNj < 1 and

n∑
i=1

Mi

(
1−

n∑
j=1

N∗j zNj

)−1

M∗i =

n

n+ 1
a0a
∗
0 −

n∑
i=1

ai

(
1 +

n∑
j=1

a∗j

(
z−1 − a0a

∗
0

n+ 1

)−1

aj

)−1

a∗i .

Proof. We first note that MiN
∗
j = −aia∗j and MiM

∗
j = NiN

∗
j = 1i=j

a0a
∗
0

n+1 −aia
∗
j by

the definition of Mi, Ni. We can therefore write

1⊗ z−1 −NN∗ = 1⊗
(
z−1 − a0a

∗
0

n+ 1

)
+AA∗ > 0,

which yields the desired inequality
n∑
j=1

N∗j zNj = N∗(1⊗ z)N = N∗
(
1⊗ z−1 −NN∗ +NN∗

)−1
N

= 1−
(
1 +N∗

(
1⊗ z−1 −NN∗

)−1
N
)−1

< 1

by Lemma 2.2. Next, we rearrange the previous equation display as(
1−

n∑
j=1

N∗j zNj

)−1

= 1 +N∗
(
1⊗ z−1 −NN∗

)−1
N.
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As MiN
∗ = aiA

∗ and MiM
∗
i =

a0a
∗
0

n+1 − aia
∗
i , we can compute

n∑
i=1

Mi

(
1−

n∑
j=1

N∗j zNj

)−1

M∗i =

n

n+ 1
a0a
∗
0 +

n∑
i=1

ai

[
A∗

(
1⊗

(
z−1 − a0a

∗
0

n+ 1

)
+AA∗

)−1

A− 1

]
a∗i .

Applying Lemma 2.2 again yields the conclusion. �

We can now prove the second part of Theorem 1.2.

Proposition 4.6. For x as in (1.2), we have

λmin(xx∗ + b⊗ 1) = sup
z<0

λmin

(
b+ z−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jzaj

)−1

a∗i

)
.

Proof. This follows readily from Corollary 4.4, Lemma 4.5, and a0a
∗
0 = −b, where

we make the substitution z−1 − a0a
∗
0

n+1 ← −z
−1. �

5. The matrix Cauchy transform

It remains to prove the last part of Theorem 1.2, viz., that the variational princi-
ples can be restricted to z such that the matrix on the right-hand side is a multiple
of the identity. This will be deduced from another result that is useful in its own
right. Lemma 1.4 will follow as a byproduct of the proof.

Define an analytic function

G : C\sp(xx∗ + b⊗ 1)→ Cd×d,

the matrix Cauchy transform of xx∗ + b⊗ 1, by

G(λ) := (id⊗ τ)
[(
λ− xx∗ − b⊗ 1

)−1
]
.

Here τ is the trace on the C∗-probability space (A, τ) in which the free semicircular
family s1, . . . , sn is defined. The following is the main result of this section.

Theorem 5.1. For every λ ∈ C\conv(sp(xx∗ + b⊗ 1)), we have

b+G(λ)−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jG(λ)aj

)−1

a∗i = λ1.

In particular, both inverses in this equation exist.

In the case that d = 1 (that is, when the coefficients ai, b are scalar), the equation
in Theorem 5.1 reduces to the well known equation for the Cauchy transform of
the free Poisson distribution [6, pp. 203–206]. This explains the assertion made
in the introduction that the operators considered in this note may be viewed as
matrix-valued analogues of the free Poisson distribution.
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Proof of Theorem 5.1. When |λ| is sufficiently large that g(λ) = (λ − b ⊗ 1)−1

satisfies ‖g(λ)‖‖xx∗‖ < 1, G(λ) has a convergent power series expansion

G(λ) =

∞∑
k=0

(id⊗ τ)
[
g(λ)

(
xx∗g(λ)

)k]
.

Let us fix such a λ until further notice, and define

Ck = (id⊗ τ)
[(
xx∗g(λ)

)k]
,

Dk = (id⊗ τ)
[
x∗g(λ)

(
xx∗g(λ)

)k
x
]
.

Reasoning as in the proof of [7, Lemma 4.4] and using that the trace of a product
of an odd number of semicircular variables vanishes, we obtain the recursions

Ck+1 =

n∑
i=1

aia
∗
i (λ− b)−1Ck +

k−1∑
l=0

n∑
i=1

aiDla
∗
i (λ− b)−1Ck−1−l,

Dk =

n∑
i=1

a∗i (λ− b)−1Ckai +

k−1∑
l=0

n∑
i=1

a∗i (λ− b)−1ClaiDk−1−l

for k ≥ 0 with initial condition C0 = 1. Summing these recursions over k yields

(λ− b)G(λ) = 1 +

n∑
i=1

aiH(λ)a∗iG(λ), (5.1)

H(λ) = 1 +

n∑
i=1

a∗iG(λ)aiH(λ), (5.2)

where we define

H(λ) := 1 +

∞∑
k=0

Dk = 1 + (id⊗ τ)
[
x∗
(
λ− xx∗ − b⊗ 1

)−1
x
]
.

We have therefore established the validity of (5.1)–(5.2) for all λ ∈ C with |λ|
sufficiently large. However, since both G and H are analytic, the validity of these
equations extends to every λ ∈ C\sp(xx∗ + b⊗ 1).

Now note that as Im 1
λ−t = − Imλ

|λ−t|2 for t ∈ R, it follows from the definitions
of G(λ) and H(λ) that ImG(λ) and ImH(λ) are negative definite when Imλ > 0

and positive definite when Imλ < 0. Thus G(λ) and H(λ) are invertible whenever
Imλ 6= 0 by [4, Lemma 3.1]. Consequently, (5.2) yields

H(λ) =

(
1−

n∑
j=1

a∗jG(λ)aj

)−1

, (5.3)

and substituting this expression into (5.1) and multiplying on the right by G(λ)−1

yields the conclusion in the case that Imλ 6= 0.
It remains to consider the cases where λ is real. If λ > λmax(xx∗ + b⊗ 1), then

G(λ) and H(λ) are positive definite and hence invertible by their definition, and
the proof is concluded as above. If λ < λmin(xx∗ + b ⊗ 1), then G(λ) is negative
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definite and thus 1 −
∑
j a
∗
jG(λ)aj is positive definite. Together with (5.2), this

implies that G(λ) and H(λ) are invertible, and we again conclude as above. �

We can now conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. The two variational principles were proved above in Propo-
sitions 3.5 and 4.6, respectively. It is convenient to write

h(z) = b+ z−1 +

n∑
i=1

ai

(
1−

n∑
j=1

a∗jzaj

)−1

a∗i ,

so that the two variational principles may by expressed as

λmax(xx∗ + b⊗ 1) = inf
z>0∑

ja
∗
j zaj<1

λmax(h(z)),

λmin(xx∗ + b⊗ 1) = sup
z<0

λmin(h(z)).

It remains to prove the last assertion of the theorem.
Let us first consider the second variational principle. Clearly

λmin(xx∗ + b⊗ 1) = sup
z<0

λmin(h(z)) ≥ sup
λ∈R

sup
z<0

h(z)=λ1

λmin(h(z)),

since we restrict the supremum to a smaller set. On the other hand, fix any ε > 0

and let µ = λmin(xx∗+b⊗1)−ε. ThenG(µ) < 0 and h(G(µ)) = µ1 by the definition
of the matrix Cauchy transform and Theorem 5.1, respectively. Therefore

sup
λ∈R

sup
z<0

h(z)=λ1

λmin(h(z)) ≥ λmin(h(G(µ))) = λmin(xx∗ + b⊗ 1)− ε.

Letting ε ↓ 0 shows that

λmin(xx∗ + b⊗ 1) = sup
λ∈R

sup
z<0

h(z)=λ1

λmin(h(z)),

which is the desired conclusion.
For the first variational principle, let ε > 0 and µ = λmax(xx∗+ b⊗1) + ε. Then

G(µ) > 0 and h(G(µ)) = µ1 by the definition of the matrix Cauchy transform and
Theorem 5.1. Moreover, that

∑
j a
∗
jG(µ)aj < 1 follows from (5.3) since H(µ) > 0

by its definition. The proof for the first variational principle can now be completed
in the identical manner as for the second variational principle. �

We conclude by proving Lemma 1.4. A similar result in the setting of Theo-
rem 1.1 appears in [2, Lemma 7.1], but the proof given here is entirely different.

Proof of Lemma 1.4. Under the assumptions of Lemma 1.4, it is readily verified
from the recursions in the proof of Theorem 5.1 that Ck ∈ B and Dk ∈ A for all
k ≥ 0. Thus G(λ) ∈ B and H(λ) ∈ A for all λ ∈ C\sp(xx∗ + b ⊗ 1). The rest of
the proof now proceeds exactly as in the proof of the last part of Theorem 1.2. �
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