Colouring visibility graphs

Rose McCarty

Joint work with:
James Davies, Tomasz Krawczyk, and Bartosz Walczak

September 2020



Curve visibility graphs

o Consider a (finite) set of points S on a Jordan curve 7.



Curve visibility graphs
Thinl of T es
e\_‘( wp\“S of

a room.

A

o Consider a (finite) set of points S on a Jordan curve 7.
o Points A, B € S are mutually visible if AB C int(7).



Curve visibility graphs

o Consider a (finite) set of points S on a Jordan curve 7.
o Points A, B € S are mutually visible if AB C int(7).
e This defines a curve visibility graph.



Curve visibility graphs

o Consider a (finite) set of points S on a Jordan curve 7.
o Points A, B € S are mutually visible if AB C int(7).
e This defines a curve visibility graph.

o It is ordered if it comes with a linear ordering of S, ccw.
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vertices of the same colour are mutually visible.
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e A colouring assigns colours to vertices so that no two
vertices of the same colour are mutually visible.

o A clique is a set W such that conv(W) C int(J)U W.
o Chromatic number y = min # of colours in a colouring
o Cligue number w = max # of vertices in a clique



Theorem

There is a polynomial-time algorithm which returns the clique
number w and a (3 - 4°71)-colouring of an ordered curve
visibility graph.




Theorem

There is a polynomial-time algorithm which returns the clique
number w and a (3 - 4°71)-colouring of an ordered curve
visibility graph.

w<x <3471

o NP-Complete to test if x <5 (Cagirici, .HIinény, Roy, 19)
(for ovdere d 1):)\\3304 visikr \\'6y 3«0.'5\',5)
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o A class is y-bounded if there exists f so that every graph
in the class with clique number w has y < f(w).

o There exist graphs with y arbitrarily large and w = 2.
e So the class of curve visibility graphs is y-bounded.

e This was open even for polygon visibility graphs.
(Kara, Pér, Wood, 05)
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Polygon visibility graphs

o A GP polygon visibility graph is a curve visibility graph
where S is in GP and consecutive vertices are adjacent.

o There is an O(n’m) algorithm to compute w.
(Ghosh, Shermer, Bhattacharya, Goswami, 07)
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Where are we?

o The class of curve visibility graphs is hereditary (closed
under deleting vertices) and y-bounded (y < f(w)).

o The bounds w < xy < 3-4“~! can be obtained in
polynomial time when the input graph is ordered.

o GP polygon visibility graphs are a nice, but not
hereditary, subclass.



Hereditary, y-bounded classes

Conjecture (Esperet, 17)

Every hereditary, x-bounded class is polynomially
x-bounded.
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o That is, there exists a polynomial p so that every graph
in the class with clique number w has y < p(w).



Hereditary, y-bounded classes

Conjecture (Esperet, 17)

Every hereditary, x-bounded class is polynomially
x-bounded.

X§3_4w—1

X < w” 7 x < w?

o That is, there exists a polynomial p so that every graph
in the class with clique number w has y < p(w).

o We believe that curve visibility graphs are
polynomially y-bounded.
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Hereditary, y-bounded classes

Mostly defined by...
o forbidden substructures
o basic classes + operations/decompositions
@ geometric representations

- intersection /disjointness graphs
- visibility graphs?
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o Consider a set S of disjoint shapes in the plane and some
(possible empty) obstacle J C R2.

o The visibility graph has vertex set S and an edge for
each pair of mutually visible shapes in S.
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Visibility graphs
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o Consider a set S of disjoint shapes in the plane and some
(possible empty) obstacle J C R2.

o The visibility graph has vertex set S and an edge for
each pair of mutually visible shapes in S.

o Without extra restrictions, every graph is a visibility graph.
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e A and B are mutually visible if they can be joined by a
vertical segment which intersects < k other intervals.
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e S is a set of horizontal closed segments

e A and B are mutually visible if they can be joined by a
vertical segment which intersects < k other intervals.
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@ k = 0: can be characterized by a connection to planar
triangulations (Luccio, Mazzone, Wong, 87)
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e k = oo: interval graphs

@ k = 0: can be characterized by a connection to planar
triangulations (Luccio, Mazzone, Wong, 87)

e k < 0o: bounded average degree
(Dean, Evans, Gethner, Laison, Safari, Trotter, 06)
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Point visibility graphs

e S is a set of points
o A and B are mutually visible if AB intersects no vertices.

e Point visibility graphs with w < 3 have y <3
(Kéra, Pér, Wood, 05).

o But they are not y-bounded (Pfender, 08).
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o Consider a GP curve visibility graph and line arrangement.
e There is a homeomorphism moving 7 to the unit circle C.

o The line arrangement yields a pseudoline a‘_l"rar‘:)%ement.k
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Curve pseudovisibility graphs

o Consider a GP curve visibility graph and line arrangement.
e There is a homeomorphism moving 7 to the unit circle C.
e The line arrangement yields a pseudoline arrangement.
o If we start with any pseudolinear drawing of K, on C...
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(O'Rourke, Streinu, 97)
(Abello, Kumar, 02)

o Consider a GP curve visibility graph and line arrangement.
e There is a homeomorphism moving 7 to the unit circle C.
e The line arrangement yields a pseudoline arrangement.

o If we start with any pseudolinear drawing of K, on C,
then we obtain a curve pseudovisibility graph.
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Theorem

There is a polynomial-time algorithm which returns the clique
number w and a (3 - 4°71)-colouring of an ordered curve

pseudovisibility graph.

the clique number w
= | — and

a (3-4“1)-colouring
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Proof Sketch (y < 3-4“71).

1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.
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Graphs in H have non-adjacent vertices u and v which are

connected on each side by a “path of crossing edges”.
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Proof Sketch (y < 3-4“71),

1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.
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An ordered graph is capped if whenever a < b < c < d
and ac, bd € E(G), then ad € E(G) as well.
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no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.
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The forbidden configuration.

An ordered graph is capped if whenever a < b<c < d
and ac, bd € E(G), then ad € E(G) as well.
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1) We define an infinite family of ordered graphs H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

o Fix e; colour all vertices which can see an interior point on e.
o This induces a capped subgraph.
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1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.
2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.
3) Find an edge partition of each of the 3 capped graphs into

w — 1 triangle-free capped graphs.
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1) We define an infinite family of ordered graphs #H so that
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2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
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o Consider a capped graph.
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1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
w — 1 triangle-free capped graphs.
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Consider a capped graph.

Color all edges “underneath the right side of any triangle” red.
The black part is triangle-free and capped.

The red part has clique numberé;u_ and is capped.
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1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
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Consider a capped graph.

Color all edges “underneath the right side of any triangle” red.
The black part is triangle-free and capped.

The red part has clique number < w and is capped.
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1) We define an infinite family of ordered graphs #H so that
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2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
w — 1 triangle-free capped graphs.

o0
1 2 2 4 S5 6
Consider a capped graph.
Color all edges “underneath the right side of any triangle” red.
The black part is triangle-free and capped.
The red part has clique number < w and is capped.
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1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
w — 1 triangle-free capped graphs.
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Consider a capped graph.

Color all edges “underneath the right side of any triangle” red.
The black part is triangle-free and gapped.

The red part has clique number %and is capped.
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1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
w — 1 triangle-free capped graphs.
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Consider a capped graph.

Color all edges “underneath the right side of any triangle” red.
The black part is triangle-free and capped.

The red part has clique number < w and is capped.
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1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partition of each of the 3 capped graphs into
w — 1 triangle-free capped graphs.
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Consider a capped graph.

Color all edges “underneath the right side of any triangle” red.
The black part is triangle-free and capped.

The red part has clique number < w and is capped.

So continue within red part.
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1 2 3 4 5 6

o This is how we compute the clique number w of a capped
graph, which is used as a subroutine.



Proof Sketch (y < 3-4“71).

1) We define an infinite family of ordered graphs #H so that
no graph in H can be obtained by deleting vertices.

2) Use 1) to partition the vertex set into 3 sets, each of
which induces a capped subgraph.

3) Find an edge partitjon of each of the 3 capped graphs into
w — 1 triangle-free capped graphs.
4) Colour triangle-frpe capped graphs.

o Some extra worK is required to get the bound of 4.
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Open Problems

1) Are visibility graphs a good source of new hereditary,
x-bounded graph classes?
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Open Problems

1) Are visibility graphs a good source of new hereditary,
x-bounded graph classes?
o vague: Number of holes? How well-structured are they?
2) Can ordered curve pseudovisibility graphs be
recognized in polynomial time?
o seems likely: see (Abello, Kumar, 02)
3) Are capped graphs polynomially x-bounded?
o (i.e. is there a polynomial p such that x < p(w)?)
o special case of the conjecture of (Esperet, 17).
o would imply that curve pseudovisibility graphs are
polynomially y-bounded.
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The forbidden configuration for capped graphs.



Thank you!



