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*We assume general position.
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This defines an ordered pseudo-visibility graph.









You can't always go the other way around (Streinu, 05).



*picture from Wikipedia
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Theorem

We can compute w and find a (3 - 4“~')-colouring of an
ordered pseudo-visibility graph in polynomial time.

Proof idea.
1) Find forbidden sub-structures.
2) Fix a linear ordering, and partition the vertex set into 3 parts,
each of which induces a capped subgraph.
3) Colour capped graphs; apply (Scott-Seymour 20).
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Proof idea.

@ Hamiltonicity — Jordan curve

o ¢: V(G)® — {+,—} specifies clockwise/counterclockwise
o Needs to satisfy: Aab A Aac A Aad A Abc A A\ed = A\bd

e ¢ is pre-CC system (Knuth 92)

@ ¢ is chirotope of oriented matroid — Folkman-Lawrence



Proof idea.

Aab A\ Aac A Aad N A\bc N\ A\ed = A\bd
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Thank you!






