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Kuratowski's Theorem
A graph is planar iff it has no Ks or K33 minor.
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Graph Minors Theorem (Robertson & Seymour 2004)
Every minor-closed class has finitely many forbidden minors.



Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “decompose” into
parts that “almost embed” in a surface of bounded genus.
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Theory of “sparsity” (Nesetfil & Ossona de Mendez)
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Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “decompose” into
parts that “almost embed” in a surface of bounded genus.
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What are the “dense” analogs?
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Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “decompose” into
parts that “almost embed” in a surface of bounded genus.
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Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “decompose” into
parts that “almost embed” in a surface of bounded genus.

Nowere dense Figure by Felix Reidl
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planar graphs — circle graphs
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Bouchet's Theorem

A graph is a circle graph iff it has no W, We, or W,

vertex-minor.

circle graphs forbidden vertex-minors
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Conjecture (Oum 2017)

Every vertex-minor-closed class has finitely many forbidden
vertex-minors.
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.

Ongoing project with Jim Geelen & Paul Wollan
aiming to prove the conjecture.



Geelen and Oum'’s Theorem

A graph is a circle graph iff it has no Ws, W, . ..

pivot-minor.
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Every pivot-minor-closed class has finitely many forbidden
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Geelen and Oum'’s Theorem

A graph is a circle graph iff it has no Ws, W, . ..
pivot-minor.

Common generalization!
(Bouchet 1988; de Fraysseix 1981)

Conjecture (Oum 2017)

Every pivot-minor-closed class has finitely many forbidden
pivot-minors.
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The vertex-minors of a graph G are the graphs that can be
obtained from G by

1) vertex deletion and

2) local complementation: select a vertex v and replace the
induced subgraph on neighborhood(v) by its complement.
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G (that is, can be
obtained from G by a sequence of local complementations).
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G (that is, can be
obtained from G by a sequence of local complementations).

Vv

u
Gxvxv=0G_G



Why local equivalence classes?

@ nice interpretation for graph states in quantum computing

information flow
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Conjecture (Geelen)

If the graph states that can be prepared come from a proper
vertex-minor-closed class F, then BQPr = BPP.
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Why local equivalence classes?
@ nice interpretation for graph states in quantum computing

o locally equivalent graphs have the same cut-rank function

X Y
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O OO - k= =
O OO KKK
O OO K =

- X Y

adjacency matrix

The cut-rank of X C V/(G) is the rank of adj[X, X] over GF».

It is symmetric: cut-rank(X) = cut-rank(X).



Theorem (Robertson & Seymour 2003)

The graphs in any proper minor-closed class “decompose” into
parts that “almost embed” in a surface of bounded genus.

Figure by Felix Reidl
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.



Grid Theorem (Robertson & Seymour 1986)

A class of graphs has bounded tree-width if and only if it does
not contain all planar graphs as minors.
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Theorem (Geelen, Kwon, McCarty, & Wollan 2020)

A class of graphs has bounded rank-width if and only if it
does not contain all circle graphs as vertex-minors.

excludes

comparability grid
as a vertex-minor



Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class F and any G € F with a large
grid minor,



Flat Wall Theorem (Robertson & Seymour 1995)

For any proper minor-closed class F and any G € F with a large
grid minor, there is a planar subgraph containing a lot of the grid
so that the rest of G “almost attaches” onto just the outer face.



Local Structure Theorem (Geelen, McCarty, & Wollan)

For any proper vertex-minor-closed class F and any G € F with a
prime circle graph containing a comparability grid,




Local Structure Theorem (Geelen, McCarty, & Wollan)

For any proper vertex-minor-closed class F and any G € F with a
prime circle graph containing a comparability grid, the rest of G
“almost attaches” in a way that is “mostly compatible”.
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SENARNY

chord diagram circle graph tour graph

View the chord diagram as a 3-regular graph and contract

each of the chords to get the tour graph. It has a specified

Eulerian circuit. Consider locally complementing at v then w.
To delete v, split it off in the tour graph.
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In a 4-regular graph, there are 3 ways to split off v.
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In a 4-regular graph, there are 3 ways to split off v.

Theorem (Kotzig, Bouchet)

For prime circle graphs H and G, H is a vertex-minor of G iff
tour(H) can be obtained from tour(G) by splitting off vics.
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.

Proof approach:
WMA our favorite circle graph is an induced subgraph.
Add more vertices as long as they still induce a circle graph.

If x can be added as a chord,
then its neighbourhood can be encoded by two arcs.
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Conjecture (Geelen)

The graphs in any proper vertex-minor-closed class
“decompose” into parts that are “almost” circle graphs.

Proof approach:
WMA our favorite circle graph is an induced subgraph.
Add more vertices as long as they still induce a circle graph.

N\
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Any can be encoded by even number of arcs.
We can locally complement at vertices in the circle graph.



Rank-width(G) is the minimum width of a subcubic tree T
with leafs V(G).
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with leafs V(G).
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not contain all bipartite circle graph as pivot-minors.




Conjecture (Oum 2009)

A class of graphs has bounded rank-width if and only if it does
not contain all bipartite circle graph as pivot-minors.

Would be a common generalization!



Thank you!



