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wins the radius-r flipper game for each r € N.

Related to Dreier, Mahlmann, Siebertz, and Torunczyk. Two
player game: Flipper and Connector. In each round:

1) If |[V(G)| =1 then Flipper wins in that round.
2) Else, Connector picks a vertex v and we restrict to B,(v).
3) Then Flipper performs a flip.

Flipper wins the game on a class C if there exists t € N so
that Flipper wins in < t rounds on each G € C.
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First-order model-checking is fixed-parameter tractable on any
class which is monadically stable.

Recall that we use first-order logic to “exclude”:

half-graph



Theorem (Comes from Dvorak 2018)

A class is nowhere dense if and only if it is monadically stable
and forbids a K; ;-subgraph for some t € N.



Theorem (Comes from Dvorak 2018)

A class is nowhere dense if and only if it is monadically stable
and forbids a K; ;-subgraph for some t € N.

So our main theorem

Theorem

A class of graphs is monadically stable if and only if Flipper
wins the radius-r flipper game for each r € N.



Theorem (Comes from Dvorak 2018)

A class is nowhere dense if and only if it is monadically stable
and forbids a K; ;-subgraph for some t € N.

So our main theorem

Theorem

A class of graphs is monadically stable if and only if Flipper
wins the radius-r flipper game for each r € N.

is like
Theorem (Grohe, Kreutzer, Siebertz)

A class of graphs is nowhere dense if and only if Splitter
wins the radius-r splitter game for each r € N.
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and forbids a K; ;-subgraph for some t € N.

So our main theorem

Theorem
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is like
Theorem (Grohe, Kreutzer, Siebertz)

A class of graphs is nowhere dense if and only if Splitter
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but for classes that are allowed to be “dense”.
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Formulas in first-order logic are obtained as follows.

1) x adj y and x = y are formulas.

2) If ¢ and 1) are formulas, then so are =g, ¢ A, .. ..
3) If ¢ is a formula, then so is Ix¢ and Vx¢.

A sentence is a formula ¢ with no free variables. If ¢ is true
for G, we say G models ¢ or write G = ¢.

Naive algorithm for k-vertex-dominating set: O(n¥).

Naive algorithm for determining if G |= ¢: O(nl?)).

FO model-checking is FPT on C if there exists f : N - N
and ¢ € R so that the problem can be solved in time f(|¢|)n°.
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Recall that a class is monadically stable if half-graphs are
“excluded via" first-order logic. To exclude something from C:

SN,

For fixed ¢(x, y), the resulting transduction of C is the class of
all induced subgraphs of graphs which can be obtained this way.

o(x,y) = (=x adj y) A (c(x) # c(y)) A (=x copy y)
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N
bounded expansion

(shallow minors have bounded average degree)

N
nowhere dense

(have forbidden shallow minors)
1M
monadically stable
(exclude half-graph using first-order logic)
1M
monadically dependent
(exclude anything using first-order logic)
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dependent if and only if FO model-checking is FPT on C.

Conjecture (Gajarsky, Pilipczuk, Toruriczyk)

A class has unbounded clique-width if and only if it has an
FO-transduction which contains a subdivision of each wall.

Thank youl!



