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Conjecture (structure)

Every graph with no H-vertex-minor “decomposes” into
parts that are “almost” circle graphs.

Like graph minors structure theorem of Robertson & Seymour.
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Conjecture (structure)

Every graph with no H-vertex-minor ‘“decomposes” into
parts that are “almost” circle graphs.

Classes with no H-vertex-minor have strong Erdos-Hajnal property.

(Chudnovsky-Oum via Chudnovsky-Scott-Seymour-Spirkl)
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Conjecture (structure)

Every graph with no H-vertex-minor ‘“decomposes” into
parts that are “almost” circle graphs.

Classes with no H-vertex-minor are y-bounded.
(Davies)

chromatic number x clique number w

X < fu(w)
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Asked by (Kim-Kwon-Oum-Sivaraman).

Follows from (structure) since
“decomposing” works (Bonamy-Pilipczuk).
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Conjecture (structure)

Every graph with no H-vertex-minor ‘“decomposes” into
parts that are “almost” circle graphs.

Conjecture (polynomial y-boundedness)

Every graph with no H-vertex-minor has xy < polyy(w).

Conjecture (WQO)

For Hy, H>, Hs, ..., some H; is a vertex-minor of H;, i < j.

Conjecture (vertex-minor-testing)

Can test if n-vertex graph has an H-vertex-minor in f(H) - n°.

There is a common generalization of minors and vertex-minors.
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The vertex-minors of a graph G are obtained by
1) vertex deletion and

2) local complementation (replace the induced subgraph on
the neighborhood of v by its complement).
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The vertex-minors of a graph G are the induced subgraphs
of graphs that are locally equivalent to G.

Gxvxv=0G_G



Why local equivalence classes?

o graph states in quantum computing

information flow
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Conjecture (Geelen)

When the graph states that can be prepared have no
H-vertex-minor, BQPy = BPP.
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Conjecture (structure)

Every graph with no H-vertex-minor ‘decomposes” into parts
that are “almost” circle graphs.



Why local equivalence classes?
@ graph states in quantum computing
@ rank-connectivity

@ has a nice interpretation for circle graphs...
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chord diagram circle graph tour graph

View the chord diagram as a 3-regular graph and contract

each of the chords to get the tour graph. It has a specified

Eulerian circuit. Consider locally complementing at v then w.
To delete v, split it off in the tour graph.
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In a 4-regular graph, there are 3 ways to split off v. This is
how we define immersions.

Theorem (Kotzig, Bouchet)

If H and G are 2-rank-connected circle graphs, then H is a
vertex-minor of G <= tour(H) immerses into tour(G).
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Lemma (Bouchet)

If H is a vertex-minor of G and v € V(G)\ V(H), then H is a
vertex-minor of either G — v, Gxv—v, or Gxvxuxv—v
for each neighbour u of v.
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If we only allow 2/3 splits, then this generalizes minors of
planar graphs (up to duality).
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Consider a 2-face-coloring. Put a vertex in each black face,
and an edge between touching faces. Consider a split at v.
The split that we do not allow...



If we only allow 2/3 splits, then this generalizes minors of
planar graphs (up to duality).

X
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U
tour graph

Consider a 2-face-coloring. Put a vertex in each black face,
and an edge between touching faces. Consider a split at v.
The split that we do not allow breaks the orientation.
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Conjecture (structure)

Every graph with no H-vertex-minor ‘“decomposes” into
parts that are “almost” circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all
planar graphs as minors.
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branch-width ~ rank-width



Conjecture (structure)

Every graph with no H-vertex-minor ‘“decomposes” into
parts that are “almost” circle graphs.

Grid Theorem (Robertson-Seymour)

A class of graphs has unbounded branch-width iff it has all
planar graphs as minors.

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all
circle graphs as vertex-minors.

Conjectured by Oum.
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For X C V(G), cut-rank(X) is the rank over the binary field of...

Rank-width(G) is the minimum width of a subcubic tree T with
leafs V(G).

a.” ™\
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width(T) = eénEza(>;)cut—rank( )

(Oum-Seymour, Bouchet, Oum)



For X C V(G), cut-rank(X) is the rank over the binary field of...

Rank-width(G) is the minimum width of a subcubic tree T with
leafs V(G).

Theorem (Geelen-Kwon-McCarty-Wollan)

A class of graphs has unbounded rank-width iff it has all circle
graphs as vertex-minors.

Vv
4 a bc d

circle graph decomposition
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Conjecture (structure)
Every graph with no H-vertex-minor ‘“decomposes” into
parts that are py-perturbations of circle graphs.

WMA our favorite circle graph is an induced subgraph.

Say one whose tour graph has a big grid subgraph.
Add in vertices for as long as possible.
When can we add in x? (Think of “non-planarities”.)



When can we add in x?

V

u

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.



When can we add in x?

V

u

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph,



When can we add in x?

V

u

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.



When can we add in x?

V

u

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.



When can we add in x?

V

u

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.

o To split off, we “add the parities”.



When can we add in x?

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.

o To split off, we “add the parities”.



When can we add in x?

V

u

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.
o To split off, we “add the parities”.
o We can add x <= we can shift so that |X| < 2 (Bouchet).



When can we add in x?

V

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.
o To split off, we “add the parities”.
o We can add x <= we can shift so that |X| < 2 (Bouchet).



When can we add in x?

V

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.
o To split off, we “add the parities”.
o We can add x <= we can shift so that |X| < 2 (Bouchet).



When can we add in x?

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.
o To split off, we “add the parities”.
o We can add x <= we can shift so that |X| < 2 (Bouchet).



When can we add in x?

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.
o To split off, we “add the parities”.
o We can add x <= we can shift so that |X| < 2 (Bouchet).



When can we add in x?

@ The neighborhood of x can be stored as ¥, C E(tour graph)
of even size.

o We view it as a signed graph, so we can shift at vertices.
o To split off, we “add the parities”.
o We can add x <= we can shift so that |X| < 2 (Bouchet).



When can we add in x?

Special case of a precise min-max theorem for partitioning
an Eulerian group-labelled graph into rooted circuits.



When can we add in x?

Special case of a precise min-max theorem for partitioning
an Eulerian group-labelled graph into rooted circuits.



When can we add in x?

Special case of a precise min-max theorem for partitioning
an Eulerian group-labelled graph into rooted circuits.

Like (Chudnovsky-Geelen-Gerards-Goddyn-Lohman-Seymour)
(for line graphs), except every edge must be used.



When can we add in x?

Special case of a precise min-max theorem for partitioning
an Eulerian group-labelled graph into rooted circuits.

Like (Chudnovsky-Geelen-Gerards-Goddyn-Lohman-Seymour)
(for line graphs), except every edge must be used.

Signed graphs are Zy-labelled; for n vertices we have Z3-labelling.
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Conjecture (structure)

Every graph with no H-vertex-minor ‘“decomposes” into
parts that are py-perturbations of circle graphs.

Conjecture (polynomial x-boundedness)
Every graph with no H-vertex-minor has xy < polyy(w).

Conjecture (WQO)

For Hy, H>, Hs, ..., some H; is a vertex-minor of H;, i < j.

Conjecture (vertex-minor-testing)

Can test if n-vertex graph has an H-vertex-minor in f(H) - n°.



Thank you!



