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Structure Theorem (Robertson & Seymour 2003)

A class of graphs excludes a minor iff its graphs “decompose”
into parts that “almost embed” in a surface of bounded genus.
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View G as a model over the signature with a binary relation E.
Thus formulas in first-order logic are obtained as follows.

1) xy € E and x = y are formulas.
2) If ¢ and % are formulas, then so are =¢, ¢ A1, .. ..
3) If ¢ is a formula, then so is Ix¢ and Vx¢.

A class C is stable if there is no formula 1(x, y) st for all n
there is G € C with tuples ai,...,a,, by, ..., b, of vertices st

We also assume all classes are closed under deleting vertices.
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Flipper wins the game on a class C if there exists t € N so
that Flipper wins in < t rounds on each G € C.
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First-order model-checking is fixed-parameter tractable on
any class which is stable & excludes K, ;-subgraph.

Naive algorithm for determining if G |= ¢: O(nl?)).

FO model-checking is FPT on C if there exists f : N - N
and ¢ € R so that the problem can be solved in time f(|¢|)n°.
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class is NIP.

Instead “exclude” an arbitrary bipartite graph:

bipartite graph
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Use transductions to exclude something from C:

SNINISIN

For fixed ¢(x,y), the resulting transduction of C is
the class of all graphs which can be obtained this way.

o(x,y) = (-xy € E) A (c(x) # c(y)) A (—x copy y)
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Thank you!



