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View G as a model over the signature with a binary relation E .
Thus formulas in first-order logic are obtained as follows.

1) xy ∈ E and x = y are formulas.

2) If ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ, . . ..

3) If ϕ is a formula, then so is ∃xϕ and ∀xϕ.

A class C is stable if there is no formula ψ(x̄ , ȳ) st for all n
there is G ∈ C with tuples ā1, . . . , ān, b̄1, . . . , b̄n of vertices st

G |= ϕ(āi , b̄j) ↔ i ≤ j .

We also assume all classes are closed under deleting vertices.
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A class of graphs is stable if and only if Flipper wins the
radius-r flipper game for each r ∈ N.

Two player game: Flipper and Connector. In each round:

1) If |V (G )| = 1 then Flipper wins in that round.

2) Else, Connector picks a vertex v and we restrict to Br (v).

3) Then Flipper performs a flip.



Theorem (With Gajarský, Mählmann, Ohlmann, Pilipczuk,
Przybyszewski, Siebertz, Soko lowski, & Toruńczyk.)
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Flipper wins the game on a class C if there exists t ∈ N so
that Flipper wins in ≤ t rounds on each G ∈ C.
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First-order model-checking is fixed-parameter tractable on
any class which is stable & excludes Kt,t-subgraph.

Naive algorithm for determining if G |= ϕ: O(n|ϕ|).

FO model-checking is FPT on C if there exists f : N → N
and c ∈ R so that the problem can be solved in time f (|ϕ|)nc .
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Instead “exclude” an arbitrary bipartite graph:

bipartite graph
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Use transductions to exclude something from C:

For fixed ϕ(x , y), the resulting transduction of C is
the class of all graphs which can be obtained this way.

ϕ(x , y) := (¬xy ∈ E ) ∧ (c(x) ̸= c(y)) ∧ (¬x copy y)
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Conjecture (Gajarský, Pilipczuk, Toruńczyk)

A class has unbounded clique-width if and only if it has an
FO-transduction which contains a subdivision of each wall.

Thank you!


