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“The methods we will take up here are all variations on
a basic result known to everyone who has done any

walking in the hills: the mountain pass lemma.”

L. Nirenberg, Variational and topological methods in
nonlinear problems, Bull. Am. Math. Soc., 4, 1981.

“Many of the world’s mountain ranges have presented
formidable barriers to travel.”

(Adapted from the Wikipedia article: Mountain Pass)



Abstract

In this thesis, we deal with new min-max constructions of minimal surfaces
and with an analysis of the min-max invariant, the width, on a class of
Riemannian metrics of positive scalar curvature on the three-sphere. The
work is divided in two independent parts.

We prove the existence of closed embedded minimal hypersurfaces in com-
plete non-compact Riemannian manifolds containing a bounded open subset
with smooth and strictly mean-concave boundary and a natural thickness
assumption on the behavior of the geometry at infinity. With this intent,
we develop a min-max theory for the area functional following Almgren and
Pitts’ setting, to produce minimal hypersurfaces with intersecting properties.

In the second part, we build a sequence of Riemannian metrics on the
three-sphere with scalar curvature greater than or equal to 6 and arbitrarily
large widths. The search for metrics with such properties is motivated by
the rigidity result of min-max minimal spheres in three-manifolds obtained
by F. Codá Marques and A. Neves. The construction of these examples is
based on the connected sum procedure of positive scalar curvature metrics
introduced by Gromov and Lawson. We develop analogies between the area of
the boundaries of some special open subsets in our Riemannian three-spheres
and 2-colorings of associated full binary trees. Via the relative isoperimetric
inequality and elementary combinatorial arguments, we argue that the widths
converge to infinity.

Keywords: Min-max theory, mean-curvature concave regions, maximum
principle for varifolds, minimal surfaces in non-compact manifolds, relative
isoperimetric inequality, scalar curvature.
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Resumo

Nessa tese, lidamos com uma nova construção min-max de hipersuperf́ıcies
mı́nimas e com uma análise do invariante min-max, a width, em uma classe de
métricas Riemannianas de curvatura escalar positiva na esfera tridimensional.
Este trabalho é dividido em duas partes independentes.

Em primeiro lugar, provamos a existência de hipersuperf́ıcies mı́nimas
fechadas e mergulhadas em variedades Riemannianas completas e não com-
pactas, contendo um subconjunto aberto e limitado com fronteira suave e
estritamente côncava com relação à curvatura média e com uma hipótese de
espessura na geometria dos fins. Com esta finalidade, é desenvolvida uma
nova teoria min-max, seguindo a abordagem de Almgren e Pitts, que produz
hipersuperf́ıcies mı́nimas que intersectam um domı́nio previamente fixado.

Na segunda parte do trabalho, constrúımos uma sequência de métricas
Riemannianas na esfera, com curvatura escalar maior do que ou igual a 6 e
widths arbitrariamente grandes. A pergunta sobre a existência de métricas
com tais propriedades é motivada pelo teorema de rigidez de esferas min-max
em variedades tridimensionais obtido por F. Codá Marques e A. Neves. A
construção desses exemplos é baseada no procedimento de soma conexa de
métricas de curvatura escalar positiva introduzido por Gromov e Lawson.
Criamos analogias entre a área do bordo de alguns abertos especialmente es-
colhidos nas nossas esferas Riemannianas e 2-colorações de árvores binárias
associadas. Via a desigualdade isoperimétrica relativa e argumentos combi-
natórios, somos capazes de concluir que as widths convergem para infinito.

Palavras-chave: Teoria min-max, superf́ıcies mı́nimas em variedades não
compactas, prinćıpio do máximo para varifolds, regiões côncavas com respeito
à curvatura média, curvatura escalar, desigualdade isoperimétrica relativa.
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Introduction

Minimal surfaces, the extremizers of the area functional, are among the most
important topics in differential geometry. Euler and Lagrange were the first
to consider minimal surfaces, proving that if the graph of a C2 function u is
minimal in the Euclidean space, then u satisfies a second order elliptic quasi-
linear partial differential equation. Later, Meusnier discovered a geometric
characterization for these surfaces, by the vanishing of the mean-curvature.
These two points of view explain why minimal surfaces are natural objects
of study in geometric analysis.

Henceforth, many mathematicians contributed to the development of the
theory and applied its ideas to settle deep problems and establish beautiful
results in geometry. For instance, minimal surfaces have a strong link with
problems involving the scalar curvature of three-manifolds, the proof of the
positive mass conjecture in general relativity by Schoen and Yau [57] is one
of the most important examples of this connection. Some other important
recent works using minimal surfaces are the proof of the finite time extinction
of the Ricci flow with surgeries starting at a homotopy 3-sphere by Colding
and Minicozzi [18] and [19], the proof of the Willmore Conjecture and the
existence of infinitely many closed minimal hypersurfaces in closed manifolds
with positive Ricci curvature by Marques and Neves [36] and [37].

The existence of minimal submanifolds with some specific properties plays
a fundamental role in the development of the theory. The most natural way
to produce minimal surfaces is by minimizing the area functional in a fixed
class. This idea was applied in many contexts: in a class of surfaces with
same boundary, known as the Plateau’s Problem; or in a homology class;
or even in the class of surfaces Σ ⊂ Ω, with ∂Σ ⊂ ∂Ω, the free boundary
problem. It was proved, by Schoen and Yau [56], Sacks and Uhlenbeck [50]
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and Freedman, Hass and Scott [28], that if Σ is a closed incompressible
surface in a 3-manifold M , then there is a least area immersion with the
same action in the π1 level.

In the topology of 3-manifolds, there are two important types of surfaces,
namely the Heegaard splittings and the incompressible surfaces. The results
above show that this second type occur as minimal surfaces produced by
minimization processes, and for this reason, they are stable, i.e., the Morse
index is equal to zero. It is also possible to apply variational methods to
construct higher index minimal surfaces. There are two basic approaches:
applying Morse theory to the energy functional on the space of maps from a
fixed surface, such as in the works of Sacks and Uhlenbeck [49], Micallef and
Moore [39] and Fraser [27], or via a min-max argument for the area functional
over classes of sweepouts. In some cases, these methods can be applied to
realize Heegaard splitings as embedded minimal surfaces, see [48] and [17].

This min-max technique is the central object of study of this thesis, it
was inspired by the work of Birkhoff [8] on the existence of simple closed
geodesics in Riemannian 2-spheres, a question posed by Poincaré. Looking
for closed geodesics, he interpreted the geometric point of view suggested by
the Principle of Least Action as the iteration of a specific curve shortening
process. This process is continuous with respect to variations of the beginning
curve, so it can be applied to whole families of closed curves sweeping out a
given Riemannian 2-sphere at the same time. Considering the longest curve
in the family after each step of the shortening process, a subsequence of these
converges to a closed geodesic.

In this thesis, we deal with new min-max constructions of minimal sur-
faces and with an analysis of the min-max invariant, the width, on a class
of Riemannian metrics of positive scalar curvature on the three-sphere. The
work is divided in two independent parts, which we detail now.

1. Min-max minimal surfaces in non-compact manifolds

There is no immersed closed minimal surface in the Euclidean space R3.
This fact illustrates the existence of simple geometric conditions creating
obstructions for a Riemannian manifold to admit closed minimal surfaces.
In the Euclidean space, we can see the obstruction coming in the following
way: by the Jordan-Brouwer separation theorem every connected smooth
closed surface Σ2 ⊂ R3 divides R3 in two components, one of them bounded,
which we denote Ω. Start contracting a large Euclidean ball containing Ω
until it touches Σ the first time. Let p ∈ Σ be a first contact point, then the
maximum principle says that the mean curvature vector of Σ at p is non-zero
and points inside Ω. In particular, Σ2 ⊂ R3 is not minimal.

Instituto de Matemática Pura e Aplicada 2 2015
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In first part of this work we consider two natural and purely geometric
properties that imply that a complete non-compact Riemannian manifold N
admits a smooth closed embedded minimal hypersurface. In order to state
the result, we introduce the following notation: we say that N has the ?k-
condition if there exists p ∈ N and R0 > 0, such that

(?k−curvature) sup
q∈B(p,R)

|SecN |(q) ≤ Rk

and

(?k−injectivity radius) inf
q∈B(p,R)

injN(q) ≥ R−
k
2 ,

for every R ≥ R0, where |SecN |(q) and injN(q) denote, respectively, the
maximum sectional curvature for 2-planes contained in the tangent space
TqN and the injectivity radius of N at q. For instance, if N has bounded
geometry then the ?k-condition holds for every positive k.

Our main result is:

Theorem 1. Let (Nn, g) be a complete non-compact Riemannian manifold
of dimension n ≤ 7. Suppose:

• N contains a bounded open subset Ω, such that Ω is a manifold with
smooth and strictly mean-concave boundary;

• N satisfies the ?k-condition, for some k ≤ 2
n−2

.

Then, there exists a closed embedded minimal hypersurface Σn−1 ⊂ N that
intersects Ω.

In the recent paper [21], Collin, Hauswirth, Mazet and Rosenberg prove
that any complete non-compact hyperbolic three-dimensional manifold of
finite volume admits a closed embedded minimal surface. These manifolds
have a different behavior at infinity from those considered in Theorem 1,
their ends are all thin hyperbolic cusps. On the other hand, our ?k-condition
on N can be seen as a thickness assumption on its ends. However, the two
arguments can be applied together and we obtain the following:

Corollary 1. Let (N3, g) be a complete non-compact Riemannian manifold.
Suppose that N contains a bounded open subset Ω, such that Ω is a manifold
with smooth and strictly mean-concave boundary. Suppose also that each end
of N is either a hyperbolic cusp or thick, satisfying the ?k-condition for some
k ≤ 2. Then, there exists a closed embedded minimal surface Σ2 ⊂ N that
intersects the mean-concave region Ω.

Instituto de Matemática Pura e Aplicada 3 2015
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Figure 1: A complete non-compact Riemannian manifold, asymptotic to a
cylinder and containing a mean-concave open set Ω. In this case, Theorem
1 could be applied.

In our arguments, the geometric behavior of the ends of M involving the
?k-condition is used together with the monotonicity formula to provide a
lower bound for the (n− 1)-dimensional volume of minimal hypersurfaces in
M that, simultaneously, intersect Ω and contain points very far from it.

The hypothesis involving the mean-concave bounded domain Ω comes
from the theory of closed geodesics in non-compact surfaces. In 1980, Bangert
proved the existence of infinitely many closed geodesics in a complete Rie-
mannian surface M of finite area and homeomorphic to either the plane, or
the cylinder or the Möbius band, see [7]. The first step in his argument is to
prove that the finite area assumption implies the existence of locally convex
neighborhoods of the ends of M .

As a motivation for our approach, we briefly discuss how Bangert uses the
Lusternik-Schnirelmann’s theory in the case that M is homeomorphic to the
plane. If C ⊂M is a locally convex neighborhood of the infinity of M whose
boundary ∂C 6= ∅ is not totally geodesic, he proves thatM contains infinitely
many closed geodesics intersecting M − C. To obtain one such curve, the
idea is to apply the Lusternik-Schnirelmann’s technique for a class Π of paths
β defined on [0, 1] and taking values in a finite-dimensional subspace of the
space of piecewise C1 closed curves, with the properties that the curves β0

and β1 have image in the interior of C, being β0 non-contractible in C and

Instituto de Matemática Pura e Aplicada 4 2015
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β1 contractible in C. The min-max invariant in this case is the number

L(Π) = inf
β∈Π

sup{E(βt) : βt(S
1) ∩ (M − C̊) 6= ∅},

where E(γ) denotes the total energy of a map γ : S1 →M , which is defined
as the integral of the energy density |γ′(s)|2ds. Then, achieve L(Π) as the
energy of a closed geodesic intersecting M − C.

To prove the Theorem 1, we develop a min-max method that is adequate
to produce minimal hypersurfaces with intersecting properties. Let us briefly
describe our technique. Let (Mn, g) be a closed Riemannian manifold and
Ω be an open subset of M . Consider a homotopy class Π of one-parameter
sweepouts of M by codimension-one submanifolds. For each given sweepout
S = {Σt}t∈[0,1] ∈ Π, we consider the number

L(S,Ω) = sup{Hn−1(Σt) : Σt ∩ Ω 6= ∅},

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure associated
with the Riemannian metric. Define the width of Π with respect to Ω to be

L(Π,Ω) = inf{L(S,Ω) : S ∈ Π}.

More precisely, our min-max technique is inspired by the discrete setting
of Almgren and Pitts. The original method was introduced in [3] and [47]
between the 1960’s and 1980’s, and has been used recently by Marques and
Neves to answer deep questions in geometry, see [36] and [37]. The method
consists of applications of variational techniques for the area functional. It
is a powerful tool in the production of unstable minimal surfaces in closed
manifolds. For instance, Marques and Neves, in the proof of the Willmore
conjecture, proved that the Clifford Torus in the three-sphere is a min-max
minimal surface. The min-max technique for the area functional appear also
in a different setting, as introduced by Simon and Smith, in the unpublished
work [52], or Colding and De Lellis, in the survey paper [17]. Other recent
developments on this theory can be found in [22], [23], [32], [33], [63].

In the Almgren and Pitts’ discrete setting, Π is a homotopy class in
π#

1 (Zn−1(M ; M), {0}). We define the width of Π with respect to Ω, L(Π,Ω),
following the same principle as in the above discussion. Then, we prove:

Theorem 2. Let (Mn, g) be a closed Riemannian manifold, n ≤ 7, and
Π ∈ π#

1 (Zn−1(M ;M), {0}) be a non-trivial homotopy class. Suppose that M
contains an open subset Ω, such that Ω is a manifold with smooth and strictly
mean-concave boundary. There exists a stationary integral varifold Σ whose
support is a smooth embedded closed minimal hypersurface intersecting Ω and
with ||Σ||(M) = L(Π,Ω).

Instituto de Matemática Pura e Aplicada 5 2015
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Figure 2: Example of mean-concave domain Ω ⊂ S3 for which Σn−1 given by
Theorem 2 is not entirely inside Ω.

Consider the unit three-sphere S3 ⊂ R4 and let Ω be a mean-concave
subset of S3. Assume that points in R4 have normal coordinates (x, y, z, w).
The min-max minimal surface Σ produced from our method, starting with
the homotopy class Π of the standard sweepout {Σt} of S3, Σt = {w = t}
for t ∈ [−1, 1], is a great sphere. Indeed, it is obvious that

L(Π,Ω) ≤ max{H2(Σt) : t ∈ [−1, 1]} = 4π.

This allows us to conclude that Σ must be a great sphere, because these are
the only minimal surfaces in S3 with area less than or equal to 4π.

The intersecting condition in Theorem 2 is optimal in the sense that it
is possible that the support of the minimal surface Σ is not entirely in Ω.
We illustrate this with two examples of mean-concave subsets of the unit
three-sphere S3 ⊂ R4 containing no great sphere. The first example is the
complement of three spherical geodesic balls, which can be seen in Figure 2.

In order to introduce the second example, for each 0 < t < 1, consider
the subset of S3 given by

Ω(t) = {(x, y, z, w) ∈ S3 : x2 + y2 > t2}.

It is not hard to see that no Ω(t) contain great spheres. Moreover, the
boundary of Ω(t) is a constant mean-curvature torus in S3. If 0 < t < 1/

√
2,

the mean-curvature vector of ∂Ω(t) points outside Ω(t). In this case, Ω =
Ω(t) is a mean-concave subset of S3 that contains no great sphere.

Instituto de Matemática Pura e Aplicada 6 2015
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2. Positive scalar curvature metrics of large widths

Since the proof of the positive mass conjecture in general relativity by Schoen
and Yau [57], and Witten [62], the rigidity phenomena involving the scalar
curvature has been fascinating the geometers. These results play an impor-
tant role in modern differential geometry and there is a vast literature about
it, see ([5, 9, 10, 11, 12, 13, 14, 24, 35, 38, 40, 42, 45, 56]). Many of these
works concern rigidity phenomena involving the scalar curvature and the area
of minimal surfaces of some kind in three-manifolds.

The width of a Riemannian three-manifold (M3, g), as we have seen in the
first part of this introduction, is a very interesting geometrical invariant which
is closely related to the production of unstable, closed, embedded minimal
surfaces. It can be defined in different ways depending on the setting, but
has always the intent to be the lowest value W for which it is possible to
sweep M out using surfaces of g area at most W . In this part of the thesis,
we use the smooth setting of Simon-Smith and Colding-De Lellis.

Let g be a Riemannian metric on the three-sphere. A sweepout of (S3, g)
is a one-parameter family {Σt}, t ∈ [0, 1], of smooth 2-spheres of finite area
which are boundaries of open subsets Σt = ∂Ωt, vary smoothly and become
degenerate at times zero, Ω0 = ∅, and one, Ω1 = S3.

The simplest way to sweep out the three-sphere is using the level sets of
any coordinate function xi : S3 ⊂ R4 → R.

Let Λ be a set of sweepouts of (S3, g). It is said to be saturated if given
a map φ ∈ C∞([0, 1] × S3, S3) such that φ(t, ·) are diffeomorphism of S3,
all of which isotopic to the identity, and a sweepout {Σt} ∈ Λ, we have
{φ(t,Σt)} ∈ Λ.

The width of the Riemannian metric g on S3 with respect to the saturated
set of sweepouts Λ is defined as the following min-max invariant:

W (S3, g) = inf
{Σt}∈Λ

sup
t∈[0,1]

Areag(Σt),

where Areag(Σt) denotes the surface area of the slice Σt with respect to g.
Marques and Neves [35] proved that the width of a metric g of positive

Ricci curvature in S3, with scalar curvature R ≥ 6, satisfies the upper bound
W (S3, g) ≤ 4π and there exists an embedded minimal sphere Σ, of index
one and surface area Areag(Σ) = W (S3, g). They proved also that in case of
equality W (S3, g) = 4π, the metric g has constant sectional curvature one.
The main purpose of this part of the work is to prove that this is no longer
true without the assumption on the Ricci curvature. More precisely, we have:

Theorem 3. For any m > 0 there exists a Riemannian metric g on S3, with
scalar curvature R ≥ 6 and width W (S3, g) ≥ m.

Instituto de Matemática Pura e Aplicada 7 2015
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Figure 3: The metric on S3 associated with the full binary tree with 8 leaves.

Remark 1. It is interesting to stress that the Riemann curvature tensors of
the examples that we construct are uniformly bounded.

In order to prove Theorem 3, we construct a special sequence of metrics on
the three-sphere using the connected sum procedure of Gromov and Lawson
[30]. More precisely, given a full binary tree, we associate a spherical region
for each node. These regions are subsets of the round three-sphere obtained
by removing either one, two or three identical geodesic balls, depending on
the vertex degree of the node only. Regions corresponding to neighboring
nodes are glued together using a copy of a fixed tube, which is obtained by
Gromov-Lawson’s method. In Figure 3, it is provided a rough depiction of
the metric associated with the full binary tree with 8 leaves.

The lower bounds that we obtain for the widths rely on a combinatorial
argument and on the relative isoperimetric inequality. The first key step
of our argument is the choice of a special slice Σt0 = ∂Ωt0 , for any fixed
sweepout {Σt} of S3 with the metrics that we consider. Then, we induce
a 2-coloring on the nodes of the associated binary tree, for which the color
of each node depends on the volume of Ωt0 on the corresponding spherical
region. A 2-coloring of a tree is an assignment of one color, black or white,
for each node. Finally, a joint application of a combinatorial tool about 2-
colorings of full binary trees and the relative isoperimetric inequality on some
compact three-manifolds with boundary give us lower bounds on the widths
of the considered Riemannian metrics.

Instituto de Matemática Pura e Aplicada 8 2015
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Liokumovich also used combinatorial arguments to construct Riemannian
metrics of large widths on surfaces of small diameter, see [34].

Recalling our discussion in the first part, the foundational idea of the
Almgren-Pitts min-max theory for the area functional is to achieve the width
as the area of a closed minimal surface, possibly disconnected and with multi-
plicities. For our examples of metrics on S3, it is expected that this min-max
minimal surface will have multiple components, some of them stable with
area strictly less than 4π. These surfaces correspond to the spherical slices
of minimum area in the tubes of our construction.

Brendle, Marques and Neves [13] constructed non-spherical metrics with
scalar curvature R ≥ 6 on the hemisphere, which coincide with the standard
round metric in a neighborhood of the boundary sphere. These metrics are
counterexamples to the Min-Oo conjecture. Our result gives also a setting
in which a scalar curvature rigidity result does not hold.

The standard argument to provide a positive lower bound for the width
of a Riemannian metric is to consider the supremum of the isoperimetric
profile. Given a Riemannian metric g on the three-sphere, its isoperimetric
profile is the function I : [0, volg(S

3)]→ R defined by

I(v) = inf{Areag(∂Ω) : Ω ⊂ S3 and volg(Ω) = v}.

In particular, if {Σt} is a sweepout of (S3, g) and the associated open
subsets are Ωt ⊂ S3, then the volumes volg(Ωt) assume all the values between
zero and volg(S

3). Then, we have

sup{I(v) : v ∈ [0, volg(S
3)]} ≤ W (S3, g).

If g has positive Ricci curvature and scalar curvature R ≥ 6, the 4π upper
bound on the supremum of the left-hand-side of the above expression was
previously obtained by Eichmair [24]. We observed that the supremum of the
isoperimetric profiles of the examples that we use also form an unbounded
sequence. This claim is also proved via a combinatorial result and provides
us a second proof of the content of Theorem 3.

Organization

The chapters are organized as follows. In Chapter 1, we explain the objects
and some tool that we use to develop the new min-max theory. In Chapters
2, 3 and 4, we take account of the formal description of the method, the
development of some further tools and its proofs. Chapter 5 is devoted to
the proof our main result, Theorem 1. Finally, in Chapter 6, we discuss the
result about the widths of metrics of positive scalar curvature.
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CHAPTER 1

Preliminaries

In this chapter, we introduce and develop some preliminary notions and
statements that are applied along this thesis. In the first section 1.1, we
clarify which objects from geometric measure theory we are going to use and
the related constructions and results. The main goal of this part is to explain
what almost minimizing varifolds are and its regularity property. Then, in
1.2, we state a maximum principle type result of White, that plays a key
role in our first main result. We discuss also one other ingredient that is
related to this part of our work, the monotonicity formula 1.3. Finally, we
describe the standard notation for dealing with discrete maps and generalized
homotopies, this is the content of 1.4.

1.1 Geometric measure theory

In this section we introduce some ideas from Geometric Measure Theory and
the corresponding notation that use along this thesis. Our main reference is
the book of Simon [51]. Sometimes we will follow the notation in Pitts [47].

First, we give a brief exposition about varifolds and currents supported in
Riemannian manifolds, which are objects that generalize the notion of smooth
submanifolds in some sense. They have associated notions of dimension
and volume. Currents are also oriented and have an associated definition
of boundary, which give this theory a homological flavor. In the end of the
section, we discuss two important situations in which special currents or
varifolds happen to be smooth.

10
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1.1.1 Varifolds

A k-dimensional varifold in RL is a Radon measure (Borel regular and finite
on compact subsets) in the Grassmannian of the unoriented k-dimensional
planes of RL. Let Gk(RL) denote this Grassmannian manifold, which can be
interpreted as the trivial bundle Gk(RL) = RL × G(L, k), where G(L, k) is
the collection of all k-subspaces of RL. In order to make the above definition
precise, in the next paragraph we describe the topology of the space Gk(RL).

The distance between two subspaces S, T ∈ G(L, k) is defined as the norm
of the linear transformation (PS − PT ), where PS and PT are the orthogonal
projections of RL onto S and T , respectively. Then, Gk(RL) is equipped with
the product metric. We use Cc(Gk(RL)) to denote the set of the compactly
supported continuous functions on Gk(RL).

Since varifolds are Radon measures, it is natural to invoke the Riesz
representation theorem, [51] Theorem 4.1, to construct or express examples
as linear functionals on Cc(Gk(RL)). For instance, we can use it to explain
how those measures generalize the notion of a k-dimensional submanifold:
given a k-submanifold Σk ⊂ RL (or, more generally, a Hk-measurable and
countably k-rectifiable set) and a positive locally Hk-integrable function θ on
Σk, we associate the following varifold

V(Σ, θ)(φ) =

∫
Σ

φ(x, TxΣ) · θ(x)dHk(x), (1.1)

for all φ ∈ Cc(Gk(RL)). These are the rectifiable varifolds in RL.

Remark 2. The theory of k-rectifiable sets of RL, or countably k-rectifiable
sets, is discussed in [51] Chapter 3. One important property of these sets is
that they have a notion of tangent space for Hk-almost all of its points.

Associated to a general k-dimensional varifold V in RL, there is a Radon
measure on RL that generalizes the notion of k-dimensional volume (with
multiplicity). The mass of V , denoted by ||V ||, is defined by the formula:

||V ||(A) = V ({(x, v) ∈ Gk(RL) : x ∈ A}), (1.2)

for all Borel subsets A ⊂ RL with compact closure. Note that, in the case of
a rectifiable V = V(Σ, θ), the value V (A) for A ⊂ Gk(R

L) is the supremum
of V(Σ, θ)(φ), where φ ∈ Cc(Gk(R

L)), |φ| ≤ 1 and is supported in A. This
implies that ||V(Σ, θ)||(A) is simply the integration of θ, over Σ∩A and with
respect to the k-dimensional Hausdorff measure Hk.

The support of a varifold V in RL is the support of its mass ||V ||. The
space of varifolds, with its usual weak topology (convergence as varifolds is
equivalent to convergence as measures), is metrizable. Which means that
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there exists a metric, the F-metric, that induces the varifold weak topology.
It is defined in Pitts book [47].

One of the main properties of the varifolds is that the mass is well behaved
when we take limits. More precisely, if Vi is a sequence of varifolds converging
to V , then

||V ||(G) ≤ lim inf
i→∞

||Vi||(G), (1.3)

for all open subsets G ⊂ RL, and

lim sup
i→∞

||Vi||(K) ≤ ||V ||(K), (1.4)

for all K ⊂ RL compact. Moreover, if A ⊂ RL has compact closure and
||V ||(∂A) = 0, then ||Vi||(A) tends to ||V ||(A).

For a Riemannian n-manifold M , we consider it is isometrically embedded
in some Euclidean space RL. Then, we use Vk(M) to denote the closure of
the space of k-dimensional rectifiable varifolds in RL with support contained
in M , in the weak topology. In this case, given V ∈ Vk(M), the mass ||V ||
is a Radon measure in M .

Given a C1-map F : M →M , the push-forward of V ∈ Vk(M) is denoted
by F#(V ). It can be viewed as the image of V via F and, for V = V(Σ, θ), is
defined as the rectifiable varifold with support F (Σ) and multiplicity function

θ̃(y) =
∑

x∈F−1(y)∩Σ

θ(x). (1.5)

The definition of F#(V ) for general V can be found in [51] page 233.
Let X (M) denote the space of smooth vector fields of M with the C1-

topology. The first variation δ : Vk(M)×X (M)→ R is defined as

δV (X) =
d

dt

∣∣∣∣
t=0

||Ft#(V )||(M), (1.6)

where {Ft}t is the flow of X. The first variation is continuous with respect to
the product topology of Vk(M)×X (M). A varifold V is said to be stationary
in M if δV (X) = 0 for every X ∈ X (M). In general, the first variation obeys
the following formula (see [51] page 234):

δV (X) =

∫
divSX(x)dV (x, S). (1.7)
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1.1.2 Integral currents

The notion of k-dimensional currents in RL is the analogue for differential
k-forms of the Schwartz distributions for functions. For our purposes, it
is more interesting to think of a k-dimensional current in RL, or simply a
k-current, as an orientable Lipschitz k-submanifold of RL.

The general definition of a k-current is of a continuous linear functional
on the space Ωk

c (RL) of the compactly supported differential k-forms, which
is equipped with its usual locally convex topology, see [51] page 131. For
instance, if Σk ⊂ RL is an orientable k-dimensional submanifold we can
consider the linear functional induced by integration of k-forms on Σ:

[|Σ|](ω) =

∫
Σ

ω, for all ω ∈ Ωk
c (RL). (1.8)

More generally, we can consider formal finite sums

T =
m∑
i=1

θi · [|Σk
i |], (1.9)

where each Σk
i is an orientable k-submanifold and the coefficients are integers.

These are the prototypical integral k-currents.
Motivated by those simple examples, we associate to any k-current a

support, a boundary and a notion of k-dimensional volume. Let T be a k-
current. The support of T , denoted by spt(T ), is the smallest closed subset
of RL for which T (ω) = 0, for all ω ∈ Ωk

c (RL) supported outside spt(T ). The
boundary ∂T of T is the (k − 1)-current defined by

∂T (ω) = T (dω), (1.10)

where d denotes the usual exterior derivative of differential forms. By Stokes’
Theorem, we have that ∂[|Σ|] = [|∂Σ|], for any Σ ⊂ RL submanifold with
boundary. The quantity that generalizes the k-dimensional volume is called
the mass of T . For each W ⊂ RL open, we define the mass of T in W by:

||T ||(W ) = sup{T (ω) : ω ∈ Ωk
c (RL), spt(ω) ⊂ W and |ω| ≤ 1}, (1.11)

where |ω| is the maximum value of 〈ω(x), ω(x)〉1/2, for x ∈ RL. We use 〈·, ·〉 to
denote both the extension of the canonical inner product of RL to the spaces
of higher dimensional vectors and covectors, for which an orthonormal basis
{e1, . . . , eL} of RL and its dual basis {e1, . . . , eL} induce orthonormal bases

{ei1 ∧ · · · ∧ eik}1≤i1<i2<...<ik≤L
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for the space of k-vectors, and

{ei1 ∧ · · · ∧ eik}1≤i1<i2<...<ik≤L

of k-dimensional covectors. We use also 〈ω, v〉 to denote the natural pairing
of a k-vector v and a k-covector ω. The total mass of a current T , ||T ||(RL),
is usually denoted by M(T ).

A consequence of the Riesz Representation Theorem is that if ||T ||(W ) <
+∞, for all bounded open subsets W ⊂ RL, then ||T || is a Radon measure

and there exists a ||T ||-measurable function ~T with values in the space of the
unit k-dimensional vectors such that

T (ω) =

∫
〈ω, ~T 〉d||T ||, for all ω ∈ Ωk

c (RL). (1.12)

From this formula, we see that many currents can be represented as an
integration with respect to a measure. One important class of currents with
this property is the class of the integral currents, which we introduce now.

Definition 1. A k-current T is an integral current if it can be expressed as
in (1.12) and

(i) spt(T ) is Hk-measurable (Hausdorff measurable) and k-rectifiable (is
covered by countably many Lipschitz k-dimensional charts);

(ii) there exists a locallyHk-integrable, positive and integer valued function
θ such that

||T ||(W ) =

∫
W

θ dHkxspt(T ), (1.13)

for all open subsets W ⊂ RL. (Notation: HkxA(W ) = Hk(A ∩W ))

(iii) ~T isHk-measurable and, forHk-almost all x ∈ spt(T ), the unit k-vector
~T (x) can be expressed by

~T (x) = τ1 ∧ · · · ∧ τk, (1.14)

for some {τ1, . . . , τk} ⊂ Tx(spt(T )) orthonormal basis.

Cut and paste via slicing theory

Let U ⊂ Rn+k be an open subset, S, T ∈ In(U) be integral currents with the
same boundary ∂T = ∂S and Q ∈ In+1(U) be so that ∂Q = T − S. Let
f be a Lipschitz function defined on U . Let us describe the construction of
cutting S and T along a slice of f on Q and gluing the three together.
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We use 〈Q, f, t+〉 to denote the slice of the current Q by f at t. It must
be thought as the intersection of the support of Q with f−1(t), multiplicity
equal to the restriction of that of Q and oriented in such a way that if the
basis {∇f, v1, . . . , vn} ⊂ TxQ is positively oriented, then {v1, . . . , vn} is also
positive in the tangent space of the slice. The precise definition and the main
properties of the slicing theory can be find in [51], Chapter 6.

Lemma 1. Let t ∈ R be so that ||S||({f = t}) = 0 and 〈Q, f, t+〉 ∈ In(U).
Then

R = Tx{f > t} − 〈Q, f, t+〉+ Sx{f < t}, (1.15)

has the following properties:

(i) ∂R = ∂S = ∂T ;

(ii) M(R− S) ≤M(T − S) + M(〈Q, f, t+〉);

Moreover, if ||T ||({f = t}) = 0, the analogue of (ii) with the roles of S and
T interchanged also holds true.

Cut S and T along a slice of f on Q.

Proof. Apply the boundary operator to the expression

〈Q, f, t+〉 = −∂[Qx{f > t}] + (∂Q)x{f > t}, (1.16)

to obtain, for each ω ∈ Ωn
c (U),

∂〈Q, f, t+〉(ω) = ∂[(∂Q)x{f > t}](ω)

= [(T − S)x{f > t}](dω)

= [Tx{f > t} − Sx{f > t}](dω)

= Tx{f > t}(dω)− Sx{f > t}(dω)

= ∂[Tx{f > t}](ω)− ∂[Sx{f > t}](ω).
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This calculation gives us

∂[Tx{f > t}]− ∂〈Q, f, t+〉(ω) = ∂[Sx{f > t}].

Now, it is possible to conclude that

∂R = ∂[Sx{f > t}] + ∂[Sx{f < t}] = ∂S,

where the last equality holds because we chose ||S||({f = t}) = 0. The mass
estimate (ii) follows directly from the expression defining the current R in
the statement of the Lemma.

Integral currents on manifolds

Let (Mn, g) be an orientable compact Riemannian manifold. We assume that
M is isometrically embedded in RL. We denote by B(p, r) the open geodesic
ball in M of radius r and centered at p ∈M .

We denote by Ik(M) the space of k-dimensional integral currents in RL

supported in M and Zk(M) the space of integral currents T ∈ Ik(M) with
∂T = 0. Given T ∈ Ik(M), we denote by |T | the integral varifold in M
associated with T , which is obtained by forgetting the orientation of T .

The above spaces come with several relevant metrics. We use the standard
notations F and M for the flat norm and mass norm on Ik(M), respectively.
The flat metric is defined by the formula

F(S, T ) = inf{M(P ) + M(Q) : P ∈ Ik(M), Q ∈ Ik+1(M), S − T + P = ∂Q},

for S, T ∈ Ik(M). Convergence in the flat metric is sometimes stated as
convergence in sense of volumes. And the mass norm is simply M(S, T ) =
M(S − T ).

Finally, the F-metric on Ik(M) is defined by

F(S, T ) = F(S − T ) + F(|S|, |T |).

We use also the k-dimensional Hausdorff measure Hk of subsets of M .
Dealing with min-max constructions, it frequently happens that we give

an argument by contradiction as follows: we start with a path of surfaces
(or integral k-currents, when working in the setting of Almgren-Pitts) that is
continuous with respect to one of the above topologies, called sweepout, and
with some extra property that we want to prove that does not occur. Then,
we somehow deform the path to have the maximum area of slices decreased
and find a contradiction. In general, the deformed path is continuous in a
weaker sense as the original one. The continuity of the new path depends
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on the deformation that we need to perform. A key difference between flat
metric and F-metric convergences is the behavior of the mass of the limit
current. Let {Ti}i∈N be a sequence of integral k-currents. Mass is lower semi-
continuous with respect to the flat metric (or weak convergence), i.e., if we
have convergence of Ti in the flat metric,

lim
i→∞
F(Ti, T ) = 0,

then, for all open subsets W ⊂M ,

||T ||(W ) ≤ lim inf
i→∞

||Ti||(W ).

But, since the orientation is being considered, mass cancellation is allowed
and the strict inequality may occur. On the other hand, convergence in the
F-metric implies convergence of the induced varifolds, and then the masses
M(Ti) converge to the mass of the limit current. In particular, if we have
cancellation of mass, the weak limits in the senses of currents and varifolds
are not related by forgetting orientation only. Let us see some concrete
examples.

Example 1. Let I be the rectifiable 1-dimensional varifold in R2 induced by
a unit length line segment and {Ti} ⊂ Z1(R2) be a sequence of boundaries
Ti = ∂Si of integral 2-currents so that

spt(I) ⊂ int(spt(Si)) and M(Si) = area(Si)→ 0, as i→∞,

see Figure 1.1. In particular, we have that F(Ti, 0) ≤M(Si), which implies
that Ti converges to the zero current with respect to the flat metric. In this
case, all the mass is lost. On the other hand, for the the induced varifold
|Ti|, we have

|Ti|(f) =

∫
Ti

f(x, Tx(Ti))dH1(x)→ 2

∫
I

f(x, TxI)dH1(x),

as i tends to infinity, for every f ∈ Cc(G1(R2)). Hence, the |Ti| converge to
the varifold 2I = V(I, 2). Since the limit varifold and the varifold induced
by the weak limit current do not coincide, the sequence Ti does not admit
any subsequence which converges in the F-metric sense.

A similar construction can be considered in the case of higher dimensions,
for instance, we can consider the integral 2-currents obtained by connecting
two concentric spheres of radii converging to one by a small neck.

Remark 3. Actually, cancellation of mass occur if and only if the limit varifold
and the varifold induced by the limit current do coincide. See paragraph 18f
of the Subsection 2.1 of Pitts’ book [47].
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Figure 1.1: The phenomenon of cancellation of mass.

Example 2. Let Σ be an orientable closed surface with trivial normal bundle
in a three-manifold. Suppose N is a unit normal vector field defined on Σ.
Consider a sequence of smooth real functions ui on Σ, which converges to the
zero function in the C1-topology. Then, the integral 2-currents [|Σi|] induced
by the graph surfaces

Σi = {expx(ui(x)N(x)) : x ∈ Σ}

tends to [|Σ|] with respect to the F-metric. Indeed, the C0 convergence
implies the flat metric approximation and the C1 convergence assures that
no mass lost.

However, both of these convergence senses (F and F) are far from imply-
ing convergence in the mass norm. These three metrics are related by the
following general formula

F(S, T ) ≤ F(S, T ) ≤ 2M(S − T ).

We assume that Ik(M) and Zk(M) both have the topology induced by
the flat metric. When endowed with a different topology, these spaces will
be denoted either by Ik(M ; M) and Zk(M ; M), in case of the mass norm, or
Ik(M ; F) and Zk(M ; F), if we use the F-metric. If U ⊂ M is an open set of
finite perimeter, the associated current in In(M) is denoted by [|U |].

Similarly to the case of varifolds, it is also possible to make a precise
sense for the push-forward F#(T ) of a current T by a map F . For a detailed
discussion see page 137 of [51]. This notion makes possible an important
formula, the homotopy formula, that will be applied in Section 3.2. We
finish this subsection by presenting this tool.

Let U ⊂ M be a open subset and h : [0, 1] × U → RQ be a smooth
homotopy between f(x) = h(0, x) and g(x) = h(1, x). If T ∈ Ik(U) and h is
proper in [0, 1]× U , then h#([|(0, 1)|]× T ) is a well-defined integral (k + 1)-
dimensional current in RQ and its boundary can expressed according to the
following formula
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∂h#([|(0, 1)|]× T ) = g#(T )− f#(T )− h#([|(0, 1)|]× ∂T ). (1.17)

1.1.3 Regularity Theorems

In this subsection we describe two results concerning regularity of codimen-
sion one varifolds and currents with special minimization properties.

The first result that we state is a classical one related to the solution of
the codimension one Plateau problem in higher dimensions.

Theorem 4. Let Mn be a Riemannian manifold properly embedded in RL

and T be a codimension 1 homologically mass-minimizing current in M , i.e.,

M(T ) ≤M(S), for every current S with ∂S = ∂T.

Then, spt(T )− spt(∂T ) is a smooth minimal hypersurface of M except at a
singular subset Sing(T ), which is empty if n ≤ 7, is locally finite if n = 8,
and has Hausdorff dimension at most n− 8, in case n > 8.

In the case of the Euclidean space Mn = Rn, this was proved by Fleming
[26] for n = 3, Almgren [4] for n = 4, Simons [59] for n ≤ 7, and Federer
[25] for n ≥ 8. Its extension to general Riemannian manifolds is due to a
maximum principle type result of Schoen and Simon [54].

Next, we state the regularity theorem for stationary varifolds which are
almost minimizing. This is a variational property that enables us to approx-
imate the varifold by arbitrarily close integral cycles which are themselves
almost locally area minimizing. The key characteristic of varifolds that are
almost minimizing in small annuli is regularity, which is not necessarily the
case for general integral stationary varifolds.

In order to formally explain the almost minimizing property, consider
the following notation. Let Mn be a compact Riemannian manifold and
U be an open subset of M . For p ∈ M and 0 < s < r, use B(p, r) and
A(p, s, r) = B(p, r)−B(p, s) to denote the open geodesic ball of radius r and
centered at p and the open annulus in M , respectively.

Given ε, δ > 0, consider the set A(U ; ε, δ) of integer cycles T ∈ Zn−1(M)
for which the following happens: for every finite sequence

T = T0, T1, . . . , Tm ∈ Zn−1(M),

such that

spt(Ti − T ) ⊂ U, M(Ti, Ti−1) ≤ δ and M(Ti) ≤M(T ) + δ,

it must be true that M(Tm) ≥M(T )− ε.
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Definition 2. Let V ∈ Vn−1(M) be a rectifiable varifold in M . We say
that V is almost minimizing in U if for every ε > 0, there exist δ > 0 and
T ∈ A(U ; ε, δ) satisfying F(V, |T |) < ε.

Remark 4. This definition is basically the same as in Pitts’ book, the differ-
ence is that we ask |T | to be ε-close to V in the F-metric on the whole M ,
not only in U . This creates no problem because our definition implies Pitts’
and in the next step we prove the existence of almost minimizing varifolds
in the sense of Definition 2. This is also observed in Remark 6.4 of [63].

Theorem 5. Let Mn be a Riemannian manifold properly embedded in RL,
p ∈M and r > 0. If V ∈ Vn−1(M), a limit of rectifiable varifolds, satisfies

V is stationary in the metric ball B(p, r),

and
V is almost minimizing in the annuli A(p, s, r),

for all 0 < s < r, then spt(||V ||) ∩B(p, r) is a smooth minimal hypersurface
of B(p, r) except at a singular subset of Hausdorff codimension at least 7.

Pitts [47] proved this theorem for n ≤ 6. Later, Schoen and Simon [53]
extended this result to any dimension.

1.2 The maximum principle

In [61], White proved a maximum principle type theorem for general varifolds.
In this thesis, we use an application of this result which we describe now.

Let (Mn, g) be a closed Riemannian manifold and Ω ⊂ M be an open
domain with smooth and strictly mean-concave boundary ∂Ω. Consider the
foliation {∂Ωt} of a small tubular neighborhood of ∂Ω, where

Ωt = {x ∈M : d∂Ω(x) < t} (1.18)

and d∂Ω is the signed distance function to ∂Ω, which is negative in Ω. Let ν

be the unit vector field normal to all ∂Ωt and pointing outside Ωt. Use
−→
H (p)

to denote the mean-curvature vector of ∂Ω at p ∈ ∂Ω. White’s result and a
covering argument on ∂Ω imply the following statement:

Corollary 2. Let
−→
H (p) = H(p)ν(p) and suppose that H > η > 0 over ∂Ω.

There exist a < 0 < b and a smooth vector field X on M − Ωa with

X · ν > 0 on Ωb − Ωa
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and

δV (X) ≤ −η
∫
|X|dµV , (1.19)

for every (n− 1)-varifold V in M − Ωa. (µV = ||V || is the mass of V )

We refer to X as the maximum principle vector field. Up to multiplying
X by a constant, we can suppose that its flow {Φ(s, ·)}s≥0 is such that

Φ(1,M − Ωa) ⊂M − Ωb. (1.20)

The key property of this flow is that it is mass-decreasing for (n−1)-varifolds.
Actually, {Φ(s, ·)}s≥0 is also mass-decreasing for n-varifolds.

For sake of completeness, we state White’s result and indicate how it
implies Corollary 2. The maximum principle proved in [61] is precisely:

Theorem 6. Let N be a Riemannian manifold with boundary. Let p ∈ ∂N
be such that 0 < η < k1 + . . .+ kn−1, where k1 ≤ . . . ≤ kn−1 are the principal
curvatures of ∂N at p with respect to the unit normal ν(N) that points into
N . Then, there exists a compactly supported smooth vector field X on N
such that X(p) is a nonzero vector normal to ∂N , X · ν(N) ≥ 0 on ∂N and
satisfying (1.19) for every (n− 1)-varifold in N .

In his proof, White considers an extension of N near p ∈ ∂N . In the
case that we are interested in, M is closed and Ω ⊂ M is a domain with
smooth and strictly mean-concave boundary ∂Ω. Let us suppose that 0 <
η < k1 + . . . + kn−1, for each p ∈ ∂Ω. Now, the manifold with boundary
N = M − Ω has a natural extension near each p ∈ ∂Ω already. We apply
White’s construction to this setting to obtain:

Theorem 7. For every p ∈ ∂Ω, there exists t(p) < 0 and a smooth vector
field X on Nt(p) = M −Ωt(p) so that X(p) is a nonzero vector normal to ∂N ,
X · ν ≥ 0 on ∂Nt = ∂(M − Ωt), for every t ≥ t(p), and satisfying (1.19) for
every (n− 1)-varifold in Nt(p).

Proof. Let V be a (n−1)-varifold in M . By first variation formula, expression
(1.7), it is possible to conclude

δV (X) ≤
∫

ΨX(x)dµV ,

where ΨX(x) = max{divPX(x) : P is a hyperplane in TxM}. Thus, we need
a vector field X such that ΨX(x) ≤ −η|X(x)|, for every x. Let

Σ = {x ∈M : dg(x,N) = (dg(x, p))
4},
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where N = M − Ω. Consider a small open geodesic ball B(p, r), in which Σ
is a smooth hypersurface and there is a smooth, well defined nearest point
retraction from B(p, r) to Σ. Define u : B(p, r) → [−r, r] to be the signed
distance function to Σ, positive in N ∩B(p, r). Note that Σ is outside N and
tangent to ∂Ω at p with second order contact. Therefore, we can take r > 0
sufficiently small so that the sum of the principal curvatures of the level sets
of u is greater than η at each point q ∈ B(p, r).

We can suppose also that ∇u(q) · ν > 0, for every q ∈ B(p, r). Let K > 0
be so that |k̃i(q)| ≤ K, for all q ∈ B(p, r) and 1 ≤ i ≤ n−1, where k̃i(q) is the
i-th principal curvature of Σq at q, and Σq is the level set of u in which q lives.
Choose ε ≤ (4K)−1/2 and t(p) < 0, such that {q ∈ Nt(p) ∩B(p, r) : u(q) ≤ ε}
is a compact subset of {x ∈ B(p, r) : −ε < u(x)}. Finally, define a vector
field on Nt(p) by X(q) = φ(u(q))∇u(q), where

φ(t) =

{
exp

(
1
t−ε

)
, if − ε ≤ t < ε

0, if t ≥ ε.

As in White’s proof, the choice of ε gives us that φ′(t) ≤ −Kφ(t), for every
−ε ≤ t < ε. Following the same calculation done by White, we have that the
matrix of the bilinear form Q(u, v) = 〈u,∇vX〉, u, v ∈ Tq(Nt), q ∈ spt(X),
with respect to the orthonormal basis given by ∇u(q) and (n − 1) vectors
that diagonalize the second fundamental form of Σq at q, is a diagonal matrix
with diagonal elements φ′(u) and −φ(u)k̃i(q), for 1 ≤ i ≤ n − 1. This
concludes the proof. Indeed, let e1 = ∇u(q) and {e2, . . . , en} ⊂ TqΣq be a
basis that diagonalizes the second fundamental form of Σq. Given P ⊂ TqM
hyperplane,

divPX(q) = TrPQ(q) =
n∑
i=1

|eTj |2 ·Q(ej, ej),

where eTj is the orthogonal projection of ej in P . Using
∑n

j=1 |eTj |2 = n− 1,

the values of Q(ej, ej) and that φ′ ≤ −Kφ ≤ −k̃j(q)φ, we infer that

divPX(q) ≤ −φ(u(q))
n∑
j=2

(|eNj |2K + |eTj |2k̃j(q)) < −ηφ(u(q)) = −η|X(q)|.

Proof of Corollary 2. Since ∂Ω is compact, we can choose p1, . . . , pm ∈ ∂Ω,
negative numbers t(p1), . . . , t(pm), and vector fields Xi defined on Nt(pi) given
by theorem 7, and such that {int(spt(Xi)}mi=1 is an open cover of ∂Ω. Choose
a < 0 and b > 0 so that we still have

(∂Ωa) ∪ (∂Ωb) ⊂
m⋃
i=1

int(spt(Xi)),
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and define the vector field X =
∑m

i=1Xi on Na. Recall that Xi · ν > 0, when
Xi 6= 0. Therefore X · ν > 0 on Ωb − Ωa. Finally, given a (n− 1)-varifold in
Na, we have

δV (X) =
m∑
i=1

δV (Xi) ≤ −η
m∑
i=1

∫
|Xi|dµV ≤ −η

∫
|X|dµV .

1.3 The monotonicity formula

The intent of the present subsection is to use the monotonicity formula for
minimal surfaces to obtain some consequences that we need in the arguments
of Subsection 3.3.1 and Proposition 2 of Chapter 5. First of all, we sketch the
proof of the monotonicity formula for k-dimensional submanifolds in general
Riemannian manifolds. Then, we indicate the formulas that we use in the
applications.

Let (Mn, g) be a closed Riemannian manifold, p ∈ M and r0 = injM(p)
its injectivity radius. Let Σk ⊂ M be a submanifold with bounded mean-

curvature, ||
−→
HΣ|| ≤ H, for some H > 0. We use d : Σ → R to denote the

distance function to p in M . Consider the vector field X = d∇d.
In exponential coordinates {x1, . . . , xn} around p, the coordinate vectors

and the Riemannian metric are given by

∂

∂xj
= D(expp)xiei(ej) and gij(x) = δij +O(|x|2),

where {e1, . . . , en} ⊂ TpM is an orthonormal basis. If a vector w is given in
local coordinates as w =

∑
iw

i ∂
∂xi

, a simple calculation yields

g(w,w) =
n∑
i=1

(wi)2 +O(|x|2).

In particular, if g(w,w) = 1, all the coordinates wi are uniformly bounded.
Also, in these coordinates, X = d∇d can be expressed as X =

∑
i x

i ∂
∂xi

.
Thus, for all g(w,w) = 1, we have

g(∇wX,w) = 1 +O(|x|2). (1.21)

Finally, this allows us to conclude that, near p,

divΣX
T = divΣX + 〈X,

−→
HΣ〉 ≥ k − (Cd2 +Hd), (1.22)
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where C = C(p) > 0 is a constant depending on p ∈M only.
Let l(r) =

∫
Σ∩∂Br

dσr and v(r) =
∫

Σ∩Br
dΣ be the (k − 1)-dimensional

volume of Σ ∩ ∂Br and the k-dimensional volume of Σ ∩ Br, respectively,
where Br = B(p, r) denotes the geodesic ball in M with radius r and centered
at p. Then, using 1.22 and Stokes’ theorem, we have

rl(r) ≥
∫

Σ∩∂Br

〈XT , ν〉dσr =

∫
Σ∩Br

divΣX
TdΣ ≥

∫
Σ∩Br

(k − Cd2 −Hd)dΣ.

In conclusion, rl(r) ≥ (k−Cr2−Hr)v(r). Now, we use the co-area formula
to obtain

v′(r) =

∫
Σ∩∂Br

1

|∇Σd|
dσr ≥ l(r).

Putting everything together, v′(r) ≥ 1
r
(k − Cr2 − Hr)v(r). This can be

rewritten as
d

dr

(
eAr

2+Hrv(r)

rk

)
≥ 0, (1.23)

where A = C/2, depends on p. From this we have:

Theorem 8. Let (Mn, g) be a Riemannian manifold, Σk ⊂M be a minimal
submanifold and p ∈ M . Then, there exists r0 and A > 0, depending on p
only, such that

r 7→ eAr
2 v(r)

rk
is non-decreasing in r, for r < r0. (1.24)

Remark 5. If M is compact, we can choose r0 and A uniform.

Remark 6. A similar monotonicity formula can be proved for stationary in-
tegral varifolds (or integral varifolds with bounded mean-curvature or first
variation) in Riemannian manifolds. This was first observed by Allard [1].
Section 17 of [51] is also a good reference.

For the first application, observe that if we start with p ∈ Σ and let r go
to zero on (1.24), we conclude that

Hk(Σ ∩B(p, r)) ≥ ωkr
k

eAr2 , (1.25)

where ωk is the volume of the standard unit k-dimensional ball. This expres-
sion is applied in the proof of the small mass lemma in Chapter 3.

For the second application, in Chapter 5, we use a similar monotonicity
formula, which involves bounds on the sectional curvatures. Let (Mn, g) be
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a closed Riemannian manifold, p ∈M and r0 = injM(p) its injectivity radius.
Suppose the following bound on the sectional curvatures near p:

sup
q∈B(p,r0)

|SecN |(q) ≤ K.

Then, for 0 < r < min{r0, K
−1/2}, minimality implies

Hk(Σ ∩B(p, r)) ≥ ωk

ek
√
Kr
· rk. (1.26)

We omit the proof of this second monotonicity type formula, but it can be
proved following the same steps as in the book of Colding and Minicozzi [20].

1.4 Discrete maps in the space of codimen-

sion one integral cycles

We begin this section by introducing the domains of our discrete maps. More
details can be found in [36] or [47].

• In = [0, 1]n ⊂ Rn and In0 = ∂In = In − (0, 1)n;

• for each j ∈ N, I(1, j) denote the cell complex of I1 whose 0-cells and
1-cells are, respectively, [0], [3−j], . . . , [1 − 3−j],[1] and [0, 3−j], [3−j, 2 ·
3−j], . . . , [1− 3−j, 1];

• I(n, j) = I(1, j)⊗ · · · ⊗ I(1, j), n times;

• I(n, j)p = {α1 ⊗ · · · ⊗ αn : αi ∈ I(1, j) and
∑n

i=1 dim(αi) = p};

• I0(n, j)p = I(n, j)p ∩ In0 , are the p-cells in the boundary;

• ∂ : I(n, j)→ I(n, j), the boundary homomorphism is defined by

∂(α1 ⊗ · · · ⊗ αn) =
n∑
i=1

(−1)σ(i)α1 ⊗ · · · ⊗ ∂αi ⊗ · · · ⊗ αn,

where σ(i) =
∑

j<i dim(αi), ∂[a, b] = [b]− [a] and ∂[a] = 0;

• d : I(n, j)0 × I(n, j)0 → N, is the grid distance, it is given by

d(x, y) = 3j
n∑
i=1

|xi − yi|;
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• n(i, j) : I(n, i)0 → I(n, j)0, the nearest vertex map satisfies

d(x,n(i, j)(x)) = min{d(x, y) : y ∈ I(n, j)0}.

Let (Mn, g) denote an orientable compact Riemannian manifold.

Definition 3. Given φ : I(n, j)0 → Zn−1(M), we define its fineness as

f(φ) = sup

{
M(φ(x)− φ(y))

d(x, y)
: x, y ∈ I(n, j)0, x 6= y

}
.

Remark 7. If we check that M(φ(x)− φ(y)) < δ, for every d(x, y) = 1, then
we can conclude directly that f(φ) < δ.

Definition 4. Let φi : I(1, ki)0 → Zn−1(M), i = 1, 2, be given discrete maps.
We say that φ1 is 1-homotopic to φ2 in (Zn−1(M ;M), {0}) with fineness δ if
we can find k ∈ N and a map

ψ : I(1, k)0 × I(1, k)0 → Zn−1(M)

with the following properties:

(i) f(ψ) < δ;

(ii) ψ([i− 1], x) = φi(n(k, ki)(x)), i = 1, 2 and x ∈ I(1, k)0;

(iii) ψ(τ, [0]) = ψ(τ, [1]) = 0, for τ ∈ I(1, k)0.
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CHAPTER 2

Min-max theory for intersecting slices

In this chapter we describe the min-max theory that we developed to prove
some existence of minimal hypersurfaces. The set up that we follow is similar
to the original one introduced by Almgren and Pitts. The crucial difference
is that we see the slices intersecting a closed subset Ω ⊂M only. The aim is
to produce an embedded closed minimal hypersurface intersecting the given
domain.

The chapter is divided in two section. Before going through the rigorous
definitions and statements, we present the aims and main ideas of the new
method in the form of a nontechnical outline. Later in the chapter, we
introduce the formal description. Further tools and proofs are postponed to
subsequent chapters.

2.1 Outline and some intuition

In this section, we outline the proof of our min-max result, Theorem 2. We
present the main ideas, omitting the technical issues and reducing the use of
the language of geometric measure theory.

The min-max minimal hypersurface of Theorem 2 arises as a limit in
the weak sense of varifolds. We consider sweepouts of a closed manifold
by codimension-one integral currents without boundary. For this reason, a
minimum of this language is unavoidable to introduce our main ideas.

Let us give a brief idea about these structures. Currents and varifolds
are measure-theoretic generalized submanifolds. They come with notions of
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dimension, support and mass. Currents come also with orientation and a
notion of boundary, which is a current of one dimension lower. We use ∂T
to denote the boundary of a current T and Zn−1(M) to denote the space
of integral (n − 1)-currents without boundary and supported in M . The
mass of T ∈ Zn−1(M), M(T ), is a generalized (n− 1)-dimensional Hausdorff
measure with multiplicities. On the other hand, the mass of a varifold V is a
Radon measure ||V || on M . The space of varifolds with uniformly bounded
masses has the remarkable property of being compact with respect to the
weak varifold convergence. A class of varifolds that plays a key role in this
work is the class of stationary varifolds, those are the varifolds that are
critical with respect to the mass in M , ||V ||(M). This generalizes the idea
of minimal submanifolds of M . We can obtain a varifold |T | out of a current
T ∈ Zn−1(M), simply by forgetting the orientation.

2.1.1 A new width and the intersecting property

Let Mn be an orientable closed Riemannian manifold of dimension n and
Ω be a connected open subset of M with smooth and strictly mean-concave
boundary, i.e., ∂Ω is smooth and its mean-curvature vector is everywhere
non-zero and points outside Ω.

We consider continuous sweepouts S = {Σt}, t ∈ [0, 1], of M by integral
(n − 1)-currents with no boundary, Σt ∈ Zn−1(M), and such that the slices
Σt degenerate to the zero current at t = 0 and 1. For example, the level sets
of the function 2−1(1 + xn+1) in the standard n-sphere Sn ⊂ Rn+1 compose
a sweepout, or, more generally, given any Morse function f : M → [0, 1], we
can consider the sweepout of the level sets Σt = ∂ ({x ∈M : f(x) < t}).

Two such sweepouts S1 and S2 are homotopic to each other if there is a
continuous map ψ, defined on [0, 1]2, for which {ψ(s, t)}t∈[0,1] is a sweepout
of M , for each s ∈ [0, 1], being S1 = {ψ(0, t)}t∈[0,1] and S2 = {ψ(1, t)}t∈[0,1].
Once a homotopy class Π of sweepouts is fixed, we can run the min-max.

The key difference between our method and the original one by Almgren
and Pitts is that we see only the slices Σt that intersect Ω. Given S =
{Σt}t∈[0,1] ∈ Π, we use the following notation:

dmnΩ(S) = {t ∈ [0, 1] : spt(Σt) ∩ Ω 6= ∅},

where spt(Σt) denotes the support of Σt ∈ Zn−1(M), and

L(S,Ω) = sup{M(Σt) : t ∈ dmnΩ(S)}.

We define the width of Π with respect to Ω to be

L(Π,Ω) = inf{L(S,Ω) : S ∈ Π}.
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The standard setting of Almgren and Pitts coincides with ours when Ω is M .
In this case, the min-max philosophy is to obtain sequences Sk = {Σk

t }t∈[0,1] ∈
Π, k = 1, 2, . . ., and {tk}k∈N ⊂ [0, 1], for which

L(Π,M) = lim
k→∞

L(Sk,M) = lim
k→∞

M(Σk
tk

)

and such that |Σk
tk
| converges, as varifolds, to a disjoint union of closed em-

bedded smooth minimal hypersurfaces, denoted by V . In our approach, we
show that it is possible to realize the width L(Π,Ω) via a min-max sequence
of slices Σk

tk
, as before, and with the extra properties that tk ∈ dmnΩ(Sk),

for every k ∈ N, and the support of the min-max limit V intersects Ω.
The organization of our ideas is as follows:

1. First we prove that the width with respect to Ω is strictly positive for
non-trivial homotopy classes, i.e., L(Π,Ω) > 0.

2. We can always find S = {Sk}k∈N ⊂ Π such that

lim
k→∞

L(Sk,Ω) = L(Π,Ω)

and
sup{M(Σ) : Σ is a slice of Sk, for some k ∈ N} <∞.

This means that there exists a minimizing sequence of sweepouts of
M for which the masses of all slices are uniformly controlled. Observe
that, by the definition, there is no a priori control on the masses of non-
intersecting slices. Such sequences of sweepouts are said to be critical
with respect to Ω. In this case, a sequence of intersecting slices Σk ∈ Sk
satisfying

lim
k→∞

M(Σk) = L(Π,Ω),

is said to be a min-max sequence in S . We use C(S ,Ω) to denote the
set of limits (as varifolds) of min-max sequences in S .

3. There exists S ⊂ Π critical with respect to Ω for which V ∈ C(S ,Ω)
imply either that V is stationary in M or that spt(V ) ∩ Ω = ∅.

4. Given S ⊂ Π as above, we can find a non-trivial intersecting min-
max limit V ∈ C(S ,Ω) that is almost minimizing in small annuli (as
introduced by Pitts, see the formal Definition 2 in Chapter 1).

5. In conclusion, the obtained V ∈ C(S ,Ω) intersects Ω, and by item 3 it
is stationary in M . Since V is almost minimizing in small annuli and
stationary, Theorem 5 of Chapter 1, implies that V is smooth.
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2.1.2 The role of the mean-concavity

Let U ⊂ Ω be a subset with the property that the difference Ω − U is
contained in small tubular neighborhood of ∂Ω in M . Since U ⊂ Ω, we
easily see that L(Π, U) ≤ L(Π,Ω), for all homotopy classes of sweepouts Π.
We use the mean-concavity assumption to prove that the inequality above is
indeed an equality: L(Π, U) = L(Π,Ω). The main tool to prove this claim is
the maximum principle for general varifolds of Brian White, [61].

More precisely, if we had the strict inequality L(Π, U) < L(Π,Ω) for some
Π, we would be able to find

0 < ε < L(Π,Ω)− L(Π, U)

and a sweepout S = {Σt}t∈[0,1] ∈ Π, such that

L(S, U) < L(Π,Ω)− ε.

In particular, if t ∈ dmnΩ(S) and M(Σt) ≥ L(Π,Ω)− ε, then Σt ⊂ M − U .
We use the maximum principle to deform those Σt, without increasing the
mass, to a new slice Σ′t, supported outside Ω. Then, we obtain S ′ ∈ Π with
L(S ′,Ω) < L(Π,Ω)− ε, and this is a contradiction.

2.1.3 Sketch of proofs

The existence of non-trivial homotopy classes goes back to Almgren. He
proved, in [2], that the set of homotopy classes of sweepouts is isomorphic
to the top dimensional homology group of M , Hn(Mn,Z). Moreover, it
is possible to prove the existence of positive constants α0 = α0(M) and
r0 = r0(M) with the property that: given p ∈M , 0 < r ≤ r0 and a sweepout
S = {Σt}, 0 ≤ t ≤ 1, in a non-trivial homotopy class, we have

sup
t∈[0,1]

M((Σt) xB(p, r)) ≥ α0r
n−1,

where (Σt) xB(p, r) is the restriction of Σt to the geodesic ball B(p, r) of M ,
of radius r and centered at p. If we take B(p, r) ⊂⊂ Ω, then

L(S,Ω) = sup
t∈dmnΩ(S)

M(Σt) ≥ sup
t∈[0,1]

M((Σt) xB(p, r)) ≥ α0r
n−1.

Therefore, L(Π,Ω) > 0, for non-trivial homotopy classes Π. The existence of
such numbers α0 and r0 is due to Gromov, see Section 4.2.B in [29]. These
lower bounds for the width also appear in [31] and Section 8 of [37].
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We can construct a critical sequence of sweepouts with respect to Ω as
follows. Take a minimizing sequence S = {Sk}k∈N ⊂ Π, i.e., a sequence
for which L(Sk,Ω) tends to L(Π,Ω) as k tend infinity. In order to obtain a
critical sequence out of S , we have to uniformly control the masses of the
non-intersecting slices of the Sk’s. Let k ∈ N and [t1, t2] ⊂ [0, 1] be such
that [t1, t2]∩ dmnΩ(Sk) = {t1, t2}. We homotopically deform the path {Σk

t },
t ∈ [t1, t2], keeping the ends fixed and without entering Ω to a new continuous
path {Σ̃k

t }, t ∈ [t1, t2], in such a way that

sup
t∈[t1,t2]

M(Σ̃k
t ) ≤ C

(
M(Σk

t1
) + M(Σk

t2
)
)
,

where C > 0 is a universal constant depending only on M . In this deforma-
tion, it is important that (Σk

t2
−Σk

t1
) is the boundary of an integral n-current

supported in M − Ω. Since the masses of the extremal slices, Σk
t1

and Σk
t2

,
are already accounted in L(Sk,Ω), we have the desired uniform control.

Let S = {Sk}k∈N ⊂ Π be a critical sequence with respect to Ω. Intu-
itively, we can invoke the compactness theorem for varifolds with uniformly
bounded mass to obtain a limit optimal sweepout S ∗ = {Σt}t∈[0,1] ∈ Π, i.e.,

Σt = lim
k→∞
|Σk

t |, for every t ∈ [0, 1], and L(S ∗,Ω) = L(Π,Ω).

Moreover, we can identify the critical set C(S ,Ω) with the set of the maximal
intersecting slices of S ∗, which is denoted by C(S ∗,Ω). Observe that S ∗

does not belong necessarily to the same category of sweepouts as the Sk’s,
because the limit slices Σt are only varifolds, while Σk

t are integral currents.
For the purpose of this outline, let us suppose for a while that there exists
such a S ∗ = {Σt}t∈[0,1] ∈ Π, optimal with respect to Ω.

The third step of our list is called the pull-tight argument and it is inspired
by Theorem 4.3 in [47] and Proposition 8.5 in [36]. We deform S ∗ to obtain
a better optimal sweepout S ′ = {Σt}t∈[0,1] ∈ Π with the extra property that:

Σt ∈ C(S ′,Ω)⇒ either Σt is stationary or spt(Σt) ∩ Ω = ∅.

More precisely, we construct a continuous deformation {H(s, t)}s,t∈[0,1], that
starts with H(0, t) = Σt and ends with S ′, whose key property is that

M(H(1, t)) < M(Σt),

unless Σt is either stationary or spt(Σt) ∩ Ω = ∅, for which it must be true
that H(s, t) = Σt, for every s ∈ [0, 1]. The main improvement on our pull-
tight deformation H is that it keeps unmoved the non-intersecting slices,
allowing us to conclude that S ′ is also optimal with respect to Ω.
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The final part is to prove that some V ∈ C(S ,Ω), for the sequence S ⊂ Π
with the properties stated in Step 3, is at the same time intersecting and
almost minimizing in small annuli. For the precise notation, see Definition
2 and Theorem 10 in Section 2, or Theorem 4.10 in Pitts book [47]. The
almost minimizing varifolds are natural objects in the min-max theory, which
can be arbitrarily approximated by locally mass-minimizing currents. The
proof of the regularity of almost minimizing varifolds uses the curvature
estimates for stable minimal hypersurfaces of Schoen-Simon-Yau [55] and
Schoen-Simon [53]. The dimension assumption, n ≤ 7, is important in the
application of these regularity results. In general, our argument produces
a closed, embedded minimal hypersurface with a singular set of Hausdorff
codimension at least 7, see Theorem 5.

Assuming that no V ∈ C(S ,Ω) satisfies our assumption, we deform the
critical sequence S ⊂ Π to obtain strictly better competitors, i.e., we obtain
a sequence of sweepouts S̃k ∈ Π out of Sk such that

L(S̃k,Ω) < L(Sk,Ω)− ρ,

for some uniform ρ > 0. Since S is critical with respect to Ω, we have S̃k ∈ Π
and L(S̃k,Ω) < L(Π,Ω), for large k ∈ N. This will give us a contradiction.

Recall that we have two types of varifolds V ∈ C(S ,Ω), either

(1) spt(V ) ∩ Ω 6= ∅ and V is stationary in M

(2) or spt(V ) ∩ Ω = ∅.

Then, big intersecting slices of S are close either to intersecting non-almost
minimizing varifolds or to non-intersecting varifolds. Let U ⊂ U1 ⊂ Ω be
open sets, with U ⊂ U1, U1 ⊂ Ω and such that Ω−U is inside a small tubular
neighborhood of ∂Ω.

The deformation from Sk to S̃k is done in two steps. The first is based in
the fact that if V is type (1), then it is not almost minimizing in small annuli
centered at some p = p(V ) ∈ spt(V ). Then, there exists ε(V ) > 0 such that
given a slice Σk

t ∈ Sk close to V and η > 0, we can find a continuous path
{Σk

t (s)}s∈[0,1] with the following properties:

• Σk
t (0) = Σk

t

• spt(Σk
t (s)− Σk

t ) ⊂ a(V )

• M(Σk
t (s)) ≤M(Σk

t ) + η

• M(Σk
t (1)) < M(Σk

t )− ε(V ),
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where a(V ) is a small annulus centered at p(V ). Observe that if Σk
t is also

close to a type (2) varifold, then it has small mass in U1, ||Σk
t ||(U1). If we take

a(V ) small enough, we can suppose that we always have either a(V ) ⊂ U1 or
a(V ) ⊂M − U . Anyway, we have

||Σk
t (s)||(U) ≤ ||Σk

t ||(U1) + η, for every s ∈ [0, 1].

Let [t1, t2] ⊂ dmnΩ(Sk) be a maximal interval of big intersecting slices Σk
t

close to type (1) varifolds. Replace {Σk
t }, t ∈ [t1, t2], by the continuous path

{Σ̃k
t }, t ∈ [t1, t2], obtained as follows:

(i) first, use {Σk
t1

(s)}s∈[0,1] to go from Σk
t1

to Σk
t1

(1);

(ii) then use {Σk
t (1)}, t ∈ [t1, t2], to reach Σk

t2
(1);

(iii) finally use the inverse way of {Σk
t2

(s)}s∈[0,1] to come back to Σk
t2

.

Repeating the process on each maximal interval, we obtain S̃ = {S̃k}k∈N,
critical with respect to Ω and such that the big intersecting slices Σ̃k

t have
small mass inside U .

Each such slice is replaced by one outside Ω via a two-steps deformation.
First we deform Σ̃k

t inside Ω to a current not intersecting U and then we use
the maximum principle to take it out of Ω. And we have a contradiction.

2.2 Formal description

Let (Mn, g) be an orientable closed Riemannian manifold and Ω ⊂ M be
a connected open subset. We begin with the basic definitions following the
works of Almgren, Pitts and Marques-Neves, see [3], [36], [37] and [47].

Definition 5. An

(1,M)− homotopy sequence of mappings into (Zn−1(M ;M), {0})

is a sequence of maps {φi}i∈N

φi : I(1, ki)0 → Zn−1(M),

such that φi is 1-homotopic to φi+1 in (Zn−1(M ; M), {0}) with fineness δi
and

(i) limi→∞ δi = 0;

(ii) sup{M(φi(x)) : x ∈ dmn(φi) and i ∈ N} <∞.
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The notion of homotopy between two (1,M)-homotopy sequences of map-
pings into (Zn−1(M ; M), {0}), is the following:

Definition 6. We say that S1 = {φ1
i }i∈N is homotopic with S2 = {φ2

i }i∈N if
φ1
i is 1-homotopic to φ2

i with fineness δi and limi→∞ δi = 0.

One checks that to be ”homotopic with” is an equivalence relation on
the set of (1,M)-homopoty sequences of mappings into (Zn−1(M ; M), {0}).
An equivalence class is called a (1,M)-homotopy class of mappings into
(Zn−1(M ; M), {0}). We follow the usual notation π#

1 (Zn−1(M ; M), {0}) for
the set of homotopy classes. These definitions are the same as in Pitts, [47].

The key difference is that our width considers only slices intersecting Ω.
Given a map φ : I(1, k)0 → Zn−1(M) we defined its reduced domain by

dmnΩ(φ) = {x ∈ I(1, k)0 : spt(||φ(x)||) ∩ Ω 6= ∅}. (2.1)

Definition 7. Let Π ∈ π#
1 (Zn−1(M ; M), {0}) be a homotopy class and S =

{φi}i∈N ∈ Π. We define

L(S,Ω) = lim sup
i→∞

max{M(φi(x)) : x ∈ dmnΩ(φi)}. (2.2)

The width of Π with respect to Ω is the minimum L(S,Ω) among all S ∈ Π,

L(Π,Ω) = inf{L(S,Ω) : S ∈ Π}. (2.3)

Keeping the notation in the previous definition, we write V ∈ K(S,Ω) if
V = limj |φij(xj)|, for some increasing sequences {ij}j∈N and xj ∈ dmnΩ(φij).
Moreover, if L(S,Ω) = L(Π,Ω), we say that S is critical with respect to Ω.
In this case we consider the critical set of S with respect to Ω, defined by

C(S,Ω) = {V ∈ K(S,Ω) : ||V ||(M) = L(S,Ω)}. (2.4)

As in the classical theory, C(S,Ω) ⊂ Vn−1(M) is compact and non-empty,
but here it is not clear whether there exists V ∈ C(S,Ω) with ||V ||(Ω) > 0.

In the direction of proving that there are critical varifolds intersecting Ω,
in Subsection 3.3.2, we construct a deformation process to deal with discrete
maps whose big slices enter Ω with very small mass. For doing this, and from
now on, we introduce our main geometric assumption:

Ω has smooth and strictly mean-concave boundary ∂Ω. (2.5)

This deformation process is inspired by Pitts’ deformation arguments for
constructing replacements, Section 3.10 in [47], and Corollary 2.
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We introduce some notation to explain that result, which is precisely
stated and proved in Subsection 3.3.2. Following the notation in the Subsec-
tion 1.2, consider an open subset U ⊂ Ω such that

U ⊃ Ωa = {x ∈ Ω : d(x, ∂Ω) ≤ −a},

where a < 0 is given by Lemma 2. Lemma 9 guarantees the existence of
positive constants η0 and ε2 depending on M , Ω and U , and C1 depending
only on M , with the following properties: given a discrete map φ : I(1, k)0 →
Zn−1(M) such that f(φ) ≤ η0 and, for some L > 0,

M(φ(x)) ≥ L⇒ ||φ(x)||(U) < ε2,

then, up to a discrete homotopy of fineness C1f(φ), we can suppose that

max{M(φ(x)) : x ∈ dmnΩ(φ)} < L+ C1f(φ).

The proof is quite technical and lengthy, because it involves interpolation
results, see Section 3.1 of Chapter 3. Despite the technical objects in that
proof, the lemma has several applications in key arguments of this work.

It is important to generate (1,M)-homotopy sequences of mappings into
(Zn−1(M ; M), {0}) out of a continuous map Γ : [0, 1] → Zn−1(M ; F), with
Γ(0) = Γ(1) = 0. Similarly to the discrete set up, use the notations

dmnΩ(Γ) = {t ∈ [0, 1] : spt(||Γ(t)||) ∩ Ω 6= ∅} (2.6)

and
L(Γ,Ω) = sup{M(Γ(t)) : t ∈ dmnΩ(Γ)}. (2.7)

Theorem 9. Let Γ be as above and suppose that it defines a non-trivial
class in π1(Zn−1(M ;F), 0). Then, there exists a non-trivial homotopy class
Π ∈ π#

1 (Zn−1(M ;M), {0}), such that L(Π,Ω) ≤ L(Γ,Ω).

Remark 8. Proving this is a nice application of Lemma 9, combined with
interpolation results. It is done in Subsection 3.3.3 of Chapter 3.

Observe that item (ii) in the definition of (1,M)-homotopy sequences of
mappings into (Zn−1(M ; M), {0}) requires a uniform control on the masses
of all slices. When we try to minimize the width in a given homotopy class, in
order to construct a critical sequence with respect to Ω, there is no restriction
about the non-intersecting slices. Then, it is possible that item (ii) fails in
the limit. Precisely, if Π ∈ π#

1 (Zn−1(M ; M), {0}) is a homotopy class, via
a diagonal sequence argument through a minimizing sequence {Sj}j∈N ⊂ Π,
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we can produce S∗ = {φ∗i }i∈N, so that φ∗i is 1-homotopic to φ∗i+1 with fineness
tending to zero and

lim
i→∞

max{M(φ∗i (x)) : x ∈ dmnΩ(φ∗i )} = L(Π,Ω).

But, perhaps, in doing this, we do not guarantee that the masses of the non-
intersecting slices do not diverge. To overcome this difficulty, we prove the
following statement:

Lemma 2. There exists C = C(M,Ω) > 0 with the following property: given
a discrete map φ : I(1, k)0 → Zn−1(M) of small fineness, we can find

φ̃ : I(1, k̃)0 → Zn−1(M)

such that:

(a) φ̃ is 1-homotopic to φ with fineness C · f(φ);

(b) φ(dmnΩ(φ)) = φ̃(dmnΩ(φ̃));

(c)

max
x∈dmn(φ̃)

M(φ̃(x)) ≤ C · (max{M(φ(x)) : x ∈ dmnΩ(φ)}+ f(φ)) .

To produce a true competitor out of S∗, for each i large enough we replace
φ∗i by another discrete map, also denoted by φ∗i , using Lemma 2. The new
S∗ has the same intersecting slices and, as consequence of items (a) and
(c), the additional property of being an element of Π. This concludes the
existence of critical S∗ for L(Π,Ω). The proof of Lemma 2 is based on a
natural deformation of boundaries of n-currents in n-dimensional manifolds
with boundary. Briefly, the deformation is the image of the given (n − 1)-
boundary via the gradient flow of a Morse function with no interior local
maximum. We postpone the details to Section 3.2.

Actually, we prove a Pull-tight type Theorem, as Theorem 4.3 in [47] and
Proposition 8.5 in [36]. Precisely, given Π ∈ π#

1 (Zn−1(M ; M), 0), we obtain:

Proposition 1. There exists a critical sequence S∗ ∈ Π. For each critical
sequence S∗, there exists a critical sequence S ∈ Π such that

• C(S,Ω) ⊂ C(S∗,Ω), up to critical varifolds Σ with ||Σ||(Ω) = 0;

• every Σ ∈ C(S,Ω) is either a stationary varifold or ||Σ||(Ω) = 0.
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In this statement, critical means critical with respect to Ω. The proof is
postponed to Chapter 4.1. In the classical set up, the pull-tight gives a critical
sequence for which all critical varifolds are stationary in M . In our case, it
is enough to know that the intersecting critical varifolds are stationary.

The existence of non-trivial classes was proved by Almgren, in [2]. In
fact, his result provides an isomorphism

F : π#
1 (Zn−1(M ; M), {0})→ Hn(M). (2.8)

Then, we apply the Proposition 8.2 of [37] to guarantee that the non-trivial
classes have positive width, in the sense introduced in Definition 7.

Lemma 3. If Π ∈ π#
1 (Zn−1(M ;M), {0}) and Π 6= 0, then L(Π,Ω) > 0.

Given S = {φi}i∈N ∈ Π, the φi’s with sufficient large i can be extended
to maps Φi continuous in the mass norm, respecting the non-intersecting
property, see the interpolation result Theorem 11. The Proposition 8.2 in [37]
provides a lower bound on the value of sup{M(Φ(θ)xB(p, r)) : θ ∈ S1}, for
continuous maps Φ : S1 → Zn−1(M) in the flat topology. To obtain Lemma
3, apply Proposition 8.2 for those Φi and a small geodesic ball B(p, r) ⊂ Ω.

The next step in Almgren and Pitts’ program is to prove the existence of
a critical varifold V ∈ C(S,Ω) with the property of being almost minimizing
in small annuli. Recall the definition in subsection 1.1.3 of Chapter 1. The
goal of our construction is to produce min-max minimal hypersurfaces with
intersecting properties. In order to obtain this, we prove the following version
of the existence theorem of almost minimizing varifolds:

Theorem 10. Let (Mn, g) be a closed Riemannian manifold, n ≤ 7, and
Π ∈ π#

1 (Zn−1(M ;M), {0}) be a non-trivial homotopy class. Suppose that M
contains an open subset Ω with smooth and strictly mean-concave boundary.
There exists an integral varifold V such that

(i) ||V ||(M) = L(Π,Ω);

(ii) V is stationary in M ;

(iii) ||V ||(Ω) > 0;

(iv) for each p ∈M , there exists a positive number r such that V is almost
minimizing in A(p, s, r) for all 0 < s < r.

This is similar to Pitts’ Theorem 4.10 in [47], the difference being that
we prove that the almost minimizing and stationary varifold also intersects
Ω. We postpone its proof to Subsection 4.2 of Chapter 4, it is a combination
of Pitts’ argument and Lemma 9. This is the last preliminary result to prove
our main result, Theorem 2 as stated in the introduction, which says:
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Main Theorem

Let (Mn, g) be a closed Riemannian manifold, n ≤ 7, and

Π ∈ π#
1 (Zn−1(M ;M), {0})

be a non-trivial homotopy class. Suppose that M contains an open subset
Ω, such that Ω is a manifold whose boundary is smooth and strictly mean-
concave. There exists a stationary integral varifold Σ whose support is a
smooth embedded closed minimal hypersurface intersecting Ω and with

||Σ||(M) = L(Π,Ω).

The argument to prove Theorem 2 is simple now. Lemma 3 provides a
non-trivial homotopy class, for which we can apply Theorem 10 and obtain
an integral critical varifold V that is almost minimizing in small annuli and
intersects Ω. The Pitts’ regularity theory, Theorem 5, developed in Chapters
5 to 7 in [47], guarantees that spt(||V ||) is an embedded smooth hypersurface.

Instituto de Matemática Pura e Aplicada 38 2015



CHAPTER 3

Further tools

In this chapter we present several tools that play a role in the proofs of our
min-max results. We begin with some well known interpolations statements
used since Almgren and Pitts introduced the min-max theory of minimal
surfaces. This is the content of Section 3.1. In this section, we present also
a simple enhancement of an interpolation result concerning the supports of
the interpolated objects. In Section 3.2, we describe a natural deformation
process of boundaries of n-currents in n-manifolds with boundary to the zero
current. This deformation is similar to the flow of the minus gradient vector
field of a Morse function without local maxima, and has the fundamental
property of controlling the masses along the process by a universal constant
times the mass of the initial boundary. Then, in Section 3.3, we develop one
of the key ingredients of our arguments, namely, the discrete deformations of
single currents (and of discrete sweepouts) which enter a mean-concave region
Ω with small mass (for which big intersecting slices enter Ω with small mass)
to a current supported outside Ω (to a sweepout of strictly smaller width
with respect to Ω). These tools are applied to prove two results stated in
Chapter 2: Lemma 2 and Theorem 9.

3.1 Interpolation results

Interpolation is an important tool for passing from discrete maps of small
fineness to continuous maps in the space of integral cycles and vice-versa,
the fineness and continuity being with respect to two different topologies.
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Figure 3.1: Domain of the discrete map ψ and associated cells.

This type of technique appeared already in the works of Almgren, Pitts,
Marques and Neves [2, 3, 47, 36, 37]. In our approach, we mostly follow the
Sections 13 and 14 of [36]. We make also a remark that is important in the
arguments of this thesis concerning the supports of interpolating sequences.

We start by presenting conditions under which a discrete map can be
approximated by a continuous map in the mass norm. The main result
is important to prove Lemmas 9 and 3, and Proposition 1, which are key
ingredients of the program that we presented in the previous chapter.

Let (Mn, g) be a closed Riemannian manifold. We observe from Corollary
1.14 in [2] that there exists δ0 > 0, depending only on M , such that for every

ψ : I(2, 0)0 → Zn−1(M)

with f(ψ) < δ0 and α ∈ I(2, 0)1 with ∂α = [b] − [a], see Figure 3.1, we can
find Q(α) ∈ In(M) with

∂Q(α) = ψ([b])− ψ([a]) and M(Q(α)) = F(∂Q(α)).

Let Ω1 be a connected open subset of M , such that Ω1 is a manifold with
boundary. The first important result in this section is:

Theorem 11. There exists C0 > 0, depending only on M , such that for
every map

ψ : I(2, 0)0 → Zn−1(M)

with f(ψ) < δ0, we can find a continuous map in the mass norm

Ψ : I2 → Zn−1(M ;M)

such that

(i) Ψ(x) = ψ(x), for all x ∈ I(2, 0)0;
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(ii) for every α ∈ I(2, 0)p, Ψ|α depends only on the values assumed by ψ
on the vertices of α;

(iii)
sup{M(Ψ(x)−Ψ(y)) : x, y ∈ I2} ≤ C0 sup

α∈I(2,0)1

{M(∂Q(α))}.

Moreover, if f(ψ) < min{δ0,Hn(Ω1)} and

spt(||ψ(0, 0)||) ∪ spt(||ψ(1, 0)||) ⊂M − Ω1,

we can choose Ψ with spt(||Ψ(t, 0)||) ⊂M − Ω1, for all t ∈ [0, 1].

Proof. The first part of this result is Theorem 14.1 in Marques and Neves,
[36]. There the authors sketch the proof following the work of Almgren,
Section 6 of [2], and ideas of Pitts, Theorem 4.6 of [47]. To prove our second
claim, we follow that sketch. They start with ∆, a differentiable triangulation
of M . Hence, if s ∈ ∆ then the faces of s also belong to ∆. Given s, s′ ∈ ∆,
use the notation s′ ⊂ s if s′ is a face of s. Let U(s) = ∪s⊂s′s′. Let Ω2 be a
small connected neighborhood of Ω1, so that

spt(||ψ(0, 0)||) ∪ spt(||ψ(1, 0)||) ∩ Ω2 = ∅.

Up to a refinement of ∆, we can suppose that

s ∈ ∆ and U(s) ∩ (M − Ω2) 6= ∅⇒ U(s) ⊂M − Ω1.

For Q = Q([0, 1]⊗ [0]), we have Q ∈ In(M) and ∂Q = ψ(1, 0)− ψ(0, 0) does
not intersect Ω2. Then, there are two possibilities: either spt(||Q||)∩Ω2 = ∅
or Ω2 ⊂ spt(||Q||). Note that in the second case we would have

Hn(Ω1) < Hn(Ω2) ≤ ||Q||(Ω2) ≤M(Q) ≤ f(ψ) ≤ Hn(Ω1).

This is a contradiction and we have spt(||Q||)∩Ω2 = ∅. By the construction
of Ψ we know that

spt(||Ψ(t, 0)||) ⊂
⋃
{U(s) : U(s) ∩ spt(||Q||) 6= ∅}.

But U(s)∩ spt(Q) 6= ∅ implies that U(s)∩ (M −Ω2) 6= ∅. Then, the choice
of the triangulation gives us U(s) ⊂M − Ω1. This concludes the proof.

As in [36], we also use the following discrete approximation result for
continuous maps. Assume we have a continuous map in the flat topology
Φ : Im → Zn−1(M), with the following properties:
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• Φ|Im0 is continuous in the F-metric

• L(Φ) = sup{M(Φ(x)) : x ∈ Im} <∞

• lim supr→0 m(Φ, r) = 0,

where m(Φ, r) is the concentration of mass of Φ in balls of radius r, i.e.:

m(Φ, r) = sup{||Φ(x)||(B(p, r)) : x ∈ Im, p ∈M}.

Theorem 12. There exist sequences of mappings

φi : I(m, ki)0 → Zn−1(M) and ψi : I(1, ki)0 × I(m, ki)0 → Zn−1(M),

with ki < ki+1, ψi([0], ·) = φi(·), ψi([1], ·) = φi+1(·)|I(m,ki)0, and sequences
{δi}i∈N tending to zero and {li}i∈N tending to infinity, such that

(i) for every y ∈ I(m, ki)0

M(φi(y)) ≤ sup{M(Φ(x)) : α ∈ I(m, li)m, x, y ∈ α}+ δi.

In particular,

max{M(φi(x)) : x ∈ I(m, ki)0} ≤ L(Φ) + δi;

(ii) f(ψi) < δi;

(iii)
sup{F(ψi(y, x)− Φ(x)) : (y, x) ∈ dmn(ψi)} < δi;

(iv) if x ∈ I0(m, ki)0 and y ∈ I(1, ki)0, we have

M(ψi(y, x)) ≤M(Φ(x)) + δi.

Moreover, if Φ|{0}×Im−1 is continuous in the mass topology then we can choose
φi so that

φi(x) = Φ(x), for all x ∈ B(m, ki)0.

Remark 9. In case Φ is continuous in the F -metric in Im, there is no con-
centration of mass. This is the content of lemma 15.2 in [36].

In the proof of our main lemma, in Subsection 3.3.2, we apply the follow-
ing consequence of Theorem 12. Let U,Ω1 ⊂M be open subsets, being Ω1 a
manifold with boundary, and ρ > 0.

Assume we have a continuous map in the F -metric Ψ : I2 → Zn−1(M).
Suppose also that

Instituto de Matemática Pura e Aplicada 42 2015



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths

• t ∈ [0, 1] 7→ Ψ(0, t) is continuous in the mass norm;

• sup{||Ψ(s, t)||(U) : s ∈ [0, 1] and t ∈ {0, 1}} < ρ;

• spt(||Ψ(1, t)||) ⊂M − Ω1, for every t ∈ [0, 1].

Corollary 3. Given δ > 0, there exists k ∈ N and a map

Ψ1 : I(2, k)0 → Zn−1(M),

with the following properties:

(i) f(Ψ1) < δ;

(ii) sup{||Ψ1(σ, τ)||(U) : σ ∈ I(1, k)0 and τ ∈ {0, 1}} < ρ+ δ;

(iii) sup{||Ψ1(1, τ))||(Ω1) : τ ∈ I(1, k)0} < δ;

(iv) M(Ψ1(x)) ≤M(Ψ(x)) + δ, for every x ∈ I(2, k)0;

(v) Ψ1(0, τ) = Ψ(0, τ), if τ ∈ I(1, k)0.

Items (i) and (v) are easy consequences of Theorem 12. The other items
hold if we choose a sufficiently close discrete approximation. The proof of
Corollary 3 involves a simple combination of the uniform continuity of M◦Ψ,
compactness arguments and the Lemma 4.1 in [36]. For the convenience of
the reader, we state this lemma here.

Lemma 4. Let S ⊂ Zk(M ;F) be a compact set. For every ρ > 0, there
exists δ so that for every S ∈ S and T ∈ Zk(M)

M(T ) <M(S) + δ and F(T − S) ≤ δ ⇒ F(S, T ) ≤ ρ.

The last lemma that we discuss in this section is similar to Theorem
12 restricted to the case m = 1. It says that the hypothesis about the no
concentration of mass is not required in this case. See Lemma 3.8 in [47].

Lemma 5. Suppose L, η > 0, K compact subset of U and T ∈ Zk(M). There
exists ε0 = ε0(L, η,K, U, T ) > 0, such that whenever

• S1, S2 ∈ Zk(M);

• F(S1 − S2) ≤ ε0;

• spt(S1 − T ) ∪ spt(S2 − T ) ⊂ K;

• M(S1) ≤ L and M(S2) ≤ L,
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there exists a finite sequence S1 = T0, T1, . . . , Tm = S2 ∈ Zk(M) with

spt(Tl − T ) ⊂ U, M(Tl − Tl−1) ≤ η and M(Tl) ≤ L+ η.

This lemma is useful to approximate continuous maps in flat topology by
discrete ones with small fineness in mass norm, but first we have to restrict
the continuous map to finer and finer grids I(1, k)0.

3.2 Deformations of boundaries on manifolds

with boundary

In this section, we develop a deformation tool and apply it to give the details
of the proof of Lemma 2, which concerns deforming non-intersecting slices
to uniformly control their masses. This section is organized as follows: first,
in Subsection 3.2.1, we state the deformation result. Then, in Subsection
3.2.2 we prove a Morse-type theorem that is applied in the proof of the
deformation lemma. This lemma is proved in Subsection 3.2.3. Finally, in
Subsection 3.2.4, it is applied in the proof of Lemma 2.

3.2.1 Deforming with controlled masses

In this subsection, we simply state the natural deformation tool that we
develop to control the masses of non-intersecting slices.

Lemma 6. Let (M̃n, g) be a compact Riemannian manifold with smooth
boundary ∂M̃ . There exists C = C(M̃) > 0 with the following property:
given A ∈ In(M̃) such that M(A) + M(∂A) <∞, we can find a map

φ : [0, 1]→ Zn−1(M̃)

continuous in the flat topology such that

(i) φ(0) = ∂A and φ(1) = 0;

(ii) M(φ(t)) ≤ C ·M(∂A), for every t ∈ [0, 1].

Moreover, if spt(||A||) ⊂ int(M̃), there exists a compact subset K ⊂ int(M̃),
such that spt(||φ(t)||) ⊂ K, for every t ∈ [0, 1].

Remark 10. The construction makes clear that φ has no concentration of
mass, i.e., lim supr→0 sup{||Φ(x)||(B(p, r)) : x ∈ Im, p ∈ M̃} = 0.
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3.2.2 A Morse type theorem

Let (Mn, g) be a compact Riemannian manifold with smooth non-empty
boundary ∂M and f : M → [0, 1] be a Morse function on M , such that
f−1(1) = ∂M and with no interior local maximum. The fundamental theo-
rems in Morse theory describe how the homotopy type of the sublevel sets
Ma = {x ∈ M : f(x) ≤ a} change as a ∈ [0, 1] varies, see Theorems 3.1 and
3.2 in [41]. In this section we develop a slightly different approach to those
results. It is important in the proof of Lemma 6, which is a key ingredient for
producing sweepouts with uniformly controlled non-intersecting slice, recall
the discussion in Chapter 2.

Theorem 13. Let 0 ≤ c < d ≤ 1, λ ∈ {0, 1, . . . , n − 1} and p ∈ f−1(c)
be an index λ critical point of f . Suppose ε > 0 is such that f−1([c − ε, d])
contains no critical points other than p. Then, for sufficiently small ε > 0,
there exists a smooth homotopy

h : [0, 1]×Md →Md,

with the following properties:

1. h(1, ·) is the identity map of Md;

2. h(0,Md) is contained in M c−ε with a λ-cell attached.

Remark 11. The difference of the above statement and the classical ones, is
that here we are able to guarantee that the homotopy is smooth by relaxing
the condition of h(1, ·) being a retraction onto the whole M c−ε with the λ-cell
attached.

Proof. By the classical statements 3.1 and 3.2 in [41], we know that there
exists a smooth homotopy between the identity map of Md and a retraction
of Md onto M c−ε ∪H, i.e., the sublevel set with a handle H attached. It is
also observed that this set has smooth boundary. The final argument in the
proof of Theorem 3.2 in Milnor’s book is a vertical projection of the handle
onto M c−ε ∪ eλ, where eλ is a λ-cell contained in H. See diagram 7, on page
19 of [41]. This projection is not adequate for us because it is not smooth.
We adapt this step in that proof by defining a smooth projection.

Following the notation in [41], let u1, . . . , un be a coordinate system in a
neighborhood U of p so that the identity

f = c− (u2
1 + . . .+ u2

λ) + (u2
λ+1 + . . .+ u2

n), (3.1)

holds throughout U . We use ξ = u2
1 + . . .+ u2

λ and η = u2
λ+1 + . . .+ u2

n. For
sufficiently small ε > 0, the λ-cell eλ can be explicitly given by the points
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in U with ξ ≤ ε and η = 0. Consider δ > 0 so that the image of U by the
coordinate system contains the set of points with ξ ≤ ε + δ and η ≤ δ. Let
φ : (0,+∞)→ (0,+∞) be a function such that φ ∈ C∞(0,+∞) and:

(a) φ(ξ) = 0, if ξ ≤ ε;

(b) φ(ξ) = ξ − ε, if ε+ δ ≤ ξ;

(c) φ(ξ) ≤ ξ − ε, for all ξ ∈ (0,+∞).

With these choices, we are able to redefine the projection for points classified
as case 2 on page 19 of [41], i.e., ε ≤ ξ ≤ η + ε. Consider

(t, u1, . . . , un) 7→ (u1, . . . , uλ, stuλ+1, . . . , stun),

where the number st ∈ [0, 1] is defined by

st = t+ (1− t)

√
φ(ξ)

η
.

This map is smooth for points in case 2 because now the set φ(ξ) = η meets
the boundary of eλ smoothly. By (c), we see that the image of each point
at time t = 0 is inside M c−ε ∪ eλ. Using this new projection, the statement
follows via the same program as in the proof of Theorem 3.2 in [41].

3.2.3 Constructing the deformation

Lemma 6 is about the construction of natural deformations starting with the
boundary of a fixed n-dimensional integral current A in a compact manifold
with boundary, and contracting it continuously and with controlled masses
to the zero current. This generalizes the notion of cones in Rn. Aiming the
proof of that lemma, we developed a modified Morse-type Theorem that we
discuss now.

Proof of Lemma 6. To make the notation simpler, in this proof we use M
instead of M̃ to denote the manifold with boundary.

Step 1:

Consider a Morse function f : M → [0, 1] with f−1(1) = ∂M and no interior
local maximum. Let C(f) = {p1, . . . , pk} ⊂ M be the critical set of f , with
ci = f(pi) and index(f, pi) = λi ∈ {0, 1, . . . , n− 1}. Suppose, without loss of
generality, 0 = ck < · · · < c1 < 1.
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We adapt Morse’s fundamental theorems to construct a list of homotopies

hi : [0, 1]×Mi →Mi, for i = 1, . . . , k,

defined on sublevel sets M1 = M and Mi = M ci−1−εi−1 = {f ≤ ci−1 − εi−1},
for i = 2, . . . , k, with sufficiently small εi > 0. Those maps are constructed
in such a way we have the following properties:

• hi is smooth for all i = 1, . . . , k;

• hi(1, ·) is the identity map of Mi;

• hi(0,Mi) is contained in Mi+1 with a λi-cell attached, if i ≤ k − 1;

• hk(0,Mk) = f−1(0).

This is achieved by Theorem 13, in Subsection 3.2.2.

Step 2:

Recall A ∈ In(M) and h0(0,M) is contained in the union of M1 with a λ1-
cell. Since λ1 < n, the support of A1 = h1(0, ·)#A is a subset of M2. Indeed,
it is an integral n-dimensional current and the λ1-cell has zero n-dimensional
measure. Inductively, we observe:

Ai := hi(0, ·)#A
i−1 has support in Mi+1, for i = 2, . . . , k,

with the additional notation Mk+1 = f−1(0). In particular, this allows us to
concatenate the images of A by the sequence of homotopies. Consider

Φ : [0, 1]→ In(M)

starting with Φ(0) = A and inductively defined by

Φ(t) = hi(i− kt, ·)#Φ((i− 1)/k),

for t ∈ [(i− 1)/k, i/k] and i = 1, . . . , k.

Step 3:

The homotopy formula, equation (1.17) of Chapter 1, tells us

Φ(t)− Φ(s) = (hi)# ([|(i− ks, i− kt)|]× ∂Φ((i− 1)/k)) , (3.2)

for (i− 1)/k ≤ t ≤ s ≤ i/k. In fact, the boundary term vanishes,

∂(hi)# ([|(i− ks, i− kt)|]× Φ((i− 1)/k)) = 0,

because [|(i−ks, i−kt)|]×Φ((i−1)/k) is (n+1)-dimensional, while hi takes
values in a n-dimensional space.
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Step 4:

The mass of the product current [|(i − ks, i − kt)|] × ∂Φ((i − 1)/k) is the
product measure of Lebesgue’s measure on (i − ks, i − kt) and the mass of
∂Φ((i− 1)/k). Since all homotopies h1, . . . , hk are smooth, we conclude that
Φ is continuous in the mass norm and that there exists a positive constant
C = C(M) > 0 such that

M(∂Φ(t)) ≤ C ·M(A), for all t ∈ [0, 1].

Step 5:

Consider φ being the boundary map applied to Φ, i.e., φ(t) = ∂Φ(t). Since
Φ is continuous in the mass topology, it follows directly φ is continuous in
the flat metric. Moreover, all maps hi(t, ·) with t > 0 are diffeomorphisms,
this implies φ is continuous in the F -metric, up to finite points.

The last claim in the statement of Lemma 6 follows from construction,
because spt(||A||) ⊂ int(M̃) implies there exists a small ε > 0 such that
spt(||A||) is contained in the sublevel set K := {f ≤ 1− ε}.

3.2.4 Controlling the non-intersecting slices

Finally, we present the proof of Lemma 2. As a matter of reading convenience,
let us precisely restate the result that we are going to prove. In our main
setting, Lemma 2 says that there exists C = C(M,Ω) > 0 with the following
property: given a discrete map

φ : I(1, k)0 → Zn−1(M)

of small fineness, we can find

φ̃ : I(1, k̃)0 → Zn−1(M)

such that:

(a) φ̃ is 1-homotopic to φ with fineness C · f(φ);

(b) φ(dmnΩ(φ)) = φ̃(dmnΩ(φ̃));

(c)

max
x∈dmn(φ̃)

M(φ̃(x)) ≤ C · (max{M(φ(x)) : x ∈ dmnΩ(φ)}+ f(φ)) .
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Proof of Lemma 2. Consider a discrete map ψ : I(1, k)0 → Zn−1(M) such
that f(ψ) ≤ min{δ0,Hn(Ω)}. Recall the choice of δ0 in Section 3.1. We
replace ψ with another discrete map of small fineness. Observe, for each
v ∈ I(1, k)0 − {1}, we can find the isoperimetric choice A(x) ∈ In(M) of
ψ(v+3−k)−ψ(v), i.e., ∂A(v) = ψ(v+3−k)−ψ(v) and M(A(v)) = F(∂A(v)).

Consider x, y ∈ I(1, k)0 with the following properties:

• [x, y] ∩ dmnΩ(ψ) = ∅;

• x− 3−k and y + 3−k belong to dmnΩ(ψ).

Observe that, for every z ∈ [x, y − 3−k] ∩ I(1, k)0, we have

spt(||A(z)||) ⊂M − Ω. (3.3)

In fact, observe ψ(z) and ψ(z + 3−k) have zero mass in Ω and ψ(z + 3−k) =
ψ(z)+∂A(z), so, the possibilities are either spt(||A(z)||) contains Ω or do not
intersect it. The first case is not possible because A(z) is an integral current
with mass smaller than f(ψ) ≤ Hn(Ω). Next, we explain how ψ is modified
on each such [x, y], which is called a maximal interval of non-intersecting
slices. Observe that spt(||ψ(x)||) ∪ spt(||ψ(y)||) ⊂ M − Ω. Let M̃ = M − Ω
and consider the integral current

A =
∑

A(z) ∈ In(M̃),

where we sum over all z ∈ [x, y−3−k]∩I(1, k)0. Note that ∂A = ψ(y)−ψ(x)
and that spt(||A||) do not intersect ∂M̃ . Let φ : [0, 1] → Zn−1(M̃) be the
map obtained via Lemma 6 applied to the chosen A.

To produce a discrete map, we have to discretize φ. Since we are dealing
with a one-parameter map, we can directly apply Lemma 5. Consider a
compact set K ⊂M − Ω =: U , such that

spt(||φ(t)||) ⊂ K, for all t ∈ [0, 1]. (3.4)

This is related to the extra property of φ that we have in Lemma 6, because
spt(||A||) ⊂ M − Ω. Following the notation of Lemma 5, choose ε0 > 0
making that statement work with L = C ·M(∂A), η ≤ f(ψ), T = 0, and the
fixed K ⊂ U . The constant C = C(M,Ω) > 0 is the one in Lemma 6. Let
k1 ∈ N be large enough, so that φ1 := φ|I(1,k1)0 is ε0-fine in the flat topology.
In this case, for all θ ∈ I(1, k1)0, we have:

• F(φ1(θ + 3−k1)− φ(θ)) ≤ ε0;

• spt(φ(θ)) ⊂ K;
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• M(φ(θ)) ≤ L = C ·M(∂A).

Lemma 5 says that we can take k̃ ≥ k1, so that φ1 admits extension φ̃ to
I(1, k̃)0 with fineness f(φ̃) ≤ η ≤ f(ψ), spt(φ̃(θ)) ⊂M−Ω and with uniformly
controlled masses

M(φ̃(θ)) ≤ L+ η ≤ C ·M(∂A) + f(ψ).

We replace ψ|[x,y]∩I(1,k)0 with a discrete map defined in a finer grid

ψ̃ : I(1, k + k̃)0 ∩ [x, y]→ Zn−1(M),

such that
ψ̃(w) = ψ(y)− φ̃((w − x) · 3k),

if w ∈ I(1, k + k̃)0 ∩ [x, x+ 3−k], and ψ̃(w) = ψ(y), otherwise. This map has
the same fineness as φ̃, and so f(ψ̃) ≤ f(ψ). Also, ψ̃ and ψ agree in x and y,

ψ̃(x) = ψ(y)− φ̃(0) = ψ(y)− ∂A = ψ(x) and ψ̃(y) = ψ(y).

Moreover, no slice ψ̃(w) intersects Ω and

M(ψ̃(w)) ≤ M(ψ(y)) + C ·M(∂A) + f(ψ) (3.5)

≤ C · (max{M(ψ(z)) : z ∈ dmnΩ(ψ)}+ f(ψ)) .

The second line is possible, because x− 3−k and y+ 3−k belong to dmnΩ(ψ).
Also, the constant appearing in the last inequality is bigger than the original,
but still depending only on M and Ω.

Observe one can write the original ψ restricted to [x, y]∩I(1, k)0, similarly
to the expression that defines ψ̃, as ψ(w) = ψ(y)− φ̂(w/3), where

φ̂ : I(1, k + 1)0 → Zn−1(M)

is given by

• φ̂(θ) = ∂A, if θ ∈ [0, x/3] ∩ I(1, k + 1)0;

• φ̂(θ) = ψ(y)− ψ(3θ), if θ ∈ [x/3, y/3] ∩ I(1, k + 1)0;

• φ̂(θ) = 0, if θ ∈ [y/3, 1] ∩ I(1, k + 1)0.

We concatenate the inverse direction of φ̃ with φ̂ to construct

φ : I(1, k + 1)0 → Zn−1(M), (3.6)

where k = max{k̃, k + 1}, and

φ(θ) =


φ̃ ◦ n(k, k̃)(1− 3θ) if 0 ≤ θ ≤ 3−1

φ̂ ◦ n(k, k + 1)(3θ − 1) if 3−1 ≤ θ ≤ 2 · 3−1

0 if 2 · 3−1 ≤ θ ≤ 1.
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Claim 1. f(φ) ≤ f(ψ) and φ is 1-homotopic to zero in (Zn−1(M ;M), {0})
with fineness C1 · f(ψ).

The constant C1 > 0 is uniform, in the sense that it does not depend on ψ.
The proof of this claim finishes the argument, because the discrete homotopy
between φ and the zero map tells us that the initial map ψ and the ψ̃ we
built are 1-homotopic with the same fineness. Claim 1 is a consequence of
Almgren’s Isomorphism.

3.3 Ruling out small intersecting mass

In this section we develop deformations of objects that enter a region Ω ⊂M
with small mass. This tool plays a key role in the present work. We divide
the section in three parts, first we discuss how to deform single currents with
that small area property and what properties this deformation must satisfy.
This is done in Subsection 3.3.1. Then, in Subsection 3.3.2, we apply the
method to deform sweepouts whose big intersecting slices have the small-
area property. Lemma 9 is the main result that is proven in this part. We
end the section with Subsection 3.3.3, in which we make the first applica-
tion of Lemma 9. Namely, we discretize continuous sweepouts minding the
intersecting property to prove Theorem 9 of Chapter 2.

3.3.1 Deforming single currents

Let (Mn, g) be a compact Riemannian manifold isometrically embedded in
the Euclidean space RL. Consider open subsets W ⊂⊂ U in M . The goal of
this section is to prove that it is possible to deform an integral current T with
small mass in U to a current T ∗ outside W . The deformation is discrete, with
support in U , arbitrarily small fineness and the masses along the deformation
sequence can not increase much. In this part, the mean-concavity is not used
and the statements do not involve Ω.

Lemma 7. There exists ε1 > 0 with the following property: given

T ∈ Zn−1(Mn) with ||T ||(U) < ε1 and η > 0,

it is possible to find a sequence T = T1, . . . , Tq ∈ Zn−1(Mn) such that

(1) spt(Tl − T ) ⊂ U ;

(2) M(Tl − Tl−1) ≤ η;

(3) M(Tl) ≤M(T ) + η;
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(4) spt(Tq) ⊂M −W .

Remark 12. The constant ε1 depends only on M and dg(W,M − U).

The main ingredients to prove this result are: the key element is a discrete
deformation process used by Pitts in the construction of replacements, see
section 3.10 in [47], and the monotonicity formula, Section 1.3.

Lemma 8 (Pitts’ deformation argument). Let K ⊂ U be subsets of M , with
K compact and U open. Given T ∈ Zk(M) and η > 0, there exists a finite
deformation T = T1, . . . , Tq ∈ Zk(M) satisfying items (1), (2), (3) of the
statement of Lemma 7 and with the additional properties that Tq is locally
area-minimizing in int(K) and M(Tq) ≤M(T ).

The idea of this lemma is to consider all finite fine deformations of T
and minimize the mass of the last slice Tq. This can not be done directly
because the space of integral currents of bounded masses is compact in the
weak topology, but not in the mass norm. Then, the proof is divided in two
steps, first we consider the minimization process among lists which are fine
with respect to the flat metric. Secondly, we apply interpolation arguments
to achieve the desired fineness.

Proof of Lemma 8. Fixed ε > 0, consider all lists T = S1, . . . , Sq ∈ Zk(M),
with the following properties:

(a) spt(Sl − T ) ⊂ K

(b) F(Sl − Sl−1) ≤ ε

(c) M(Sl) ≤M(T ) + ε.

Consider M(T,K, ε) := inf M(Sq), where the infimum is taken among all
finite sequences as above (q is allowed to vary). The interesting remark is
that the infimum is attained by a finite sequence and the last integral current
Sq of an optimal list is locally area-minimizing in the interior points of K.

Indeed, consider a minimizing sequence of lists:

T = Sj1, S
j
2, . . . , S

j
qj
∈ Zk(M), j = 1, 2, . . .

such that limj M(Sjqj) = M(T,K, ε). Observe M(Sjqj) ≤ M(T ) + ε, for all
j. Then, by the compactness theorem for integral currents, Theorem 27.3
in [51], we can suppose that Sjqj weakly converge, as currents, to an integral
current T ′. Since we are dealing with a sequence of integer multiplicity
cycles of uniformly bounded masses, we have that F(Sjqj , T

′) tends to zero,
see Theorem 31.2 in [51]. For sufficiently large j, consider the sequence T =
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Sj1, S
j
2, . . . , S

j
qj
, Sjqj+1 = T ′. It satisfy (a), (b), (c) and M(Sjqj+1) = M(T,K, ε).

In other words, the infimum is attained.
Since we can take the constant list Sl = T , we easily see that M(Sq) ≤

M(T ), where Sq is the last current of any optimal list.
Let p ∈ int(K) and choose r > 0 such that B(p, r) ⊂ int(K). Since

Sq is an integral current, we can make r small enough in such a way that
||Sq||(B(p, r)) < ε/2. Then, if M(S) < M(Sq) for some S ∈ Zk(M) with
spt(S − Sq) ⊂ B(p, r), the sequence T = S1, S2, . . . , Sq, S, would still have
the properties (a) to (c) and M(S) < M(Sq) = M(T,K, ε). But this is a
contradiction.

For small ε, we modify the obtained {Sl}ql=1 using Lemma 5, to construct
a new sequence with small fineness in the mass norm. Following Lemma 5,
choose ε0 = ε0(M(T ) + η/2, η/2, K, U, T ). Consider 0 < ε ≤ min{ε0, η/2}
and a sequence {Sl}ql=0, satisfying (a), (b), (c) and M(Sq) = M(T,K, ε). For
each l = 2, . . . , q, we have

• Sl−1, Sl ∈ Zk(M)

• F(Sl − Sl−1) ≤ ε ≤ ε0

• spt(Sl−1 − T ) ∪ spt(Sl − T ) ⊂ K

• M(Sl−1) and M(Sl) ≤M(T ) + ε ≤M(T ) + η/2.

Interpolate to obtain Sl−1 = T l0, T
l
1, . . . , T

l
m(l) = Sl ∈ Zk(M), such that

spt(T lj − T ) ⊂ U, M(T lj − T lj−1) ≤ η/2 ≤ η and M(T lj) ≤M(T ) + η.

Putting all the T lj lists together, we conclude the argument.

The second tool that we use in the proof of Lemma 7, the monotonicity
formula, says that there are C, r0 > 0, such that for any minimal submanifold
Σk ⊂M and p ∈ Σ, we have

Hk(Σ ∩B(p, r)) ≥ Crk, for all 0 < r < r0.

This follows from expression (1.25) of Section 1.3. Now, we proceed to the
proof of the small mass deformation lemma.

Proof of 7: Consider a compact subset K with W ⊂⊂ K ⊂ U , and let

T ∈ Zn−1(Mn) with ||T ||(U) < ε1 and η > 0,

be given, ε1 > 0 to be chosen. Apply Corollary 8 to these K ⊂ U , T and
η, to obtain a special finite sequence T = T1, . . . , Tq ∈ Zn−1(M). The items
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(1) to (3) of Lemma 7 follow automatically. Since spt(Tq − T ) ⊂ U and
M(Tq) ≤M(T ), we have ||Tq||(U) ≤ ||T ||(U) ≤ ε1.

Note that the induced varifold |Tq| is stationary in int(K), being locally
area-minimizing in this open set. Suppose Tq is not outside W , take p ∈
W ∩ spt(Tq) and 0 < r = 2−1 min{r0, dg(W,M − K)}. Then, applying the
monotonicity formula for stationary integral varifolds, Remark 6, we have

Crn−1 ≤ ||Tq||(B(p, r)) ≤ ||Tq||(U) ≤ ε1.

In order to conclude the proof, we choose ε1 < Crn−1.

3.3.2 Discrete sweepouts

Let (Mn, g) be a closed embedded submanifold of RL and Ω ⊂ M be an
open subset with smooth and strictly mean-concave boundary ∂Ω. Recall
the domains Ωa ⊂ Ω ⊂ Ωb and the maximum principle vector field X that
we considered in Subsection 1.2. Let U ⊂ Ω be an open subset such that
Ωa ⊂ U . In this section we consider discrete maps φ : I(1, k)0 → Zn−1(M)
with small fineness for which slices φ(x) with mass greater than a given
L > 0 have small mass in U . The goal here is to extend the construction of
Subsection 3.3.1 and deform the map φ via a 1-homotopy with small fineness.

In order to state the precise result, consider the constants: C0 = C0(M)
and δ0 = δ0(M) as introduced in Section 3.1, and ε1(U,Ωa) as given by
Lemma 7 for W = Ωa and the fixed U . Consider also the following combi-
nations

• (3 + C0)η0 = ε2 = min{ε1(U,Ωa), 5
−1δ0, 5

−1Hn(Ωa)};

• C1 = 3C0 + 7.

Observe that C1 = C1(M), but ε2 and η0 depend also on U and Ωa.
Assume we have a discrete map φ : I(1, k)0 → Zn−1(M) with fineness

f(φ) ≤ η0 and satisfying the property that, for some L > 0,

M(φ(x)) ≥ L⇒ ||φ(x)||(U) < ε2. (3.7)

Lemma 9. There exists φ̃ : I(1, N)0 → Zn−1(M) 1-homotopic to φ with
fineness C1 · f(φ), with the following properties:

L(φ̃) = max{M(φ̃(x)) : x ∈ dmnΩ(φ̃)} < L+ C1 · f(φ)

and such that the image of φ̃ is equal to the union of {φ(x) : M(φ(x)) < L}
with a subset of {T ∈ Zn−1(M) : ||T ||(U) ≤ 2ε2}.
Remark 13. If 0 < ε ≤ ε2 and we assume that ||φ(x)||(U) < ε, in (3.7),
we can still apply the lemma. Moreover, the image of φ̃ will coincide with
{φ(x) : M(φ(x)) < L} up to slices with the property ||φ̃(x)||(U) ≤ ε+C1 · η.
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Overwiew of the proof of Lemma 9

Deforming each big slice using the small mass procedure we obtain a map
ψ defined in a 2-dimensional grid. The first difficulty that arises is that the
obtained map has fineness of order ε2 instead of f(φ). We correct this using
the interpolation results, see Section 3.1. The fine homotopy that we are
able to construct ends with a discrete map φ̃ whose intersecting slices φ̃(x)
with mass exceeding L by much do not get very deep in Ω, i.e., spt(φ̃(x)xΩ)
is contained in a small tubular neighborhood of ∂Ω in M .

The second part is the application of the maximum principle. The idea
is to continuously deform the slices supported in M − Ωa of the map φ̃,
produced in the first step, via the flow {Φ(s, ·)}s≥0 of the maximum principle
vector field, see Corollary 2. Since Φ(1,M − Ωa) ⊂ M − Ωb, the bad slices
φ̃(x) end outside Ωb. But this deformation is continuous only with respect
to the F -metric and we need a map with small fineness in the mass norm.
This problem is similar to the difficulty that arises in the classical pull-tight
argument. We produce then a discrete version of the maximum principle
deformation that is arbitrarily close, in the F -metric, to the original one.
This correction creates one more complication, because the approximation
can create very big intersecting slices with small mass in Ωb. To overcome
this we apply the small mass procedure again.

Proof of Lemma 9. Consider the set

K = {x ∈ I(1, k)0 : M(φ(x)) ≥ L}.

Let α, β ∈ K. A subset [α, β] ∩ I(1, k)0 is called a maximal interval on K if
[α, β] ∩ I(1, k)0 ⊂ K and α− 3−k, β + 3−k /∈ K.

We describe the construction of the homotopy on each maximal interval.
Observe that for every x ∈ [α, β] ∩ I(1, k)0, we have ||φ(x)||(U) < ε2 ≤ ε1.

Let N1 = N1(φ) be a positive integer so that, for each x ∈ [α, β]∩I(1, k)0,
we can apply Lemma 7 to W = Ωa ⊂⊂ U and find sequences

φ(x) = T (0, x), T (1, x), . . . , T (3N1 , x) ∈ Zn−1(M),

with fineness at most η = f(φ), controlled supports and masses

spt(T (l, x)− φ(x)) ⊂ U and M(T (l, x)) ≤M(φ(x)) + η, (3.8)

and ending with an integral cycle T (3N1 , x)) whose support is contained in
M − Ωa. Observe that ||φ(x)||(Ω) = 0 imply that T (l, x) is constant φ(x).
Then, we perform the first step of the deformation. Consider

ψ : I(1, N1)0 × ([α, β] ∩ I(1, k)0)→ Zn−1(M)
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defined by ψ(l, x) = T (l · 3N1 , x), for every x ∈ [α, β] ∩ I(1, k)0 and l ∈
I(1, N1)0. It follows directly from the construction that the map ψ satisfies:

sup{M(ψ(l, x)) : l ∈ I(1, N1)0 and x ∈ {α, β}} ≤ L+ 2η, (3.9)

and

spt(||ψ(1, x)||) ⊂M − Ωa, for every x ∈ [α, β] ∩ I(1, k)0. (3.10)

It is also an easy fact that

M(ψ(3−N1 , x)− ψ(3−N1 , x+ 3−k)) ≤ 3η, (3.11)

for x ∈ [α, β − 3−k] ∩ I(1, k)0. Observe that (3.8) implies that

sup{||ψ(l, x)||(U) : l ∈ I(1, N1)0} ≤ ||φ(x)||(U) + η ≤ ε2 + η, (3.12)

for every x, and
||ψ(1, x)||(U) ≤ ||φ(x)||(U) ≤ ε2. (3.13)

Moreover, we check that

f(ψ) ≤ 3η + 4ε2 ≤ 5ε2 ≤ min{δ0,Hn(Ωa)}. (3.14)

We have to prove that M(ψ(l, x)−ψ(l, x′)) ≤ 5ε2, always that |x−x′| ≤ 3−k.
Indeed, rewrite that difference as

(ψ(l, x)− φ(x)) + (φ(x)− φ(x′)) + (φ(x′)− ψ(l, x′)). (3.15)

The first and third terms are similar and, if they are non-zero, their analysis
follow the steps: M(ψ(l, x)− φ(x)) = ||ψ(l, x)− φ(x)||(U), because ψ(l, x) is
constructed in such a way that spt(ψ(l, x)− φ(x)) ⊂ U and

||ψ(l, x)− φ(x)||(U) ≤ ||ψ(l, x)||(U) + ||φ(x)||(U)

≤ η + 2||φ(x)||(U)

< η + 2ε2.

In the above estimate, we have used only (3.12) and that ||φ(x)||(U) < ε2.
The mass of the second term of (3.15) is at most η, then

M(ψ(l, x)− ψ(l, x′)) ≤ 3η + 4ε2 ≤ 5ε2.

The last inequality follows from the special choices of η ≤ η0 and 3η0 ≤ ε2.
In order to get the desired fineness on the final 1-homotopy, we have to

interpolate. For each l ∈ I(1, N1)0 − {0, 1} and x ∈ [α, β − 3−k] ∩ I(1, k)0,
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we apply Theorem 11 to the restriction of ψ to the four corner vertices of
[l, l + 3−N1 ] × [x, x + 3−k]. This is allowed because of the expression (3.14).
The result of this step is a continuous map in the mass norm

Ψ : [3−N1 , 1]× [α, β]→ Zn−1(M), (3.16)

that extends ψ. Moreover, in the 1-cells of the form [l, l + 3−N1 ] × {x}, the
interpolating elements Ψ(s, x) differ from ψ(l, x) or ψ(l+3−N1 , x) in the mass
norm at most by a factor of C0M(ψ(l, x)−ψ(l+3−N1 , x)) ≤ C0η. This remark
implies that, for s ∈ [3−N1 , 1] and x ∈ {α, β}, we have

M(Ψ(s, x)) ≤ L+ (2 + C0)η, (3.17)

and, together with expression (3.12), for the same s and x, we arrive at

||Ψ(s, x)||(U) ≤ (ε2 + η) + C0η. (3.18)

Since Ψ(1, α) = ψ(1, α), we have better estimates M(Ψ(1, α)) ≤ L+ 2η and
||Ψ(1, α)||(U) ≤ ε2, at time s = 1. The same holds for β. A similar assertion
holds for the 1-cells {l} × [x, x+ 3−k] and gives us

M(Ψ(3−N1 , t)− ψ(3−N1 , x)) ≤ 3C0η, (3.19)

for x ∈ [α, β] ∩ I(1, k)0 and t ∈ [α, β] with |t − x| ≤ 3−k. Property (3.19)
implies that restrictions of Ψ(3−N1 , ·) to any [α, β]∩I(1, N)0 are 1-homotopic
to the original φ with fineness at most (3C0 + 1)f(φ). Finally, since f(ψ) ≤
Hn(Ωa) and spt(||ψ(1, x)||) ⊂M − Ωa, we can suppose that

spt(||Ψ(1, t)||) ⊂M − Ωa, for every t ∈ [α, β]. (3.20)

Recall that {Φ(s, ·)}s is the flow of the maximum principle vector field X
and consider the map

(s, t) ∈ [1, 2]× [α, β] 7→ Φ(s− 1, ·)#(Ψ(1, t)) =: Ψ(s, t).

This map is continuous in the F -metric, because each map Φ(s − 1, ·) is
diffeomorphism. Since Φ(s, ·) is a mass-decreasing flow, we have

M(Ψ(s, t)) ≤M(Ψ(1, t)) ≤ max{M(Ψ(1, t)) : t ∈ [α, β]} <∞, (3.21)

for every t ∈ [α, β] and s ∈ [1, 2]. In particular, the estimates (3.17) and
(3.18) hold in [3−N1 , 2]. Moreover, because of (1.20), we have

spt(||Ψ(2, t)||) ⊂M − Ωb, for every t ∈ [α, β]. (3.22)
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The final homotopy must be a fine discrete map defined on a 2d grid. In
order to attain this, we interpolate once more, but now via Corollary 3. Let
0 < ε3 ≤ ε1(Ωb,Ω) be chosen in such a way that we can apply Lemma 7 with
the sets Ω and Ωb, and with ε3 ≤ η. Apply Corollary 3 for a sufficiently small
δ, to obtain a number N2 = N2(φ) ≥ N1 + k and a discrete map

Ψ1 : I(1, N2)0 × ([α, β] ∩ I(1, N2)0)→ Zn−1(M),

such that

(i) f(Ψ1) < η;

(ii)

sup{||Ψ1(σ, τ)||(U) : σ ∈ I(1, N2)0 and τ ∈ {α, β}} < ε2 + (2 + C0)η;

(iii)
sup{||Ψ1(1, τ))||(Ωb) : τ ∈ [α, β] ∩ I(1, N2)0} < ε3;

(iv)

sup{M(Ψ1(σ, x)) : σ ∈ I(1, N2)0 and x ∈ {α, β}} ≤ L+ (3 + C0)η;

(v) Ψ1(0, τ) = Ψ(3−N1 , τ), if τ ∈ [α, β] ∩ I(1, N2)0.

The next step is a second application of the Lemma 7, now for the slices
Ψ1(1, τ). The choice of ε3 guarantee that there exists N3 = N3(φ) ∈ N and
an extension of Ψ1 to the discrete domain

dmn(Ψ1) = (I(1, N2)0 ∪ (I(1, N3)0 + {1}))× ([α, β] ∩ I(1, N2)0),

where I(1, N3)0 + {1} = {λ+ 1 : λ ∈ I(1, N3)0}. This map has the following
properties: in the same spirit as (3.14), we have, respectively,

f(Ψ1) ≤ 3η + 4ε3 ≤ 7η. (3.23)

Moreover, similarly to (3.9), (3.10) and (3.12), we have, respectively,

M(Ψ1(σ, τ)) ≤ L+ (4 + C0)η, (3.24)

for all (σ, τ) ∈ dmn(Ψ1) and τ ∈ {α, β},

spt(||Ψ1(2, τ)||) ⊂M − Ω, (3.25)

Instituto de Matemática Pura e Aplicada 58 2015



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths

for every τ ∈ ([α, β] ∩ I(1, N2)0), and

||Ψ1(σ, τ)||(U) < ε2 + (2 + C0)η, (3.26)

for all (σ, τ) ∈ dmn(Ψ1) and τ ∈ {α, β}.
The last part is the organization of the homotopy. Take N = N(φ)

sufficiently large such that it is possible to define a map

Ψ′ : I(1, N)0 × ([α− 3−k, β + 3−k] ∩ I(1, N)0)→ Zn−1(M)

in the following way:

• if j = 0, 1, . . . , 3N2 and τ ∈ ([α, β] ∩ I(1, N)0),

Ψ′(j · 3−N , τ) = Ψ1(j · 3−N2 ,n(N,N2)(τ));

• if j = 0, 1, . . . , 3N3 and τ ∈ ([α, β] ∩ I(1, N)0),

Ψ′(3−N+N2 + j · 3−N , τ) = Ψ1(1 + j · 3−N3 ,n(N,N2)(τ));

• if 0 < λ2 ≤ λ1 ≤ (3N2 + 3N3) · 3−N ,

Ψ′(λ1, α− λ2) = Ψ′(λ1 − λ2, α) and Ψ′(λ1, β + λ2) = Ψ′(λ1 − λ2, β);

• if 0 < λ1 < λ2 ≤ (3N2 + 3N3) · 3−N ,

Ψ′(λ1, α− λ2) = φ(α) and Ψ′(λ1, β + λ2) = φ(β);

• if 0 ≤ λ1 ≤ (3N2 + 3N3) · 3−N < λ2 ≤ 3−k

Ψ′(λ1, α− λ2) = φ(n(N, k)(α− λ2))

and
Ψ′(λ1, β + λ2) = φ(n(N, k)(b+ λ2));

• if (3N2 + 3N3) · 3−N ≤ λ ≤ 1 and τ([α− 3−k, β + 3−k] ∩ I(1, N)0), put

Ψ′(λ, τ) = Ψ′((3N2 + 3N3) · 3−N , τ).

In order to obtain a 1-homotopy, we need to take N such that

(3N2 + 3N3) · 3−N <
1

2
· 3−k.
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Extend Ψ′ to I(1, N)0× I(1, N)0, using the above construction near each
maximal interval on K and putting Ψ′(λ, τ) = φ(n(N, k)(τ)) on the com-
plement. This map is a homotopy and has fineness f(Ψ′) ≤ 7η. Then, the
obtained map φ̃(·) = Ψ′(1, ·) is 1-homotopic to the original discrete map φ
with fineness at most max{7, 3C0 + 1}f(φ) ≤ C1f(φ). The (3C0 + 1) factor
comes from the first deformation step, recall the expression (3.19).

Moreover, if x ∈ ([α− 3−k, β+ 3−k]∩ I(1, N)0) we have three possibilities
for φ̃(x): it coincides either with some Ψ1(σ, α), or Ψ1(σ, β) or Ψ1(2, τ). By
(3.24) and (3.25), we conclude that if x ∈ ([α − 3−k, β + 3−k] ∩ I(1, N)0),
then either M(φ̃(x)) ≤ L + C1f(φ) or x /∈ dmnΩ(φ̃). In particular, if x ∈
([α− 3−k, β + 3−k] ∩ dmnΩ(φ̃)), then

M(φ̃(x)) ≤ L+ (4 + C0)η < L+ C1f(φ). (3.27)

If x ∈ dmnΩ(φ̃) and x /∈ [α−3−k, β+3−k], for any [α, β] maximal on K, then
φ̃(x) also appear in φ and M(φ̃(x)) < L. This concludes the proof.

3.3.3 Application: constructing discrete sweepouts

Next, we apply Lemma 9 to prove Theorem 9 of Chapter 2.

Proof of Theorem 9. Let φi, ψi, δi be given by Theorem 12 applied to
the map Γ. It follows from property (iv) of Theorem 12 and the fact that
Γ(0) = Γ(1) = 0 that, for all y ∈ I(1, ki)0 and x ∈ {0, 1}, we have

M(ψi(y, x)) ≤ δi. (3.28)

Define ψ̄i : I(1, ki)0 × I(1, ki)0 → Zn−1(M) by ψ̄i(y, x) = 0 if x ∈ {0, 1} and
ψ̄i(y, x) = ψi(y, x) otherwise. Define also φ̄i(x) = ψ̄i([0], x) for x ∈ I(1, ki)0.
Note that f(ψ̄i) < 2δi, by (3.28) and Theorem 12 part (ii).

Then, we obtain {φ̄i}i∈N, that is an (1,M)-homotopy sequence of map-
pings into (Zn−1(M ; M), 0). But, we can not control its width by L(Γ,Ω)
yet. To simplify notation, let us keep using φi and ψi instead of φ̄i and ψ̄i.

Since Γ is continuous in the F-metric, M ◦ Γ is uniformly continuous in
I. Combine this with item (i) of Theorem 12 to conclude that

M(φi(y)) ≤M(Γ(y)) +
1

i
+ δi. (3.29)

From Lemma 4, properties (iii) of Theorem 12 and (3.29), we get

lim
i→∞

sup{F(φi(x)− Γ(x)) : x ∈ dmn(φi)} = 0.
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Recall the domains Ωt starting with Ω = Ω0 defined in Subsection 1.2.
Also Ωa, a < 0, fixed by Corollary 2.

Let U ⊂⊂ Ω be an open subset with Ωa ⊂ U and 0 < ε = ε2(U,Ωa) be
given by Lemma 9 with respect to the subsets U and Ωa. Observe that

K = {Γ(t) : t ∈ [0, 1] and ||Γ(t)||(Ω) = 0}

is compact with respect to the F-metric. Since U ⊂ Ω, it is possible to find
ρ > 0 so that F(K, T ) < ρ implies ||T ||(U) < ε2. This construction of ρ does
not involve the interpolation step, so we can suppose that, for large i ∈ N,

sup{F(φi(x)− Γ(x)) : x ∈ dmn(φi)} < ρ. (3.30)

If x ∈ I(1, ki)0 is such that x ∈ T (Γ,Ω), expression (3.29) gives us

M(φi(x)) ≤ L(Γ,Ω) +
1

i
+ δi.

Otherwise, Γ(x) ∈ K and (3.30) imply ||φi(x)||(U) < ε2. If i ∈ N is suffi-
ciently large we apply Lemma 9 to obtain φ̃i 1-homotopic to φi with fineness
tending to zero and such that

max{M(φ̃i(x)) : x ∈ dmnΩ(φ̃i)} ≤ L(Γ,Ω) +
1

i
+ δi + C1 · f(φi).
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CHAPTER 4

The pull-tight and combinatorial arguments

In this chapter, we apply our tools from Chapter 3 to prove that the min-
max program developed by Almgren and Pitts, the classical case Ω = M , is
suitable also in the new setting that we present in this thesis. The chapter is
divided in three sections. In Section 4.1, we explain our generalization of the
pull-tight argument and prove Proposition 1 stated in Chapter 2. In Section
4.2, we see that the original deformations and combinatorial argument done
by Almgren and Pitts to prove existence of stationary almost minimizing
varifolds do not affect the property of intersecting Ω with small mass. Then,
we obtain Theorem 10. In Section 4.3, we include a detailed proof of the
original combinatorial argument.

4.1 Generalizing the pull-tight argument

The classical pull-tight argument is based on the construction of an area
decreasing flow letting still the stationary varifolds. Flowing all slices of a
critical sequence S∗, we produce a better competitor S, for which critical
varifolds are stationary in M . In our setting, we use a slightly different flow,
because we let unmoved also the non-intersecting varifolds.

Precisely, let S∗ = {φ∗i }i∈N be a fixed critical sequence with respect to Ω.
Consider the set A0 ⊂ Vn−1(M) of varifolds with ||V ||(M) ≤ 2C and with
one of the following properties: either V is stationary in M or ||V ||(Ω) = 0.
Here, C = sup{M(φ∗i (x)) : i ∈ N and x ∈ dmn(φ∗i )}.
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Following the same steps as in Section 15 of [36], we get a map

H : [0, 1]× (Zn−1(M ; F) ∩ {M ≤ 2C})→ (Zn−1(M ; F) ∩ {M ≤ 2C}),

the pull-tight map, whose key properties are

(i) H is continuous in the product topology;

(ii) H(t, T ) = T for all 0 ≤ t ≤ 1 if |T | ∈ A0;

(iii) ||H(1, T )||(M) < ||T ||(M) unless |T | ∈ A0.

Direct application of H on the slices of S∗, as in Section 15 of [36], does
not necessarily provide a better competitor, because this involves discrete
approximations. Indeed, it is possible that the approximation near very big
non-intersecting slices of φ∗i creates bad intersecting slices. To overcome this
difficulty, we make the approximation very close and use Lemma 9.

Proof of Proposition 1. We follow closely the proof given in Proposition 8.5
of [36]. The first claim about existence of critical sequences was already
proven in Chapter 2.

We concentrate now in the pull-tight deformation of a given a critical
sequence S∗ ∈ Π. Suppose S∗ = {φ∗i }i∈N, and set

C = sup{M(φ∗i (x)) : i ∈ N and x ∈ dmn(φ∗i )} < +∞.

Consider the following compact subsets of Vn−1(M)

A = {V ∈ Vn−1(M) : ||V ||(M) ≤ 2C};
A0 = {V ∈ A : either V is stationary in M or ||V ||(Ω) = 0}.

For sake of completeness and convenience, we provide the details of the
construction of the pull-tight map H with the properties (i), (ii) and (iii), as
stated above. Consider the following further compact subsets of Vn−1(M)

A1 = {V ∈ A : F(V,A0) ≥ 2−1},
Ai = {V ∈ A : 2−i ≤ F(V,A0) ≤ 2−i+1}, for i ∈ {2, 3, . . .}

Observe that A = ∪∞i=0Ai. For every V ∈ Ai, i ≥ 1, we choose a vector
field XV ∈ X (M) with |XV |C1 ≤ 1 and such that

δV (XV ) ≤ 2

3
inf{δV (Y ) : Y ∈ X (M) with |Y |C1 ≤ 1} < 0.
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This number is strictly negative because all stationary elements of A belong
to A0. For fixed V , the map

S ∈ Vn−1(M) 7→ δS(XV )

is continuous. Hence we can find, for every V ∈ Ai with i ≥ 1, a radius
0 < rV < 2−i so that we have

δS(XV ) ≤ 1

2
inf{δS(Y ) : Y ∈ X (M) with |Y |C1 ≤ 1} < 0,

for every S ∈ BF
rV

(V ). The compactness of the sets Ai in the F-metric
implies that the open cover BF

rV
(V ) admits a finite subcover. Thus we can

find positive integers qi ∈ N and

• a set of radii {rij}qij=1, rij < 2−i;

• a set of varifolds {Vij}qij=1 ⊂ Ai;

• a set of vector fields {Xij}qij=1 ⊂ X (M) with |Xij|C1 ≤ 1;

• a set of balls Uij = BF
rij

(Vij) ∩ A, j = 1, . . . , qi, with Ai ⊂
⋃qi
j=1 Uij;

• a set of positive real numbers {εij}qij=1 such that

δS(Xij) ≤ −εij < 0 for all S ∈ Uij, j = 1, . . . , qi.

The choice rij < 2−i implies that {Uij}, i ∈ N and 1 ≤ j ≤ qi, is a locally
finite covering of A−A0. Therefore, we can choose a partition of unity {φij}
of A− A0 with support(φij) ⊂ Uij.

We define
X : A→ X (M),

continuous in the F-metric, by

X(V ) = 0 if V ∈ A0,

X(V ) = F(V,A0) ·
∑

i∈N,1≤j≤qi

φij(V )Xij if V ∈ A− A0.

It follows that

δV (X(V )) = 0 if V ∈ A0 and δV (X(V )) < 0 if V ∈ A− A0.

This implies tha we can find a continuous function

h : A→ [0, 1]

such that
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• h = 0 on A0 and h(V ) > 0 if V ∈ A− A0,

• and ||f(s, V )#(V )||(M) < ||f(t, V )#(V )||(M) if 0 ≤ t < s ≤ h(V ),

where {f(t, V )(·)}t≥0 denotes the one-parameter group of diffeomorphisms
generated by X(V ).

Now let

H : [0, 1]× (Zn−1(M ; F) ∩ {M ≤ 2C})→ (Zn−1(M ; F) ∩ {M ≤ 2C})

be given by

H(t, T ) = f(t, |T |)#(T ) if 0 ≤ t ≤ h(|T |),
H(t, T ) = f(h(|T |), |T |)#(T ) if h(|T |) ≤ t ≤ 1.

This pull-tight map has the desired properties (i)-(iii).
We now proceed to the construction of a sequence S = {φi}i∈N ∈ Π such

that C(S,Ω) ⊂ A0 ∩ C(S∗,Ω), up to critical varifolds V with ||V ||(Ω) = 0.
Denote the domain of φ∗i by I(1, ki)0, and let δi = f(φ∗i ). Up to subsequence,
we can suppose that, for x ∈ I(1, ki)0, either

M(φ∗i (x)) < L(Π,Ω) +
1

i
or spt(||φ∗i (x)||) ⊂M − Ω.

For sufficiently large i, apply Theorem 11 to obtain continuous maps in
the mass norm

Ω̄i : [0, 1]→ Zn−1(M ; M),

such that for all x ∈ I(1, ki)0 and α ∈ I(1, ki)1 we have

Ω̄i(x) = φ∗i (x) and sup
y,z∈α
{M(Ω̄i(z)− Ω̄i(y))} ≤ C0δi. (4.1)

Moreover, for every x ∈ [0, 1], either

M(Ωi(x)) < L(Π,Ω) +
1

i
+ C0δi or spt(||Ωi(x)||) ⊂M − Ω.

Consider the continuous map in the F-metric

Ωi : [0, 1]× [0, 1]→ Zn−1(M ; F), Ωi(t, x) = H(t,Ωi(x)).

Observe that, for every (t, x) ∈ [0, 1]2 and large i ∈ N, either

M(Ωi(t, x)) ≤M(Ωi(x)) < L(Π,Ω) +
1

i
+ C0δi
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or
spt(||Ωi(t, x)||) ⊂M − Ω.

For each i, the map Ωi above has no concentration of mass, because it is
continuous in the F-metric, and has uniformly bounded masses because of
property (iii) of H. Then, we can apply Theorem 12 for Ωi to obtain

φ̄ij : I(1, sij)0 × I(1, sij)0 → Zn−1(M)

such that

(a) f(φ̄ij) <
1
j
;

(b)

sup{F(φ̄ij(t, x)− Ωi(t, x)) : (t, x) ∈ I(2, sij)0} ≤
1

j
;

(c)

M(φ̄ij(t, x)) ≤M(Ωi(t, x)) +
1

j
for all (t, x) ∈ I0(2, sij)0;

(d) φ̄ij([0], x) = Ωi(0, x) = Ω̄i(x) for all x ∈ I(1, sij)0.

From Lemma 4, properties (b), and (c), we get

lim
j→∞

sup{F(φ̄ij(t, x),Ωi(t, x)) : (t, x) ∈ I0(2, sij)0} = 0.

Hence, using a diagonal sequence argument, can find {φ̄i = φ̄ij(i)} such that

lim
i→∞

sup{F(φ̄i(t, x),Ωi(t, x)) : (t, x) ∈ I0(2, sij(i))0} = 0. (4.2)

We define φ̂i : I(1, sij(i))0 × I(1, sij(i))0 → Zn−1(M) to be equal to zero
on I(1, sij(i))0 × {0, 1}, and equal to φ̄i otherwise.

Recall the domains Ωt starting with Ω = Ω0 defined in Subsection 1.2, as
well as the fixed Ωa, a < 0. We hope this notation do not cause confusion
with the maps Ωi. Here we use sets Ωt with negative t close to zero only.

Let Ui = Ω−i−1 , Ωa ⊂ Ui be such that Ui ⊂ Ui+1 and Ui ⊂⊂ Ω. Choose
0 < εi < ε2(Ui,Ωa), where ε2(Ui,Ωa) is the required to apply Lemma 9 with
respect to the sets Ui and Ωa, and such that limi→∞ εi = 0. The sets

Ki = {Ωi(1, x) : x ∈ [0, 1] and ||Ωi(1, x)||(Ω) = 0}

are compact with respect to the F-metric. Then, for each i ∈ N, it is possible
to find ρi > 0, so that F(Ki, T ) < ρi implies ||T ||(Ui) < εi.
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Since this construction of ρi does not involve the last interpolation step
we can suppose the choice of j(i) has the additional properties j(i) ≥ i and

sup{F(φ̂i(t, x),Ωi(t, x)) : (t, x) ∈ I0(2, sij(i))0} < ρi. (4.3)

If x ∈ I(1, sij)0 is such that M(Ωi(1, x)) < L(Π,Ω) + i−1 + C0δi, then item
(c) above and the choice of j(i) give us

M(φ̂i(1, x)) ≤M(Ωi(1, x)) +
1

j(i)
< L(Π,Ω) +

2

i
+ C0δi.

Otherwise, we have spt(||Ωi(1, x)||) ⊂ M − Ω and Ωi(1, x) ∈ Ki. By (4.3),
||φ̂i(1, x)||(Ui) < εi. If i ∈ N is sufficiently large, we apply Lemma 9 to obtain
φi 1-homotopic to φ̂i(1, ·) with fineness tending to zero and such that

max{M(φi(x)) : x ∈ dmnΩ(φi)} ≤ L(Π,Ω) +
2

i
+C0δi +C1f(φ̂i(1, ·)). (4.4)

This works only for large i, because there exists a η0(Ui,Ωa), such that
f(φ̂i(1, ·)) ≤ η0(Ui,Ωa) is required to use Lemma 9. Indeed, by Remark 12,
the choice of η0 and Ui ⊂ Ui+1, we conclude that η0(Ui,Ωa) ≤ η0(Ui+1,Ωa),
while f(φ̂i(1, ·)) decreases to zero as i tends to infinity. Then, if i is sufficiently
large, we have f(φ̂i(1, ·)) ≤ η0(U1,Ωa) ≤ η0(Ui,Ωa).

Since f(φ̂i) tends to zero, we obtain that φi is 1-homotopic to φ̂i([0], ·)
in (Zn−1(M ; M), 0) with fineness tending to zero. On the other hand, it
follows from (4.1) and property (d) that φ̂i([0], ·) is 1-homotopic to φ∗i in
(Zn−1(M ; M), 0) with fineness tending to zero. Hence, S = {φi}i∈N ∈ Π.
Furthermore, it follows from (4.4) that S is critical with respect to Ω.

We are left to show that C(S,Ω) ⊂ A0 ∩ C(S∗,Ω), up to varifolds with
zero mass in Ω. First we compare C(S,Ω) with the critical set of {φ̂i(1, ·)}i.
By Lemma 9 and Remark 13, each φi(x) either coincides with some slice of
φ̂i(1, ·) or ||φi(x)||(Ui) < εi + C1f(φ̂i(1, ·)). Then, C(S,Ω) ⊂ C({φ̂i(1, ·)}i,Ω),
up to critical varifolds with zero mass in Ω. To conclude the proof, we claim
that C({φ̂i(1, ·)}i,Ω) ⊂ A0 ∩ C(S∗,Ω). Here we omit the proof of this fact,
because it is exactly the same as in the end of the Section 15 of [36].

4.2 Intersecting almost minimizing varifolds

In this section we prove Theorem 10. In the argument of proof we use ideas of
the original proof of Pitts for the analogous min-max Theorem with Ω = M .
In this part, we explicitly state which result from [47] we use, see Claim 2
below. In the next section, we include the proof of this claim.

Instituto de Matemática Pura e Aplicada 67 2015



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths

Proof of Theorem 10. Part 1:

Let Ωa ⊂ Ω ⊂ Ωb be fixed as in Subsection 1.2. Consider open subsets
Ωa ⊂ U ⊂ U1 ⊂ Ω such that U ⊂ U1 and U1 ⊂ Ω. Let S ∈ Π be given by
Proposition 1. Write S = {φi}i∈N and let I(1, ki)0 = dmn(φi). Consider also
ε2 = ε2(U,Ωa) be given by Lemma 9.

As in the original work of Pitts, our argument is by contradiction, we
homotopically deform S to decrease its width with respect to Ω. This will
create a contradiction with the fact that S is a critical sequence.

Part 2:

Observe that C0(S,Ω) := {V ∈ C(S,Ω) : ||V ||(Ω) = 0} is compact in the
weak sense of varifolds. Then, it is possible to find ε > 0 such that

T ∈ Zn−1(M) and F(|T |, C0(S,Ω)) < ε⇒ ||T ||(U1) < 2−1ε2. (4.5)

Part 3:

Given V ∈ C(S,Ω) with ||V ||(Ω) > 0, by the contradiction assumption, there
exists p = p(V ) ∈ spt(||V ||) such that V is not almost minimizing in small
annuli centered at p. For µ = 1, 2, choose sufficiently small

aµ(V ) = A(p, sµ, rµ) and Aµ(V ) = A(p, s̃µ, r̃µ), (4.6)

with the following properties:

• r̃1 > r1 > s1 > s̃1 > 3r̃2 > 3r2 > 3s2 > 3s̃2;

• if p ∈ U1, then Aµ(V ) ⊂ U1;

• if p /∈ U , then Aµ(V ) ∩ U = ∅;

• V is not almost minimizing in aµ(V ).

Since V is not almost minimizing in aµ(V ), for µ = 1, 2, there exists
ε(V ) > 0 with the following property: given

T ∈ Zn−1(M), F(|T |, V ) < ε(V ), µ ∈ {1, 2} and η > 0, (4.7)

we can find a finite sequence T = T0, T1, . . . , Tq ∈ Zn−1(M) such that

(a) spt(Tl − T ) ⊂ aµ(V );

(b) M(Tl − Tl−1) ≤ η;
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(c) M(Tl) ≤M(T ) + η;

(d) M(Tq) < M(T )− ε(V ).

The properties of those annuli aµ(V ) concerning the sets U and U1 make
them slightly smaller than in Pitts’ original choice. The aim with this is to
obtain the property that ||T ||(U1) controls ||Tl||(U), for every l. Indeed, (a)
implies that spt(Tl − T ) is always contained in either U1 or M − U . In the
first case, we can use item (c) to prove that

||Tl||(U) ≤ |Tl||(U1) ≤ ||T ||(U1) + η.

In the second case, it follows that

||Tl||(U) = ||T ||(U) ≤ ||T ||(U1).

Part 4:

C(S,Ω) is compact. Take V1, V2, . . . , Vν ∈ C(S,Ω) such that

C(S,Ω) ⊂
ν⋃
j=1

{V ∈ Vn−1(M) : F(V, Vj) < 4−1ε(Vj)}, (4.8)

where ε(Vj) is the one we chose in Part 3 in the case of intersecting varifolds,
||Vj||(Ω) > 0, or ε(Vj) = ε as chosen in Part 2, otherwise.

Part 5:

Let δ > 0 and N ∈ N be such that: given

i ≥ N, x ∈ dmnΩ(φi) and M(φi(x)) ≥ L(S,Ω)− 2δ, (4.9)

there exists f1(x) ∈ {1, . . . , ν} with

F(|φi(x)|, Vf1(x)) < 2−1ε(Vf1(x)). (4.10)

The existence of such numbers can be seen via a contradiction argument.
Moreover, choose δ and N satisfying the following two extra conditions

• δ ≤ min{2−1ε(Vj) : j = 1, . . . ν};

• i ≥ N implies f(φi) ≤ min{δ, 2−1ε2, δ0}.

Where δ0 = δ0(M) is defined in Section 3.1 and ε2 = ε2(U,Ωa) in Part 1.
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Part 6:

In this step of our proof, we use the construction done in Theorem 4.10 of
[47], Parts 7 to 18, to state a deformation result for discrete maps. Fix i ≥ N .
Let α, β ∈ dmn(φi) = I(1, ki)0 be such that

(1) [α, β] ∩ dmn(φi) ⊂ dmnΩ(φi);

(2) if x ∈ (α, β] ∩ dmn(φi), then M(φi(x)) ≥ L(S,Ω)− δ;

(3) if x ∈ [α, β] ∩ dmn(φi), then ||Vf1(x)||(Ω) > 0.

Claim 2. There exist a sequence {δi}i≥N tending to zero, N(i) ≥ ki and

ψi : I(1, N(i))0 × ([α, β] ∩ I(1, N(i))0)→ Zn−1(M)

with the following properties:

(i) limi→∞ f(ψi) = 0;

(ii) ψi([0], x) = φi(n(N(i), ki)(x));

(iii) M(ψi(1, ζ)) <M(ψi(0, ζ))− δ + δi, for every ζ ∈ [α, β] ∩ I(1, N(i))0;

(iv) ψi(j, α) = φi(α), for every j ∈ I(1, N(i))0;

(v) {ψi(λ, x) : λ ∈ I(1, N(i))0} describes the deformation obtained in Part
3, starting with T = φi(x), supported in some aµ(Vf1(x)) and fineness
η = δi, for every x ∈ (α, β] ∩ dmn(φi).

Remark 14. If we include x = α in the hypothesis (2), the construction yields
a map ψi, for which (v) also holds for x = α, instead of (iv).

Originally, Pitts wrote this argument using 27 annuli. It is suggested by
[17], when dealing with one-parameter sweepouts it is enough to take only 2.
This argument is presented in the next section.

Part 7:

Consider α, β ∈ dmn(φi) = I(1, ki)0, such that [α, β] is maximal for the
property: if x ∈ [α + 3−ki , β − 3−ki ] ∩ dmn(φi), then

x ∈ dmnΩ(φi), M(φi(x)) ≥ L(S,Ω)− δ and ||Vf1(x)||(Ω) > 0.

Let {δi}i∈N and N(i) ∈ N be as in Claim 2. Set ni = N(i) + ki + 1 and

Li = max{M(φi(x)) : x ∈ dmnΩ(φi)} − δ + δi. (4.11)
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Claim 3. There exists a map

ψi : I(1, ni)0 × ([α, β] ∩ I(1, ni)0)→ Zn−1(M)

with the following properties:

(a) limi→∞ f(ψi) = 0;

(b) ψi([0], ·) = φi ◦ n(ni, ki);

(c) ψi(λ, α) = φi(α) and ψi(λ, β) = φi(β) for every λ ∈ I(1, ni)0;

(d) max{M(ψi(1, ζ)) : ζ ∈ [α + 3−ki , β − 3−ki ] ∩ I(1, ni)0} < Li.

Moreover, if ζ ∈ [α, β] ∩ I(1, ni)0 and M(ψi(1, ζ)) ≥ Li, then

||ψi(1, ζ)||(U) ≤ 2−1ε2 + δi. (4.12)

Proof of Claim 3. Apply Claim 2 on [α + 3−ki , β − 3−ki ] to obtain the map

ψi : I(1, N(i))0 × ([α + 3−ki , β − 3−ki ] ∩ I(1, N(i))0)→ Zn−1(M).

In order to perform the extension of this ψi to I(1, ni)0 × ([α, β] ∩ I(1, ni)0),
we analyze the possibilities for φi(α) and φi(β).

If α ∈ dmnΩ(φi) and ||Vf1(α)||(Ω) > 0, we can apply Claim 2 directly on
[α, β−3−ki ]. Then, we have that the map ψi is already defined on I(1, N(i))0×
([α, β − 3−ki ] ∩ I(1, N(i))0). Extend it to the desired domain simply by
ψi ◦ n(ni, N(i)). Observe that the choice of [α, β] implies that

L(S,Ω)− 2δ ≤M(φi(α)) < L(S,Ω)− δ.

By item (iv) of Claim 2, ψi(λ, α) = φi(α), for every λ ∈ I(1, ni)0. Item (iii)
of the same statement implies that

max{M(ψi(1, ζ)) : ζ ∈ [α, β − 3−ki ] ∩ I(1, ni)0} < Li.

Suppose now that α satisfies one of the following properties:

(I) either α ∈ dmnΩ(φi) and ||Vf1(α)||(Ω) = 0;

(II) or α /∈ dmnΩ(φi).

In both cases, the extension of ψi on I(1, ni)0×([α+3−ki , β−3−ki ]∩I(1, ni)0)
is given by ψi ◦ n(ni, N(i)). We complete the extension in such a way that

{ψi(λ, ζ) : ζ ∈ [α, α+3−ki ]∩I(1, ni)0} ⊂ {ψi(j, α+3−ki)}j∈I(1,N(i))0∪{φi(α)}.
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The motivation for doing this is that φi(α) and all ψi(j, α+3−ki) have already
small mass inside U . Let us first prove this claim about the masses inside U
and later we conclude the construction of the map ψi.

In case (I), we observe that Vf1(α) ∈ C0(S,Ω) and that

F(|φi(α + 3−ki)|, Vf1(α)) ≤ f(φi) + F(|φi(α)|, Vf1(α)) < ε,

where the last estimate is a consequence of the choice of N and f1 in Part
5. In particular, F(|φi(α+ 3−ki)|, C0(S,Ω)) < ε. Item (v) of Claim 2 and the
comments in the end of Part 3 imply that, for every j ∈ I(1, N(i))0,

||ψi(j, α + 3−ki)||(U) ≤ 2−1ε2 + δi. (4.13)

Case (II) is simpler because ||φi(α)||(Ω) = 0 directly implies that

||φi(α + 3−ki)||(Ω) ≤ f(φi) ≤ 2−1ε2.

Then, a similar analysis tells us that expression (4.13) also holds in this case.
Finally, define ψi on I(1, ni)0 × ((α, α + 3−ki) ∩ I(1, ni)0) by

ψi(λ, α + 3−ki − ζ · 3−ni) = ψi(max{0,n(ni, N(i))(λ)− ζ · 3−N(i)}, α + 3−ki).

Put ψi(λ, α) = φi(α), for every λ ∈ I(1, ni)0. Then, Claim 3 holds.

Part 8:

Let ψi : I(1, ni)0 × I(1, ni)0 → Zn−1(M) be the map obtained in such a way
that for each interval [α, β] as in Part 7, its restriction to

I(1, ni)0 × ([α, β] ∩ I(1, ni)0)

is the map of Claim 3, and ψi(λ, ζ) = (φi ◦ n(ni, ki))(ζ), otherwise.
Take S∗ = {φ∗i }i∈N, where φ∗i = ψi(1, ·) is defined on I(1, ni)0. Because

the maps ψi have fineness tending to zero, S∗ ∈ Π.

Part 9:

The sequence S is critical with respect to Ω, this implies that

lim
i→∞

max{M(φi(x)) : x ∈ dmnΩ(φi)} = L(S,Ω).

In particular, limi→∞ Li = L(S,Ω)− δ. Let i be sufficiently large, so that

i ≥ N, f(φ∗i ) ≤ η0, Li < L(S,Ω)− 2−1δ and δi < 2−1ε2,
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where η0 = η0(U,Ωa) is given by Lemma 9. This choice implies that the
maps φ∗i have the following property:

M(φ∗i (ζ)) ≥ Li ⇒ ||φ∗i (ζ)||(U) < ε2. (4.14)

Apply Lemma 9 to produce S̃ = {φ̃i}i∈N homotopic with S∗, such that

max{M(φ̃i(x)) : x ∈ dmnΩ(φ̃i)} < Li + C1f(φ
∗
i ),

where C1 = C1(M) is also given by Lemma 9. In particular, S̃ ∈ Π and

L(S̃,Ω) ≤ L(S,Ω)− δ = L(Π,Ω)− δ.

This is a contradiction.

4.3 Slices near intersecting critical varifolds

In this section we include Pitts’ arguments in the proof of Claim 2. Follow
the notation in the proof of Theorem 10. Assume also the additional notation

[α, β] ∩ dmn(φi) = {z0, z1, . . . , zs} ⊂ I(1, ki)0.

For each j ∈ {1, . . . , ν}, consider

s(Vj) = min{r̃µ − rµ, sµ − s̃µ : µ = 1, 2},

where r̃µ, s̃µ, rµ, sµ are number depending on Vj as chosen in Part 3 of the
proof of Theorem 10. Let

s = min{s(Vj) : j = 1, . . . , ν} (4.15)

and define δi = 2f(φi) (1 + 8/s).
We start with the cut and paste argument:

Claim 4. Fix x1, x2 ∈ [z0, zs] ∩ dmn(φi) with |x1 − x2| = 0 or 3−ki, and
µ ∈ {1, 2}. There exists a positive integer N1 = N1(i) and finite sequences

T (m, 1), T (m, 2), . . . , T (m, 3N1) ∈ Zn−1(M),

for m = 1, 2, with the following properties:

(a) T (m, 1) = φi(xm);

(b) spt(T (m, l)− T (m, 1)) ⊂ Aµ(Vf1(x1));

Instituto de Matemática Pura e Aplicada 73 2015



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths

(c) M(T (m, l)− T (m, l − 1)) ≤ δi;

(d) M(T (1, l)− T (2, l)) ≤ δi;

(e) M(T (m, l)) ≤M(φi(xm)) + δi;

(f) M(T (m, 3N1)) <M(φi(xm))− δ + δi/2.

To fix notation, given (x1, µ) as in the previous claim, use

T(x1,µ)(m, l), for m = 1, 2 and l = 1, . . . , 3N1 , (4.16)

to denote the obtained two sequences. Note that N1 = N1(i, x1, µ), but there
are only finitely many values for each parameter, if i ≥ N is fixed. Take this
number big enough, up to repetition of the last term on each sequence, so
that N1 = N1(i).

Proof. Observe that we always have that x1, x2 ∈ dmnΩ(φi),

M(φi(x1)) and M(φi(x2)) ≥ L(S,Ω)− 2δ

and
||Vf1(x1)||(Ω) and ||Vf1(x2)||(Ω) > 0.

Observe that M(φi(x2) − φi(x1)) ≤ f(φi) ≤ δ0. Then, there exists an
integral current Q ∈ In(Mn), so that

∂Q = φi(x2)− φi(x1) and M(Q) = F(∂Q) ≤ δ.

Let p = p(Vf1(x1)) ∈ spt(||Vf1(x1)||) be the center of the annulus aµ(Vf1(x1))
and u(x) = dg(x, p) be the distance to p in the Riemannian manifold (Mn, g).

Using that φi takes values on the space of integral currents, the slicing
theory (recall the notation we use in Subsection 1.1.2 or see Chapter 6 of
Simon’s book [51]) and the co-area formula, it is possible to choose numbers
rµ < t1 < r̃µ and s̃µ < t2 < sµ so that

• ||φi(xm)||({u = t1 or t2}) = 0, for m = 1, 2;

• 〈Q, u, t1+〉, 〈Q, u, t2+〉 ∈ In−1(M);

• M(〈Q, u, t1+〉) ≤ 2f(φi)/(r̃µ − rµ);

• M(〈Q, u, t2+〉) ≤ 2f(φi)/(sµ − s̃µ).
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Define T (m, 1) = φi(xm), to guarantee that item (a) holds. The next step is
to define

T (1, 2) = T (1, 1) = φi(x1)

and

T (2, 2) = φi(x2)x{u > t1} − 〈Q, u, t1+〉+ φi(x1)x{t2 < u < t1}
+〈Q, u, t2+〉+ φi(x2)x{u < t2}.

By Lemma 1 and the choices of the slices, T (2, 2) ∈ Zn−1(M) and, for T =
φi(x1) or φi(x2),

M(T (2, 2)− T ) ≤M(φi(x2)− φi(x1)) + 4f(φi)/s < δi,

where s is the one of expression (4.15). These T (m, 2) satisfy (b), (c), (d)
and (e) for l = 2. In order to construct the terms T (1, l) for l > 2, observe
that

F(|φi(x1)|, Vf1(x1)) < ε(Vf1(x1))/2. (4.17)

Since ||Vf1(x1)||(Ω) > 0, we can apply the deformation obtained in Part 3 to
φi(x1), the given µ and η = δi/2 to get a sequence

T (1, 2) = φi(x1), T (1, 3), . . . , T (1, 3N1) ∈ Zn−1(M)

that satisfy (b), (c), (e), for every l, and, for the last term,

M(T (1, 3N1)) < M(φi(x1))− ε(Vf1(x1)) ≤M(φi(x1))− δ. (4.18)

Observe that N1 depends on i, x1 and µ only. Finally, the general definition
for m = 2 and l ≥ 2 is

T (2, l) = T (1, l) + (φi(x2)− φi(x1))x({u > t1} ∪ {u < t2}) (4.19)

−〈Q, u, t1+〉+ 〈Q, u, t2+〉.

This gives (b) and (c) for every admissible m and l, immediately from the
same properties for m = 1. Item (d) for l > 2 follows from the same assertion
for l = 2, because

T (1, l)− T (2, l) = T (1, 2)− T (2, 2).

In order to compare the masses in each sequence, observe that the general
formula (4.19) gives also a formula for the mass of the integral current T (2, l):

M(T (2, l)) = ||φi(x2)||({u > t1} ∪ {u < t2}) + ||T (1, l)||({t2 < u < t1})
+M(〈Q, u, t1+〉) + M(〈Q, u, t2+〉)

≤ M(φi(x2)) + (||T (1, l)|| − ||φi(x1)||)({t2 < u < t1})
+(||φi(x1)|| − ||φi(x2)||)({t2 < u < t1}) + 4f(φi)/s

≤ M(φi(x2)) + (||T (1, l)|| − ||φi(x1)||)({t2 < u < t1}) + δi/2.
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To conclude, use the known properties for m = 1, to obtain

(||T (1, l)|| − ||φi(x1)||)({t2 < u < t1}) ≤
δi
2

and
(||T (1, 3N1)|| − ||φi(x1)||)({t2 < u < t1}) < −δ.

We intend to let φi(z0) still and deform the other φi(zk), k ≥ 1, to decrease
their masses. To perform this deformation with small fineness, we need more
room in the domains of our discrete maps, then, we consider refinements.
Choose N2 = ki +N1 + 1 and define

f2 : [z0, zs] ∩ I(1, N2)0 → {0, 1, . . . , 3N1}

by f2(v) = min{d(v, z0), 3N1}, where d : I(1, N2)0 × I(1, N2)0 → N is the
grid distance d(v, z0) = 3N2|v − z0|. This map satisfies:

Claim 5. (a) M(φi ◦ n(N2, ki)(v)) ≥ L(S,Ω)− δ ⇒ f2(v) = 3N1;

(b) ρ ∈ [z1, zs] ∩ I(1, N2)1, {v, v′} ⊂ ρ0 ⇒ |f2(v)− f2(v′)| ≤ 1.

Proof. The choice of N2 is relevant for the analysis of the vertices v of
I(1, N2)0 inside [z0, z1], because with that, there are 3N1 + (3N1 − 1)/2 such
vertices with n(N2, ki)(v) = z0. Then it is possible to go from zero to 3N1

satisfying (b), when you run from z0 to z1 on I(1, N2)0, before the middle of
the interval [z0, z1]. This proves the claim. Item (a) is true because we are
assuming that φi(z0) is not very big, i.e., M(φi(z0)) < L(S,Ω)− δ.

The idea now is to start the process with the refinement φi ◦ n(N2, ki) on
I(1, N2)0. Considering those I(1, N2)0 refinements, we still have the problem
of controlling the deformations of each pair of neighboring slices with different
nearest projection in I(1, ki)0, i.e.,

(φi ◦ n(N2, ki))(u) and (φi ◦ n(N2, ki))(v)

with |u − v| = 3−N2 and |n(N2, ki)(u) − n(N2, ki)(v)| = 3−ki . To deal with
this difficulty, let f3 : I(1, N2)→ I(1, N2)0 be any vertex choice map, so that
f3(ρ) ∈ ρ0, for ρ ∈ I(1, N2). Then, define the map

f4 : [z0, zs] ∩ I(1, N2)− {[z0]} → {1, . . . , ν}

via the expression
f4(ρ) = f1 ◦ n(N2, ki) ◦ f3(ρ). (4.20)
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Fix a cell [zk, zk+1] ∈ I(1, ki)1. Note that, for ρ ∈ I(1, N2) ∩ [zk, zk+1],
f4(ρ) = f1(zk), if zk is closer to ρ than zk+1, and f4(ρ) = f1(zk+1), if zk+1

is closer to ρ than zk. Moreover, f4(ρ) depends on the choice map f3 for
the middle cell [v+

k , v
−
k+1] of [zk, zk+1], but still with f4([v+

k , v
−
k+1]) = f1(zk) or

f1(zk+1). The notation middle interval here means

v+
k = zk +

(3N1+1 − 1)

2 · 3N1+1
and v−k+1 = v+

k +
1

3N1+1
, (4.21)

so that [v+
k , v

−
k+1] is the unique 1-cell in [zk, zk+1]∩I(1, N2)1 whose vertex has

different nearest points n(N2, ki)(v
+
k ) = zk and n(N2, ki)(v

−
k+1) = zk+1.

The map f3 is obviously not unique. In the next step, we introduce a
map

f5 : [z0, zs] ∩ I(1, N2)− {[z0]} → 2M ,

where 2M denotes the set of subsets of M , so that f5(ρ) = Aµ(Vf4(ρ)), for
all ρ ∈ (z0, zs] ∩ I(1, N2) with the additional property f5(ρ) ∩ f5(v) = ∅,
whenever ρ ∈ [z0, zs]∩ I(1, N2)1 and v ∈ ρ0. This is slightly different to that
f5 that Pitts defined, because here we use only two annuli. There, Pitts was
able to define f5 for any map f3 as above, but here we have to make choices
on f3 in order to produce the desired f5:

• define f3([v+
0 , v

−
1 ]) = v+

0 ;

• choose disjoint f5([v+
0 , v

−
1 ]) and f5(v−1 );

• let f5(v+
0 ) be the annulus Aµ(Vf4(v+

0 )) that is not f5([v+
0 , v

−
1 ]);

• for ρ ∈ [z0, v
+
0 ] ∩ I(1, N2)− {[z0]}, define

f5(ρ) =

{
f5(v+

0 ) if ρ ∈ I(1, N2)0

f5([v+
0 , v

−
1 ]) if ρ ∈ I(1, N2)1;

• let f5([v−1 , v
−
1 + 3−N2 ]) be the Aµ(Vf4([v−1 ,v

−
1 +3−N2 ])) that is not f5(v−1 );

• for ρ ∈ [v−1 , v
+
1 ] ∩ I(1, N2), define

f5(ρ) =

{
f5(v−1 ) if ρ ∈ I(1, N2)0

f5([v−1 , v
−
1 + 3−N2 ]) if ρ ∈ I(1, N2)1;

• up to relabeling, let f5(v+
1 ) = A1(Vf4(v+

1 )). Choose disjoint

Aµ(1)(Vf4(v+
1 )) and Aµ(2)(Vf4(v−2 )).
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If µ(1) = 1, choose f3([v+
1 , v

−
2 ]) = v−2 and put

f5([v+
1 , v

−
2 ]) = Aµ(2)(Vf4(v−2 )).

If µ(1) = 2, choose f3([v+
1 , v

−
2 ]) = v+

1 and let

f5([v+
1 , v

−
2 ]) = A2(Vf4(v+

1 ));

• inductively, define f5 in the whole [z0, zs] ∩ I(1, N2)− {[z0]}.

At this point, we are able to say what deformation sequences we actually
use to produce the ψi, those appear in the map f6 that we define now. Later,
in order to get a map ψi with fineness tending to zero, we still have to consider
a finer grid [z0, zs] ∩ I(1, N3)0 in which we organize the cycles in f6.

The f6(ρ, v, l) elements have three parameters, being ρ ∈ [z0, zs]∩I(1, N2),
v ∈ ρ0 and l ∈ {0, 1, . . . , 3−N1}. For each fixed (ρ, v), {f6(ρ, v, l)}l is one of
the already known deformation sequences starting with φi(n(N2, ki)(v)). The
parameter ρ gives the annulus f5(ρ), where the deformation is supported.
Precisely, recall the notaion (4.16), define:

• f6(z0, z0, l) = φi(z0), for l ∈ {0, 1, . . . , 3N1}.

• if ρ ∈ (z0, zs] ∩ I(1, N2)0 or ρ ∈ [z0, zs] ∩ I(1, N2)1, consider

x1 = n(N2, ki) ◦ f3(ρ), x2 = n(N2, ki)(v) and µ ∈ {1, 2},

such that Aµ(Vf4(ρ)) = f5(ρ). Define

f6(ρ, v, l) =


φi(x2) if l = 0
T(x1,µ)(2, l) if l = 1, . . . , f2(v)
T(x1,µ)(2, f2(v)) if l = f2(v), . . . , 3N1 .

Take N3 = N1 + N2 + 2 and define f7 : I(1, N3)0 → I(1, N2) such that
f7(w) is the unique cell of least dimension in I(1, N2) containing w. In order
to simplify the notation, from now on, use n = n(N3, N2).

Given w ∈ I(1, N3)0, the deformation sequence {ψi(λ,w)}λ starts always
with ψi(0, w) = φi(n(N3, ki)(w)). Then we deform it using those f6(ρ, v, l)
for the following choices:

• v = n(w);

• ρ being a face of f7(w);
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• n(w) ∈ ρ0;

• l ≤ f8(w, ρ),

where f8(w, ρ) is the last ingredient we need to introduce to write ψi. Note
that v is determined by w. And there are at most two possibilities for ρ. In
case we have two possibilities, w ∈ I(1, N3)0 is not a vertex of I(1, N2)0 and
ρ is equal either to the 1-cell f7(w) or to the vertex n(w).

The maps f8(·, ρ) are constructed as follows:

• if ρ = [z0], then n(w) = z0 and we put f8(w, z0) = 0;

• for ρ ∈ (z0, zs] ∩ I(1, N2)0 and w ∈ I(1, N3)0 with n(w) = ρ, we define

f8(w, ρ) = max{0, f2(ρ)− γ},

where the number γ is either equal to zero, if |w − ρ| ≤ 3−(N2+1), or

γ = inf{d(w, w̃) : w̃ ∈ I(1, N3)0, |w̃ − ρ| ≤ 3−(N2+1)},

otherwise, where d : I(1, N3)0 × I(1, N3)0 → N is the grid distance;

• for ρ ∈ [z0, zs] ∩ I(1, N2)1, write ρ = [x, y] and let S ⊂ [x, y] be the set
of vertices in the middle third, i.e.,

S = [x+ 3−(N2+1), y − 3−(N2+1)] ∩ I(1, N3)0.

Given w ∈ I(1, N3)0 with f7(w) = ρ, define

f8(w, ρ) = max{0, f2(n(w))− d(w, S)}.

Construction of ψi:

At this point, we are ready to write the map

ψi : I(1, N(i))0 × ([z0, zs] ∩ I(1, N(i))0)→ Zn−1(M),

and conclude the argument. Note that we simplified notation N(i) = N3(i).
If w ∈ [z0, zs] ∩ I(1, N3)0 and n(w) = z0, put

ψi(j, w) = φi(z0), (4.22)

for each j ∈ I(1, N3)0.
From now on, suppose n(w) 6= z0, then f2(n(w)) > 0. We start with

ψi(j, w) = φi(n(N3, ki)(w)), (4.23)
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for j ∈ {0, 3−N3}. Next, for each ρ ∈ [z0, zs]∩ I(1, N2) that is a face of f7(w)
with n(w) ∈ ρ0 and 1 ≤ j · 3N3 ≤ 3N1 , define

ψi(j, w)xf5(ρ) = f6(ρ,n(w),min{j · 3N3 , f8(w, ρ)})xf5(ρ). (4.24)

For Z = M − ∪{f5(ρ) : ρ is a face of f7(w) and n(w) ∈ ρ0} and 0 ≤
j · 3N3 ≤ 3N1 , put

ψi(j, w)xZ = φi(n(N3, ki)(w))xZ. (4.25)

Finally, for 3N1 ≤ j · 3N3 ≤ 3N3 , we set

ψi(j, w) = ψi(3
N1−N3 , w). (4.26)

Properties of ψi:

To verify limi→∞ f(ψi) = 0, we claim:

Claim 6. f(ψi) ≤ 2δi.

Proof. Each {ψi(j, w)}j is (2δi)-fine in the mass norm. In fact, the support
of this deformation sequence is at most two of the f5(ρ) annuli. On each
such annuli, the deformation follows some sequence f6(ρ, v, l), which is δi-
fine by Claim 4. So, we need only to check the fineness for terms of the form
M(ψi(j, w) − ψi(j, w̃)), where w, w̃ ∈ dmn(ψi) are so that |w − w̃| = 3−N3 .
In this case, there exists unique ρ ∈ I(1, N2)1 with w, w̃ ∈ ρ. Set ρ = [ρ1, ρ2].

We divide the analysis in three cases, depending on which third of ρ the
vertices w and w̃ lie:

(1) w, w̃ ∈ [ρ1, ρ1 + 3−(N2+1)];

(2) w, w̃ ∈ [ρ1 + 3−(N2+1), ρ2 − 3−(N2+1)];

(3) w, w̃ ∈ [ρ2 − 3−(N2+1), ρ2].

In the first case, the deformations of ψi(0, w) and ψi(0, w̃) coincide in
f5(ρ1), because n(N3, ki)(w) = n(N3, ki)(w̃) and f8(w, ρ1) = f8(w̃, ρ1) are
equal to f2(ρ1). Furthermore, in the annulus f5(ρ) they are also deformed
by the same f6(ρ,n(w), l), but we may have |f8(w, ρ) − f8(w̃, ρ)| = 1. In
this case, item (c) of Claim 4 again implies fineness δi between ψi(j, w) and
ψi(j, w̃). Case (3) is completely analogous to this one.

Consider now case (2). If w and w̃ are not two different middle vertices,
their deformation inside f5(ρ) coincide, because n(N3, ki)(w) = n(N3, ki)(w̃)
and f8(w, ρ) = f2(n(w)) = f8(w̃, ρ). Then, ψi(j, w) and ψi(j, w̃) differ at
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most in one of the annuli f5(ρ1) and f5(ρ2). Indeed, it is not possible
f8(w, ρ1) 6= 0 and f8(w, ρ2) 6= 0, simultaneously. In case of difference, we
argument using item (c) of Claim 4 once more to conclude the fineness is at
most δi in this case.

Finally, if [w, w̃] is the middle 1-cell of I(1, N3)0 inside ρ and the defor-
mation sequences {ψi(j, w)}j and {ψi(j, w̃)}j are not the same, then ρ is the
middle 1-cell of I(1, N2) inside a 1-cell of I(1, ki). And we can use item (d)
of Claim 4 to conclude M(ψi(j, w)− ψi(j, w̃)) ≤ δi.

Observe that, if n(N3, ki)(w) ∈ {z1, . . . , zs}, there is ρ ∈ [z0, zs]∩I(1, N2),
face of f7(w) with n(w) ∈ ρ0 and f8(w, ρ) = f2(n(w)) = 3N1 . The mass of
ψi(1, w) on f5(ρ) is strictly lower than that of ψi(0, w), indeed, depending on
ρ, we can estimate this difference by:

• if ρ is a 0-cell,

||ψi(1, w)||(f5(ρ)) < ||ψi(0, w)||(f5(ρ))− ε(Vf4(ρ))

≤ ||ψi(0, w)||(f5(ρ))− δ;

• if ρ is a 1-cell,

||ψi(1, w)||(f5(ρ)) < ||ψi(0, w)||(f5(ρ))− δ +
δi
2
.

Since mass of ψi(0, w) increases at most δi on each annuli in which the de-
formation is not trivial, we conclude the following mass decay estimate:

M(ψi(1, w)) ≤M(ψi(0, w))− δ + 3
δi
2
.

The extra information about the deformation of φi(zk) are consequence
of the fact that f8(zk, ρ) = 0, in case ρ ∈ I(1, N2) is a 1-cell. Then, they are
deformed by f6(zk, zk, l) only. This concludes the argument.
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CHAPTER 5

Min-max minimal hypersurfaces in non-compact

manifolds

In this chapter, we use the min-max theory for intersecting slices developed
in Chapter 2 to prove the main result of this thesis, Theorem 1 as stated
in the Introduction. More precisely, we prove existence of closed embedded
minimal hypersurfaces in a complete non-compact manifold N containing a
bounded region Ω with smooth and strictly mean-concave boundary and with
a thickness assumption on the geometry at infinity. This is a short chapter,
in Section 5.1, we give an overview of the proof. Then, in the subsequent
sections we detail two steps of our argument. In Section 5.2, we explain how
do we use the ?k-condition together with the monotonicity formula. Finally,
in Section 5.3, we show how to restrict ourselves to the setting described in
Chapter 2, in which the ambient manifold is compact and without boundary.

5.1 Overview of the proof

Proof of Theorem 1. We divide the proof in five steps.

Step 1:

Since the n-dimensional manifold N satisfies the ?k-condition for some value
k ≤ 2

n−2
, there exist p ∈ N and R0 > 0 such that the estimates

sup
q∈B(p,R)

|SecN |(q) ≤ Rk

82
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and
inf

q∈B(p,R)
injN(q) ≥ R−

k
2 ,

hold for geodesic balls B(p,R) centered at p, of radius R ≥ R0, as defined
in the Introduction. Choose a non-negative proper Morse function f : N →
[0,+∞) and let {Σt}t≥0 be the one-parameter sweepout of the integral cycles
induced by the level sets of f :

Σt := ∂
(
{x ∈ N : f(x) < t}

)
∈ Zn−1(N). (5.1)

This family has the special property that Hn−1(Σt) is a continuous function.
Since Ω ⊂ N is compact, we conclude

L := L ({Σt}t≥0) = sup{Hn−1(Σt) : spt(||Σt||) ∩ Ω 6= ∅} < +∞. (5.2)

Step 2:

Consider t0 > 0 such that Σt0 is a smooth regular level of f and large
enough to satisfy the following property: any connected minimal hypersur-
face Σn−1 ⊂ N , intersecting Ω, with non-empty boundary and inf∂Σ f ≥ t0,
must satisfy Hn−1(Σ) ≥ 2L.

The existence of such t0 is a consequence of the monotonicity formula for
minimal hypersurfaces and the fact that N satisfies the ?k-condition for some
k ≤ 2

n−2
. We accomplish this argument in Section 5.2.

Step 3:

It is possible to obtain a compact Riemannian manifold without boundary
(Mn, h), containing an isometric copy of {f ≤ t0} and such that f extends
to M as a Morse function, which is denoted by f1. In Section 5.3 below, we
perform a construction that gives one possible M . Since Ω ⊂ {f < t0}, we
have a copy of Ω inside M , which is also denoted Ω. Suppose f1(M) = [0, 1].

Step 4:

Let Γ = {Γt}t∈[0,1] be the sweepout of M given by Γt = f−1
1 (t). Consider the

set of intersecting times

dmnΩ(Γ) = {t ∈ [0, 1] : spt(||Γt||) ∩ Ω 6= ∅}.

Observe that Γt coincides with the slice Σt, for every 0 ≤ t ≤ t0, and that
t /∈ dmnΩ(Γ), for t0 < t ≤ 1. In particular,

L(Γ,Ω) := sup{Hn−1(Γt) : t ∈ dmnΩ(Γ)}
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coincides with the number L defined in Step 1. We apply now the Min-max
Theory developed in Chapter 2. There exists a non-trivial closed embedded
minimal hypersurface Σn−1 ⊂M with Hn−1(Σ) ≤ L and intersecting Ω.

Since our Min-max methods follow the discrete setting of Almgren and
Pitts, we still have to construct out of Γ a non-trivial homotopy class Π ∈
π#

1 (Zn−1(M ; M), {0}), such that L(Π,Ω) ≤ L(Γ,Ω) = L. This is the content
of Theorem 9. We can apply this result because Γ is continuous in the F-
metric and non-trivial.

Step 5:

The choice of t0 in Step 2 guarantees that any component of Σn−1 that
intersects Ω, can not go outside {f ≤ t0}. Otherwise, this would imply that

2L ≤ Hn−1(Σ) ≤ L.

In conclusion, any intersecting component of Σ is a closed embedded minimal
hypersuface in the open manifold N .

5.2 A slice far from the mean-concave region

Let us prove that the ?k-condition implies that any minimal hypersurface that
intersects Ω and, at the same time, goes far from Ω have large Hausdorff
measure Hn−1. Let Σn−1 ⊂ N be a minimal hypersurface as in Step 2
above. The main tool for this subsection is the following consequence of the
monotonicity formula, see expression (1.26) of Subsection 1.3.

Proposition 2. For every q ∈ B(p,R) and 0 < s < R−
k
2 , we have

Hn−1(Σ ∩B(q, s)) ≥ ωn−1

e(n−1)
√
Rks
· sn−1, (5.3)

where ωn−1 is the volume of the unit ball in Rn−1.

Consider R0 ≤ R1 and l ∈ N, for which Ω ⊂ B(p,R1) and B(p,R1 + l) ⊂
{f < t0}, t0 to be chosen. Recall that Σ intersects Ω and it is not contained
in the sublevel set {f < t0}. Then, for every i ∈ {1, 2 . . . , l}, there are points
qij ∈ Σ, j ∈ {1, 2, . . . , b

√
(R1 + i)kc}, whose distance in N to p are given by

d(qij, p) = R1 + i− 1 +
2j − 1

2
√

(R1 + i)k
.
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Observe that qij ∈ B(p,R1 + i) and that the balls Bij = B(qij, 2
−1(R1 + i)−

k
2 )

are pairwise disjoint. Apply Proposition 2 to conclude that

Hn−1(Σ) ≥
l∑

i=1

∑
j

Hn−1(Σ ∩Bij) (5.4)

≥ ωn−1

(2
√
e)n−1

l∑
i=1

(
b(R1 + i)

k
2 c · (R1 + i)−

k(n−1)
2

)
.

Since k ≤ 2
n−2

, if we keep R1 fixed and let l ∈ N go to infinity, then the
right-hand side of expression (5.4) also tends to infinity. Choose l ∈ N large,
for which that is greater than 2L, where L = L({Σt}t≥0) is the number we
considered in Step 1 above. This concludes the argument, because we chose
t0 such that B(p,R1 + l) ⊂ {f < t0}.

5.3 A closed manifold containing the mean-

concave region

Since t0 is a regular value of f , f−1([t0, t0 + 3ε]) has no critical points for
sufficiently small ε > 0. Moreover, there exists a natural diffeomorphism

ξ : f−1([t0, t0 + 3ε])→ Σt0 × [0, 3ε],

that identifies f−1(t0) with Σt0 × {0}. Suppose that Σt0 × [0, 3ε] has the
product metric g|Σt0

× L, where L denotes the Lebesgue measure. Consider
the pullback metric g1 = ξ∗(g|Σt0

× L) and choose a smooth bump function
ϕ : [t0, t0 + 3ε]→ [0, 1], such that

• ϕ(t) = 1, for every t ∈ [t0, t0 + ε], and

• ϕ(t) = 0, for every t ∈ [t0 + 2ε, t0 + 3ε].

On f−1([t0, t0 + 3ε]), mix the original g and the product metric g1 using the
smooth function ϕ, to obtain

h1(x) = (ϕ ◦ f)(x)g(x) + (1− (ϕ ◦ f)(x))g1(x). (5.5)

This metric admits the trivial smooth extension h1 = g over f−1([0, t0]).
Summarizing, we produced a Riemannian manifold with boundary

M1 = ({f ≤ t0 + 3ε}, h1),

with the following properties:
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Figure 5.1: The closed manifold to which we apply our min-max technique

(i) M1 contains an isometric copy of {f ≤ t0} with the metric g;

(ii) near ∂M1 = f−1(t0 + 3ε), h1 = g1 is the product metric.

Then, it is possible to attach two copies of M1 via the identity map of ∂M1.
Doing this we obtain a closed manifold M with a smooth Riemannian metric
h, that coincides with h1 on each half, see Figure 5.1. Precisely, M = M1 ∪I
M1, where I denotes the identity map of ∂M1.

The metric h is smooth because of item (ii). Moreover, item (i) says that
M has an isometric copy of {f ≤ t0}. Finally, let us construct a Morse
function f1 on M that coincides with f in the first piece M1. On the second
half M1, put f1 = 2(t0 + 3ε)− f .
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CHAPTER 6

Metrics of positive scalar curvature and unbounded

widths

The content of this chapter is independent of the previous results of this
thesis and is contained in [44]. As state in the Introduction of this work,
we prove existence of metrics of scalar curvature greater than or equal to
6 on the three-sphere and arbitrarily large widths. The method involves
combinatorial arguments, which are developed in Section 6.1. In Section 6.2,
we explain the construction of the examples. Finally, in Sections 6.3 and
6.4 we give bounds for the geometric objects that we are interested in, the
widths and the supremum of the isoperimetric profiles.

6.1 Combinatorial results

In this section, we state and prove our combinatorial results. For each posi-
tive integer m ∈ N, we use Tm to denote the full binary tree, for which all the
2m leaves, nodes of vertex degree one, have depth m. Recall that the vertex
degree of a node is the number of edges incidents to it. Observe that Tm has
2m+1 − 1 nodes, being 2k nodes on the k-th level of depth.

We consider 2-colorings of the nodes of Tm. A 2-coloring of Tm is an
assignment of one color, black or white, for each node. Fixed a 2-coloring, an
edge is said to be a dichromatic edge if it connects nodes with different colors.
We are interested in 2-colorings which minimize the quantity of dichromatic
edges for a fixed number of black nodes or leaves. See Figure 6.1 below.
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Figure 6.1: A 2-coloring of the binary tree T2 with three black nodes and one
dichromatic edge exactly. In particular, 3 ∈ B2(1).

Definition 8. Let m, d ∈ N be positive integers. We define Bm(d) to be the
set of values b, with 1 ≤ b ≤ 2m+1 − 1, for which there exists a 2-coloring of
Tm with d dichromatic edges and b black nodes exactly.

The first statement that we prove in this section is the following upper
bound on the size of the sets Bm(d):

Lemma 10. For every m, d ∈ N, it follows that #Bm(d) ≤ 2dmd.

Proof. Consider a 2-coloring C of the nodes of Tm which has d dichromatic
edges exactly. Let k be the highest level of depth of Tm for which one of
those d edges joins a node on the k-th level to a node on the (k+ 1)-th level
of depth. Choose one of these deeper dichromatic edges and observe that it
determines a monochromatic component of C which is a copy of Tm−(k+1),
for some 0 ≤ k ≤ m − 1. Changing the color of the nodes of this Tm−(k+1)

yields a 2-coloring C ′ with d − 1 dichromatic edges and b black nodes, for
some b ∈ Bm(d − 1). Since we changed the colors of the nodes in the copy
of Tm−(k+1) only and they all have the same color on C, the number of black
nodes of C is either b+ (2m−k − 1) or b− (2m−k − 1). Therefore,

Bm(d) ⊂ {b± (2m−k − 1) : b ∈ Bm(d− 1) and 0 ≤ k ≤ m− 1},

and we conclude that

#Bm(d) ≤ 2m ·#Bm(d− 1)

and the statement follows inductively and from the fact that 2m+1− 1 is the
only element of Bm(0).

Definition 9. For m ∈ N and 1 ≤ b ≤ 2m+1 − 1, let d′m(b) denote the
minimum integer d ∈ N for which b ∈ Bm(d). In other words, any 2-coloring
of Tm with b black nodes exactly has at least d′m(b) dichromatic edges.

As a consequence of the above estimate we prove a qualitative result that
guarantees that there is no uniform bound on the values d′m(b).
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Proposition 3. There exist integers b(m), with 1 ≤ b(m) ≤ 2m+1 − 1 and
such that {d′m(b(m))}m∈N is an unbounded sequence.

Proof. Suppose, by contradiction, there exists D ∈ N such that d′m(b) ≤ D,
for all m ∈ N and 1 ≤ b ≤ 2m+1 − 1. Then, each such b belongs to Bm(d),
for some d ≤ D. By Lemma 10, we have

#

( ⋃
d≤D

Bm(d)

)
≤
∑
d≤D

2dmd.

But, for fixed m ∈ N, there are 2m+1− 1 possible values for b, which can not
be controlled by the polynomial right hand side of the above expression.

Since the vertex degrees of the nodes of the considered trees do not exceed
3, we can use Proposition 3 to prove the following:

Corollary 4. Given k ∈ N, there exist m ∈ N and b(m) < 2m+1 − 1, such
that any 2-coloring of Tm with b(m) black nodes exactly has at least k pairs
of neighboring nodes with different colors. Moreover, for 1 ≤ b ≤ 2m+1 − 1,
any 2-coloring of Tm with b black nodes exactly has at least (k−|b− b(m)|)/5
pairwise disjoint pairs of neighboring nodes with different colors.

Proof. Indeed, let m and b(m) be such that d′m(b(m)) ≥ k. This choice is
allowed by Proposition 3. Then, any 2-coloring of Tm with b(m) black nodes
exactly has at least k pairs of neighboring nodes with different colors.

For 1 ≤ b ≤ 2m+1 − 1, we can estimate d′m(b) using the formula:

|d′m(t)− d′m(s)| ≤ |t− s|. (6.1)

To prove this relation, we need to verify |d′m(t)−d′m(t+1)| ≤ 1 only. Consider
a 2-coloring of Tm with t + 1 black nodes and d′m(t + 1) dichromatic edges
exactly. Let N be a black node of this coloring with the property that no
other black node lives in a level deeper than its level of depth. Changing the
color of N to white we obtain a 2-coloring with exactly t black nodes and at
most d′m(t+1)+1 dichromatic edges. This implies that d′m(t) ≤ d′m(t+1)+1.
Analogously, we obtain d′m(t+1) ≤ d′m(t)+1, and we are done with the proof
of expression (6.1).

The choice of m and b(m), together with equation (6.1) gives us that
d′m(b) ≥ k − |b − b(m)|. Observe that each pair of neighboring nodes has
a common node with four other pairs of neighboring nodes at most. This
allows us to conclude that any 2-coloring of Tm with b black nodes exactly
has at least (k − |b − b(m)|)/5 pairwise disjoint pairs of neighboring nodes
with different colors. And this concludes the proof of the corollary.
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Corollary 4 is key in the proof of the lower bound that we provide for the
supremum of the isoperimetric profiles of the Riemannian metrics that we
construct in the next section. This is done in Section 6.4.

The rest of this section is devoted to the discussion of an interesting
quantitative statement related to the previous results. It also can be applied
to provide estimates for the widths of our examples.

Definition 10. We define the dichromatic value of t leaves in Tm as the
least number of dichromatic edges of a 2-coloring of Tm with t black leaves
exactly. We denote this number by dm(t).

The following statement about dichromatic values is the analogous of
formula (6.1) for a fixed number of black leaves. We omit its proof here.

Lemma 11. |dm(t)− dm(s)| ≤ |s− t|.

Theorem 14. For each integer m > 1, let

a(m) =

{
1 + 2 + 23 + . . .+ 2m−2, if m is odd
1 + 22 + 24 + . . .+ 2m−2, if m is even.

Then, dm(a(m)) ≥
⌈
m
2

⌉
.

Proof. The proof is by induction. Define a(1) = 1. The initial cases, m = 1
and 2, are very simple. Suppose that the statement is true for m − 1 and
m− 2. Let C be a 2-coloring of Tm with a = a(m) black leaves exactly.

Let us count the number of different types of nodes in the (m − 1)-th
level of depth of Tm. Use α to denote the number of nodes which have two
neighbor leaves of different colors on C and, similarly, let β be the number of
nodes which have two black neighbor leaves. Then, we can write the number
of black leaves as a(m) = α+2 ·β. In particular, this expression implies that
α is an odd number and

β =
1− α

2
+
a(m)− 1

2
=

1− α
2

+ a(m− 1)−m′, (6.2)

where m′ = 1 if m is even and m′ = 0 if m is odd. Indeed, it is easily seen
that a(m)− 1 = 2 · (a(m− 1)−m′), for every m ≥ 3.

Next, we induce a 2-coloring C ′ on the nodes of Tm−1. Let Tm−2 ⊂ Tm−1 ⊂
Tm be such that Tm minus Tm−1 is the set of leaves of Tm, and Tm−1 minus
Tm−2 is the set of leaves of Tm−1. We begin to define C ′ on Tm−1, identified
with Tm−1, asking C ′ to be equal to C on Tm−2 and on the α leaves of Tm−1

which have neighbor leaves of different colors on C. The β leaves of Tm−1

which have two black neighbor leaves of C on Tm are colored black on C ′.
The remaining leaves of Tm−1 have two white neighbor leaves of C on Tm and
receive the color white on C ′. The important properties of C ′ are:
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(i) The number of black leaves of C ′ on Tm−1 is greater than or equal to β
and at most α + β;

(ii) The number of dichromatic edges of C is at least α plus the number of
dichromatic edges of C ′.

The first of these properties follows directly from the construction. To
prove the second, we begin by observing that the dichromatic edges of C ′
that are in Tm−2 are, automatically, dichromatic edges of C on Tm. Then,
we analyze cases to deal with the dichromatic edges of C ′ that use leaves of
Tm−1. We omit this simple analysis.

Let us use t to denote the number of black leaves of C ′ on Tm−1. From
(6.2) and property (i) above, we conclude that

1− α
2
−m′ ≤ t− a(m− 1) ≤ 1 + α

2
−m′. (6.3)

By Lemma 11 and the induction hypothesis, we have

dm−1(t) ≥ dm−1(a(m− 1))− 1 + α

2
≥
⌈
m− 1

2

⌉
− 1 + α

2
. (6.4)

By definition, C ′ has at least dm−1(t) dichromatic edges. This implies, to-
gether with property (ii) and equation (6.4), that

#{dichromatic edges of C} ≥
⌈
m− 1

2

⌉
+
α− 1

2
. (6.5)

Since α is odd, if m is even we have that the number of dichromatic edges
of C is at least d(m− 1)/2e = dm/2e and we are done. Otherwise, m is odd
and equation (6.5) provides us

#{dichromatic edges of C} ≥
⌈m

2

⌉
− 1 +

α− 1

2
=
⌈m

2

⌉
+
α− 3

2
.

If α ≥ 3, the induction process ends and we are done.
From now on, we suppose that m is odd and α = 1. The arguments are

going to be similar to the previous one, but one level above on Tm. Recall
that α = 1 means that there is a unique node of Tm which is neighbor of
leaves with different colors. Observe that each node on the (m− 2)-th level
of Tm, leaf of Tm−2, is associated with four leaves of Tm, the leaves at edge-
distance two. A unique node on this level is associated with an odd number
(1 or 3) of black leaves of C, because α = 1. We denote this node and odd
number by N and ϕ, respectively.
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Let us use θ and γ to denote the number of nodes on the (m− 2)-th level
of Tm which are associated, respectively, with two and four black leaves of C.
Then, we can write the number of black leaves of C as a(m) = ϕ+ 2θ + 4γ.

In particular, this expression implies that ϕ+ 2θ ≡ 3 mod 4 and

γ = −1 + ϕ+ 2θ

4
+ a(m− 2).

Next, we induce a 2-coloring C ′′ on the nodes of Tm−2. We follow the same
Tm−2 ⊂ Tm notation that we introduced before. And now, we still need the
analogous Tm−3 ⊂ Tm−2. We choose C ′′ to coincides with C on the nodes of
Tm−3 and on the θ leaves of Tm−2 which are associated with two black leaves
of C. The γ leaves of Tm−2 which are associated with four black leaves of C
are colored black. The node N is colored white if ϕ = 1 and black if ϕ = 3.
The leaves of Tm−2 which remain uncolored receive the color white. As in
the previous step, the important properties of C ′′ are:

(I) The number of black leaves of C ′′ is between the values (ϕ − 1)/2 + γ
and (ϕ− 1)/2 + γ + θ;

(II) The number of dichromatic edges of C is at least 1 + θ plus the number
of dichromatic edges of C ′.

By the same reasoning that we used to obtain equation (6.5), we have

#{dichromatic edges of C} ≥
⌈
m− 2

2

⌉
+

1 + ϕ+ 2θ

4
.

Using that m is odd, ϕ = 1 or 3 and ϕ+ 2θ ≡ 3 mod 4, we conclude that the
right hand side of the above expression is greater than or equal to dm/2e.
This finishes the induction step.

An easy consequence of Theorem 14 is the following:

Corollary 5. Given m ∈ N there exists a(m) ∈ N, 1 ≤ a(m) ≤ 2m, such that
any 2-coloring of Tm with a(m) black leaves exactly has at least (dm/2e)/5
pairwise disjoint pairs of neighboring nodes with different colors.

6.2 Constructing the examples

In this section, we introduce our examples. We begin with a brief discussion
about the Gromov-Lawson metrics of positive scalar curvature. Then, for
each full binary tree we construct an associated metric of scalar curvature
greater than or equal to 6 on the three-sphere.
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6.2.1 Gromov-Lawson metrics

Gromov and Lawson developed a method that is adequate to perform con-
nected sums of manifolds with positive scalar curvature, see [30]. They proved
the following statement:

Let (Mn, g) be a Riemannian manifold of positive scalar curvature. Given
p ∈ M , {e1, . . . , en} ⊂ TpM an orthonormal basis, and r0 > 0, it is possible
to define a positive scalar curvature metric g′ on the punctured geodesic ball
B(p, r0) − {p} that coincides with g near the boundary ∂B(p, r0), and such
that (B(p, r1) − {p}, g′) is isometric to a half-cylinder, a product manifold
S2(ρ)× [0,+∞) of a 2-sphere of radius ρ and a half-line, for some r1 > 0.

Remark 15. Since (B(p, r1) − {p}, g′) is isometric to a half-cylinder, there
exists 0 < r < r1 so that the g′ volume of B(p, r0) − B(p, r) is bigger than
one half of the g volume of the removed geodesic ball B(p, r0).

6.2.2 Fundamental blocks

In order to construct our examples, we use the above metrics to build three
types of fundamental blocks.

The first type is obtained from the above construction using the standard
round metric on M = S3, any p ∈ S3 and orthonormal basis and r0 = 1. We
use S1 = (S3 − B(p, r), g′) to denote this block, where 0 < r < r1 < r0 = 1
is chosen as in Remark 15. Observe that S1 is a manifold with boundary,
has positive scalar curvature and it has a product metric near the boundary
two-sphere ∂S1. To obtain the second fundamental block, S2, we perform
the same steps with M = S1 and choosing the new removed geodesic ball to
be antipodally symmetric to B(p, 1). Finally, the third block, S3, is obtained
from S3 after three application of Gromov-Lawson procedure by removing
three disjoint geodesic balls B(pi, 1), i = 1, 2 and 3.

Summarizing, the fundamental blocks S1, S2 and S3 are obtained from
the standard three-sphere by removing one, two or three geodesic balls, re-
spectively, and attaching a copy of a fixed piece for each removed ball. Each
fundamental block has a product metric near its boundary spheres. Up to
a re-scaling, admit that they have scalar curvature greater than or equal to
6. Also, by Remark 15, we can suppose that the attached piece has volume
bigger than one half of the volume of the removed balls.

6.2.3 Metrics associated with binary trees

For each full binary tree Tm, we use the fundamental blocks to construct an
associated metric on S3.
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In our examples, each node of Tm will be associated to a fundamental
block. Following the notation of Subsection 6.2.2, for a node of degree k
we associate a fundamental block of type Sk. We connect the blocks which
correspond to neighboring nodes of Tm by identifying one boundary sphere of
the first to a boundary sphere of the second with reverse orientations. After
performing all identifications, we obtain a metric on S3, which is denoted by
gm and has scalar curvature R ≥ 6.

The metric gm decomposes S3 in 2m+1−1 disjoint closed regions, which are
isometric to the standard three-sphere with either one, two or three identical
disjoint geodesic balls removed, and 2m+1 − 2 connecting tubes. Moreover,
by construction, the tubes are isometric to each other and their volume is
greater than the volume of one of the removed geodesic balls.

6.3 Lower bounds on the widths

We begin this section by recalling what sweepouts and widths of Riemannian
metrics on S3 are. After reintroducing these interesting geometrical objects,
we prove that the widths of the metrics gm constructed in Section 6.2 converge
to infinity.

We use I = [0, 1] ⊂ R to denote the closed unit interval. The 2-
dimensional Hausdorff measure on S3 induced by a Riemannian metric g
is denoted by H2. Let us remember the definition of sweepouts.

A sweepout of (S3, g) is a family {Σt}t∈I of smooth 2-spheres, which are
boundaries of open sets Σt = ∂Ωt such that:

1. Σt varies smoothly in (0, 1);

2. Ω0 = ∅ and Ω1 = S3;

3. Σt converges to Στ , in the Haursdorff topology, as t→ τ ;

4. H2(Σt) is a continuous function of t ∈ I.

Let Λ be a set of sweepouts of (S3, g). It is said to be saturated if given
a map φ ∈ C∞(I × S3, S3) such that φ(t, ·) are diffeomorphism of S3, all
of which isotopic to the identity, and a sweepout {Σt}t∈I ∈ Λ, we have
{φ(t,Σt)}t∈I ∈ Λ. The width of (S3, g) associated with Λ is the following
min-max invariant:

W (S3, g,Λ) = inf
{Σt}∈Λ

max
t∈[0,1]

H2(Σt).

From now on, we fix a saturated set of sweepouts Λ. The main result of
this work is the following:
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Figure 6.2: The possible regions that we obtain after gluing together two
neighboring spherical regions.

Theorem 15. The sequence {gm}m∈N of Riemannian metrics on S3 that we
constructed satisfies:

lim
m→∞

W (S3, gm,Λ) = +∞.

Proof. Recall that gm is a metric on S3 which is related to the full binary
tree Tm. Also, there are 2m+1−1 disjoint closed subsets of (S3, gm) isometric
to the standard round metric on the three-sphere with either one, two or
three identical disjoint balls removed. These spherical regions are associated
to nodes of Tm and two of them are glued to each other if, and only if, their
corresponding nodes are neighbors in Tm. It is also important to recall that
there is a tube connecting such neighboring regions, all of which isometric to
each other. For convenience, let us denote these spherical regions by:

• Li if it corresponds to a leaf of Tm;

• B if it corresponds to the node of degree 2;

• Aj if it corresponds to a node of degree 3.

After connecting any two neighboring spherical regions, we obtain a region
A which is isometric to one of the domains depicted in Figure 6.2.

In the figure, the first region was obtained by gluing a spherical region
of type Li to its only Aj neighbor. The others are obtained by gluing either
two Aj regions or the B region to one its two Aj neighbors.

Choose α > 0 such that 2α is strictly less then the volume of one Aj.
Then, 0 < α < vol(A) − α < vol(A), for any of the possible A’s. By the
relative isoperimetric inequality, there exists C > 0 such that for any open
subset Ω ⊂ A of finite perimeter and α ≤ vol(Ω) ≤ vol(A)− α, we have

H2(∂Ω ∩ int(A)) ≥ C. (6.6)

Moreover, since we have three possible isometric types of A’s only, we can
suppose that this constant does not depend on the type of A.
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Let {Σt}t∈I be a sweepout of (S3, gm). Consider the associated open
sweepout {Ωt}, for which Σt = ∂Ωt. Let a(m) be the integer provided by
Corollary 5. Choose the least t0 ∈ I for which we have vol(Ωt0 ∩Li) ≥ α, for
at least a(m) values of i ∈ {1, 2, 3, . . . , 2m}.

Observe that, at most a(m)− 1 of the Li’s can satisfy vol(Ωt0 ∩ Li) > α.
Up to a reordering of their indices, suppose that vol(Ωt0 ∩ Li) ≥ α, for
i = 1, 2, . . . , a(m), and vol(Ωt0 ∩ Li) ≤ α, otherwise.

On Tm, consider the 2-coloring defined in the following way: the leaves
associated to L1, . . . , La(m) are colored black, the other leaves are colored
white and the nodes which are not leaves are colored black if, and only if,
the volume of Ωt0 inside the corresponding spherical region is greater than
or equal to α. This 2-coloring of Tm has exactly a(m) black leaves.

By Corollary 5, the constructed coloring has at least m/10 pairwise dis-
joint pairs of neighboring nodes with different colors. Observe that each such
pair gives one A type region for which we have

α ≤ vol(Ωt0 ∩ A) ≤ vol(A)− α. (6.7)

This follows because we chose α in such a way that the volume of our spherical
regions are greater than 2α. By equations (6.6) and (6.7) we conclude that
H2(∂Ωt0 ∩ int(A)) ≥ C. Since this holds for m/10 pairwise disjoint A type
regions, we have H2(Σt0) ≥ C ·m/10. This concludes our argument.

6.4 On the isoperimetric profiles

In this section, we discuss the fact that isoperimetric profiles Im of the metrics
gm are not uniformly bounded. This part also relies on a combinatorial
argument, we use Corollary 4. The idea is to decompose S3 into 2m+1 − 1
pieces of identical gm volumes, all of which being the union of one spherical
region (Li, B or Aj) with a portion of their neighboring tubes.

This decomposition of S3 by balanced pieces is only possible because we
chose the tube large enough to have gm volume greater than the spherical
volume µ of the removed geodesic balls. This allows us to decompose S3 into
2m+1 − 2 pieces with volume volg0(S3) + τ − 2µ and one piece with volume
volg0(S3), and with the other desired properties, where g0 is the standard
round metric on S3 and τ is the volume of the gluing tube. The piece with
volume volg0(S3) is the one related to the only node of degree 2 in Tm. For
each pair of neighboring spherical regions, the boundary of the associated
balanced regions has exactly one component in the connecting tube. This
component is a spherical slice which splits the volume τ of the tube as τ −µ
plus µ, as depicted in Figure 6.3.
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Figure 6.3: The balanced regions.

There are three types of balanced regions, depending on the number of
boundary components, all of which we denote by M. In this part, we use
the isoperimetric inequality in its full generality: there exists C > 0 so that

min{H3(Ω),H3(M− Ω)}2/3 ≤ C · H2(∂Ω ∩ int(M)), (6.8)

for every Ω ⊂M. Since we have three types of M regions only, we suppose
that C > 0 associated to M does not depend on its type.

Suppose, by contradiction, that there exists L > 0 such that Im(v) ≤ L,
for every m ∈ N and v ∈ [0, volgm(S3)].

For any k ∈ N, let m, b(m) ∈ N be the integers provided by Corollary 4.
Take v(m) = b(m) · (volg0(S3) + τ − 2µ) and let Ω ⊂ S3 be a subset with
volgm(Ω) = v(m) and such that H2(∂Ω) ≤ L. Observe that∑

M

H2(∂Ω ∩ int(M)) ≤ H2(∂Ω) ≤ L.

Using the relative isoperimetric inequality, equation (6.8), we obtain:∑
M

min{H3(Ω ∩M),H3(M− Ω)}2/3 ≤ C · L.

Which implies that∑
M

min{H3(Ω ∩M),H3(M− Ω)} ≤ C1, (6.9)

where C1 = (C · L)3/2. Let M1 be the set of the M type regions for which
2 · H3(Ω ∩M) < H3(M). Similarly, the M regions satisfying the opposite
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inequality, 2 · H3(Ω ∩M) ≥ H3(M), compose M2. Equation (6.9) implies∑
M∈M1

H3(Ω ∩M) +
∑
M∈M2

H3(M− Ω) ≤ C1. (6.10)

Using that H3(M− Ω) = H3(M)−H3(Ω ∩M) and the fact that∑
M∈M1

H3(Ω ∩M) +
∑
M∈M2

H3(Ω ∩M) = volgm(Ω) = v(m), (6.11)

we easily conclude ∣∣∣∣v(m)−
∑
M∈M2

H3(M)

∣∣∣∣ ≤ C1. (6.12)

By the choice of v(m), equation (6.12) implies that |#M2 − b(m)| ≤ C2,
where C2 = (C1 + |τ − 2µ|)/(volg0(S3) + τ − 2µ) is a uniform constant.

Consider the 2-coloring C of Tm whose black nodes are those associated
with the balanced regions inM2. Then, C has #M2 black nodes exactly. By
Corollary 4, there are at least (k − |#M2 − b(m)|)/5 pairwise disjoint pairs
of neighboring nodes with different colors. By a reasoning similar to the one
that we used in the end of Section 6.3, we have that

H2(∂Ω) ≥ C3 · (k − |#M2 − b(m)|)/5, (6.13)

for some C3 > 0, which does not depend on m. Recalling that H2(∂Ω) ≤ L
and |#M2 − b(m)| ≤ C2, the above expression provides a uniform upper
bound on k, which is arbitrary. This is a contradiction and we are done.
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[15] Chruściel, P.T. and Herzlich, M., The mass of asymptotically hyperbolic
Riemannian manifolds. Pacific J. Math. 212, 231–264 (2003).
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