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1. Introduction

2. First variation formula

Let (Mn, g) be a Riemannian manifold and Σk ⊂ M be a submanifold.
We use the notation |Σ| for the volume of Σ. Consider (x1, . . . , xk) local
coordinates on Σ and let

gij(x) = g
( ∂
∂xi

,
∂

∂xj

)
, for 1 ≤ i, j ≤ k,

1
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be the components of g|Σ. The volume element of Σ is defined to be the

differential k-form dΣ =
√

det gij(x). The volume of Σ is given by

Vol(Σ) =

∫
Σ
dΣ.

Consider the variation of Σ given by a smooth map F : Σ × (−ε, ε) → M .
Use Ft(x) = F (x, t) and Σt = Ft(Σ). In this section we are interested in the
first derivative of Vol(Σt).

Definition 2.1 (Divergence). Let X be a arbitrary vector field on Σk ⊂M .
We define its divergence as

(1) divΣX(p) =

k∑
i=1

〈∇eiX, ei〉,

where {e1, . . . , ek} ⊂ TpΣ is an orthonormal basis and ∇ is the Levi-Civita
connection with respect to the Riemannian metric g.

Lemma 2.2.

(2)
∂

∂t
dΣt = divΣt

(
∂F

∂t

)
dΣt.

Proof. Note that
∂

∂t
detg = tr(g−1∂tg)detg,

where g−1 = (gij) = (gij)
−1. Then

∂

∂t
detg =

∑
i,j

(gij∂tgij)detg.

We can calculate the first derivative of the metric using the compatibility of
∇ with respect to g

∂tgij = g(∇∂F/∂t∂iF, ∂jF ) + g(∂iF,∇∂F/∂t∂jF ),

where ∂iF = ∂F/∂xi. Use the symmetry of ∇ to commute ∇∂F/∂t∂iF =
∇∂iF∂F/∂t. Put everything together to obtain

∂

∂t
detg = 2

∑
i,j

gijg(∇∂iF∂F/∂t, ∂jF )detg

= 2divΣt

(
∂F

∂t

)
detg.

�

We have then:

Theorem 2.3 (First Variation Formula I).

d

dt
|Σt| =

∫
Σt

divΣt

(
∂F

∂t

)
dΣt.
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In order to characterize the submanifolds that are critical values for area,
we need to introduce a important geometric object and some calculation.

2nd fundamental form and mean curvature: Let (Mn, g) be a Riemannian
manifold and Σk ⊂M be a submanifold. For each p ∈ Σ, define the second
fundamental form of Σ ⊂M as

B(V,W ) = ∇VW − (∇VW )T = (∇VW )N ,

where V,W are tangent to Σ. B is a symmetric tensor. If {e1, . . . , ek} ⊂ TpΣ
is an orthonormal basis, we define the mean curvature vector to be

−→
H = tr B =

k∑
i=1

(
∇eiei

)N
.

Lemma 2.4.

divΣX = divΣX
T − 〈XN ,

−→
H 〉.

Proof. Decompose X in tangent and normal parts X = XT +XN and write

divΣX = divΣX
T +

k∑
i=1

〈∇eiXN , ei〉.

Since XN is normal to Σ and ei is tangent, we have

(3) 0 = ei〈XN , ei〉 = 〈∇eiXN , ei〉+ 〈XN ,∇eiei〉.
Then

divΣX = divΣX
T −

k∑
i=1

〈XN ,∇eiei〉

= divΣX
T − 〈XN ,

−→
H 〉.

�

Theorem 2.5 (Divergence Theorem). Let Σ be a compact submanifold of
M and X be a tangential vector field on Σ. Then∫

Σ
divΣXdΣ =

∫
∂Σ
g(X, ν)dσ,

where ν ∈ TΣ is the unique unit outward normal to ∂Σ and dσ is the volume
element of ∂Σ.

Theorem 2.6 (First variation formula II).

d

dt
|Σt| = −

∫
Σt

〈∂F/∂t,
−→
H 〉dΣt +

∫
∂Σt

〈∂F/∂t, ν〉dσt.

Moreover, if X = ∂F/∂t vanishes on ∂Σ at t = 0, then

d

dt

∣∣∣∣
t=0

|Σt| = −
∫

Σ
〈X,
−→
H 〉dΣ.
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Corollary 2.7.

d

dt

∣∣∣∣
t=0

|Σt| = 0, for any X, with X = 0 on ∂Σ, iff
−→
H = 0.

Definition 2.8. Σk ⊂M is a minimal submanifold of M if
−→
H = 0.

3. Examples

(Geodesic). For k = 1, Σ is a smooth curve γ : I →M satisfying

0 =
−→
H =

(
∇ γ′
|γ′|

γ′

|γ′|

)N
= ∇ γ′

|γ′|

γ′

|γ′|
.

Geodesics are minimal surfaces of dimension 1.

(Minimal surfaces of euclidean space). Start with the particular case of a
minimal surfaces given as the graph of a differentiable function u : Ω → R,
where Ω ⊂ Rk. Let F : Ω → graph(u) be given by F (x) = (x, u(x)). Use
also the notation

∂F

∂xi
=

(
∂

∂xi
,
∂u

∂xi

)
.

The euclidean metric of Rk+1 restricted to graph(u) can be written as

gij = g

(
∂F

∂xi
,
∂F

∂xj

)
= δij +

∂u

∂xi

∂u

∂xj
,

where δij = 1, if i = j, and equal zero otherwise.

Exercise: Prove that detg = 1 + |∇u|2 = 1 +
∑k

i=1(∂u/∂xj)
2 and conclude

|graph(u)| =
∫

Ω

√
1 + |∇u|2dx.

Consider the variations of graph(u) given by the graphs of functions ut =
u+ tv, for any fixed v so that v = 0 on ∂Ω. Then

d

dt

∣∣∣∣
t=0

|graph(ut)| =
d

dt

∣∣∣∣
t=0

∫
Ω

√
1 + |∇(u+ tv)|2dx

=

∫
Ω
〈∇v, ∇u√

1 + |∇u|2
〉dx = −

∫
Ω
v divRk

(
∇u√

1 + |∇u|2

)
dx.

The graph of a function u is a minimal surface iff u satisfies the minimal
surface equation

(4) divRk

(
∇u√

1 + |∇u|2

)
= 0.

Equivalently, if u is a solution of the second order elliptic quasilinear P.D.E.
given by:

(5)
∑
i,j

(
δij −

∂iu∂ju

1 + |∇u|2

)
∂i∂ju = 0.
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Basic examples of minimal surfaces in R3.

• The plane: {(x, y, z) ∈ R3 : z = 0}.
• The catenoid: {(x, y, z) ∈ R3 : x2 + y2 = cosh z}. A bigraph, it is

obtained by the revolution of the curve y = cosh z over the z-axis.
• The helicoid: (u, v) 7→ (u cos v, u sin v, v). This is a multigraph over
R2 \ {0} for the function u(x, y) = arctan(y/x).
• The Scherk’s surface: graph(u), where u(x, y) = log cosx

cos y , for x, y ∈
(−π/2, π/2). Scherk’s surface is a doubly periodic minimal surface.

It is important to classify and understand these minimal surfaces in R3.
In this direction there is the Colding-Minicozzi Theory, that studies the
structure of embedded minimal disks. One important application is

Theorem 3.1 (Meeks and Rosenberg, 2005). The only complete embedded
simply connected minimal surfaces in R3 are the plane and the helicoid.

4. Maximum principle

In this section, we apply the strong maximum principle for the minimal
surface equation.

Theorem 4.1 (Strong maximum principle). Let v be a solution to∑
i,j

aij∂i∂jv +
∑
i

bi∂iv = 0,

where (aij(x))ij is positive definite for each x ∈ Ω. If v ≤ 0 and v = 0 at
some point, then v ≡ 0.

The main result of this section is

Theorem 4.2 (Maximum principle). Let u1, u2 : Ω → R be solutions to
minimal surface equation. Suppose Ω is connected, u1 ≤ u2 and u1(p) =
u2(p) for some p ∈ Ω. Then u1 ≡ u2.

Proof. Let v = u1 − u2. We have

0 =
∑
i,j

(
δij −

∂iu1∂ju1

1 + |∇u1|2

)
∂i∂jv +

∑
i,j

(
∂iu2∂ju2

1 + |∇u2|2
− ∂iu1∂ju1

1 + |∇u1|2

)
∂i∂ju2.

Since v = u1 − u2 ≤ 0 and v(p) = 0, the strong maximum principle gives
v ≡ 0. Then we conclude u1 = u2. �

Corollary 4.3. Let Σn−1
1 ,Σn−1

2 ⊂ Rn be connected minimal hypersurfaces,
such that Σ2 is on one side of Σ1. If there exists p ∈ Σ1 ∩ Σ2 6= ∅, then
Σ1 = Σ2.

Remark. This result also holds for minimal hypersufaces Σ1,Σ2 ⊂ M of a
Riemannian manifold.
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5. Calibration: area-minimizing surfaces

Let u : Ω → R be a solution to the minimal surface equation, where
Ω ⊂ Rn. Then ut(x) = u(x) + t is also a solution and Σt = graph(ut) form a
foliation of Ω×R by minimal hypersurfaces. This means for every p ∈ Ω×R
we can find t so that p ∈ Σt. For each vector V ∈ TpRn+1, let V T be the
component of V in TpΣt. Consider the following differential n-form

(6) ω(p)(X1, . . . , Xn) = VolΣt(X
T
1 , . . . , X

T
n ).

Observe we can also write ω as

ω(p)(X1, . . . , Xn) = VolRn+1(XT
1 , . . . , X

T
n , N)

= (−1)nVolRn+1(XT
1 , . . . , X

T
n , N)

= (−1)n(ιNVolRn+1)(X1, . . . , Xn),

where N is the unit normal vector to Σt and ιNVolRn+1 is the contraction
of VolRn+1 with the vector field N .

Cartan’s formula: If LXω is the Lie derivative of ω with respect to X, then

d(ιXω) + ιX(dω) = LXω.

Remark: If X is a vector field on (Mn, g), then

LXdVg = (divgX)dVg.

Using Cartan’s formula and the previous remark we can calculate dω as

(−1)ndω = d(ιNVolRn+1)

= LNVolRn+1 − ιNd(VolRn+1)

=
(
divRn+1N

)
VolRn+1 .

Can use that N is explicitly given by N = (1 + |∇u|2)−1/2(−∇u, 1) to
conclude that

(−1)ndω =

( n∑
i=1

∂N

∂xi

)
VolRn+1 = −divRn

(
∇u√

1 + |∇u|2

)
VolRn+1 .

Corollary 5.1. dω = 0 iff graph(u) is minimal.

This differential form ω has also the property

|ω(X1, . . . , Xn)| ≤ |X1| · . . . · |Xn|,
which we abbreviate for |ω| ≤ 1.

Definition 5.2. (Harvey and Lawson, 1982) Let (Mn, g) be a Riemannian
manifold. A differential k-form on Ω ⊂Mn is a calibration if it satisfies

(1) dω = 0;
(2) |ω| ≤ 1.

Definition 5.3. Σk ⊂M is calibrated by ω if ω|Σ = VolΣ.
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Theorem 5.4. Let (Mn, g) be a Riemannian manifold and Σk ⊂ M be a
calibrated submanifold. Then Σ minimizes volume in its homology class.

Proof. Let Σ′ be in the same homology class of Σ, then there exists a (k+1)-
dimensional U so that Σ′ − Σ = ∂U . Suppose Σ is calibrated by ω, then

0 =

∫
U
dω =

∫
Σ′
ω −

∫
Σ
ω.

Since ω|Σ = VolΣ, we have

Vol(Σ) =

∫
Σ
ω =

∫
Σ′
ω ≤ Vol(Σ′).

�

Corollary 5.5. Let u : Ω → R, Ω ⊂ Rn, be a solution to minimal surface
equation. Then Σ = graph(u) is calibrated. Therefore, for any Σ′ ⊂ Ω× R,
Σ′ = Σ, we have Vol(Σ) ≤ Vol(Σ′).

Example: Complex submanifolds of Cn.

Definition 5.6. Σ ⊂ Cn is complex if TpΣ is a complex vector subspace of
Cn, for every p ∈ Σ.

Consider the convention Cn = Rn+ iRn and in coordinates (z1, . . . , zn) =
(x1, . . . , xn, y1, . . . , yn), with zk = xk + iyk. The complex multiplication by
i map is denoted by J : Cn → Cn and defined by

J(x1, . . . , xn, y1, . . . , yn) = (−y1, . . . ,−yn, x1, . . . , xn).

Note that J2 = −I. Consider also the following differential form on Cn

(7) ω =

n∑
k=1

dxk ∧ dyk.

It can be seen that ω(X,Y ) = 〈J(X), Y 〉 and that dω = 0. The differential
form ωk = ω ∧ . . . ∧ ω, k-times, has complex degree k and satisfies dωk = 0.
To conclude that ωk/k! calibrates complex k-dimensional submanifolds, use:

Exercise: (Wirtinger’s Inequality) Let V ⊂ Cn be a vector subspace of real
dimension 2k and let {X1, . . . , X2k} be a basis of V . Then

ωk

k!
(X1, . . . , X2k) ≤ Vol(X1, . . . , X2k).

Moreover, equality holds iff V is a complex subspace of Cn.

Corollary 5.7. Complex submanifolds of Cn are volume minimizers.
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Example: (Special Lagrangian submanifolds of Cn) Let α = Re(Ω), where
Ω = dz1 ∧ . . . ∧ dzn is a complex valued n-differential form. Moreover,
dα = Re(dΩ) = 0 and |α| ≤ 1.

Definition 5.8. Σn ⊂ Cn is a special Lagrangian if Σ is calibrated by α.

Can consider also αθ = Re(eiθΩ). It satisfies dαθ = 0 and |αθ| ≤ 1.

Definition 5.9. Σn ⊂ Cn is Lagrangian if J(TpΣ) = T⊥p Σ, for every p ∈ Σ.

For example, in Cn = Rn + iRn, the real Rn is a Lagrangian.

Remark: If Σ ⊂ Cn is Lagrangian and
−→
H = 0 (minimal), then Σ is calibrated

by αθ for some θ.
Consider the inner product on Cn given by 〈〈z, w〉〉 =

∑n
k=1 zkwk. Let

{e1, . . . , en} ⊂ TpΣ be an orthonormal basis such that

{e1, . . . , en, J(e1), . . . , J(en)}

is an orthonormal basis of Cn. Define a C-linear map A : Cn → Cn by

A(∂/∂xk) = ek, for k = 1, . . . , n.

Then A is unitary and

Ω(e1, . . . , en) = Ω(A(∂/∂x1), . . . , A(∂/∂xn))

= (detCA)Ω(∂/∂x1, . . . , ∂/∂xn)

= detCA.

Can write Ωp(e1, . . . , en) = eiθ(p), for each p ∈ Σ. Here, θ(p) is called the
Lagrangian angle.

Remark: Observe dθ(v) = 〈v, J(
−→
H )〉, for each v ∈ TΣ. If Σ is Lagrangian

and
−→
H = 0, then θ is constant. In this case,

Re(e−iθΩ)(e1, . . . , en) = Re(Vol(e1, . . . , en)) = Vol(e1, . . . , en).

Therefore, Σ is volume minimizing.

6. Second Variation Formula

Let (Mn, g) be a Riemannian manifold and Σk ⊂ M be a submanifold.
Consider the variation F : Σ× (−ε, ε)→M . Recall

∂

∂t
dΣt = divΣt

(
∂F

∂t

)
dΣt

=
(∑
i,j

gij〈∇∂iF∂F/∂t, ∂jF 〉
)
dΣt,
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in local coordinates (x1, . . . , xk) on Σ. Observe ∂
∂tg
−1 = −g−1(∂tg)g−1, i.e.,

∂

∂t
gij = −

∑
k,l

gik∂tgklg
lj

= −
∑
k,l

gik
(
〈∇∂kF (∂F/∂t), ∂lF 〉+ 〈∂kF,∇∂lF (∂F/∂t)〉

)
glj .

Using the Riemann Curvature Tensor, we have

∂t〈∇∂iF∂tF, ∂jF 〉 = 〈∇∂tF∇∂iF∂tF, ∂jF 〉+ 〈∇∂iF∂tF,∇∂tF∂jF 〉
= 〈(∇∂tF∇∂iF −∇∂iF∇∂tF )∂tF, ∂jF 〉

+〈∇∂iF∇∂tF∂tF, ∂jF 〉+ 〈∇∂iF∂tF,∇∂tF∂jF 〉
= 〈RM (∂tF, ∂iF )∂tF, ∂jF 〉

+〈∇∂iF (∇∂tF∂tF ), ∂jF 〉+ 〈∇∂iF∂tF,∇∂jF∂tF 〉,

then ∑
i,j

gij∂t〈∇∂iF∂tF, ∂jF 〉 =
∑
i,j

gij〈RM (∂tF, ∂iF )∂tF, ∂jF 〉

+divΣ(∇∂tF∂tF )

+
∑
i,j

gij〈∇∂iF∂tF,∇∂jF∂tF 〉.

Use X = ∂tF = ∂F/∂t, when t = 0, as simplified notation for the variational
vector field. If {e1, . . . , ek} ⊂ TΣ is an orthonormal basis, we have

d

dt

∣∣∣∣
t=0

divΣt

(
∂F/∂t

)
=

k∑
i=1

〈RM (X, ei)X, ei〉+ divΣ(∇XX)

+

k∑
i=1

〈∇eiX,∇eiX〉

−
k∑

i,j=1

(〈∇eiX, ej〉+ 〈∇ejX, ei〉)〈∇eiX, ej〉.

The third term on the above expression can be rewritten as

k∑
i=1

〈∇eiX,∇eiX〉 =

k∑
i=1

〈∇⊥eiX,∇
⊥
eiX〉+

∑
i,j,l

〈〈∇eiX, ej〉ej , 〈∇eiX, el〉el〉

= |∇⊥X|2 +
∑
i,j

〈∇eiX, ej〉2.
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This simplifies the derivative divΣ(∂F/∂t) to

d

dt

∣∣∣∣
t=0

divΣt

(
∂F/∂t

)
=

k∑
i=1

〈RM (X, ei)X, ei〉+ divΣ(∇XX)

+|∇⊥X|2 −
k∑

i,j=1

〈∇ejX, ei〉〈∇eiX, ej〉.

Finally, we get the second variation formula for area

Theorem 6.1 (Second Variation Formula).

d2

dt2

∣∣∣∣
t=0

|Σt| =
d

dt

∣∣∣∣
t=0

(∫
Σt

divΣt(∂F/∂t)dΣt

)
=

∫
Σ

( k∑
i=1

|∇⊥eiX|
2 + divΣ(∇XX)

−
k∑
i=1

RM (X, ei, X, ei) +
( k∑
i=1

〈∇eiX, ei〉
)2

−
k∑

i,j=1

〈∇ejX, ei〉〈∇eiX, ej〉
)
dΣ.

Moreover, if X is normal,

(8) 〈∇eiX, ej〉 = −〈X,∇eiej〉 = −〈X,B(ei, ej)〉.

Theorem 6.2. If X is normal and
−→
H = 0, then

d2

dt2

∣∣∣∣
t=0

|Σt| =

∫
Σ

(
|∇⊥X|2 −

k∑
i=1

RM (X, ei, X, ei)

−
k∑

i,j=1

〈B(ei, ej), X〉2
)
dΣ +

∫
∂Σ
〈∇XX, ν〉dσ.

Minimization Problems.

Plateau Problem: Given Γk−1 ⊂ M an oriented boundary. Find Σk with
∂Σ = Γ and |Σ| = inf∂Σ′=Γ |Σ′|. The natural variations here are: X = 0 on

Γ. Then Σ has zero mean curvature,
−→
H = 0, and ∂Σ = Γ.

Homology: Given α ∈ Hk(M,Z) an homology class. Find Σk with [Σ] = α

and |Σ| = inf [Σ′]=α |Σ′|. In this case,
−→
H = 0 and Σ is closed.
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Free Boundary Problem: Given Np ⊂ Mn. Find Σk with ∂Σ ⊂ N and
|Σ| = inf∂Σ′⊂N |Σ′|. The first variation formula gives

d

dt

∣∣∣∣
t=0

|Σt| = −
∫

Σ
〈
−→
H,X〉dΣ +

∫
∂Σ
〈X, ν〉dσ,

for any variation X such that X|∂Σ ∈ TN . Then
−→
H = 0 and ν ⊥ TN .

Jacobi Operator. Assume now Σ smooth, compact and
−→
H = 0. For a

given variation X = ∂F/∂t, use the following notation for the first and
second variations

δΣ(X) =
d

dt

∣∣∣∣
t=0

|Σt| and δ2Σ(X,X) =
d2

dt2

∣∣∣∣
t=0

|Σt|.

If X is normal to Σ and X = 0 on ∂Σ, then

δ2Σ(X,X) = −
∫

Σ
〈LΣX,X〉dΣ,

where LΣ is the Jacobi Operator

LΣX = ∆⊥X +
( k∑
i=1

RM (X, ei)ei
)⊥

+
k∑

i,j=1

〈B(ei, ej), X〉B(ei, ej).

Remaks:

(1) The last term on Jacobi Operator is known as Simons’ Operator

A(X) =
k∑

i,j=1

〈B(ei, ej), X〉B(ei, ej).

(2) If X is normal and U is tangential, the normal connection ∇⊥ means

∇⊥UX = (∇UX)⊥.

(3) The normal Laplacian is defined as

∆⊥X =
k∑
i=1

(
∇⊥ei∇

⊥
eiX −∇

⊥
(∇eiei)T

X

)
,

and satisfies the integration by parts formula∫
Σ
|∇⊥X|2dΣ = −

∫
Σ
〈X,∆⊥X〉dΣ.

(4) LΣ is an elliptic operator. Its spectrum is given by

λ1 ≤ λ2 ≤ . . .→ +∞.
There is a L2-basis of eigenfunctions {Xi}i, i.e., LΣXi + λiXi = 0.
Moreover, for each i,

δ2Σ(Xi, Xi) = −
∫

Σ
〈LΣXi, Xi〉dΣ = λi

∫
Σ
|Xi|2dΣ.
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Definition 6.3. The Morse index of Σ is the number of negative eigenvalues
of LΣ counted with multiplicities.

Definition 6.4. Σk ⊂ M is stable if index of Σ is zero. In this case
δ2Σ(X,X) ≥ 0, for every admissible X.

Hypersurface Case: Suppose Σn−1 ⊂ Mn is two-sided (trivial normal
bundle). In this case the admissible vector fields can be written as X = fN ,
for some f ∈ C∞(Σ), where N is a globally defined unit normal to Σ. Then,
the first variation formula simplify to

(9) δΣ(X) = −
∫

Σ
f〈
−→
H,N〉dΣ = −

∫
Σ
fHdΣ,

where H = 〈
−→
H,N〉 is the mean curvature function of Σ. About the second

variation formula, we have

δ2Σ(X,X) =

∫
Σ

(
|∇Σf |2 − (Ric(N,N) + |B|2)f2

)
dΣ(10)

= −
∫

Σ
fLΣfdΣ,

where LΣf = ∆Σf + (Ric(N,N) + |B|2)f and B is the second fundamental
form. In this case, if Σ is stable, then

(11)

∫
Σ

(Ric(N,N) + |B|2)f2dΣ ≤
∫

Σ
|∇Σf |2dΣ, for every f ∈ C∞c (Σ).

This is known as the stability inequality.

Corollary 6.5. No two-sided closed minimal hypersurface Σn−1 ⊂ M can
be stable if RicM > 0.

Proof. Otherwise, plug f ≡ 1 in the stability inequality to obtain

0 <

∫
Σ

(Ric(N,N) + |B|2)dΣ ≤
∫

Σ
|∇Σf |2dΣ = 0.

This is a contradiction. �

7. Monotonicity Formula

Theorem 7.1 (Monotonicity formula for minimal submanifolds in Rn). Let
Σk ⊂ Rn be a minimal surface (compact and with boundary ∂Σ), so that
∂Σ ∩Bt = ∅, where p ∈ Rn, 0 < s < t and Br = BRn

r (p). Then

(12)
Vol(Σ ∩Bt)

tk
− Vol(Σ ∩Bs)

sk
=

∫
(Bt\Bs)∩Σ

|(x− p)N |2

|x− p|k+2
dΣ.
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Remark: In particular, the density function

θp(r) =
Vol(Σ ∩Br)

ωkrk
,

is non-decreasing in r, where ωk is the k-th dimensional volume of the k-th
dimensional unit disk. Note that if r 7→ θp(r) is constant, then Σ is a cone
with vertex p, because (x− p)N ≡ 0.

Definition 7.2. The density of Σ at p is defined to be θp = limr→0 θp(r).
In particular, if p ∈ Σ and Σ is smooth at p, then θp ≥ 1.

Corollary 7.3. If p ∈ Σ and Σ is smooth at p, then

Vol(Σ ∩Br)
ωkrk

≥ θp ≥ 1.

Moreover, if Vol(Σ ∩Br) = Vol(Dk
r ) = ωkr

k, for some r > 0, then Σ has to
be a cross sectional disk of radius r.

Proof. The first claim is an immediate consequence of the monotonicity for-
mula. In case of equality Vol(Σ∩Br) = Vol(Dk

r ), the monotonicity formula
also gives that Σ is a cone with vertex p. Since it is smooth at p, the Σ has
to be a cross sectional disk. �

Co-area Formula: Let Σk be a manifold, h : Σ → R be a proper Lipschitz
function and f ∈ L1

loc(R). Then

(13)

∫
{s≤h≤t}

f |∇h|dΣ =

∫ t

s

(∫
{h=r}

fdσr

)
dr.

Remark: A good reference for the co-area formula is the book ”Lecture on
Geometric Measure Theory”, by Leon Simon.

Natural ambient vector fields. As usual, let e1, . . . , en be the constant
vector fields given by the canonical direction on Rn and consider also the
vector field x 7→ (x− p) =

∑n
i=1(xi − pi)ei.

Proposition 7.4. If Σk ⊂ Rn, then

(1) divΣei = 0
(2) divΣ(x− p) = k.

This follows immediately from ∇vei = 0 and ∇vx = v, for every v ∈ Rn.

Proposition 7.5. If Σk ⊂ Rn is minimal (
−→
H = 0), then

(1) divΣ(ei)
T = 0

(2) divΣ(x− p)T = k.
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Remarks:

• ∆Σf = div(∇Σf)
• ei = ∇xi, then (ei)

T = ∇Σxi
• (x− p) = 1

2∇|x− p|
2, then (x− p)T = 1

2∇Σ|x− p|2.

Corollary 7.6. If Σk ⊂ Rn is minimal (
−→
H = 0), then

(1) ∆Σxi = 0
(2) ∆Σ|x− p|2 = 2k.

Proposition 7.7 (Convex hull property). Let Σk ⊂ Rn be a compact min-
imal surface with boundary ∂Σ. Then Σ is contained in the convex hull
Conv(∂Σ) of the boundary.

Definition 7.8. Let S be a subset of Rn. Its convex hull is defined as being
the intersection of all half-spaces containing S.

Proof. A half-space H of Rn can be written as H = {h ≤ 0}, for some
function h(x) =

∑n
i=1 aixi + b. Suppose ∂Σ ⊂ H. Since h|∂Σ ≤ 0 and

∆Σh = 0, then, by maximum principle, h ≤ 0 in Σ. This is true for each
half-space containing ∂Σ, so Σ ⊂ Conv(∂Σ). �

Corollary 7.9. Let Σ2 ⊂ Rn be a minimal disk and B be a ball so that
∂Σ ∩B = ∅. Then, each component of Σ ∩B is simply connected.

Proof. Suppose, by contradiction, there is a connect component of Σ∩B that
is not simply connected. Take a closed curve γ ⊂ Σ∩B that does not bound
a disk in Σ ∩ B. Because Σ is a disk, can find ΩΣ so that ∂Ω = γ. Since
Ω is minimal, the convex hull property property gives Ω ⊂ Conv(γ) ⊂ B.
This is a contradiction. �

In general, the same proof gives

Corollary 7.10. Let Σk ⊂ Rn be a minimal submanifold and B be a ball so
that ∂Σ∩B = ∅. Then, the induced homomorphism Hk−1(Σ∩B)→ Hk−1(Σ)
is injective.

Proof of monotonicity formula: Let d : Σ→ R be the distance function
to p, d(x) = |x− p| and vk(r) = Vol(Σ∩Br). By co-area formula, can write

vk(r) =

∫
Σ∩Br

1dΣ

=

∫
d≤r

1

|∇Σd|
|∇Σd|dΣ

=

∫ r

0

(∫
Σ∩∂Bτ

1

|∇Σd|
dστ

)
dτ

and, then

v′k(r) =

∫
Σ∩∂Br

1

|∇Σd|
dσr.
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Since Σ is minimal we have divΣ(x− p)T = k, so∫
Σ∩∂Br

〈(x− p)T , ν〉dσr =

∫
Σ∩Br

divΣ(x− p)TdΣ = kvk(r).

Now we can use the above expressions to calculate

d

dr

(
vk(r)

rk

)
=

v′k(r)

rk
− kvk(r)

rk+1

=
1

rk

∫
Σ∩∂Br

1

|∇Σd|
dσr −

1

rk+1

∫
Σ∩∂Br

〈(x− p)T , ν〉dσr.

But 〈(x− p)T , ν〉 = |(x− p)T | and

1− |∇Σd|2 = |(∇d)N |2 =
|(x− p)N |2

|x− p|2
.

Then

d

dr

(
vk(r)

rk

)
=

1

rk

∫
Σ∩∂Br

(
1

|∇Σd|
− |∇Σd|

)
dσr

=

∫
Σ∩∂Br

1

rk
· 1

|∇Σd|
· |(x− p)

N |2

|x− p|2
dσr

=

∫
Σ∩∂Br

1

|∇Σd|
· |(x− p)

N |2

|x− p|k+2
dσr.

Integrating from s to t and applying the co-area formula again, we obtain

vk(t)

tk
− vk(s)

sk
=

∫ t

s

(∫
Σ∩∂Br

1

|∇Σd|
· |(x− p)

N |2

|x− p|k+2
dσr

)
dr

=

∫
(Bt\Bs)∩Σ

|(x− p)N |2

|x− p|k+2
dΣ.

Monotonicity formula on Riemannian manifolds: Let (Mn, g) be a

Riemannian manifold and Σk ⊂ M be a minimal submanifold (
−→
H = 0).

Take p ∈ M , r0 < injectivity radius of M at p, 0 < s < t < r0. Let
d : Σ → R be the distance function to p, d(x) = dg(x, p). Consider the
vector field X = d∇d.

In exponential coordinates around p, the Riemannian metric is given by

gij(x) = δij +O(|x|2).

Divergence in coordinates: If a vector field X is given in local coordinates
as X =

∑
iX

i ∂
∂xi

, then its divergence has the following expression

divgX =
1√

detg

n∑
i=1

∂

∂xi

(√
detgXi

)
.

Exercise: If X = d∇d, then divΣX = k +O(|x|2).
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Adapting the euclidean proof: Let l(r) =
∫

Σ∩∂Br dσr and v(r) =
∫

Σ∩Br dΣ.

Take C = C(p) > 0 so that divΣX
T ≥ k − Cr2, for sufficiently small r, this

constant is given by previous exercise. Then

rl(r) ≥
∫

Σ∩∂Br
〈XT , ν〉dσr =

∫
Σ∩Br

divΣX
TdΣ ≥

∫
Σ∩Br

(k − Cr2)dΣ.

In conclusion, rl(r) ≥ (k − Cr2)v(r). It is important that Σ is minimal to
obtain that. Now, as in euclidean case, we use co-area formula to obtain

v′(r) =

∫
Σ∩∂Br

1

|∇Σd|
dσr ≥ l(r).

Putting everything together, v′(r) ≥ k
r (1−Cr2)v(r). This can be rewritten

d

dr
log

(
eAr

2
v(r)

rk

)
≥ 0,

where A = C/2, depends on p. From this we have

Theorem 7.11 (Monotonicity in Riemannian manifolds). Let (Mn, g) be
a Riemannian manifold, Σk ⊂ M be a minimal submanifold and p ∈ M .
Then there exists r0 and A > 0, depending on p, such that

r 7→ eAr
2 v(r)

rk
is non-decreasing in r, for r < r0.

Remark: If M is compact, we can choose r0 and A uniform.

Corollary 7.12. Let Mn be a closed Riemannian manifold. Then there
exists δ > 0 such that, for any closed minimal submanifold Σk ⊂M we have
Vol(Σ) ≥ δ.

Proof. Take r0 and A as in the monotonicity formula. Suppose they are
uniform, as in the remark. If Σk ⊂M is a closed minimal submanifold, then
for each p ∈ Σ, we have

eA(r0/2)2 Vol(Σ ∩Br0/2)

(r0/2)k
≥ lim

r→0+
eAr

2 Vol(Σ ∩Br)
rk

≥ ωk.

Therefore,

Vol(Σ) ≥ ωk(r0/2)k

eA(r0/2)2 =: δ > 0.

�

8. Bernstein Theorem

Theorem 8.1 (Bernstein Theorem, 1916). Every entire minimal graph in
R3 is a plane.

This means if u : R2 → R is a solution to the minimal surface equation,
then u is a affine map: u(x, y) = ax+ by + c.

The first remark is that minimal graphs are area-minimizing, we proved
this using calibration. This implies they have polynomial volume growth.
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Indeed, if Σn−1 ⊂ Rn is area-minimizing and Br(p) is a euclidean ball inter-
secting Σ, such that Σ splits Br(p) in two components, then Vol(Σ∩Br(p))
is at most the volume of the least component of ∂Br(p) \ Σ:

Vol(Σ ∩Br(p)) ≤
1

2
σn−1r

n−1,

where σn−1 is the volume of the unit (n− 1)-dimensional sphere. In partic-
ular, if Σ2 ⊂ R3 is a minimal graph, we have

(14) area(Σ ∩Br) ≤ Cr2.

Logarithmic cut-off trick. Recall the stability inequality, equation (11).
We can also choose the test functions on the stability inequality to be only
Lipschitz with compact support. For each R > 0, consider

ηR(r) =


1 if r ≤ R
2− log r

logR if R ≤ r ≤ R2

0 if R2 ≤ r.

Let p ∈ Σ and r(x) = dΣ(p, x) be the intrinsic distance to p is Σ. We have
|∇Σr| = 1. Note that r(x) ≤ |x− p| implies BΣ

r (p) ⊂ Σ ∩Br(p), and we see
that Σ has quadratic area growth also with respect to the intrinsic balls:

(15) area(BΣ
r (p)) ≤ Cr2.

Plugging ηR ◦ r = ηR(r) in the stability inequality,∫
Σ
|A|2η2

R(r)dΣ ≤
∫

Σ
|∇ΣηR(r)|2dΣ(16)

=

∫
Σ

[η′R(r)]2|∇Σr|dΣ

=
1

(logR)2

∫
BΣ
R2\BΣ

R

1

r2
dΣ.

Assume logR ∈ N, then

2 logR∑
k=logR+1

∫
BΣ
ek
\BΣ

ek−1

1

r2
dΣ ≤

2 logR∑
k=logR+1

∫
BΣ
ek
\BΣ

ek−1

1

e2k−2
dΣ(17)

≤
2 logR∑

k=logR+1

C
1

e2k−2
(ek)2 = e2C logR,

where the last estimate is a consequence of the quadratic area growth. In
conclusion,

(18)

∫
Σ
|A|2η2

R(r)dΣ ≤ e2C

logR
.

Make R→∞ to conclude
∫

Σ |A
2|dΣ = 0. This shows Σ is totally geodesic,

then must be a plane. This proves Bernstein theorem.
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9. The Stability Condition

A two-sided minimal hypersurface Σn−1 ⊂Mn is called stable if

−
∫

Σ
φLφdΣ ≥ 0, for all φ ∈ C∞c (Σ),

where Lφ = ∇Σφ + (|A|2 + Ric(N,N))φ, is the stability operator. Let
Ω ⊂⊂ Σ. The spectrum of L with respect to Ω is given by a sequence
λ1 ≤ λ2 ≤→∞, with respective eigenfunctions ui, i.e.,

Lui + λiui = 0,

with ui = 0 on ∂Ω. The eigenspace of λ is defined as

Eλ = {φ ∈ C∞(Σ) ∩ C0
c (Σ) : Lφ+ λφ = 0 in Ω and φ = 0 on ∂Ω}.

Stability in Ω ⊂ Σ means that λ1(L,Ω) ≥ 0, where

(19) λ1(L,Ω) = inf

{
Q(φ) :=

∫
Ω φLφdΣ∫
Ω φ

2dΣ
: φ 6= 0 and φ = 0 on ∂Ω

}
.

Lemma 9.1. Suppose Ω is connected. If u : Ω → R is continuous, smooth
in Ω, u = 0 on ∂ω, u 6= 0 and Lu+ λ1u = 0, then |u| > 0 in Ω. Moreover,
dimEλ1 = 1.

Remark: This statement is actually true for any operator of type L = ∇+q,
where q is a function. This is an application of strong maximum principle:

Theorem 9.2 (Strong maximum principle). Suppose∑
i,j

aij(x)∂i∂jv +
∑
i

bi(x)∂iv + c(x)v = 0,

where (aij(x))ij is positive definite for every x ∈ Ω. If v ≤ 0 and v(p) = 0
for some p ∈ Ω, then v ≡ 0.

Proof. Observe |∇|u|| = |∇u| almost everywhere, this implies Q(|u|) =
Q(u) = λ1, and then |u| is again a first eigenfunction of L:{

∆|u|+ q|u| = 0 in Ω
|u| = 0 on ∂Ω.

By the maximum principle we conclude |u| > 0. To proof the second as-
sumption, suppose by contradiction we have two linearly independent eigen-
functions u1, u2 ∈ Eλ1 , then

∫
Ω u1u2dΣ = 0. But this is not possible because

both u1 and u2 do not change sign inside Ω. This also proves that the first
eigenfunction is the unique with the property of not changing the sign. �

Proposition 9.3. Let Σn−1 ⊂Mn be a two-sided minimal hypersurface and
Ω ⊂ Σ be a bounded domain. If there exists u > 0 in Ω such that Lu = 0,
then Ω is stable.
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Proof. The operator L here is given by L = ∆ + q, where q = |A|2 +
Ric(N,N). Consider w := log u and observe that

(20) ∆w = ∆(log u) =
n−1∑
i=1

(ui
u

)
i

=
∆u

u
− |∇u|

2

u2
= −q − |∇w|2.

For any f ∈ C∞c (Σ), we have

(21) −2

∫
Ω
f〈∇f,∇w〉dΣ =

∫
Ω
f2∆w = −

∫
Ω
qf2dΣ−

∫
Ω
|∇w|2f2dΣ.

By Young inequality, we infer∫
Ω
qf2dΣ +

∫
Ω
|∇w|2f2dΣ = 2

∫
Ω
f〈∇f,∇w〉dΣ

≤
∫

Ω
|∇f |2dΣ +

∫
Ω
f2|∇w|2dΣ,

and then, we see that stability holds,
∫
qf2 ≤

∫
|∇f |2. �

Exercise: Let Σn−1 ⊂Mn be a two-sided minimal surface, with unit normal
vector N , and X be a Killing field on M . Then L(〈N,X〉) = 0. (A vector
field X on M is called a Killing field is its flow is by ambient isometries.)

Remark 1: This exercise gives a new proof of the fact that minimal graphs
are stable. Suppose Σn−1 ⊂ Rn is a minimal graph Σ = graph(u). Observe
the function 〈∂/∂xn, N〉 is positive along Σ. Moreover, by exercise it satisfies
L(〈∂/∂xn, N〉) = 0. Use the previous proposition to conclude stability.

Remark 2: The solutions to Lu = 0 are called Jacobi fields.

Definition 9.4. A Riemannian manifold Σ is parabolic if the only positive
superharmonic, ∆u ≤ 0, functions u on Σ are the constant functions.

9.1. Proposition. If dim Σ = 2 and area(Σ ∩ Br) ≤ Cr2, then Σ is para-
bolic.

Proof. Consider w := log u, where u is a function on Σ so that u > 0 and
∆u ≤ 0. We have then

∆w =
∆w

w
− |∇u|

2

u2
≤ −|∇w|2.

If X = ∇w, then divX ≥ |X|2. For any cut-off function η ∈ C∞c (Σ), we see∫
Σ
η2|X|2dΣ ≤

∫
Σ
η2divXdΣ

= −2

∫
Σ
η〈X,∇η〉dΣ

≤ 1

2

∫
Σ
η2|X|2 +

∫
Σ
|∇η|2.
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So there exists a positive constant C > 0 such that, for every smooth com-
pactly supported test functions η, we have

(22)

∫
Σ
η2|X|2dΣ ≤ C

∫
Σ
|∇η|2.

Apply the logarithmic cut-off trick to get X ≡ 0 and conclude u is constant.
�

Corollary 9.5. Any entire minimal graph is parabolic.

In particular, if we define u = 〈∂x3 , N〉 > 0, we get ∆u = −|A|2u ≤ 0. By
parabolicity, we have u is constant and then 0 = ∆u. This implies |A|2 = 0
and Σ must be a plane.

9.2. Stability and positive curvature. We have now some application
of the stability condition in the presence of a positive curvature assumption,
in order to get topological and geometric restrictions.

9.2.1. Fundamental group and sec > 0: Let γ ⊂ M be a closed geodesic in
Mn and X be a normal variation of γ. The second variation formula is this
case is given by

(23)
d2

dt2

∣∣∣∣
t=0

|γt| =
∫
γ
[|∇⊥X|2 −RM (X, γ′, X, γ′)]ds.

Remark: If there exists a parallel variation X and secM > 0, then γ is
unstable.

Theorem 9.6 (Synge). Let M2n be a close orientable Riemannian manifold
with positive sectional curvature. Then π1(M) = {1}.

Proof. Suppose, by contradiction, π1(M) = {1} and find γ, a closed geo-
desic minimizing length in a nontrivial homology class. Consider the parallel
transport P : 〈γ′〉⊥p → 〈γ′〉⊥p along γ, for some fixed p ∈ γ. It is a linear
orientation-preserving isometry. By linear algebra and dimension assump-
tion, there exists v ∈ 〈γ′〉⊥p such that P (v) = v. If V is the normal variation
on γ given by parallel transport of v, the second variation formula (23) gives

d2

dt2

∣∣∣∣
t=0

|γt| = −
∫
γ
RM (X, γ′, X, γ′)ds < 0.

This contradicts the fact that γ minimizes length in its homology class. �

Corollary 9.7. There is no metric with sec > 0 is RP 2 × RP 2.

Synge gives no restriction in the case of the product of two-spheres. In
fact, this is a famous open problem:

Hopf Conjecture: Does S2 × S2 has a metric with sec > 0?
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9.2.2. First Betti number and Ric > 0: There is an analogous result to
Synge theorem for the first Betti number, b1(M), of Riemannian manifolds
with positive Ricci curvature.

Theorem 9.8. Let Mn be an orientable closed Riemannian manifold with
RicM > 0. Then, b1(M) = 0.

Proof. By Poincaré duality, we know that H1(Mn,Z) ≈ Hn−1(Mn,Z). Sup-
pose that Hn−1(Mn,Z) 6= 0 and choose a nontrivial a ∈ Hn−1(Mn,Z). Min-
imize the volume in the class a to find a closed smooth minimal hypersurface
Σn−1 ⊂Mn such that

• [Σ] = a;
• Vol(Σ) = minΣ′∈a Vol(Σ′).

In particular, Σ is stable. Choose f = 1 in the stability inequality to obtain

0 =

∫
Σ
|∇f |2dΣ ≥

∫
Σ

(Ric(N,N) + |A|2)f2dΣ > 0,

and this is a contradiction. Then b1(M) = 0. �

Remark: Although the result is true for any dimension, this particular proof
applies only in case n ≤ 7, to be sure the volume minimizer is smooth.
One can use Bochner Technique give a proof that work without dimension
assumption.

Theorem 9.9 (Bonnet-Myers). Let Mn be a complete Riemannian manifold

with RicM ≥ (n − 1)k > 0. Then diam(M) ≤ π/
√
k. In particular, M is

compact and π1(M) is finite.

The proof of this result is a contradiction argument. If diam(M) > π/
√
k,

then there exists a minimizing geodesic of length l > π/
√
k. Then we

produce a variation of this geodesic with L′′(0) < 0 and get a contradiction.

9.2.3. Positive Scalar Curvature: We describe now the Schoen-Yau ideas to
deal with the case where the positive curvature assumption is on the scalar
curvature instead of sectional or Ricci curvatures.

Let Σn−1 ⊂Mn be a hypersurface and p ∈ Σ. Consider {e1, . . . , en−1} ⊂
TpΣ orthonormal basis and let en = N be the unit vector normal to Σ.
The second fundamental form is written as hij = 〈B(ei, ej), N〉. Recall the
Gauss equation:

RΣ
ijkl = RMijkl + hikhjl − hilhjk.

Sum in i and k to obtain

RicΣ
jl = RicMjl −RMnjnl +Hhjl −

∑
i

hilhij .

Now, sum in j and l to get

RΣ = RM − RicMnn − RicMnn +H2 −
∑
i,j

h2
ij .
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This can be rewritten as

(24) RΣ = RM − 2Ric(N,N) +H2 − |A|2,
where RΣ and RM are the scalar curvatures of Σ and M , respectively. From
this, in case H = 0, we can write the integrand of the stability inequality in
terms of scalar curvature and the norm of second fundamental form:

(25) Ric(N,N) + |A|2 =
RM

2
− RΣ

2
+
|A|2

2
.

If Σ2 ⊂M3 is a closed two-sided stable minimal surface, then RΣ = 2KΣ

and the above expression together with stability equation gives

(26)

∫
Σ
|∇Σf |2dΣ ≥

∫
Σ

(
RM

2
−KΣ +

|A|2

2

)
f2dΣ,

for every f ∈ C∞c (Σ). Take f ≡ 1 and apply Gauss-Bonnet to obtain:

0 ≥
∫

Σ

(
RM

2
−KΣ +

|A|2

2

)
dΣ(27)

= −2πχ(Σ) +
1

2

∫
Σ

(
RM + |A|2

)
dΣ.

Theorem 9.10 (Schoen-Yau). Let (M3, g) be a compact orientable Rie-
mannian manifold and Σ2 ⊂M be a stable closed oriented minimal surface,
then

(a) If RM > 0, then Σ is diffeomorphic to S2;
(b) If RM ≥ 0, then either

(1) Σ is diffeomorphic to S2

(2) Σ is a flat, totally geodesic torus.

Proof. By stability condition and Gauss-Bonnet, we have (27). So, in case
of RM ≥ 0, we conclude

2πχ(Σ) ≥ 1

2

∫
Σ

(
RM + |A|2

)
dΣ ≥ 0,

then Σ is diffeomorphic either to S2 or to a torus T 2. If Σ ≈ T 2, then
χ(Σ) = 0 and we conclude RM = 0 along Σ and |A|2 = 0. Since∫

Σ
φLφdΣ ≥ 0, for all φ ∈ C∞(Σ),

and
∫

1L(1)dΣ = 0, we see the constant function 1 is the first eigenfunction
of the stability operator L. Finally, L(1) = 0 and we have Ric(N,N) = 0
on Σ and also Σ is flat, RΣ = 0. �

An important consequence of this theorem is:

Theorem 9.11 (Schoen-Yau and Gromov-Lawson). T 3 has no metric of
positive scalar curvature.

Indeed, any (T 3, g) contains a stable minimal torus if R > 0.
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Remark: The previous result is also valid for any dimensions. If n ≤ 7, there
is also a proof with minimal hypersurfaces. In general, the argument is due
to Gromov and Lawson.

Theorem 9.12 (Fischer-Colbrie and Schoen). Let (M3, g) be a oriented
Riemannian manifold with RM ≥ 0 and Σ2 ⊂ M be a complete oriented
noncompact stable minimal surface. Then the universal cover Σ̃ of Σ is
conformally equivalent to C.

9.3. Corollary. If Σ2 ⊂ R3 is complete oriented stable minimal surface,
then it is a totally geodesic plane.

9.4. Theorem. [Fischer-Colbrie and Schoen] Let Mn be a complete non-
compact manifold. The following statements are equivalent:

(1) λ1(L,Ω) ≥ 0, for every Ω ⊂⊂M ;
(2) λ1(L,Ω) > 0, for every Ω ⊂⊂M ;
(3) there exists u > 0 on M that solves Lu = 0.

Proof: (3)⇒ (1): this is lemma 9.3.

(1) ⇒ (2): Suppose Ω ⊂⊂ Ω′ and λ1(L,Ω) ≥ 0. Choose a function u such
that

(28) Q(u) =

∫
Ω uLu∫
Ω u

2
= λ1(L,Ω).

Suppose λ1(L,Ω′) = λ1(L,Ω) and define ũ on Ω′ by

ũ(x) =

{
u(x) if x ∈ Ω
0 otherwise .

Observe that Q(ũ) = Q(u) = λ1(L,Ω), then ũ is a first eigenfunction to L
in Ω′. This is a contradiction, because ũ vanishes in some open set. Since
we always have λ1(L,Ω′) ≤ λ1(L,Ω), in this case we conclude

0 ≤ λ1(L,Ω′) < λ1(L,Ω).

(2)⇒ (3): The goal is to construct solutions uR to LuR = 0 in BR(p)
uR > 0 in BR(p)
uR = 1 on ∂BR(p),

where p ∈ M and R > 0 are fixed. Suppose we have achieved our goal.
Consider ũR(x) = uR(x)/uR(p) and observe LũR = 0 and ũR(p) = 1.
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9.5. Harnack Inequality. Consider a second order elliptic operator

Lu =
∑
i,j

aij(x)∂i∂ju+
∑
i

bi(x)∂iu+ c(x)u,

where (aij(x))ij is positive definite for every x ∈ Ω and let K ⊂ Ω be a
compact subset. There exists C > 0, depending only on aij , bi, c and K,
such that any positive solution of Lu = 0 satisfies

sup
K
u ≤ C inf

K
u.

As a consequence of this inequality, if we fix a compact subset K containing
p, there is a positive C = C(K) so that

sup
K
ũR ≤ C inf

K
ũR ≤ C,

for sufficiently large R. In particular, ||ũR||C0(K) ≤ C.

9.6. Schoulder Estimates. Consider a second order elliptic operator

Lu =
∑
i,j

aij(x)∂i∂ju+
∑
i

bi(x)∂iu+ c(x)u,

where (aij(x))ij is positive definite for every x ∈ Ω and K ⊂ Ω′ ⊂⊂ Ω.
There exists C > 0, depending only on aij , bi, c and K,Ω′, such that any
solution of Lu = f satisfies

||u||C2,α(K) ≤ C
(
||u||C0(Ω′) + ||f ||Cα(Ω′)

)
.

Use Shoulder estimates, to obtain

|ũR|||C2,α(K) ≤ C, for every R.

Apply Arzela-Ascoli to extract a subsequence ũRj so that ũRj → u in C2
loc.

Follow form the construction of maps ũR that Lu = 0 in M
u ≥ 0 in M
u = 1 at p.

By Maximum principle, we conclude u > 0 in M . The existence of such
a function imply stability, condition (1), by lemma 9.3. Need to prove the
starting goal.

Write uR = vR + 1 and try to solve{
LvR = −L(1) in BR(p)
vR = 0 on ∂BR(p).
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9.7. Fredholm Alternative. Either the problem{
Lv = 0 in Ω
v = 0 on ∂Ω

has a nontrivial solution, or the problem{
Lv = f in Ω
v = 0 on ∂Ω

can always be solved.
In our case, λ1(L,Ω) > 0 implies the homogeneous system in the Fredholm

alternative has v = 0 as the only solution with Ω = BR(p). Then it is
possible to find vR as we want. Define uR = vR + 1 and observe LuR = 0
and uR = 1 on ∂BR(p). Suppose we have uR < 0 somewhere. Take a
connected component Ω of {uR < 0}, we have{

LuR = 0 in Ω
uR = 0 on ∂Ω.

This contradicts λ1(L,Ω) > 0. Therefore uR ≥ 0. Moreover, by maximum
principle, uR > 0 in BR(p), as we need. This finishes the proof of Fischer-
Colbrie and Schoen theorem about the stability condition.

An application of this result is:

Corollary 9.13. Let M3 be an oriented Riemannian manifold and Σ2 ⊂M
be a stable oriented minimal surface, then any covering f : Σ̃ → M of Σ is
again stable.

Remark: In this statement, we have a minimal immersion f : Σ → M
and a isometric covering map π : Σ̃ → Σ. The claim is that the minimal
immersionf ◦ π : Σ̃→M is stable.

Proof. Since Σ is stable, there exists a u > 0 on Σ with Lu = 0. Consider
the function ũ = u◦π and observe this is also a positive solution of LΣũ = 0.
This implies Σ̃ is stable. �

Example: Consider the constant curvature metric on RP 3 and let Σ2 = RP 2

be the canonical projective plane inside RP 3. Although Σ is area-minimizing
surface inside RP 3, and in particular stable, its double cover f : S2 → RP 3

is not stable.

9.8. Theorem. Let (M3, g) be a complete, oriented 3-manifold with positive
scalar curvature and Σ2 ⊂ M3 be a non-compact, oriented, stable minimal
surface. Then the universal cover Σ̃ of Σ is conformally equivalent to C.

This result has the following important consequence
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9.9. Corollary. [Do Carmo and Peng, Fischer-Colbrie and Schoen] Let
Σ2 ⊂ R3 be a complete oriented stable minimal surface, then Σ is a flat
plane.

Proof of 9.9. Let f̃ : Σ̃→ R3 be the immersion of the universal cover in R3.
Since Σ is stable, Theorem 9.8 implies Σ̃ is conformally equivalent to C. We
have also f̃ is stable and the stability condition gives

(29)

∫
Σ̃
|∇f |2 − |A|2f2 ≥ 0, for all f ∈ C∞c (Σ̃).

By item (3) in Theorem 9.4, there exists a function u > 0 such that ∆u +
|A|2u = 0. In particular, ∆u = −|A|2u ≤ 0, i.e., u is superharmonic. Recall
conformal changes of metric formula for the Laplace operator in this case is:

(30) if g̃ = e2vg, then ∆g̃(f) = e−2v∆g(f).

Then ∆Cu ≤ 0, and we conclude u is constant. This implies ∆gu = 0 and,
finally, |A|2 = 0. Being totally geodesic and complete, Σ is a flat plane. �

In these notes we give two proofs for Theorem 9.8, the first following the
ideas in the original arguments and later we give a proof using Colding and
Minicozzi curvature estimates.

In the first proof we use the following property of dimension n = 2:

(31)

∫
|∇gf |2dvg is conformally invariant.

Proof 1 of 9.8. In this case stability condition means

(32)

∫
Σ̃
|∇f |2 −

(
RM

2
−KΣ̃ +

|A|2

2

)
· f2 ≥ 0,

for every f ∈ C∞c (Σ̃). Because RM ≥ 0, we conclude

(33)

∫
Σ̃
|∇f |2 +KΣ̃f

2 ≥ 0, for all f ∈ C∞c (Σ̃).

Suppose, Σ̃ with the induced metric g is conformally equivalent to the unit
disk D2 and let g = e2uds2, where ds2 = dxdy is the standard metric on D2.
In this case, we have

(34) dvg = e2udxdy and KΣ̃ = e−2u∆0u.

Then, stability condition gives

(35)

∫
Σ̃

(
|∇gf |2 + e−2u(∆0u)f2

)
dvg ≥ 0, for all f ∈ C∞c (Σ̃).

Apply expression (31) to conclude

(36)

∫
D2

(
|∇0f |2 + (∆0u)f2

)
dxdy ≥ 0, for all f ∈ C∞c (D2).
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Choose ζ ∈ C∞c (D2) and f = ζ · e−u to apply the stability inequality and
obtain, via integration by parts,

(37)

∫
D2

ζ2e−2u|∇0u|2dxdy −
∫
D2

e−2u|∇0ζ|2dxdy ≤ 0,

and then

(38)

∫
D2

ζ2|∇ge−u|2dvg −
∫
D2

|∇gζ|2dxdy ≤ 0.

Use r to denote the intrinsic distance in Σ̃ with respect to g. Let ζ = ζ(r)
be a radial function such that

• ζ(r) = 1, if 0 ≤ r ≤ R;
• 0 ≤ ζ(r) ≤ 1 and |ζ ′| ≤ c ·R−1, everywhere;
• ζ(r) = 0, if 2R ≤ r.

Plugging this function in the expression above allows us to conclude

(39)

∫
BR

|∇ge−u|2dvg ≤
c

R2

∫
D2

dxdy ≤ c

R2
.

Letting R → ∞, we see
∫
|∇0e

−u| = 0, then u is constant. This is a

contradiction, because ds2 is not complete. By Uniformization Theorem, Σ̃
is conformally equivalent to C. �

Colding and Minicozzi estimates. Let Σ2 ⊂ R3. We use BΣ
r0(x0) to

denote the intrinsic ball in Σ of radius r0 and centered at x0, not intersecting
the cut locus of x0. Apply Gauss-Bonnet Theorem to ∂Br(x0), with 0 <
r < r0, to obtain

(40)

∫
Br

KdΣ +

∫
∂Br

Kg(s)ds = 2π.

Use L(r) =
∫
∂Br

ds to denote the length of geodesic circle of radius r. The
first variation formula gives

(41) L′(r) =

∫
∂Br

Kg(s)ds = 2π −
∫
Br

KdΣ.

Let A(r) =
∫
Br
dvg be the area of the geodesic disk of radius r. By co-area

formula, A(r) can be rewritten as

(42) A(r) =

∫ r

0

(∫
∂Bt

ds

)
dt =

∫ r

0
L(t)dt.

Integrating, we obtain

(a)

L(r0) = 2πr0 −
∫ r0

0

(∫
Br

KdΣ

)
dr;

(1)

A(r0) = πr2
0 −

∫ r0

0

∫ t

0

(∫
Br

KdΣ

)
drdt;
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(c)

A(r0) = πr2
0 −

∫
Br0

(r0 − r)2

2
KdΣ;

Proof of (c). Consider f(t) =
∫ t

0

(∫
Br
KdΣ

)
dr and observe f(0) = 0. Take

g(t) = 2−1 · (r0 − t)2 and rewrite the integral of f , using integral by parts:∫ r0

0
f(t)dt =

∫ r0

0
g(t)f ′′(t)dt

=

∫ r0

0

(r0 − t)2

2

(∫
∂Bt

Kdσt

)
dt

=

∫ r0

0

(∫
∂Bt

(r0 − t)2

2

∫
∂Bt

Kdσt

)
dt

=

∫
Br0

(r0 − r)2

2
KdΣ.

�

Suppose Σ2 ⊂ R3 is a stable minimal surface. Gauss equation gives
2K = −|A|2. Plugging f = r0−r

2 in the stability inequality to obtain

(43)

∫
Br0

|A|2 (r0 − r)2

4
≤
∫
Br0

∣∣∣∣∇(r0 − r
2

)∣∣∣∣2 .
Hence, we can conclude

A(r0)− πr2
0 = −

∫
Br0

(r0 − r)2

2
KdΣ ≤

∫
Br0

∣∣∣∣∇(r0 − r
2

)∣∣∣∣2 ≤ A(r0)

4
.

As a corollary of last expression we have the following result:

9.10. Theorem. If Σ2 ⊂ R3 is a stable minimal surface and BΣ
r0(x0) ⊂ Σ

does not intersect the cut locus of x0, then area(BΣ
r0(x0)) ≤ 4π

3 r
2
0.

Back to the formula

A(r0) = πr2
0 +

∫
BΣ
r0

|A|2

4
(r0 − r)2,

observe, for each 0 < t < r0, we have

4π

3
r2

0 ≥ A(r0) ≥ πr2
0 +

∫
BΣ
r0−t

|A|2

4
(r0 − r)2 ≥ πr2

0 +
t2

4

∫
BΣ
r0−t

|A|2.

Then we have the second consequence of this analysis: for t = r0/2 we get

(44)

∫
BΣ
r0
2

|A|2 ≤ 16π

3
.

At this point we are able to present the second proof of Theorem 9.8.
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Proof 2 of 9.8. Let Σ2 ⊂ R3 be an oriented stable complete minimal sur-
face and Σ̃ be the universal cover of Σ with the covering metric. The
stability condition passes to Σ̃ and then, Colding-Minicozzi estimates give

area(BΣ̃
r0(x0)) ≤ 4π

3 r
2
0. Use Proposition 9.1 to conclude Σ̃ is parabolic. Be-

cause of that Σ̃ is conformally equivalent to C. �

About higher dimension, this is still an open problem. Actually, there is
a conjecture by Richard Schoen that says the result must be the same in
euclidean 4-dimensional space:

Conjecture. Let Σ3 ⊂ R4 be an oriented stable complete minimal surface.
Then Σ is a hyperplane.

10. Simons’ Equation

Let Mn be a Riemannian manifold and Σn−1 ⊂ Mn. For a given p ∈ Σ,
consider {ei}n−1

i=1 an orthonormal basis of TpΣ and take en = N to be the
unit normal to Σ in M .

Theorem 10.1 (Simons’ Equation).

∆|A|2 = 2|∇A|2 +2
∑
i,j

hij∇i∇jH−2|A|4 +2HtrA3 +Rm∗h∗h+∇Rm∗h.

Corollary 10.2. Let Σn−1 ⊂ Rn be a minimal hypersurface. Then

∆|A|2 = 2|∇A|2 − 2|A|4.

Definitions, notations and useful formulas.

Covariant derivative. If T is a tensor T (X1, . . . , Xr) of order r, its covariant
derivative is a tensor of order r + 1, denoted by ∇T and defined as

∇T (X1, . . . , Xr+1) = Xr+1T (X1, . . . , Xr)−
r∑
i=1

T (X1, . . . ,∇Xr+1Xi, . . . , Xr).

Index notation. Let T be a tensor of order r, the index notation for T and
its derivative on the chosen orthonormal basis are

Ti1...ir = T (ei1 , . . . , eir)

and

Ti1...ir;j = ∇ejT (ei1 , . . . , eir) = ∇jT (ei1 , . . . , eir) = ∇T (ei1 , . . . , eir , ej).
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Elements of Simons’ equation. In the Simons’ equation h is the symmetric
tensor of order 2 defined by

hij = 〈B(ei, ej), N〉 = 〈A(ei), ej〉 = −〈∇eien, ej〉,

where B is the second fundamental form of Σ ⊂ M and A is the shape
operator. The Riemann curvature tensor RMijkl appears on the formula as
Rm. The last two terms with the ∗ notation must be understood as sums of
type habhcdR

M
ijkl, without derivatives, in the case of Rm ∗ h ∗ h. The norm

squared of shape operator is

|∇A|2 =

n−1∑
i,j,k=1

h2
ij;k.

Finally, the Laplace operator applied on |A|2 means

∆|A|2 = ∆Σ

(∑
i,j

h2
ij

)
=
∑
k

(∑
i,j

h2
ij

)
;kk

where the derivatives here are the intrinsic covariant derivatives in Σ.

Fundamental equations. Recall the fundamental Gauss and Codazzi equa-
tions, respectively given by:

RΣ
ijkl = RMijkl + hilhjk − hikhjl

and

RMnijk = hik;j − hij;k.

Second covariant derivative. Let T be a tensor of order r on Σn−1 and V,W
be vector fields on Σ. The following formula shows that in order to commute
covariant derivatives of T , one has to add a curvature correction term

(∇V∇WT −∇W∇V T )(X1, . . . , Xr) =
r∑
i=1

T (X1, . . . , R(W,V )Xi, . . . , Xr),

where R is the Riemann curvature tensor of Σ. Is this calculation it is not
relevant that Σ is a submanifold of M .

Proof. First, it is important to note that the second derivative of T in the
formula means

∇V∇WT (X1, . . . , Xr) = ∇V (∇T )(X1, . . . , Xr,W )

= ∇(∇T )(X1, . . . , Xr,W, V ).
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By definition of covariant derivative,

∇V∇WT (X1, . . . , Xr) = V ((∇T )(X1, . . . , Xr,W ))

−
r∑
i=1

(∇T )(X1, . . . ,∇VXi, . . . , Xr,W )

−(∇T )(X1, . . . , Xr,∇VW )

= V (W (T (X1, . . . , Xr)))

−
r∑
j=1

V (T (X1, . . . ,∇WXj , . . . , Xr))

−
r∑
i=1

W (T (X1, . . . ,∇VXi, . . . , Xr))

+
r∑
i=1

∑
k 6=i

T (. . . ,∇VXi, . . . ,∇WXk . . .)

+

r∑
i=1

T (X1, . . . ,∇W∇VXi, . . . , Xr)

−(∇VW )T (X1, . . . , Xr)

+
r∑
j=1

T (X1, . . . ,∇(∇VW )Xj , . . . , Xr).

Observe the second and third terms together form a symmetric expression
on V and W . The fourth term has also this symmetry. The first and sixth
terms do not appear on the formula because of the symmetry of Riemannian
connexion, [V,W ] = ∇VW −∇WV . �

In the index notation, we have

(45) Ti1...ir;jk = Ti1...ir;kj +

n−1∑
p=1

r∑
l=1

RpiljkTi1...p...ir ,

where the p index on T is on the l-th entry and R(ei, ej)ek =
∑n−1

p=1 Rijkpep.

Exercise: Prove that

RMnijk;k = RMnijk;k +Rm ∗ h,

where the covariant derivative on the right hand side is on M .
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Proof of Simons’ equation. Start with

∆|A|2 =
∑
k

(∑
i,j

h2
ij

)
;kk

= 2
∑
i,j,k

(hijhij;k);k

= 2
∑
i,j,k

h2
ij;k + 2

∑
i,j,k

hijhij;kk.

Keep the first term and apply Codazzi to the second,

∑
i,j,k

hijhij;kk =
∑
i,j,k

hij(hij;k);k

=
∑
i,j,k

hij(hik;j −RMnijk);k

=
∑
i,j,k

hijhik;jk −
∑
i,j,k

hijR
M
nijk;k.

All derivatives here are intrinsic of Σ, including the one on the Riemann
curvature tensor. Can think of RMnijk as a tensor of order 3 on Σ, then the

derivative RMnijk;k on the formula is also intrinsic. Use the exercise to get

∑
i,j,k

hijR
M
nijk;k = Rm ∗ h ∗ h+∇Rm ∗ h.

Use the symmetry of h, the formula to commute the second derivatives, (45),
and Gauss equation to obtain

∑
i,j,k

hijhik;jk =
∑
i,j,k

hijhki;jk

=
∑
i,j,k

hijhki;kj +
∑
i,j,k

hij

n−1∑
p=1

(RΣ
pikjhpk +RΣ

pkkjhip)

=
∑
i,j,k

hijhki;kj

−
∑
i,j,k,p

hij((hpkhij − hpjhik)hpk + (hpkhkj − hpjhkk)hip),
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up to some Rm ∗ h ∗ h term. Simplifying, using Codazzi and the exercise
again, we have∑

i,j,k

hijhik;jk =
∑
i,j,k

hij(hkk;i +RMnkki);j − |A|4 +
∑
i,j,k,p

hijhpjhkkhip

=
∑
i,j,k

hijhkk;ij − |A|4 +
∑
i,j,k,p

hijhpjhkkhip

=
∑
i,j

hij∇i∇jH − |A|4 +HtrA3

up to ∇Rm ∗ h+Rm ∗ h ∗ h terms. Put everything together to conclude

∆|A|2 = 2|∇A|2 +Rm ∗ h ∗ h+∇Rm ∗ h+ 2
∑
i,j,k

hijhik;jk

= 2|∇A|2 + 2
∑
i,j

hij∇i∇jH − 2|A|4 + 2HtrA3,

up to ∇Rm ∗ h+Rm ∗ h ∗ h terms. This concludes the proof.

11. Schoen-Simon-Yau Theorem

In this section we present the following result:

11.1. Theorem. [Schoen-Simon-Yau] Let Σn−1 ⊂ Rn be an oriented com-
plete stable minimal hypersurface such that

(46) sup
R>0

Vol(Σ ∩BR)

Rn−1
< C <∞

and n ≤ 6. Then Σ is a hyperplane.
In order to prove this we need to develop two preliminary steps, the first

is Simons’ Inequality and the second is the application of stability inequality
for |A|1+q · f , where f is any test function f ∈ C∞c (Σ).

Simons’ Inequality. Recall Simons’ equation ∆|A|2 = 2|∇A|2 − 2|A|4,
where |∇A|2 and |A|2 can be written, in an orthonormal basis {ei}n−1

i=1 ⊂ TΣ,
as

|∇A|2 =
∑
i,j,k

h2
ij;k and |A|2 =

∑
i,j

h2
i,j ,

and hij = 〈B(ei, ej), N〉.
Observe ∇

(
|A|2

)
= 2|A|∇|A|, this gives

4|A|2|∇|A||2 = |∇(|A|2)|2

=
∑
k

(∑
i,j

h2
ij

)
;k

2

= 4
∑
k

(∑
i,j

hij · hij;k
)2

.
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Choose {ei}n−1
i=1 such that at p we have hij(p) = λiδij . Then, can rewrite

the expression above as

|A|2|∇|A||2 =
∑
k

(∑
i

λi · hii;k
)2

≤
∑
k

(∑
i

λ2
i

)
·
(∑

i

h2
ii;k

)
= |A|2 ·

∑
i,k

h2
ii;k,

In particular, we have

(47) |∇|A||2 ≤
∑
i,k

h2
ii;k.

We analyze separately the right-hand side of last expression, using the sym-
metries of second fundamental form hij;k = hji;k and hij;k = hik;j , and
minimality condition

∑
j hjj = 0:∑

i,k

h2
ii;k =

∑
i 6=k

h2
ii;k +

∑
i

h2
ii;i

=
∑
i 6=k

h2
ii;k +

∑
i

(
−
∑
j 6=i

hjj;i

)2

≤
∑
i 6=k

h2
ii;k +

∑
i

(n− 2)
∑
j 6=i

h2
jj;i

≤ (n− 1)
∑
i 6=k

h2
ii;k

≤ (n− 1)

2

∑
i 6=k

h2
ik;i +

(n− 1)

2

∑
i 6=k

h2
ki;i

≤ (n− 1)

2

∑
i 6=k

h2
ik;i +

(n− 1)

2

∑
i 6=k

h2
ik;k.

Hence, we are able to conclude that(
1 +

2

n− 1

)
|∇|A||2 ≤

∑
i,k

h2
ii;k +

∑
i 6=k

h2
ik;i +

∑
i 6=k

h2
ik;k

≤
∑
i,j,k

h2
ij;k = |∇A|2.

Exercise. Prove equality holds if Σ2 ⊂ R3 is minimal.
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11.2. Proposition. [Simons’ Inequality] If Σn−1 ⊂ Rn is a minimal hyper-
surface, then

|A|∆|A| ≥ 2

n− 1
|∇|A||2 − |A|4.

Proof. By Simons’ equation and previous analysis, we have

2|A|∆|A|+ 2|∇|A||2 = 2|∇A|2 − 2|A|4

≥ 2

(
1 +

2

n− 1

)
|∇|A||2 − 2|A|4.

Simplifying we obtain the above inequality. �

11.2.1. Remark. This makes sense only in the weak sense.

Stability inequality to |A|1+qf . Apply stability inequality to |A|1+qf ,
where f ∈ C∞c (Σ):∫

Σ
|A|4+2qf2dΣ ≤

∫
Σ
|∇(|A|1+qf)|2dΣ

=

∫
Σ
|(1 + q)|A|q(∇|A|)f + |A|1+q∇f |2dΣ

= (1 + q)2

∫
Σ
|A|2qf2|∇|A||2dΣ

+2(1 + q)

∫
Σ
|A|1+2qf〈∇|A|,∇f〉dΣ

+

∫
Σ
|A|2+2q|∇f |2dΣ.

We estimate the second term in the right-hand side of last expression
using Young inequality with small δ:∫

Σ
|A|1+2qf〈∇|A|,∇f〉 =

∫
Σ
〈|A|qf∇|A|, |A|1+q∇f〉

≤ δ

∫
Σ
|A|2qf2|∇|A||2 + C(δ)

∫
Σ
|A|2+2q|∇f |2.

And the stability inequality becomes∫
Σ
|A|4+2qf2 ≤ ((1 + q)2 + δ)

∫
Σ
|A|2qf2|∇|A||2 + C(δ)

∫
Σ
|A|2+2q|∇f |2.

The first term in the right-hand side of last expression is analyzed using
Simons’ Inequality multiplied by |A|2qf2:∫

Σ
|A|1+2q(∆|A|)f2dΣ ≥ 2

n− 1

∫
Σ
|A|2qf2|∇|A||2dΣ−

∫
Σ
|A|4+2qf2dΣ.
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Integrating by parts the left-hand side, we have(
1 + 2q +

2

n− 1

)∫
Σ
|A|2q|∇|A||2f2dΣ ≤

∫
Σ
|A|4+2qf2dΣ

−
∫

Σ
|A|1+2qf〈∇|A|,∇f〉.

Use Young with δ again to conclude(
1 + 2q +

2

n− 1
− δ
)∫

Σ
|A|2q|∇|A||2f2dΣ ≤

∫
Σ
|A|4+2qf2dΣ

+C(δ)

∫
Σ
|A|2+2q|∇f |2.

Putting everything together we obtain∫
Σ
|A|4+2qf2 ≤ (1 + q)2 + δ

1 + 2q + 2
n−1 − δ

∫
Σ
|A|4+2qf2 + C̃(δ)

∫
Σ
|A|2+2q|∇f |2.

The next step is to observe the existence of small δ > 0 with the property

(1 + q)2 + δ

1 + 2q + 2
n−1 − δ

< 1

is equivalent to (1 + q)2 < 1 + 2q + 2
n−1 . In particular, this is equivalent to

q <

√
2

n− 1
.

In this case we conclude there exists C > 0 for which

(48)

∫
Σ
|A|4+2qf2dΣ ≤ C

∫
Σ
|A|2+2q|∇f |2,

for every f ∈ C∞c (Σ). Consider now, the following change of variables
f = φp. Then, ∇f = p · φp−1 · ∇φ and expression (48) gives∫

Σ
|A|4+2qφ2pdΣ ≤ C

∫
Σ
|A|2+2qp2φ2p−2|∇φ|2.

Observe 2+2q
4+2q + 1

2+2q = 1, and apply Holder inequality:∫
Σ
|A|4+2qφ2pdΣ ≤ C ′

(∫
Σ

(|A|2+2qφ2p−2)
4+2q
2+2q

) 2+2q
4+2q

(∫
Σ

(|∇φ|2)2+q

) 1
2+q

.

Finally, choose p = 2 + q and observe this gives

(49)

∫
Σ
|A|2pφ2pdΣ ≤ Cp

∫
Σ
|∇φ|2pdΣ,

for every φ ∈ C∞c (Σ) and p ∈ [2, 2 +
√

2
n−1). The constant Cp > 0 is not

the same as in equation (48), but it is also independent of test function φ.
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11.2.2. Remark. We have not use n ≤ 6 yet.

Proof of 11.1. Use r to denote the intrinsic distance function to x0 ∈ Σ. Fix
R > 0 and let φ = φ(r) be such that

(a) φ(r) = 1, if 0 ≤ r ≤ R;
(b) 0 ≤ φ(r) ≤ 1 and |φ′(r)| ≤ R−1, everywhere;
(c) φ(r) = 0, if 2R ≤ r.

Put φ on equation (49) to get∫
Σ∩BR

|A|2pdΣ ≤ Cp ·
∫

Σ∩B2R

(
1

R

)2

pdΣ

≤ C ·Vol(Σ ∩B2R) ·R−2p

≤ C ·Rn−1−2p.

To make sure we can choose p so that n− 1− 2p < 0 we need the following
dimension restriction:

2 +

√
2

n− 1
>
n− 1

2
.

One can easily check this holds if n ≤ 6. �

Open problems. The same result is still open without the density bound
(46). For dimension n = 7 it is open even with the density bound.

11.2.3. Remark. The result is known to be false for n = 8, the counterex-
ample is known as Simons’ cone.

We have seen that minimal graphs are area minimizing, in particular,
stable and have polynomial volume growth.

11.3. Bernstein Theorem. Suppose u : Rn−1 → R is a solution to the
minimal surface equation and n ≤ 8. Then u is a affine function.

11.3.1. Remark. There exists non-trivial entire minimal graph in R9. The
example is given by Bombieri, De Giorgi and Giusti.

Fleming’s approach to Bernstein Theorem. Let Σ = graph(u) be a
minimal entire graph. It is already known Σ is an area minimizing boundary
Σ = ∂U . Choose a sequence rj > 0, rj → 0. We consider then the blow-
down of Σ

(50) Σj = rjΣ and Σj = ∂Uj .

Σj is also area minimizing. Moreover, if R > 0 if fixed we have volume and
area bounds

(51) Vol(Uj ∩BR) ≤ ωnRn and area(Σj ∩BR) ≤ σn−1R
n−1.

Apply Compactness Theorem for integral currents, to obtain a subsequence
Uj converging to U∞ in the sense of volumes. Furthermore, there exists
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Σ∞ = ∂U∞ = limj Σj , and Σ∞ is again area minimizing. About the area of
the limit, we have

area(Σ∞ ∩BR) = lim
j→∞

area(Σj ∩BR)

= lim
j→∞

rn−1
j area

(
Σ ∩B R

rj

)
.

Hence, we obtain information about the density of area of Σ on each ball of
radius R:

Θ(Σ∞, R) =
area(Σ∞) ∩BR

Rn−1

= lim
j→∞

area

(
Σ ∩B R

rj

)
(
R
rj

)n−1

= lim
j→∞

area(Σ ∩Bs)
sn−1

,

i.e., Θ(Σ∞, R) coincide with the density of Σ at infinity for every R > 0. By
monotonicity formula we infer Σ∞ has to be a cone, and this cone is area
minimizing. Use now the following result by Simons:

Simons: There is no non-trivial stable minimal cones in Rn for n ≤ 7.

Then, our Σ∞ is a hyperplane, possibly with multiplicities. But here the
multiplicity is one because Σ∞ is an area minimizing boundary Σ∞ = ∂U∞.
So, Θ(Σ,∞) = 1. Monotonicity formula again imply Σ is a cone with vertex
p, for some p ∈ Σ. Since Σ is smooth, it must be a hyperplane.

11.3.2. Remark. The Simons’ cone is the cone over S3( 1√
2
) × S3( 1√

2
) ⊂ S7.

It is a stable minimal hypersurface that is area-minimizing. The same holds
for R2m, as long as m ≥ 4.

12. Pointwise curvature estimates

The curvature estimates for stable surfaces in 3-manifolds were devel-
oped by Heinz, Osserman and Schoen. The basic steps are the mean-value
inequality and ε-regularity. The goal of this section is to introduce those
curvature estimates. It is also possible to obtain curvature estimates for con-
stant mean-curvature surfaces, as done by Bérard and Hauswirth. Another
method to obtain curvature bounds is the blow-up technique developed by
Rosenberg, Souam and Toubiana.

The geometric significance of curvature estimates is that bounds on |A|2
imply graphical representation, as in the following result:
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12.1. Lemma. Let Σ2 ⊂ R3 be an immersed surface such that:

• supΣ |A|2 ≤ 1
16 ;

• dg(x, ∂Σ) ≥ 2.

Then,

(i) BΣ
2 (x) is a graph of some function u over TxΣ and |∇u| ≤ 1, |∇2u| ≤

1/
√

2;
(ii) the connected component of B1(x) ∩ Σ that contains x is contained

in BΣ
2 (x).

Proof of (i). Use N to denote the unit normal vector field along Σ. Observe
|DN | ≤ |A| ≤ 1/4. Suppose γ is a minimizing geodesic connecting x to y in
Σ. Integrating d/dtN(γ(t)), we obtain

|N(x)−N(y)| ≤ 1

4
· 2 =

1

2
.

In particular, dS2(N(x), N(y)) < π
4 and BΣ

2 (x) is a graph of some function
u over TxΣ. Hence, N can be written as

N =
(∇u, 1)√
1 + |∇u|2

.

This implies gradient estimates, because

1 + |∇u|2 = 〈N(x), N(y)〉−2 = (cos(dS2(N(x), N(y))))−2 ≤ 2.

Also, the control on |∇2u| comes from

|∇2u|2

(1 + |∇u|2)3
≤ |A|2.

�

12.1.1. Remark. Quasilinear elliptic PDE theory imply bounds on all deriva-
tives of u, precisely, |∇ku| ≤ Ck for every k ≥ 3.

Proof of (ii). Consider a minimizing geodesic γ : [0, 2] → Σ, γ(0) = x and
γ(2) ∈ ∂BΣ

2 (x) and parametrized by arc length. Observe B(γ′, γ′) = Dγ′γ
′−

∇Σ
γ′γ
′ = Dγ′γ

′, then∣∣∣∣ ddt〈γ′(t), γ′(0)〉
∣∣∣∣ =

∣∣〈Dγ′γ
′(t), γ′(0)〉

∣∣ ≤ |A| ≤ 1

4
.

In particular, 〈γ′(t), γ′(0)〉 ≥ 1/2 and we conclude∣∣∣∣ ddt〈γ(t)− γ(0), γ′(0)〉
∣∣∣∣ = |〈γ′(t), γ′(0)〉| ≥ 1

2
.

Finally, this gives us 〈γ(2)− γ(0), γ′(0)〉 ≥ 1 and, then, |γ(2)− x| ≥ 1. �
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Mean-value Inequality. Let Σk ⊂ Rn be a minimal submanifold and f
be a function on Σ, such that f ≥ 0 and ∆Σf + cf ≥ 0, for some constant
c > 0. Define

(52) g(t) := t−k
∫

Σ∩Bt
fdΣ.

Use d to denote the extrinsic distance. We have

(53) g′(t) = − k

tk+1

∫
Σ∩Bt

fdΣ +
1

tk

∫
Σ∩∂Bt

f

|∇Σd|
dΣ.

Recall that minimality of Σk imply ∆Σ|x− x0|2 = 2k, then

2k

∫
Σ∩Bt

f =

∫
Σ∩Bt

(∆Σ|x− x0|2) · f

=

∫
Σ∩Bt

∆Σ(|x− x0|2 − t2) · f

=

∫
Σ∩Bt

(|x− x0|2 − t2) ·∆Σf +

∫
Σ∩∂Bt

f(∂ν |x− x0|2)

−
∫

Σ∩∂Bt
(|x− x0|2 − t2)(∂νf),

where ν is the outward pointing unit normal vector to Σ ∩ Bt. The third
term in the right-hand side is clearly zero, because |x− x0| = t on Σ ∩ ∂Bt.
Since |x− x0|2− t2 ≤ 0 on Σ∩Bt, we can use the estimate ∆Σf ≥ −cf and
the fact ∇|x− x0|2 = 2|x− x0|∇|x− x0|, to obtain

(54) 2k

∫
Σ∩Bt

f ≤ −
∫

Σ∩Bt
(|x− x0|2 − t2)cf + 2t

∫
Σ∩∂Bt

f.

From expression (53), we infer

(55) g′(t) ≥ − k

tk+1

∫
Σ∩Bt

fdΣ +
1

tk

∫
Σ∩∂Bt

fdΣ.

Combine (54) and (55) to conclude

2tk+1g′(t) ≥ −2k

∫
Σ∩Bt

f +

∫
Σ∩Bt

(|x− x0|2 − t2)cf + 2k

∫
Σ∩Bt

f

≥ −ct2
∫

Σ∩Bt
f = −ctk+2g(t).

This analysis gives us the following inequality g′(t) ≥ − c
2 tg(t). Finally,

e
c
4
t2g(t) is non-decrasing,

and we have

(56) f(x0) ≤ e
c
4
s2 ·

∫
Σ∩Bs fdΣ

ωksk
.

we refer to this expression as the mean-value inequality.
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ε-regularity. The second step is developed in this section, the main result
is the following Theorem by Choi and Schoen that roughly says that small
total curvature implies curvature estimates.

12.2. Theorem. [Choi and Schoen] Let (M3, g) be a Riemannian manifold.
There exists ε, ρ > 0, depending only on the geometry of M , such that for
p ∈M , 0 < r0 < ρ and Σ2 ⊂M minimal surface with

• ∂Σ ∩Br0(p) = ∅;
•
∫

Σ∩Br0
|A|2dΣ ≤ δ · ε,

then, we have

σ2 · sup
Σ∩Br0−σ

≤ δ.

Proof. This argument uses mean-value inequality and Simons’ equation.
Here we consider Σ2 ⊂ R3 and Br0 = Br0(p) a euclidean ball of radius
r0 centered at p. Define

F (x) = (r0 − r(x))2 · |A|2(x),

where we use r(x) = |x − p| to denote the distance function to p in R3.
Observe F vanishes on Σ∩∂Br0 and choose x0 ∈ Σ, such that x0 is contained
in the interior of Σ ∩Br0 and

F (x0) = sup
Σ∩Br0

F (x).

Claim 1. F (x0) ≤ δ.

If this is true, then (r0 − r(x))2 · |A|2(x) ≤ δ, and we are done.

Proof of Claim. Suppose, by contradiction, F (x0) > δ. Choose σ so that
σ2|A|2(x0) = δ

4 . Observe σ has to be less than (r0 − r(x0))/2. About the
second fundamental form on Σ∩Bσ(x0), we have: if y ∈ Σ∩Bσ(x0), we use
F (y) ≤ F (x), to obtain

|A|2(y) ≤ (r0 − r(x0)2)

(r0 − r(y))2
· |A|2(x0) ≤ 4|A|2(x0).

Scale Σ∩Bσ(x0) to radius 1 and let Σ̃ be the scaled surface and Ã its second

fundamental form. This scale yields, for every y ∈ Σ̃,

|Ã|2(x0) =
δ

4
and |Ã|2(y) ≤ 4|Ã|2(x0) = δ.

Hence, Simons’ inequality gives

∆|Ã|2 ≥ −|Ã|4 ≥ −δ|Ã|2,

i.e., in the scaled region |Ã|2 behaves like a subharmonic function. By mean-
value inequality,

|Ã|2(x0) ≤ C ·
∫

Σ̃∩B1

|Ã|2,
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where C > 0 is an universal constant. The key point is that
∫
|A|2dΣ is

scale invariant, then∫
Σ̃∩B1

|Ã|2dΣ̃ =

∫
Σ∩Bσ(x0)

|A|2dΣ < δ · ε.

Putting everything together we obtain

δ

4
= |Ã|2(x0) ≤ Cδ · ε.

Let ε be sufficiently small such that 8Cε < 1. This yields a contradiction
and this finishes the proof of Claim. �

12.2.1. Remark. In case of a compact 3-manifold M , we obtain a similar
subharmonic behavior of |A|2. More precisely, we obtain ∆|A|2 ≥ −(η2 +
|A|2), where η comes from curvature. To deal with this difficulty, observe
that η becomes small after the scaling.

We are now ready to prove Schoen’s curvature estimates.

12.3. Theorem. Let Σ2 ⊂ R3 be an immersed oriented stable minimal sur-
face with boundary ∂Σ. Then, there exists C > 0 such that

|A|2(x) ≤ C

dΣ(x, ∂Σ)2
.

12.3.1. Remark. If we change R3 with a 3-manifold M such that |Rm| +
|∇Rm| ≤ Λ, and Σ2 ⊂ M is an immersed oriented stable minimal surface
with BΣ

r0 ⊂ Σ \ ∂Σ and r0 ≤ ρ(Λ), then

(57) sup
Σ∩Br0−σ

≤ C · σ−2.

Proof. We prove the case of a surface inside R3. If r0 = d(x, ∂Σ), we have
BΣ
r0(x) ⊂ Σ \ ∂Σ. Recall the stability condition gives∫

Σ
|A|2f2 ≤

∫
Σ
|∇f |2, for all f ∈ C∞c (Σ).

By passing to the universal cover Σ̃, that is also stable, we have BΣ̃
r0(x̃)

is a disk. Hence, we can apply Colding-Minicozzi estimates, and conclude
area(Σ∩Br) ≤ Cr2, for some universal constant C > 0. Consider a function
f = f(r) be defined by

• f(r) = 1, if r ≤ e−nr0;
• f(r) = −n−1(log r − log r0), if e−nr0 ≤ r ≤ r0;
• f(r) = 0, if r0 ≤ r,
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n to be chosen. Plugging this f in the stability inequality gives us∫
Σ∩Be−nr0

|A|2 ≤ 1

n2

∫
Br0\Be−nr0

1

r2

=
1

n2

n∑
k=1

∫
B
e−k+1r0

\B
e−kr0

1

r2

≤ 1

n2

n∑
k=1

1

e−2kr2
0

area
(
Σ ∩Be−k+1r0

)
≤ C

n2

n∑
k=1

e2 =
Ce2

n
.

If ε > 0 is given by ε-regularity Theorem 12.2, choose n so that Ce2 <
nε. Therefore, (e−nr0)2|A|2(x) ≤ 1, and we conclude the proof of Schoen’s
pointwise curvature estimates for stable minimal surfaces. �

13. Plateau problem

The Plateau problem in minimal surface theory is related to minimize the
area among all immersed disks with a given boundary. More precisely, we
consider a closed curve Γ ⊂ R3 and for each immersion Φ : D2 → R3 with
Φ(∂D2) = Γ, we take its area area(Φ(D2)). We say x : D2 → R3 is a solution
to Plateau problem if

area(x(D2)) = inf
Φ(D2)

area(Φ(D2)).

The question was first solved by Douglas and Radó in the early 1930’s.
Later, Morrey proved existence of Plateau solutions in homogeneously regu-
lar Riemannian manifolds (M, g), i.e., if there are constants C1, C2 > 0 such
that for every p ∈ M , there exists a small neighborhood of p parametrized
by the unit ball of same dimension as M , in such a way the metric g in that
coordinates satisfies

C2|ξ|2 ≤
∑
i,j

gijξiξj ≤ C1|ξ|2.

In particular, a compact Riemannian manifold is homogeneously regular.

Difficulties.

(1) The first difficulty that arises is that the area is invariant under
parametrization, i.e., given u : D2 → R3 and a diffeomorphism Φ ∈
Diff(D2), we have area(u) = area(u◦Φ). This causes a problem for
compactness.

(2) The tentacles are the second problem, those are long pieces of sur-
faces with very small area. This causes a problem of non-convergence
in the usual sense.
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We use x : Σ2 → R3 to denote an immersion of Σ inside R3, we also write
Σ2 ⊂ R3. Let g be the induced metric on Σ via x. It is already known that

(58) ∆gxi = 〈
−→
H, ei〉.

We say x : D2 → R3is a conformal immersion if g = e2φδ, where δ is
the standard metric of D2 and ψ is some function. In this case, we have
∆gφ = e−2ψ∆δφ, for every function φ on D2. In particular, if x is a conformal
minimal immersion, then ∆δxi = 0, for all i, and x is harmonic. Conversely,
if x : D2 → R3 is a conformal harmonic immersion, then x is minimal.

Weierstrass representation. Let u : D2 → R3 is a conformal harmonic
immersion. Consider the functions

fj =
∂uj
∂x
− i∂uj

∂y
∈ C, for all j = 1, 2, 3.

Since u is harmonic, the functions fj are holomorphic. Moreover, u being
conformal imply

3∑
j=1

∣∣∣∣∂uj∂x

∣∣∣∣2 =

3∑
j=1

∣∣∣∣∂uj∂y
∣∣∣∣2 and

3∑
j=1

∂uj
∂x
· ∂uj
∂y

= 0,

and this is equivalent to (f1)2 + (f2)2 + (f3)2 = 0. From f1, f2 and f3, we
can rewrite u(z) as

u(z) = u(0) +

∫ z

0
(f1, f2, f3)dw.

Can actually write

u(z) = u(0) +

∫ z

0

(
1

2

(
1

g
− g
)
,
i

2

(
1

g
+ g

)
, 1

)
fgdw,

where

13.1. Definition. [Dirichlet Integral] Let u : D2 → R3 be an immersion.
We define the Dirichlet integral of u to be

E(u) :=
1

2

∫
D2

(|ux|2 + |uy|2)dxdy.

Recall the area of a map u : D2 → R3 is given by

A(u) =

∫
D2

|ux ∧ uy|dxdy =

∫
D2

√
|ux|2 · |uy|2 − 〈ux, uy〉2dxdy.

And it is possible to relate area and Dirichlet energy in a simple inequality:
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13.2. Proposition. If u : D2 → R3, then A(u) ≤ E(u). The equality holds
if and only if the map u is almost conformal, i.e.,∣∣∣∣∂u∂x

∣∣∣∣2 =

∣∣∣∣∂u∂y
∣∣∣∣2 and 〈∂u

∂x
,
∂u

∂y
〉 = 0.

Proof.

A(u) =

∫
D2

√
|ux|2 · |uy|2 − 〈ux, uy〉2dxdy

≤
∫
D2

|ux| · |uy|dxdy

≤ 1

2

∫
D2

(|ux|2 + |uy|2)dxdy = E(u),

where the last estimate is Young’ inequality. �

13.3. Riemann Mapping Theorem. Let u : D2 → R3 be an immersion
and consider in D2 the pull-back metric u∗δ, where δ is the standard eu-
clidean metric. Any disk can be parametrized by isothermal coordinates, let
Φ : (D2, δ) → (D2, u∗δ) be such a conformal map. Consider a piecewise C1

Jordan curve Γ ⊂ R3 (simple and closed).

13.4. Theorem. There exists u : D2 → R3 such that

(1) u ∈ C0(D) ∩W 1,2(D);
(2) u|∂D : ∂D→ Γ is monotone and surjective;
(3) u ∈ C∞(D);
(4) the image of u minimizes area among all parametrized disks with

boundary Γ.

Definitions, notations and useful formulas.

Sobolev space: The space W 1,2(D) is the sobolev space of functions f on D
with f and ∇f in L2, provided with the norm

||f ||W 1,2(D) =

∫
D

(|f |2 + |∇f |2).

More precisely, W 1,2(D) is the completion of

{ψ ∈ C∞(D) :

∫
D

(|ψ|2 + |∇ψ|2) <∞}

with respect to the norm || · ||W 1,2 . Similarly, W 1,2
0 (D) is the completion of

{ψ ∈ C∞(D) ∩ C0(D) : ψ = 0 on ∂D and

∫
D

(|ψ|2 + |∇ψ|2) <∞},
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with respect to || · ||W 1,2 . An important property of these functions is they
satisfy a Poincaré inequality, i.e., there exits a universal constant C > 0
such that

(59)

∫
D2

u2dxdy ≤ C ·
∫
D2

|∇u|2, for all u ∈W 1,2
0 (D).

Monotone on Γ: u : ∂D→ Γ is said to be monotone if u−1(C) is connected
for any connected subset C ⊂ Γ.

We use the following notation:

XΓ = {u : D2 → R3 : u ∈ C0(D)∩W 1,2(D) and u|∂D is monotone and onto}.

Minimum area and energy: We use AΓ and EΓ to denote the minimum area
and energy for maps on XΓ, respectively, i.e.,

AΓ = inf
u∈XΓ

A(u) and EΓ = inf
u∈XΓ

E(u).

Morrey’s theorem: The following Theorem of Morrey plays an important
role in the argument of Riemann mapping theorem:

13.5. Theorem. Let u : ∂D → Γ be so that u ∈ C0(D) ∩W 1,2(D) and let
ε > 0 be given. There exists Φ : D2 → D2 such that

E(u ◦ Φ) ≤ (1 + ε) ·A(u).

Lets sketch the proof of Morrey’s theorem. Suppose u : ∂D → Γ is
smooth, but not necessarily immersion. Consider

us(x, y) := (u(x, y), sx, sy) ∈ R5.

Let g = u∗(δ) be given by gij = 〈Xi, Xj〉, and gs = u∗s(δ) be so that (gs)ij =
gij + s2δij > 0, which is positive definite for s > 0. Choose a conformal map
Φs : (D2, δ)→ (D2, gs), then us ◦ Φs is also conformal and we have

E(u ◦ Φs) ≤ E(us ◦ Φs) = A(us ◦ Φs) = A(us).

Moreover, the area of us can be written as

A(us) =

∫
D2

√
det(gs) =

∫
D2

(√
det(g) + s2|∇u|2 + s4

)
,

then, it converges to A(u) as s→ 0, and this concludes the argument, for s
small, we have E(u ◦ Φs) ≤ (1 + ε)A(u).

Morrey’s result imply that we can work with energy instead of area, i.e.,
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13.6. Proposition. AΓ = EΓ.

Proof. AΓ ≤ EΓ is immediate. Given ε > 0, choose u : D2 → R3 so that
A(u) ≤ AΓ +ε. Find Φ : D2 → D2 with the property E(u◦Φ) ≤ (1+ε)A(u).
Then, we conclude

(D2, δ)→ (D2, u∗δ) ≤ (1 + ε)(AΓ + ε).

Since ε > 0 is arbitrary, EΓ ≤ AΓ and this finishes the proof. �

The first step in the proof of Riemann mapping theorem is to minimize
energy among all disks that induce some fixed parametrization of Γ.

Dirichlet problem: Fix w ∈ C0(D)∩W 1,2(D). Consider the space of functions

Xw = {u ∈ C0(D) ∩W 1,2(D) : u− w ∈W 1,2
0 (D)}.

Minimize the energy in Xw.

13.7. Theorem. There exists a unique u ∈ Xw, such that∫
D2

|∇u|2 ≤ inf
v∈Xw

∫
D2

|∇v|2.

Moreover, u ∈ C∞(D) and ∆u = 0.

Proof. Choose a minimizing sequence ul ∈ Xw, so that
∫
|∇ul|2 converges

to the infimum of such integrals. In particular, ul is bounded in W 1,2
0 (D).

We invoke Poincaré’s inequality to obtain∫
D2

(ul − w)2 ≤ C ·
∫
D2

|∇(ul − w)|2 ≤ C ′,

where C ′ > 0 is a constant not depending on l. In particular, {ul}∞l=1 is a
bounded sequence in W 1,2-norm. By Rellich Compactness Theorem, up to
subsequences, we can suppose

ul
L2

−→ u and ∇ul
L2

−→ ∇u.

Moreover, the limiting function u satisfies u − w ∈ W 1,2
0 (D) and its energy

can be estimated by∫
D2

|∇u|2 ≤ lim inf
l→∞

∫
D2

|∇ul|2 = inf
v∈Xw

∫
D2

|∇v|2.

The convergence above is in the weak L2-sense, i.e.,∫
D2

〈X,∇u〉 = lim
l→∞

∫
D2

〈X,∇ul〉, for all X ∈ L2.

Then, u is a minimizer of energy. In particular, for every φ ∈ C∞c (D), we
have

d

dt

∣∣∣∣
t=0

∫
D2

|∇(u+ tφ)|2 = 0,
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and this also means∫
D2

〈∇u,∇φ〉 = 0, for all φ ∈ C∞c (D).

This condition is the same as saying ∆u = 0 in the weak sense. The regu-
larity theory for elliptic PDE imply u ∈ C∞(D).

To prove u ∈ C0(D), we use barriers. Let p = (0, 1) ∈ ∂D. Lets show that
limx→p u(x) = u(p). A function h is a barrier at p if:

• h > 0 on D2 \ {p};
• h(p) = 0;
• ∆h ≤ 0.

In this case, one can choose h(x, y) = 1 − x. Given ε > 0, consider δ > 0
so that |w(x) − w(p)| ≤ ε, for every x ∈ Bδ(p) ∩ D2. Let w+ and w− be
harmonic functions defined by

w+ = w(p) + ε+ k · h and w− = w(p)− ε− k · h.

Choose k very large in such a way that w− ≤ w ≤ w+, on the whole D2.
The maximum principle tells us w− ≤ u ≤ w+, and this implies

|u(x)− w(p)| ≤ 2ε, if x ∈ Bδ(p) ∩ D2.

�

The next thing we remark is that energy is conformally invariant.

13.8. Proposition. Let Φ : D2 → D2 be a conformal diffeomorphism. Then,
given u : D2 → R3, we have E(u ◦ Φ) = E(u).

Proof. Let z = (x, y) ∈ D2, {e1, e2} be an orthonormal basis at Φ(z) and
λ > 0 be the conformal factor of Φ at z, so that DΦ(∂x) = λe1 and DΦ(∂y) =
λe2. Observe

D(u ◦ Φ)z(∂x) = DuΦ(z)(DΦ(∂x)) = λDuΦ(z)(e1)

and, similarly,

D(u ◦ Φ)z(∂y) = λDuΦ(z)(e2).

Then, we have

|D(u ◦ Φ)z(∂x)|2 + |D(u ◦ Φ)z(∂y)|2 = λ2
(
|DuΦ(z)(e1)|2 + |DuΦ(z)(e2)|2

)
.

But Jac Φ(z) = λ2, then

E(u ◦ Φ) =
1

2

∫ (
|D(u ◦ Φ)z(∂x)|2 + |D(u ◦ Φ)z(∂y)|2

)
dz

=
1

2

∫
|DuΦ(z)|2 · Jac Φ(z)dz

=
1

2

∫
|∇u(w)|2dw = E(u).

�
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The orientation preserving maps in the conformal group of D2 are the
maps given by the following expressions:

(60) w ∈ D2 7→ eiθ · a+ w

1− ā · w
,

for fixed θ ∈ R and |a| < 1. Observe this group is not compact.
Fix p ∈ D2. Use Cρ = {q ∈ D2 : |q − p| = ρ} to denote the points of D2

with distance ρ > 0 to p.

13.9. Courant-Lebesgue’s Lemma. If u : D2 → R3, u ∈ C0(D)∩W 1,2(D)

has E(u) ≤ k, then for all δ < 1, there exists ρ ∈ [δ,
√
δ] with

d(Cρ)
2 ≤ εδ =

8πk

− log δ
.

Here d(Cρ) = diam(u(Cρ)).

Remark. Observe εδ → 0 as δ → 0.

Proof. Observe

2k ≥
∫
D
|∇u|2dxdy ≥

∫
D∩(B√δ(p)\Bδ(p))

|∇u|2dxdy =

∫ √δ
δ

∫
Cr

|∇u|2dsrdr.

Consider the function p(r) defined by

p(r) = r

∫
Cr

|∇u|2dsr,

and observe ∫ √δ
δ

p(r)d(log r) ≤ 2k.

Choose ρ ∈ [δ,
√
δ] with the property

p(ρ) =

∫ √δ
δ p(r)d(log r)∫ √δ
δ d(log r)

.

In conclusion,

(61)

∫
Cρ

|∇u|2dsρ ≤
4k

−ρ log δ
.

Let L(ρ) be the length of u(Cρ), then

L(ρ) ≤

(∫
Cρ

|∇u|2dsρ

)2

(62)

≤

(∫
Cρ

|∇u|2dsρ

)
· L(Cρ)

≤ 2πρ

∫
Cρ

|∇u|2dsρ.
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Put this and expression (61) together to obtain

L(ρ)2 ≤ 8πk

− log δ
.

To conclude, observe that the diameter of u(Cρ) is not greater than L(ρ). �

To overcome the difficulty that arises with the fact the conformal group
of D2 is not compact, we fix three points p1, p2 and p3 in ∂D2 and q1, q2 and
q3 in Γ. Given u : D2 → R3, with u|∂D monotone and onto Γ, there exists
φ : D2 → D2 conformal and such that (u ◦ φ)(pi) = qi, for i = 1, 2, 3.

Given k > 0, consider the space Fk of maps u ∈ C0(D) ∩W 1,2(D), with
the following properties:

• E(u) ≤ k;
• u|∂D is monotone and onto Γ;
• u(pi) = qi, for all i = 1, 2, 3.

Remark. To prove Fk is non-empty, consider a piecewise C1 parametrization
c(θ) of Γ, θ ∈ [0, 1]. Let η : R→ [0, 1] be a smooth map such that η(ρ) = 0,
if ρ ≤ 2−1, and η(ρ) = 1 if ρ ≥ 1. The class is non-empty because contains:

(ρ, θ) ∈ [0, 1]× [0, 1] 7→ η(ρ)c(θ).

13.10. Theorem. Fk is equicontinuous on ∂D.

Proof. Let ε > 0 be such that ε < mini 6=j |qi − qj |. Choose d > 0, so that
whenever w,w′ ∈ Γ with 0 < |w − w′| < d, the complement Γ \ {w,w′}
contains exactly one component with diameter less than ε.

Given p ∈ ∂D, choose δ > 0 very small so that

• B√δ(p) contains at most one of the pi’s;
• √εδ < ε.

By Courant-Lebesgue’s Lemma 13.9, given u ∈ Fk there exists ρ ∈ [δ,
√
δ]

such that diam(u(Cρ)) ≤
√
εδ < ε. In particular, given v, v′ = ∂D ∩ Cρ and

w = u(v), w′ = u(v′), we have |w − w′| < ε.
Let A1 and A2 be the components of Γ \ {w,w′}, being A1 the small

component. Also, v and v′ determine a small component A1 of ∂D, con-
taining p, and a big component A2, containing at least two of the pi’s. In
consequence, u(A2) contains two of the qi’s. Hence diam(u(A2)) > ε and
this forces u(A1) ⊂ A1. In other words, x ∈ ∂D with |x − p| < δ implies
|u(x)− u(p)| < ε, for all u ∈ Fk. �

Solution to Plateau’s Problem. Choose a minimizing sequence ul inside Fk.
Each ul being solution to some Dirichlet Problem, such that

E(ul) =
1

2

∫
|∇ul|2 → EΓ = AΓ.
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Up to subsequense, can suppose ul converges uniformly on ∂D to a monotone
and onto map. By maximum principle, for each i and j, we have

max
D
|ui − uj | = max

∂D
|ui − uj |.

Therefore, {ul} converges uniformly on D to some function u. By Rellich
Compactness Theorem, up to subsequences, we can suppose

ul
L2

−→ u and ∇ul
L2

−→ ∇u,
in the weak L2-sense. We have

1

2

∫
|∇u|2 ≤ lim inf

l→∞

1

2

∫
|∇ul|2 = EΓ

and
EΓ = AΓ ≤ Area(u) ≤ E(u) ≤ EΓ.

Then u minimizes both area and energy. Moreover, u is almost conformal
and harmonic. �

13.11. Definition. Let u : D2 → R3 be an almost conformal and harmonic
map. A branch point of u is a point z ∈ D2 such that du(z) fails to be
injective, i.e., du(z) = 0 since u is almost conformal.

13.12. Proposition. The set of branch points is isolated.

Proof. Branch points are the zeros of the maps

∂uj
∂x
− i∂uj

∂y
,

for all j = 1, 2, 3. But those functions are holomorphic. �

13.13. Theorem. [Osserman and Gulliver] The solution u : D2 → R3 to
Plateau’s Problem has no interior branch points. In other words, u is an
immersion.

Open Problem. Whether there exists boundary branch points?

13.14. Theorem. [Nitsche] If Γ ∈ Ck,α, k ≥ 1 and 0 < α < 1, then u ∈
Ck,α(D).

Exercise. Use complex analysis to show that Plateau’s solution is a home-
omorphism on ∂D.

14. Harmonic maps

Let Mn be a compact Riemannian manifold. Suppose Mn ⊂ RL isomet-
rically. Let Σ be a compact Riemannian surface and u : Σ → M be given
by u = (u1, . . . , uL). We define the energy of u to be

(63) E(u) =
1

2

∫
Σ
|∇u|2dΣ =

1

2

L∑
i=1

∫
Σ
|∇ui|2dΣ.
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Fact. If Φ : (Σ′, g′)→ (Σ, g) is conformal, then E(u ◦ Φ) = E(u).

14.1. Definition. A map u : (Σ, g) → (M, ḡ) is an harmonic map if u is a
critical point for the energy with respect to compactly supported variations
inside M .

If ut : Σ→M is a compactly supported variation u = u0, we have

d

dt

∣∣∣∣
t=0

E(ut) =

∫
Σ
〈∇u,∇

(
∂ut
∂t

)
〉dvg

= −
∫

Σ
∆u · ∂ut

∂t
dvg.

Then, the Euler-Lagrange equations for the energy is given by

(64) (∆u)T = 0,

where the left-hand side is the component of ∆u tangential to M .

14.2. Proposition. Let u : (R2, δ) → (M, g) be an harmonic map with
finite energy, E(u) <∞. Then u is almost conformal and minimal.

Proof of 14.2. Consider Φ : R2 → C given by

Φ = (|ux|2 − |uy|2)− 2i〈ux, uy〉.

Exercise. Prove u harmonic imply Φ holomorphic.
Since Φ is holomorphic, we have

∂Φ

∂z
= 0.

Using this, we can conclude

∆
(
ε+ |Φ|2

)1/2
=

∂

∂z
· ∂
∂z

(ε+ |Φ|2)1/2 ≥ 0.

Since the energy E(u) is finite, we have |Φ| ∈ L1(R2). Can apply the mean-
value property to conclude(

ε+ |Φ|2(p)
)1/2 ≤ ∫DR(ε+ |Φ|2)1/2

πR2
≤
∫
DR

(ε+ |Φ|)
πR2

= ε+

∫
DR
|Φ|2

πR2
.

Let R → ∞, to conclude
(
ε+ |Φ|2(p)

)1/2 ≤ ε. Later, let ε → 0 to obtain
|Φ|(p) = 0, i.e., u is almost conformal.

Exercise. Check that u is minimal, i.e.,
−→
Hu(R2)⊂M = 0. Observe that given

a map x : R2 →M ⊂ RL, we have ∆u =
−→
Hu(R2)⊂RL .

14.3. Example.

15. Positive Mass Theorem

In this section we discuss the Positive Mass Theorem in the case of an
isolated gravitational system.
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15.1. Definition. (Mn, g) is asymptotically flat if there exists a compact set
K ⊂ M , such that M \K = ∪mk=1Ek, each Ek diffeomorphic to Rn \ B1(0)
and with

gij = δij + hij ,

so that
|h| ≤ C|x|−p, |∂h| ≤ C|x|−p−1 |∂2h| ≤ C|x|−p−2,

for some p > n−2
2 , in these coordinates, and scalar curvature Rg(x) =

O(|x|−q), for some q > n. In particular, Rg ∈ L1(M).

15.2. Examples.

1. The euclidean space (Rn, δ).

2. [Schwarzschild Metric] For each m > 0, consider the Riemannian mani-
fold (Rn \ {0}, gm), whose metric is given in coordinates by

(65) (gm)ij =

(
1 +

m

2|x|n−2

) 4
n−2

δij .

To check the scalar curvature decay, use the conformal law: if g̃ = u
4

n−2 g,
with u > 0, the scalar curvature Rg̃ of the conformal metric is given by

(66) Rg̃ = −4(n− 1)

(n− 2)
u−

n+2
n−2

(
∆gu−

n− 2

4(n− 1)
Rgu

)
.

Since ∆Rn
(

1 + m
2|x|n−2

)
= 0 and Rδ = 0, we conclude gm is also scalar flat.

The term inside the parenthesis in the conformal law, expression (66) above,
is called conformal Laplacian and denoted Lgu.

15.3. Definition. The mass of the end E in (Mn, g) is the number

(67) m = lim
r→∞

a(n)

∫
Sn−1
r (0)

∑
i,j

(∂igij − ∂jgii) νjdSr,

where E ≈ Rn \ B1(0) that given local coordinates (x1, . . . , xn), Sn−1
r (0) is

the euclidean sphere, ν(x) = x
|x| and a(n) is a dimensional constant.

The mass is well-defined. In fact, the expression of scalar curvature in
local coordinates (x1, . . . , xn) is

Rg =
∑
i,j

(∂i∂jgij − ∂i∂igjj) +O(|x|−2p−2),

with −2p− 2 < −n. Integrating in Br \Br0 and using integration by parts,
we conclude∫
Br\Br0

(Rg−O(|x|−2p−2)) =

∫
Sr

∑
i,j

(∂igij − ∂jgii) νj−
∫
Sr0

∑
i,j

(∂igij − ∂jgii) νj .

Since
∫

(Rg −O(|x|−2p−2)) <∞, the limit in (67) exists.

Remark. The mass of gm is m.
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15.4. Positive Mass Conjecture. Let (Mn, g) be an asymptotically flat
manifold. If Rg ≥ 0, then the mass of each end E of M is non-negative. If
the mass of some end E is zero, then (Mn, g) is isometric to (Rn, δ).

Motivation. The motivation for the positive mass conjecture comes from
General Relativity.

Let (V 4, g), g be a Lorentzian metric, i.e., at each point p ∈ V , there
exists (e0, e1, e2, e3) basis of TpV so that g(ei, ej) = 0, if i 6= j, g(ei, ei) = 1,
if 1 ≤ i ≤ 3 and g(e0, e0) = −1. We say (M3, g) ⊂ V is spacelike if the
induced metric is Riemannian. In this case we have a normal vector field ν
along M so that g(ν, ν) = −1.

It is required in the general relativity the spacelike hypersurface (M3, g)
to satisfy the Einstein Equations:

(68) Ricg −
1

2
R · g = 8πT,

where T is the stress-energy tensor.‘It is also physically reasonable to ask
the stress-energy tensor T to have the property

(69) T (ν, ν) ≥ 0.

This implies R + (Tr A)2 − |A|2 ≥ 0. If we assume time symmetry, i.e.,
|A| = 0, the Einstein Equations and the condition on the stress-energy
tensor imply Rg ≥ 0.

15.5. Basic Methods.

1) Schoen and Yau (1979), using stable minimal hypersurfaces. This
proves the Positive mass conjecture in case n ≤ 7;

2) Witten (1981), using harmonic spinors. This approach works for all
n when the manifold M satifies a topological condition called spin.

Next, we present a nice consequence of Positive Mass Theorem, the rigid-
ity of Euclidean Space.

15.6. Corollary. Let (Rn, g) be the Euclidean space with a Riemannian
metric g that coincides with the standard metric δ outside a compact set
K and Rg ≥ 0. Then (Rn, g) is isometric to (Rn, δ).

Remark. This consequence is true for all n ≥ 3, because Rn is spin.

Remark. Some other remarks concerning the two methods:

• If n = 3, then M is spin and both methods work in this case;
• CP2n is not spin for all n ≥ 1, then Schoen-Yau’s method works to
M4 = CP2#R4, but Witten’s does not;
• CP2n+1 is spin, then Witten’s method works toM = CP2n+1#R4n+2,

but Schoen-Yau’s does not;
• If M = CP10#R20, the question is still open.
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Next, we sketch Schoen-Yau’s proof of Positive Mass Theorem.
Let (M3, g) be asymptotically flat with Rg ≥ 0. The proof is by contra-

diction. Assume m < 0. Can assume

1) g = u4δ, outside a compact set with u = 1 + m
|x| +O(|x|−2);

2) Rg > 0.

Let ψσ : [0,+∞)→ [0, 1] be a smooth function such that ψσ = 1 in [0, σ],

and ψσ = 0 outside [0, 2σ]. Consider g(σ) = ψσ · g + (1 − ψσ)δ, and note

g(σ) → g as σ → +∞.
Solve Lg(σ)u(σ) = 0, with u(σ) → 1 at infinity. This is possible because

Rg ≥ 0 implies Lg = ∆g − c(n)Rg has a sign, then can find u(σ).

Define g̃(σ) =
(
u(σ)

)4
g(σ). This metric is asymptotically flat and has

Rg̃(σ) = 0.

15.7. Claim. If σ is large, mg̃(σ) < 0.

Proof. Observe

g̃(σ) → g̃ = u4g, as σ →∞,
where u satisfies Lgu = 0 and u→ 1 at infinity. Let u = 1 + A

|x| +O(|x|−2).

By maximum principle, we have u < 1 and so A < 0. In particular,

mg̃ = mg +A < mg < 0.

�

Observe g̃ is also scalar flat. Finally, solve Lg̃(σ)f = −ψ with f → 1 at

infinity, where ψ > 0 decay very rapidly. Put g = fg̃(σ). This shows we can
suppose assumptions 1) and 2) above.

Geometric Ingredient. m < 0 implies big slabs are mean convex.
If h > 0 is large, the unit normal to the slab x3 = h is given by η = u−2 ∂

∂x3
.

In this case, we have

divgη = u−3∂x3

(
u3 · u−2

)
= u−3∂x3u = −u−3m

x3

|x3|3
> 0,

if x3 = h is very large. On the other hand, if e1, e2 is an orthonormal frame
on x3 = h and e3 = η, we can express the divergence of eta as

divgη =

3∑
i=1

〈∇eiη, ei〉 =
2∑
i=1

〈∇eiη, ei〉,

and

−→
H = −

2∑
i=1

〈∇eiη, ei〉η.

In consequence, 〈
−→
H, η〉 < 0 on the slice x3 = h, for sufficiently large h > 0.

Analogously, 〈
−→
H, η〉 > 0, on the slice x3 = −h.
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15.8. Goal. The next step is the construction of an area-minimizing em-
bedded minimal surface inside one of those mean-convex slabs.

Use Cσ to denote the circle {x2
1 + x2

2 = σ2} ∩ {x3 = 0}. Find Σσ of
least area with ∂Σσ = Cσ. This surface can be obtained in two ways. First,
using Morrey’s solution to Plateau’s Problem, minimizing area among disks.
In this case, Meeks and Yau proved the solution is an embedded disk. The
second approach comes from Geometric Measure Theory, where we minimize
area among all topological types.

In any case, we can guarantee, by Maximum Principle, that

Σσ ∩ (M \K) ⊂ {−h ≤ x3 ≤ h},
where h > 0 is large enough, so that the slab {−h ≤ x3 ≤ h} is mean-convex,
but does not depend on σ.

In case we have various ends and those Cσ are considered in a fixed end
E of M , can also use Maximum Principle to prove the portion of Σσ on each
different end is contained in a fixed large ball.

We explore now the area-minimizing property of Σσ to estimate its area
inside the union of K and the cylinder Cyl(t) = {x2

1 +x2
2 ≤ t2}. We compare

Σσ ∩ (K ∪ Cyl(t)) with the union of the top disk Cyl(t) ∩ {x3 = h} and a
subset of ∂Cyl(t) whose boundary is (Σσ ∪ {x3 = h}) ∩ ∂Cyl(t). We obtain

(70) Area (Σσ ∩ (K ∪ Cyl(t))) ≤ πt2 +O(t).

Consider a fixed curve γ joining {x3 = −h} and {x3 = h}. If σ is large,
γ and Cσ are linked and then Σσ ∩ γ 6= ∅.

Next, we use Schoen’s curvature estimates for stable surfaces to obtain
uniform curvature bounds on compact sets. Precisely, we have

(71) |AΣσ | ≤ C(t), in Σσ ∩ (K ∪ Cyl(t)) .

A diagonal argument gives a subsequence Σσi that converges smoothly to
Σ in any compact set of M . We have then, Σ is an embedded and area-
minimizing, in particular, stable. It is also possible to conclude outside a
compact set Σ is a single valued graph over {x3 = 0}.

Analysis near ∞. We analyze now the behavior of the constructed surface
Σ near ∞. Since Σ is minimal, we have

∆Σx3 = HessMx3(e1, e1) + HessMx3(e2, e2),

for some {e1, e2} ⊂ TΣ orthonormal basis, where Hessf(X,Y ) is given by
the following expression

(72) Hessf(X,Y ) = XY (f)−∇XY (f).

Since this involves covariant derivatives ∇XY , we need the Christoffel Sym-
bols to calculate ∆Σx3 following the above formula. The general expression
of Christoffel Symbols is

(73) Γkij =
1

2

∑
l

gkl (∂iglj + ∂jgli − ∂lgij) .
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In our case, we have Γkij = O(|x|−2) and then,

(74) ∆Σx3 = O
(
(1 + |x3|)|x|−3

)
= O

(
|x|−3

)
.

The linear theory of PDE says (74) implies

|x| |∇Σx3|+ |x|2
∣∣∇2

Σx3

∣∣ ≤ C.
Since Σ is a single valued graph over {x3 = 0}, we can compare |AΣ| with∣∣∇2

Σx3

∣∣ and conclude the following curvature estimates

|x|4|AΣ|2 ≤ C.
But Σ has quadratic area growth, expression (70). Then, we have∫

Σ
|AΣ|2dΣ <∞.

Since the extrinsic curvature Rm of Σ is integrable and, by Gauss equation,
KΣ is given by Rm plus a quadratic term involving the second fundamental
form of Σ, we obtain

(75)

∫
Σ
|KΣ| dΣ <∞.

Stability Inequality. Recall the stability inequality∫
Σ

(
|AΣ|2 + Ric(N,N)

)
f2dΣ ≤

∫
Σ
|∇Σf |2 dΣ, for all f ∈ Lipc(Σ).

Using Gauss equation and the assumption on RM > 0, we conclude

−
∫

Σ
KΣf

2dΣ <

∫
Σ

(
RM

2
−KΣ +

|AΣ|2

2

)
f2dΣ ≤

∫
Σ
|∇Σf |2 dΣ.

Because of quadratic area growth, can apply the log cut-off trick to conclude

(76) −
∫

Σ
KΣdΣ < 0

Claim.
∫

ΣKΣ ≤ 0.
Let γσ ⊂ Σ the curve with projection Cσ onto {x3 = 0}. Let g denote

the induced metric on Σ. Can put local coordinates in Σ using that outside
a compact set it is the graph of a function f over {x3 = 0}. In this local
coordinates, we have

gij = gij + u4fifj = δij +O
(
|x|−1

)
.

Then, the geodesic curvature of Cσ with respect to g has the form kg,γσ =
σ−1 +O

(
σ−2

)
. Integrate over the circle to get:

(77)

∫
γσ

kg,γσ → 2π, as σ →∞.

Gauss-Bonnet Theorem to the domain Dσ in Σ bounded by γσ to conclude

(78)

∫
Dσ

KΣdΣ +

∫
γσ

kg,γσ = 2πχ(Dσ) ≤ 2π.
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The limit as σ →∞ gives
∫

ΣKΣ ≤ 0. Contradiction!

Remarks. About higer dimensions, the proof is by induction. We still have
the mean-convextity of the slabs. Then, use Geometric Measure Theory to
produce Σσ of least volume, the regularity of Σσ is guaranteed if n ≤ 7.

Open. Are singularities of area-minimizing hypersurfaces stable under per-
turbations?

We do not have the log cut-off trick any more, then we choose a different
minimization problem. For each a ∈ [−h, h], consider

Cσ,a = {x2
1 + x2

2 = σ2} ∩ {x3 = a}.
Produce Σσ,a of least volume with boundary Cσ,a. Choose Σσ,a(σ) with least
volume among all Σσ,a, a ∈ [−h, h]. This hypersurface satisfies a better
stability inequality in which a test function f can be a non-trivial constant
on ∂Σσ,aσ .

We produce, as in the initial case, a volume-minimizing hypersurface Σ,
which is again the graph of a single valued function f outside a compact set.
The estimates on the derivatives of f in this case is

|x|n−2|∇f |+ |x|n−1|∇2f | ≤ C.

The Riemannian metric g has the form g = u
4

n−2 δ outside a compact set
K, then, the induced metric g on Σ is given in local coordinates by

gij = gij + u
4

n−2 fifj = δij +O(|x|2−n) = δij +O(|x|1−dim(Σ))

Observe 1− dim(Σ) < 2− dim(Σ), then m(g) = 0.
The stability inequality allows us to choose v > 0 solving Lgv = 0 and

v → 1 at infinity. Let g̃ = v
4

n−2 g. This new metric is scalar flat and has
negative mass. This finishes the induction argument. To prove the choice
of v as above is possible we check that LΣ has a sign. Back to the better
stability inequality, we have∫

Σ

(
RM

2
− RΣ

2
+
|AΣ|2

2

)
f2dΣ ≤

∫
Σ
|∇Σf |2 dΣ,

then

(79) −
∫

Σ

RΣ

2
f2dΣ ≤

∫
Σ
|∇Σf |2 dΣ.

Recall the expression of the conformal Laplacian of Σ, LΣ = ∆Σ− (n−3)
4(n−2)R

Σ.

By expression (79), we get

−
∫

Σ

RΣ

2
f2dΣ ≤ 2(n− 2)

(n− 3)

∫
Σ
|∇Σf |2 dΣ,

and then ∫
Σ

(
|∇Σf |2 +

(n− 3)

4(n− 2)
RΣf2

)
dΣ ≤ 0.
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This proves LΣ has a sign and finishes the argument.

Rigidity Case. If (Mn, g) is asymptotically flat, R ≥ 0 and m = 0, then
we argue in three steps that it must be isometric to euclidean space.

Step 1. Scalar flat. Solve Lgu = 0 with u → 1 at infinity, and consider

g̃ = u
4

n−2 g. If R is not identically zero, this new metric is scalar flat and has
mass m(g̃) < m(g) = 0. Contradiction!

Step 2. Ricci flat. If g(t) is a variation of g among asymptotically flat
metrics with g′(0) = h, then

(80)
d

dt

∣∣∣∣
t=0

(
m(g(t))−

∫
M
Rg(t)dvg(t)

)
=

∫
M
〈h,Ric− R

2
g〉dvg.

Since m(g) = 0, g is a minimum point of the mass functional among metrics
with R ≥ 0. Fix h0 of compact support and consider g(t) = g + th0. Solve

Lg(t)u(t) = 0 with u(t) → 1 at infinity. Define g(t) = u(t)
4

n−2 g(t), an
asymptotically flat and scalar flat metric. Observe u(0) ≡ 1 and

d

dt

∣∣∣∣
t=0

m(g(t)) = 0.

This imply

0 =

∫
M
〈Ric,

d

dt

∣∣∣∣
t=0

g(t)〉dvg =

∫
M
〈Ric, v · g(0) + h0〉dvg,

where v = d
dt

∣∣
t=0

u(t)
4

n−2 . In particular, since 〈Ric, g〉 = Rg and Rg(0) ≡ 0,
we get ∫

M
〈Ric, h〉dvg = 0,

for all h with compact support. This implies g is Ricci flat.

Step 3. Flat. This follows from volume comparison

16. Harmonic Maps - Part 2

Let Mn ⊂ RN be a compact Riemannian manifold. Recall we proved
in Proposition 14.2, that harmonic maps u : (R2, δ) → (M, g) with finite
energy are almost conformal and minimal.

Use π : S2 \ {p} → R2 to denote the stereographic projection from the
2-sphere minus a point p ∈ S2, which is a conformal map. If u : R2 → M
is an harmonic map with E(u) < ∞, then u ◦ π : S2 \ {p} → M is again
harmonic and has finite energy, in particular, it is almost conformal.

16.1. Theorem. Let u : D2\{p} →M be an harmonic map with E(u) <∞.
Then u extends smoothly to u : D2 →M harmonic.

Following the previous analysis, the map u ◦ π extends to an harmonic
map v : S2 →M , which is almost conformal and branched minimal.
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Open. It is an open question if Σ2 ⊂ B3 \ {0} embedded minimal surface
with ∂Σ ⊂ ∂B3, imply Σ is an embedded minimal surface in B3. It is
an exercise to prove Σ has finite area. What can happen in the negative
direction is an accumulation of small necks near the origin.

We describe now the Sacks and Uhlenbeck blow-up argument. Let Mn ⊂
RL be a compact submanifold such that π2(M) 6= 0. There exists f : S2 →
M that is not homotopically trivial, then can find a non-trivial harmonic
map u : S2 →M .

For each α > 1 we consider the perturbed functional

(81) Eα(u) =

∫
S2

(
1 + |∇u|2

)α
dv.

16.2. Definition. A critical point of Eα is called α-harmonic map.
Given β ∈ π2(M), β 6= 0, and each α > 1, we minimize Eα in β. The idea

is to use W 1,2α(S2) ⊂ C0,γ , if α > 1. Find uα minimizer, for each α > 1 and
try to take a limit as α→ 1. We have two possibilities:

1) either supS2 |∇uα| ≤ C, then uα converges to a non-trivial harmonic
map u : S2 →M ;

2) or supS2 |∇uα| → ∞. In this case, apply the blow-up technique,
which we briefly discuss now. For each map uα : S2 → M , consider
xα ∈ S2 and λα > 0, such that

|∇uα(xα)| = sup
S2

|∇uα| = λα.

Using stereographic projection, we find maps ũα : R2 →M with the
following properties

sup
R2

|∇ũα| → ∞ and |∇ũα(0)| = λα.

Rescaling to ûα(w) = ũα

(
w
λα

)
, we have supR2 |∇ûα| ≤ 1 and can

take the limit û : R2 → M , harmonic map with |∇û(0)| = 1. This
implies û is non-trivial and has finite energy, then gives a non-trivial
harmonic map u : S2 →M .

Example. Use the identification S2 = C ∪ {∞} to define fj : S2 → S2 by

fj(z) =
z2 + 1/j

z
.

This is an harmonic map. (2 bubble?)

17. Ricci Flow and Poincaré Conjecture

17.1. Ricci Flow. Let Mn be a compact manifold with a Riemannian met-
ric g0. In 1982, in the pioneer paper by R. Hamilton, he introduced the
following equation {

∂
∂tg(t) = −2Ricg(t)
g(0) = g0.



SURFACES MINIMALES : THÉORIE VARIATIONNELLE ET APPLICATIONS 61

17.2. Theorem. For every n, the flow exists and is unique in some short
time interval [0, ε). Moreover, if n = 3 and Ricg0 > 0, then Ricg(t) > 0 and
the flow disappear in finite time becoming asymptotically round.

17.3. Poincaré Conjecture. Let M3 be a compact manifold such that
π1(M) = {1}. Then M is diffeomorphic to S3.

This question was solved by Perelman. The strategy is to understand the
behavior of the Ricci flow for general metrics, without curvature assump-
tions. At each singular time, proceed a surgery near the singularity and
keep flowing.

Basic question. Does the flow become singular (extinct) in finite time?
If so, the number of surgeries is finite, then conclude

M ≈ S3#S3/Γ1# · · ·#S3/Γk#(S2 × S1)# · · ·#(S2 × S1).

Because π1(M) = {1}, M is diffeomorphic to S3.
To prove the basic question, Colding and Minicozzi use min-max minimal

surfaces.

17.4. Min-max Construction.

17.4.1. Curves on surfaces. In 1905, Poincaré introduced the question about
existence of closed geodesics in (S2, g). In 1917, Birkhoff answers positively
Poincaré’s question.

Let f : S2 → (S2, g) be a map of degree deg(f) = 1. Suppose the S2

in the domain of f is the standard two-sphere in R3 and consider in R3

the usual coordinates (x1, x2, x3). The map f naturally induces a sweepout
{γt}t∈[0,1] in (S2, g) by closed curves

γt = f ({x3 = 1− 2t}) , for 0 ≤ t ≤ 1.

Then, we consider the following min-max invariant of (S2, g)

(82) L = inf
{γt}t

sup
t∈[0,1]

`(γt),

where the infimum is considered among all sweepouts in (S2, g). The idea is
to realize L = `(γ) as the length of a smooth closed geodesic. We describe
now a key construction in this theory, the curve shortening map.

Let c : S1 → (S2, g) be a closed curve, `(c) ≤ 2L and suppose c is
parametrized by arc length. Choose a fine partition {s1, s2, . . . , sm = s1}
of S1 such that each pair c(sl), c(sl+1) can be joined by a unique length
minimizing geodesic. The curve shortening applied to c is another closed
curve D(c) with smaller length. The definition of D(c) has two steps:

(i) let c1 : S1 → S2 be such that between sl and sl+1 the curve c1 is the
minimizing geodesic arc joining c(sl) and c(sl+1);

(ii) fix the middle points of each geodesic arc of c1 and repeat the pro-
cedure in step (i) for these points to obtain D(c).

The key properties of this construction are the following:
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1) `(D(c)) ≤ `(c);
2) `(D(c)) = `(c) if and only if c is a smooth closed geodesic.

Observe that if {γit}t is a sequence of sweepouts with

sup
t∈[0,1]

`(γit)→ L,

then {D(γit)}t is also sequence of sweepouts with

sup
t∈[0,1]

`(D(γit))→ L.

To conclude the argument, take ti ∈ [0, 1] such that `(D(γit)) → L, then

there exists subsequence {j} ⊂ {i} such that {D(γjtj )}j converges to a closed

geodesic of length L. The idea is to take a subsequence such that both

γjtj and D(γjtj ) converge to γ and D(γ), respectively (Arzela-Ascoli). Both

`(D(γ)) = L and `(γ) = L, and then D(γ) = γ is a closed geodesic.

17.5. Minimal spheres. The idea now is to apply min-max methods to
produce minimal surfaces, replace u : S1 → M by a map u : S2 → M and
do min-max for area or energy. A topological fact, consequence of Hurewicz
Theorem is that if M3 has π1(M) = {1}, then π3(M) = Z. Fix β ∈ π3(M),
β 6= 0.

In this min-max setting, the sweepouts are the maps

σ : [0, 1]× S2 →M,

with the following properties:

1) σ(t, ·) ∈ C0 ∩W 1,2;
2) t 7→ σ(t, ·) is continuous;
3) σ maps {0} × S2 and {1} × S2 to points;
4) the induced map S3 →M belongs to β.

In this case, use the notation σ ∈ Ωβ. The width can be considered with
respect to the area or the energy:

WA = inf
σ∈Ωβ

sup
t∈[0,1]

A(σ(t, ·)) and WE = inf
σ∈Ωβ

sup
t∈[0,1]

E(σ(t, ·)).

In fact, the two above notions of width coincide.

Exercise. Prove 0 < WA = WE =: W .

17.6. Theorem. [Colding and Minicozzi] Let Mn be a compact manifold
and β ∈ π3(M), β 6= 0. Then, there exists a sequence of sweepouts {σi}i ⊂
Ωβ with

sup
t∈[0,1]

E(σi(t, ·))→W

and such that for every sequence ti ∈ [0, 1] with A(σi(ti, ·))→W , there exists
subsequence {j} ⊂ {i} such that {σj(tj , ·)} converges (in sense of varifolds)
to a finite union ∪kuk of harmonic maps uk : S2 →M .
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A sequence of surfaces in M converge in sense of varifolds, Σi ⇀ Σ, if the
following holds ∫

Σi

f(x, TxΣi)dΣi →
∫

Σ
f(x, TxΣ)dΣ,

for every compactly supported continuous function f defined in the Grass-
mannian of 2-planes of M . This convergence imply that A(Σi) → A(Σ).
Can summarize this notion saying that convergence in sense of varifolds
means that the surfaces are close and their tangent spaces are also close.

In particular, follows from the convergence of {σj(tj , ·)} in the Colding-
Minicozzi’s result, that ∑

k

A(uk) = W.

Moreover, each map uk must be almost conformal and minimal. Hence,∑
k

E(uk) = W.

The proof of Colding-Minicozzi’s Theorem use harmonic replacements, with
estimates of Wente and Hélein, and a refined blow-up analysis.

17.7. Proposition. Let (M3, g0) be a compact Riemannian manifold, Σ ⊂
M be a branched minimal S2 for g0 = g(t0), where g(t) is a solution to the
Ricci Flow. Then

(83)
d

dt
areag(t)(Σ)

∣∣∣∣
t=t0

≤ −4π − areag0(Σ)

2
min
M

Rg0 .

Proof. Recall that the area can be written as

(84) areag(t)(Σ) =

∫
Σ

√
detgΣ

ij(t)dx.

Then, the first derivative of the area satisfies

d

dt
areag(t)(Σ) =

1

2

∫
Σ

(
trΣ

∂gΣ
ij

∂t

)√
detgΣ(t)dx

= −
∫

Σ

(
Ricg(t)(e1, e1) + Ricg(t)(e2, e2)

)
dΣ,

where {e1, e2} ⊂ TΣ is an orthonormal basis. That can be rewritten as
follows

d

dt
areag(t)(Σ) = −

∫
Σ

(
Rg(t) − Ricg(t)(N,N)

)
dΣ,
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where N denote a choice of unit normal vector field for Σ. The Gauss
equation can be applied to reformulate the above expression as

d

dt
areag(t)(Σ) = −

∫
Σ
KΣdΣ− 1

2

∫
Σ

(
Rg(t) + |A|2

)
dΣ +

1

2

∫
Σ
H2dΣ

= −
(

2πχ(Σ) + 2π
∑
i

bi

)
− 1

2

∫
Σ

(
Rg(t) + |A|2

)
dΣ

≤ −4π −
areag(t)(Σ)

2
min
M

Rg(t).

The evolution of the scalar curvature under the Ricci Flow is given by the
following equation

(85)
∂

∂t
Rg(t) = ∆g(t)Rg(t) + 2|Ricg(t)|2g(t).

In the case of 3-dimensional manifolds, we have |Ric|2 = |R̊ic|2+R2/3, where

R̊ic is the trace-free Ricci tensor. In particular, we have

∂

∂t
Rg(t) = ∆g(t)Rg(t) + 2|R̊icg(t)|2g(t) +

2

3
R2
g(t)

≥ ∆g(t)Rg(t) +
2

3
R2
g(t).

We can use the maximum principle to obtain

d

dt

(
min
M

Rg(t)

)
≥ 2

3

(
min
M

Rg(t)

)2

.

And that will imply

(86) min
M

Rg(t) ≥
minM Rg(0)

1− 2
3 tminM Rg(0)

= − 3

2(t+ c)
,

for some constant c depending on the initial metric.

17.8. Theorem. [Colding and Minicozzi] Let (M3, g0) be a compact Rie-
mannian three-manifold and let g(t) be a solution to the Ricci flow. Consider
β ∈ π3(M), β 6= 0, and define W (t) := W (g(t), β). Then,

(87)
d

dt
W (t) ≤ −4π +

W (t)

4
· 3

(t+ c)
.

The estimate in expression (87), occurs in the sense of

lim sup
h→0, h>0

W (g(t+ h))−W (g(t))

h
.
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Outline of proof. Let {γs}s∈[0,1] be an almost optimal sweepout for the
width W (g(t), β). Since the two definitions of widths coincide, we have

(88) W (g(t+ h), β) ≤ max
s∈[0,1]

areag(t+h)(γs).

Then we use the estimate for the evolution of the area and the expression
(86) to conclude the upper bounds for the rate of change of the width.

To see that Theorem 17.8 implies the finite extinction time, rewrite:

(89)
d

dt

(
W (t) · (t+ c)−3/4

)
≤ −4π(t+ c)−3/4.

Then, integrating,

(90) W (t) · (t+ c)−3/4 ≤W (0) · c−3/4 − 16π
(
(t+ c)1/4 − c1/4

)
.

If t is sufficiently large, depending on c and W (0), we have W (t) < 0, what
is a contradiction. Therefore, the flow becomes singular in finite time. It
becomes also extinct.

18. The proof of Willmore Conjecture

In this section we discuss about the best realization of a torus in R3. To
deal with this question, we consider the following functional:

18.1. Definition. Let Σ2 ⊂ R3 be a closed surface of any genus. We defined
the Willmore energy of Σ to be

(91) W(Σ) =

∫
Σ
H2dΣ.

Observe that∫
Σ
H2dΣ =

∫
Σ

{(k1 − k2)2

4
+KΣ

}
dΣ = 2πχ(Σ) +

1

2

∫
Σ
|Å|2dΣ.

The term |Å|2dΣ is pointwise conformally invariant. In particular, this says
that for any F ∈ Conf(R3), we have W(F (Σ)) =W(Σ).

In the beginning of the 1960’s, Willmore proved that

W(Σ) ≥ 4π =W(round sphere),

and also the rigidity statement in case of equality. In 1965, he conjectured:

Willmore Conjecture. If Σ is a torus, then W(Σ) ≥ 2π2.
The energy 2π2 is attained by a special torus of revolution Σ√2, called

the Clifford torus. If is obtained by the revolution of the unit circle

{(x, 0, z) ∈ R3 : (x−
√

2)2 + z2 = 1}

with respect to the z-axis.
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Using the stereographic projection π : S3−{p} → R3, which is a conformal

map, we can relate the Willmore energy of surfaces Σ̃ ⊂ R3 with a very
similar functional defined on surfaces Σ ⊂ S3. If we have Σ̃ = π(Σ), then

(92) W(Σ̃) =

∫
Σ

(1 +H2)dΣ.

This motivates the following definition:

18.2. Definition. The Willmore energy of Σ ⊂ S3 is defined by

(93) W(Σ) =

∫
Σ

(1 +H2)dΣ.

18.3. Remarks. Given Σ2 ⊂ S3, we have

(1) W(Σ) ≥ Area(Σ);
(2) if Σ is minimal, then W(Σ) = Area(Σ).

18.4. Examples.

• The equator S2
1(0) = S3 ∩ {x4 = 0} is minimal and has area 4π.

• The Clifford Torus Σ̂ = S1(1/
√

2)× S1(1/
√

2) ⊂ S3 is minimal and

has area 2π2. Moreover, π(Σ̂) = Σ√2.

18.5. Proposition. [Li and Yau] If Σ2 ⊂ S3 is an immersed closed surface
that is not embedded, then its Willmore energy is at least 8π.

Fix v ∈ R4 and consider the vector field x 7→ v⊥(x), given by tangential
projection on TxS

3. It is a conformal killing vector field in S3 and generates
a flow φt of centered dilations. By conformal invariance of Willmore energy,

W(Σ) =W(φt(Σ)) =

∫
φt(Σ)

(1 +H2
φt(Σ))dφt(Σ) ≥ area(φt(Σ)).

If we choose v ∈ Σ and let t→∞, we have W(Σ) ≥ 4π. In case F : Σ→ S3

is immersion and p ∈ Σ satisfies #F−1(p) = k, then W(Σ) ≥ 4πk.

18.6. Theorem. [Marques and Neves] Let Σ ⊂ S3 closed, embedded, genus
g ≥ 1. Then W(Σ) ≥ 2π2, and W(Σ) = 2π2 if and only if Σ is a conformal
image of the Clifford torus.

In particular, this implies the Willmore Conjecture.

18.7. Theorem. [Marques and Neves] Let Σ ⊂ S3 closed, embedded, genus
g ≥ 1. If Σ is minimal, then area(Σ) ≥ 2π2, and area(Σ) = 2π2 if and only
if Σ is the Clifford torus up to Iso(S3).

The strategy of proof is as follows: first we prove Theorem 18.7 by min-
max. Then we prove Theorem 18.6.
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18.8. Min-max theory for the area functional (Almgren-Pitts). Lets
start with the one-parameter sweepouts, following the work of Simon-Smith
and the recent survey by Colding-De Lellis. Let M be a three-dimensional
closed Riemannian manifold. One can think of a one-parameter sweepout
of M as a family {Σt}t∈[0,1], where Σt = f−1(t) are the level sets of a Morse
function f : M → [0, 1]. This particular sweepout generates a class of
sweepouts

(94) Λ = {{Σ̃t = ψ(t,Σt)}t∈[0,1]}

where ψ : [0, 1] ×M → M is a C∞ map such that ψ(t, ·) ∈ Diff0(M), for
every t ∈ [0, 1]. Here Diff0(M) denotes the connected component of the
identity map in the space of diffeomorphisms of M .

Then, we consider the width of Λ defined by

(95) L(Λ) = inf
{Σ̃t}∈Λ

sup
t∈[0,1]

area(Σ̃t).

The fact that we started with the sweepout of the level sets of a Morse
function implies that L(Λ) > 0.

The basic idea of the min-max theory is to realize L(Λ) as the area of
some closed embedded minimal surface Σ2 ⊂ M . In this case, we say that
Σ is a min-max minimal surface.

18.9. Theorem. [Simon and Smith] Any (S3, g) admits a minimal embed-
ded S2.

18.10. Example. Consider S3 with the standard round metric. Let Σt =
{x4 = 2t− 1}, t ∈ [0, 1]. This generates a class of sweepouts Λ whose width
is equal 4π.

Moreover, it is a well known fact that any non-trivial sweepout of (S3, g),
with arbitrary Riemannian metric, whose width is at most 4π, must contain
a great sphere.

Important question. Can we construct the Clifford torus by min-max?
In general, we expect that a min-max minimal surfaces produced by one-

parameter sweepouts have Morse index at most 1. But Clifford torus has
index 5.

To describe the min-max theory for k-parameter sweepouts it is conve-
nient to use the language of the Geometric Measure Theory. Roughly speak-
ing, instead of smooth surfaces, the role of the slices is played by integral
cycles. We denote the space of cycles by

(96) Zn−1(Mn,Z) = {(n− 1)-integral currents T for which ∂T = 0}.

Intuitively, one can think of an integral cycle as a Lipschitz oriented sub-
manifold with integer multiplicity and no boundary. Let Ik denote the
k-dimensional unit cube.
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Fixed a map Φ : Ik → Zn−1(Mn,Z), we consider the homotopy class of
Φ relative to ∂Ik, which we denote by Π. Then, we define the width of Π as

(97) L(Π) = inf
Φ′∈Π

sup
x∈Ik

area(Φ′(x)).

The main existence result of the Almgren-Pitts Min-max Theory is the fol-
lowing:

18.11. Theorem. Suppose 3 ≤ n ≤ 7. If L(Π) > supx∈∂Ik area(Φ(x)), then
there exists smooth embedded closed minimal surface, maybe disconnected
and with integer multiplicities, such that area(Σ) = L(Π).

Lets summarize the main ingredients for the proof of Theorem 18.7.

(1) For each Σ ⊂ S3, there exists canonical family Σ(v,t) ⊂ S3, (v, t) ∈
B4 × [−π, π], with Σ(0,0) = Σ and area(Σ(v,t)) ≤ W(Σ);

(2) [Urbano, 1990] If Σ ⊂ S3 minimal, index(Σ) ≤ 5, g ≥ 0, then Σ is a
Clifford torus (index 5) or a great sphere (index 1);

(3) Min-max theory for the area functional (Almgren-Pitts).

18.12. Canonical Family and Area Estimate. We begin this section by
introducing some notation:

• let Σ ⊂ S3 be a closed embedded surface;
• B4 ⊂ R4 open unit ball and ∂B4 = S3;
• B4

R(Q) = {x ∈ R4 : |x−Q| < R};
• Br(q) = {x ∈ S3 : d(x, q) < r}, d is spherical distance.

For each v ∈ B4 we consider Fv : S3 → S3 the conformal map defined by

(98) Fv(x) =
1− |v|2

|x− v|2
(x− v)− v.

It is a centered dilation fixing ±v/|v|. Note that if v → p ∈ S3, then
Fv(x)→ −p, for every x ∈ S3, x 6= p.

Let S3 − Σ = A ∪ A∗ be the connected components, and N be the unit
normal vector to Σ pointing outside A. Consider the images by Fv

Av = Fv(A), A∗v = Fv(A
∗) and Σv = Fv(Σ) = ∂Av.

The unit normal vector to Σv is given by Nv = DFv(N)/|DFv(N)|. We also
consider in S3 the signed distance function to Σv

dv(x) =

{
d(x,Σv) if x /∈ Av
−d(x,Σv) if x ∈ Av.

This is a Lipschitz function, smooth near Σv.

18.13. Definition. [Canonical Family] For v ∈ B4 and t ∈ [−π, π], define
Σ(v,t) = ∂A(v,t), where A(v,t) = {x ∈ S3 : dv(x) < t} are open subsets of S3.

Reparametrizing the canonical family we can extend it to B × [−π, π] in
such a way that: if |v| = 1, the Σv,t are round spheres centered at the same
Q(v) ∈ S3. The map Q : S3 → S3 is called the center map. Next, we have
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the area estimate for the slices of the canonical family. This is due to A.
Ros.

18.14. Theorem. We have, for every (v, t) ∈ B4 × [−π, π],

(99) area(Σ(v,t)) ≤ W(Σv) =W(Σ).

Moreover, if Σ is not a geodesic sphere and

area(Σ(v,t)) =W(Σ),

then t = 0 and Σv is a minimal surface.

18.15. Key Calculation. The center map Q : S3 → S3 satisfies

deg(Q) = genus(Σ).

18.16. Reparametrization. We can reparametrize again to get

Φ : I5 → Z2(S3),

with the following properties:

(a) Φ(I4 × {0}) = Φ(I4 × {1}) = 0;
(b) for every x ∈ ∂I4, {Φ(x, t)}t∈[0,1] is the standard foliation of S3 by

round spheres centered at Q(x) ∈ S3;
(c) for every x ∈ ∂I4, Φ(x, 1/2) = ∂Bπ/2(Q(x));
(d) deg(Q) = genus(Σ).

Moreover, the area estimate provides the following upper bound

(100) sup
x∈I5

Area(Φ(x)) ≤ W(Σ).

Let Π denote the homotopy class of Φ relative to ∂I5 and L(Π) denote its
width.

18.17. Theorem. If genus(Σ) ≥ 1, then L(Π) > 4π. In particular, the
min-max can not be a great sphere.

Outline of proof. The proof is by contradiction. Assume that L(Π) = 4π

and that we have an optimal Φ̃ : I5 → Z2(S3) such that Φ̃ = Φ on ∂I5 and

sup
x∈I5

Area(Φ̃(x)) = 4π.

The we construct a 4-dimensional object R4 ⊂ I5 satisfying the following
properties: ∂R4 = ∂I4×{1/2} and Φ̃(x) is a great sphere, for every x ∈ R4.
The existence of such a R4 can be seen in the following way: each path
joining the bottom I4 × {0} of I5 to its top I4 × {1}, is a non-trivial one-
parameter sweepout of S3 whose areas of the slices are at most 4π. Then,
there exists a great sphere on each such sweepout. Look at the center of the
great spheres on R4. This says that the center map Q : ∂R → S3 can be
extended to Q : R4 → S3. In homology, this implies that

deg(Q) · S3 = Q(∂R) = ∂Q(R) = 0 in H3(S3,Z).

This contradicts the fact that deg(Q) = genus(Σ) ≥ 1.
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18.18. Proof of Theorem 18.7. Let Σ2 ⊂ S3 be a minimal surface of least
area among all minimal surfaces with genus greater or equal to one. Since
the Clifford torus belongs to this class, we have that area(Σ) ≤ 2π2.

Claim. index(Σ) ≤ 5.

Open. Understand the index of a min-max minimal surface and relate with
the number of parameters.

Proof of Claim. Suppose, by contradiction, that index(Σ) > 5. Consider
the canonical family {Σ(v,t)}(v,t) generated by the chosen Σ. Recall that

sup
(v,t)

area(Σ(v,t)) ≤ W(Σ) = area(Σ).

Since the index of Σ is greater than the number of parameters, it is possible
to perturb slightly {Σ(v,t)}(v,t), not changing the boundary values, to get a
new sweepout {Σ′(v,t)}(v,t) with area(Σ′(v,t)) < area(Σ), for every (v, t). Next,

apply Min-max theory to obtain a min-max minimal surface Σ̂ such that

4π < area(Σ̂) = L(Π) < area(Σ) ≤ 2π2 < 8π.

That is a contradiction, because Σ̂ would have genus(Σ̂) ≥ 1 and area lower
than area(Σ). This proves the Claim.

To conclude the proof of Theorem 18.7, we invoke Urbano’s Theorem to
conclude that index(Σ) ≤ 5 imply index(Σ) = 5 and Σ is the Clifford torus.

18.19. Proof of Theorem 18.6. Let Σ2 ⊂ S3 be a closed embedded surface
with genus g ≥ 1. Consider the Canonical Family {Σ(v,t)}(v,t) generated by

Σ. Use it to produce a min-max minimal surface Σ̂ such that

4π < area(Σ̂) = L(Π) ≤ W(Σ).

If Σ̂ has multiplicity two somewhere, that would give area(Σ̂) ≥ 8π. Other-

wise, since area(Σ̂) > 4π and the great spheres are the only minimal spheres

in S3, we have genus(Σ̂) ≥ 1. Then, we can use Theorem 18.7 to conclude

that area(Σ̂) ≥ 2π2. In any case, we have that W(Σ) ≥ 2π2.

18.20. Remark. The fact we used in the above argument about the unique-
ness of great spheres as minimal spheres in S3 is due to Almgren.

About the rigidity statement of Theorem 18.6, suppose thatW(Σ) = 2π2.
Recall that area(Σ(v,t)) ≤W (Σ) = 2π2.

Claim. For some (v, t) ∈ B4 × [−π, π], we have area(Σ(v,t)) = W (Σ).
Otherwise, the min-max family Φ constructed from Σ has L(Φ) < W (Σ) =

2π2. We can run min-max again and contradic Theorem 18.7.
Because of equality area(Σ(v,t)) = W(Σ), we conclude t = 0 and Σv is a

minimal surface, by Theorem 18.14. Then area(Σv) = W(Σv) = W(Σ) =
2π2. By rigidity part of Theorem 18.7, Σv = Fv(Σ) must be isometric to
the Clifford torus, with Fv ∈ Conf(S3).
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18.21. Open Problems. We end this section with some open problems
related to the Proof of Willmore Conjecture.

(1) What about higher genus surfaces in R3?
(2) What about genus one surfaces in R4? In this case the Willmore

functional is defined by

W(Σ) =

∫
Σ
|
−→
H |2dΣ,

where
−→
H denotes the mean curvature vector of Σ.

(3) What is the least volume for non-trivial minimal hypersurfaces in
Sn? The natural candidate is the generalized Clifford torus

Sk
(√

k

n− 1

)
× Sl

(√
l

n− 1

)
.

(4) Characterize the Clifford torus by the index n+ 2.
(5) More recently, also using min-max theory, Marques and Neves proved

the following result:

Theorem. Let (Mn, g) be a closed Riemannian manifold with 3 ≤
n ≤ 7 and Ricg > 0. Then, there exist infinitely many embedded
closed min-max minimal hypersurfaces in M .

The related open question is to understand these minimal hyper-
surfaces. We expect the index and volume to go to infinity, and they
should be equidistributed in M .


