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1. INTRODUCTION
2. FIRST VARIATION FORMULA

Let (M",g) be a Riemannian manifold and ¥ € M be a submanifold.
We use the notation |X| for the volume of ¥. Consider (z1,...,x)) local
coordinates on X and let

o 0 o
gij(x):g(%,aixj), fOFlSZ,]Skj’
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be the components of g|s. The volume element of ¥ is defined to be the
differential k-form d = y/det g;;(x). The volume of ¥ is given by

Vol(Z) = /E ds.

Consider the variation of ¥ given by a smooth map F : ¥ x (—e,e) — M.
Use Fi(z) = F(z,t) and ¥; = F;(X). In this section we are interested in the
first derivative of Vol(3;).

Definition 2.1 (Divergence). Let X be a arbitrary vector field on £* c M.
We define its divergence as

k
(1) divs X (p) = Y (Ve X, e,
i=1
where {e1,...,ex} C T,X is an orthonormal basis and V is the Levi-Civita

connection with respect to the Riemannian metric g.

Lemma 2.2.

0 : OF

Proof. Note that

0

adetg = tr(g~10,g)detyg,
where g71 = (¢¥) = (g;;)*. Then

P y
adetg = sz.:(gwatgij)detg'

We can calculate the first derivative of the metric using the compatibility of

V with respect to g

Ogi = 9(Vorat0iF, 0; F) + g(0iF, Vp9:0; F),
where 0;F' = OF/0x;. Use the symmetry of V to commute Vgp/5:0;F =
Vo,rOF/0Ot. Put everything together to obtain

0 i
adetg = 2 Z 9”7 9(Vo,rOF/0t,0;F)detg

1,J

F
= 2divy, (;) detg.

‘We have then:

Theorem 2.3 (First Variation Formula I).

d or
— 3] = di — | d¥.
ﬁ”gézmim> t
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In order to characterize the submanifolds that are critical values for area,
we need to introduce a important geometric object and some calculation.

2nd fundamental form and mean curvature: Let (M"™, g) be a Riemannian
manifold and ¥ C M be a submanifold. For each p € ¥, define the second
fundamental form of ¥ C M as

B(V,W) = VyW — (VyW)T = (VyW)Y,

where V, W are tangent to ¥. B is a symmetric tensor. If {e1,...,ex} C T,
is an orthonormal basis, we define the mean curvature vector to be

k
ﬁ =tr B= (Veiei)N.
i=1
Lemma 2.4.
dive X = dive XT — (XN, H).
Proof. Decompose X in tangent and normal parts X = X7 + X" and write
k
divs X = dive X"+ (Ve XN e;).
i=1

Since XV is normal to ¥ and e; is tangent, we have
(3) 0=rci (XN, e;) = (Ve, XN, &) + (XN, Ve.e)).
Then
k
divyX = divsXT = (XN, V,e;)
i=1
— divnXT — (XN, H).
O

Theorem 2.5 (Divergence Theorem). Let 3 be a compact submanifold of
M and X be a tangential vector field on 3. Then

/diUngE:/ 9(X,v)do,
%

[0)>

where v € T'Y is the unique unit outward normal to 0¥ and do is the volume
element of 0.

Theorem 2.6 (First variation formula IT).

Disy = - / (OF ot H)ds, + / (OF /0t v)do,.
dt 5, o5

Moreover, if X = OF/0t vanishes on 0¥ at t = 0, then
d
=il =~ [ (x Has,
t=0 p)

dt
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Corollary 2.7.
d

pn |2 =0, for any X, with X =0 on 0%, iﬁﬁ =0.

t=0
Definition 2.8. ¥¥ € M is a minimal submanifold of M if ﬁ = 0.
3. EXAMPLES
(Geodesic). For k =1, ¥ is a smooth curve v : I — M satisfying
1\ NV /
0—T - <v ,7) _v., 2

T
IW\’7| B |’7‘
Geodesics are minimal surfaces of dimension 1.

(Minimal surfaces of euclidean space). Start with the particular case of a
minimal surfaces given as the graph of a differentiable function u : Q — R,
where Q C R, Let F : Q — graph(u) be given by F(z) = (z,u(z)). Use

also the notation
oF B 0 Ou
8.%'2' - 63;/ 63:1 '

The euclidean metric of R¥*! restricted to graph(u) can be written as
o (2F OFN s Ou Ou
gl] —9 al‘i, 8.7}j Y 69@1 6x]~’

where 6;; = 1, if i = j, and equal zero otherwise.

Ezercise: Prove that detg = 1 + |[Vu|? =1+ Zle(au/(?xj)Q and conclude

|graph(u / V' 1+ |Vul?dz.

Consider the variations of graph(u) given by the graphs of functions u; =
u + tv, for any fixed v so that v = 0 on 9. Then

g7 |graph (u)]

=0 dt

/\/l—i-W u+tv)|2dx
=0

/ v Vu ¥ / di ( Vu ) p
= vV, ——=)dx = — | v divgs | —/—— |dx
Q V1+ |[Vu|? Q AV [Vl
The graph of a function u is a minimal surface iff u satisfies the minimal
surface equation

(4) divgs <J1+V1|L7w2> =0

Equivalently, if u is a solution of the second order elliptic quasilinear P.D.E.
given by:

8iu8ju .
(5) Z <(sz_] - 1 T ‘vuP)azaju =0

ihj
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Basic examples of minimal surfaces in R3.

e The plane: {(x,y,z) € R®: 2z = 0}.
e The catenoid: {(z,y,2) € R3 : 22 +y? = coshz}. A bigraph, it is
obtained by the revolution of the curve y = cosh z over the z-axis.

e The helicoid: (u,v) — (ucosv,usinv,v). This is a multigraph over

R2\ {0} for the function u(z,y) = arctan(y/z).
e The Scherk’s surface: graph(u), where u(x,y) = log

CcOosS T
cosy” for x,y €

(—m/2,7/2). Scherk’s surface is a doubly periodic minimal surface.

It is important to classify and understand these minimal surfaces in R3.
In this direction there is the Colding-Minicozzi Theory, that studies the
structure of embedded minimal disks. One important application is

Theorem 3.1 (Meeks and Rosenberg, 2005). The only complete embedded
simply connected minimal surfaces in R® are the plane and the helicoid.

4. MAXIMUM PRINCIPLE

In this section, we apply the strong maximum principle for the minimal
surface equation.

Theorem 4.1 (Strong maximum principle). Let v be a solution to
Z a,-jaiajv + Z biaﬂ) = 0,
i\j i
where (a;j(x))i; is positive definite for each x € Q. Ifv <0 and v =0 at
some point, then v = 0.
The main result of this section is

Theorem 4.2 (Maximum principle). Let uj,uz : @& — R be solutions to
minimal surface equation. Suppose € is connected, u; < ug and ui(p) =
ua(p) for some p € Q. Then u; = us.

Proof. Let v = uy — uz. We have

. B 0; u16 (75} al-ug@qu &ulajul >y
0=>" <5U Ve P)aa v+ Z (1 TomP Tt v )0

1]

Since v = u; — ugz < 0 and v(p) = 0, the strong maximum principle gives
v = 0. Then we conclude u; = us. U

Corollary 4.3. Let E’f*l, ngl C R™ be connected minimal hypersurfaces,
such that Yo is on one side of ¥q. If there exists p € X1 N Xy # (), then
Y1 =Y.

Remark. This result also holds for minimal hypersufaces ¥1,%s C M of a
Riemannian manifold.



6 FERNANDO CODA MARQUES - IMPA (NOTES BY RAFAEL MONTEZUMA)

5. CALIBRATION: AREA-MINIMIZING SURFACES

Let u : © — R be a solution to the minimal surface equation, where
2 C R™. Then w(x) = u(x)+t is also a solution and ¥; = graph(u;) form a
foliation of €2 x R by minimal hypersurfaces. This means for every p € Q xR
we can find t so that p € ¥;. For each vector V € TpR"+1, let VT be the
component of V' in 7T,,%;. Consider the following differential n-form

(6) w(p)(X1,...,X,) = Volg, (X{, ..., XD).
Observe we can also write w as
wp)(X1,...,X,) = Volgni1(X7,..., X N)
= (=1)"Volgn1 (X{,..., XI N)
(—1)"(enVolgnt1) (X1, ..., Xn),

where IV is the unit normal vector to >; and ¢nVolgn+1 is the contraction
of Volgn+1 with the vector field N.

Cartan’s formula: If Lxw is the Lie derivative of w with respect to X, then
dixw) + tx(dw) = Lxw.
Remark: If X is a vector field on (M™, g), then
LxdVy = (divgX)dVj.
Using Cartan’s formula and the previous remark we can calculate dw as
(—1)"dw = d(txVolgn+1)
= LyVolgnt1 — eyd(Volgn+1)
= (divgn+1N)Volgn+1.

Can use that N is explicitly given by N = (1 + |[Vu|?)"Y/2(=Vu,1) to
conclude that

(—1)”dw = <Z gfj)VOan-H = *diVRn (W>V01Rn+1.

P 1+ |Vul?
Corollary 5.1. dw = 0 iff graph(u) is minimal.
This differential form w has also the property
lw( X1, .., X)) < | Xq] -0 [ Xl
which we abbreviate for |w| < 1.

Definition 5.2. (Harvey and Lawson, 1982) Let (M™, g) be a Riemannian
manifold. A differential k-form on 2 C M™ is a calibration if it satisfies

(1) dw = 0;

(2) ol < 1.

Definition 5.3. % C M is calibrated by w if w|y, = Volx.
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Theorem 5.4. Let (M™, g) be a Riemannian manifold and X¥ C M be a
calibrated submanifold. Then ¥ minimizes volume in its homology class.

Proof. Let ¥’ be in the same homology class of ¥, then there exists a (k+1)-
dimensional U so that X' — ¥ = QU. Suppose ¥ is calibrated by w, then

o= [ = [ [o

Since w|y, = Voly, we have

Vol(%) = /Zw = /lw < Vol(¥).
(]

Corollary 5.5. Let u: Q — R, Q C R, be a solution to minimal surface
equation. Then X = graph(u) is calibrated. Therefore, for any 3’ C Q x R,
Y =3, we have Vol(X) < Vol(X').

Example: Complex submanifolds of C”.

Definition 5.6. ¥ C C" is complex if 7,2 is a complex vector subspace of
C™, for every p € 2.

Consider the convention C" = R™ +¢R" and in coordinates (z1,...,2,) =
(1, Tny Y1, - - -5 Yn), With zx = zx + iyg. The complex multiplication by
1 map is denoted by J : C* — C™ and defined by

J(:Clv"wxnayl)"'ayn) - (—yl,-~-,_yn7$1,---,$n)-

Note that J2 = —I. Consider also the following differential form on C"

(7) w= Z dxi A dyg.
k=1

It can be seen that w(X,Y) = (J(X),Y) and that dw = 0. The differential
form w* = w A ... Aw, k-times, has complex degree k and satisfies dw* = 0.
To conclude that w* /k! calibrates complex k-dimensional submanifolds, use:

Ezercise: (Wirtinger’s Inequality) Let V' C C™ be a vector subspace of real
dimension 2k and let {X1,..., X2} be a basis of V. Then

wk

H(Xl, cee ,ng) < VO](Xl, ce ,X2k>.

Moreover, equality holds iff V' is a complex subspace of C™.

Corollary 5.7. Complex submanifolds of C" are volume minimizers.
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Ezample: (Special Lagrangian submanifolds of C") Let o = Re(2), where
Q = dz A... Ndz, is a complex valued n-differential form. Moreover,
do = Re(d?) =0 and |af < 1.

Definition 5.8. ™ C C" is a special Lagrangian if 3 is calibrated by «.
Can consider also ag = Re(e?Q). Tt satisfies dag = 0 and |ag| < 1.

Definition 5.9. X" C C" is Lagrangian if J(7),X) = TPLE, for every p € 3.
For example, in C* = R™ 4 ¢R", the real R™ is a Lagrangian.

Remark: If ¥ C C" is Lagrangian and H=0 (minimal), then ¥ is calibrated

by ayg for some 6.

Consider the inner product on C" given by ((z,w)) = > }_; zxwy. Let
{e1,...,en} C T,X be an orthonormal basis such that

{e1,...,en, J(€1),..., J(en)}
is an orthonormal basis of C™. Define a C-linear map A : C* — C™ by
A(0)0xy) = eg, for k=1,...,n.
Then A is unitary and
Qler,...,en) = QAQ/0x1),...,A(0/0xy))
= (detcA)Q(0/0x1,...,0/0zy,)
= detcA.

Can write Qp(e1,...,ep) = e?®) | for each p € X. Here, (p) is called the
Lagrangian angle.

Remark: Observe df(v) = (v, J (ﬁ», for each v € TY. If ¥ is Lagrangian
and ﬁ =0, then 6@ is constant. In this case,

Re(e Q) (e1, ..., en) = Re(Vol(ey, ..., e,)) = Vol(er, ..., en).

Therefore, ¥ is volume minimizing.

6. SECOND VARIATION FORMULA

Let (M™,g) be a Riemannian manifold and ¥ ¢ M be a submanifold.
Consider the variation F' : ¥ X (—e,e) — M. Recall

) - OF
adZt = leEt (&j) dZt
= (D 9%(Vo,rOF/0t,0;F))d%y,

0]
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in local coordinates (x1,...,x;) on X. Observe %g_l =g Y0g)g7 !, ie.,
ggij = =Y ¢ 0gug"
ot
k,l
= =Y ¢"*((Vo,r(0F/0t), 0, F) + (0kF, Vo,r(OF /01))) g
k,l

Using the Riemann Curvature Tensor, we have

01(Vo,rF,0;F) = (Vo,rVor0iF,0;F) + (Vo,r0F,Vo,r0;F)
= ((Vo,rVo,r —Vo,rVo,r)OF,0;F)
+(Vo,rVo,rOiF,0;F) + (N o,p 0, F,V 9,r0; F)
= (RM(O,F,0,F)0,F,0,F)
+(Vo,r(VorOiF),0;F) + (Vo pOi F, Vo, pO,F),

then

> 9"0(Vo O 0;F) = > g (RM(OF, 0:F )0 F, 0, F)
i.j ,J

+divy (VatpatF)

+> g7 (Vo,r0F, Vo, pdiF).

1,J

Use X = 0,F = 0F /9, when t = 0, as simplified notation for the variational
vector field. If {e1,...,ex} C TY is an orthonormal basis, we have

k

% divs, (0F/0t) = S (RM(X, )X, e5) + divs (Vx X)
t=0

=1

VelX V., X)

(Ve, X ej) +(Ve; X, €i) )(Ve, X, €5).

k
k
,j=1
The third term on the above expression can be rewritten as

k k
Y (Ve X, Ve, X) = Y (VEX,VEX)+) (Ve X e5)e5,(Ve, X, er)er)
=1 =1 4,7,

= |[VEX]P+)) (Ve X, ;)%

]
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This simplifies the derivative divy(0F/0t) to

k

% divs, (0F/0) = S (RM(X,e5)X, e5) + divs (Vx X)
t=0 i=1
k
HVEXP = Y (Ve X, e)(Ve, X, e5).
ij=1

Finally, we get the second variation formula for area

Theorem 6.1 (Second Variation Formula).

i |22 d </ div (6F/8t)d2>
7.9 t — 3. I t
dt? t=0 dt]_g P
k
- / (Zvéxyhdwg(vx)()
2\ i=1
k k
N RM(X e, X &) + (D (Ve X, ei)”
i=1 i=1
_ Z (Ve; X, €i)(Ve, X, ej>)d2
,j=1
Moreover, if X is normal,
(8) (Ve, X, ej) = —(X,Vee5) = —(X, B(es, €5)).

Theorem 6.2. If X is normal and ﬁ =0, then

d2
| 1%l = / <|VLX|2 ZRM (X, e, X, €)
t=0 i=1

_ Z (e, €5), )dZ—i—/ (VxX,v)do.
0%

3,j=1

Minimization Problems.

Plateau Problem: Given T*~' C M an oriented boundary. Find %* with
0¥ =T and |X| = infyyy—r |X'|. The natural variations here are: X = 0 on

I'. Then ¥ has zero mean curvature, ﬁ =0,and 90X =T.

Homology: Given a € Hy(M,Z) an homology class. Find ¥¥ with [¥] = «
and |X| = inf{sy)—, [¥]. In this case, H =0and ¥ is closed.
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Free Boundary Problem: Given NP C M™. Find ¥¥ with 9% C N and
|X| = infysrcn [X|. The first variation formula gives

d
tzo\zt\ - —/E<ﬁ,X>dz+/62<X, v)do,

for any variation X such that X|sx, € TN. Then H= Oand v L T'N.

dt

Jacobi Operator. Assume now ¥ smooth, compact and ﬁ = 0. For a
given variation X = OF/0t, use the following notation for the first and
second variations

2 &
by d XX, X)= —
S and SR X) =

d
t=0

If X is normal to ¥ and X = 0 on 0%, then

|3¢].
t=0

28X, X) = — / (L X, X)dX,
P

where Ly is the Jacobi Operator
k k
LeX = AYX + (Y. RM(X,en)es)™ + D (Bles,ej), X) Blei ).
i=1 ij=1
Remaks:
(1) The last term on Jacobi Operator is known as Simons’ Operator
k

A<X) = Z <B(eiv ej)’ X>B(eiv ej)'
iji=1

(2) If X is normal and U is tangential, the normal connection V+ means
VX = (VpX)t.
(3) The normal Laplacian is defined as
k

1L Lol 1
A~X = Z <veiveiX - V(Veiei)TX)’
i=1
and satisfies the integration by parts formula

/ |VEX2dY = —/(X, AL X)dY.
% %

(4) Ly is an elliptic operator. Its spectrum is given by
M <A <...— +oo.
There is a L%-basis of eigenfunctions {X;};, i.e., Ly X; + A\ X; = 0.
Moreover, for each 1,

28 (X:, X;) = —/

(LyX;, X;)dY = /\i/ | X;|%dx.
% %
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Definition 6.3. The Morse index of ¥ is the number of negative eigenvalues
of Ly, counted with multiplicities.

Definition 6.4. ¥ ¢ M is stable if index of ¥ is zero. In this case
§22(X, X) > 0, for every admissible X.

Hypersurface Case: Suppose ¥"~! C M™" is two-sided (trivial normal
bundle). In this case the admissible vector fields can be written as X = fN,
for some f € C*°(X), where N is a globally defined unit normal to ¥. Then,
the first variation formula simplify to

(9) §E(X) = —/Ef<ﬁ,N)dZ: —/ZfHdZ,

where H = <ﬁ, N) is the mean curvature function of 3. About the second
variation formula, we have

(10) PN(X,X) = /E(|V2f|2—(Ric(N,N)+]B|2)f2)dE

- - /E fLsfds,

where Ly f = Axf + (Ric(N, N) + |B|?)f and B is the second fundamental
form. In this case, if ¥ is stable, then

(11) /Z(Ric(N, N) + |BJ?)f2dx 3/2|ng|de, for every f € C°(%).

This is known as the stability inequality.

Corollary 6.5. No two-sided closed minimal hypersurface Y"1 C M can
be stable if Ricpyy > 0.

Proof. Otherwise, plug f = 1 in the stability inequality to obtain
0< /(Rz’c(N, N) + |B|*)d% g/ Vs f|2dY = 0.
b b

This is a contradiction. O

7. MONOTONICITY FORMULA

Theorem 7.1 (Monotonicity formula for minimal submanifolds in R™). Let
¥F C R™ be a minimal surface (compact and with boundary %), so that
OXNB; =0, wherep € R, 0 < s <t and B, = BX"(p). Then

N2
1z VUENB)  VeIEnB) / I =)
¢ s (B\B)NE [T — P
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Remark: In particular, the density function

_ Vol(2N B,)

wyrk

Op(r)

is non-decreasing in 7, where wy, is the k-th dimensional volume of the k-th
dimensional unit disk. Note that if r — @, (r) is constant, then ¥ is a cone
with vertex p, because (z —p)V = 0.

Definition 7.2. The density of ¥ at p is defined to be 8, = lim,_,o 6,(r).
In particular, if p € ¥ and X is smooth at p, then 6, > 1.

Corollary 7.3. If p € ¥ and X is smooth at p, then

Vol(X N B,)

>0, >1.
wyrk - r=

Moreover, if Vol(¥ N B,) = Vol(D¥) = wyr¥, for some r > 0, then ¥ has to
be a cross sectional disk of radius .

Proof. The first claim is an immediate consequence of the monotonicity for-
mula. In case of equality Vol(X N B,) = Vol(DF), the monotonicity formula
also gives that X is a cone with vertex p. Since it is smooth at p, the X has
to be a cross sectional disk. O

Co-area Formula: Let F be a manifold, h : ¥ — R be a proper Lipschitz
function and f € L} (R). Then

(13) /{ oy [T = / t ( /{ . fdar> dr.

Remark: A good reference for the co-area formula is the book ”Lecture on
Geometric Measure Theory”, by Leon Simon.

Natural ambient vector fields. As usual, let eq,..., e, be the constant
vector fields given by the canonical direction on R™ and consider also the
vector field z — (x —p) = >0 (z; — pi)e.
Proposition 7.4. If ©% C R”, then

(1) divse; =0

(2) divs(x —p) = k.

This follows immediately from V,e; = 0 and V,x = v, for every v € R".

Proposition 7.5. If ©% C R" is minimal (ﬁ =0), then

(1) divs(e))T =0
(2) divs( — p)T = k.
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Remarks:

o Asf = div(Vsf)
e ¢; = Va;, then (e;)T = Vsua;

1

e (x—p)=1V]z —pl then (z — p)T =1

= §VE|ZL‘ - p|2
Corollary 7.6. If ©% c R™ is minimal (ﬁ =0), then
(1) AZQZ‘Z’ =0
(2) Aglx —p|* = 2k.
Proposition 7.7 (Convex hull property). Let ©* C R™ be a compact min-
imal surface with boundary 0%. Then X is contained in the convex hull

Conv(0X) of the boundary.

Definition 7.8. Let S be a subset of R™. Its convex hull is defined as being
the intersection of all half-spaces containing S.

Proof. A half-space H of R"™ can be written as H = {h < 0}, for some
function h(z) = ;" a;z; +b. Suppose 0¥ C H. Since hlpy < 0 and
Asxh = 0, then, by maximum principle, h < 0 in . This is true for each
half-space containing 9%, so ¥ C Conv(9X). O

Corollary 7.9. Let X2 C R" be a minimal disk and B be a ball so that
OX N B =1. Then, each component of ¥ N B is simply connected.

Proof. Suppose, by contradiction, there is a connect component of >N B that
is not simply connected. Take a closed curve v C 3N B that does not bound
a disk in X N B. Because ¥ is a disk, can find Q3 so that 92 = «. Since
) is minimal, the convex hull property property gives 2 C Conv(y) C B.
This is a contradiction. O

In general, the same proof gives

Corollary 7.10. Let ©¥ C R" be a minimal submanifold and B be a ball so
that OXNB = (. Then, the induced homomorphism Hy_1(XNB) — Hy_1(X)
18 tnjective.

Proof of monotonicity formula: Let d : ¥ — R be the distance function
to p, d(z) = |z — p| and vg(r) = Vol(¥ N B,). By co-area formula, can write

vg(r) = /EmB 1d%

1
= ——|Vxd|dX
/dgr ] =

r 1
= ———do; |dr
/0 ( /230an |V2d‘ >

, 1
= ——do,.
k() /mBr Ted

and, then
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Since ¥ is minimal we have divs(z —p)” =k, so
T _ : T _
/ ((x —p)",v)do, = / divg(x — p)* dX = kug(r).
$NOB, SNB,

Now we can use the above expressions to calculate

d<vk(7“)> _ o u(r)  Rug(r)

dr rk

rk rk+1

1 / 1 1 / T
= — do, — x—p) ,v)do,.
rk snoB, |V=d| rktl EQBBT« )l

But ((z —p)",v) = |(z — p)"| and

|(z —p)™]?

|z — p?

d (vg(r) 1/ 1
@ - = —|Vxd| ) do,
d7”< rk ) ™ Jsno, \|Vxd| Vd] Jdo
B S
>

rop, ™ [Vsd| [z —p|?

[ L e,
%

roB, |Vsd| |z —p[F+2 0"

Integrating from s to ¢ and applying the co-area formula again, we obtain

ur(t) wuk(s) /t / - |($—p)N|2dU dr
tk sk s snos, |Vsd| |z —p/F+2 "
N2
_ / (@ =) 5
(

Bi\Bs)N% |z — plk+2

1 [Vsdf? = (V)N ]2 =

Then

Monotonicity formula on Riemannian manifolds: Let (M "5) be a

Riemannian manifold and ¥* ¢ M be a minimal submanifold (H = 0).
Take p € M, rg < injectivity radius of M at p, 0 < s < t < rg. Let
d : ¥ — R be the distance function to p, d(z) = dy4(x,p). Consider the
vector field X = dVd.

In exponential coordinates around p, the Riemannian metric is given by
9i(x) = 0ij + O(|z[?).

Divergence in coordinates: 1f a vector field X is given in local coordinates
as X =% . X ’% then its divergence has the following expression

P
K3

. 1 ) i
legX = m Zzl 87172( deth )

Ezercise: If X = dVd, then dive X = k + O(|z|?).
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Adapting the euclidean proof: Let I(r) = fEmaBT do, and v(r) = fEﬂBT dx.

Take C' = C(p) > 0 so that divg X7 > k — Cr?, for sufficiently small r, this
constant is given by previous exercise. Then

rl(r) > / (XT,v)do, = / divs XTdy > / (k — Cr?)dx.
$NOB; SNB, SNB,
In conclusion, rl(r) > (k — Cr?)v(r). It is important that ¥ is minimal to

obtain that. Now, as in euclidean case, we use co-area formula to obtain

o (r) = /E L e ).

noB, |Vzd|
Putting everything together, v'(r) > %(1 — Cr?)v(r). This can be rewritten

Ar?
4 og <6v<7°>> >0,

dr rk

where A = C/2, depends on p. From this we have

Theorem 7.11 (Monotonicity in Riemannian manifolds). Let (M™,g) be
a Riemannian manifold, ¥* C M be a minimal submanifold and p € M.
Then there exists rog and A > 0, depending on p, such that

Ar? 1)(7’)

r—e o is non-decreasing in r, for r < rg.

Remark: If M is compact, we can choose rg and A uniform.
Corollary 7.12. Let M™ be a closed Riemannian manifold. Then there

exists § > 0 such that, for any closed minimal submanifold X* C M we have
Vol(3) > 6.

Proof. Take 1y and A as in the monotonicity formula. Suppose they are
uniform, as in the remark. If ¥¥ C M is a closed minimal submanifold, then
for each p € 3, we have

Ao/ YUE N Bropp) - 4 VOUEN B
(ro/2)k r—0+ rk
Therefore,
wi(ro/2)*

8. BERNSTEIN THEOREM

Theorem 8.1 (Bernstein Theorem, 1916). FEvery entire minimal graph in
R3 is a plane.

This means if  : R> — R is a solution to the minimal surface equation,
then u is a affine map: u(z,y) = ax + by + c.

The first remark is that minimal graphs are area-minimizing, we proved
this using calibration. This implies they have polynomial volume growth.
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Indeed, if ¥"~! C R” is area-minimizing and B,.(p) is a euclidean ball inter-
secting ¥, such that ¥ splits B,(p) in two components, then Vol(X N B, (p))
is at most the volume of the least component of 0B, (p) \ X:

1
Vol(£ N B,(p)) < ian,lrn_l,

where 0,1 is the volume of the unit (n — 1)-dimensional sphere. In partic-
ular, if ¥2 € R¥ is a minimal graph, we have

(14) area(¥ N B,) < Cr?.
Logarithmic cut-off trick. Recall the stability inequality, equation (11).

We can also choose the test functions on the stability inequality to be only
Lipschitz with compact support. For each R > 0, consider

1 ifr<R
nr(r) =< 2— %5 fR<r<R?
0 if R? <.

Let p € ¥ and r(x) = dx(p, x) be the intrinsic distance to p is ¥. We have
|Vsr| = 1. Note that 7(x) < |z — p| implies BZ(p) C ¥ N B,(p), and we see
that ¥ has quadratic area growth also with respect to the intrinsic balls:

(15) area(BZ(p)) < Cr2.
Plugging ngr o r = nr(r) in the stability inequality,
(16) [ AP < [ Ozl Pis

— | WPIsrlas
by

1
= —= —dZ
(log R)? /Bz \BE r2
Assume log R € N, then
2log R

(17) Z / —2d2 < Z / 2k— 2dZ
kelog R+1 7 B \BG 1 " k—log 17 B \BY,_1 ©
2log R
< Y ¢ = 2( M2 = e2ClogR,
k=log R+1

where the last estimate is a consequence of the quadratic area growth. In
conclusion,

e?C
1 A x<
(18) AP <

Make R — oo to conclude [y, |A%|d¥ = 0. This shows ¥ is totally geodesic,
then must be a plane. This proves Bernstein theorem.
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9. THE STABILITY CONDITION

A two-sided minimal hypersurface X"~1 c M™ is called stable if
—/ ¢pLopdy > 0, for all ¢ € C° (),
b

where Ly = Vs¢ + (|A|?> + Ric(N, N))¢, is the stability operator. Let
Q cC X. The spectrum of L with respect to € is given by a sequence
A1 < Ay <— o0, with respective eigenfunctions u;, i.e.,

Lu; + Aju; = 0,
with u; = 0 on 0€). The eigenspace of A is defined as
Ex={¢cC®E)NCYX): Lo+ p=0in Q and ¢ = 0 on 9N}.
Stability in © C ¥ means that A\;(L,Q) > 0, where

Jo @LpdE
Jo $2dX%
Lemma 9.1. Suppose § is connected. If u : @ — R is continuous, smooth

in Q, u=0 ondw, u#0 and Lu+ \u =0, then |u| > 0 in Q. Moreover,
dimE)\l =1.

(19) M(L,Q) :inf{Q(gzb) = ¢ #0and ¢ =0on 89}.

Remark: This statement is actually true for any operator of type L = V +g,
where ¢ is a function. This is an application of strong maximum principle:

Theorem 9.2 (Strong maximum principle). Suppose

Zaw 88v+2b )0 + c(x)v =0,

where (a;j(x))i; is positive definite for every x € Q. If v <0 and v(p) =0
for some p € Q, then v = 0.

Proof. Observe |V|u|| = |Vu| almost everywhere, this implies Q(|u|) =
Q(u) = A1, and then |ul is again a first eigenfunction of L:

Alu|l +qlul =0  inQ
lul| =0 on 0f.

By the maximum principle we conclude |u| > 0. To proof the second as-
sumption, suppose by contradiction we have two linearly independent eigen-
functions uj,us € E),, then fQ uiusdd = 0. But this is not possible because
both u; and us do not change sign inside 2. This also proves that the first
eigenfunction is the unique with the property of not changing the sign. [

Proposition 9.3. Let X"~! ¢ M™ be a two-sided minimal hypersurface and
Q C ¥ be a bounded domain. If there exists u > 0 in Q such that Lu = 0,
then ) is stable.
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Proof. The operator L here is given by L = A + ¢, where ¢ = |A]? +
Ric(N, N). Consider w := logu and observe that

n—1

(200 Aw=Allogu) =Y (

1=

—q — [Vl

%) _Au |Vur
1_77 2

u u u

For any f € C2°(X), we have

(21) —2/Qf<Vf,Vw>dE:/Qf2Aw:—/qusz—/Q\VwFﬂdE.

By Young inequality, we infer

/qf2d2+/ |Vw|? f2dy = 2/f<Vf,Vw>dE
Q Q Q

IN

/ IV f2ds +/ PIVw]ds,
Q Q
and then, we see that stability holds, [¢f? < [|Vf]2. O

Exercise: Let ¥"~1 C M™ be a two-sided minimal surface, with unit normal
vector NV, and X be a Killing field on M. Then L((N, X)) = 0. (A vector
field X on M is called a Killing field is its flow is by ambient isometries.)

Remark 1: This exercise gives a new proof of the fact that minimal graphs
are stable. Suppose ¥"~! C R” is a minimal graph ¥ = graph(u). Observe
the function (0/0x,, N) is positive along ¥. Moreover, by exercise it satisfies
L({0/0zn, N)) = 0. Use the previous proposition to conclude stability.

Remark 2: The solutions to Lu = 0 are called Jacobi fields.

Definition 9.4. A Riemannian manifold ¥ is parabolic if the only positive
superharmonic, Au < 0, functions v on ¥ are the constant functions.

9.1. Proposition. If dimX = 2 and area(X N B,) < Cr?, then ¥ is para-
bolic.
Proof. Consider w := logu, where u is a function on ¥ so that v > 0 and
Au < 0. We have then
A 2
T
w u

If X = Vw, then divX > |X|2. For any cut-off function n € C°(X), we see

/ X [2dY < / ndivXdy
P %

< —|Vw|*

= —2/77<X,V17>d2
b

1
2/772\)(|2+/ V.
> >

IA
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So there exists a positive constant C' > 0 such that, for every smooth com-
pactly supported test functions 7, we have

(22) [rxpaz<c [ oo
2 b

Apply the logarithmic cut-off trick to get X = 0 and conclude u is constant.
O

Corollary 9.5. Any entire minimal graph is parabolic.

In particular, if we define u = (9,,, N) > 0, we get Au = —|A|?u < 0. By
parabolicity, we have u is constant and then 0 = Au. This implies |A|?> = 0
and Y must be a plane.

9.2. Stability and positive curvature. We have now some application
of the stability condition in the presence of a positive curvature assumption,
in order to get topological and geometric restrictions.

9.2.1. Fundamental group and sec > 0: Let v C M be a closed geodesic in
M™ and X be a normal variation of «v. The second variation formula is this
case is given by

d2

(23) PTe)

e = / IVEX12 — RM(X, o, X, 7)]ds.
t=0 Yy

Remark: If there exists a parallel variation X and secy; > 0, then v is
unstable.

Theorem 9.6 (Synge). Let M>" be a close orientable Riemannian manifold
with positive sectional curvature. Then w1 (M) = {1}.

Proof. Suppose, by contradiction, 7 (M) = {1} and find ~, a closed geo-
desic minimizing length in a nontrivial homology class. Consider the parallel
transport P : <'y’>$ — <’y’>f; along ~y, for some fixed p € 7. It is a linear
orientation-preserving isometry. By linear algebra and dimension assump-
tion, there exists v € (7/)7- such that P(v) =v. If V is the normal variation

on 7y given by parallel transport of v, the second variation formula (23) gives

d2
p7e] I%IZ—/RM(X,V’,X,'Y’)dS<0~
t=0 v

This contradicts the fact that v minimizes length in its homology class. [J
Corollary 9.7. There is no metric with sec > 0 is RP? x RP?.

Synge gives no restriction in the case of the product of two-spheres. In
fact, this is a famous open problem:

Hopf Conjecture: Does S? x S? has a metric with sec > 07
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9.2.2. First Betti number and Ric > 0: There is an analogous result to
Synge theorem for the first Betti number, b1 (M), of Riemannian manifolds
with positive Ricci curvature.

Theorem 9.8. Let M™ be an orientable closed Riemannian manifold with
Ricyr > 0. Then, by(M) = 0.

Proof. By Poincaré duality, we know that H'(M™,Z) ~ H,,_1(M",Z). Sup-
pose that H,,_1(M",Z) # 0 and choose a nontrivial a € H,_1(M",Z). Min-
imize the volume in the class a to find a closed smooth minimal hypersurface
Y7~ ¢ M™ such that

o Y] =aq;

e Vol(X) = minyy¢, Vol(X).
In particular, ¥ is stable. Choose f = 1 in the stability inequality to obtain

0 :/ |V f|?ds > /(Ric(N, N) + |[A}) f2d% > 0,
b b
and this is a contradiction. Then by (M) = 0. O

Remark: Although the result is true for any dimension, this particular proof
applies only in case n < 7, to be sure the volume minimizer is smooth.
One can use Bochner Technique give a proof that work without dimension
assumption.

Theorem 9.9 (Bonnet-Myers). Let M™ be a complete Riemannian manifold
with Ricyy > (n — 1)k > 0. Then diam(M) < 7/Vk. In particular, M is
compact and 71 (M) is finite.

The proof of this result is a contradiction argument. If diam(M) > w/Vk,
then there exists a minimizing geodesic of length [ > 7/ Vk. Then we
produce a variation of this geodesic with L"”(0) < 0 and get a contradiction.

9.2.3. Positive Scalar Curvature: We describe now the Schoen-Yau ideas to
deal with the case where the positive curvature assumption is on the scalar
curvature instead of sectional or Ricci curvatures.

Let ¥"~! € M™ be a hypersurface and p € ¥. Consider {eq,...,e, 1} C
T,% orthonormal basis and let e, = N be the unit vector normal to X.
The second fundamental form is written as h;; = (B(es;, e;), N). Recall the
Gauss equation:

R = Rify + hikhji — hahjp.
Sum in 7 and k to obtain
RiC]Zl = Ricj-\{ — RM + thl — Z hilhij-
(]

njnl

Now, sum in j and [ to get

R” = R™ — Ric}, — Ricpl, + H* = > hi;.
12
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This can be rewritten as
(24) R = RM _ 2Ric(N,N) + H? — |A]?,

where R* and RM are the scalar curvatures of ¥ and M, respectively. From
this, in case H = 0, we can write the integrand of the stability inequality in
terms of scalar curvature and the norm of second fundamental form:

RY_RE AP
> 2 2

If ¥2 ¢ M3 is a closed two-sided stable minimal surface, then R> = 2K,
and the above expression together with stability equation gives

(25) Ric(N,N) + |A]? =

RM Al?

(26) [iwsspas= [ (% - mos 1)
n n 2 2
for every f € C°(X). Take f =1 and apply Gauss-Bonnet to obtain:
RM AP?
(27) 0 > /(—KZ+H>d2
s\ 2 2
1
b

Theorem 9.10 (Schoen-Yau). Let (M3,g) be a compact orientable Rie-
mannian manifold and ¥ C M be a stable closed oriented minimal surface,
then
(a) If RM >0, then X is diffeomorphic to S?;
(b) If RM >0, then either
(1) ¥ is diffeomorphic to S®
(2) X is a flat, totally geodesic torus.

Proof. By stability condition and Gauss-Bonnet, we have (27). So, in case
of RM > 0, we conclude

21 (%) > ;/ (RM +1A]%) dx > 0,
%

then ¥ is diffeomorphic either to S? or to a torus 72. If ¥ ~ T2, then
x(2) = 0 and we conclude RM = 0 along ¥ and |A|> = 0. Since

/ ¢pLopdY > 0, for all ¢ € C(X),
¥

and [1L(1)dX = 0, we see the constant function 1 is the first eigenfunction
of the stability operator L. Finally, L(1) = 0 and we have Ric(N,N) = 0
on ¥ and also ¥ is flat, R* = 0. O

An important consequence of this theorem is:

Theorem 9.11 (Schoen-Yau and Gromov-Lawson). T° has no metric of
positive scalar curvature.

Indeed, any (73, g) contains a stable minimal torus if R > 0.
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Remark: The previous result is also valid for any dimensions. If n < 7, there
is also a proof with minimal hypersurfaces. In general, the argument is due
to Gromov and Lawson.

Theorem 9.12 (Fischer-Colbrie and Schoen). Let (M3,g) be a oriented
Riemannian manifold with RM > 0 and 2 C M be a complete oriented
noncompact stable minimal surface. Then the universal cover ¥ of ¥ is
conformally equivalent to C.

9.3. Corollary. If ¥? C R3 is complete oriented stable minimal surface,
then it is a totally geodesic plane.

9.4. Theorem. [Fischer-Colbrie and Schoen] Let M™ be a complete non-
compact manifold. The following statements are equivalent:

(1) M(L,Q) >0, for every Q CC M;
(2) M(L,Q) > 0, for every Q CC M;
(3) there exists u >0 on M that solves Lu = 0.

Proof: (3) = (1): this is lemma 9.3.

(1) = (2): Suppose Q cC € and A\i(L,€) > 0. Choose a function u such
that

(28) O(u) = 2\ (1.0,

Suppose A1 (L, ) = A\ (L, Q) and define @ on ' by

N 1€ if x € Q
i(r) = { 0 otherwise .

Observe that Q(u) = Q(u) = A\ (L, 2), then @ is a first eigenfunction to L
in . This is a contradiction, because @ vanishes in some open set. Since
we always have A\ (L, Q") < A\ (L,), in this case we conclude

0< )\1(L, Q/) < )\1(L, Q)

(2) = (3): The goal is to construct solutions ug to

Lup =0 in Bgr(p)
ur >0 in Br(p)
ur =1 on OBg(p),

where p € M and R > 0 are fixed. Suppose we have achieved our goal.
Consider tg(x) = ur(z)/ur(p) and observe Lir = 0 and ugr(p) = 1.
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9.5. Harnack Inequality. Consider a second order elliptic operator

Lu—ZaU 88u+2b )Oiu + ¢(z)u,

where (ai;j(x))i; is positive definite for every x € Q and let K C Q be a
compact subset. There exists C > 0, depending only on a;j,b;,c and K,
such that any positive solution of Lu = 0 satisfies

supu < C'inf u.
K K

As a consequence of this inequality, if we fix a compact subset K containing
p, there is a positive C' = C(K) so that

suptugr < Cinfur < C,
K K
for sufficiently large R. In particular, ||ig||coxy < C.

9.6. Schoulder Estimates. Consider a second order elliptic operator

Lu—Za” 88u—|—Zb )Oju + c(z)u,

where (a;j(x))ij is positive definite for every x € Q and K C Q' CC Q.
There exists C > 0, depending only on a;j,b;,c and K,Q, such that any
solution of Lu = f satisfies

ullcze iy < C (Jullcory + I fllca@r)) -
Use Shoulder estimates, to obtain
URl||c2.aky < C, for every R.

Apply Arzela-Ascoli to extract a subsequence g, so that ig, — u in CZQOC
Follow form the construction of maps iy that

Lu=0 in M
u >0 in M
u=1 at p.

By Maximum principle, we conclude u > 0 in M. The existence of such
a function imply stability, condition (1), by lemma 9.3. Need to prove the
starting goal.

Write ug = vg + 1 and try to solve

{ Lvg = —L(1)  in Bg(p)
vp =0 on OBR(p).
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9.7. Fredholm Alternative. Either the problem

Lv=20 in )
v=2>0 on 0f)

has a nontrivial solution, or the problem

Lv=f in §2
v=20 on 0N}

can always be solved.

In our case, A1 (L, Q) > 0 implies the homogeneous system in the Fredholm
alternative has v = 0 as the only solution with © = Bpg(p). Then it is
possible to find vg as we want. Define ug = vg + 1 and observe Lug = 0
and ur = 1 on 0Bg(p). Suppose we have ur < 0 somewhere. Take a
connected component 2 of {ugr < 0}, we have

Lur =0 in Q
{ up =0 on 0f).
This contradicts A;(L,€) > 0. Therefore ug > 0. Moreover, by maximum
principle, ug > 0 in Br(p), as we need. This finishes the proof of Fischer-
Colbrie and Schoen theorem about the stability condition.
An application of this result is:

Corollary 9.13. Let M3 be an oriented Riemannian manifold and Y2 cM
be a stable oriented minimal surface, then any covering f : % — M of X is
again stable.

Remark: In this statement, we have a minimal immersion f : ¥ — M
and a isometric covering map 7 : X — 3. The claim is that the minimal
immersionf o : ¥ — M is stable.

Proof. Since X is stable, there exists a v > 0 on ¥ with Lu = 0. Consider
the function 4 = wom and observe this is also a positive solution of Lyu = 0.
This implies X is stable. ]

Example: Consider the constant curvature metric on RP? and let ¥? = RP?
be the canonical projective plane inside RP3. Although ¥ is area-minimizing
surface inside RP3, and in particular stable, its double cover f : S? — RP3
is not stable.

9.8. Theorem. Let (M?3,g) be a complete, oriented 3-manifold with positive

scalar curvature and X2 C M? be a non-compact, oriented, stable minimal

surface. Then the universal cover ¥ of ¥ is conformally equivalent to C.
This result has the following important consequence
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9.9. Corollary. [Do Carmo and Peng, Fischer-Colbrie and Schoen| Let
Y2 C R3 be a complete oriented stable minimal surface, then ¥ is a flat
plane.

Proof of 9.9. Let f : 3 — R? be the immersion of the universal cover in RR3.
Since ¥ is stable, Theorem 9.8 implies ¥ is conformally equivalent to C. We
have also f is stable and the stability condition gives

(29) /E VIR AR >0, forall f € C=(5).

By item (3) in Theorem 9.4, there exists a function u > 0 such that Au +
|A]?u = 0. In particular, Au = —|A|?u < 0, i.e., u is superharmonic. Recall
conformal changes of metric formula for the Laplace operator in this case is:

(30) if §g=e%g, then Aj(f)=e A f).

Then Acu < 0, and we conclude u is constant. This implies Aju = 0 and,
finally, |A|?> = 0. Being totally geodesic and complete, X is a flat plane. [

In these notes we give two proofs for Theorem 9.8, the first following the
ideas in the original arguments and later we give a proof using Colding and
Minicozzi curvature estimates.

In the first proof we use the following property of dimension n = 2:

(31) / |Vyf|?dv, is conformally invariant.

Proof 1 of 9.8. In this case stability condition means
RM Al?
(32) /~|Vf|2—<—Ki+| ‘)-ﬂzo,
$ 2 2

for every f € C°(%). Because RM > 0, we conclude
(33) / V> + Ksf> >0, forall feCX(%).
S

Suppose, ¥ with the induced metric g is conformally equivalent to the unit
disk D? and let g = e?“ds?, where ds? = dxdy is the standard metric on D?.
In this case, we have

(34) dvg = e*"dzdy and Kg=e *Agu.

Then, stability condition gives

(35) / (Vg f1? + e 2 (Aou) f2) dvg > 0, for all f € C2(D).
b

Apply expression (31) to conclude

6 [ (VorP+ (B0 f?) dudy >0, for all £ € CX(0),
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Choose ¢ € C®°(D?) and f = (- e to apply the stability inequality and
obtain, via integration by parts,

(37) / e Vou[2dwdy — / 2|V *dudy < 0,
D2 D2
and then
(38) / IV e " Pdvy — / IV ¢|2dady < 0.
]D)2 D?

Use r to denote the intrinsic distance in ¥ with respect to g. Let ¢ = ¢ (r)
be a radial function such that

e ((r=1,if0<r <R

e 0<((r)<1land|¢|<c-R! everywhere;

e ((r)=0,if 2R <.
Plugging this function in the expression above allows us to conclude

c c
39 Vee “[*dv </ drdy < —.
(39) /3ng | 9= Re [, Y= Re
Letting R — oo, we see [|Voe ™| = 0, then u is constant. This is a
contradiction, because ds? is not complete. By Uniformization Theorem, ¥
is conformally equivalent to C. U

Colding and Minicozzi estimates. Let £ C R3. We use BZ (z0) to
denote the intrinsic ball in ¥ of radius ro and centered at g, not intersecting
the cut locus of zy. Apply Gauss-Bonnet Theorem to 0B, (xg), with 0 <
r < ro, to obtain

(40) / Kd¥ + Ky(s)ds = 2m.
B dB,

Use L(r) = [, p, ds to denote the length of geodesic circle of radius 7. The
first variation formula gives

(41) L'(r) = Ky(s)ds = 2m — Kd¥.
OB B

Let A(r)= [ , dvg be the area of the geodesic disk of radius r. By co-area
formula, A(r) can be rewritten as

(42) A(r) = /0 ' ( /a . ds> dt = /0 "Lt

Integrating, we obtain

“ L(ro) = 270 — /0 ” ( /B T Kdz> dr:
Alrg) = mrg — /OTO /Ot (/B KdE) drdt;

(1)
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()

Y
A(ro) —mg—/ o =) gy,
s 2

70

Proof of (¢). Consider f(t) fo (fB KdE) dr and observe f(0) = 0. Take
g(t) =271 (rg — t)? and rewrite the integral of f, using integral by parts:

Amf@ﬁ - Amﬂwﬂﬁﬂt
/07"0 (7’0;15)2 ( . Kdat> dt
m

2
- / ( / (ro—#)° Kdat) dt
0 OB; 2 OB,

N2
:/ (ro—1)" s
B 2

70

0

Suppose X2 C R3 is a stable minimal surface. Gauss equation gives
2K = —|A[]%. Plugging f = " in the stability inequality to obtain

o [ Je()

0 0
v Tg — T 2<A(ro)
2 - 4

As a corollary of last expression we have the following result:

Hence, we can conclude

N2
A(ro) — mr2 = —/ {ro—r)° 3 ") kas < /
B B

70 70

9.10. Theorem. If ¥? C R? is a stable minimal surface and B (z0) C B

does not intersect the cut locus of xo, then area( B (zo)) < 4” ra.
Back to the formula

A
A(rg) = mrd +/ —(ro —1)%
By 4
observe, for each 0 < t < rg, we have

4 Al?
R R B L ST Py P
3 BZ 4

ro—t 'rot

Then we have the second consequence of this analysis: for ¢t = ry/2 we get

(a4 [, 1<t
BY, 3

P

At this point we are able to present the second proof of Theorem 9.8.
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Proof 2 of 9.8. Let ¥2 C R3 be an oriented stable complete minimal sur-
face and ¥ be the universal cover of ¥ with the covering metric. The
stability condition passes to > and then, Colding-Minicozzi estimates give
area(B}; (z)) < 4Zr2. Use Proposition 9.1 to conclude > is parabolic. Be-
cause of that 3 is conformally equivalent to C. (]

About higher dimension, this is still an open problem. Actually, there is
a conjecture by Richard Schoen that says the result must be the same in
euclidean 4-dimensional space:

Conjecture. Let 3 C R?* be an oriented stable complete minimal surface.
Then X is a hyperplane.

10. S1MONS’ EQUATION

Let M"™ be a Riemannian manifold and ¥"~! ¢ M™. For a given p € X,
consider {e; ?:_11 an orthonormal basis of T,,X and take e, = N to be the
unit normal to ¥ in M.

Theorem 10.1 (Simons’ Equation).
A[AP =2|VAP+2)  hijViV;H —2|A|* + 2HtrA>+ Rmxhxh+V Rmxh.
1,J
Corollary 10.2. Let " ! C R” be a minimal hypersurface. Then
A|AP? = 2|VA]2 —2|A%
Definitions, notations and useful formulas.

Covariant derivative. If T is a tensor T'(X7y, ..., X, ) of order r, its covariant
derivative is a tensor of order r + 1, denoted by VT and defined as

T
VI(X1,.. o, Xr1) = Xt T(Xa, ., X)) =Y T(Xn,. 0, Vi, Xy, Xy,
=1

Indez notation. Let T be a tensor of order r, the index notation for 7" and
its derivative on the chosen orthonormal basis are

E :T(eil,...,eir)

1.0

and

ﬂl--.ir;j = VejT(eil, .. .,eir) = VjT(eila e ,GZ'T) = VT(eil, .. .,eiT,ej).
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Elements of Simons’ equation. In the Simons’ equation A is the symmetric
tensor of order 2 defined by

hij = (B(ei,e;), N) = (A(e:), ej) = —(Ve,en, €5),

where B is the second fundamental form of ¥ C M and A is the shape
operator. The Riemann curvature tensor Rf\fkl appears on the formula as
Rm. The last two terms with the x notation must be understood as sums of
type habhcdR%d, without derivatives, in the case of Rm % h * h. The norm
squared of shape operator is

n—1
VAP = > B
ij k=1

Finally, the Laplace operator applied on |A|? means
2 2 2
AlA]" = AZ(Z hij) = Z (Z hij);kk
(2%] k (2]
where the derivatives here are the intrinsic covariant derivatives in X.

Fundamental equations. Recall the fundamental Gauss and Codazzi equa-
tions, respectively given by:

Rizjkl = R%cl + hithji, — highj
and

M o _ g
Roijie = Niksj — higsk-

Second covariant derivative. Let T be a tensor of order r on "~ and V, W
be vector fields on ¥. The following formula shows that in order to commute
covariant derivatives of T', one has to add a curvature correction term

(Vv VwT = VwVyT)(X1,...,X,) =Y T(X1,...,RW,V)X;,..., X,),
=1

where R is the Riemann curvature tensor of . Is this calculation it is not
relevant that ¥ is a submanifold of M.

Proof. First, it is important to note that the second derivative of 1" in the
formula means

VyVwT(Xy,....X,) = Vy(VD)(Xy,..., X, W)
= V(VT)(Xy,..., X, W, V).
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By definition of covariant derivative,
VyVwT(Xy,...,X,) = VI(VT)(Xy,...,X,,W))
= (VD) X, Vv X, X W)
i=1

(V) (X1, .. Xy, VW)
— VW(T(X,..., X))

r

_ZV(T(Xl, L VwXj, X))

= W(T(Xy,...,VvXi,..., X))
i=1

+ T Vv X, VX )
i=1 ki
T
+> T(X1,..., VwVyXi,..., X,)
i=1
—(VyW)T(X4,...,X;)
,
+> (X1, Vo) Xj, o Xr).
j=1
Observe the second and third terms together form a symmetric expression
on V and W. The fourth term has also this symmetry. The first and sixth

terms do not appear on the formula because of the symmetry of Riemannian
connexion, [V, W] =VyW — Vy V. O

In the index notation, we have

n—1 r
(45) Ty .ivije = Tivoiniig + D BpigieTir piv
p=11=1

where the p index on 7' is on the [-th entry and R(e;, ej)e = Zz;ll Rijipep.

FExercise: Prove that
M M
Rnijk;k = Rnijk;k + Rm * ha

where the covariant derivative on the right hand side is on M.
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Proof of Simons’ equation. Start with

A’AF = Z(Zhlgj)kk
= 22 hzjhzjk

7]7

= 22 hu 5T 22 hijhij;kk-

7]7 i:jzk

Keep the first term and apply Codazzi to the second,

Zhijhij;kk = Zhu zgk

i?jvk 7]7

= Z hl] iksj m]k)

7]7

= Zh”hzkjk ZhZ]anjkk

7]7 7.77

All derivatives here are intrinsic of 3, including the one on the Riemann
curvature tensor. Can think of Rm jk As a tensor of order 3 on X, then the

derivative Rm-jk_  on the formula is also intrinsic. Use the exercise to get

Zh”ijkk Rm* h*xh+ VRmxh.
?.]?

Use the symmetry of h, the formula to commute the second derivatives, (45),
and Gauss equation to obtain

Zhijhik;jk = Zhijhki;jk

1,5,k .5,k
n—1
_ I . ) Y .
- Z hijhuisk; + Z hij Z(Rpikjhpk + Rpkkjhw)
1,5,k 1,5,k p=1
= Z hijhise
1,5,k

= > i ((hprhij = hpihi) bk + (hpkhig — T i),
i7j7k7p
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up to some Rm * h x h term. Simplifying, using Codazzi and the exercise
again, we have

> hijhige = > hij(haks + RYga)y — 1A+ > hijhpihuhay

1,5,k 1,5,k i,5,k,p
= ) highikis — LAY+ Y hijhpihrehap
4,5,k i,9,k,p
= > hijViV;H —|A]* + HtrA?
Z‘?j

up to VRm x h + Rm * h x h terms. Put everything together to conclude
AJAP = 2[VAP+Rmshxh+VRmxh+2 hijhi;i
1,5,k
= 2VAP+2) hi;ViV;H — 2| A + 2Htr A%,
ij

up to VRm x h + Rm % h x h terms. This concludes the proof.

11. SCHOEN-SIMON-YAU THEOREM
In this section we present the following result:

11.1. Theorem. [Schoen-Simon-Yau] Let 3"~1 C R™ be an oriented com-
plete stable minimal hypersurface such that
Vol(¥ N Bg)
sup ———=
R>0 Rl
and n < 6. Then X is a hyperplane.
In order to prove this we need to develop two preliminary steps, the first

is Simons’ Inequality and the second is the application of stability inequality
for |A|1*9 . f, where f is any test function f € C°(X).

(46) <(C < oo

Simons’ Inequality. Recall Simons’ equation A|A|? = 2|VA|? — 2|A[4,
where |V A|? and | A|? can be written, in an orthonormal basis {e;}/'"]' C T,

as B
|VA|2 = thzj,k and ’A‘Q = Zhi]’
irjk ij
and hij = <B(€i,€j),N>.
Observe V (|A[*) = 2|A|V|A], this gives
AAPIVIAIP = V(AP
2

= > (Zh?j)
k i,j ik
2
= 4Z<Zhij-hij;k) .
k 7]
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Choose {e;}1'~/' such that at p we have h;;(p) = \;8;;. Then, can rewrite
the expression above as

2
APTIAR = 3 (At
k i

< 2(54) ()
= |47 th,

In particular, we have

(47) VIAlI* < th

We analyze separately the right-hand side of last expression, using the sym-
metries of second fundamental form h;j., = hji, and hijx = h,;, and
minimality condition }; hj; = 0:

Zh‘mk = thzk+zhzzz

i#k
2
= Zhuk Z<_Zhjj;i)
i#£k i VES
S Zhuk_l_z(n_ Zhjﬂ
i#k ) jFi
< n -1 Z hw ik
z;ék
< Z hzk i
i#k i#k
- @ SR Z B2
= 9 ik;i ikik
i#£k i#£k

Hence, we are able to conclude that

<1+£1>|V|Ar|2 < DMt 3 Moot 3 M

i#k ik
Zh”k = VA2

0,5,k

IN

Exercise. Prove equality holds if ¥2  R? is minimal.
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11.2. Proposition. [Simons’ Inequality] If X"~ C R” is a minimal hyper-
surface, then

2
[AJAJA] > —|V]A[* - |A]%

Proof. By Simons’ equation and previous analysis, we have
21A|AIA] +2|VIA? = 2|VA]? —2/A*
> 2(1 + n:) IV|A|]> - 2|4]%
Simplifying we obtain the above inequality. ([
11.2.1. Remark. This makes sense only in the weak sense.

Stability inequality to |A|'T9f. Apply stability inequality to |A|'T9f,
where f € C(X):

/ ‘A|4+2qf2d2
%

IN

/ V(A ) Pds
>
- / (1 + QIA(TIADS + AV f2ds
= (149 / AP 2|V | | Pds
>
+2(1+ ) / A2 £ (7| A,V f)dS
>

APV £ 12adx.

n /E AT £

We estimate the second term in the right-hand side of last expression
using Young inequality with small §:

/E A2 (V| A,V f)

Janvianiaovs)
< 6 [1APTIAIR +00) [ 1R s
And the stability inequality becomes
LA < (@ 0+ 6) [ 1APIRITIAIR +00) [ 1P s

The first term in the right-hand side of last expression is analyzed using
Simons’ Inequality multiplied by |A|?7f2:

2
[rareajapsas = 2 [ japRwiapis - [ A
by n—1Js b
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Integrating by parts the left-hand side, we have

(14204 20) [apaviapsas < [ lapepas
n — 1 b b
- [ 1apar(914.91).
)
Use Young with ¢ again to conclude
(1 +2q + SN 5) / |APPYV|A|2f2dy < / |A|YT29 24y
n — 1 b)) »

+(0) [ 1P 1P
b
Putting everything together we obtain

1+q)?+6 -~
A4+2q 2< ( A4+2q 2—1—06 / A2+2qv 2.
[ < B0 A o) [ e

The next step is to observe the existence of small § > 0 with the property

(1+q)%+6

<1
1+2¢+ 2 -6

is equivalent to (1 +¢)? <1+ 2q + % In particular, this is equivalent to

< 2
9 Vn—1

In this case we conclude there exists C' > 0 for which

(48) / A2 245 < C / APV 5P,
> >

for every f € C°(X). Consider now, the following change of variables

f=¢P. Then, Vf =p-¢P~! - V¢ and expression (48) gives

/Z‘A|4+2q¢2pd2 < C/E’A‘QJF2qp2¢2p2|v¢’2'

Observe i%g + ﬁ =1, and apply Holder inequality:

242q 1
[ gy < c’( / <|A|2+2q¢2p—2>3¢53)4“q( / <|v¢|2>2+q)

Finally, choose p = 2 4+ ¢ and observe this gives

(49) /E |A|?P¢p?Pdy. < C, /E IVo|?dx,

for every ¢ € C°(X) and p € [2,2 + {/-25). The constant C,, > 0 is not

n—1
the same as in equation (48), but it is also independent of test function ¢.
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11.2.2. Remark. We have not use n < 6 yet.

Proof of 11.1. Use r to denote the intrinsic distance function to zg € 3. Fix
R >0 and let ¢ = ¢(r) be such that

(a) ¢(r) =1,if0<r < R

(b) 0 < ¢(r) <1 and |¢'(r)] < R7Y, everywhere;

(c) ¢(r)=0,if 2R < r.
Put ¢ on equation (49) to get

1 2
/ |AI?PdY. < Oy <R> pd¥
YXNBgr YXNBsgr
< C-Vol(XNByg)-R™%
< C.Rnflpr.

To make sure we can choose p so that n — 1 — 2p < 0 we need the following
dimension restriction:

2 S n—1
n—1 2
One can easily check this holds if n < 6. O

2+

Open problems. The same result is still open without the density bound
(46). For dimension n = 7 it is open even with the density bound.

11.2.3. Remark. The result is known to be false for n = 8, the counterex-
ample is known as Simons’ cone.

We have seen that minimal graphs are area minimizing, in particular,
stable and have polynomial volume growth.

11.3. Bernstein Theorem. Suppose u : R*~' — R is a solution to the
minimal surface equation and n < 8. Then u is a affine function.

11.3.1. Remark. There exists non-trivial entire minimal graph in R?. The
example is given by Bombieri, De Giorgi and Giusti.

Fleming’s approach to Bernstein Theorem. Let ¥ = graph(u) be a
minimal entire graph. It is already known ¥ is an area minimizing boundary
¥ = 9U. Choose a sequence r; > 0, r; — 0. We consider then the blow-
down of X

(50) Yj=r;¥ and X;=0U;.

Y); is also area minimizing. Moreover, if R > 0 if fixed we have volume and
area bounds

(51)  Vol(U;N Bg) < w,R" and area(X; N Br) < 0,1 R

Apply Compactness Theorem for integral currents, to obtain a subsequence
U; converging to Uy in the sense of volumes. Furthermore, there exists
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Yoo = OUs = lim; ¥;, and X is again area minimizing. About the area of
the limit, we have

area(¥oo N Br) = lim area(¥X; N BR)

j—)OO
= lim " larea (E N BR> )
j—)OO J T
Hence, we obtain information about the density of area of X on each ball of

radius R:

area(Xs) N Br
Rn—1

area <Z N BR>
= lim "

j—o0 R n—1
7,7_

area(X N Bs)
= lim ——,
j—00 Snfl

0¥, R) =

i.e., O(X, R) coincide with the density of 3 at infinity for every R > 0. By
monotonicity formula we infer ., has to be a cone, and this cone is area
minimizing. Use now the following result by Simons:

Simons: There is no non-trivial stable minimal cones in R” for n < 7.

Then, our ¥, is a hyperplane, possibly with multiplicities. But here the
multiplicity is one because Y, is an area minimizing boundary Y., = OU.
So, ©(X, 00) = 1. Monotonicity formula again imply ¥ is a cone with vertex
p, for some p € 3. Since ¥ is smooth, it must be a hyperplane.

11.3.2. Remark. The Simons’ cone is the cone over S?’(%) X S%%) c ST,
It is a stable minimal hypersurface that is area-minimizing. The same holds

for R?™, as long as m > 4.

12. POINTWISE CURVATURE ESTIMATES

The curvature estimates for stable surfaces in 3-manifolds were devel-
oped by Heinz, Osserman and Schoen. The basic steps are the mean-value
inequality and e-regularity. The goal of this section is to introduce those
curvature estimates. It is also possible to obtain curvature estimates for con-
stant mean-curvature surfaces, as done by Bérard and Hauswirth. Another
method to obtain curvature bounds is the blow-up technique developed by
Rosenberg, Souam and Toubiana.

The geometric significance of curvature estimates is that bounds on |A|?
imply graphical representation, as in the following result:
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12.1. Lemma. Let £2 C R3 be an immersed surface such that:

o supy [A* < g5
o dy(xz,0%) > 2.

Then,
(i) B3 (x) is a graph of some function u over T,% and |Vu| < 1, |[V2u| <

1/v2;

(ii) the connected component of Bi(x) N'Y that contains x is contained

Proof of (i). Use N to denote the unit normal vector field along ¥. Observe

|IDN| < |A] < 1/4. Suppose 7 is a minimizing geodesic connecting x to y in
Y. Integrating d/dtN(v(t)), we obtain

1 1

N(z)—- N <—-.2=—

N@) - NI < ;2=

In particular, dg2(N(z), N(y)) < T and B3 (z) is a graph of some function
u over 1,%. Hence, N can be written as

(Vu, 1)
V1+ Va2
This implies gradient estimates, because

L+ [Vaf? = (N(2), N()) ™ = (cos(dgz (N (), N(y)))) > < 2.

Also, the control on |V2u| comes from
2,12
< ap,
1+ |Vul?)3
U

12.1.1. Remark. Quasilinear elliptic PDE theory imply bounds on all deriva-
tives of u, precisely, |V*u| < Cy for every k > 3.

Proof of (ii). Consider a minimizing geodesic v : [0,2] — 3, v(0) = x and
v(2) € OB3 (z) and parametrized by arc length. Observe B(v',7) = D7/ —
V24 = Dy, then

4
dt

IN
»p_\ —

<7’(t),7'(0)>’ = [(Dy/(1),7'(0))| < |A]
In particular, (7/(t),~7/(0)) > 1/2 and we conclude
000 =070

[a—

= (Y (@), ()] = 5.

Finally, this gives us (y(2) —v(0),7/(0)) > 1 and, then, |y(2) —z| > 1. O
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Mean-value Inequality. Let ¥ C R™ be a minimal submanifold and f
be a function on X, such that f > 0 and Axf + ¢f > 0, for some constant
¢ > 0. Define

(52) g(t) :==t7F / fdx.
>XNB:
Use d to denote the extrinsic distance. We have
k 1 f
53 g'(t :—/ fd2+/ dx.
(53) Q th+L Jsnp, t* Jsrom, |Vsd|

Recall that minimality of ¥ imply Ax|z — 20|? = 2k, then

k = A _ 2y .

2 /mf /m< sle — z0f?) - f
_ o 2_ 2 .
= /2th As(lz —xo|* = t7) - f

- / (2 =zl — ) - Anf +/ F(Oulz — z0f)
YNB: Y¥NOB:
- / (I — x> — )0, 1),
YNOB:

where v is the outward pointing unit normal vector to ¥ N B;. The third
term in the right-hand side is clearly zero, because |x — xo| =t on X N JB;.
Since |z — zg|2 — 2 < 0 on ¥ N By, we can use the estimate Agf > —cf and
the fact V|z — xg|? = 2|z — 20|V|z — 20/, to obtain

k - R .
(54) 2 /EnBtf < /Eth(\x xol* —t )Cf+2t/Z]maBtf

From expression (53), we infer

k 1
55) g(t) > —/ fd¥ + / fdx.
( ) th+1 Jsnp, tk JsnoB,

Combine (54) and (55) to conclude

2 g (1) > 2k / et / (I — x> — )cf + 2k / s
YNB: YNB:

YNB:
> —ct2/E ., f=—ctf*2g(t).
NB¢

This analysis gives us the following inequality ¢'(t) > —§tg(t). Finally,

<42 . .
ei" g(t) is non-decrasing,

and we have

(56) flwg) < et Junp, 42 iy

we refer to this expression as the mean-value inequality.
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e-regularity. The second step is developed in this section, the main result
is the following Theorem by Choi and Schoen that roughly says that small
total curvature implies curvature estimates.

12.2. Theorem. [Choi and Schoen] Let (M3, g) be a Riemannian manifold.

There exists €,p > 0, depending only on the geometry of M, such that for
peM,0<ry<pandX?C M minimal surface with
e 0¥ N By, (p) = 0;
* [snn |A|2dY < 6§ - ¢,
o

then, we have

o sup <.
SNBry—o

Proof. This argument uses mean-value inequality and Simons’ equation.
Here we consider ¥? C R? and B,, = B,,(p) a euclidean ball of radius
ro centered at p. Define

F(z) = (ro — r(2))* - |A](2),

where we use r(x) = |z — p| to denote the distance function to p in R3.
Observe F' vanishes on ¥N0B,, and choose xy € X, such that z¢ is contained
in the interior of ¥ N B, and

F(xo) = ESﬁl}ap F(x).
o

Claim 1. F(xg) <.
If this is true, then (ro — r(z))? - |A|*(x) < §, and we are done.

Proof of Claim. Suppose, by contradiction, F(xg) > 6. Choose o so that
o?|A?(xg) = g. Observe o has to be less than (19 — 7(z0))/2. About the
second fundamental form on XN B,(z), we have: if y € ¥ N B, (z0), we use
F(y) < F(x), to obtain

(ro — r(20)%)
(ro —r(y))?
Scale ¥ N B, (zg) to radius 1 and let ¥ be the scaled surface and A its second
fundamental form. This scale yields, for every y € ¥,

AP (y) < |A[* (z0) < 4]A[* (o).

5 S _ 5
|A[? (o) = 7 and AP (y) < 4]A](z0) = 4.
Hence, Simons’ inequality gives
AJAP? > —|A[* > 0| AP,
i.e., in the scaled region | A|? behaves like a subharmonic function. By mean-
value inequality,

AP (o) <C- | AP
YNB1
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where C' > 0 is an universal constant. The key point is that [ |A]2dY is
scale invariant, then

[ |A|2dy = / |APdE < 6 - €.
YNB; ¥NBs(xo)

Putting everything together we obtain

) ~

i |A|>(x0) < C6 - ¢.
Let € be sufficiently small such that 8Ce < 1. This yields a contradiction
and this finishes the proof of Claim. U

12.2.1. Remark. In case of a compact 3-manifold M, we obtain a similar
subharmonic behavior of |A|?. More precisely, we obtain A|A|? > —(n? +
|A]?), where 1 comes from curvature. To deal with this difficulty, observe
that n becomes small after the scaling.

We are now ready to prove Schoen’s curvature estimates.

12.3. Theorem. Let 22 C R3 be an immersed oriented stable minimal sur-
face with boundary 0%. Then, there exists C > 0 such that

C

’A|2(33) < W

12.3.1. Remark. If we change R® with a 3-manifold M such that |Rm/| +
[VRm| < A, and X2 C M is an immersed oriented stable minimal surface
with BY C ¥\ 9% and 79 < p(A), then

(57) sup <C-o0 2
SNBry—o

Proof. We prove the case of a surface inside R3. If rq = d(z,0%), we have
B} (z) C ¥\ 9. Recall the stability condition gives

[1aps < [[9s2, foralif e cEm).
> M

By passing to the universal cover 3, that is also stable, we have BTE0 (7)
is a disk. Hence, we can apply Colding-Minicozzi estimates, and conclude
area(XN B,) < Cr?, for some universal constant C' > 0. Consider a function
f = f(r) be defined by

o f(r)y=1,if r < e "ro;
flr) = —n_l(logr —logrg), if e "rg <1 < ro;
f(r)y=0,if rog <r,
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n to be chosen. Plugging this f in the stability inequality gives us

AP < — 3

= 2 2

£NB, n n* JB,,\B r
€ 0 0

1 1
- = 2

k=1 67k+1T0\Befkr0

IN

1 < 1
2 Z 76_%7“8 area(E N Be—k+17.0)
k=1

C < Ce?
< Sy et=
n n

k=1

If ¢ > 0 is given by e-regularity Theorem 12.2, choose n so that Ce? <
ne. Therefore, (e "rg)?|A|*(z) < 1, and we conclude the proof of Schoen’s
pointwise curvature estimates for stable minimal surfaces. ([l

13. PLATEAU PROBLEM

The Plateau problem in minimal surface theory is related to minimize the
area among all immersed disks with a given boundary. More precisely, we
consider a closed curve I' C R? and for each immersion ® : D? — R? with
®(0D?) =T, we take its area area(®(D?)). We say z : D? — R3 is a solution
to Plateau problem if

2 . 2
area(z(D?)) = q)l(%f;) area(®(D?)).

The question was first solved by Douglas and Radé in the early 1930’s.
Later, Morrey proved existence of Plateau solutions in homogeneously regu-
lar Riemannian manifolds (M, g), i.e., if there are constants C7,C2 > 0 such
that for every p € M, there exists a small neighborhood of p parametrized
by the unit ball of same dimension as M, in such a way the metric g in that
coordinates satisfies

Colél® <) gij&i&s < Culél.
ij

In particular, a compact Riemannian manifold is homogeneously regular.

Difficulties.

(1) The first difficulty that arises is that the area is invariant under
parametrization, i.e., given v : D> — R? and a diffeomorphism ® €
Dif f(D?), we have area(u) = area(uo®). This causes a problem for
compactness.

(2) The tentacles are the second problem, those are long pieces of sur-
faces with very small area. This causes a problem of non-convergence
in the usual sense.
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We use z : £2 — R3 to denote an immersion of ¥ inside R3, we also write
¥2 C R3. Let g be the induced metric on ¥ via z. It is already known that

(58) Az = ().

We say = : D? — R3is a conformal immersion if g = €>?6, where § is
the standard metric of D? and v is some function. In this case, we have
Ayp = e~ 2Y Aso, for every function ¢ on D?. In particular, if x is a conformal
minimal immersion, then Agsxz; = 0, for all 4, and x is harmonic. Conversely,
if z : D?> — R3 is a conformal harmonic immersion, then 2 is minimal.

Weierstrass representation. Let v : D> — R? is a conformal harmonic
immersion. Consider the functions

_%_.81@

fi= o za—ye(C, for all j =1,2,3.
Since u is harmonic, the functions f; are holomorphic. Moreover, u being

conformal imply

2 3 2 3

; Ou;j ou; Ou;

= E i’} d E Z 2.2
= oy an = oxr Oy ’

and this is equivalent to (f1)? + (f2)? + (f3)? = 0. From f1, f2 and f3, we
can rewrite u(z) as

u@%=M®+[ﬂﬁthMw

Can actually write

where

13.1. Definition. [Dirichlet Integral] Let u : D*> — R3 be an immersion.
We define the Dirichlet integral of u to be

1
Bu) =5 /ID)Q(|U:,C|2 + Juy|?)dady.

Recall the area of a map u : D? — R3 is given by

Aw) = [ Jus nugldody = [ flual? a2 = (s, w,)2dady.
D2 D2

And it is possible to relate area and Dirichlet energy in a simple inequality:
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13.2. Proposition. If u: D? — R3, then A(u) < E(u). The equality holds
if and only if the map w is almost conformal, i.e.,

oul? oul? ou Ou
—| =|= d (—,—)=0
Ox oy an <8x’ 8y>
Proof.
Aw) = [ flual? a2 =z, 2dndy
]D)Q
< [l fuyldady
]D)Q
1
< 5 [l + fudedy = Ew),
2 D2
where the last estimate is Young’ inequality. O

13.3. Riemann Mapping Theorem. Let u : D> — R? be an immersion
and consider in D? the pull-back metric u*§, where 6 is the standard eu-
clidean metric. Any disk can be parametrized by isothermal coordinates, let
® : (D?,0) — (D? u*J) be such a conformal map. Consider a piecewise C!
Jordan curve I' C R3 (simple and closed).

13.4. Theorem. There exists u : D> — R? such that
(1) u € COD) N WH2(D);
(2) ulpp : OD — T' is monotone and surjective;
(3) ue C®(D);
(4) the image of u minimizes area among all parametrized disks with
boundary T'.
Definitions, notations and useful formulas.

Sobolev space: The space W12(DD) is the sobolev space of functions f on D
with f and Vf in L?, provided with the norm

1A llwsom) = [ 17+ 191P)
More precisely, W12(D) is the completion of
(weo™m): [ (uf + Vo) <o)
with respect to the norm || - ||j1,2. Similarly, WOI’Q(ID)) is the completion of

{1 € C=(D) N CO(D) : = 0 on I and /D(w\2 FIVE) < oo},
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with respect to || - ||[y1.2. An important property of these functions is they
satisfy a Poincaré inequality, i.e., there exits a universal constant C' > 0
such that

(59) /1])2 uldzdy < C - /D? |Vul?,  for all u € W01’2(}D>).

Monotone on T': u: dD — T is said to be monotone if u~1(C) is connected
for any connected subset C' C T'.
We use the following notation:

Xr={u:D? - R®:u e C'MNW"*(D) and u|sp is monotone and onto}.
Minimum area and energy: We use Ar and Er to denote the minimum area
and energy for maps on Xr, respectively, i.e.,

Ar = inf A(u) and FEr = inf E(u).
uEX[‘ uEXF

Morrey’s theorem: The following Theorem of Morrey plays an important
role in the argument of Riemann mapping theorem:

13.5. Theorem. Let u : OD — T be so that u € C°(D) N WH2(D) and let

e > 0 be given. There exists ® : D? — D? such that

Euod®) < (1+¢)- A(u).

Lets sketch the proof of Morrey’s theorem. Suppose v : dD — T is
smooth, but not necessarily immersion. Consider

us(z,y) := (u(z,y), sz, sy) € RS

Let g = u*(9) be given by g;; = (X;, X;), and gs = u%(d) be so that (gs)i; =
Gij + 32(5ij > 0, which is positive definite for s > 0. Choose a conformal map
®, : (D?,8) — (D?, gs), then ug o ®, is also conformal and we have

E(uo ®s) < E(us o ®5) = A(us o ®5) = A(us).

Moreover, the area of us can be written as

Aus) = /D2 Vdet(gs) = /]])2 ( det(g) + s*|Vul? + s4> ,

then, it converges to A(u) as s — 0, and this concludes the argument, for s
small, we have E(uo ®4) < (14 ¢)A(u).
Morrey’s result imply that we can work with energy instead of area, i.e.,
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13.6. Proposition. Apr = Er.

Proof. Ar < Er is immediate. Given € > 0, choose u : D?> — R3 so that
A(u) < Ar+e. Find @ : D? — D? with the property E(uo®) < (14¢)A(u).
Then, we conclude

(D?,6) — (D% u*8) < (1 +¢)(Ar +¢).
Since € > 0 is arbitrary, Er < Ar and this finishes the proof. O

The first step in the proof of Riemann mapping theorem is to minimize
energy among all disks that induce some fixed parametrization of I'.

Dirichlet problem: Fix w € CO(D)NW12(D). Consider the space of functions
Xy = {u e COMD) N W2(D) : u—w e Wy?(D)}.
Minimize the energy in X,,.

13.7. Theorem. There exists a unique u € X,,, such that

/ Vul? < inf / Vo2,
D2 veXw D2
Moreover, u € C*(D) and Au = 0.

Proof. Choose a minimizing sequence u; € Xy, so that [ |V |? converges

to the infimum of such integrals. In particular, u; is bounded in Wol’Q(]D)).
We invoke Poincaré’s inequality to obtain

/ (g — w)? < c./ V(- w)|? < C,
D2 D2

where C” > 0 is a constant not depending on [. In particular, {u;};°, is a
bounded sequence in Wh2-norm. By Rellich Compactness Theorem, up to
subsequences, we can suppose

L2 L2
u — u and Vu — Vu.

Moreover, the limiting function w satisfies v — w € VVO1 (D) and its energy
can be estimated by

/|Vu]2§hminf/ |V |? = inf/ |Vol?.
D2 l—oco  Jp2 veXw Jp2

The convergence above is in the weak L?-sense, i.e.,

/ (X,Vu) = lim [ (X,Vu), forall X € L%
D2 l—o0 Jp2
Then, w is a minimizer of energy. In particular, for every ¢ € C>°(D), we

have
d

dt

/ Y+ i) =0,
t=0 JD?
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and this also means
/ (Vu,V¢) =0, forall ¢ € C*(D).
DQ

This condition is the same as saying Au = 0 in the weak sense. The regu-
larity theory for elliptic PDE imply u € C*°(D).

To prove u € C°(D), we use barriers. Let p = (0,1) € OD. Lets show that
lim,_p u(x) = u(p). A function h is a barrier at p if:

e h>0o0nD?\ {p}
* h(p) =0;
o AR <0.

In this case, one can choose h(x,y) = 1 — z. Given £ > 0, consider § > 0
so that |w(z) — w(p)| < ¢, for every x € Bs(p) ND?. Let w* and w~ be
harmonic functions defined by

wh=wp)+e+k-h and w =w(p) —c—k-h.

Choose k very large in such a way that w~ < w < w?, on the whole D?.
The maximum principle tells us w™ < u < w™, and this implies

lu(x) —w(p)| <2, if x € Bs(p) ND2.

The next thing we remark is that energy is conformally invariant.

13.8. Proposition. Let ® : D? — D? be a conformal diffeomorphism. Then,
given u: D? — R3, we have E(uo ®) = E(u).

Proof. Let z = (z,y) € D?, {e1,e2} be an orthonormal basis at ®(z) and
A > 0 be the conformal factor of ® at z, so that D®(0,) = Aej and D®(9,) =
Aes. Observe

D(uo ®):(0) = Dug(z)(DP(0:)) = ADug)(e1)
and, similarly,
D(uo ®).(9y) = ADug;)(e2)-
Then, we have
|D(wo ®).(0:)* + |D(uo ®).(9,)] = X* (|Duaz)(e1)” + [ Duazy (e2)|?) -
But Jac ®(2) = A2, then

Buwo®) = 5 [ (Dwo®).@)P + |D(uo).(0,)) d:

_ ;/|Du¢(z)|2~Jac B(2)dz

= ;/\Vu(wﬂzdw—E(u).
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The orientation preserving maps in the conformal group of D? are the
maps given by the following expressions:
(60) weD? . 4T
l—-a-w
for fixed 6 € R and |a| < 1. Observe this group is not compact.

Fix p € D?. Use C, = {qg € D? : |¢ — p| = p} to denote the points of D?
with distance p > 0 to p.

13.9. Courant-Lebesgue’s Lemma. Ifu:D? — R3 u € CO(D)NW12(D)
has E(u) < k, then for all § < 1, there exists p € [5,V/5] with

87k
 —logé’

d(Cp)2 < &5
Here d(C,) = diam(u(C))).

Remark. Observe es — 0 as § — 0.
Proof. Observe

V5
2k2/|Vu|2dxdy2/ \Vu|2dazdy:/ / |Vul|*ds,dr.
D DN(B/5(p)\Bs (1)) 5 Je

Consider the function p(r) defined by

o) =1 [ Vulas,
Cr
and observe
V5
/ p(r)d(logr) < 2k.
o

Choose p € [6,1/9] with the property

5
(o) _ d3 plrydtios )
J5 " d(logr)
In conclusion,
4k
1 2ds, < .
(o) | vupds, < —

P

Let L(p) be the length of u(C}), then

2
(/C ]Vu|2dsp>
( /. rw?dsp)-fz(cp)

27Tp/ \Vul?ds,.

Cp

(62) L(p)

IN

IN

IN
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Put this and expression (61) together to obtain

8k
Lip)* < —logd

To conclude, observe that the diameter of u(C)) is not greater than L(p). O

To overcome the difficulty that arises with the fact the conformal group
of D? is not compact, we fix three points pq, p» and p3 in OD? and ¢1, ¢2 and
g3 in T. Given u : D? — R3, with u|sp monotone and onto T', there exists
¢ : D? — D? conformal and such that (u o ¢)(p;) = ¢;, for i = 1,2, 3.

Given k > 0, consider the space F of maps v € CY(D) N W2(D), with
the following properties:

o FE(u) <k;
e u|sp is monotone and onto T
o u(p;) =gq, foralli=1,2,3.

Remark. To prove Fj, is non-empty, consider a piecewise C'' parametrization
c(f) of I', 8 € [0,1]. Let n: R — [0,1] be a smooth map such that n(p) =0,
if p <271 and n(p) = 1 if p > 1. The class is non-empty because contains:

(p,0) € [0.1] x [0,1] = n(p)e(h).
13.10. Theorem. F; is equicontinuous on OD.

Proof. Let € > 0 be such that € < min;«; |¢g; — ¢;|. Choose d > 0, so that
whenever w,w’ € T' with 0 < |w — w'| < d, the complement I"\ {w,w’}
contains exactly one component with diameter less than ¢.

Given p € 0D, choose 0 > 0 very small so that

e B /5(p) contains at most one of the p;’s;
o /g5 <E.

By Courant-Lebesgue’s Lemma, 13.9, given u € F, there exists p € [6, /9]
such that diam(u(C),)) < /g5 < . In particular, given v,v" = 0D N C, and
w = u(v), w = u(v'), we have |w — w'| < e.

Let A! and A2 be the components of T'\ {w,w'}, being A' the small
component. Also, v and v' determine a small component A' of 9D, con-
taining p, and a big component A2, containing at least two of the p;’s. In
consequence, u(A?) contains two of the ¢;’s. Hence diam(u(42)) > ¢ and
this forces u(A') ¢ A!. In other words, x € D with |z — p| < § implies
lu(z) —u(p)| < e, for all u € Fy. O

Solution to Plateau’s Problem. Choose a minimizing sequence u; inside F.
Each wu; being solution to some Dirichlet Problem, such that

1
E(uw) = 5 / |V |* — Er = Ar.
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Up to subsequense, can suppose u; converges uniformly on dD to a monotone
and onto map. By maximum principle, for each ¢ and j, we have
max |u; — uj| = max |u; — u;l.
2 i — uj 8. i — uj

Therefore, {u;} converges uniformly on D to some function u. By Rellich
Compactness Theorem, up to subsequences, we can suppose

L? L?
u; — uw and Vu; — Vu,

in the weak L2?-sense. We have
1 1
/|vu|2 gliminf/Wul]Q = Er
2 500 2

Er = Ap < Area(u) < E(u) < Ep.
Then v minimizes both area and energy. Moreover, u is almost conformal
and harmonic. O

and

13.11. Definition. Let u : D*> — R3 be an almost conformal and harmonic
map. A branch point of u is a point z € D? such that du(z) fails to be
injective, i.e., du(z) = 0 since u is almost conformal.

13.12. Proposition. The set of branch points is isolated.

Proof. Branch points are the zeros of the maps

an ,8uj
— — =
Ox oy’
for all 7 = 1,2,3. But those functions are holomorphic. ([l

13.13. Theorem. [Osserman and Gulliver] The solution u : D* — R3 to
Plateau’s Problem has no interior branch points. In other words, u is an
1MMErsion.

Open Problem. Whether there exists boundary branch points?

13.14. Theorem. [Nitsche] If T' € C*® k > 1 and 0 < a < 1, then u €
Cke (D).

Exercise. Use complex analysis to show that Plateau’s solution is a home-
omorphism on 0D.

14. HARMONIC MAPS

Let M™ be a compact Riemannian manifold. Suppose M" C R” isomet-
rically. Let ¥ be a compact Riemannian surface and u : ¥ — M be given

by u = (u',...,u"). We define the energy of u to be

L
1 1 .
(63) () =5 [ IVulaz = 5 ;f/z vu'
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Fact. If ®: (X, ¢') — (3, g) is conformal, then E(uo ®) = E(u).

14.1. Definition. A map u : (2,g9) — (M, g) is an harmonic map if u is a
critical point for the energy with respect to compactly supported variations
inside M.

If u; : 3 — M is a compactly supported variation u = ug, we have

d _Bw) = /Z (Vu, v <aa?>>dvg

dt
= — /2 Au - %dvg.
Then, the Euler-Lagrange equations for the energy is given by
(64) (aw)" =0,
where the left-hand side is the component of Au tangential to M.

14.2. Proposition. Let u : (R%6) — (M,g) be an harmonic map with
finite energy, E(u) < oo. Then wu is almost conformal and minimal.

Proof of 14.2. Consider ® : R? — C given by
O = (Jug|* - |uy‘2) — 2i(uz, uy).

Exercise. Prove v harmonic imply ® holomorphic.
Since ® is holomorphic, we have

0P
— =0.
0z
Using this, we can conclude
o 0
A @21/2:7.7 PI2)/2 > (.
(c+10)"" = - e+ o) 2 2 0

Since the energy F(u) is finite, we have |®| € L'(R?). Can apply the mean-
value property to conclude

2\1/2 2
B G R o A Gl B ML

(e + ®P(p) " 3 =

TR2 TR2

Let R — oo, to conclude (e + \@\Q(p))lﬂ < e. Later, let ¢ — 0 to obtain
|®|(p) = 0, i.e., u is almost conformal.

Exercise. Check that u is minimal, i.e., ﬁu(RQ)C m = 0. Observe that given

amap z: R2 — M C RY, we have Au = u(R2)CRL-

14.3. Example.

15. PosiTIVE MASS THEOREM

In this section we discuss the Positive Mass Theorem in the case of an
isolated gravitational system.
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15.1. Definition. (M™, g) is asymptotically flat if there exists a compact set
K C M, such that M \ K = U} | E}, each Ej, diffeomorphic to R™ \ B1(0)
and with
9ij = 0ij + hij,

so that

|h| < Clz|™F,  |0h] < Cla|™P™" [9°h] < Cla| P72,
for some p > ”T_Q, in these coordinates, and scalar curvature Ry(xz) =
O(|z|~9), for some ¢ > n. In particular, R, € L'(M).

15.2. Examples.
1. The euclidean space (R", ).

2. [Schwarzschild Metric] For each m > 0, consider the Riemannian mani-
fold (R™\ {0}, gm), whose metric is given in coordinates by

_4
m n—2
(65) (gm)ij = (1 + W) dij-

4
To check the scalar curvature decay, use the conformal law: if g = u»—2g,

with u > 0, the scalar curvature Rj of the conformal metric is given by

(66) R; = 4((:__21))1;% <Agu — ﬁR u)

Since Apgn (1 + MW) =0 and Rs = 0, we conclude g, is also scalar flat.
The term inside the parenthesis in the conformal law, expression (66) above,

is called conformal Laplacian and denoted Lgu.

15.3. Definition. The mass of the end E in (M™, g) is the number
(67) m = lim a(n) / S (B — Oy90) dS,
(V) i

T—00
where E ~ R™\ B;(0) that given local coordinates (x1,...,,), SP=1(0) is
the euclidean sphere, v(z) = é—| and a(n) is a dimensional constant.
The mass is well-defined. In fact, the expression of scalar curvature in
local coordinates (x1,...,x,) is

Ry = (9,095 — 0:digs;) + O(jz|*~2),
1,3
with —2p — 2 < —n. Integrating in B, \ B, and using integration by parts,
we conclude

/ (Ry O|$|_2p 2 /Z 0i9ij — 0;9ii) v /2 0i9ij — jgm)

B, \Br,
Since [(Ry — O(|]z|7%72)) < oo, the limit in (67) exists.

Remark. The mass of g, is m.
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15.4. Positive Mass Conjecture. Let (M",g) be an asymptotically flat
manifold. If R, > 0, then the mass of each end E of M is non-negative. If
the mass of some end E is zero, then (M™, g) is isometric to (R™, ).

Motivation. The motivation for the positive mass conjecture comes from
General Relativity.

Let (V4 g), g be a Lorentzian metric, i.e., at each point p € V, there
exists (e, e1, €2, e3) basis of T,V so that g(e;,e;) =0, if i # 7, g(es, e5) = 1,
if 1 <i <3 and g(eg,e0) = —1. We say (M3,g) C V is spacelike if the
induced metric is Riemannian. In this case we have a normal vector field v
along M so that g(v,v) = —1.

It is required in the general relativity the spacelike hypersurface (M3, g)
to satisfy the Einstein Equations:

1
(68) Ricy — §R g =8nT,

where T is the stress-energy tensor.‘It is also physically reasonable to ask
the stress-energy tensor 1" to have the property

(69) T(v,v) > 0.

This implies R + (Tr A)? — |A|? > 0. If we assume time symmetry, i.e.,
|A| = 0, the Einstein Equations and the condition on the stress-energy
tensor imply R4 > 0.

15.5. Basic Methods.

1) Schoen and Yau (1979), using stable minimal hypersurfaces. This
proves the Positive mass conjecture in case n < 7;

2) Witten (1981), using harmonic spinors. This approach works for all
n when the manifold M satifies a topological condition called spin.

Next, we present a nice consequence of Positive Mass Theorem, the rigid-
ity of Euclidean Space.

15.6. Corollary. Let (R™, g) be the Euclidean space with a Riemannian
metric g that coincides with the standard metric § outside a compact set
K and Ry > 0. Then (R",g) is isometric to (R™,9).

Remark. This consequence is true for all n > 3, because R is spin.

Remark. Some other remarks concerning the two methods:

o If n =3, then M is spin and both methods work in this case;

e CP?" is not spin for all n > 1, then Schoen-Yau’s method works to
M* = CP?#R*, but Witten’s does not;

e CP?"! isspin, then Witten’s method works to M = CP?" 1 #R4+2
but Schoen-Yau'’s does not;

o If M = CP'Y#R?", the question is still open.
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Next, we sketch Schoen-Yau’s proof of Positive Mass Theorem.
Let (M3, g) be asymptotically flat with Ry, > 0. The proof is by contra-
diction. Assume m < 0. Can assume

1) g = u*d, outside a compact set with u = 1+ % + O(|z|72);
2) Ry > 0.

Let 15 : [0,4+00) — [0, 1] be a smooth function such that ¢, =1 in [0, o],
and v, = 0 outside [0,20]. Consider g(*) = 1), - g + (1 — 1b,)d, and note
g(U) — g as 0 — 4o00.

Solve Lg<a>u(”) = 0, with «(®) — 1 at infinity. This is possible because

R, > 0 implies L, = A, — ¢(n) R, has a sign, then can find u().

Define §(@) = (u("))4g("). This metric is asymptotically flat and has
Ry = 0.
15.7. Claim. If o is large, Mgy < 0.

Proof. Observe

37 = g =ug, as 0 — o0,
where u satisfies Lyu = 0 and v — 1 at infinity. Let w =1+ ﬁ + O(|x|72).
By maximum principle, we have u < 1 and so A < 0. In particular,

mg =mg+ A <my <O0.
O

Observe g is also scalar flat. Finally, solve Ly f = —¢ with f — 1 at

infinity, where 1 > 0 decay very rapidly. Put g = f§(?). This shows we can
suppose assumptions 1) and 2) above.

Geometric Ingredient. m < 0 implies big slabs are mean convex.
If h > 0is large, the unit normal to the slab x5 = h is given by n = u_Qa%g.
In this case, we have

divyn = u=20y, (u3 . u_2) = U 30U = —u T M

if x3 = h is very large. On the other hand, if e1, es is an orthonormal frame
on z3 = h and e3 = 7, we can express the divergence of eta as

3 2

divyn = Z(Vem, ei) = Z<Vei77, €i)s

i=1 =1

and
2
ﬁ = - Z<V6’inv €i>77'
=1

In consequence, <ﬁ, 1) < 0 on the slice x3 = h, for sufficiently large h > 0.
Analogously, (H,n) > 0, on the slice 23 = —h.
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15.8. Goal. The next step is the construction of an area-minimizing em-
bedded minimal surface inside one of those mean-convex slabs.

Use C, to denote the circle {z? + 23 = 0%} N {z3 = 0}. Find ¥, of
least area with 0%, = C,. This surface can be obtained in two ways. First,
using Morrey’s solution to Plateau’s Problem, minimizing area among disks.
In this case, Meeks and Yau proved the solution is an embedded disk. The
second approach comes from Geometric Measure Theory, where we minimize
area among all topological types.

In any case, we can guarantee, by Maximum Principle, that

Sy N (M\K) C {—h < z3 < h},

where h > 0 is large enough, so that the slab {—h < z3 < h} is mean-convex,
but does not depend on o.

In case we have various ends and those C, are considered in a fixed end
E of M, can also use Maximum Principle to prove the portion of ¥, on each
different end is contained in a fixed large ball.

We explore now the area-minimizing property of 3, to estimate its area
inside the union of K and the cylinder Cyl(¢) = {2? +23 < t?}. We compare
Yo N (K UCyl(t)) with the union of the top disk Cyl(¢) N {z3 = h} and a
subset of dCyl(t) whose boundary is (¥, U {z3 = h}) N dCyl(t). We obtain

(70) Area (X, N (K U Cyl(t))) < 7t? + O(t).

Consider a fixed curve v joining {z3 = —h} and {z3 = h}. If o is large,
v and C, are linked and then X, N~ # (.

Next, we use Schoen’s curvature estimates for stable surfaces to obtain
uniform curvature bounds on compact sets. Precisely, we have

(71) [As, | <C(t), in X, N (K UCyl(t)).

A diagonal argument gives a subsequence ¥, that converges smoothly to
> in any compact set of M. We have then, ¥ is an embedded and area-
minimizing, in particular, stable. It is also possible to conclude outside a
compact set 3 is a single valued graph over {z3 = 0}.

Analysis near co. We analyze now the behavior of the constructed surface
Y near oo. Since X is minimal, we have

Ayxs = Hesspzs(er, e1) + Hesspras(eg, e2),
for some {ej,ea} C T3 orthonormal basis, where Hessf(X,Y") is given by
the following expression
(72) Hessf(X,Y) = XY (f) — VxY (f).
Since this involves covariant derivatives VxY, we need the Christoffel Sym-

bols to calculate Axx3 following the above formula. The general expression
of Christoffel Symbols is

1
(73) Ly =5 290" (Gigj + 091 — D1gij) -
l
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In our case, we have Ffj = O(|z|7?) and then,
(74) Aszs = O ((1+ |z3])|z|7?) = O (|z]7?).
The linear theory of PDE says (74) implies

2| [Vsas| + |z? |VEas| < C.

Since ¥ is a single valued graph over {x3 = 0}, we can compare |Ax| with
}V%Jﬁg’ and conclude the following curvature estimates

jz|*|As]? < C.

But ¥ has quadratic area growth, expression (70). Then, we have

/ ’A2|2d2 < 00.
¥

Since the extrinsic curvature Rm of ¥ is integrable and, by Gauss equation,
Ky is given by Rm plus a quadratic term involving the second fundamental
form of X, we obtain

(75) / K| d5: < oc.
by
Stability Inequality. Recall the stability inequality
/ (|As|* + Ric(N, N)) f2dx g/ Vs f|?dS, for all f € Lip,(%).
b b

Using Gauss equation and the assumption on R™ > 0, we conclude

2 RM ’A2|2 2 2
— | Ksf?ds < — —Kyg+ —— ) f2dx < | |Vsf|*dx.
5 s\ 2 2 D)

Because of quadratic area growth, can apply the log cut-off trick to conclude
(76) - / KydS < 0
b

Claim. [, K5 <0.

Let 7, C X the curve with projection C, onto {z3 = 0}. Let g denote
the induced metric on ¥. Can put local coordinates in ¥ using that outside
a compact set it is the graph of a function f over {z3 = 0}. In this local
coordinates, we have

9ij = 9ij +u'fify = 8 + O (J] 1) .
Then, the geodesic curvature of C, with respect to g has the form k, ., =
o '+0 (0_2). Integrate over the circle to get:

(77) kgr, — 2w, as o — oo.
Yo

Gauss-Bonnet Theorem to the domain D, in 3 bounded by 7, to conclude

(78) KxdY + / kg, = 2mx(Dy) < 2m.
Ds -
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The limit as 0 — oo gives fz K> < 0. Contradiction!

Remarks. About higer dimensions, the proof is by induction. We still have
the mean-convextity of the slabs. Then, use Geometric Measure Theory to
produce 3, of least volume, the regularity of X, is guaranteed if n < 7.

Open. Are singularities of area-minimizing hypersurfaces stable under per-
turbations?

We do not have the log cut-off trick any more, then we choose a different
minimization problem. For each a € [—h, h|, consider

Coo = {az% + a:% = 02} N{x3 = a}.

Produce ¥, , of least volume with boundary Cp 4. Choose X () with least
volume among all ¥,,, a € [—h,h]. This hypersurface satisfies a better
stability inequality in which a test function f can be a non-trivial constant
on 0%,.q, -

We produce, as in the initial case, a volume-minimizing hypersurface 3,
which is again the graph of a single valued function f outside a compact set.
The estimates on the derivatives of f in this case is

2" 2|V f] + |2 [*THVEf < C

4
The Riemannian metric g has the form g = u»=24§ outside a compact set
K, then, the induced metric g on ¥ is given in local coordinates by

_4 — —dim
Gij = 9ij + w2 fifj = 655 + O(ja|*™") = 6ij + O(J|' =)
Observe 1 — dim(X) < 2 — dim(X), then m(g) = 0.
The stability inequality allows us to choose v > 0 solving Lyv = 0 and

v — 1 at infinity. Let g = vﬁg. This new metric is scalar flat and has
negative mass. This finishes the induction argument. To prove the choice
of v as above is possible we check that Ly has a sign. Back to the better
stability inequality, we have

M ) A 2
/ <R _E 'E'> s < / Vs /|2 ds,
S22 2 .

then
R” , 2
(79) — | - fdE < [ [Vsf]TdE.
s 2 >
Recall the expression of the conformal Laplacian of 3, Ly, = Ay — 4(81 :32)) R*>.

By expression (79), we get

R* 9 2(n—2) 2
—/Z2f dZS(n_g)/ZIsz as.,

/Z <vgf12 + 4((’:1__32))sz2> de < 0.

and then
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This proves Ly has a sign and finishes the argument.

Rigidity Case. If (M",g) is asymptotically flat, R > 0 and m = 0, then
we argue in three steps that it must be isometric to euclidean space.
Step 1. Scalar flat. Solve Lyu = 0 with v — 1 at infinity, and consider

4
g =unr—2g. If Ris not identically zero, this new metric is scalar flat and has
mass m(g) < m(g) = 0. Contradiction!

Step 2. Ricci flat. If g(¢) is a variation of g among asymptotically flat
metrics with ¢’(0) = h, then

. (m(g(t)) - /M Rg(t)dvg(t)> — /M<h,Ric— ggmg,

Since m(g) = 0, ¢ is a minimum point of the mass functional among metrics
with R > 0. Fix hg of compact support and consider g(t) = g + thy. Solve

Ly@yu(t) = 0 with u(t) — 1 at infinity. Define g(t) = u(t)ﬁg(t), an
asymptotically flat and scalar flat metric. Observe u(0) =1 and
d
dt

(80) %

m(g(t)) = 0.
=0

This imply

d
0= / Ric, —
M< dt

where v = %‘t:o u(t)ﬁ In particular, since (Ric, g) = R, and Ry = 0,
we get

(0)dv, = [ (Ricv-9(0) + ho)io,
t=0 M

/ (Ric, h)dvgy = 0,
M
for all h with compact support. This implies ¢ is Ricci flat.

Step 3. Flat. This follows from volume comparison

16. HARMONIC MAPS - PART 2

Let M™ c RYN be a compact Riemannian manifold. Recall we proved
in Proposition 14.2, that harmonic maps u : (R?,6) — (M, g) with finite
energy are almost conformal and minimal.

Use 7 : S?\ {p} — R? to denote the stereographic projection from the
2-sphere minus a point p € S?, which is a conformal map. If u : RZ — M
is an harmonic map with E(u) < oo, then uom : S\ {p} — M is again
harmonic and has finite energy, in particular, it is almost conformal.

16.1. Theorem. Letu : D?\{p} — M be an harmonic map with E(u) < 0o,
Then u extends smoothly to u : D> — M harmonic.

Following the previous analysis, the map u o m extends to an harmonic
map v : 2 — M, which is almost conformal and branched minimal.
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Open. It is an open question if ¥2 ¢ B3\ {0} embedded minimal surface
with 9% C 9B3, imply ¥ is an embedded minimal surface in B3. It is
an exercise to prove ¥ has finite area. What can happen in the negative
direction is an accumulation of small necks near the origin.

We describe now the Sacks and Uhlenbeck blow-up argument. Let M™ C
R% be a compact submanifold such that mo(M) # 0. There exists f : S —
M that is not homotopically trivial, then can find a non-trivial harmonic
map u: S* — M.

For each a > 1 we consider the perturbed functional

(81) Eu(u) = /S (14 [Vul)® do.

16.2. Definition. A critical point of E,, is called a-harmonic map.

Given 8 € mo(M), 8 # 0, and each a > 1, we minimize F,, in 3. The idea
is to use W12%(S?) ¢ 0%, if a > 1. Find u, minimizer, for each a > 1 and
try to take a limit as o — 1. We have two possibilities:

1) either supge |Vuy| < C, then u, converges to a non-trivial harmonic
map u : S* = M;

2) or supgz |[Vue| — oo. In this case, apply the blow-up technique,
which we briefly discuss now. For each map uq : S — M, consider
Za € S? and A, > 0, such that

|Vuo(za)| = sup [Vug| = Ao
S

Using stereographic projection, we find maps i, : R — M with the
following properties

sup |Vig| = 0o and  |Vie(0)| = Aa.

R2
Rescaling to U, (w) = g <%), we have suppz |Vi,| < 1 and can
take the limit @ : R?2 — M, harmonic map with |[Va(0)| = 1. This
implies @ is non-trivial and has finite energy, then gives a non-trivial
harmonic map u : S*? — M.

Example. Use the identification S? = C U {oo} to define f; : S* — S? by
22+ 1/j
ey = 24

z
This is an harmonic map. (2 bubble?)

17. Ricct FLow AND POINCARE CONJECTURE

17.1. Ricci Flow. Let M™ be a compact manifold with a Riemannian met-
ric go. In 1982, in the pioneer paper by R. Hamilton, he introduced the
following equation
{ %g(t) = —QRng(t)
9(0) = go-
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17.2. Theorem. For every n, the flow exists and is unique in some short
time interval [0,€). Moreover, if n = 3 and Ricg, > 0, then Ricyy) > 0 and
the flow disappear in finite time becoming asymptotically round.

17.3. Poincaré Conjecture. Let M3 be a compact manifold such that
71(M) = {1}. Then M is diffeomorphic to S3.

This question was solved by Perelman. The strategy is to understand the
behavior of the Ricci flow for general metrics, without curvature assump-
tions. At each singular time, proceed a surgery near the singularity and
keep flowing.

Basic question. Does the flow become singular (extinct) in finite time?
If so, the number of surgeries is finite, then conclude

M~ SP4S3 Tt - - - #S3 T (5% x S -+ - #(S5? x S1).

Because m (M) = {1}, M is diffeomorphic to S3.
To prove the basic question, Colding and Minicozzi use min-max minimal
surfaces.

17.4. Min-max Construction.

17.4.1. Curves on surfaces. In 1905, Poincaré introduced the question about
existence of closed geodesics in (52, g). In 1917, Birkhoff answers positively
Poincaré’s question.

Let f: 8% — (S2,9) be a map of degree deg(f) = 1. Suppose the 52
in the domain of f is the standard two-sphere in R® and consider in R?
the usual coordinates (x1,x2,x3). The map f naturally induces a sweepout
{Vt}teo.1) in (S2,9) by closed curves

ve=f({xs=1-2t}), for0<t<1.
Then, we consider the following min-max invariant of (52, g)

(82) L= inf sup (y),

{reke tefo1]
where the infimum is considered among all sweepouts in (S?, g). The idea is
to realize L = {(7y) as the length of a smooth closed geodesic. We describe
now a key construction in this theory, the curve shortening map.

Let ¢ : S' — (5%,9) be a closed curve, £(c) < 2L and suppose c is
parametrized by arc length. Choose a fine partition {s1,s2,...,8n = s1}
of St such that each pair c(s;),c(s;+1) can be joined by a unique length
minimizing geodesic. The curve shortening applied to ¢ is another closed
curve D(c) with smaller length. The definition of D(c) has two steps:

(i) let ¢; : ST — 52 be such that between s; and s;,1 the curve c; is the
minimizing geodesic arc joining c(s;) and c¢(s;41);

(ii) fix the middle points of each geodesic arc of ¢; and repeat the pro-
cedure in step (i) for these points to obtain D(c).

The key properties of this construction are the following:
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1) £(D(c)) < £(c);
2) 4(D(c)) = £(c) if and only if ¢ is a smooth closed geodesic.
{rih

Observe that if is a sequence of sweepouts with

sup £(y;) = L,
te(0,1]

then {D(7})}; is also sequence of sweepouts with

sup £(D(3})) = L.

t€[0,1]
To conclude the argument, take t; € [0,1] such that ¢(D(v{)) — L, then
there exists subsequence {j} C {i} such that {D(’ygj)}J converges to a closed
geodesic of length L. The idea is to take a subsequence such that both
*ygj and D('yg]) converge to v and D(7), respectively (Arzela-Ascoli). Both
{(D(v)) = L and £(y) = L, and then D(vy) =~ is a closed geodesic.

17.5. Minimal spheres. The idea now is to apply min-max methods to
produce minimal surfaces, replace u : S* — M by a map u : S — M and
do min-max for area or energy. A topological fact, consequence of Hurewicz
Theorem is that if M3 has m (M) = {1}, then 73(M) = Z. Fix 3 € 73(M),
B #0.
In this min-max setting, the sweepouts are the maps
o:[0,1] x 8% — M,

with the following properties:

1) o(t,") € CONn Wt

2) t— o(t,-) is continuous;

3) o maps {0} x S% and {1} x S? to points;

4) the induced map S® — M belongs to .

In this case, use the notation o € Qg. The width can be considered with
respect to the area or the energy:

Wa= inf sup A(o(t,-)) and Wg = inf sup E(o(t,-)).
o€ 1ef0,1] €8s 4e0,1]

In fact, the two above notions of width coincide.
Exercise. Prove 0 < Wy = Wg = W.

17.6. Theorem. [Colding and Minicozzi] Let M™ be a compact manifold
and B € w3(M), B # 0. Then, there exists a sequence of sweepouts {o;}; C
Q/@ with

sup E(oi(t,")) = W

t€[0,1]
and such that for every sequence t; € [0, 1] with A(oi(t;,-)) — W, there exists
subsequence {j} C {i} such that {o;(t;, )} converges (in sense of varifolds)
to a finite union Upuy, of harmonic maps uy, : S* — M.
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A sequence of surfaces in M converge in sense of varifolds, >; — 3, if the
following holds

/f(x,Tin)dZZ-%/f(m,TwZ)dE,
)N )

for every compactly supported continuous function f defined in the Grass-
mannian of 2-planes of M. This convergence imply that A(X;) — A(X).
Can summarize this notion saying that convergence in sense of varifolds
means that the surfaces are close and their tangent spaces are also close.

In particular, follows from the convergence of {o;(t;,-)} in the Colding-
Minicozzi’s result, that

Z A(ug) = W.
k
Moreover, each map uj; must be almost conformal and minimal. Hence,

> B(uy) =W.
k

The proof of Colding-Minicozzi’s Theorem use harmonic replacements, with
estimates of Wente and Hélein, and a refined blow-up analysis.

17.7. Proposition. Let (M3, go) be a compact Riemannian manifold, ¥ C
M be a branched minimal S? for go = g(to), where g(t) is a solution to the
Ricci Flow. Then

d by
(83) %areag(t)(E) < —4r — areago() m]vi[n Ry, .

t=to

Proof. Recall that the area can be written as

(84) areag(t)(Z):/E\/detgizj(t)d:v.

Then, the first derivative of the area satisfies

d 1 093
gareag(t)(E) = 2/Z<trg Btj> detg>(t)dz
= —/E(Ricg(t)(el,el)—I—Ricg(t)(eg,eg))dz,

where {e1,e2} C TX is an orthonormal basis. That can be rewritten as
follows

d .
aareag(t)(Z) = _/Z(Rg(t)_Rlcg(t)(NvN))dzv
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where N denote a choice of unit normal vector field for ¥. The Gauss
equation can be applied to reformulate the above expression as

d 1 1
Jrareag)(Y) = —/ Kgd2—2/ (Rg(t)+|A|2)dE+2/H2dE
D) by by

- —(27TX(2) + 2#2@) - ;/2 (Ryqry + |A[?)d>

areagy (%)
S —4m — f m]\}[n Rg(t)'

The evolution of the scalar curvature under the Ricci Flow is given by the
following equation

0

(85) o

Ry(y = Dy Rgry + 2[Ricy ()2 4)-

In the case of 3-dimensional manifolds, we have |Ric|? = |Ric|?+R?/3, where
Ric is the trace-free Ricci tensor. In particular, we have

0 ° 2 2 o
il = Bew Ry +2Ricorm lye) + 3Ry

2 2
Z By By + 3Ry

We can use the maximum principle to obtain

d( 2/ ?
T mj\}[nRg(t) Zg mj\/l[nRg(t) .

And that will imply

iny R
(86) min Ry > — M %0 _ 3
M 1 — tminp Ry 2(t +¢)

for some constant ¢ depending on the initial metric.

17.8. Theorem. [Colding and Minicozzi] Let (M3, go) be a compact Rie-
mannian three-manifold and let g(t) be a solution to the Ricci flow. Consider
B e€ms(M), B#0, and define W (t) := W (g(t),5). Then,

d W) 3
(87) O LR e e

The estimate in expression (87), occurs in the sense of

. Wig(t +h)) = Wi(g(t))
im sup Y .
h—0, h>0
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Outline of proof. Let {75} co,1)) be an almost optimal sweepout for the
width W (g(t),5). Since the two definitions of widths coincide, we have

(88) Wi(g(t+h),B) < srél[%)f] areay(rn)(Vs)-

Then we use the estimate for the evolution of the area and the expression
(86) to conclude the upper bounds for the rate of change of the width.
To see that Theorem 17.8 implies the finite extinction time, rewrite:

4
dt
Then, integrating,

(90)  W(t)- (t+e) 3/ <W(0) -3 —16m((t +¢)/* — /).

(89) (W(t) - (t+c)™3) < —dn(t+ )73/

If ¢ is sufficiently large, depending on ¢ and W (0), we have W(t) < 0, what
is a contradiction. Therefore, the flow becomes singular in finite time. It
becomes also extinct.

18. THE PROOF OF WILLMORE CONJECTURE

In this section we discuss about the best realization of a torus in R?. To
deal with this question, we consider the following functional:

18.1. Definition. Let X2 C R? be a closed surface of any genus. We defined
the Willmore energy of X to be

(91) W(E) = /EHQdE.

Observe that
_ 2 1 R
/ H2d3 = / {M + K bS = 2mx() + / A2
> > 4 2 Jx

The term |/°1]2d2 is pointwise conformally invariant. In particular, this says
that for any F' € Conf(R?), we have W(F(X)) = W(X).
In the beginning of the 1960’s, Willmore proved that

W(E) > 4m = W(round sphere),

and also the rigidity statement in case of equality. In 1965, he conjectured:

Willmore Conjecture. If ¥ is a torus, then W(X) > 272,
The energy 272 is attained by a special torus of revolution ¥ v called
the Clifford torus. If is obtained by the revolution of the unit circle

{(2,0,2) e R®: (z —V2)2 4+ 22 =1}

with respect to the z-axis.
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Using the stereographic projection 7 : S3—{p} — R3, which is a conformal
map, we can relate the Willmore energy of surfaces ¥ C R3 with a very
similar functional defined on surfaces ¥ C S3. If we have X = 7(X), then

(92) W) :/(1+H2)d2.
b
This motivates the following definition:
18.2. Definition. The Willmore energy of ¥ C S® is defined by

(93) W(D) :/E(1+H2)d2.

18.3. Remarks. Given X2 C S2, we have

(1) W(X2) > Area(X);
(2) if ¥ is minimal, then W(X) = Area(X).

18.4. Examples.

e The equator S?(0) = S3 N {z4 = 0} is minimal and has area 4.
e The Clifford Torus ¥ = S'(1/v/2) x S1(1/v/2) € S is minimal and
has area 272. Moreover, 7(3) = 25

18.5. Proposition. [Li and Yau] If X2 C S? is an immersed closed surface
that is not embedded, then its Willmore energy is at least 8.

Fix v € R* and consider the vector field  — v*(z), given by tangential
projection on T,,S3. It is a conformal killing vector field in S® and generates
a flow ¢, of centered dilations. By conformal invariance of Willmore energy,

W(E) = W(en(%)) = /¢ o (1 HE )0 () 2 areal6 ().
t

If we choose v € ¥ and let t — oo, we have W(X) > 47, In case F : ¥ — 93

is immersion and p € ¥ satisfies #F ~1(p) = k, then W(X) > 4rk.

18.6. Theorem. [Marques and Neves| Let ¥ C S® closed, embedded, genus
g>1. Then W(X) > 272, and W(X) = 272 if and only if ¥ is a conformal
image of the Clifford torus.

In particular, this implies the Willmore Conjecture.

18.7. Theorem. [Marques and Neves| Let ¥ C S® closed, embedded, genus
g > 1. If ¥ is minimal, then area(X) > 272, and area(X) = 272 if and only
if ¥ is the Clifford torus up to Iso(S®).

The strategy of proof is as follows: first we prove Theorem 18.7 by min-
max. Then we prove Theorem 18.6.
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18.8. Min-max theory for the area functional (Almgren-Pitts). Lets
start with the one-parameter sweepouts, following the work of Simon-Smith
and the recent survey by Colding-De Lellis. Let M be a three-dimensional
closed Riemannian manifold. One can think of a one-parameter sweepout
of M as a family {¥;}yc[,1), where 3 = f1(t) are the level sets of a Morse
function f : M — [0,1]. This particular sweepout generates a class of
sweepouts

(94) A={{Z =0t ) hep}

where ¢ : [0,1] x M — M is a C* map such that ¢(¢,-) € Diffy(M), for
every t € [0,1]. Here Diffy(M) denotes the connected component of the
identity map in the space of diffeomorphisms of M.

Then, we consider the width of A defined by

(95) L(A) = inf  sup area(X).
{S:}eA  telo,1)
The fact that we started with the sweepout of the level sets of a Morse
function implies that L(A) > 0.
The basic idea of the min-max theory is to realize L(A) as the area of
some closed embedded minimal surface ¥? C M. In this case, we say that
3 is a min-max minimal surface.

18.9. Theorem. [Simon and Smith] Any (S, g) admits a minimal embed-
ded S2.

18.10. Example. Consider S? with the standard round metric. Let 3; =
{zy =2t — 1}, t € [0,1]. This generates a class of sweepouts A whose width
is equal 4.

Moreover, it is a well known fact that any non-trivial sweepout of (53, g),
with arbitrary Riemannian metric, whose width is at most 47, must contain
a great sphere.

Important question. Can we construct the Clifford torus by min-max?

In general, we expect that a min-max minimal surfaces produced by one-
parameter sweepouts have Morse index at most 1. But Clifford torus has
index 5.

To describe the min-max theory for k-parameter sweepouts it is conve-
nient to use the language of the Geometric Measure Theory. Roughly speak-
ing, instead of smooth surfaces, the role of the slices is played by integral
cycles. We denote the space of cycles by

(96) Z,_1(M",Z) = {(n — 1)-integral currents T for which 0T = 0}.

Intuitively, one can think of an integral cycle as a Lipschitz oriented sub-
manifold with integer multiplicity and no boundary. Let I* denote the
k-dimensional unit cube.
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Fixed a map ® : I*¥ — Z,_1(M™ 7Z), we consider the homotopy class of
® relative to I, which we denote by II. Then, we define the width of IT as
(97) L(II) = inf sup area(®'(x)).

el pegk

The main existence result of the Almgren-Pitts Min-max Theory is the fol-
lowing;:

18.11. Theorem. Suppose 3 < n < 7. If L(II) > sup,cor+ area(P(x)), then
there exists smooth embedded closed minimal surface, maybe disconnected
and with integer multiplicities, such that area(3) = L(II).
Lets summarize the main ingredients for the proof of Theorem 18.7.
(1) For each ¥ C S3, there exists canonical family Yy C S3, (v,t) €
Bt x [—m, 7], with ¥(50) = ¥ and area(X(, ) < W(X);
(2) [Urbano, 1990] If ¥ C $3 minimal, index(X) < 5, ¢ > 0, then X is a
Clifford torus (index 5) or a great sphere (index 1);
(3) Min-max theory for the area functional (Almgren-Pitts).

18.12. Canonical Family and Area Estimate. We begin this section by
introducing some notation:

let ¥ C S2 be a closed embedded surface;

B* ¢ R* open unit ball and 0B* = S3;

Bp(Q)={z €eR': |z — Q| < R}

B.(q) = {x € 83 :d(z,q) < r}, d is spherical distance.

For each v € B* we consider F, : S — S the conformal map defined by

(x —v) —w.

It is a centered dilation fixing +v/|v|. Note that if v — p € S3, then
F,(z) — —p, for every x € S, x # p.
Let S3 — ¥ = AU A* be the connected components, and N be the unit
normal vector to ¥ pointing outside A. Consider the images by F),
A, = F,(A4), A, =F,(A") and X, = F,(X)=0A,.

The unit normal vector to ¥, is given by N, = DF,(N)/|DF,(N)|. We also
consider in S? the signed distance function to ¥,
_f d(x,%,) ifzd¢ A,
do(7) = { —d(z,%,)  ifze A,

This is a Lipschitz function, smooth near X,,.

(98) Fy(z) =

|z —vf?

18.13. Definition. [Canonical Family] For v € B* and t € [, 7], define
Yw) = 0A(y), where Ag, = {z € S3 . d,(z) <t} are open subsets of S3.

Reparametrizing the canonical family we can extend it to B x [—m, 7] in
such a way that: if |v| = 1, the X, + are round spheres centered at the same
Q(v) € S3. The map @ : S — 3 is called the center map. Next, we have
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the area estimate for the slices of the canonical family. This is due to A.
Ros.

18.14. Theorem. We have, for every (v,t) € B* x [—7, 7],
(99) area(S(, ) < W(E,) = W).
Moreover, if ¥ is not a geodesic sphere and
area(X(, 1)) = W(Z),
then t =0 and X, is a minimal surface.
18.15. Key Calculation. The center map Q : S® — S satisfies
deg(Q) = genus(X).
18.16. Reparametrization. We can reparametrize again to get
D15 — 25(5%),

with the following properties:

(a) (I x {0}) = @(I" x {1}) = 0;

(b) for every x € OI*, {®(z,t)}1ep0,1] is the standard foliation of S by

round spheres centered at Q(z) € S3;

(c) for every x € OI*, ®(x,1/2) = 0B 2(Q());

(d) deg(@) = genus(X).
Moreover, the area estimate provides the following upper bound
(100) suII; Area(®(x)) < W(X).

z€

Let IT denote the homotopy class of ® relative to I° and L(II) denote its
width.

18.17. Theorem. If genus(X) > 1, then L(II) > 4xw. In particular, the
min-max can not be a great sphere.

Outline of proof. The proof is by contradiction. Assume that L(II) = 47
and that we have an optimal ® : I> — Z5(S%) such that ® = ® on 9I° and
sup Area(®(z)) = 4.

zelb

The we construct a 4-dimensional object R* C I® satisfying the following
properties: OR* = OI* x {1/2} and ®(z) is a great sphere, for every = € R*.
The existence of such a R?* can be seen in the following way: each path
joining the bottom I* x {0} of I® to its top I* x {1}, is a non-trivial one-
parameter sweepout of S® whose areas of the slices are at most 47. Then,
there exists a great sphere on each such sweepout. Look at the center of the
great spheres on R*. This says that the center map @Q : R — S° can be
extended to @ : R* — S3. In homology, this implies that

deg(Q) - S® = Q(OR) = 0Q(R) = 0 in H3(S3 7).
This contradicts the fact that deg(Q) = genus(X) > 1.
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18.18. Proof of Theorem 18.7. Let 2 C S3 be a minimal surface of least
area among all minimal surfaces with genus greater or equal to one. Since
the Clifford torus belongs to this class, we have that area(X) < 272

Claim. index(X) <5.

Open. Understand the index of a min-max minimal surface and relate with
the number of parameters.

Proof of Claim. Suppose, by contradiction, that index(X) > 5. Consider
the canonical family {3, )}, generated by the chosen ¥. Recall that

sup area(X(, ) < W(X) = area(X).

(v:t)
Since the index of ¥ is greater than the number of parameters, it is possible
to perturb slightly {3, } (), not changing the boundary values, to get a
new sweepout {El(v,t)}(v,t) with area(E’(v’t)) < area(X), for every (v, t). Next,
apply Min-max theory to obtain a min-max minimal surface ¥ such that

4 < area(X) = L(IT) < area(X) < 272 < 8.
That is a contradiction, because 3 would have genus(2) > 1 and area lower
than area(X). This proves the Claim.
To conclude the proof of Theorem 18.7, we invoke Urbano’s Theorem to
conclude that index(X) < 5 imply index(X) = 5 and X is the Clifford torus.

18.19. Proof of Theorem 18.6. Let ¥ C S3 be a closed embedded surface
with genus g > 1. Consider the Canonical Family {E(w)}(v,t) generated by
>.. Use it to produce a min-max minimal surface 3 such that

A

4 < area(X) = L(II) < W(X).
If ¥ has multiplicity two somewhere, that would give area(f]) > 8m. Other-

wise, since area(i) > 47 and the great spheres are the only minimal spheres
in 93, we have genus(¥) > 1. Then, we can use Theorem 18.7 to conclude

that area(¥) > 272. In any case, we have that W(X) > 272

18.20. Remark. The fact we used in the above argument about the unique-
ness of great spheres as minimal spheres in S is due to Almgren.

About the rigidity statement of Theorem 18.6, suppose that W(X) = 272,
Recall that area(X, ;) < W(X) = 272,

Claim. For some (v,t) € B* x [—m,7], we have area(3, ) = W(X).

Otherwise, the min-max family ® constructed from ¥ has L(®) < W (%) =
2712, We can run min-max again and contradic Theorem 18.7.

Because of equality area(¥(, ) = W(X), we conclude ¢t = 0 and %, is a
minimal surface, by Theorem 18.14. Then area(3,) = W(3,) = W(X) =
272, By rigidity part of Theorem 18.7, ¥, = F,(X) must be isometric to
the Clifford torus, with F, € Conf(S%).
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18.21. Open Problems. We end this section with some open problems
related to the Proof of Willmore Conjecture.

(1)
(2)

What about higher genus surfaces in R3?
What about genus one surfaces in R*? In this case the Willmore
functional is defined by

W(E) = / H 2,

where ﬁ denotes the mean curvature vector of X.
What is the least volume for non-trivial minimal hypersurfaces in
S™? The natural candidate is the generalized Clifford torus

o({E)-+(/:)

Characterize the Clifford torus by the index n + 2.
More recently, also using min-max theory, Marques and Neves proved
the following result:

Theorem. Let (M™,g) be a closed Riemannian manifold with 3 <
n < 7 and Ricy > 0. Then, there exist infinitely many embedded
closed min-max minimal hypersurfaces in M.

The related open question is to understand these minimal hyper-
surfaces. We expect the index and volume to go to infinity, and they
should be equidistributed in M.



