MIN-MAX THEORY AND THE WILLMORE CONJECTURE

FERNANDO CODÁ MARQUES - IMPA

The content of these lecture notes are the applications of the min-max theory of Almgren and Pitts to the proof of the Willmore conjecture and the Freedman-He-Wang conjecture for links in euclidean three-space. These lecture notes were organized by Rafael Montezuma.

ORGANIZATION

- 1. Introduction
- 2. Canonical family and degree calculation
- 3. Min-max theory (Almgren and Pitts)

1. Introduction

Fix topological type, ask what is the best immersion in \mathbb{R}^3 . For a genus g = 0 surface is the round sphere. What about the case of g = 1?

Let $\Sigma \subset \mathbb{R}^3$ closed, embedded, smooth surface of genus g,

- k_1 and k_2 the principal curvatures
- $H = \frac{1}{2}(k_1 + k_2)$ the mean curvature
- $K = \bar{k}_1 k_2$ the Gauss curvature

The integral on Σ of the Gauss curvature K is a topological invariant,

(Gauss-Bonnet)
$$\int_{\Sigma} K d\Sigma = 2\pi \chi(\Sigma).$$

Other quadratic integrand on Σ is H^2

(Willmore Energy)
$$\mathcal{W}(\Sigma) = \int_{\Sigma} H^2 d\Sigma,$$

and this is scaling invariant.

Fact: $\mathcal{W}(\Sigma)$ is invariant under conformal transformations of \mathbb{R}^3 .

(Blaschke, Thomsen 1920's)

Indeed.

$$\int_{\Sigma} H^2 d\Sigma = \int_{\Sigma} \left\{ \frac{(k_1 - k_2)^2}{4} + K \right\} d\Sigma = 2\pi \chi(\Sigma) + \frac{1}{2} \int_{\Sigma} |\mathring{A}|^2 d\Sigma,$$

where \hat{A} is the trace free second fundamental form.

Remark. $|\mathring{A}|^2 d\Sigma$ is pointwise conformally invariant object.

Therefore, $F: \mathbb{R}^3 \to \mathbb{R}^3$ conformal map $\Rightarrow \mathcal{W}(F(\Sigma)) = \mathcal{W}(\Sigma)$.

Willmore (1960's): $W(\Sigma) \ge 4\pi = W(\text{Round sphere})$.

Willmore Conjecture (1965): If $\Sigma \subset \mathbb{R}^3$ is a torus, then $\mathcal{W}(\Sigma) \geq 2\pi^2$.

Example 1.1. Let $\Sigma_{\sqrt{2}}$ be the torus obtained by the revolution of a circle with center at distance $\sqrt{2}$ of the axis of revolution and radius 1. Then

$$\mathcal{W}(\Sigma_{\sqrt{2}}) = 2\pi^2$$
.

Let $\pi: S^3 \setminus \{p\} \to \mathbb{R}^3$ the stereographic projection, $\Sigma \subset S^3 \setminus \{p\}$ and $\tilde{\Sigma} = \pi(\Sigma) \subset \mathbb{R}^3$. By some calculations, we have

$$\int_{\tilde{\Sigma}} \tilde{H}^2 d\tilde{\Sigma} = \int_{\Sigma} (1 + H^2) d\Sigma.$$

Definition 1.2. For $\Sigma \subset S^3$ the Willmore energy is $\mathcal{W}(\Sigma) = \int_{\Sigma} (1+H^2) d\Sigma$.

Remark. If $\Sigma \subset S^3$ is minimal, then $\mathcal{W}(\Sigma) = \text{area}(\Sigma)$.

Example 1.3.

- The equator $S_1^2(0)$ is minimal and has area 4π .
- The Clifford Torus $\hat{\Sigma} = S^1(1/\sqrt{2}) \times S^1(1/\sqrt{2}) \subset S^3$ is minimal and has area $2\pi^2$. Moreover, $\pi(\hat{\Sigma}) = \Sigma_{\sqrt{2}}$.

Li and Yau (1982): If Σ is not embedded, then $\mathcal{W}(\Sigma) \geq 8\pi$.

Fix $v \in \mathbb{R}^4$ and consider the vector field $x \mapsto v^{\perp}(x)$, given by tangential projection on $T_x S^3$. It is a conformal killing vector field in S^3 and generates a flow ϕ_t of centered dilations. By conformal invariance of Willmore energy,

$$\mathcal{W}(\Sigma) = \mathcal{W}(\phi_t(\Sigma)) = \int_{\phi_t(\Sigma)} (1 + H_{\phi_t(\Sigma)}^2) d\phi_t(\Sigma) \ge \operatorname{area}(\phi_t(\Sigma)).$$

If we choose $v \in \Sigma$ and let $t \to \infty$, we have $\mathcal{W}(\Sigma) \geq 4\pi$. In case $F : \Sigma \to S^3$ is immersion and $p \in \Sigma$ satisfies $\#F^{-1}(p) = k$, then $\mathcal{W}(\Sigma) \geq 4\pi k$.

Theorem A. Let $\Sigma \subset S^3$ closed, embedded, genus $g \geq 1$. Then $W(\Sigma) \geq 2\pi^2$, and $W(\Sigma) = 2\pi^2$ if and only if Σ is the Clifford torus up to Conf(S³).

\Rightarrow the Willmore Conjecture!

Theorem B. Let $\Sigma \subset S^3$ closed, embedded, genus $g \geq 1$. If Σ is minimal, then $\operatorname{area}(\Sigma) \geq 2\pi^2$, and $\operatorname{area}(\Sigma) = 2\pi^2$ if and only if Σ is the Clifford torus up to $\operatorname{Iso}(S^3)$.

Example 1.4 (Min-max example). Let $S \subset \mathbb{R}^n$ a submanifold and h its height function. Consider $\gamma_0 : [0,1] \to S$ with $\gamma_0(0) = p$ and $\gamma_0(1) = q$ and Π the homotopy class of γ_0 relative to $\{0,1\}$. We define the min-max invariant

$$c = \inf_{\gamma \in \Pi} \sup_{t \in [0,1]} h(\gamma(t)).$$

The aim of min-max theory is to detect a critical point x_0 for h of index 1 as $c = h(x_0)$, for some path γ_0 .

Remark. In order to detect index k critical points we need to do min-max over k-parameters families.

Can think of the equator (great sphere) as a min-max minimal surface of 1-dimensional sweep out of S^3 .

Question: Can we produce Clifford torus as a min-max minimal surface? (one need 5-parameters)

The main ingredients on the proof are

- (I) For each $\Sigma \subset S^3$, there exists canonical family $\Sigma_{(v,t)} \subset S^3$, $(v,t) \in$ $B^4 \times [-\pi, \pi]$, with $\Sigma_{(0,0)} = \Sigma$ and $\operatorname{area}(\Sigma_{(v,t)}) \leq \widetilde{\mathcal{W}}(\Sigma)$.
- (II) [Urbano, 1990] If $\Sigma \subset S^3$ minimal, index(Σ) ≤ 5 , $g \geq 0$, then Σ is a Clifford torus (index 5) or a great sphere (index 1).
- (III) Min-max theory for the area functional (Almgren-Pitts).

2. Canonical Family and Degree Calculation

We begin this section by introducing some notation:

- $\Sigma \subset S^3$ surface
- $B^4 \subset \mathbb{R}^4$ open unit ball and $\partial B^4 = S^3$
- $B_R^4(Q) = \{x \in \mathbb{R}^4 : |x Q| < R\}$ $B_r(q) = \{x \in S^3 : d(x,q) < r\}, d$ is spherical distance

For each $v \in B^4$ we consider $F_v : S^3 \to S^3$ the conformal map defined by

(1)
$$F_v(x) = \frac{1 - |v|^2}{|x - v|^2} (x - v) - v.$$

It is a centered dilation fixing $\pm v/|v|$. Note that if $v \to p \in S^3$, then $F_v(x) \to -p$, for every $x \in S^3$, $x \neq p$.

Let $S^3 \setminus \Sigma = A \cup A^*$, the connected components, and N the unit normal vector to Σ pointing out A. Consider the images by F_v

$$A_v = F_v(A), \quad A_v^* = F_v(A^*) \quad \text{and} \quad \Sigma_v = F_v(\Sigma) = \partial A_v.$$

The unit normal vector to Σ_v is given by $N_v = DF_v(N)/|DF_v(N)|$. We also consider in S^3 the signed distance function to Σ_v

$$d_v(x) = \begin{cases} d(x, \Sigma_v) & \text{if } x \notin A_v \\ -d(x, \Sigma_v) & \text{if } x \in A_v. \end{cases}$$

This is a Lipschitz function, smooth near Σ_v

Definition 2.1 (Canonical Family). For $v \in B^4$ and $t \in [-\pi, \pi]$, define $\Sigma_{(v,t)} = \partial A_{(v,t)}$, where $A_{(v,t)} = \{x \in S^3 : d_v(x) < t\}$ are open subsets of S^3 .

Remark. Consider $\psi_{(v,t)}: \Sigma_v \to S^3$ given by $\psi_{(v,t)}(y) = \exp_y(tN_v(y))$, i.e., $\psi_{(v,t)}(y) = \cos(t)y + \sin(t)N_v(y)$. Then $\Sigma_{(v,t)} \subset \psi_{(v,t)}(\{\operatorname{Jac}\psi_{(v,t)} \geq 0\})$. In particular, we conclude that $\Sigma_{(v,t)}$ are 2-rectifiable subsets of S^3 .

Area Estimate of $\Sigma_{(v,t)}$.

Theorem 2.2. We have, for every $(v,t) \in B^4 \times [-\pi,\pi]$,

(2)
$$\operatorname{area}(\Sigma_{(v,t)}) \leq \mathcal{W}(\Sigma).$$

Moreover, if Σ is not a geodesic sphere and

$$\operatorname{area}(\Sigma_{(v,t)}) = \mathcal{W}(\Sigma),$$

then t = 0 and Σ_v is a minimal surface.

Proof. Consider $\{e_1, e_2\} \subset T_y \Sigma_v$ orthonormal basis such that $DN_v|_y = -k_i(v)e_i$, i = 1, 2, where $k_i(v)$ are the principal curvatures of Σ_v . Since $D\psi_{(v,t)}|_y(e_i) = (\cos(t) - k_i(v)\sin(t))e_i$, we have

Jac
$$\psi_{(v,t)}$$
 = $(\cos(t) - k_1(v)\sin(t))(\cos(t) - k_2(v)\sin(t))$
 = $\cos^2(t) - (k_1 + k_2)\cos(t)\sin(t) + k_1k_2\sin^2(t)$.

By a simple calculation, this gives

Lemma 2.3. If H(v) is the mean curvature of Σ_v , we have

$$Jac \ \psi_{(v,t)} = (1 + H(v)^2) - (\sin(t) + H(v)\cos(t))^2 - \frac{(k_1(v) - k_2(v))^2}{4}\sin^2(t).$$

Using this lemma, the area formula, and the conformal invariance of the Willmore energy we obtain

$$\operatorname{area}(\Sigma_{(v,t)}) \leq \operatorname{area}(\psi_{(v,t)}(\{\operatorname{Jac} \psi_{(v,t)}(p) \geq 0\}))$$

$$\leq \int_{\{\operatorname{Jac} \psi_{(v,t)} \geq 0\}} (\operatorname{Jac} \psi_{(v,t)}) \ d\Sigma_{v}$$

$$\leq \int_{\Sigma_{v}} (1 + H(v)^{2}) \ d\Sigma_{v} - \sin^{2} t \int_{\Sigma_{v}} \frac{(k_{1}(v) - k_{2}(v))^{2}}{4} \ d\Sigma_{v}$$

$$= \mathcal{W}(\Sigma) - \frac{\sin^{2} t}{2} \int_{\Sigma} |\mathring{A}|^{2} d\Sigma.$$

Suppose that equality holds for some (v,t) and that Σ is not a geodesic sphere. Then from conformal invariance we have

$$0 \neq \int_{\Sigma} \frac{(k_1 - k_2)^2}{4} d\Sigma = \int_{\Sigma_v} \frac{(k_1(v) - k_2(v))^2}{4} d\Sigma_v \quad \text{for all } v \in B^4$$

and so t = 0, $t = \pi$, or $t = -\pi$. The last two cases are impossible because $\Sigma_{(v,\pi)} = \emptyset$ and $\Sigma_{(v,t)} = \emptyset$ and thus t = 0. This means area $(\Sigma_v) = \mathcal{W}(\Sigma_v)$ and so Σ_v is a minimal surface.

Blow-up Argument. Next we analyse what happens to $\Sigma_{(v,t)}$ as $v \to S^3$. The notation for symmetric difference here is, as usual, $X\Delta Y = (X \setminus Y) \cup (Y \setminus X)$. Assume $v_n \in B^4$ and $t_n \in [-\pi, \pi], (v_n, t_n) \to (v, t) \in \overline{B}^4 \times [-\pi, \pi]$. The case $v \notin \Sigma$ is divided in three:

Claim 1. If $v \in B^4$, $\Sigma_{v_n} \to \Sigma_v$ smoothly and

$$vol(A_{(v_n,t_n)}\Delta A_{(v,t)}) \to 0.$$

Claim 2. If $v \in A$, $\Sigma_{v_n} \to -v$, $A_{v_n} \to B_{\pi}(v)$ and

$$vol (A_{(v_n,t_n)}\Delta B_{\pi+t}(v)) \to 0.$$

Claim 3. If $v \in A^*$, $\Sigma_{v_n} \to -v$, $A_{v_n} \to B_0(-v)$ and

$$vol (A_{(v_n,t_n)}\Delta B_t(-v)) \to 0.$$

Problem: If $v_n \to v = p \in \Sigma$. For example, if $v_n = (1 - 1/n)v$, we have $A_{v_n} \to B_{\pi/2}(-N)$. But this convergence only happens because the angle that v_n makes with N(p) also converge. In fact, the limit of $F_{v_n}(A)$ depends only on the angle of convergence.

Let $D_+^2(r) = \{s = (s_1, s_2) \in \mathbb{R}^2 : |s| < r, s_1 \ge 0\}$. Consider $\varepsilon > 0$ small so that $\Lambda : \Sigma \times D_+^2(3\varepsilon) \to \overline{B}^4$ is a diffeomorphism to a tubular neighbourhood of Σ in \overline{B}^4 , given by $\Lambda(p, s) = (1 - s_1)(\cos(s_2)p + \sin(s_2)N(p))$. We also use Ω_r for $\Lambda(\Sigma \times D_+^2(r))$.

Conformal images of balls and sectors.

Let $p, N \in S^3$ and r > 0, so that $\langle p, N \rangle = 0$. In this section we study the conformal images of sectors of S^3 ,

(3) $\Delta(p, N, r) = S^3 \setminus \{B_r(\cos(r)p + \sin(r)N) \cup B_r(\cos(r)p - \sin(r)N)\},$ and of balls

(4)
$$B_{\pi/2}(-N) = B_{\sqrt{2}}^4(-N) \cap S^3.$$

Consider the following notation. For sufficient small ε_0 , $v = (1-s)(\cos(t)p + \sin(t)N)$ with $0 < s \le \varepsilon_0$ and $|t| \le \varepsilon_0$,

$$\overline{Q} = -\frac{t/s}{\sqrt{1 + (t/s)^2}}p - \frac{1}{\sqrt{1 + (t/s)^2}}N \in S^3$$

and

$$\overline{R} = \sqrt{2\left(1 - \frac{t/s}{\sqrt{1 + (t/s)^2}}\right)}.$$

Proposition 2.4. Then, there exists C > 0 so that:

(i)
$$B_{\overline{R}-C\sqrt{|(s,t)|}}^4(\overline{Q}) \cap S^3 \subset F_v(B_{\sqrt{2}}^4(-N) \cap S^3) \subset B_{\overline{R}+C\sqrt{|(s,t)|}}^4(\overline{Q}) \cap S^3$$

(ii)
$$F_v(\Delta(p, N, r)) \subset \overline{B}_{\overline{R} + C\sqrt{|(s,t)|}}^4(\overline{Q}) \setminus \overline{B}_{\overline{R} - C\sqrt{|(s,t)|}}^4(\overline{Q}).$$

If $v_n \to v = p \in \Sigma$ we can write $v_n = \Lambda(p_n, (s_{n1}, s_{n2}))$, with $p_n \to p$ and $|s_n| \to 0$. Let $B_{p_n} = B_{\sqrt{2}}^4(-N) \cap S^3$. Suppose also the angle convergence

(5)
$$\lim_{n \to \infty} \frac{s_{n2}}{s_{n1}} = k \in [-\infty, \infty].$$

Remark. Choose $r_0 > 0$ sufficient small for which

$$B_{r_0}(\cos(r_0)p - \sin(r_0)N(p)) \subset A$$
, and $\overline{A} \subset S^3 \setminus B_{r_0}(\cos(r_0)p + \sin(r_0)N(p))$.

Since then, we have $A\Delta B_{p_n} \subset \Delta(p_n, N(p_n), r_0)$, and thus $F_{v_n}(A\Delta B_{p_n}) \subset$ $F_{v_n}(\Delta(p_n, N(p_n), r_0))$. Using the above result, we have

$$F_{v_n}(A)\Delta F_{v_n}(B_{p_n})\subset \overline{B}_{\overline{R}_n+C\sqrt{|s_n|}}^4(\overline{Q}_n)\setminus \overline{B}_{\overline{R}_n-C\sqrt{|s_n|}}^4(\overline{Q}_n),$$

where

$$\overline{Q}_n \to -\frac{k}{\sqrt{1+k^2}}p - \frac{1}{\sqrt{1+k^2}}N(p) \in S^3$$

and

$$\overline{R}_n \to \sqrt{2\left(1 - \frac{k}{\sqrt{1 + k^2}}\right)}.$$

Then $\operatorname{vol}(F_{v_n}(A)\Delta F_{v_n}(B_{p_n})) \to 0$. But $F_{v_n}(B_{p_n})$ converges if we have angle convergence $s_{n2}/s_{n1} \to k \in [-\infty, \infty]$. Summarizing,

Proposition 2.5. Consider a sequence $(v_n, t_n) \in B^4 \times [-\pi, \pi]$ converging to $(v,t) \in \overline{B}^4 \times [-\pi,\pi]$.

(i) If $v \in B^4$ then

$$\lim_{n \to \infty} vol\left(A_{(v_n, t_n)} \Delta A_{(v, t)}\right) = 0.$$

(ii) if $v \in A$ then

$$\lim_{n \to \infty} vol \left(A_{(v_n, t_n)} \Delta B_{\pi + t}(v) \right) = 0$$

and, given any $\delta > 0$.

$$\Sigma_{(v_n,t_n)} \subset \overline{B}_{\pi+t+\delta}(v) \setminus B_{\pi+t-\delta}(v)$$
 for all n sufficiently large.

(iii) if $v \in A^*$ then

$$\lim_{n \to \infty} vol\left(A_{(v_n, t_n)} \Delta B_t(-v)\right) = 0$$

and, given any $\delta > 0$.

$$\Sigma_{(v_n,t_n)} \subset \overline{B}_{t+\delta}(-v) \setminus B_{t-\delta}(-v)$$
 for all n sufficiently large.

(iv) If $v = p \in \Sigma$ and

$$v_n = \Lambda(p_n, (s_{n1}, s_{n2})) \text{ with } \lim_{n \to \infty} \frac{s_{n2}}{s_{n1}} = k \in [-\infty, \infty],$$

then

then
$$\lim_{n\to\infty} vol\left(A_{(v_n,t_n)}\Delta B_{\overline{r}_k+t}(\overline{Q}_{p,k})\right)=0$$
 and, given any $\delta>0$,

$$\Sigma_{(v_n,t_n)} \subset \overline{B}_{\overline{r}_k+t+\delta}(\overline{Q}_{p,k}) \setminus B_{\overline{r}_k+t-\delta}(\overline{Q}_{p,k})$$
 for all n sufficiently large.

Reparametrizing Map $T: \overline{B}^4 \to \overline{B}^4$.

Take a smooth function $\phi: [0, 3\varepsilon] \to [0, 1]$ such that $\phi([0, \varepsilon]) = 0$, strictly increasing in $[\varepsilon, 2\varepsilon]$ and $\phi([2\varepsilon, 3\varepsilon]) = 1$. Define $T: \overline{B}^4 \to \overline{B}^4$ by

$$T(v) = \begin{cases} v & \text{if } v \in \overline{B}^4 \setminus \Omega_{3\varepsilon} \\ \Lambda(p, \phi(|s|)s) & \text{if } v = \Lambda(p, s) \in \Omega_{3\varepsilon}. \end{cases}$$

T is continuous and collapses Ω_{ε} onto Σ preserving s_{n2}/s_{n1} . Moreover, $T: B^4 \setminus \overline{\Omega}_{\varepsilon} \to B^4$ is a homeomorphism.

This map allows us to make a blow up argument and reparametrize the canonical family in such a way it can be continuously extended to the whole $\overline{B}^4 \times [-\pi, \pi]$. For each $v \in B^4 \setminus \overline{\Omega}_{\varepsilon}$, put $C(v, t) = \Sigma_{(T(v), t)}$. Using the results in the previous section we know that as $v \to \partial(B^4 \setminus \overline{\Omega}_{\varepsilon})$, C(v, t) converges to some geodesic sphere (round sphere). Extend C to Ω_{ε} being constant radially, along $s_2 = \text{constant}$. By construction, we have

(6)
$$C(v,t)$$
 is continuous in volume in $\overline{B}^4 \times [-\pi, \pi]$

and

(7)
$$C(v,t) = \partial B_{\overline{r}(v)+t}(\overline{Q}(v)), \text{ for } v \in \partial B^4,$$

where the center map $\overline{Q}: S^3 \to S^3$ is given by

$$\overline{Q}(v) = \begin{cases} -T(v) & \text{if } v \in A^* \setminus \overline{\Omega}_{\epsilon} \\ T(v) & \text{if } v \in A \setminus \overline{\Omega}_{\epsilon} \\ -\frac{s}{\varepsilon}p - \frac{\sqrt{\varepsilon^2 - s^2}}{\varepsilon}N(p) & \text{if } v = \cos(s)p + \sin(s)N(p), s \in [-\varepsilon, \varepsilon]. \end{cases}$$

Theorem 2.6. $deg(\overline{Q}) = genus(\Sigma)$.

Proof. Let dV and dvol be the volume forms of S^3 and \mathbb{R}^4 , respectively. First, regard that \overline{Q} is piecewise smooth. The idea is to calculate the degree by integrating $\overline{Q}^*(dV)$ on S^3 , and using the formula

$$\int_{S^3} \overline{Q}^*(dV) = \deg(\overline{Q}) \int_{S^3} dV.$$

In order to proceed the calculation, divide S^3 on $A^* \setminus \Omega_{\varepsilon}$, $A \setminus \Omega_{\varepsilon}$ and $\Omega_{\epsilon} \cap S^3$. in the first two we have

$$\int_{A^* \backslash \Omega_{\varepsilon}} \overline{Q}^*(dV) = \int_{A^* \backslash \Omega_{\varepsilon}} (-T)^*(dV) = \int_{A^*} dV = \operatorname{vol}(A^*)$$

and, analogously,

$$\int_{A \setminus \Omega_{\varepsilon}} \overline{Q}^*(dV) = \operatorname{vol}(A).$$

Let $G: \Sigma \times [-\varepsilon, \varepsilon] \to S^3 \cap \Omega_{\varepsilon}$ be the diffeomorphism $G(p,t) = \cos(t)p + \sin(t)N(p)$ and define $Q = \overline{Q} \circ G: \Sigma \times [-\varepsilon, \varepsilon] \to S^3$, so that

$$Q(p,t) = -\frac{t}{\varepsilon}p - \frac{\sqrt{\varepsilon^2 - t^2}}{\varepsilon}N(p).$$

In this reparametrization, the third integral can be calculated as

$$\int_{\Omega_{\varepsilon} \cap S^3} \overline{Q}^*(dV) = \int_{\Sigma \times [-\varepsilon, \varepsilon]} Q^*(dV).$$

If $\{e_1, e_2\} \subset T_p\Sigma$ orthonormal basis with $DN|_p(e_i) = -k_i e_i$, we have

$$Q^{*}(dV)(e_{1}, e_{2}, \partial_{t}) = dV(DQ(e_{1}), DQ(e_{2}), DQ(\partial_{t}))$$

$$= dvol(DQ(e_{1}), DQ(e_{2}), DQ(\partial_{t}), Q)$$

$$= \left(-\frac{t}{\varepsilon} + \frac{\sqrt{\varepsilon^{2} - t^{2}}}{\varepsilon}k_{1}\right)\left(-\frac{t}{\varepsilon} + \frac{\sqrt{\varepsilon^{2} - t^{2}}}{\varepsilon}k_{2}\right)\frac{(-1)}{\sqrt{\varepsilon^{2} - t^{2}}}.$$

The Gauss curvature of Σ satisfies $K = 1 + k_1 k_2$, the Gauss equation, hence

$$\int_{\Sigma \times [-\varepsilon,\varepsilon]} Q^*(dV) = -\iint \frac{1}{\varepsilon^2} \left(k_1 k_2 \sqrt{\varepsilon^2 - t^2} - (k_1 + k_2)t + \frac{t^2}{\sqrt{\varepsilon^2 - t^2}} \right) dt d\Sigma$$
$$= -\frac{\pi}{2} \int_{\Sigma} (K - 1) d\Sigma - \frac{\pi}{2} \int_{\Sigma} d\Sigma = \pi^2 (2g - 2).$$

Adding the results,

$$\int_{S^3} \overline{Q}^*(dV) = \text{vol}(S^3) + \pi^2(2g - 2) = 2\pi^2 g = g \int_{S^3} dV.$$

3. Geometric Measure Theory

The intent of this section is to introduce a few geometric measure theory notions that will appear latter. Let (M^3,g) be an orientable Riemannian 3-manifold isometrically embedded in \mathbb{R}^L . Consider the notation $I_k(M)$ for the space of k-dimensional integral currents in \mathbb{R}^L with support in M, i.e., k-dimensional rectifiable sets with integer multiplicities and orientations chosen H^k -almost everywhere. A k-dimensional integral current T can also be interpreted as a continuous functional that operates in $\Omega_c^k(\mathbb{R}^L)$, the space of compactly supported differential k-forms provided with the comass norm, by integration

$$T(\phi) = \int_{M} \langle \phi, \xi \rangle \theta dH^{k}, \quad \phi \in \Omega_{c}^{k}(\mathbb{R}^{L}),$$

where θ and ξ are the multiplicity and orientation maps of T, respectively. The boundary operator $\partial: I_k(M) \to I_{k-1}(M)$ is defined as

$$\partial T(\phi) = T(d\phi).$$

The set of currents without boundary is denoted by $Z_k(M)$.

Example 3.1. Oriented closed k-dimensional surfaces are the basic examples of k-dimensional integral currents.

The notion of volume extends to currents. For each $T \in I_k(M)$ we define its mass to be

$$\mathbf{M}(T) = \sup\{T(\phi) : \phi \in \Omega_c^k(\mathbb{R}^L) \text{ and } ||\phi|| \le 1\},$$

where $||\phi||$ is the comass norm. We can introduce then the mass norm

$$\mathbf{M}(S_1, S_2) = \mathbf{M}(S_1 - S_2).$$

The flat metric defined below in the space of currents has the important property that its induced topology is the weak topology

$$\mathcal{F}(S_1, S_2) = \inf \{ \mathbf{M}(S_1 - S_2 - \partial Q) + \mathbf{M}(Q) : Q \in I_{k+1}(M) \}.$$

We use also the notation $\mathcal{F}(T) = \mathcal{F}(T,0)$. Note that $\mathcal{F}(T) \leq \mathbf{M}(T)$.

Theorem 3.2. The map $C: \overline{B}^4 \times [-\pi, \pi] \to Z_2(S^3)$ is well defined and continuous in the flat topology.

In order to prove the map is well defined recall that

$$C(v,t) = \partial U(v,t) \Rightarrow \partial C(v,t) = 0.$$

And for the continuity claim use

$$\mathcal{F}(C(v_1, t_1), C(v_2, t_2)) = \mathcal{F}(\partial(U(v_1, t_1) - U(v_2, t_2)))
= \text{vol}(U(v_1, t_1) \Delta U(v_2, t_2)).$$

4. Min-max Theory

Theorem 4.1 (Almgren-Pitts). Every compact Riemannian manifold (M^n, g) , $n \leq 7$, contains a smooth embedded minimal hypersurface $\Sigma \subset M$.

Those are obtained by min-max methods with only 1-parameter and the proof can be founded in "Existence and regularity of minimal surfaces in Riemannian manifolds", by Pitts.

The min-max theory we would like to have.

We would like to run min-max with maps $\Phi: I^n \to Z_2(M^3)$ continuous in the flat topology, defined on the *n*-dimensional cube $I^n = [0,1]^n$. If Π is the homotopy class of Φ relative the boundary, define the width of Π by

(8)
$$L(\Pi) = \inf\{L(\Phi') : \Phi' \in \Pi\},\$$

where $L(\Phi') = \sup \{ \mathbf{M}(\Phi'(x)) : x \in I^n \}$. In this context, the result we would like to have is

Min-max Theorem: If $L(\Pi) > \sup\{\mathbf{M}(\Phi(x)) : x \in \partial I^n\}$, then there exists a smooth embedded minimal surface Σ (possibly disconnected, with integer multiplicities), in M so that $L(\Pi) = \operatorname{area}(\Sigma)$. Moreover, if $\{\phi_i\}_i \subset \Pi$ is such that $L(\phi_i) \to L(\Pi)$, then there exists $x_i \in I^n$ with $\mathbf{F}(\Sigma, \phi_i(x_i)) \to 0$.

Almgren-Pitts min-max theory.

We briefly describe Almgren-Pitts min-max theory comparing this with the continuous theory. We need the following notation.

• I(1,k) denotes the cell complex on I^1 whose 1-cells and 0-cells are, respectively,

$$[0,3^{-k}],[3^{-k},2\cdot 3^{-k}],\ldots,[1-3^{-k},1], \text{ and } [0],[3^{-k}],\ldots,[1-3^{-k}],[1].$$

• I(n,k) is the *n*-dimensional cell complex on I^n given by

$$I(n,k) = I(1,k) \otimes \ldots \otimes I(1,k)$$
 (n times).

• $I(n,k)_0$ is the subset of all 0-cells, or vertices, of I(n,k).

$\begin{array}{ll} \textbf{Continuous} & \textbf{Discrete} \\ \Phi: I^n \to Z_2(M) & S = \{\phi_i\}_i, \phi_i: I(n,k_i)_0 \to Z_2(M) \\ \Phi \text{ continuous in flat topology} & \textbf{M}(\phi_i(x) - \phi_i(y)) < \delta_i, \forall [x,y] \in I(n.k_i)_1 \\ L(\Phi) = \sup\{\textbf{M}(\Phi(x)): x \in I^n\} & L(S) = \lim_i \sup\{\textbf{M}(\phi_i(x)): x \in I(n,k_i)_0\} \\ \Phi \simeq \Phi' \text{ homotopy} & \phi_i \simeq_{\delta_i} \phi_i' \text{ and } \delta_i \to 0 \\ L(\Pi) = \{L(\Phi'): \Phi' \in \Pi\} & L(\Pi) = \{L(S'): S' \in \Pi\} \end{array}$

5. Ruling out great spheres (Topological Argument)

The min-max family $C: \overline{B}^4 \times [-\pi, \pi] \to Z_2(S^3)$ constructed above gives, up to a reparametrization, a map Φ defined on the 5-cube.

Theorem 5.1. Let $\Sigma \subset S^3$ embedded, closed, genus g surface. Then, the map $\Phi: I^5 \to Z_2(S^3)$ satisfies the following

- (i) Φ is continuous in the flat topology.
- (ii) $\Phi(I^4 \times 0) = \Phi(I^4 \times 1) = 0$.
- (iii) for every $x \in \partial I^4$, $\{\Phi(x,t)\}_{t\in[0,1]}$ is a standard sweep out of S^3 by oriented geodesic spheres.
- (iv) there exists a map $Q: \partial I^4 \to S^3$, called the center map, so that

$$\Phi(x, 1/2) = \partial B_{\pi/2}(Q(x)),$$

for all $x \in \partial I^4$. This map has degree g.

Also,
$$\sup\{\boldsymbol{M}(\Phi(x)): x \in I^5\} \leq \mathcal{W}(\Sigma)$$
.

Consider Π the homotopy class of Φ . This homotopy class is considered in the discrete min-max context, but here we explain the arguments using the continuous language, supposing we have the continuous version of Min-max Theorem stated in the previous section.

Remark. $L(\Pi) \ge 4\pi = \text{least}$ area a minimal surface can have in S^3 .

Theorem 5.2. If $g \ge 1$, then $L(\Pi) > 4\pi$.

Before proving that, we introduce some notation. We denote by $\tau \subset \mathcal{V}_2(S^3)$ the space of unoriented great spheres. For each element in τ we can associate its center, this gives a diffeomorphism between τ and \mathbb{RP}^3 . This equivalence has the property that if we push the F-metric of $\tau \subset \mathcal{V}_2(S^3)$ to \mathbb{RP}^3 , the obtained metric is equivalent to the standard metric of \mathbb{RP}^3 .

Associated with Φ by forgetting the orientations of currents in $Z_2(S^3)$ we have a map $|\Phi|: \partial I^4 \times \{1/2\} \to \mathbb{RP}^3 \simeq \tau$, given by $|\Phi|(x, 1/2) = |\Phi(x, 1/2)|$. The degree calculation gives $|\Phi|_*(\partial I^4 \times \{1/2\}) = 2g \in H_3(\mathbb{RP}^3)$.

Proof. Suppose, by contradiction, that $L(\Pi) = 4\pi$. Then, there exists a sequence $\{\phi_i\}_i \subset \Pi$ so that

$$\sup_{x \in I^5} \operatorname{area}(\phi_i(x)) \le 4\pi + \frac{1}{i}.$$

Recall $\phi_i = \Phi$ on ∂I^5 . Let $\varepsilon_0 > 0$ small (to be chosen later) and take $\delta > 0$, such that

$$y = (x, t) \in J_{\delta} = \partial I^4 \times [1/2 - \delta, 1/2 + \delta] \Rightarrow F(|\Phi(y)|, |\Phi(x, 1/2)|) \le \varepsilon_0.$$

Consider $0 < \varepsilon_1 \le \varepsilon_0$ with the property

$$y \in \partial I^4 \times I, \mathbf{F}(|\Phi(y)|, \tau) \le \varepsilon_1 \Rightarrow y \in J_\delta.$$

If we could find a 4-manifold R so that $\partial R = \partial I^4 \times \{1/2\}$ and a continuous function $f: R \to \mathbb{RP}^3$ with $f|_{\partial R} = |\Phi|$, then we would have

$$\Phi|_{\sharp}(\partial I^4 \times \{1/2\}) = f_{\sharp}(\partial R) = \partial f(R) = 0 \text{ in } H_3(\mathbb{RP}^3, \mathbb{Z}).$$

Instead of that, we first construct a sequence of 4-dimensional $R(i) \subset I^5$ with support $(\partial R(i)) \subset \partial I^4 \times I$. It is constructed so that $|\phi_i(x)|$ is sufficient close to τ for any $x \in R(i)$, when i is large. We begin with

$$\overline{A}(i) = \{x \in I^5 : \mathbf{F}(|\phi_i(x)|, \tau) \ge \varepsilon_1\},\$$

 $A(i) \subset \overline{A}(i)$ the connected component of $I^4 \times 0$.

Claim 4. $A(i) \cap (I^4 \times \{1\}) = \emptyset$, if i is large.

Proof. If not, up to a subsequence, can find $\gamma_i:[0,1]\to I^5$ with $\gamma_i(0)\in I^4\times 0,\ \gamma_i(1)\in I^4\times 1$ and $\gamma_i([0,1])\subset A(i)$. Since $\phi_i\in\Pi$, for every i, we have $[\phi_i\circ\gamma_i]=\Pi_1$ does not depend on i, and

$$4\pi \le L(\Pi_1) \le L(\phi_i \circ \gamma_i) \le 4\pi + 1/i.$$

Then $L(\Pi_1) = 4\pi$ and the sequence $\{\phi_i \circ \gamma_i\}_i$ is optimal in Π_1 . By "Minmax theorem", we find a smooth embedded minimal surface $\Sigma \subset S^3$ and a sequence $x_i \in I$ so that

$$\operatorname{area}(\Sigma) = 4\pi \text{ and } \mathbf{F}(|(\phi_i \circ \gamma_i)(x_i)|, \Sigma) \to 0.$$

The only minimal surface in S^3 with area 4π are great spheres, so $\phi_i(\gamma_i(x_i))$ approximates to τ , and this is a contradiction, since $\gamma_i(x_i) \in A(i)$.

In particular, $A(i) \cap \partial I^5 \subset (\partial I^4 \times I) \cup (I^4 \times 0)$. Define $R(i) = (\partial A(i)) \cap \operatorname{int}(I^5)$.

Therefore $\mathbf{F}(|\phi_i(x)|, \tau) = \varepsilon_1$ on R(i) and, if i is large enough, $\partial R(i) \subset J_\delta$. Take $C(i) = \partial A(i) \cap (\partial I^4 \times I)$. Because $\partial(\partial A(i)) = 0$ and $\partial A(i) = R(i) \cup C(i) \cup (I^4 \times 0)$, we have

$$\partial C(i) = \partial R(i) \cup \partial (I^4 \times 0) \Rightarrow [\partial R(i)] = [\partial I^4 \times \{1/2\}] \text{ in } H_3(J_\delta, \mathbb{Z}).$$

Dealing with the discrete case we have some extra problems, for instance:

- (1) surfaces along R(i) are close to τ , but not exactly in τ .
- (2) the cycles $\partial R(i)$ and $\partial I^4 \times \{1/2\}$ are homologous and close, but not necessarily equal.

Need a projection argument to conclude.

Definition 5.3. Let $\widehat{\Phi}: \partial I^4 \times I \to \mathbb{RP}^3 \simeq \tau$ be the continuous map given by $\widehat{\Phi}(x,t) = |\Phi(x,1/2)|$. In particular, $\widehat{\Phi}(\partial I^4 \times \{1/2\}) = 2g$ in $H_3(\mathbb{RP}^3, \mathbb{Z})$.

Claim 5. There exists a continuous $f_i: R(i) \to \tau$ with $f_i|_{\partial R(i)} = \widehat{\Phi}|_{\partial R(i)}$.

Proof. We can choose a triangulation Δ of R(i) so that if $[x,y] \in \Delta_1$ and $x,y \in \Delta_0$, then

$$\mathbf{F}(|\phi_i(x)|, |\phi_i(y)|) \le \varepsilon_0.$$

First define $f_i: \Delta_0 \to \tau$ by $f_i(x) = \widehat{\Phi}(x)$, if $x \in \partial R(i)$, and $f_i(x) = y$, if $x \notin \partial R(i)$, so that $\mathbf{F}(|\phi_i(x)|, y) = \mathbf{F}(|\phi_i(x)|, \tau)$. If $x, y \in \Delta_0$ are adjacent, the triangle inequality gives

$$\mathbf{F}(f_i(x), f_i(y)) \le 3\varepsilon_0,$$

If ε_0 is sufficient small (depending only on size of convex balls in \mathbb{RP}^3 with standard geometry), then the map f_i can be extended to $|\Delta| = R(i)$.

In the end, we have

$$\widehat{\Phi}_*[\partial R(i)] = (f_i)_*[\partial R(i)] = [\partial (f_i)_{\sharp}(R(i))] = 0 \text{ in } H_3(\mathbb{RP}^3, \mathbb{Z}).$$

On the other hand, we already had used the degree calculation to obtain

$$\widehat{\Phi}_*[\partial R(i)] = \widehat{\Phi}_*[\partial I^4 \times \{1/2\}] = 2g \text{ in } H_3(\mathbb{RP}^3, \mathbb{Z}).$$

Contradiction if $g \geq 1$. Then $L(\Pi) > 4\pi$.

Theorem B. $\Sigma \subset S^3$ embedded, closed, $g \geq 1$, minimal. Then $\operatorname{area}(\Sigma) \geq 2\pi^2$, and $\operatorname{area}(\Sigma) = 2\pi^2$ if and only if Σ is isometric to the Clifford Torus.

Proof. Consider

$$\mathfrak{F}_1=\{S\subset S^3: \text{S is embedded, closed}, g\geq 1, \text{ minimal}\}.$$

There exists $\Sigma \in \mathfrak{F}_1$ (Appendix), satisfying

(9)
$$\operatorname{area}(\Sigma) = \inf_{S \in \mathfrak{F}_1} \operatorname{area}(S).$$

Urbano (1990): If $\Sigma \subset S^3$, H = 0, index $(\Sigma) \leq 5$, then Σ is the Clifford torus or the great sphere.

Claim 6. Take Σ as (??), then index $(\Sigma) \leq 5$.

The general index bound is missing in current min-max theory: Σ min-max with k parameters, then index(Σ) $\leq k$.

If Σ_t is a variation of the minimal surface $\Sigma = \Sigma_0$, the second variation is given by

(10)
$$\frac{d^2}{dt^2} \operatorname{area}(\Sigma_t)|_{t=0} = -\int_{\Sigma} \psi \mathcal{L} \psi d\Sigma,$$

where L is the Jacobi operator, ψN is the variational vector field and N is the unit normal vector to Σ . Recall we constructed a Canonical family $\Sigma_{(v,t)}, (v,t) \in \overline{B}^4 \times [-\pi,\pi]$, with the area estimate

$$\operatorname{area}(\Sigma_{(v,t)}) \leq \mathcal{W}(\Sigma) = \operatorname{area}(\Sigma).$$

Consider the variational vector fields of $\Sigma_{(v,t)}$ at (0,0):

$$\psi_i = \langle N, e_i \rangle$$
, $i = 1, 2, 3, 4$ and $\psi_5 = 1$,

where e_i are the canonical directions in \mathbb{R}^4 and let $E = \text{span}\{\psi_1, \dots, \psi_5\}$.

Lemma 6.1.

(11)
$$-\int_{\Sigma} \psi L \psi d\Sigma < 0, \forall \psi \in E \setminus \{0\},$$

unless Σ is totally geodesic.

Suppose index(Σ) ≥ 6 . So, there exists $\varphi \in C^{\infty}(\Sigma)$ with

$$-\int_{\Sigma} \varphi L \varphi d\Sigma < 0 \quad \text{and} \quad -\int_{\Sigma} \varphi L \psi_i d\Sigma = 0, \text{ for all } i = 1, \dots, 5.$$

Choose vector field X on S^3 with $X = \varphi N$ on Σ , and let Γ_s be its flow. Define $f(v,t,s) = \text{area}(\Gamma_s(\Sigma_{(v,t)}))$, for $|v| < \delta, |t| < \delta$ and $|s| < \delta$, then

$$f(0,0,0) = \text{area}(\Sigma), \quad Df(0,0,0) = 0, \quad D^2f(0,0,0) < 0,$$

and then f has a strict local maximum at the origin. Replace $\Sigma_{(v,t)}$ with $\Sigma'_{(v,t)} = \Gamma_{\beta(v,t)}(\Sigma_{(v,t)})$, where $\beta(v,t)$ is chosen satisfying $\operatorname{area}(\Sigma'_{(v,t)}) < \operatorname{area}(\Sigma)$, if $|(v,t)| < \delta$ and $\Sigma'_{(v,t)} = \Sigma_{(v,t)}$, if $|(v,t)| \ge \delta$. Therefore,

(12)
$$\operatorname{area}(\Sigma'_{(v,t)}) < \operatorname{area}(\Sigma), \quad (v,t) \in B^4 \times [-\pi,\pi].$$

Recall the equality in $\operatorname{area}(\Sigma_{(v,t)}) \leq \mathcal{W}(\Sigma)$ implies t = 0 and Σ_v is minimal.

Remark.
$$\Sigma$$
 minimal $\Rightarrow \operatorname{area}(\Sigma_v) = \operatorname{area}(\Sigma) - 4 \int \frac{\langle v, N(x) \rangle^2}{|x-v|^4} d\Sigma$.

Since $\Sigma_0 = \Sigma$ is minimal, if Σ_v is minimal, $v \in B^4$, then $\operatorname{area}(\Sigma_v) = \mathcal{W}(\Sigma_v) = \mathcal{W}(\Sigma) = \operatorname{area}(\Sigma)$, and we conclude $\langle v, N \rangle = 0$ along Σ . Because of that, Σ is invariant under flow of v^{\perp} .

From the canonical family we constructed C(v,t) via a blow-up argument and Φ defined on the 5-cube. Analogous considerations from $\Sigma'_{(v,t)}$ gives C'(v,t) and $\Phi': I^5 \to Z_2(S^3)$, with

$$\sup_{x \in I^5} \mathbf{M}(\Phi'(x)) \le \sup \{ \operatorname{area}(\Sigma'_{(v,t)}) : (v,t) \in \overline{B}^4 \times [-\pi,\pi] \} < \operatorname{area}(\Sigma).$$

Apply min-max theory to Π' , the homotopy class of Φ' , to obtain a minimal surface Σ' so that

$$4\pi < \operatorname{area}(\Sigma') = L(\Pi') < \operatorname{area}(\Sigma) < 2\pi^2 < 8\pi$$

where the $2\pi^2$ estimate is the area of Clifford torus, as a surface in \mathfrak{F}_1 . The multiplicity of Σ' is 1, otherwise would be $\operatorname{area}(\Sigma') \geq 8\pi$. Also, Σ' has $\operatorname{genus}(\Sigma') \geq 1$, because there is a theorem by Almgren that guarantees the only minimal surfaces of genus g = 0 in S^3 are great spheres. Contradiction, since $\Sigma' \in \mathfrak{F}_1$ and $\operatorname{area}(\Sigma') < \operatorname{area}(\Sigma)$. This implies $\operatorname{index}(\Sigma) \leq 5$. By Urbano, Σ is a Clifford torus and Theorem B is proved.

Theorem A. $\Sigma \subset S^3$ closed, embedded, genus $g \geq 1$. Then $\mathcal{W}(\Sigma) \geq 2\pi^2$ and $\mathcal{W}(\Sigma) = 2\pi^2$ if and only if Σ is Clifford torus up to Conf(S^3).

Proof. Let $\Phi: I^5 \to Z_2(S^3)$ the min-max family constructed from Σ and Π its homotopy class. Applying min-max theory to Π , we obtain a minimal surface $\widehat{\Sigma}$ with

$$4\pi < \operatorname{area}(\widehat{\Sigma}) = L(\Pi) \le W(\Sigma).$$

If $\widehat{\Sigma}$ has multiplicity greater than 1, then $\operatorname{area}(\widehat{\Sigma}) \geq 8\pi > 2\pi^2$. If not, the lower bound on the area implies $\operatorname{genus}(\widehat{\Sigma}) \geq 1$. In any case, $\operatorname{area}(\widehat{\Sigma}) \geq 2\pi^2$, and we have

$$W(\Sigma) \ge 2\pi^2$$
.

Suppose $W(\Sigma) = 2\pi^2$. Recall $\operatorname{area}(\Sigma_{(v,t)}) \leq W(\Sigma) = 2\pi^2$.

Claim 7. For some $(v,t) \in B^4 \times [-\pi,\pi]$, we have $\operatorname{area}(\Sigma_{(v,t)}) = W(\Sigma)$.

Otherwise, the min-max family Φ constructed from Σ has $L(\Phi) < W(\Sigma) = 2\pi^2$. We can run min-max again and contradic Theorem B.

Because of equality $\operatorname{area}(\Sigma_{(v,t)}) = W(\Sigma)$, we conclude t = 0 and Σ_v is a minimal surface. Then $\operatorname{area}(\Sigma_v) = W(\Sigma_v) = W(\Sigma) = 2\pi^2$. By rigidity part of Theorem B, $\Sigma_v = F_v(\Sigma)$ must be isometric to the Clifford torus, with $F_v \in \operatorname{Conf}(S^3)$.

7. Min-max theory and the energy of links

A 2-component link in \mathbb{R}^3 is a pair of rectifiable closed curves $\gamma_i: S^1 \to \mathbb{R}^3$, i = 1, 2, so that $\gamma_1(S^1) \cap \gamma_2(S^1) = \emptyset$.

Möbius Cross Energy.

$$E(\gamma_1, \gamma_2) = \int_{S^1 \times S^1} \frac{|\gamma_1'(s)| |\gamma_2'(t)|}{|\gamma_1(s) - \gamma_2(t)|^2} ds dt.$$

Freedman-He-Wang(1994).

$$F \in \operatorname{Conf}(\mathbb{R}^3) \Rightarrow \operatorname{E}(F \circ \gamma_1, F \circ \gamma_2) = \operatorname{E}(\gamma_1, \gamma_2).$$

In the same paper they also conjecture

Conjecture: The energy of any non-trivial link should be at least $2\pi^2$.

Example 7.1 (Standard Hopf link). The stereographic projection of $\widehat{\gamma}(s) = (\cos s, \sin s, 0, 0) \in S^3$ and $\widetilde{\gamma}(t) = (0, 0, \cos t, \sin t) \in S^3$ is a 2-component link in \mathbb{R}^3 , called standard Hopf link. Its Möbius energy is given by

$$E(\widehat{\gamma}, \widetilde{\gamma}) = 2\pi^2.$$

He: The minimizer is isotopic to standard Hopf link.

We introduce now the Gauss map and linking number of a link in \mathbb{R}^3 . Let (γ_1, γ_2) be a 2-component link in \mathbb{R}^3 . The Gauss map $g = G(\gamma_1, \gamma_2)$: $S^1 \times S^1 \to S^2$ of (γ_1, γ_2) is defined as

$$g(s,t) = \frac{\gamma_1(s) - \gamma_2(t)}{|\gamma_1(s) - \gamma_2(t)|} \in S^2.$$

The linking number of (γ_1, γ_2) is defined to be the degree of the Gauss map, and the notation is $lk(\gamma_1, \gamma_2)$. This can also be given via the Gauss formula

$$lk(\gamma_1, \gamma_2) = \frac{1}{4\pi} \int_{S^1 \times S^1} \frac{\det(\gamma_1'(s), \gamma_2'(t), \gamma_1(s) - \gamma_2(t))}{|\gamma_1(s) - \gamma_2(t)|^3} ds dt.$$

We conclude then the first lower bound to the Möbius energy:

$$E(\gamma_1, \gamma_2) \ge 4\pi |lk(\gamma_1, \gamma_2)|.$$

In particular, if $lk(\gamma_1, \gamma_2) = 1$ or -1, we have $E(\gamma_1, \gamma_2) \ge 4\pi$.

Theorem 7.2. If $(\gamma_1, \gamma_2) \subset \mathbb{R}^3$ has $lk(\gamma_1, \gamma_2) = 1$ or -1, then $E(\gamma_1, \gamma_2) \geq 2\pi^2$. Moreover, if $E(\gamma_1, \gamma_2) = 2\pi^2$ then (γ_1, γ_2) is a conformal image of standard Hopf link.

Remark. Analogy with the Willmore problem: $\Sigma \subset \mathbb{R}^3$ closed surface, genus $g, \mathcal{W}(\Sigma) = \int_{\Sigma} H^2 d\Sigma$ is conformal invariant. In this case we know

Marques-Neves: $g \ge 1 \Rightarrow \mathcal{W}(\Sigma) \ge 2\pi^2$.

 $2\pi^2$ **Theorem.** Let $\Phi: I^5 \to Z_2(S^3)$ a map with the following properties:

- (1) Φ is continuous in the flat norm
- (2) $\Phi(I^4 \times \{0\}) = \Phi(I^4 \times \{1\}) = 0$
- (3) $x \in \partial I^4$, $\{\Phi(x,t)\}_{t \in [0,1]}$ is a standard foliation of S^3 by round spheres centered at $Q(x) \in S^3$
- (4) $x \in \partial I^4$, $\Phi(x, 1/2) = \partial B_{\pi/2}(Q(x))$
- (5) $Q: \partial I^4 \to S^3$ has $\deg(Q) \neq 0$.

Then, there exists $y \in I^5$ so that $\mathbf{M}(\Phi(y)) \geq 2\pi^2$.

Fix (γ_1, γ_2) with $lk(\gamma_1, \gamma_2) = -1$. We produce $\Phi: I^5 \to Z_2(S^3)$ satisfying (1) - (5) and $\mathbf{M}(\Phi(x)) \leq \mathrm{E}(\gamma_1, \gamma_2)$, for every $x \in I^5$.

Recall the notation $g = G(\gamma_1, \gamma_2)$ for the Gauss map of the link. The key calculation here is the following estimate of the jacobian of g:

$$|\operatorname{Jac}(g)|(s,t) \le \frac{|\gamma_1'(s)||\gamma_2'(t)|}{|\gamma_1(s) - \gamma_2(t)|^2}.$$

Consider $g_{\sharp}(S^1 \times S^1) \in Z_2(S^3)$ given by $g_{\sharp}(S^1 \times S^1)\phi = \int_{S^1 \times S^1} g^*\phi$. The key calculation is useful to estimate the mass of this current

$$\mathbf{M}(g_{\sharp}(S^1 \times S^1)) \le \int_{S^1 \times S^1} |\mathrm{Jac}(g)| ds dt \le \mathrm{E}(\gamma_1, \gamma_2).$$

We introduce some notation and observation before constructing Φ . Let $p \in \mathbb{R}^4$, $\lambda > 0$ and define $D_{\lambda,p}(x) = \lambda(x-p) + p$, the dilation of λ centered at p. If $(\gamma_1, \gamma_2) \subset S_r^3(p) \subset \mathbb{R}^4$, $\lambda > 0$ and $\tilde{g} = G(\gamma_1, D_{\lambda,p} \circ \gamma_2)$, then $\mathbf{M}(\tilde{g}_{\sharp}(S^1 \times S^1)) \leq \mathrm{E}(\gamma_1, \gamma_2)$. For every $v \in B^4$, we consider the conformal map $F_v : \mathbb{R}^4 \setminus \{v\} \to \mathbb{R}^4$ given as

$$F_v(x) = \frac{x - v}{|x - v|^2}.$$

Note that

$$F_v(S_1^3(0)) = S_{\frac{1}{1-|v|^2}}^3(c(v)), \text{ where } c(v) = \frac{v}{1-|v|^2}.$$

Finally, for every $v \in B^4$ and $z \in (0,1)$ take

$$b(v,z) = \frac{2z - 1}{(1 - |v|^2 + z)(1 - z)} \in (0, \infty)$$

and

$$a(v,z) = 1 + (1 - |v|^2)b(v,z) \in \left(-\frac{1}{1 - |v|^2}, \infty\right).$$

Definition of the family: For every $(v,z) \in B^4 \times (0,1)$ define

(13)
$$C(v,z) = g_{(v,z)\sharp}(S^1 \times S^1) \in Z_2(S^3),$$

where

(14)
$$g_{(v,z)} = G(F_v \circ \gamma_1, D_{c(v),a(v,z)} \circ F_v \circ \gamma_2).$$

By construction, we know the masses of this family has an upper bound $\mathbf{M}(C(v,z)) \leq \mathrm{E}(\gamma_1,\gamma_2)$, for every $(v,z) \in B^4 \times (0,1)$.

Remark.
$$C(v, 0) = 0 = C(v, 1)$$
.

Need to extend C to $\overline{B}^4 \times [0,1]$ and determine the boundary behaviour. Fix $v \in S^3 \setminus (\gamma_1(S^1) \cup \gamma_2(S^1))$ and observe that

(15)
$$F_v(S_1^3(0) \setminus \{v\}) = P_v = \{x \in \mathbb{R}^4 : \langle x, v \rangle = -1/2\}.$$

If $x \in \mathbb{R}^4 \setminus \{v\}$ and $w \in B^4 \to v \in S^3$, then

$$D_{a(w,z),c(w)} \circ F_w(x) = a(w,z)(F_w(x) - c(w)) + c(w) \to F_v(x) - b(z)v,$$

where
$$b(z) = (2z - 1)/z(1 - z) \in (-\infty, \infty)$$
.

The Gauss map $G(F_v \circ \gamma_1, F_v \circ \gamma_2)$ parametrizes $\partial B_{\pi/2}(-v)$ with degree -1, so we can write

$$C(v, 1/2) = G(F_v \circ \gamma_1, F_v \circ \gamma_2)_{\sharp}(S^1 \times S^1) = \operatorname{lk}(\gamma_1, \gamma_2) \partial B_{\pi/2}(-v) = \partial B_{\pi/2}(v).$$

Then the center map has degree 1. The problem we have to deal with is that C(v,z) does not parametrize a round sphere if $z \neq 1/2$. But it is contained in a hemisphere, then it is possible to take a length decreasing retraction $R(v,\lambda,t)$ onto $\partial B_{r(z)}(v)$. By doing this it is possible to apply the $2\pi^2$ -Theorem.

References

- [1] F. Codá Marques and A. Neves, *Min-max theory and the Willmore conjecture*. To appear in Annals of Mathematics.
- [2] I. Agol, F. Codá Marques and A. Neves, *Min-max theory and the energy of links*. preprint arXiv:1205.0825 [math.GT]