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This is a report on a talk given in the Oberwolfach conference Geometrie
on the summer of 2016. The main result mentioned in that talk was a theorem
on existence of closed, embedded, smooth minimal hypersurfaces in certain
noncompact spaces.

Minimal surfaces, the extremizers of the area functional, are among the
most important topics in differential geometry. Euler and Lagrange were
the first to consider minimal surfaces, proving that if the graph of a C2

function u is minimal in the Euclidean space, then u satisfies a second order
elliptic quasilinear partial differential equation. Later, Meusnier discovered a
geometric characterization for these surfaces, by the vanishing of the mean-
curvature. These two points of view explain why minimal surfaces are natural
objects of study in geometric analysis.

Henceforth, many mathematicians contributed to the development of the
theory and applied its ideas to settle deep problems and establish beautiful
results in geometry. For instance, minimal surfaces have a strong link with
problems involving the scalar curvature of three-manifolds, the proof of the
positive mass conjecture in general relativity by Schoen and Yau [20] is one
of the most important examples of this connection. Some other important
recent works using minimal surfaces are the proof of the finite time extinction
of the Ricci flow with surgeries starting at a homotopy 3-sphere by Colding
and Minicozzi [6] and [7], the proof of the Willmore Conjecture and the
existence of infinitely many closed minimal hypersurfaces in closed manifolds
with positive Ricci curvature by Marques and Neves [11] and [12].

The existence of minimal submanifolds with some specific properties plays
a fundamental role in the development of the theory. The most natural way
to produce minimal surfaces is by minimizing the area functional in a fixed
class. This idea was applied in many contexts: in a class of surfaces with
same boundary, known as the Plateau’s Problem; or in a homology class;
or even in the class of surfaces Σ ⊂ Ω, with ∂Σ ⊂ ∂Ω, the free boundary
problem. It was proved, by Schoen and Yau [19], Sacks and Uhlenbeck [17]
and Freedman, Hass and Scott [10], that if Σ is a closed incompressible
surface in a 3-manifold M , then there is a least area immersion with the
same action in the π1 level.

In the topology of 3-manifolds, there are two important types of surfaces,
namely the Heegaard splittings and the incompressible surfaces. The results
above show that this second type occur as minimal surfaces produced by
minimization processes, and for this reason, they are stable, i.e., the Morse
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index is equal to zero. It is also possible to apply variational methods to
construct higher index minimal surfaces. There are two basic approaches:
applying Morse theory to the energy functional on the space of maps from a
fixed surface, such as in the works of Sacks and Uhlenbeck [16], Micallef and
Moore [13] and Fraser [9], or via a min-max argument for the area functional
over classes of sweepouts. In some cases, these methods can be applied to
realize Heegaard splitings as embedded minimal surfaces, see [15] and [5].

This min-max technique was inspired by the work of Birkhoff [4] on the ex-
istence of simple closed geodesics in Riemannian 2-spheres, a question posed
by Poincaré. Looking for closed geodesics, he interpreted the geometric point
of view suggested by the Principle of Least Action as the iteration of a spe-
cific curve shortening process. This process is continuous with respect to
variations of the beginning curve, so it can be applied to whole families of
closed curves sweeping out a given Riemannian 2-sphere at the same time.
Considering the longest curve in the family after each step of the shortening
process, a subsequence of these converges to a closed geodesic.

In higher dimensions, the original method was introduced in [2] and [14]
between the 1960’s and 1980’s. It has been used recently by Marques and
Neves to answer deep questions in geometry, see [11] and [12]. The method
consists of applications of variational techniques for the area functional. It
is a powerful tool in the production of unstable minimal surfaces in closed
manifolds. For instance, Marques and Neves, in the proof of the Willmore
conjecture, proved that the Clifford Torus in the three-sphere is a min-max
minimal surface. The min-max technique for the area functional appear also
in a different setting, as introduced by Simon and Smith [18], and revisited
by Colding and De Lellis [5].

In the presented talk, we dealt with a new min-max construction of min-
imal hypersurfaces and applied the technique to obtain existence results in
noncompact manifolds.

There is no immersed closed minimal surface in the Euclidean space R3.
This fact illustrates the existence of simple geometric conditions creating
obstructions for a Riemannian manifold to admit closed minimal surfaces.
In the Euclidean space, we can see the obstruction coming in the following
way: by the Jordan-Brouwer separation theorem every connected smooth
closed surface Σ2 ⊂ R3 divides R3 in two components, one of them bounded,
which we denote Ω. Start contracting a large Euclidean ball containing Ω
until it touches Σ the first time. Let p ∈ Σ be a first contact point, then the
maximum principle says that the mean curvature vector of Σ at p is non-zero
and points inside Ω. In particular, Σ2 ⊂ R3 is not minimal.

The main result presented in that talk was:

2



Figure 1: A complete non-compact Riemannian manifold, asymptotic to a
cylinder and containing a mean-concave open set Ω. In this case, Theorem
1 could be applied.

Theorem 1. Let (Nn, g) be a complete non-compact Riemannian manifold
of dimension n ≤ 7. Suppose:

• N contains a bounded open subset Ω, such that Ω is a manifold with
smooth and strictly mean-concave boundary, and

• N is thick at infinity.

Then, there exists a closed embedded minimal hypersurface Σn−1 ⊂ N that
intersects Ω.

The thickness assumption can be loosely phrased as: ”the decay of the
geometric objects at infinty is at most polynomial”. For instance, manifolds
of bounded geometry and manifolds with ends asymptotic to right cylinders
are thick at infinity, see figure 1.

In the recent paper [8], Collin, Hauswirth, Mazet and Rosenberg prove
that any complete non-compact hyperbolic three-dimensional manifold of
finite volume admits a closed embedded minimal surface. These manifolds
have a different behavior at infinity from those considered in Theorem 1,
their ends are all thin hyperbolic cusps.

The hypothesis involving the mean-concave bounded domain Ω comes
from the theory of closed geodesics in non-compact surfaces. In 1980, Bangert
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proved the existence of infinitely many closed geodesics in a complete Rie-
mannian surface M of finite area and homeomorphic to either the plane, or
the cylinder or the Möbius band, see [3]. The first step in his argument is to
prove that the finite area assumption implies the existence of locally convex
neighborhoods of the ends of M .

To prove the Theorem 1, we developed a min-max method that is ad-
equate to produce minimal hypersurfaces with intersecting properties. Let
(Mn, g) be a closed Riemannian manifold and Ω be an open subset of M .
Consider a homotopy class Π of one-parameter families of codimension-one
submanifolds sweeping M out. For each given sweepout S = {Σt}t∈[0,1] ∈ Π,
we consider the number

L(S,Ω) = sup{Hn−1(Σt) : Σt ∩ Ω 6= ∅},

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure associated
with the Riemannian metric. Define the width of Π with respect to Ω to be

L(Π,Ω) = inf{L(S,Ω) : S ∈ Π}.

Then, we prove:

Theorem 2. Let (Mn, g) be a closed Riemannian manifold, n ≤ 7, and
Π be a non-trivial homotopy class of sweepouts. Suppose that M contains
an open subset Ω, such that Ω is a manifold with smooth and strictly mean-
concave boundary. There exists a stationary integral varifold Σ whose support
is a smooth embedded closed minimal hypersurface intersecting Ω and with
||Σ||(M) = L(Π,Ω).

The intersecting condition in Theorem 2 is optimal in the sense that it
is possible that the support of the minimal surface Σ is not entirely in Ω.
We illustrate this with two examples of mean-concave subsets of the unit
three-sphere S3 ⊂ R4 containing no great sphere. The first example is the
complement of three spherical geodesic balls, which can be seen in Figure 2.

In order to introduce the second example, for each 0 < t < 1, consider
the subset of S3 given by

Ω(t) = {(x, y, z, w) ∈ S3 : x2 + y2 > t2}.

It is not hard to see that no Ω(t) contain great spheres. Moreover, the
boundary of Ω(t) is a constant mean-curvature torus in S3. If 0 < t < 1/

√
2,

the mean-curvature vector of ∂Ω(t) points outside Ω(t). In this case, Ω =
Ω(t) is a mean-concave subset of S3 that contains no great sphere.
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Figure 2: Example of mean-concave domain Ω ⊂ S3 for which Σn−1 given by
Theorem 2 is not entirely inside Ω.
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