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Birkhoff (1917): closed geodesics in (52, g).
Lusternik-Schnirelmann (1940s): 3 closed geodesics.
Almgren (1960s): general theory, uses G.M.T.

Pitts (1970-80s): hypersurfaces in lower dimensions (n < 6).

Schoen-Simon (1981): hypersurfaces in arbitrary dimension,
curvature estimates for stable minimal hypersurfaces.

@ Simon-Smith (1982): continuous setting and topological
bounds. Every (S3, g) contains embedded minimal S2.

e Colding-de Lellis (2003): survey on min-max constructions.
e Colding-Minicozzi (2000s): finite time extinction of RF.
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Birkhoff (1917): closed geodesics in (52, g).
Lusternik-Schnirelmann (1940s): 3 closed geodesics.
Almgren (1960s): general theory, uses G.M.T.

Pitts (1970-80s): hypersurfaces in lower dimensions (n < 6).

Schoen-Simon (1981): hypersurfaces in arbitrary dimension,
curvature estimates for stable minimal hypersurfaces.

Simon-Smith (1982): continuous setting and topological
bounds. Every (S3, g) contains embedded minimal S2.

Colding-de Lellis (2003): survey on min-max constructions.
Colding-Minicozzi (2000s): finite time extinction of RF.

Marques-Neves: rigidity of min-max spheres in 3-manifolds,
Willmore Problem and infinitely many closed, embedded,
minimal hypersurfaces in manifolds with Ric > 0.
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Birkhoff (1917): closed geodesics in (52, g).
Lusternik-Schnirelmann (1940s): 3 closed geodesics.
Almgren (1960s): general theory, uses G.M.T.

Pitts (1970-80s): hypersurfaces in lower dimensions (n < 6).

Schoen-Simon (1981): hypersurfaces in arbitrary dimension,
curvature estimates for stable minimal hypersurfaces.

@ Simon-Smith (1982): continuous setting and topological
bounds. Every (S3, g) contains embedded minimal S2.

e Colding-de Lellis (2003): survey on min-max constructions.
e Colding-Minicozzi (2000s): finite time extinction of RF.

@ Marques-Neves: rigidity of min-max spheres in 3-manifolds,
Willmore Problem and infinitely many closed, embedded,
minimal hypersurfaces in manifolds with Ric > 0.

@ Many others: Ketover, Pellandini, Tasnady, Li, Zhou, ...



Part 1: Minimal hypersurfaces in noncompact manifolds

There is no closed minimal hypersurface in R".
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Part 1: Minimal hypersurfaces in noncompact manifolds

There is no closed minimal hypersurface in R".
Need extra assumptions!

o Every complete Riemannian surface of finite area and
homeomorphic to either the plane, or the cylinder or the
Mobius band admits infinitely many closed geodesics.

(Bangert, 1980)
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Part 1: Minimal hypersurfaces in noncompact manifolds

There is no closed minimal hypersurface in R".
Need extra assumptions!

o Every complete Riemannian surface of finite area and
homeomorphic to either the plane, or the cylinder or the
Mobius band admits infinitely many closed geodesics.

(Bangert, 1980)

Our assumptions: Let (N", g) be a complete non-compact
Riemannian manifold.

@ Bangert's condition: complete Riemannian surfaces of finite
area have bounded, mean-concave subsets.

@ We say that N has the x,-condition if there exist p € N and
Ro > 0, such that, for every R > Ry,

N>

sup [Secy|(q) < R¥ and inf __injny(q) > R 2.
q€B(p,R) q€B(p,R)
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Main Result

Theorem A (—)

Let (N, g) be a complete non-compact Riemannian manifold of
dimension n < 7. Suppose:

@ N has a bounded and strictly mean-concave open subset €2;

@ N satisfies the %,-condition, for some k <

2
n—2"

Then, there exists a closed embedded minimal hypersurface
Y"1 C N that intersects Q.
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Main Result

Theorem A (—)

Let (N, g) be a complete non-compact Riemannian manifold of
dimension n < 7. Suppose:

@ N has a bounded and strictly mean-concave open subset €2;

@ N satisfies the %,-condition, for some k < n32'

Then, there exists a closed embedded minimal hypersurface
Y"1 C N that intersects Q.

Remarks:

@ Y"1 is a min-max minimal hypersurface.

@ Collin, Hauswirth, Mazet and Rosenberg proved that any
complete non-compact hyperbolic three-dimensional manifold
of finite volume admits a closed, embedded minimal surface.
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Figure: A non-compact Riemannian manifold, asymptotic to a cylinder
and containing a mean-concave open set Q. In this case, the theorem
could be applied.
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Theorem B (—)

mean-concave
[IZ1I(M) = L(N. 2)
MIN-MAX HYPERSURFACE

yn-1
(minimal hypersurface)

(possibly disconnected and with multiplicities)
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Theorem B (—)

mean-concave
[IZ1I(M) = L(N. 2)
MIN-MAX HYPERSURFACE

yn-1
(minimal hypersurface)

(possibly disconnected and with multiplicities)

Remarks:

e L(M,Q) is the new min-max invariant.
o L(N,M)=1L(N).

@ Optimal with respect to the intersecting property.
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Proof of Theorem A

(1) Let f: N — [0,00] be a Morse function and t > 0 such that
Q C {f < t}. Let M" be a closed manifold containing an
isometric copy of {f < t}.

M e T
) £ ’
L0 /] -
\ / oo -1 o ™ :
P £ x [0,1]
{r<t
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Proof of Theorem A

(1) Let f: N — [0,00] be a Morse function and t > 0 such that
Q C {f < t}. Let M" be a closed manifold containing an
isometric copy of {f < t}.

‘j' / - o f71 ( f) /// \\
| 0 J F
‘I‘"\ e - T /
\ /__,,/ //,, fﬁl( t) > [O, l] .\\
{f=t}

(2) Apply Theorem B to obtain a closed, embedded, minimal
hypersurface ¥"~1 C M, that intersects Q and with

HHE) < L(M,Q).

Moreover, L(I1,£) has an upper bound which does not
depend on t.
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(3) If tis large, the polynomial decay of the geometry at
infinity implies that

Y C{f <t}

In particular, ¥ is a minimal hypersurface in the original
manifold N.
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Min-max theory for intersecting slices

Sweepout: Continuous one-parameter family of closed, oriented
hypersurfaces (possibly with finitely many singularities).

§=1{Z} e
(sweepout)

L(S, Q) = max{H"'(Z): %, N0 # =}

big slice

Width with respect to Q: Let 1 be a homotopy class of
sweepouts of M. Define:

L(M, Q) = inf{L(S,Q): S € M.
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Proof of Theorem B

1. (Existence of critical sequences)
We can find & = {S*}4en C M such that

lim L(S%,Q) =L(N,Q)
k—o00
and

sup{H""1(X) : X is a slice of S*, for some k € N} < ooc.
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Proof of Theorem B

1. (Existence of critical sequences)
We can find & = {S*}4en C M such that

lim L(S%,Q) =L(N,Q)
k—o00
and

sup{H""1(X) : X is a slice of S*, for some k € N} < ooc.

HH(EH) S5 = {Z ey

L(5",Q)
X - =0A

to

AcL(M-Q)

0 ty ty 1 t
dmng(S*) = {t € [0,1] : B N0 £ o}
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Lemma
We can find a continuous path

¢:[0,1] = Zp_1(M — Q)

such that
(i) ¢(0) = 9A and (1) = 0;
(i) H™Y(p(t)) < C-H""L(DA), for every t € [0,1],

where C > 0 is a uniform constant.
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Lemma

We can find a continuous path
¢:[0,1] = Z,-1(M — Q)

such that
(i) ¢(0) = 9A and (1) = 0;
(i) H™Y(p(t)) < C-H""L(DA), for every t € [0,1],

where C > 0 is a uniform constant.

Idea: In M — Q, we use the gradient flow of a Morse function
without interior local maxima.
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Min-max sequences and Critical sets

Let & = {S*}xen C M be a critical sequence.

Min-max sequence: sequence of intersecting slices Zlg of Ski
satisfying
lim H" () = L(M, Q).

Jj—o0

C(6,Q) = {limits (as varifolds) of min-max sequences}.
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Min-max sequences and Critical sets

Let & = {S*}xen C M be a critical sequence.

Min-max sequence: sequence of intersecting slices Zlg of Ski
satisfying
lim H" () = L(M, Q).

Jj—o0

C(6,Q) = {limits (as varifolds) of min-max sequences}.

2. Can find & € I critical and such that
V € C(6,9Q) = V stationary in M or spt(V)NQ = @.
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Min-max sequences and Critical sets

Let & = {S*}xen C M be a critical sequence.

Min-max sequence: sequence of intersecting slices ng of Ski
satisfying
lim H" () = L(M, Q).

Jj—o0

C(6,Q) = {limits (as varifolds) of min-max sequences}.

2. Can find & € I critical and such that
V € C(6,9Q) = V stationary in M or spt(V)NQ = @.

3. Given & €1 as in the previous item, we can find
Y € C(6,Q) such that

spt(X) NN # o

and
> is almost minimizing in small annuli.
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4. Apply Pitts’ Regularity Theorem

(stationary) + (a.m. in small annuli) = smooth.
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Existence of intersecting a.m. varifolds

@ Suppose that no V € C(&,Q) satisfies our assumption.
Then, big intersecting slices of & are close either

(1) to intersecting non-almost minimizing varifolds
(2) or to non-intersecting varifolds.

e We deform S* to obtain better competitors Sk € 1M such that
L(§k7 Q) < L(Sk7 Q) =P

for some uniform p > 0.
o Therefore, L(5*, Q) < L(,Q) for large k. Contradiction!

The deformation from S¥ to S is done in two steps.
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If V is type (1), there exist
small annuli a(V) and (V) > 0 such that:

Given: ¥ € S¥ close to V and 1 > 0,
Can find: {Xf(s)}sefo,1] with the following properties:

@ continuous

o TF(0) =xf

o TK(s)N (M —a(V)) =Xkn(M —a(V))
o H"HEL(s)) < H "M (ZE) +n

o H'H(ZK(1)) < HPL(ZK) — £(V).
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If V is type (1), there exist
small annuli a(V) and (V) > 0 such that:

Given: ¥ € S¥ close to V and 1 > 0,
Can find: {Xf(s)}sefo,1] with the following properties:

@ continuous

o TF(0) =xf

o TK(s)N (M —a(V)) =Xkn(M —a(V))
o H"HEL(s)) < H "M (ZE) +n

o H'H(ZK(1)) < HPL(ZK) — £(V).

Remark: Pitts had only type (1) varifolds and he performed the
desired deformation using the ¥X(s)'s.
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Fact: Pitts’ deformation does not destroy the property of

"intersecting with small volume”.
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Fact: Pitts’ deformation does not destroy the property of

"intersecting with small volume”.

Let U C Q be an open set, with U C Q and such that Q — U is
inside a small tubular neighborhood of 012.
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Fact: Pitts’ deformation does not destroy the property of

"intersecting with small volume”.

Let U C Q be an open set, with U C Q and such that Q — U is
inside a small tubular neighborhood of 012.

If £ is also close to a type (2) varifold, then it has small volume
in U. Making a(V) small enough, we have that

H' (K (s)N U) is small for every s € [0, 1].
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Fact: Pitts’ deformation does not destroy the property of

"intersecting with small volume”.

Let U C Q be an open set, with U C Q and such that Q — U is
inside a small tubular neighborhood of 012.

If £ is also close to a type (2) varifold, then it has small volume
in U. Making a(V) small enough, we have that

H' (K (s)N U) is small for every s € [0, 1].

We obtain critical & = {5} cw such that the big intersecting
slices Zk have small mass inside U.
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Deformation used by Pitts in the construction of replacements.
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White's maximum principle for general varifolds.
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Part 2: Motivation

e (53, g) with positive Ricci curvature in S3 and scalar
curvature R > 6, satisfies the upper bound

W(53,g) < 4r

and there exists an embedded minimal sphere X, of index one
and surface area

areag(¥) = W(S3,g).

In case of equality W(S3, g) = 4, the metric g has constant
sectional curvature one.
(Marques - Neves)
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Part 2: Motivation

e (53, g) with positive Ricci curvature in S3 and scalar
curvature R > 6, satisfies the upper bound

W(53,g) < 4r

and there exists an embedded minimal sphere X, of index one
and surface area

areag(¥) = W(S3,g).

In case of equality W(S3, g) = 4, the metric g has constant
sectional curvature one.
(Marques - Neves)

Question: |s there a scalar curv. rigidity version of this theorem?
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Main result

For any m > 0 there exists a Riemannian metric g on S3, with
scalar curvature R > 6 and width W(S3,g) > m.
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Main result

For any m > 0 there exists a Riemannian metric g on S3, with
scalar curvature R > 6 and width W(S3,g) > m.

Remark: It is interesting to stress that the Riemann curvature
tensors of the examples that we construct are uniformly bounded.
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Main Idea: Choose Q C (S3, gn) so that we can obtain

area(0Q2NA) > C, for MANY disjoint regions A.
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Main Idea: Choose Q C (S3, gn) so that we can obtain

area(0Q2NA) > C, for MANY disjoint regions A.

Step 1:("Local lower bounds")

o A-type regions = neighboring spherical regions and the
connecting tube.
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Main Idea: Choose Q C (S3, gn) so that we can obtain

area(0Q2NA) > C, for MANY disjoint regions A.

Step 1:("Local lower bounds")

o A-type regions = neighboring spherical regions and the
connecting tube.

e Fix v > 0. We say a pair (A, «) is compatible with Q if
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Step 2: (Choice of Q)
Need lower bounds for L({X;}). (ANY sweepout of S3 w.r.t. g,)
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Step 2: (Choice of Q)
Need lower bounds for L({X;}). (ANY sweepout of S3 w.r.t. g,)

Fact: Associated to {¥;} there is a continuous family of regions
Q;: such that

8Qt = Zt? for all t < [07 ].]7
with Qg = @ and Q; = Ss.
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Step 2: (Choice of Q)
Need lower bounds for L({X;}). (ANY sweepout of S3 w.r.t. g,)

Fact: Associated to {¥;} there is a continuous family of regions
Q;: such that

8Qt = Zt? for all t < [07 ].]7
with Qg = @ and Q; = Ss.

The choice of a good Q reduces to a choice of t € [0, 1].
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Step 2: (Choice of Q)
Need lower bounds for L({X;}). (ANY sweepout of S3 w.r.t. g,)

Fact: Associated to {¥;} there is a continuous family of regions
Q;: such that

8Qt = Zt? for all t € [07 ].]7
with Qg = @ and Q; = Ss.

The choice of a good Q reduces to a choice of t € [0, 1].

The first Q; for which

vol (¢ N L) > «, at b(m) "spherical leaves” L,

has at least % . [%] disjoint compatible pairs (A, «). O
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Isoperimetric profiles

Let ¥, = 09 be a sweepout of (S3,g). For all v € [0, vol(S3, )],
there exists t € [0, 1] so that vol(2;) = v. In particular,

Tg(v) = inf{areag(0R) : volg(Q) = v} < areag(X;).
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Isoperimetric profiles

Let ¥, = 09 be a sweepout of (S3,g). For all v € [0, vol(S3, )],
there exists t € [0, 1] so that vol(2;) = v. In particular,

Tg(v) = inf{areag(0R) : volg(Q) = v} < areag(X;).

In conclusion, sup, Zg(v) < W(S3, g), for any metric g.
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Isoperimetric profiles

Let ¥, = 09 be a sweepout of (S3,g). For all v € [0, vol(S3, )],
there exists t € [0, 1] so that vol(2;) = v. In particular,

Tg(v) = inf{areag(0R) : volg(Q) = v} < areag(X;).
In conclusion, sup, Zg(v) < W(S3, g), for any metric g.

Remark: The rigidity result of Z, for metrics with Ric > 0 and
R > 6 was previously obtained by Eichmair.
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Isoperimetric profiles

Let ¥, = 09 be a sweepout of (S3,g). For all v € [0, vol(S3, )],
there exists t € [0, 1] so that vol(2;) = v. In particular,

Tg(v) = inf{areag(0R) : volg(Q) = v} < areag(X;).

In conclusion, sup, Zg(v) < W(S3, g), for any metric g.

Remark: The rigidity result of Z, for metrics with Ric > 0 and
R > 6 was previously obtained by Eichmair.

Question: What about sup,,cy (sup, Zg,,(v))?
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Isoperimetric profiles

Let ¥, = 09 be a sweepout of (S3,g). For all v € [0, vol(S3, )],
there exists t € [0, 1] so that vol(2;) = v. In particular,

Tg(v) = inf{areag(0R) : volg(Q) = v} < areag(X;).

In conclusion, sup, Zg(v) < W(S3, g), for any metric g.

Remark: The rigidity result of Z, for metrics with Ric > 0 and
R > 6 was previously obtained by Eichmair.

Question: What about sup,,cy (sup, Zg,,(v))?

sup (sup Ty, (1)) = o

meN v
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The proof is by contradiction. Suppose there exists L > 0 so that
Zg, (V) < L, VmeNand 0 < v < volg, (S%).
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The proof is by contradiction. Suppose there exists L > 0 so that
Zg, (V) < L, VmeNand 0 < v < volg, (S%).

Given k € N, we have m = m(k) and b(k). (combinatorics)
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The proof is by contradiction. Suppose there exists L > 0 so that
Zg, (V) < L, VmeNand 0 < v < volg, (S%).

Given k € N, we have m = m(k) and b(k). (combinatorics)

e New A-type regions: (balancing volumes)

4 = volume of the removed spherical balls
7 = volume of each tube

M i

(each) vol = volg0(53)
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The proof is by contradiction. Suppose there exists L > 0 so that
Zg, (V) < L, VmeNand 0 < v < volg, (S%).

Given k € N, we have m = m(k) and b(k). (combinatorics)

e New A-type regions: (balancing volumes)

r—u  j = volume of the removed spherical balls
7 = volume of each tube

I Iz
vol = volg,(S*) + 7 — 21

(each) vol = volg0(53)

@ Choice of Q:

volg, () = b(k) - (volgy(S3) + 7 —2u) =

'# {A cvol(Q: N A) > vol(A)} — B(k)‘ < C(A-regions, L, T, 11).

N -
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Combinatorial results

For each m € N, T, denotes the full binary tree of 2™ leaves.
We consider 2-colorings of the nodes of T,,.
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Combinatorial results

For each m € N, T, denotes the full binary tree of 2™ leaves.
We consider 2-colorings of the nodes of T,,.

Question: Let kK € N. Can we find integers m and b such that any
2-coloring of T,, with b black nodes (or leaves) exactly has at least
k dichromatic edges?
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Combinatorial results

For each m € N, T, denotes the full binary tree of 2™ leaves.
We consider 2-colorings of the nodes of T,,.

Question: Let kK € N. Can we find integers m and b such that any
2-coloring of T,, with b black nodes (or leaves) exactly has at least
k dichromatic edges?

Yes! (for both, nodes and leaves)
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Theorem (prescribed number of black leaves)

Any 2-coloring of T,, with

b(m) — 1+2+28+...+2m2 if m is odd
Tl 1422424+ ... 4+2m2 ifmis even,

black leaves exactly has at least

[g-| dichromatic edges.
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Theorem (prescribed number of black leaves)

Any 2-coloring of T,, with

b(m) — 1+2+28+...+2m2 if m is odd
M=V 14224244 ...42m 2 ifmis even,

black leaves exactly has at least

[g-‘ dichromatic edges.

A\

Theorem (prescribed number of black nodes)

Given k € N, there exist m = m(k) and b(k), such that any
2-coloring of T, with b black nodes exactly has at least

k —|b — b(k)|
5

pairwise disjoint pairs of neighboring nodes with different colors.

v

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres witl




Sketch of proof:(in case of leaves)

First step: Given a 2-coloring C in T,, with b(m) black leaves
exactly, we associate a 2-coloring of T,,_1.
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Sketch of proof:(in case of leaves)

First step: Given a 2-coloring C in T,, with b(m) black leaves
exactly, we associate a 2-coloring of T,,_1.
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Sketch of proof:(in case of leaves)

First step: Given a 2-coloring C in T,, with b(m) black leaves
exactly, we associate a 2-coloring of T,,_1.

Analyzing #{black leaves of C'} settles the induction step in case:
@ m is even; or

@ there are at least two pairs of black and white leaves of C.
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Second step: If m is odd and there is one pair of black and white
leaves in C only, we induce a 2-coloring in Tp,_» and analyze the
size of its set of black leaves.
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Second step: If m is odd and there is one pair of black and white
leaves in C only, we induce a 2-coloring in Tp,_» and analyze the
size of its set of black leaves.

The color induced on each leaf of T,,_» depends only on the
C-colors of its four associates leaves of T,,.
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Obrigado!
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