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Min-max constructions: Background

Birkhoff (1917): closed geodesics in (S2, g).

Lusternik-Schnirelmann (1940s): 3 closed geodesics.

Almgren (1960s): general theory, uses G.M.T.

Pitts (1970-80s): hypersurfaces in lower dimensions (n ≤ 6).

Schoen-Simon (1981): hypersurfaces in arbitrary dimension,
curvature estimates for stable minimal hypersurfaces.

Simon-Smith (1982): continuous setting and topological
bounds. Every (S3, g) contains embedded minimal S2.

Colding-de Lellis (2003): survey on min-max constructions.

Colding-Minicozzi (2000s): finite time extinction of RF.

Marques-Neves: rigidity of min-max spheres in 3-manifolds,
Willmore Problem and infinitely many closed, embedded,
minimal hypersurfaces in manifolds with Ric > 0.

Many others: Ketover, Pellandini, Tasnady, Li, Zhou, . . .
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Part 1: Minimal hypersurfaces in noncompact manifolds

There is no closed minimal hypersurface in Rn.

Need extra assumptions!

Every complete Riemannian surface of finite area and
homeomorphic to either the plane, or the cylinder or the
Möbius band admits infinitely many closed geodesics.

(Bangert, 1980)

Our assumptions: Let (Nn, g) be a complete non-compact
Riemannian manifold.

Bangert’s condition: complete Riemannian surfaces of finite
area have bounded, mean-concave subsets.

We say that N has the ?k-condition if there exist p ∈ N and
R0 > 0, such that, for every R ≥ R0,

sup
q∈B(p,R)

|SecN |(q) ≤ Rk and inf
q∈B(p,R)

injN(q) ≥ R−
k
2 .
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Main Result

Theorem A (—)

Let (Nn, g) be a complete non-compact Riemannian manifold of
dimension n ≤ 7. Suppose:

N has a bounded and strictly mean-concave open subset Ω;

N satisfies the ?k -condition, for some k ≤ 2
n−2 .

Then, there exists a closed embedded minimal hypersurface
Σn−1 ⊂ N that intersects Ω.

Remarks:

Σn−1 is a min-max minimal hypersurface.

Collin, Hauswirth, Mazet and Rosenberg proved that any
complete non-compact hyperbolic three-dimensional manifold
of finite volume admits a closed, embedded minimal surface.
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Figure: A non-compact Riemannian manifold, asymptotic to a cylinder
and containing a mean-concave open set Ω. In this case, the theorem
could be applied.
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Theorem B (—)

Remarks:

L(Π,Ω) is the new min-max invariant.

L(Π,M) = L(Π).

Optimal with respect to the intersecting property.
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Proof of Theorem A

(1) Let f : N → [0,∞] be a Morse function and t > 0 such that
Ω ⊂ {f ≤ t}. Let Mn be a closed manifold containing an
isometric copy of {f ≤ t}.

(2) Apply Theorem B to obtain a closed, embedded, minimal
hypersurface Σn−1 ⊂ M, that intersects Ω and with

Hn−1(Σ) ≤ L(Π,Ω).

Moreover, L(Π,Ω) has an upper bound which does not
depend on t.
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(3) If t is large, the polynomial decay of the geometry at
infinity implies that

Σ ⊂ {f ≤ t}.

In particular, Σ is a minimal hypersurface in the original
manifold N.
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Min-max theory for intersecting slices

Sweepout: Continuous one-parameter family of closed, oriented
hypersurfaces (possibly with finitely many singularities).

Width with respect to Ω: Let Π be a homotopy class of
sweepouts of M. Define:

L(Π,Ω) = inf{L(S ,Ω) : S ∈ Π}.
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Proof of Theorem B

1. (Existence of critical sequences)
We can find S = {Sk}k∈N ⊂ Π such that

lim
k→∞

L(Sk ,Ω) = L(Π,Ω)

and

sup{Hn−1(Σ) : Σ is a slice of Sk , for some k ∈ N} <∞.
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Lemma

We can find a continuous path

φ : [0, 1]→ Zn−1(M − Ω)

such that

(i) φ(0) = ∂A and φ(1) = 0;

(ii) Hn−1(φ(t)) ≤ C · Hn−1(∂A), for every t ∈ [0, 1],

where C > 0 is a uniform constant.

Idea: In M − Ω, we use the gradient flow of a Morse function
without interior local maxima.
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Min-max sequences and Critical sets

Let S = {Sk}k∈N ⊂ Π be a critical sequence.

Min-max sequence: sequence of intersecting slices Σ
kj
tj of Skj

satisfying

lim
j→∞
Hn−1(Σ

kj
tj ) = L(Π,Ω).

C(S,Ω) = {limits (as varifolds) of min-max sequences}.

2. Can find S ∈ Π critical and such that

V ∈ C(S,Ω)⇒ V stationary in M or spt(V ) ∩ Ω = ∅.

3. Given S ∈ Π as in the previous item, we can find
Σ ∈ C(S,Ω) such that

spt(Σ) ∩ Ω 6= ∅

and
Σ is almost minimizing in small annuli.
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4. Apply Pitts’ Regularity Theorem

(stationary) + (a.m. in small annuli)⇒ smooth.
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Existence of intersecting a.m. varifolds

Suppose that no V ∈ C(S,Ω) satisfies our assumption.
Then, big intersecting slices of S are close either

(1) to intersecting non-almost minimizing varifolds
(2) or to non-intersecting varifolds.

We deform Sk to obtain better competitors S̃k ∈ Π such that

L(S̃k ,Ω) < L(Sk ,Ω)− ρ,

for some uniform ρ > 0.

Therefore, L(S̃k ,Ω) < L(Π,Ω) for large k. Contradiction!

The deformation from Sk to S̃k is done in two steps.

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



If V is type (1), there exist

small annuli a(V ) and ε(V ) > 0 such that:

Given: Σk
t ∈ Sk close to V and η > 0,

Can find: {Σk
t (s)}s∈[0,1] with the following properties:

continuous

Σk
t (0) = Σk

t

Σk
t (s) ∩ (M − a(V )) = Σk

t ∩ (M − a(V ))

Hn−1(Σk
t (s)) ≤ Hn−1(Σk

t ) + η

Hn−1(Σk
t (1)) < Hn−1(Σk

t )− ε(V ).

Remark: Pitts had only type (1) varifolds and he performed the
desired deformation using the Σk

t (s)’s.
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Fact: Pitts’ deformation does not destroy the property of

”intersecting with small volume”.

Let U ⊂ Ω be an open set, with U ⊂ Ω and such that Ω− U is
inside a small tubular neighborhood of ∂Ω.

If Σk
t is also close to a type (2) varifold, then it has small volume

in U. Making a(V ) small enough, we have that

Hn−1(Σk
t (s) ∩ U) is small for every s ∈ [0, 1].

We obtain critical S̃ = {S̃k}k∈N such that the big intersecting
slices Σ̃k

t have small mass inside U.

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Fact: Pitts’ deformation does not destroy the property of

”intersecting with small volume”.

Let U ⊂ Ω be an open set, with U ⊂ Ω and such that Ω− U is
inside a small tubular neighborhood of ∂Ω.

If Σk
t is also close to a type (2) varifold, then it has small volume

in U. Making a(V ) small enough, we have that

Hn−1(Σk
t (s) ∩ U) is small for every s ∈ [0, 1].

We obtain critical S̃ = {S̃k}k∈N such that the big intersecting
slices Σ̃k

t have small mass inside U.

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Fact: Pitts’ deformation does not destroy the property of

”intersecting with small volume”.

Let U ⊂ Ω be an open set, with U ⊂ Ω and such that Ω− U is
inside a small tubular neighborhood of ∂Ω.

If Σk
t is also close to a type (2) varifold, then it has small volume

in U. Making a(V ) small enough, we have that

Hn−1(Σk
t (s) ∩ U) is small for every s ∈ [0, 1].

We obtain critical S̃ = {S̃k}k∈N such that the big intersecting
slices Σ̃k

t have small mass inside U.

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Fact: Pitts’ deformation does not destroy the property of

”intersecting with small volume”.

Let U ⊂ Ω be an open set, with U ⊂ Ω and such that Ω− U is
inside a small tubular neighborhood of ∂Ω.

If Σk
t is also close to a type (2) varifold, then it has small volume

in U. Making a(V ) small enough, we have that

Hn−1(Σk
t (s) ∩ U) is small for every s ∈ [0, 1].

We obtain critical S̃ = {S̃k}k∈N such that the big intersecting
slices Σ̃k

t have small mass inside U.

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Deformation used by Pitts in the construction of replacements.
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White’s maximum principle for general varifolds.

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Part 2: Motivation

(S3, g) with positive Ricci curvature in S3 and scalar
curvature R ≥ 6, satisfies the upper bound

W (S3, g) ≤ 4π

and there exists an embedded minimal sphere Σ, of index one
and surface area

areag (Σ) = W (S3, g).

In case of equality W (S3, g) = 4π, the metric g has constant
sectional curvature one.

(Marques - Neves)

Question: Is there a scalar curv. rigidity version of this theorem?
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Main result

Theorem C (—)

For any m > 0 there exists a Riemannian metric g on S3, with
scalar curvature R ≥ 6 and width W (S3, g) ≥ m.

Remark: It is interesting to stress that the Riemann curvature
tensors of the examples that we construct are uniformly bounded.
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Main Idea: Choose Ω ⊂ (S3, gm) so that we can obtain

area(∂Ω ∩ A) ≥ C , for MANY disjoint regions A.

Step 1:(”Local lower bounds”)

A-type regions = neighboring spherical regions and the
connecting tube.

Fix α > 0. We say a pair (A, α) is compatible with Ω if
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Step 2: (Choice of Ω)
Need lower bounds for L({Σt}). (ANY sweepout of S3 w.r.t. gm)

Fact: Associated to {Σt} there is a continuous family of regions
Ωt such that

∂Ωt = Σt , for all t ∈ [0, 1],

with Ω0 = ∅ and Ω1 = S3.

The choice of a good Ω reduces to a choice of t ∈ [0, 1].

Claim.

The first Ωt for which

vol(Ωt ∩ L) ≥ α, at b(m) ”spherical leaves” L,

has at least 1
5 ·
⌈
m
2

⌉
disjoint compatible pairs (A, α).

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Step 2: (Choice of Ω)
Need lower bounds for L({Σt}). (ANY sweepout of S3 w.r.t. gm)

Fact: Associated to {Σt} there is a continuous family of regions
Ωt such that

∂Ωt = Σt , for all t ∈ [0, 1],

with Ω0 = ∅ and Ω1 = S3.

The choice of a good Ω reduces to a choice of t ∈ [0, 1].

Claim.

The first Ωt for which

vol(Ωt ∩ L) ≥ α, at b(m) ”spherical leaves” L,

has at least 1
5 ·
⌈
m
2

⌉
disjoint compatible pairs (A, α).

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Step 2: (Choice of Ω)
Need lower bounds for L({Σt}). (ANY sweepout of S3 w.r.t. gm)

Fact: Associated to {Σt} there is a continuous family of regions
Ωt such that

∂Ωt = Σt , for all t ∈ [0, 1],

with Ω0 = ∅ and Ω1 = S3.

The choice of a good Ω reduces to a choice of t ∈ [0, 1].

Claim.

The first Ωt for which

vol(Ωt ∩ L) ≥ α, at b(m) ”spherical leaves” L,

has at least 1
5 ·
⌈
m
2

⌉
disjoint compatible pairs (A, α).

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Step 2: (Choice of Ω)
Need lower bounds for L({Σt}). (ANY sweepout of S3 w.r.t. gm)

Fact: Associated to {Σt} there is a continuous family of regions
Ωt such that

∂Ωt = Σt , for all t ∈ [0, 1],

with Ω0 = ∅ and Ω1 = S3.

The choice of a good Ω reduces to a choice of t ∈ [0, 1].

Claim.

The first Ωt for which

vol(Ωt ∩ L) ≥ α, at b(m) ”spherical leaves” L,

has at least 1
5 ·
⌈
m
2

⌉
disjoint compatible pairs (A, α).

Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Rafael Montezuma Min-max theory for noncompact manifolds and three-spheres with unbounded widths



Isoperimetric profiles

Let Σt = ∂Ωt be a sweepout of (S3, g). For all v ∈ [0, vol(S3, g)],
there exists t ∈ [0, 1] so that vol(Ωt) = v . In particular,

Ig (v) = inf{areag (∂Ω) : volg (Ω) = v} ≤ areag (Σt).

In conclusion, supv Ig (v) ≤W (S3, g), for any metric g .

Remark: The rigidity result of Ig for metrics with Ric > 0 and
R ≥ 6 was previously obtained by Eichmair.

Question: What about supm∈N (supv Igm(v))?

Theorem

sup
m∈N

(
sup
v
Igm(v)

)
= +∞.
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The proof is by contradiction. Suppose there exists L > 0 so that

Igm(v) ≤ L, ∀m ∈ N and 0 ≤ v ≤ volgm(S3).

Given k ∈ N, we have m = m(k) and b̃(k). (combinatorics)

New A-type regions: (balancing volumes)

Choice of Ω:

volgm(Ωt) = b̃(k) · (volg0(S3) + τ − 2µ) ⇒

∣∣∣∣#{A : vol(Ωt ∩ A) ≥ 1

2
vol(A)

}
− b̃(k)

∣∣∣∣ ≤ C (A-regions, L, τ, µ).
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Combinatorial results

For each m ∈ N, Tm denotes the full binary tree of 2m leaves.
We consider 2-colorings of the nodes of Tm.

Question: Let k ∈ N. Can we find integers m and b such that any
2-coloring of Tm with b black nodes (or leaves) exactly has at least
k dichromatic edges?

Yes! (for both, nodes and leaves)
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Theorem (prescribed number of black leaves)

Any 2-coloring of Tm with

b(m) =

{
1 + 2 + 23 + . . .+ 2m−2, if m is odd
1 + 22 + 24 + . . .+ 2m−2, if m is even,

black leaves exactly has at least⌈m
2

⌉
dichromatic edges.

Theorem (prescribed number of black nodes)

Given k ∈ N, there exist m = m(k) and b̃(k), such that any
2-coloring of Tm with b black nodes exactly has at least

k − |b − b̃(k)|
5

pairwise disjoint pairs of neighboring nodes with different colors.
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Sketch of proof:(in case of leaves)

First step: Given a 2-coloring C in Tm with b(m) black leaves
exactly, we associate a 2-coloring of Tm−1.

Analyzing #{black leaves of C′} settles the induction step in case:

m is even; or

there are at least two pairs of black and white leaves of C.
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Second step: If m is odd and there is one pair of black and white
leaves in C only, we induce a 2-coloring in Tm−2 and analyze the
size of its set of black leaves.

The color induced on each leaf of Tm−2 depends only on the
C-colors of its four associates leaves of Tm.
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Obrigado!
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