Min-max theory for noncompact manifolds and three-spheres with unbounded widths

Rafael Montezuma

July 11, 2016

instituto nacional de matemática pura e aplicada

Advisor: Fernando Codá Marques

글 > - < 글 >

< ∃⇒

• Birkhoff (1917): closed geodesics in (S^2, g) .

∢ ≣ ▶

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.
- Pitts (1970-80s): hypersurfaces in lower dimensions ($n \le 6$).

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.
- Pitts (1970-80s): hypersurfaces in lower dimensions ($n \le 6$).
- Schoen-Simon (1981): hypersurfaces in arbitrary dimension, curvature estimates for stable minimal hypersurfaces.

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.
- Pitts (1970-80s): hypersurfaces in lower dimensions ($n \le 6$).
- Schoen-Simon (1981): hypersurfaces in arbitrary dimension, curvature estimates for stable minimal hypersurfaces.
- Simon-Smith (1982): continuous setting and topological bounds. Every (S³, g) contains embedded minimal S².

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.
- Pitts (1970-80s): hypersurfaces in lower dimensions ($n \le 6$).
- Schoen-Simon (1981): hypersurfaces in arbitrary dimension, curvature estimates for stable minimal hypersurfaces.
- Simon-Smith (1982): continuous setting and topological bounds. Every (S³, g) contains embedded minimal S².
- Colding-de Lellis (2003): survey on min-max constructions.

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.
- Pitts (1970-80s): hypersurfaces in lower dimensions ($n \le 6$).
- Schoen-Simon (1981): hypersurfaces in arbitrary dimension, curvature estimates for stable minimal hypersurfaces.
- Simon-Smith (1982): continuous setting and topological bounds. Every (S³, g) contains embedded minimal S².
- Colding-de Lellis (2003): survey on min-max constructions.
- Colding-Minicozzi (2000s): finite time extinction of RF.

伺下 イヨト イヨト

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.
- Pitts (1970-80s): hypersurfaces in lower dimensions ($n \le 6$).
- Schoen-Simon (1981): hypersurfaces in arbitrary dimension, curvature estimates for stable minimal hypersurfaces.
- Simon-Smith (1982): continuous setting and topological bounds. Every (S³, g) contains embedded minimal S².
- Colding-de Lellis (2003): survey on min-max constructions.
- Colding-Minicozzi (2000s): finite time extinction of RF.
- Marques-Neves: rigidity of min-max spheres in 3-manifolds, Willmore Problem and infinitely many closed, embedded, minimal hypersurfaces in manifolds with *Ric* > 0.

- Birkhoff (1917): closed geodesics in (S^2, g) .
- Lusternik-Schnirelmann (1940s): 3 closed geodesics.
- Almgren (1960s): general theory, uses G.M.T.
- Pitts (1970-80s): hypersurfaces in lower dimensions ($n \le 6$).
- Schoen-Simon (1981): hypersurfaces in arbitrary dimension, curvature estimates for stable minimal hypersurfaces.
- Simon-Smith (1982): continuous setting and topological bounds. Every (S³, g) contains embedded minimal S².
- Colding-de Lellis (2003): survey on min-max constructions.
- Colding-Minicozzi (2000s): finite time extinction of RF.
- Marques-Neves: rigidity of min-max spheres in 3-manifolds, Willmore Problem and infinitely many closed, embedded, minimal hypersurfaces in manifolds with *Ric* > 0.
- Many others: Ketover, Pellandini, Tasnady, Li, Zhou, ...

Part 1: Minimal hypersurfaces in noncompact manifolds

There is no closed minimal hypersurface in \mathbb{R}^n .

Part 1: Minimal hypersurfaces in noncompact manifolds

There is no closed minimal hypersurface in \mathbb{R}^n . Need extra assumptions!

 Every complete Riemannian surface of finite area and homeomorphic to either the plane, or the cylinder or the Möbius band admits infinitely many closed geodesics.

(Bangert, 1980)

Part 1: Minimal hypersurfaces in noncompact manifolds

There is no closed minimal hypersurface in \mathbb{R}^n . Need extra assumptions!

 Every complete Riemannian surface of finite area and homeomorphic to either the plane, or the cylinder or the Möbius band admits infinitely many closed geodesics.
 (Bangert, 1980)

Our assumptions: Let (N^n, g) be a complete non-compact Riemannian manifold.

- Bangert's condition: complete Riemannian surfaces of finite area have **bounded**, **mean-concave subsets**.
- We say that N has the \star_k -condition if there exist $p \in N$ and $R_0 > 0$, such that, for every $R \ge R_0$,

$$\sup_{q\in B(p,R)} |\mathsf{Sec}_N|(q) \le R^k \quad \text{and} \quad \inf_{q\in B(p,R)} inj_N(q) \ge R^{-\frac{k}{2}}.$$

Theorem A (—)

Let (N^n, g) be a complete non-compact Riemannian manifold of dimension $n \leq 7$. Suppose:

- N has a bounded and strictly mean-concave open subset Ω;
- *N* satisfies the \star_k -condition, for some $k \leq \frac{2}{n-2}$.

Then, there exists a closed embedded minimal hypersurface $\Sigma^{n-1} \subset N$ that intersects Ω .

Theorem A (—)

Let (N^n, g) be a complete non-compact Riemannian manifold of dimension $n \leq 7$. Suppose:

- N has a bounded and strictly mean-concave open subset Ω;
- *N* satisfies the \star_k -condition, for some $k \leq \frac{2}{n-2}$.

Then, there exists a closed embedded minimal hypersurface $\Sigma^{n-1} \subset N$ that intersects Ω .

Remarks:

• Σ^{n-1} is a min-max minimal hypersurface.

伺 ト く ヨ ト く ヨ ト

Theorem A (—)

Let (N^n, g) be a complete non-compact Riemannian manifold of dimension $n \leq 7$. Suppose:

- N has a bounded and strictly mean-concave open subset Ω;
- *N* satisfies the \star_k -condition, for some $k \leq \frac{2}{n-2}$.

Then, there exists a closed embedded minimal hypersurface $\Sigma^{n-1} \subset N$ that intersects Ω .

Remarks:

- Σ^{n-1} is a min-max minimal hypersurface.
- Collin, Hauswirth, Mazet and Rosenberg proved that any complete non-compact hyperbolic three-dimensional manifold of finite volume admits a closed, embedded minimal surface.

Figure: A non-compact Riemannian manifold, asymptotic to a cylinder and containing a mean-concave open set Ω . In this case, the theorem could be applied.

4 B 6 4 B 6

Theorem B (-)

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Theorem B (—)

Remarks:

• $L(\Pi, \Omega)$ is the new min-max invariant.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Theorem B (—)

Remarks:

- $L(\Pi, \Omega)$ is the new min-max invariant.
- $L(\Pi, M) = L(\Pi)$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem B (—)

Remarks:

- $L(\Pi, \Omega)$ is the new min-max invariant.
- $L(\Pi, M) = L(\Pi)$.
- Optimal with respect to the intersecting property.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Proof of Theorem A

 Let f : N → [0,∞] be a Morse function and t > 0 such that Ω ⊂ {f ≤ t}. Let Mⁿ be a closed manifold containing an isometric copy of {f ≤ t}.

Proof of Theorem A

(1) Let $f : N \to [0, \infty]$ be a Morse function and t > 0 such that $\Omega \subset \{f \leq t\}$. Let M^n be a closed manifold containing an isometric copy of $\{f \leq t\}$.

(2) Apply **Theorem B** to obtain a closed, embedded, minimal hypersurface $\Sigma^{n-1} \subset M$, that intersects Ω and with

$$\mathcal{H}^{n-1}(\Sigma) \leq \mathbf{L}(\Pi, \Omega).$$

Moreover, $L(\Pi, \Omega)$ has an upper bound which does not depend on *t*.

(3) If t is large, the polynomial decay of the geometry at infinity implies that

$$\Sigma \subset \{f \leq t\}.$$

In particular, Σ is a minimal hypersurface in the original manifold N.

伺 ト イ ヨ ト イ ヨ ト

Min-max theory for intersecting slices

Sweepout: Continuous one-parameter family of closed, oriented hypersurfaces (possibly with finitely many singularities).

Width with respect to Ω : Let Π be a homotopy class of sweepouts of M. Define:

$$\mathbf{L}(\Pi, \Omega) = \inf\{\mathbf{L}(S, \Omega) : S \in \Pi\}.$$

Proof of Theorem B

1. (Existence of critical sequences) We can find $\mathfrak{S} = \{S^k\}_{k \in \mathbb{N}} \subset \Pi$ such that $\lim_{k \to \infty} \mathbf{L}(S^k, \Omega) = \mathbf{L}(\Pi, \Omega)$

and

$$\sup\{\mathcal{H}^{n-1}(\Sigma): \Sigma \text{ is a slice of } S^k, \text{ for some } k \in \mathbb{N}\} < \infty.$$

A B + A B +

Proof of Theorem B

1. (Existence of critical sequences) We can find $\mathfrak{S} = \{S^k\}_{k \in \mathbb{N}} \subset \Pi$ such that $\lim_{k \to \infty} \mathbf{L}(S^k, \Omega) = \mathbf{L}(\Pi, \Omega)$

and

$$\sup\{\mathcal{H}^{n-1}(\Sigma): \Sigma \text{ is a slice of } S^k, \text{ for some } k \in \mathbb{N}\} < \infty.$$

Lemma

We can find a continuous path

$$\phi: [0,1] \to \mathcal{Z}_{n-1}(M-\Omega)$$

such that

(i)
$$\phi(0) = \partial A$$
 and $\phi(1) = 0$;
(ii) $\mathcal{H}^{n-1}(\phi(t)) \leq C \cdot \mathcal{H}^{n-1}(\partial A)$, for every $t \in [0, 1]$
where $C > 0$ is a uniform constant.

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Lemma

We can find a continuous path

$$\phi: [0,1] \to \mathcal{Z}_{n-1}(M-\Omega)$$

such that

(i)
$$\phi(0) = \partial A$$
 and $\phi(1) = 0$;
(ii) $\mathcal{H}^{n-1}(\phi(t)) \leq C \cdot \mathcal{H}^{n-1}(\partial A)$, for every $t \in [0, 1]$
where $C > 0$ is a uniform constant.

Idea: In $M - \Omega$, we use the gradient flow of a Morse function without interior local maxima.

伺 ト く ヨ ト く ヨ ト

э

Min-max sequences and Critical sets

Let $\mathfrak{S} = \{S^k\}_{k \in \mathbb{N}} \subset \Pi$ be a critical sequence.

Min-max sequence: sequence of intersecting slices $\sum_{t_j}^{k_j}$ of S^{k_j} satisfying

$$\lim_{i\to\infty}\mathcal{H}^{n-1}(\Sigma_{t_j}^{k_j})=\mathsf{L}(\Pi,\Omega).$$

 $\mathcal{C}(\mathfrak{S}, \Omega) = \{ \text{limits (as varifolds) of min-max sequences} \}.$

Min-max sequences and Critical sets

Let $\mathfrak{S} = \{S^k\}_{k \in \mathbb{N}} \subset \Pi$ be a critical sequence.

Min-max sequence: sequence of intersecting slices $\sum_{t_j}^{k_j}$ of S^{k_j} satisfying

$$\lim_{j\to\infty}\mathcal{H}^{n-1}(\Sigma_{t_j}^{k_j})=\mathsf{L}(\Pi,\Omega).$$

 $\mathcal{C}(\mathfrak{S}, \Omega) = \{ \text{limits (as varifolds) of min-max sequences} \}.$

2. Can find $\mathfrak{S}\in\Pi$ critical and such that

 $V \in \mathcal{C}(\mathfrak{S}, \Omega) \Rightarrow V$ stationary in M or $\operatorname{spt}(V) \cap \Omega = \varnothing$.

Min-max sequences and Critical sets

Let $\mathfrak{S} = \{S^k\}_{k \in \mathbb{N}} \subset \Pi$ be a critical sequence.

Min-max sequence: sequence of intersecting slices $\sum_{t_j}^{k_j}$ of S^{k_j} satisfying

$$\lim_{j\to\infty}\mathcal{H}^{n-1}(\Sigma_{t_j}^{k_j})=\mathsf{L}(\Pi,\Omega).$$

 $\mathcal{C}(\mathfrak{S}, \Omega) = \{ \text{limits (as varifolds) of min-max sequences} \}.$

- 2. Can find $\mathfrak{S} \in \Pi$ critical and such that $V \in \mathcal{C}(\mathfrak{S}, \Omega) \Rightarrow V$ stationary in M or spt $(V) \cap \Omega = \emptyset$.
- 3. Given $\mathfrak{S} \in \Pi$ as in the previous item, we can find $\Sigma \in \mathcal{C}(\mathfrak{S}, \Omega)$ such that

$$\mathsf{spt}(\Sigma) \cap \Omega \neq \varnothing$$

and

 Σ is almost minimizing in small annuli.

4. Apply Pitts' Regularity Theorem

 $(stationary) + (a.m. in small annuli) \Rightarrow smooth.$

伺 ト く ヨ ト く ヨ ト

э

Existence of intersecting a.m. varifolds

 Suppose that no V ∈ C(𝔅, Ω) satisfies our assumption. Then, big intersecting slices of 𝔅 are close either

(1) to intersecting non-almost minimizing varifolds

- (2) or to non-intersecting varifolds.
- We deform S^k to obtain better competitors $ilde{S}^k \in \Pi$ such that

$$\mathsf{L}(\tilde{S}^k, \Omega) < \mathsf{L}(S^k, \Omega) - \rho,$$

for some uniform $\rho > 0$.

Therefore, L(S̃^k, Ω) < L(Π, Ω) for large k. Contradiction!

The deformation from S^k to \tilde{S}^k is done in two steps.
If V is type (1), there exist

small annuli a(V) and $\varepsilon(V) > 0$ such that:

Given: $\Sigma_t^k \in S^k$ close to V and $\eta > 0$, Can find: $\{\Sigma_t^k(s)\}_{s \in [0,1]}$ with the following properties:

continuous

•
$$\Sigma_t^k(0) = \Sigma_t^k$$

• $\Sigma_t^k(s) \cap (M - a(V)) = \Sigma_t^k \cap (M - a(V))$
• $\mathcal{H}^{n-1}(\Sigma_t^k(s)) \le \mathcal{H}^{n-1}(\Sigma_t^k) + \eta$
• $\mathcal{H}^{n-1}(\Sigma_t^k(1)) < \mathcal{H}^{n-1}(\Sigma_t^k) - \varepsilon(V).$

If V is type (1), there exist

small annuli a(V) and $\varepsilon(V) > 0$ such that:

Given: $\Sigma_t^k \in S^k$ close to V and $\eta > 0$, Can find: $\{\Sigma_t^k(s)\}_{s \in [0,1]}$ with the following properties:

continuous

•
$$\Sigma_t^k(0) = \Sigma_t^k$$

• $\Sigma_t^k(s) \cap (M - a(V)) = \Sigma_t^k \cap (M - a(V))$
• $\mathcal{H}^{n-1}(\Sigma_t^k(s)) \le \mathcal{H}^{n-1}(\Sigma_t^k) + \eta$
• $\mathcal{H}^{n-1}(\Sigma_t^k(1)) < \mathcal{H}^{n-1}(\Sigma_t^k) - \varepsilon(V).$

Remark: Pitts had only type (1) varifolds and he performed the desired deformation using the $\sum_{t}^{k}(s)$'s.

"intersecting with small volume".

3 ∃ > < ∃ >

"intersecting with small volume".

Let $U \subset \Omega$ be an open set, with $\overline{U} \subset \Omega$ and such that $\Omega - U$ is inside a small tubular neighborhood of $\partial \Omega$.

"intersecting with small volume".

Let $U \subset \Omega$ be an open set, with $\overline{U} \subset \Omega$ and such that $\Omega - U$ is inside a small tubular neighborhood of $\partial \Omega$.

If Σ_t^k is also close to a type (2) varifold, then it has small volume in U. Making a(V) small enough, we have that

 $\mathcal{H}^{n-1}(\Sigma_t^k(s)\cap \overline{U})$ is small for every $s\in [0,1].$

"intersecting with small volume".

Let $U \subset \Omega$ be an open set, with $\overline{U} \subset \Omega$ and such that $\Omega - U$ is inside a small tubular neighborhood of $\partial \Omega$.

If Σ_t^k is also close to a type (2) varifold, then it has small volume in U. Making a(V) small enough, we have that

 $\mathcal{H}^{n-1}(\Sigma_t^k(s)\cap \overline{U})$ is small for every $s\in [0,1]$.

We obtain critical $\tilde{\mathfrak{S}} = {\{\tilde{S}^k\}_{k \in \mathbb{N}}}$ such that the big intersecting slices $\tilde{\Sigma}_t^k$ have small mass inside \overline{U} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Deformation used by Pitts in the construction of replacements.

∃ >

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

White's maximum principle for general varifolds.

A B + A B +

3

Part 2: Motivation

(S³, g) with positive Ricci curvature in S³ and scalar curvature R ≥ 6, satisfies the upper bound

$$W(S^3,g) \leq 4\pi$$

and there exists an embedded minimal sphere $\boldsymbol{\Sigma},$ of index one and surface area

area
$$_g(\Sigma)=W(S^3,g).$$

In case of equality $W(S^3, g) = 4\pi$, the metric g has constant sectional curvature one.

(Marques - Neves)

Part 2: Motivation

(S³, g) with positive Ricci curvature in S³ and scalar curvature R ≥ 6, satisfies the upper bound

$$W(S^3,g) \leq 4\pi$$

and there exists an embedded minimal sphere $\boldsymbol{\Sigma},$ of index one and surface area

area_g
$$(\Sigma) = W(S^3, g).$$

In case of equality $W(S^3, g) = 4\pi$, the metric g has constant sectional curvature one.

(Marques - Neves)

Question: Is there a scalar curv. rigidity version of this theorem?

Theorem C (—)

For any m > 0 there exists a Riemannian metric g on S^3 , with scalar curvature $R \ge 6$ and width $W(S^3, g) \ge m$.

直 と く ヨ と く ヨ と

Theorem C (—)

For any m > 0 there exists a Riemannian metric g on S^3 , with scalar curvature $R \ge 6$ and width $W(S^3, g) \ge m$.

Remark: It is interesting to stress that the Riemann curvature tensors of the examples that we construct are uniformly bounded.

Main Idea: Choose $\Omega \subset (S^3, g_m)$ so that we can obtain $area(\partial \Omega \cap A) \geq C$, for MANY disjoint regions A.

э

4 E b

Main Idea: Choose $\Omega \subset (S^3, g_m)$ so that we can obtain $area(\partial \Omega \cap A) \geq C$, for MANY disjoint regions A.

- Step 1:("Local lower bounds")
 - A-type regions = neighboring spherical regions and the connecting tube.

 $\mathcal{A} = \mathcal{A}_1 \cup \mathsf{Tube} \cup \mathcal{A}_2$

Main Idea: Choose $\Omega \subset (S^3, g_m)$ so that we can obtain $area(\partial \Omega \cap A) \geq C$, for MANY disjoint regions A.

- Step 1:("Local lower bounds")
 - A-type regions = neighboring spherical regions and the connecting tube.

 $\mathcal{A} = \mathcal{A}_1 \cup \mathsf{Tube} \cup \mathcal{A}_2$

• Fix $\alpha > 0$. We say a pair (\mathcal{A}, α) is compatible with Ω if

 $\alpha \leq vol(\Omega \cap \mathcal{A}) \leq vol(\mathcal{A}) - \alpha$ \downarrow Lower bound on area($\partial \Omega \cap int(\mathcal{A})$)
(depending on \mathcal{A} and α only)

Step 2: (Choice of Ω) Need lower bounds for L({ Σ_t }). (ANY sweepout of S^3 w.r.t. g_m)

Step 2: (Choice of Ω) Need lower bounds for $L(\{\Sigma_t\})$. (ANY sweepout of S^3 w.r.t. g_m) **Fact:** Associated to $\{\Sigma_t\}$ there is a continuous family of regions Ω_t such that

 $\partial \Omega_t = \Sigma_t$, for all $t \in [0, 1]$,

with $\Omega_0 = \emptyset$ and $\Omega_1 = S^3$.

Step 2: (Choice of Ω) Need lower bounds for $L(\{\Sigma_t\})$. (ANY sweepout of S^3 w.r.t. g_m) **Fact:** Associated to $\{\Sigma_t\}$ there is a continuous family of regions Ω_t such that

 $\partial \Omega_t = \Sigma_t$, for all $t \in [0, 1]$,

with $\Omega_0 = \emptyset$ and $\Omega_1 = S^3$.

The choice of a good Ω reduces to a choice of $t \in [0, 1]$.

Step 2: (Choice of Ω) Need lower bounds for $L(\{\Sigma_t\})$. (ANY sweepout of S^3 w.r.t. g_m) **Fact:** Associated to $\{\Sigma_t\}$ there is a continuous family of regions Ω_t such that

 $\partial \Omega_t = \Sigma_t$, for all $t \in [0, 1]$,

with $\Omega_0 = \emptyset$ and $\Omega_1 = S^3$.

The choice of a good Ω reduces to a choice of $t \in [0, 1]$.

Claim.

The first Ω_t for which

 $vol(\Omega_t \cap L) \ge \alpha$, at b(m) "spherical leaves" L,

has at least $\frac{1}{5} \cdot \left\lceil \frac{m}{2} \right\rceil$ disjoint compatible pairs (\mathcal{A}, α) .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $\Sigma_t = \partial \Omega_t$ be a sweepout of (S^3, g) . For all $v \in [0, vol(S^3, g)]$, there exists $t \in [0, 1]$ so that $vol(\Omega_t) = v$. In particular,

$$\mathcal{I}_g(v) = \inf\{area_g(\partial \Omega) : vol_g(\Omega) = v\} \leq area_g(\Sigma_t).$$

Let $\Sigma_t = \partial \Omega_t$ be a sweepout of (S^3, g) . For all $v \in [0, vol(S^3, g)]$, there exists $t \in [0, 1]$ so that $vol(\Omega_t) = v$. In particular,

$$\mathcal{I}_g(v) = \inf\{area_g(\partial \Omega) : vol_g(\Omega) = v\} \leq area_g(\Sigma_t).$$

In conclusion, $\sup_{v} \mathcal{I}_{g}(v) \leq W(S^{3}, g)$, for any metric g.

Let $\Sigma_t = \partial \Omega_t$ be a sweepout of (S^3, g) . For all $v \in [0, vol(S^3, g)]$, there exists $t \in [0, 1]$ so that $vol(\Omega_t) = v$. In particular,

$$\mathcal{I}_g(v) = \inf\{area_g(\partial \Omega) : vol_g(\Omega) = v\} \leq area_g(\Sigma_t).$$

In conclusion, $\sup_{\nu} \mathcal{I}_g(\nu) \leq W(S^3, g)$, for any metric g.

Remark: The rigidity result of \mathcal{I}_g for metrics with Ric > 0 and $R \ge 6$ was previously obtained by Eichmair.

Let $\Sigma_t = \partial \Omega_t$ be a sweepout of (S^3, g) . For all $v \in [0, vol(S^3, g)]$, there exists $t \in [0, 1]$ so that $vol(\Omega_t) = v$. In particular,

$$\mathcal{I}_g(v) = \inf\{area_g(\partial \Omega) : vol_g(\Omega) = v\} \leq area_g(\Sigma_t).$$

In conclusion, $\sup_{\nu} \mathcal{I}_g(\nu) \leq W(S^3, g)$, for any metric g.

Remark: The rigidity result of \mathcal{I}_g for metrics with Ric > 0 and $R \ge 6$ was previously obtained by Eichmair.

Question: What about $\sup_{m \in \mathbb{N}} (\sup_{v} \mathcal{I}_{g_m}(v))$?

Let $\Sigma_t = \partial \Omega_t$ be a sweepout of (S^3, g) . For all $v \in [0, vol(S^3, g)]$, there exists $t \in [0, 1]$ so that $vol(\Omega_t) = v$. In particular,

$$\mathcal{I}_g(v) = \inf\{area_g(\partial \Omega) : vol_g(\Omega) = v\} \leq area_g(\Sigma_t).$$

In conclusion, $\sup_{v} \mathcal{I}_{g}(v) \leq W(S^{3}, g)$, for any metric g.

Remark: The rigidity result of \mathcal{I}_g for metrics with Ric > 0 and $R \ge 6$ was previously obtained by Eichmair.

Question: What about $\sup_{m \in \mathbb{N}} (\sup_{v} \mathcal{I}_{g_m}(v))$?

Theorem

$$\sup_{m\in\mathbb{N}}\left(\sup_{v}\mathcal{I}_{g_m}(v)\right)=+\infty.$$

$$\mathcal{I}_{g_m}(v) \leq L, \quad \forall m \in \mathbb{N} \text{ and } 0 \leq v \leq vol_{g_m}(S^3).$$

∃ >

$$\mathcal{I}_{g_m}(v) \leq L, \quad \forall m \in \mathbb{N} \text{ and } 0 \leq v \leq vol_{g_m}(S^3).$$

Given $k \in \mathbb{N}$, we have m = m(k) and $\tilde{b}(k)$. (combinatorics)

$$\mathcal{I}_{g_m}(v) \leq L, \quad \forall m \in \mathbb{N} ext{ and } 0 \leq v \leq \mathit{vol}_{g_m}(S^3).$$

Given $k \in \mathbb{N}$, we have m = m(k) and $\tilde{b}(k)$. (combinatorics)

• New A-type regions: (balancing volumes)

$$\mathcal{I}_{g_m}(v) \leq L, \quad \forall m \in \mathbb{N} \text{ and } 0 \leq v \leq \textit{vol}_{g_m}(S^3).$$

Given $k \in \mathbb{N}$, we have m = m(k) and $\tilde{b}(k)$. (combinatorics)

• New A-type regions: (balancing volumes)

Choice of Ω:

$$\operatorname{vol}_{g_m}(\Omega_t) = \widetilde{b}(k) \cdot (\operatorname{vol}_{g_0}(S^3) + \tau - 2\mu) \quad \Rightarrow$$

$$\left|\#\left\{\mathcal{A}: \mathsf{vol}(\Omega_t \cap \mathcal{A}) \geq \frac{1}{2}\mathsf{vol}(\mathcal{A})\right\} - \tilde{b}(k)\right| \leq C(\mathcal{A} ext{-regions}, L, \tau, \mu).$$

For each $m \in \mathbb{N}$, T_m denotes the full binary tree of 2^m leaves. We consider 2-colorings of the nodes of T_m .

For each $m \in \mathbb{N}$, T_m denotes the full binary tree of 2^m leaves. We consider 2-colorings of the nodes of T_m .

For each $m \in \mathbb{N}$, T_m denotes the full binary tree of 2^m leaves. We consider 2-colorings of the nodes of T_m .

Question: Let $k \in \mathbb{N}$. Can we find integers *m* and *b* such that any 2-coloring of T_m with *b* black nodes (or leaves) exactly has at least *k* dichromatic edges?

For each $m \in \mathbb{N}$, T_m denotes the full binary tree of 2^m leaves. We consider 2-colorings of the nodes of T_m .

Question: Let $k \in \mathbb{N}$. Can we find integers *m* and *b* such that any 2-coloring of T_m with *b* black nodes (or leaves) exactly has at least *k* dichromatic edges?

Yes! (for both, nodes and leaves)

Theorem (prescribed number of black leaves)

Any 2-coloring of T_m with

$$b(m) = \begin{cases} 1+2+2^3+\ldots+2^{m-2}, & \text{if } m \text{ is odd} \\ 1+2^2+2^4+\ldots+2^{m-2}, & \text{if } m \text{ is even}, \end{cases}$$

black leaves exactly has at least

 $\left\lceil \frac{m}{2} \right\rceil$ dichromatic edges.

(*) *) *) *)

Theorem (prescribed number of black leaves)

Any 2-coloring of T_m with

$$b(m) = \begin{cases} 1+2+2^3+\ldots+2^{m-2}, & \text{if } m \text{ is odd} \\ 1+2^2+2^4+\ldots+2^{m-2}, & \text{if } m \text{ is even}, \end{cases}$$

black leaves exactly has at least

 $\left\lceil \frac{m}{2} \right\rceil$ dichromatic edges.

Theorem (prescribed number of black nodes)

Given $k \in \mathbb{N}$, there exist m = m(k) and $\tilde{b}(k)$, such that any 2-coloring of T_m with b black nodes exactly has at least

$$\frac{k-|b-\tilde{b}(k)|}{5}$$

pairwise disjoint pairs of neighboring nodes with different colors.

Sketch of proof: (in case of leaves)

First step: Given a 2-coloring C in T_m with b(m) black leaves exactly, we associate a 2-coloring of T_{m-1} .

Sketch of proof: (in case of leaves)

First step: Given a 2-coloring C in T_m with b(m) black leaves exactly, we associate a 2-coloring of T_{m-1} .

Sketch of proof: (in case of leaves)

First step: Given a 2-coloring C in T_m with b(m) black leaves exactly, we associate a 2-coloring of T_{m-1} .

Analyzing #{black leaves of C'} settles the induction step in case:

- *m* is even; or
- there are at least two pairs of black and white leaves of \mathcal{C} .

Second step: If m is odd and there is one pair of black and white leaves in C only, we induce a 2-coloring in T_{m-2} and analyze the size of its set of black leaves.

Second step: If m is odd and there is one pair of black and white leaves in C only, we induce a 2-coloring in T_{m-2} and analyze the size of its set of black leaves.

The color induced on each leaf of T_{m-2} depends only on the C-colors of its four associates leaves of T_m .

Obrigado!

<ロ> <同> <同> < 同> < 同>

æ