**Huy Nguyen**

Fine Hall, Washington Road

Princeton,
NJ 08544-1000

Office:
210 Fine Hall

Email:
qn@math.princeton.edu

I
am a Postdoctoral Research Associate and Lecturer in Mathematics. My
postdoctoral mentor is Professor Peter Constantin. I completed
my Ph.D. in July, 2016 under the supervision of Professor Nicolas Burq
at University Paris-Sud. My Ph.D. dissertation was devoted to mathematical
analysis for water waves. My CV.

I
am a co-organizer of the Analysis
of Fluids and Related Topics seminar at Princeton this year.

**Research**

My
research area is Partial Differential Equations. I am currently interested in
problems arising in fluid dynamics such as: water waves, the surface
quasi-geostrophic equation, drop formation, shallow water waves, compressible Navier-Stokes equations. Below are my publications and
preprints.

15. P. Constantin, M. Ignatova,
H. Q. Nguyen. **Inviscid limit for SQG in bounded
domains**, submitted (2018).

14. T. D. Drivas, H. Q. Nguyen, **Onsager's
conjecture and anomalous dissipation on domains with boundary**,
submitted (2018).

13. P. Constantin, T. D. Drivas, H. Q.
Nguyen, Federico Pasqualotto. **Compressible fluids and
active potentials**, submitted (2018).

12. P. Constantin, T. Elgindi,
H. Nguyen, V. Vicol**. On singularity formation
in a Hele-Shaw model**, submitted (2017).

11. P. Constantin, H. Q. Nguyen**. Local and global strong solutions
for SQG in bounded domains**. Physica D,
Special Issue in Honor of Edriss Titi,
accepted (2017). ** **

10. H. Q. Nguyen**. Global weak solutions for generalized
SQG in bounded domains. **Analysis
& PDE,** **Vol. 11 (2018), No. 4,
1029--1047

9. P. Constantin, H. Q. Nguyen**. Global weak solutions for SQG in
bounded domains.** Communication on Pure and Applied Mathematics,
accepted (2017).

8. H. Q. Nguyen. **Sharp Strichartz estimates for water waves
systems**. Transactions of the American Mathematical Society,
accepted (2017).

7. H. Q. Nguyen**. A sharp Cauchy theory for 2D
gravity-capillary water waves**. Annales
de l'Institut Henri Poincare (C) Analyse
Non Lineaire, 34 (2017), no. 7, 1793-1836.

6. T. de Poyferre,
H. Q. Nguyen. **Strichartz estimates and local existence for the
gravity-capillary water waves with non-Lipschitz initial velocity**.
Journal of Differential Equations, 261(1) 396-438, 2016.

5. T. de Poyferre,
H. Q. Nguyen. **A paradifferential reduction for the
gravity-capillary waves system at low regularity and applications**.
Bulletin de la Societe Mathematique
de France, 145, fascicule 4(2017), 643-710.

4. H. Q. Nguyen**. A pseudo-local property of gravity water
waves system**. SIAM Journal of Mathematical Analysis, 48(3)
1988-2027, 2016.

3. H. Q. Nguyen. **Hadamard well-posedness of
the gravity water waves system**. Journal of Hyperbolic
Differential Equations, 13(4) 791-820, 2016.

2. H. Q. Nguyen**. Non
uniformly elliptic equations with non-uniformly p-superlinear
nonlinearities**. Differential and Integral Equations, 27(9)
977-1000, 2014.

1. D. M. Duc,
H. Q. Nguyen. **Non-uniformly
asymptotically linear p-Laplacian problems**. Nonlinear Analysis,
(92) 183-197, 2013.

Collaborators:
P. Constantin (Princeton U), T. de Poyferre (UC
Berkeley), T. D. Drivas (Princeton U), D. M. Duong (HCM city U), T. Elgindi (UC San Diego), M. Ignatova
(Princeton U), F. Pasqualotto (Princeton U), V. Vicol (Princeton U).

**Teaching**

Fall 2017: MAT 104 Calculus II.

Spring 2018: APC350/MAT322 Differential
Equations.