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Abstract

Let S be a set of subsets of a set W . When is there a tree T with vertex set W such that each
member of S is the set of vertices of a subtree of T? It is necessary that S has the Helly property and
the intersection graph of S is chordal. We will show that these two necessary conditions are together
sufficient in the finite case, and more generally, they are sufficient if no element of W belongs to
infinitely many infinite sets in S.



1 Introduction

Graphs in this paper have no loops or parallel edges. A graph is chordal if all its induced cycles have
length three, and L. Surányi (see page 584 of [3]) and others [1, 2, 5] showed that a finite graph is
chordal if and only if it is the intersection graph of a set of subtrees of a tree. (This is not always
true for infinite graphs, as Halin [4] showed.)

Here is a similar but different question: let S be a set of subsets of a set W . When is there a
tree T with vertex set W such that each member of S is the set of vertices of a subtree of T? There
are two natural necessary conditions:

• (The chordal property) The intersection graph of S is chordal.

• (The finite Helly property) For all S1, . . . , Sk ∈ S with k finite, if Si ∩ Sj 6= ∅ for 1 ≤ i <
j ≤ k, then S1 ∩ · · · ∩ Sk 6= ∅.

We will prove that these two conditions are sufficient if W is finite. If W is infinite they are not always
sufficient, but they are sufficient if no element of W belongs to infinitely many infinite members of
S.

Let us see first that they are not always sufficient:

1.1 There is a set S of subsets of a set W , such that S has the chordal property and the finite Helly
property, and yet there is no tree T with vertex set W such that each member of S is the vertex set
of a subtree of T .

Proof. Let W be the set of non-negative integers, and let

S = {{i, i + 1}; i ≥ 1} ∪ {{0, i, i + 1, i + 2...} : i ≥ 1}.

This satisfies the two necessary conditions, but there is no corresponding tree. To see the latter,
suppose that T is a tree with V (T ) = W and all members of S are vertex set of subtrees. In
particular, (i, i + 1) is an edge of T for each i ≥ 1, so there is only one more edge in T , and it is
incident with 0; and for each i ≥ 1. making (0, i) an edge does not work, because {0, i + 1, i + 2...}
is supposed to be the vertex set of a subtree. This proves 1.1.

The set of 1.1 was derived from an example of Halin [4]. He gave a chordal graph G that was not
expressible as the intersection graph of a set of subtrees of a tree. Let G be any such graph, let W
be the set of all maximal cliques of G (a clique of a graph is a set of pairwise adjacent vertices, not
necessarily maximal), and for each v ∈ V (G), let Sv be the set of all members of W that contain v.
Then S = {Sv : v ∈ V (G)} satisfies 1.1, as can easily be checked.

We observe that, in the example given above, the element 0 belongs to infinitely many infinite
members of S. Our main result is:

1.2 Let S be a set of subsets of a set W , such that S has the chordal property and the finite Helly
property, and such that no member of W belongs to infinitely many infinite members of S. Then
there is a tree T with vertex set W such that each member of S is the vertex set of a subtree of T .

Proof. If W /∈ S, we could replace S by S ∪ {W}, and the chordal property and the finite Helly
property would still hold; so we may assume that W ∈ S. Let us say a fleet is a set of subsets of a
set W , such that
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• S has the chordal property and the finite Helly property;

• each member of W belongs to only finitely many infinite members of S; and

• W ∈ S.

We call the members of a fleet S the ships of S. Note that every ship S is nonempty, by the finite
Helly property applied to {S} . A ship of cardinality two is called an edge-ship. A fleet S ′ is an
extension of a fleet S if S ⊆ S ′, and S ′ \ S contains only edge-ships. A fleet S is maximal if no
extension of S is different from S.

(1) For every fleet S, there is an extension of S that is maximal.

Let I be a set that is linearly ordered by some relation <, and for each i ∈ I let Si be a fleet,
such that for all distinct i, j ∈ I, if i < j then Sj is an extension of Si. Let S =

⋃
i∈I Si. We

claim that S is a fleet. For every finite set R of ships of S that pairwise intersect, there exists i ∈ I
such that R ⊆ Si (since R is finite), and since Si is a fleet, there is a vertex that belongs to every
member of R; and so S has the finite Helly property. Similarly it has the chordal property trivially
all its ships of size different from two belong to each Si. This proves that S is a fleet extending each
Si (i ∈ I). From Zorn’s lemma, this proves (1).

Consequently, to prove the theorem it suffices to prove it for maximal fleets, so we may assume
that S is maximal. A nonempty subset X ⊆ W is disconnected if the set of edge-ships included in
X is the edge set of a disconnected graph with vertex set X.

(2) If W is not disconnected then the theorem holds.

If W is not disconnected, there is a tree T with vertex set W such that all its edges are edge-
ships of S. Suppose that there is a ship S that is not the vertex set of a tree in T . Hence there are
at least two components of T [S]; choose a minimal path P of T that joins two vertices in different
components of T [S]. Thus P has length at least two, since the ends of P are in different components
of T [S]. Let P have vertices p1- · · · -pk in order; thus, k ≥ 3, and p1, pk ∈ S, and p2, . . . , pk−1 /∈ S.
If k = 3 then the three ships {p1, p2}, {p2, p3}, S pairwise intersect and yet have no common vertex,
contradicting that S has the finite Helly property; and if k ≥ 4 then the intersection graph of the
set of ships E(P ) ∪ {S} is a cycle of length at least four, contradicting the chordal property. Thus
every ship S induces a tree in T , and so the theorem holds. This proves (2).

Let us say a nonempty subset of W expressible as an intersection of finitely many ships is a
meeting. (Actually, every intersection of ships is the intersection of finitely many ships, but we do
not need that.) If no meeting is disconnected, then the theorem holds by (2), since W is a meeting;
so let us suppose that there is a disconnected meeting. Since every vertex belongs to only finitely
many infinite ships, there is no infinite sequence of meetings such that each is a proper subset of
its predecessor. It follows that there is a disconnected meeting A such that no proper subset is a
disconnected meeting. Let F be the graph with vertex set A and edge set all edge-ships included in
A. Thus F is not connected; let the vertex sets of its components be {Fd : d ∈ D}. Let R be the set
of all ships that do not include A as a subset.

2



(4) There is no sequence of ships R1, . . . , Rk ∈ R such that for some distinct d, d′ ∈ D, R1 ∩ Fd 6= ∅
and Rk ∩ Fd′ 6= ∅, and Ri ∩Ri+1 6= ∅ for 1 ≤ i < k.

Suppose there is such a sequence R1, . . . , Rk, and choose one with k minimum. Choose finitely
many ships S1, . . . , S` such that S1 ∩ · · · ∩ S` = A. If k = 1, then R1 ∩A is a disconnected meeting,
and is a proper subset of A, a contradiction. If k = 2, then from the finite Helly property, since
every two of the ships S1, . . . , S`, R1, R2 have nonempty intersection, they have a common member
c say. So c ∈ A ∩ R1 ∩ R2, and so one of R1, R2 meets two of the sets Fd (d ∈ D), contrary to the
minimality of k. Thus k ≥ 3, and Ri ∩ Rj = ∅ for 1 ≤ i, j ≤ k with j > i + 1; and R2, . . . , Rk−1
are all disjoint from A (because otherwise we could reduce k). If each of S1, . . . , S` has nonempty
intersection with R2, then S1 ∩ · · · ∩ S` ∩R2 is nonempty by the finite Helly property, contradicting
that A ∩ R2 = ∅. So we assume that S1 ∩ R2 = ∅. Since S1 ∩ Rk ⊇ A ∩ Rk 6= ∅, we may choose
j ∈ {3, . . . , k} minimum such that S1 ∩Rj 6= ∅. Thus S1 has nonempty intersection with R1, Rj and
is disjoint from R2, . . . , Rj−1. Since j ≥ 3, the intersection graph of the set of ships {R1, . . . , Rj , S1}
is a cycle of length at least four, contradicting that S has the chordal property. This proves (3).

Choose distinct d, d′ ∈ D and a ∈ Fd and b ∈ Fd′ . Since {a, b} is not an edge-ship, the maximality
of S tells us that S ∪ {{a, b}} is not a fleet, and therefore violates either the chordal property or the
finite Helly property.

Suppose that S ∪ {{a, b}} does not have the finite Helly property. Thus there are finitely many
ships P1, . . . , Pm, pairwise with nonempty intersection, and each containing one or both of a, b, such
that neither of a, b belongs to all of P1, . . . , Pm. We may assume that a /∈ P1 and b /∈ P2, and so
P1, P2 ∈ R. Since P1 ∩ P2 6= ∅, this contradicts (3).

Thus S ∪ {{a, b}} does not have the chordal property; and so there are finitely many ships
P1, . . . , Pm such that the intersection graph of {P1, . . . , Pm, {a, b}} is a cycle of length at least four.
Consequently each of P1, . . . , Pm contains at most one of a, b, and so P1, . . . , Pm ∈ R, contrary to
(3). This contradiction show that there is no disconnected meeting, and so the theorem holds by (2).
This proves 1.2.

Finally, we obtain a slight strengthening of the theorem of Halin [4]. He proved that if G is a
chordal graph with no infinite clique, then G is the intersection graph of a set of subtrees of a tree.
We will prove:

1.3 Let G be a chordal graph, such that no clique has infinitely many vertices that each belong to
infinitely many maximal cliques. Then G is the intersection graph of a set of subtrees of a tree.

Proof. Let W be the set of all maximal cliques of G, and for each v ∈ V (G), let Sv be the set of all
maximal cliques that contain v. From the hypothesis, S = {Sv : (v ∈ V (G))} satisfies the hypotheses
of 1.2, and so there is a tree T with vertex set W such that each member of S is the vertex set of a
subtree of T . But then G is the intersection graph of this set of trees. This proves 1.3.

References

[1] P. Buneman, “A characterization of rigid circuit graphs”, Discrete Math. 9 (1974), 205–212.

3



[2] F. Gavril, “The intersection graphs of subtrees in trees are exactly the chordal graphs”, J.
Combinatorial Theory, Ser. B 16 (1974), 47–56.
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