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Abstract

We prove that for every complete graph Kt, all graphs G with no induced subgraph isomorphic to a
subdivision of Kt have a stable subset of size at least |G|/ polylog |G|. This is close to best possible,
because for t ≥ 6, not all such graphs G have a stable set of linear size, even if G is triangle-free.



1 Introduction

Graphs in this paper are finite, and have no loops or parallel edges. For a graph G, |G| denotes the
number of vertices of G, χ(G) is its chromatic number, and ω(G) and α(G) denote the sizes of its
largest clique and stable set respectively. If G,H are graphs, G is H-free if no induced subgraph of
G is isomorphic to H, and if H is a set of graphs, G is H-free if G is H-free for each H ∈ H. We
say G is H-subdivision-free if no induced subgraph of G is isomorphic to a subdivision of H. All
logarithms are to base two.

We will prove:

1.1 Let t ≥ 3 be an integer, and let ct = (2t)−4(t−2). Then every Kt-subdivision-free graph G with
|G| ≥ 2 satisfies

α(G) ≥ ct|G|
(log |G|)3t−5

.

Let us put this in some context. First, a string graph is the intersection graph of curves in the plane.
String graphs with clique number at most k are Kt-subdivision-free, where t depends only on k, and
so our result extends a result of Fox and Pach [6] (and see also [7]):

1.2 For every integer k ≥ 1, there exists c > 0 such that every string graph G with clique mumber
at most k has a stable set of size at least |G|/(log |G|)c.

Our result is numerically weaker: c in the Fox-Pach theorem is O(log k), while for us it is O(k)
(applying 3.1). Nevertheless, it is pleasing to extend a geometric result to a much broader class of
graphs.

Second, the Gyárfás-Sumner conjecture [9, 18] says:

1.3 Conjecture: For every forest H and every integer k ≥ 1, there exists c ≥ 1 such that χ(G) ≤ c
for every {H,Kk+1}-free graph G.

In particular, if the Gyárfás-Sumner conjecture is true, then every {H,Kk+1}-free graph G has a
stable set of size at least |G|/c. This is still open, but in [14] we proved that it is “nearly” true, in
the following sense:

1.4 For every forest H and integer k, every {H,Kk+1}-free graph G satisfies α(G) ≥ |G|1−o(1), and
hence has chromatic number at most |G|o(1).

One might regard this as evidence in support of the Gyárfás-Sumner conjecture, but one should
not place much faith in such evidence, because the result of this paper provides just as much evidence
to support a conjecture that turned out to be false. Scott [16] suggested an analogue of 1.3, that we
could replace excluding a forest with excluding all subdivisions of any given graph:

1.5 False conjecture: For every graph H, and every integer k ≥ 1, there exists c such that every
Kk+1-free, H-subdivision-free graph G satisfies χ(G) ≤ c.

Scott proved that this is true if H is a forest, but it was shown to be false in general by Pawlik,
Kozik, Krawczyk, Lasoń, Micek, Trotter and Walczak [15]. Results of Chalopin, Esperet, Li and
Ossona de Mendez [2] and Walczak [19] together gave a strengthening:
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1.6 Let H be obtained from K4 by subdividing once every edge in a cycle of length four. There are
infinitely many K3-free and H-subdivision-free graphs G such that α(G) < |G|/ log log |G|.

However, we can prove that all H-subdivision-free graphs G with bounded clique number have
a stable set of size |G|/ polylog |G|, and so 1.5 is “nearly” true in the same sense as 1.3, despite 1.6.
We will show:

1.7 Let G be a graph with |G| ≥ 2, let k ≥ 1 be an integer with ω(G) ≤ k, and let H be a graph
such that no induced subgraph of G is a subdivision of H. Then

α(G) ≥ |G|
(2|H|)4(k−1)(log |G|)3k−2

.

This immmediately implies a polylogarithmic bound O((log |G|)3k−1) on the chromatic number of
such graphs G.

2 A sketch of the proof

To prove 1.1, for inductive purposes we will prove a stronger result, proving a bound on α(G) that
depends not only on t but also on ω(G) and on the maximum degree ∆(G) of G. In addition, we
find that the same bound holds even if we only exclude subdivisions of Kt in which each edge is
subdivided at least twice and at most (log |G|)2− 1 times. Let us say a subdivision of H has lengths
between p and q if each edge of H is replaced by a path of length between p and q. So our main
result is:

2.1 Let G be a graph. Let d ≥ 2 be an integer with ∆(G) ≤ d; let k ≥ 1 be an integer with ω(G) ≤ k;
and let t ≥ 3 be an integer such that no induced subgraph of G is a subdivision of Kt with lengths
between 3 and (log |G|)2. Then

α(G) ≥ |G|
(2t)4(k−1)(log |G|)3(k−1) log d

.

We give the proof in the next section, but let us sketch it first. There is an initial step, that we
can assume ∆(G) ≤ |G|/(polylog |G|), because if there is a vertex of sufficiently large degree we just
apply induction on the clique number to its set of neighbours and win.

The remainder of the proof breaks into two parts. In the first part we find t disjoint “stars”:
t suitable vertices a1, . . . , at, that we intend to be the high-degree vertices of a subdivision of Kt

that we will try to construct. They need to be nonadjacent, and for each to have a large stable
set Bi of neighbours nonadjacent to the other aj ’s; and we need these sets Bi to be sparse to one
another. We try to construct a1, . . . , at greedily. Say we have selected a1, . . . , ai with corresponding
sets B1, . . . , Bi. Let G′ be the set of vertices that nonadjacent to a1, . . . , ai, and sparse to each of
B1, . . . , Bi (the sparsity we need here depends just on t). Then G′ still contains nearly all the vertices
of G, and if it has maximum degree at most ∆(G)/2, we win by inductively applying the theorem
to G′. This is why we need the log d term in 2.1, and this is the only place we use that.

If there is a vertex ai+1 in G′ with degree at least ∆(G)/2, we apply the theorem inductively to
its set X of neighbours, and find a large stable subset Bi+1, and they form the next star. It is critical
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here that the clique number of G[X] is less than that of G, and since the bound we are proving
depends on clique number, the large stable subset we find is bigger (by a polylog(G) factor) than we
could guarantee in a general set of the same size as X.

When we have found suitable a1, . . . , at and B1, . . . , Bt, we go to the second part of the proof.
Each pair of Bi’s needs to be joined by a path, and we need to choose these paths so that their union
is an induced subgraph. So, suppose we have chosen some of the paths, and let us try to choose the
next one. We need to put aside all vertices with neighbours in the paths that are already chosen,
and route the next path through the remaining vertices. For this we must arrange that the number
of vertices put aside is not too big. Each vertex only disqualifies at most ∆(G) other vertices, but
we must arrange that the total number of vertices in the paths already selected is under control; and
to do this, we insist that each path must have length at most some fixed power of log |G|, and we
find (log |G|)2 works.

There is another disqualification issue as well: some vertices in the Bi’s cannot be used because
they have neighbours in already-selected paths. So to keep this number small, we will take care to
route all paths through the set of vertices that are reasonably sparse to each Bi. Since we will have
to disqualify the neighbours in Bi of about t2(log |G|)2 vertices, we need “reasonably sparse” to mean
having O(|Bi|/(log |G|)2) neighbours in each Bi. The number of vertices disqualified for this reason
turns out to be O((log |G|)2∆(G)), about the same as the number disqualified for the first reason.
So there is a set S say, of size about (log |G|)2∆(G), of disqualified vertices, and we have to route
the next path between B1 and B2 (say) without using any vertex in S.

To do this, we look at set expansion. Start with N0
1 = B1, and define N i

1 to be the set of vertices
that belong to or have a neighbour inN i−1

1 . Suppose we could prove that |N i
1| ≥ (1+2/ log |G|))|N i−1

1 |
for each i; then when i is about (log |G|)2/2, N i

1 contains more than half the vertices of the graph.
Do the same for Bj , and so N i

1 and N i
2 intersect, and we can pick out a short path between Bi, Bj

in their union. This is the plan, but to make it work there are several things to worry about.
First, how can we prove that subsets have large expansion in this sense? If there is a set X, of

size less than |G|/2 and such that the set N of vertices with neighbours in X (including X itself) is
not very big, then we can apply the inductive hypothesis to X and to G \N , find large stable sets in
each, and take their union to find a really large stable set in G and win. So this gives a mechanism
to show that N is large, for any set X.

Second, we have to avoid the disqualified vertices S; so we should redefine N i
1 to be the set of

vertices, not in S, that have a neighbour in N i−1
1 , and then that issue is resolved. But to prove

that |N i
1| ≥ (1 + 2/ log |G|))|N i−1

1 | with the new meaning of N i
1 , we would need to prove that the

set of all neighbours of N i−1
1 in G is somewhat larger, so that even when we remove those in S,

what remains is still large. So we need the set of neighbours of N i−1
1 to be something like at least

|S| + (1 + 2/ log |G|))|N i−1
1 |. This is not a problem for the larger values of i, because then |S| is

fixed and all the other sets are getting big. It would be a problem when i = 1, if all we knew about
the Bi’s was that their size was something like ∆(G), because S is much larger than this and the
expansion argument would not work. But when i = 1 we have an advantage, because Bi is already
stable, and we found it by using the induction on clique number, as explained earlier. That gain is
enough to make the expansion argument work again; indeed, the expansion when i = 1 is big enough
to ensure that all the subsequent sets N j

1 are comfortably large and consequently they expand nicely.
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3 The main proof

In this section we prove our main result, which we restate:

3.1 Let G be a graph. Let d ≥ 2 be an integer with ∆(G) ≤ d; let k ≥ 1 be an integer with ω(G) ≤ k;
and let t ≥ 3 be an integer such that no induced subgraph of G is a subdivision of Kt with lengths
between 3 and (log |G|)2. Then

α(G) ≥ |G|
(2t)4(k−1)(log |G|)3(k−1) log d

.

Proof. We assume inductively that the result holds for all proper induced subgraphs of G (for all
choices of k ≥ 1 and t ≥ 3). If k = 1, the result is trivial, so we may assume that k ≥ 2. If ∆(G) ≤ 1,
then α(G) ≥ |G|/2 and the result holds since (2t)4(k−1) ≥ 64 ≥ 2; so we may assume that ∆(G) ≥ 2.
Hence, by reducing d if possible, we may assume that ∆(G) = d. To save writing, let us define

T = (2t)4, L = log |G|, and D = log d. Then we must show that α(G) ≥ |G|
Tk−1L3(k−1)D

. We suppose
this is false. We claim:

(1) dD3 ≤ |G|/T and d+ 1 ≥ T k−1L3(k−1)D, and consequently d ≥ 109 ≥ 229.

Let v be a vertex with degree ∆(G) = d, and let X be the set of all neighbours of v; so |X| = d, and
ω(G[X]) ≤ k − 1. From the inductive hypothesis,

α(G[X]) ≥ d

T k−2D3(k−2)D

and therefore this is smaller than
|G|

T k−1L3(k−1)D
,

because otherwise the result would hold. This proves the first inequality of (1). For the second, since
G has maximum degree d, and hence has a stable set of size at least |G|/(d+ 1), it follows that

|G|
d+ 1

<
|G|

T k−1L3(k−1)D
,

and so d + 1 ≥ T k−1L3(k−1)D. This proves the second inequality. Since |G| ≥ d, and t ≥ 3 and
k ≥ 2, it follows that T ≥ 64; aince L3(k−1)D ≥ D4, it follows that d + 1 ≥ 64(log d)4 and therefore
d > 109. This proves (1).

(2) If X ⊆ V (G) and |X| ≤ |G|/D, then ∆(G \X) ≥ d/2.

Let G′ = G \ X, and let d′ = bd/2c, and suppose that ∆(G′) ≤ d/2. Thus ∆(G′) ≤ d′, and
d′ ≥ 2, so from the inductive hypothesis,

T k−1α(G′) ≥ |G′|
(log |G′|)3(k−1) log d′

≥ (1− 1/D)|G|
L3(k−1)(D − 1)

=
|G|

L3(k−1)D
,

and so the result holds, a contradiction. This proves (2).
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If A,B ⊆ V (G) are disjoint, we say A is x-sparse to B if each vertex in A has at most x|B|
neighbours in B, and the smallest such x is the sparsity of A to B. Let us say a star system in G is
a pair of sequences (a1, . . . , an) and (B1, . . . , Bn) of the same length, with the following properties:

• a1, . . . , an ∈ V (G) are distinct and pairwise nonadjacent;

• B1, . . . , Bn are pairwise disjoint stable subsets of V (G) \ {a1, . . . , an}; and

• for 1 ≤ i ≤ n, ai is adjacent to each vertex in Bi and has no other neighbour in B1 ∪ · · · ∪Bn.

We call n the length of the star system, and its size is min(|Bi| : 1 ≤ i ≤ n) (or |G|, if n = 0). Its
semi-sparsity is the maximum over all i, j with 1 ≤ i < j ≤ n of the sparsity of Bi to Bj (or 0, if
n ≤ 1). Its sparsity is the maximum over all distinct i, j ∈ {1, . . . , n} of the sparsity of Bi to Bj (or
0, if n ≤ 1).

(3) Let p be a nonnegative integer, and let 0 < q ≤ 1, such that p/q ≤ 400T . Then G contains
a star system of length p, size at least d

2Tk−2D3k−5 , and semi-sparsity at most q.

We proceed by induction on p, and so we may assume that p ≥ 1 and G contains a star system
(a1, . . . , ap−1), (B1, . . . , Bp−1) of length p− 1, size at least d

2Tk−2D3k−5 , and semi-sparsity at most q.
Let X1 be the set of vertices of G that are adjacent to one of a1, . . . , ap−1. Let X2 be the set of
vertices v of G \X1 such that for some i ∈ {1, . . . , p− 1}, v has at least q|Bi| neighbours in Bi.

Thus |X1| ≤ (p − 1)d ≤ pd/q, and |X2| ≤ (p − 1)d/q ≤ pd/q (because there are at most |Bi|d
edges incident with Bi); and so X = X1 ∪X2 has cardinality at most (2p/q)d. Since D2 ≥ 800 by
the last statement of (1), it follows (from the first statement of (1)) that

(2p/q)dD ≤ (p/q)dD3/400 ≥ (p/q)|G|/(400T ) ≤ |G|.

Consequently |X| ≤ |G|/D, and so by (2), ∆(G \X) ≥ d/2. Hence there exists ap ∈ V (G) \X with
degree at least d/2 in G\X. Let C be the set of its neighbours in G\X; so |C| ≥ d/2. Now G[C] has
clique number at most k − 1, so from the inductive hypothesis, there exists a stable subset Bp ⊆ C
with

|Bp| ≥
|C|

T k−2(log |C|)3(k−2)D
≥ d

2T k−2D3k−5 .

But then (a1, . . . , ap−1, ap) and (B1, . . . , Bp−1, Bp) form the desired star system. This proves (3).

(4) Let p > 0 be an integer, and let 0 < q ≤ 1, such that p2/q ≤ 200T . Then G contains a
star system of length p, size at least d

4Tk−2D3k−5 , and sparsity at most q.

Let q′ = q/(2p); then by (3), G contains a star system (a1, . . . , ap), (B1, . . . , Bp) of length p, size at
least d

2Tk−2D3k−5 , and semi-sparsity at most q′. Inductively, for i = p, p− 1, . . . , 1 in turn, we define
Ci ⊆ Bi as follows. For i + 1 ≤ j ≤ p, since Cj is q′-sparse to Bi, at most |Bi|/(2p) vertices in Bi

have more than 2pq′|Cj | neighbours in Cj . Hence there exists Ci ⊆ Bi with |Ci| ≥ |Bi|/2 that is
2pq′-sparse and hence q-sparse to each of Ci+1, . . . , Cp. Moreover, for i < j ≤ p, Cj is 2q′-sparse
and hence q-sparse to Ci, since |Ci| ≥ |Bi|/2. This completes the inductive definition of Cp, . . . , C1.
Then (a1, . . . , ap−1, ap), (C1, . . . , Cp−1, Cp) satisfies (4).
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Now we show a local expansion property:

(5) If A ⊆ V (G) is stable, then there are at least T k−1L3(k−1)D|A| vertices that belong to or have a
neighbour in A.

Let S be the set of all vertices that belong to or have a neighbour in A. From the inductive
hypothesis applied to G \ S, we obtain a stable set, and its union with A is stable; so

|G| − |S|
T k−1(log(|G| − |S|))3(k−1)D

+ |A| < |G|
T k−1L3(k−1)D

.

Since log(|G| − |S|) ≤ L, this implies

|G| − |S|
T k−1L3(k−1)D

+ |A| < |G|
T k−1L3(k−1)D

,

which simplifies to the claim. This proves (5).

From (4), taking p = t and q = 1/(4t2), we deduce that, since 4t4 ≤ 3200t4 = 200T , G contains
a star system of length t, size at least d

4Tk−2D3k−5 , and sparsity at most 1/(4t2). Let (a1, . . . , at),
(B1, . . . , Bt) be such a star system. Thus, from the second statement of (1), each Bi has cardinality
at least

d

4T k−2D3k−5 ≥
dTD3

4T k−1L3(k−1)D
≥ dTD3

d+ 1
≥ 8t4D3.

Let X1 be the set of vertices adjacent to one of a1, . . . , at (so |X1| ≤ td), and let X2 be the set
of vertices v ∈ V (G) \X1 such that for some i ∈ {1, . . . , t}, v has at least |Bi|/(2t2L2) neighbours in
Bi. Thus (counting edges incident with V (G) \X1), we have |X2| ≤ 2t3L2d. Let Y ⊆ V (G) be some
subset of V (G) such that:

• Y ∩X1 ⊆ B1 ∪ · · · ∪Bt and Y ∩X2 = ∅;

• |Y ∩X1| ≤ t2, and |Y | ≤ 1
2 t

2L2.

Let us call such a set Y an obstruction set. For the moment, let us fix an obstruction set Y , and let
X3 be the set of vertices of G that are equal or adjacent to a vertex in Y .

(6) |X3| ≤ 1
2 t

2L2d, and for 1 ≤ i ≤ t, |X3 ∩Bi| ≤ |Bi|/2.

The first statement is clear, since ∆(G) ≤ d. The vertices of X3 ∩ Bi are of three types: those
in Y ∩ Bi, those with a neighbour in (Y \ Bi) ∩ (B1 ∪ · · · ∪ Bt), and those with a neighbour in
Y \ (B1∪· · ·∪Bt). Let |Y ∩Bi| = n; then the number of the second type is at most (t2−n)|Bi|/(4t2)
(since Bi is stable and the star system is 1/(4t2)-sparse). So the number of vertices of the first or
second type is at most n+ (t2−n)|Bi|/(4t2) ≤ |Bi|/4 (since |Bi| ≥ 8t4D3 ≥ 4t2). Since Y is disjoint
from X2, there are at most |Y | · |Bi|/(2t2L2) ≤ |Bi|/4 vertices of the third type. Consequently
|X3 ∩Bi| ≤ |Bi|/2. This proves (6).

For 1 ≤ i ≤ t and each integer r ≥ 0, let N r
i be the union of the vertex sets of all paths of G with

length at most r that have one end in Bi \X3 and have no other vertices in X1 ∪X2 ∪X3.
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(7) For 1 ≤ i ≤ t, |N1
i | ≥ 3t3L3d.

Let S = N1
i ∪ X1 ∪ X2 ∪ X3. Since S contains all vertices that belong to or have a neighbour

in Bi \X3, (5) implies that

|S| ≥ T k−1L3(k−1)D|Bi \X3| ≥
dT k−1L3(k−1)D

8T k−2D3k−5 =
dTL3(k−1)

8D3k−6 ≥ 2t4L3d.

Since

|X1 ∪X2 ∪X3| ≤ td+ 2t3L2d+
1

2
t2L2d ≤ 3t3L2d,

it follows that
|N1

i | ≥ 2t4L3d− 3t3L2d ≥ 3t3L3d.

This proves (7).

(8) For 1 ≤ i ≤ t and each integer r ≥ 2, if |N r−1
i | ≤ |G|/2 then

|N r
i | ≥ (1 + 2/L) |N r−1

i |.

Let |N r−1
i | = m and let S = N r

i ∪ X1 ∪ X2 ∪ X3. Let A ⊆ N r−1
i be stable with size at least

m
Tk−1(logm)3(k−1)D

. Since S contains all vertices that belong to or have a neighbour in A, (5) implies

that

|S| ≥ T k−1L3(k−1)D|A| ≥ L3(k−1)

(logm)3(k−1)
m.

Since logm ≤ L− 1, we deduce that

|S| ≥ (1 + 1/L)3(k−1)m ≥ (1 + 3/L)m.

As before, |X1∪X2∪X3| ≤ 3t3L2d ≤ m/L, since m ≥ 3t3L3d (because N1
i ⊆ N

r−1
i and |N1

i | ≥ 3t3L3d
by (1)). Since N r

i = S \ (X1 ∪X2 ∪X3), it follows that

|N r
i | ≥ (1 + 3/L)m−m/L = (1 + 2/L)m.

This proves (8).

We recall that earlier we fixed some obstruction set Y , and used it to define X3. We deduce that:

(9) For every obstruction set Y , and for all distinct i, j ∈ {1, . . . , t}, there is an induced path of
length at most L2−2 between Bi, Bj with no vertices in X2 and with no internal vertices in X1, such
that none of its vertices belong to or have a neighbour in Y .

Define X3 as before. Since (1 + 2/L)L/2 ≥ 2, it follows that (1 + 2/L)L
2/2 ≥ 2L = |G|. Let

r = bL2/2c − 1. Then r ≥ L2 − 2, and so (1 + 2/L)r+2 ≥ |G|. From the last statement of (1),
(1 + 2/L)2 < 1/2, and so (1 + 2/L)r ≥ |G|/2. From (7), it follows that |N r

i | > |G|/2, and similarly
|N r

j | > |G|/2, and so N r
i ∩N r

j 6= ∅. This proves (9).
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Let [t](2) be the set of all two-element subsets of {1, . . . , t}. Choose I ⊆ [t](2) maximal such that
for each {i, j} ∈ I, there is a path Pij = Pji of G with the following properties:

• for each {i, j} ∈ I, Pij has one end in Bi and the other in Bj , and has no vertices in X2 and
no internal vertices in X1;

• each Pi,j is induced and has length at most L2 − 2; and

• for all distinct {i, j}, {i′, j′} ∈ I, the paths Pij and Pi′j′ are vertex-disjoint and there are no
edges between their vertex sets.

Let Y be the union of the vertex sets of all the paths Pij ; then Y is an obstruction set. From (9) and
the maximality of I, it follows that I = [t](2), and so G has an induced subgraph that is a subdivision
of Kt with lengths at least three and at most (log |G|)2, a contradiction. This proves 3.1.

Since ∆(G) ≤ |G|, we may replace d by |G|, and deduce:

3.2 Let G be a graph with |G| ≥ 2, let k ≥ 1 be an integer with ω(G) ≤ k, and let t ≥ 3 be an integer
such that no induced subgraph of G is a subdivision of Kt with lengths between 3 and (log |G|)2. Then

α(G) ≥ |G|
(2t)4(k−1)(log |G|)3k−2

.

Since a subdivision of Kt with lengths at least two contains a subdivision of any t-vertex graph, we
could replace Kt by a general graph H, and deduce a strengthened version of 1.7:

3.3 Let G be a graph with |G| ≥ 2, let k ≥ 1 be an integer with ω(G) ≤ k, and let H be a graph
with t vertices, such that no induced subgraph of G is a subdivision of H with lengths between 3 and
(log |G|)2. Then

α(G) ≥ |G|
(2t)4(k−1)(log |G|)3k−2

.

If we drop the lower bound on the lengths of the subdivision, then this automatically excludes large
cliques, so we can omit the condition that ω(G) ≤ k. We obtain a strengthened form of 1.1:

3.4 Let G be a graph with |G| ≥ 2, and let t ≥ 3 be an integer such that no induced subgraph of G
is a subdivision of Kt with length at most (log |G|)2. Then

α(G) ≥ |G|
(2t)4(t−2)(log |G|)3t−5

.

4 Excluding trees and excluding subdivisions

So we have a pair of theorems: for every forest H, all H-free graphs with bounded clique number
have a nearly-linear stable set (proved in [14]), and for every graph H, all H-subdivision-free graphs
with bounded clique number have a nearly-linear stable set (proved in this paper). There have been
previous examples of such pairings between a theorem about excluding a forest, and a theorem about
excluding subdivisions. Here is one, between results concerning the “strong Erdős-Hajnal property”:
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4.1 [3] For every forest H there exists ε > 0 such that in every H-free graph G with |G| ≥ 2 and
maximum degree at most ε|G|, there exist disjoint subsets A,B of V (G) with |A|, |B| ≥ ε|G| such
that there are no edges between A,B.

4.2 [4] For every graph H there exists ε > 0 such that in every H-subdivision-free graph G with
|G| ≥ 2 and maximum degree at most ε|G|, there exist disjoint subsets A,B of V (G) with |A|, |B| ≥
ε|G| such that there are no edges between A,B.

Let τ(G) denote the maximum t such that G contains a subgraph isomorphic to Kt,t. Here is a
second pairing:

4.3 [10] For every forest H, there is a function f such that every H-free graph G has degeneracy
at most f(τ(G)).

4.4 [11] For every graph H, there is a function f such that every H-subdivision-free graph G has
degeneracy at most f(τ(G)).

And a third pairing, between polynomial versions of the two previous results:

4.5 [17] For every forest H, there is a polynomial f such that every H-free graph G has degeneracy
at most f(τ(G)).

4.6 [1, 8] For every graph H, there is a polynomial f such that every H-subdivision-free graph G
has degeneracy at most f(τ(G)).

A fourth pairing is between the Gyárfás-Sumner conjecture 1.3 and Scott’s false conjecture 1.5
(somewhat worrying for those who believe in the predictive value of such pairings and in the truth
of the Gyárfás-Sumner conjecture.)

In view of this, one would ask whether any of these four pairings can be unified. Let H be a graph
and let T be a forest of H. We say that a graph G is H(T )-subdivision-free if no induced subgraph
of G is isomorphic to a subdivision of H in which the edges of T are not subdivided. This provides
a common weakening of the two previous hypotheses (being T -free and being H-subdivision-free),
and one might hope to unify the pairs on these lines. For three of the four pairings above this is not
known. (In [4] a version of 4.2 was proved for H(T )-subdivision-free graphs, but only when T is a
path of H, not a general forest.) But we have been able to prove a (numerically somewhat weaker)
unification of 1.1 and 1.4:

4.7 For every graph H, and every tree T of H with radius at most r ≥ 0, and every k ≥ 2, let
q = (r+ 1)(k− 1); then there exists b > 0 such that every H(T )-subdivision-free graph G with clique
number at most k and maximum degree at most d satisfies

α(G) ≥ |G|

db(log d)
− 1

q (log |G|)b
.

The proof contains no new ideas, and is a (rather messy) combination of the proofs of 1.1 and 1.4,
so we will skip it. It will appear in detail in [13].

Finally, there is an intriguing conjecture of Du and McCarty [12].
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4.8 Conjecture: For every class H of graphs closed under taking induced subgraphs, if there is a
function f such that every G ∈ H has degeneracy at most f(τ(G)), then χ(G) ≤ |G|o(1) for every
triangle-free G ∈ H.

Our theorems 1.4 and 1.1 both imply special cases of this conjecture, since the existence of functions
f as in 4.8 is proved in [17, 11] respectively.
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