Homogeneous submatrices in 0/1-matrices with a forbidden submatrix

Alex Scott
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour1
Princeton University, Princeton, NJ 08544

November 15, 2019; revised December 3, 2019

1Supported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.
Abstract

For integer $n > 0$, let $f(n)$ be the minimum of the number of rows of the largest all-0 or all-1 square submatrix of M, minimized over all $n \times n$ 0/1-matrices M. Thus $f(n) = O(\log n)$. But let us fix a matrix H, and define $f_H(n)$ to be the same, minimized over over all $n \times n$ 0/1-matrices M such that neither M nor its complement (that is, change all 0’s to 1’s and vice versa) contains H as a submatrix. It is known that $f_H(n) \geq cn^\varepsilon$, where $c, \varepsilon > 0$ are constants depending on H.

When can we take $\varepsilon = 1$? If so, then one of H and its complement must be a forest matrix (that is, the corresponding bipartite graph is a forest). Korándi, Pach, and Tomon [4] conjectured the converse, that $f_H(n)$ is linear in n for every forest matrix H; and they proved it for certain matrices H with only two rows.

Their conjecture remains open, but we show $f_H(n)$ is “almost” linear in n for every forest matrix H.
1 Introduction

A 0/1-matrix can be regarded as a bipartite graph, with a distinguished bipartition \((V_1, V_2)\) say, in which there are linear orders imposed on \(V_1\) and on \(V_2\). Submatrix containment corresponds, in graph theory terms, to induced subgraph containment, respecting the two bipartitions and preserving the linear orders. In two earlier papers [1, 5], with Maria Chudnovsky and Sophie Spirkl, we proved some results about excluding induced subgraphs, in a general graph and in a bipartite graph respectively. Now we impose orders on the vertex sets, and only consider induced subgraph containment that respects the orders; and we ask how far our earlier theorems remain true under this much weaker hypothesis.

In this paper, all graphs are finite and with no loops or parallel edges. Let us state the earlier theorems that we want to extend to ordered graphs. First, we proved the following, with Chudnovsky and Spirkl [1]:

1.1 For every forest \(T\), there exists \(\varepsilon > 0\) such that if \(G\) is a graph with \(n \geq 2\) vertices, and no induced subgraph is isomorphic to \(T\) or its complement, then there exist disjoint subsets \(Z_1, Z_2 \subseteq V(G)\) with \(|Z_1|, |Z_2| \geq \varepsilon n\), such that \(Z_1\) is complete or anticomplete to \(Z_2\).

(Two disjoint sets are complete to each other if every vertex of the first is adjacent to every vertex of the second, and anticomplete if there are no edges between them.) This theorem characterizes forests; if \(H\) is a graph that is not a forest or the complement of one, then there is no \(\varepsilon > 0\) as in 1.1.

Second, we proved a similar theorem about bipartite graphs, but we need some more definitions. A bigraph is a graph together with a bipartition \((V_1(G), V_2(G))\). A bigraph \(G\) contains a bigraph \(H\) if there is an isomorphism from \(H\) to an induced subgraph \(H'\) of \(G\) that maps \(V_i(H)\) into \(V_i(G)\) for \(i = 1, 2\). The bicomplement of a bigraph \(H\) is the bigraph obtained by reversing the adjacency of \(v_1, v_2\) for all \(v_i \in V_i(G)\) \((i = 1, 2)\). With Spirkl [5] we proved the following:

1.2 For every forest bigraph \(T\), there exists \(\varepsilon > 0\) such that if \(G\) is a bigraph with \(|V_i(G)| \geq n\) for \(i = 1, 2\), and \(G\) does not contain \(T\) or its bicomplement, then there exist \(Z_i \subseteq V_i(G)\) for \(i = 1, 2\), such that \(|Z_1|, |Z_2| \geq \varepsilon n\), and \(Z_1, Z_2\) are complete or anticomplete.

Again, this characterizes forests, in that if \(H\) is a bigraph that is not a forest or the bicomplement of a forest, there is no \(\varepsilon > 0\) as in 1.2.

What if we impose an order on the vertex set, and ask for the induced subgraph containment to respect the order? Let us say an ordered graph is a graph with a linear order on its vertex set. Every induced subgraph inherits an order on its vertex set in the natural way; let us say an ordered graph \(G\) contains an ordered graph \(H\) if \(H\) is isomorphic to an induced subgraph \(H'\) of \(G\), where the isomorphism carries the order on \(V(H)\) to the inherited order on \(V(H')\). One could ask for an analogue of 1.1 for ordered graphs, but it is false. Fox [3] showed:

1.3 Let \(H\) be the three-vertex path with vertices \(h_1, h_2, h_3\) in order, and make \(H\) an ordered graph using the same order. For all sufficiently large \(n\), there is an ordered graph \(G\) with \(n\) vertices, that does not contain \(H\), and such that there do not exist two disjoint subsets of \(V(G)\), both of size at least \(n/\log(n)\), and complete or anticomplete.

To deduce that 1.1 does not extend to ordered graphs, let \(T\) be an ordered tree such that both \(T\) and its bicomplement contain \(H\).
On the other hand, there are some positive results about ordered bipartite graphs, proved recently by Korándi, Pach, and Tomon [4]. Let us say an ordered bigraph is a bigraph with linear orders on \(V_1(G) \) and on \(V_2(G) \). This is just a 0/1 matrix in disguise, but graph theory language is convenient for us. (Note that we are not giving a linear order of \(V(G) \): that is much too strong and trivially does not work.) An ordered bigraph \(G \) contains an ordered bigraph \(H \) if there is an induced subgraph \(H' \) of \(G \) and an isomorphism from \(H \) to \(H' \) mapping \(V_i(H) \) to \(V_i(G) \) and mapping the order on \(V_i(H) \) to the inherited order on \(V_i(H') \), for \(i = 1, 2 \). (In matrix language, this is just submatrix containment.) Korándi, Pach, and Tomon [4] showed:

1.4 Let \(H \) be an ordered bigraph with \(|V_1(H)| \leq 2 \), such that either

- \(|V_2(H)| \leq 2 \) and both \(H \) and its bicomplement are forests, or
- every vertex in \(V_2(H) \) has degree exactly one.

Then there exists \(\varepsilon > 0 \) with the following property. Let \(G \) be an ordered bigraph that does not contain \(H \), with \(|V_1(G)|, |V_2(G)| \geq n \); then there are subsets \(Z_i \subseteq V_i(G) \) for \(i = 1, 2 \) with \(|Z_1|, |Z_2| \geq \varepsilon n \) such that \(Z_1, Z_2 \) are complete or anticomplete.

In both cases of 1.4, the bigraph \(H \) is a forest and so is its bicomplement. Korándi, Pach, and Tomon asked which other ordered bigraphs \(H \) satisfy the conclusion of 1.4. They observed that every such bigraph must be a forest and the bicomplement of a forest, and conjectured that this was sufficient as well as necessary, that is:

1.5 Conjecture: Let \(H \) be an ordered bigraph such that both \(H \) and its bicomplement are forests. Then there exists \(\varepsilon > 0 \) with the following property. Let \(G \) be an ordered bigraph that does not contain \(H \), with \(|V_1(G)|, |V_2(G)| \geq n \); then there are subsets \(Z_i \subseteq V_i(G) \) for \(i = 1, 2 \) with \(|Z_1|, |Z_2| \geq \varepsilon n \) such that \(Z_1, Z_2 \) are complete or anticomplete.

We have not been able to decide this conjecture. They also proposed a stronger conjecture (not explicitly, but it would follow from a conjecture in their paper):

1.6 Conjecture: For every ordered forest bigraph \(H \), there exists \(\varepsilon > 0 \) with the following property. Let \(G \) be an ordered bigraph that does not contain \(H \) or its bicomplement, with \(|V_1(G)|, |V_2(G)| \geq n \); then there are subsets \(Z_i \subseteq V_i(G) \) for \(i = 1, 2 \) with \(|Z_1|, |Z_2| \geq \varepsilon n \) such that \(Z_1, Z_2 \) are complete or anticomplete.

This seems a natural extension of 1.5, in analogy with 1.1 and 1.2; but, for what it is worth, our guess, in view of 1.3, is that 1.6 is false. We have not even been able to prove it for the tree with five vertices and three leaves.

There is another result of Korándi, Pach, and Tomon, in the same paper [4]:

1.7 Let \(H \) be an ordered forest bigraph such that \(|V_1(H)| = 2 \) and \(|V(H_2) = k \). For every \(\varepsilon > 0 \), there exists \(\delta > 0 \) with the following property. Let \(G \) be an ordered bigraph that does not contain \(H \), with \(|V_1(G)| = |V_2(G)| = n \), and such that its bicomplement has at least \(\varepsilon n^2 \) edges. Then there are subsets \(Z_i \subseteq V_i(G) \) for \(i = 1, 2 \) with \(|Z_1| \geq \delta n 2^{-(1+o(1))(\log\log(\delta n))k} \) and \(|Z_2| \geq \delta n \), such that \(Z_1, Z_2 \) are anticomplete.
So, $|Z_1|$ is not quite linear, but there is more of significance. There is nothing here about forbidding G to contain the bicomplement of a forest, since the bicomplement of H need not be a forest; and the “Z_1 complete to Z_2” outcome is gone. In compensation they have the assumption that the bicomplement of G is not too sparse.

Our objective in this paper is essentially to generalize 1.7 to all ordered forest bigraphs. We had to modify it a little. First, the assumption that the bicomplement of G has at least εn^2 edges is not strong enough for our proof method, when H is a general forest; we have to assume that G itself is fairly sparse. Second, we will obtain anticomplete sets Z_1, Z_2, but they will both be not quite linear; and their sizes are a little worse than the size bound in 1.7. Third, every forest is an induced subgraph of a tree, so we will assume H is a tree, for convenience. The radius of a tree T is the minimum r such that for some vertex v, every vertex of T can be joined to v by a path with at most r edges. Our main result is the following:

1.8 Let T be an ordered tree bigraph, of radius r, and with $t \geq 2$ vertices. Let G be a bigraph not containing T, with $|V_1(G), |V_2(G)| \geq n$, such that every vertex of G has degree at most $n/(4t^2)$. Choose K such that $tK^r = n$. Then there are subsets $Z_i \subseteq V_i(G)$ for $i = 1, 2$, with $|Z_1|, |Z_2| \geq nt^{-5K^r-1}$, such that Z_1, Z_2 are anticomplete.

As a consequence we will prove:

1.9 Let T be an ordered tree bigraph, of radius r, and with $t \geq 2$ vertices. Let G be an ordered bigraph not containing T or its bicomplement, with $|V_1(G), |V_2(G)| \geq n$. Choose K such that $tK^r = n$. Then there are subsets $Z_i \subseteq V_i(G)$ for $i = 1, 2$, with $|Z_1|, |Z_2| \geq (16t^2)^{-t}nt^{-5K^r-1}$, such that Z_1, Z_2 are complete or anticomplete.

It is easy to show, with a random graph argument, that this result characterizes forests and their bicomplements, and indeed, if T is an ordered bigraph such that neither T nor its bicomplement are forests, then the conclusion of 1.9 is far from true. Let both T and its bicomplement have a cycle of length at most g. For large n, there are ordered bigraphs G, with $|V_1(G), |V_2(G)| = n$, and with girth more than g, which therefore contain neither T nor its bicomplement, and such that if $Z_i \subseteq V_i(G)$ for $i = 1, 2$ and Z_1, Z_2 are complete or anticomplete, then $\min(|Z_1|, |Z_2|) \leq O(n^{1-1/(2g)})$. We omit the argument, which is standard.

2 Reduction to the sparse case

In the section we deduce 1.9 assuming 1.8, and will prove the latter in the next section. We need the following lemma, a version of a theorem of Erdős, Hajnal and Pach $[2]$ adapted for ordered bipartite graphs.

2.1 Let H be an ordered bigraph, let $V(H_i) = h_i$ for $i = 1, 2$, let $0 < \varepsilon < 1/8$, let $d = \lfloor 1/(4\varepsilon) \rfloor$, and let $m > 0$ be an integer. Let G be an ordered bigraph not containing H, with $|V_1(G)| \geq h_1d^2m$ and $|V_2(G)| \geq 2h_1h_2m$. Then there are subsets $Y_i \subseteq V_i(G)$ with $|Y_i| = m$ for $i = 1, 2$, such that either

- every vertex in Y_1 has at most $\varepsilon |Y_2|$ neighbours in Y_2, and every vertex in Y_2 has at most $\varepsilon |Y_1|$ neighbours in Y_1, or

- every vertex in Y_1 has at most $\varepsilon |Y_2|$ non-neighbours in Y_2, and every vertex in Y_2 has at most $\varepsilon |Y_1|$ non-neighbours in Y_1.
Proof. Divide $V_1(G)$ into h_1 disjoint intervals, each of cardinality at least md^{h_2}, numbered B_u ($u \in V_1(H)$) in order. Divide $V_2(G)$ into disjoint intervals B_u ($u \in V_2(H)$) of cardinality at least mh_1. Choose $W \subseteq V_2(H)$ maximal such that for each $v \in W$ there exists $x_v \in B_u$, and for each $u \in V_1(G)$ there exist $Q_u \subseteq B_u$, with the following properties:

- $|Q_u| \geq md^{h_2-|W|}$ for each $u \in V_1(G)$;
- for each $u \in V_1(H)$ and each $v \in W$, if u, v are H-adjacent then x_v is complete to Q_u, and if u, v are not H-adjacent then x_v is anticomplete to Q_u.

This is possible since we may take $W = \emptyset$. Since G does not contain H, it follows that $W \neq V_2(H)$. Choose $v \in V_2(H) \setminus W$. Say $u \in V_1(H)$ is a problem for $x \in B_v$ if either u, v are H-adjacent and x has fewer than $|Q_u|/d$ neighbours in Q_u, or u, v are not H-adjacent and x has fewer than $|Q_u|/d$ non-neighbours in Q_u. From the maximality of W, for each $x \in B_v$ there exists $u \in V_1(G)$ that is a problem for x. Since there are only h_1 possible problems, there exist $u \in V_1(H)$, and $C \subseteq B_v$ with $|C| \geq |B_v|/h_1$, such that for every $x \in C$, u is a problem for x. By moving to the bicomplement if necessary, we may assume that u, v are H-adjacent; and so every vertex in C has fewer than $|Q_u|/d$ neighbours in Q_u. Since $|Q_u| \geq md^{h_2-|W|} \geq md \geq 2m$ and $|C| \geq |B_v|/h_1 \geq 2m$, it follows by averaging that there are subsets $X_1 \subseteq Q_u$ and $X_2 \subseteq C$, both of cardinality exactly $2m$, such that there are at most $d |X_1| \cdot |X_2| = 4dm^2$ edges joining them. Let Y_1 be the set of the m vertices in X_1 that have fewest neighbours in X_2; then they each have at most $4dm$ neighbours in X_2 and vice versa. This proves 2.1.

Proof of 1.9, assuming 1.8. Let T be an ordered tree bigraph, of radius r, and with t vertices. Let $\varepsilon = 1/(4t^2)$, and let $d = \lceil 1/(4\varepsilon) \rceil$. Let $c = (16t^2)^{-t}$. Let G be a bigraph not containing T or its bicomplement, with $|V_1(G)|, |V_2(G)| \geq n$. We may assume that $cnt^{-5K^{r-1}} > 1$, for otherwise the result is true, taking $|Z_1| = |Z_2| = 1$. Hence $2cn \geq 2t^{5K^{r-1}} \geq 1$. Let m be the largest integer such that $m \leq 2cn$. Thus $m \geq cn$, since $2cn \geq 1$.

Let $|V_i(T)| = h_i$ for $i = 1, 2$. Now $n \geq h_1d^{h_2}m, 2h_1h_2m$. By 2.1, and moving to the bicomplement if necessary, we may assume that there exist $Y_i \subseteq V_i(T)$ with $|Y_i| = m$ for $i = 1, 2$, such that every vertex in Y_1 has at most $\varepsilon |Y_2|$ neighbours in Y_2, and every vertex in Y_2 has at most $\varepsilon |Y_1|$ neighbours in Y_1. By 1.8 applied to the ordered bigraph induced on $Y_1 \cup Y_2$, there exist $Z_i \subseteq Y_i$ with $|Z_1|, |Z_2| \geq mt^{-5J^{r-1}}$, such that Z_1, Z_2 are anticomplete, where $m = t^{J^r}$. Let $n = t^{K^r}$. Since $J \leq K$, it follows that $|Z_1|, |Z_2| \geq cnt^{-5K^{r-1}}$. This proves 1.9.

3 Proof of the main theorem

In this section we prove 1.8, which we restate:

3.1 Let T be a ordered tree bigraph, of radius r, and with $t \geq 2$ vertices. Let G be a bigraph with $|V_1(G)|, |V_2(G)| \geq n$, that does not contain T, and such that every vertex has degree at most $n/(4t^2)$. Choose K such that $t^{K^r} = n$. Then there are two anticomplete subsets $Z_i \subseteq V_i(G)$ for $i = 1, 2$, with $|Z_1|, |Z_2| \geq nt^{-5K^{r-1}}$.

Proof. Let $\varepsilon = 1/(4t^2)$. Since $\varepsilon < 1$, G is not complete bipartite, and so we may assume that $t^{-5K^{r-1}} n > 1$ (or else the theorem holds); that is, $t^{5K^{r-1}} < t^{K^r}$. So $K \geq 5$, and $n \geq t^{5r}$.

If $r = 1$, then T has a vertex of degree d say, and all other vertices of T are neighbours of d. Let this vertex belongs to $V_i(T)$ say. Since G does not contain T, all vertices in $V_i(G)$ have degree at most $d-1$. Choose a set Z_1 of at most n/d vertices in $V_i(G)$; then the set of vertices with neighbours in X has cardinality at most $(d-1)|X| \leq (d-1)n/d$, and so there is a set of at least n/d vertices in $V_2(G)$ anticomplete to Z_1. So to prove 1.8 in this case, we just have to check that $|n/d| \geq t^{-5K^{r-1}}$. But $t = d + 1$ and $n \geq t$ (because $n \geq t^{5r}$), so $|n/d| \geq n/(2(t-1))$; and now it remains to check that $n/(2(t-1)) \geq t^{-5K^{r-1}}$, which is clear. Thus we may assume that $r \geq 2$, and so $t \geq 4$.

Choose a real number $x \geq 0$ with $x \leq K^{r-1}$, maximum such that there exist $A_1 \subseteq V_1(G)$ and $A_2 \subseteq V_2(G)$ with the properties that

- $|A_1|, |A_2| \geq nt^{-x}$;
- every vertex in A_1 has at most εnt^{-Kx} neighbours in A_2 and vice versa.

This is possible since we may take $x = 0$. Let A_1, A_2 be as above. Let $d = \varepsilon nt^{-Kx}$. Since $|A_1| \geq t^{-x} \geq t^{-5K^{r-1}}$, we may assume that A_1 is not anticomplete to A_2 (or else the theorem holds); so $d \geq 1$. For $1 \leq s \leq r-1$, let $k_s = 4(K^{s-1} + K^{s-2} + \cdots + 1)$.

(1) $x \leq K^{r-1} - k_{r-1}$.

Suppose not. Since $|A_1| \geq t^{-x}n \geq t^{-K^{r-1}} n \geq 2t^{-5K^{r-1}} n$, there exists a set S of $t^{-5K^{r-1}} n \leq 2t^{-5K^{r-1}} n$ vertices in A_1. The union of the neighbours in A_2 of vertices in X has cardinality at most $(2t^{-5K^{r-1}} n)(\varepsilon nt^{-Kx})$. Since $|A_2|/2 \geq t^{-5K^{r-1}} n$, there are fewer than $|A_2|/2$ vertices in A_2 anticomplete to X; so $2t^{-5K^{r-1}} n \varepsilon nt^{-Kx} \geq |A_2|/2$, and hence $4t^{-5K^{r-1}} t^{-Kx} \geq t^{-x}$. Consequently $4t^{-5K^{r-1}} n \geq t^{(K-1)x}$. But

$$(K-1)x \geq (K-1)(K^{r-1} - k_{r-1}) = K^r - 5K^{r-1} + 4,$$

and so

$$4t^{-5K^{r-1}} n \geq t^{K^r - 5K^{r-1} + 4}.$$

Hence $n \geq t^{K^r + 6}$, a contradiction. This proves (1).

Since $x < K^{r-1} - 4$, and $n > t^{5K^{r-1}}$, it follows that $nt^{-x-1} \geq t$. Hence $|A| \geq nt^{-x} \geq (t-1)nt^{-x} + t$. Since $|V(T_0)| \leq t-1$, it follows that we may choose $|V_1(T)|$ disjoint boxes B_u ($u \in V_1(T)$), all intervals of A_1, and of cardinality $[nt^{-x-1}]$, numbered in order. Partition A_2 into B_v ($v \in V_2(T)$) similarly. For $1 \leq s \leq r-1$, let $p_s = dt^{-Kk_s}$. Let $p_r = 1$. For $2 \leq s \leq r$, let $f_s = dt^2/p_{s-1} = t^{Kk_{s-1}+2}$. So $f_s \geq t^{4K^2}$.

Let v_0 be the root of T, and for $1 \leq s \leq r$ let T_s be the subtree of T induced on the vertices with distance at most s from the root. So $V(T_0) = \{v_0\}$, and $T_r = T$. Let L_s be the set of vertices with distance exactly s from v_0. For $2 \leq s \leq r$, and each edge uv of T with $u \in L_{s-1}$ and $v \in L_s$, choose $X_{uv} \subseteq B_u$ and $Y_{uv} \subseteq B_v$ satisfying the following conditions:

- every vertex in X_{uv} has fewer than p_s neighbours in $B_u \setminus Y_{uv}$;
- $|Y_{uv}| \leq f_s|X_{uv}|$ and $|Y_{uv}| \leq |B_v|/2$; and
(2) For $2 \leq s \leq r$, and each edge uv of T with $u \in L_{s-1}$ and $v \in L_s$, we may assume that $|X_{uv}| = |[y_{uv}] / f_s|$, and $|X_{uv}| \leq |B_v|/(2t)$, and $|Y_{uv}| \leq |B_v|/2 - \varepsilon t$.

We may assume that $|X_{uv}| = |[y_{uv}] / f_s|$, by removing elements from X_{uv} if necessary. Suppose first that $s = r$. Then X_{uv} is anticomplete to $B_v \setminus Y_{uv}$ (because $p_r = 1$), and so either $|X_{uv}| < t^{-5K_r-1}n$ or $|B_v \setminus Y_{uv}| < t^{-5K_r-1}n$. The second implies that $|B_v| < 2t^{-5K_r-1}n$ (since $|Y_{uv}| \leq |B_v|/2$), and so $nt^{x-k} < 2t^{-5K_r-1}n$, that is, $t^{5K_r-1-x} < 2$, a contradiction. So $|X_{uv}| < t^{-5K_r-1}n$. Since $t^{-5K_r-1}n \leq nt^{-x-1}/(2t)$, it follows that $|X_{uv}| \leq |B_u|/(2t)$. Also, $|Y_{uv}| \leq t^{-5K_r-1}n$. We claim that $f_r t^{-5K_r-1}n \leq |B_v|/2 - \varepsilon t$. Suppose not; then either $f_r t^{-5K_r-1}n > |B_v|/4$ or $td > |B_v|/4$. The first implies that $t K_{K_{r-1} + 2 t^{-5K_r-1} \varepsilon t^2} > nt^{-x-1}/4$, and so $t K_{K_{r-1} + x + 4 t^{-5K_r-1} \varepsilon t^2} > 1$. Hence $K_{K_{r-1} + x + 4 - 5K_r-1} > 0$. But $x \leq K_r-1 - k_{r-1}$ by (1), so

$$K_{K_{r-1} + K_r-1 - k_{r-1} + 4 - 5K_r-1} > 0,$$

a contradiction (in fact, the left side sums to zero). The second implies that $4t^{x-K_r} > t^{-x-2}$ and so $K < 1$ since $4t = t^2$, a contradiction. Thus when $s = r$, all three statements of (2) hold.

Now we assume that $2 \leq s < r$. We have $|X_{uv}| \leq |y_{uv}| / f_s + 1 \leq |B_v|/(2f_s) + 1 \leq |B_v|/4$, because $f_s \geq t^{4K_r+2} \geq 4$ and $|B_v| \geq 8$. Consequently the $|X_{uv}|$ vertices in $B_v \setminus Y_{uv}$ with fewest neighbours in X_{uv} each have at most p_s neighbours in X_{uv}. Since $p_s = dt^{-Ks}$, and $k_s \leq 4K_r-2 + 4K_r-3 + \cdots + 4$, the maximality of x and (1) imply that $|X_{uv}| < nt^{-x-k_s}$. Hence $|X_{uv}| \leq |B_u|/(2t)$, because $nt^{-x-k_s} \leq nt^{-x-1}/(2t)$ (because $k_s \geq 3$). Thus the second claim holds. For the third claim, since $|Y_{uv}| \leq f_s |X_{uv}|$, it suffices to show that $f_s |X_{uv}| \leq |B_v|/2 - \varepsilon t$, and to prove this, it suffices to show that $f_s |X_{uv}| \leq |B_v|/4$ and $td \leq |B_v|/4$. To show the first, it suffices to show that $nt^{-x-k_s} f_s \leq |B_v|/t$, that is, $nt^{-x-k_s} t K_{K_{r-1} + 2} \leq nt^{-x-2}$, which simplifies to $4 + K_{K_{r-1} + k_s} \leq k_s$, and this holds with equality. To show that $td \leq |B_v|/4$, it suffices to show that $t \varepsilon t^{x-K_r} \leq nt^{-x-1}/4$, which simplifies to $4t^{2x-2} \leq 1$; and this is true since $4t^2 \leq 1$, and $K \geq 1$. This proves (2).

For $2 \leq s \leq r$, and each $u \in L_{s-1}$, let X_u be the union of the sets X_{uv} over all $v \in L_s$ T-adjacent to u. Then:

(3) For $2 \leq s \leq r$, and each $u \in L_{s-1}$, $|X_u| \leq |B_u|/2$.

For each $v \in L_s$ that is T-adjacent to u, $|X_{uv}| \leq |B_v|/(2t)$ by (2), and the claim follows. This proves (3).

Let $P_v = B_v$. For $s = 1, \ldots, r-1$ we choose $P_v \subseteq B_v \setminus X_v$ for each $v \in L_s$, and $x_v \in P_v$ for each $v \in L_{s-1}$, satisfying the following conditions:

- for all distinct $u, v \in V(T_{s-1})$, u, v are T-adjacent if and only if x_u, x_v are G-adjacent;
- for all $u \in V(T_{s-1})$ and $v \in L_s$, and all $x \in P_v$, u, v are T-adjacent if and only if x_u, x are G-adjacent;
- for each $v \in L_s$, $|P_v| \geq p_s$.

First let us assume $s = 1 < r$. If there exists $x \in B_{t_0}$ with at least p_1 neighbours in $B_v \setminus X_v$ for each v such that v_0, v are T-adjacent, then we may set $x_{t_0} = x$; so we assume there is no such x. Consequently there is a T-neighbour v of v_0 such that for at least $|B_{t_0}|/t \geq nt^{-x-2}$ vertices $x \in B_{t_0}$, x has fewer than p_1 neighbours in $B_v \setminus X_v$. Choose a set X of exactly $[nt^{-x-2}]$ such vertices x. Since $|X| \leq nt^{-x-2} + 1 \leq 2nt - x - 2$, and $|B_{t_0}| \geq 8nt^{-x-2}$ (because $t \geq 4$), it follows that $|X| \leq |B_{t_0}|/4$. Since $|X_v| \leq |B_v|/2$, it follows that $|B_v \setminus X_v| \geq 2|X|$, and so at least $|X|$ vertices in $B_v \setminus X_v$ have at most p_1 neighbours in X. Since $p_1 = dt^{-K} = dt^{-4K}$, the maximality of x implies that $|X| < nt^{-x-4}$, a contradiction. So we can satisfy the three bullets above when $s = 1 \leq r - 1$.

Suppose that $2 \leq s \leq r$, and we have chosen $P_v \subseteq B_v \setminus X_v$ for each $v \in L_{s-1}$ and $x_v \in P_v$ for each $v \in V(T_{s-2})$. We must define $P_v \subseteq B_v \setminus X_v$ for each $v \in L_s$, and $x_v \in P_v$ for each $v \in L_{s-1}$, satisfying the bullets above. From the symmetry we may assume that $L_s \subseteq V_1(T)$.

Let C be the set of vertices in A_2 that are equal or adjacent to v for some $v \in V(T_{s-2})$. Let $x_u \in P_u$ for each $u \in L_{s-1}$; we call $(x_u : u \in L_{s-1})$ a transversal. A transversal $(x_u : u \in L_{s-1})$ is valid if for each edge uv of T with $u \in L_{s-1}$ and $v \in L_s$, there are at least p vertices in $B_v \setminus C$ that are adjacent to x_u and that have no other neighbour in $\{x'_u : u' \in L_{s-1}\}$.

(4) There is a valid transversal.

Suppose not. Let E be the set of ordered pairs (u, v) such that uv is an edge of T with $u \in L_{s-1}$ and $v \in L_s$. Then for every transversal $(x_u : u \in L_{s-1})$, there exists $(u, v) \in E$ such that there are fewer than p vertices in B_v that are adjacent to x_u and that have no other neighbour in $\{x'_u : u' \in L_{s-1}\}$. Call (u, v) a problem for the transversal $(x_u : u \in L_{s-1})$. Since $|E| = |L_s|$, there are only $|L_s|$ possible problems, and so there exists $(u, v) \in E$ that is a problem for at least a fraction $1/|L_s|$ of all transversals. Hence there exist a subset $X \subseteq P_u$ with $|X| \geq |P_u|/|L_s| \geq p_{s-1}/t$, and a choice of $x_u' \in P'_u$ for each $u' \in L_{s-1} \setminus \{u\}$, such that for all $x_u \in X$, (u, v) is a problem for the transversal $(x_u' : u' \in L_{s-1})$. Let C' be the set of vertices in A_2 that are adjacent to a vertex in $(x_u' : u' \in L_{s-1} \setminus \{u\})$. Since every vertex in $C \cup C'$ has a neighbour x_w for some $w \in V(T_{s-1} \setminus \{u\}$, it follows that $|C \cup C'| \leq dt$. Every vertex in X has fewer than p neighbours in $B_v \setminus (C \cup C')$. If $(C \cup C') \cap B_v \subseteq Y_{uv}$ let $Y = (C \cup C') \cap B_v$, and otherwise let Y be a singleton subset of $B_v \setminus Y_{uv}$. Thus $|Y| \leq dt \leq f_s|X|$, since $dt \geq 1$ by (1). Consequently $|Y \cup Y_{uv}| \leq f_s|X \cup X_{uv}|$, since $X \cap X_{uv} = \emptyset$; and since $|C \cup C'| \leq |B_v|/2$ (because $|C \cup C'| \leq dt$ and by (2)), and every vertex in $X \cup X_{uv}$ has fewer than p neighbours in $B_v \setminus (Y \cup Y_{uv})$, this contradicts the maximality of Y_{uv}. This proves (4).

From (4), the inductive definition of x_v ($v \in V(T_{s-1})$) and P_v ($v \in V(T)$) is complete. For each $v \in L_s$, choose $x_v \in P_v$. Then the map sending each $v \in V(T)$ to x_v is an ordered parity-preserving isomorphism of T to an induced subgraph of G, a contradiction. This proves the theorem.

Acknowledgement

Thanks to Sophie Spirkl, who worked with Seymour on trying to settle 1.6.
References

