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Abstract

For finite graphs, path-width is an interesting and useful concept, but if we extend it to infinite
graphs in the most obvious way (by making the indexing path infinite), it does not work nicely. The
simplest extension that works nicely is to allow the indexing set to be any totally-ordered set, and
then the corresponding decomposition is called a “line-decomposition”, and the maximum bag size
needed is called “line-width”.

In particular, the indexing set need not be a well-order; but the corresponding decomposition
would be easier to use if it was. We show that if a graph has line-width at most k, it admits a
well-ordered line-decomposition with width at most 2k, and this is best possible.



1 Introduction

A tree-decomposition of a finite graph G is a pair (T, (Wt : t ∈ V (T ))), where T is a finite tree, and
Wt is a subset of V (G) for each t ∈ V (T ) (called a bag), such that:

• G =
⋃
t∈V (T )G[Wt], and

• for all t1, t2, t3 ∈ V (T ), if t2 lies on the path of T between t1, t3, then Bt1 ∩Bt3 ⊆ Bt2 .

The width of a tree-decomposition (T, (Wt : t ∈ V (T ))) is the maximum of the numbers |Wt| − 1 for
t ∈ V (T ), and the tree-width of G is the minimum width of a tree-decomposition of G.

Similarly, a path-decomposition of a finite graph G is the same except that we require T to be a
path; and the path-width of a finite graph is the minimum width of a path-decomposition.

We extend tree-width and path-width to infinite graphs by allowing the indexing tree or path to
be infinite (thus, for a path-decomposition, the indexing path might be finite, or one-way infinite,
or two-way infinite). This seems the most natural extension, and for tree-width it works nicely. In
particular, there is a “compactness” theorem of Thomas [6] (and see also [1] for a proof):

1.1 A graph G has tree-width at most k if and only if every finite subgraph of G has tree-width at
most k.

There are several ways to define infinite analogues of finite trees: for instance, topological trees, or set-
theoretic trees. We could choose our favourite one of these definitions (let us call them “supertrees”),
and use a supertree as the indexing set, giving “supertree-decompositions” and “supertree-width”.
But this gives nothing new: any graph with supertree-width at most k also has tree-width at most
k. To see this, observe that, whatever definition of supertree we have taken, if G has supertree-width
at most k, then all its finite subgraphs have tree-width at most k, and therefore G has tree-width at
most k by Thomas’ theorem 1.1.

For path-width, the analogue of Thomas’ theorem is far from true. For instance, all graphs with
finite path-width have only countably many vertices, so a graph with uncountably many vertices and
no edges is already a counterexample; all its finite subgraphs have path-width zero, and yet G does
not have finite path-width. Even for countable graphs, the analogue is still not true: for instance,
any graph with infinitely many infinite connected subgraphs that are pairwise vertex-disjoint does
not have finite path-width, and yet its finite subgraphs could all have very small path-width.

Thus, for an infinite graph G, all finite subgraphs having path-width at most k does not imply
that G has path-width at most k. But what structure of G does it imply? This was answered in [1]
as follows.

A line is a nonempty set L together with a linear order ≤L. A line-decomposition of G is a pair
(L, (Wt : t ∈ L)) where L is a line, and each Wt is a subset of V (G), satisfying:

• G =
⋃
t∈LG[Wt], and

• Wt ∩Wt′′ ⊆Wt′ for all t, t′, t′′ ∈ L with t ≤L t′ ≤L t′′.

The second condition here is called the “betweenness axiom”. We define the width of such a decom-
position to be the maximum of |Bt| − 1 over all t ∈ L, if this maximum exists, and ∞ otherwise;
and the line-width of G is the minimum width of a line-decomposition. (This definition was used
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in [4, 5], to increase the generality of some results about graphs with bounded path-width. It is also
used in [2, 3], where what we call “line-decompositions” are called “linear decompositions”.)

With Chudnovsky, we proved in [1] that:

1.2 A graph G has line-width at most k if and only if every finite subgraph of G has path-width at
most k.

But do we need such general linear orders? Could we restrict the order-type somehow, perhaps in
terms of the maximum bag-size? Could we make the order a well-order? This paper is an investigation
into these and related questions. In particular, we will show that:

1.3 If a graph G has finite line-width k, then it admits a line-decomposition (L, (Wt : t ∈ L)) of
width at most 2k such that L is a well-order.

We will also show that 2k is best possible.
At the end of the paper, we look at a different question. We will show that, after a little tidying,

every line-decomposition of width ≤ k of a graph G can be built by substitution and concatenation,
starting from so-called “prime” line-decompositions, which are much simpler.

2 Tidying a line-decomposition

If L is a line, an interval of L is a nonempty subset I ⊆ L such that if r, s, t ∈ L with r ≤L s ≤L t,
and r, t ∈ I, then s ∈ I. An interval I is initial if I 6= L and for all s, t ∈ L with s ≤L t, if t ∈ I then
s ∈ I. (Note that if I is an initial interval then I, L \ I are both nonempty, and so L \ I is an initial
interval of the line obtained from L by reversing its order.)

If (L, (Wt : t ∈ L)) is a line-decomposition of G, and I is an interval, we define

W (I) =
⋃
t∈I

Wt.

If I is an initial interval, then W (I)∩W (L\I) is called the I-split; every path between W (I),W (L\I)
has a vertex in this set. We say X is a split if X is the I-split for some initial interval I.

Let us see first some easy things we can do to make a line-decomposition nicer without increasing
its width. Let (L, (Wt : t ∈ L)) be a line-decomposition of G, of finite width. If there are distinct
s, s′ ∈ L with Ws = Ws′ , we could remove one of s, s′ from L and still have a line-decomposition.
In general, we can partition L into equivalence classes under the relation s ≡ s′ if Ws = Ws′ , and
choose one element of each equivalence class. Let L′ be the set of chosen elements, ordered by the
order inherited from L. Then (L′, (Wt : t ∈ L′)) is still a line-decomposition of G, with the same
width, and now there are no repeated bags. So we could assume that all the sets Wt (t ∈ L) are
distinct.

Now let L′ be the set of all s ∈ L such that there is no s′ ∈ L with s′ 6= s and with Ws ⊆ Ws′ ;
then (L′, (Wt : t ∈ L′)) is also a line-decomposition of G, with the same width. So we could assume
that no Ws is a subset of another.

Let us add edges to G, forming G′, in such a way that every edge we add has both ends in some
Wt, and every Wt becomes a clique. The same line-decomposition is also a line-decomposition of G′,
and any line-decomposition of the new graph is also a line-decomposition of G; so we might as well
work with the new graph in place of G.

Thus, so far we are assuming:
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• G is non-null;

• (L, (Wt : t ∈ L)) is a line-decomposition of finite width;

• for all distinct s, t ∈ L, Ws 6⊆Wt; and

• Wt is a clique of G for each t ∈ L.

Let us say a line-decomposition (L, (Wt : t ∈ L)) is tidy if it satisfies these conditions. If (L, (Wt :
t ∈ L)) is tidy, then each Wt is a clique, and every clique of G is a subset of some Wt (this is an easy
exercise); and consequently, each Wt is a maximal clique of G, and every maximal clique of G is one
of the sets Wt. Thus, the sets Wt are precisely the maximal cliques of G, and in particular they are
determined by G; the only freedom in choosing a tidy line-decomposition is choosing the order ≤L L,
that is, choosing a linear order of the set of maximal cliques that satisfies the betweenness axiom.
(See [1, 7] for when such an order exists.) Thus, the cardinality of L is the cardinality of the set of
maximal cliques (that is, |G| if G is infinite). There can be many different such orders; for instance,
if G is a “star” graph, a tree in which all edges have a common end, then the maximal cliques of G
are just the edges, and can be arranged in any linear order to make a line-decomposition.

3 Well-ordered line-decompositions

A line L is a well-order if there is no infinite sequence t1, t2, . . . of distinct elements of L such that
ti+1 ≤L ti for each i ≥ 1; and a line-decomposition (L, (Wt : t ∈ L)) is a wo-decomposition if L is a
well-order. The minimum width of a wo-decomposition of G is called the wo-width of G.

Our objective is to show that the wo-width of G is at most twice the line-width of G. Let us see
first that this is best possible.

3.1 For each integer k ≥ 1, there is a graph with line-width at most k and with wo-width at least
2k.

Proof. Let G be the graph with vertices the set of all integers, where for all distinct integers i, j,
we say i, j are adjacent if |j − i| ≤ k. Let Bi = {i, i+ 1, . . . , i+ k} for each i ∈ Z; then (Bi : i ∈ Z)
is a line-decomposition of G of width k. Now suppose that (L, (Wt : t ∈ L)) is a wo-decomposition
of G of width less than 2k, and so |Wt| ≤ 2k for each t ∈ L. Every clique of G is a subset of some
Wt. Since L is a well-order, there exists t ∈ L minimum such that Wt includes Bi for some integer i.
Choose t′, t′′ ∈ L such that Bi+k+1 ⊆ Wt′ and Bi−k−1 ⊆ Wt′′ . Thus t ≤L t′, t′′ from the choice of t.
Since Bi, Bi+k+1, Bi−k−1 are pairwise disjoint and have size k+ 1, no Wt includes two of them, since
each Wt has size at most 2k. In particular, t, t′, t′′ are all different. There is a matching M of size k
between Bi, Bi+k+1, joining j and j + k for i+ 1 ≤ j ≤ i+ k. Since |Wt′′ | ≤ 2k, and Bi−k−1 ⊆Wt′′ ,
there is an edge of M with neither end in Wt′′ ; and so it is not the case that t ≤L t′′ ≤L t′. But
similarly, there is a matching of size k between Bi, Bi−k−1, and so it is not the case that t ≤L t′ ≤L t′′,
a contradiction. This proves 3.1.

Let L be a line. We say that L is integral if L has order-type that of a subset of the set of integers,
that is, there is a function φ : L→ Z such that if s, t ∈ L are distinct and s ≤ t then φ(s) < φ(t).

3.2 Let L be a line, and suppose that for all r, t ∈ L with r ≤ t, there are only finitely many s ∈ L
with r ≤ s ≤ t. Then L is integral.
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Proof. Choose r ∈ L and define φ(r) = 0. For each t ∈ L \ {r} with t > r, let φ(t) be the number
of s ∈ L with r < s ≤ t. If t < r, let −φ(t) be the number of s ∈ L with r > s ≥ t. Then φ satisfies
the theorem. This proves 3.2.

For a split S, there may be many different initial intervals I such that S is the I-split. For
instance, when G is the star graph, and v ∈ V (G) is an end of every edge of G, then {v} is the I-split
for every initial interval I, for every tidy line-decomposition.

Let (L, (Wt : t ∈ L)) be a line-decomposition of G, and let S1, S2 be splits. We say S1 is before
S2 if I1 ⊆ I2 for all choices of initial intervals I1, I2 such that S1, S2 are the I1-split and I2-split
respectively.

3.3 Let (L, (Wt : t ∈ L)) be a line-decomposition of G, and let S1, S2 be distinct splits of the same
size. Then either S1 is before S2, or S2 is before S1.

Proof. For i = 1, 2, let Ii be the set of all initial intervals I such that Si is the I-split.

(1) For all I1 ∈ I1 and I2 ∈ I2, if I1 ⊆ I2 then I1 ⊆ I ′2 for all I ′2 ∈ I2, and I ′1 ⊆ I2 for all
I ′1 ∈ I1.

Suppose that there exists I ′2 ∈ I2 such that I1 6⊆ I ′2. Thus, I ′2 ⊆ I1. Since S1 6= S2 and |S1| = |S2|,
there exists v ∈ S2 \S1. Since v ∈ S2 and S2 is the I2-split, it follows that v ∈W (L\I2) ⊆W (L\I1);
and similarly, since S2 is the I ′2-split, v ∈W (I ′2) ⊆W (I1). But then v ∈W (I1) ∩W (L \ I2) = S1, a
contradiction. This proves the first statement of (1), and the second is proved similarly. This proves
(1).

Choose I1 ∈ I1 and I2 ∈ I2; then one of I1, I2 is a subset of the other, and by exchanging S1, S2
if necessary we may assume that I1 ⊆ I2. Now let I ′1 ∈ I1 and I ′2 ∈ I2. By the first statement of
(1), we have I1 ⊆ I ′2, and so by the second statement of (1), with I2 replaced by I ′2, we have I ′1 ⊆ I ′2.
This proves that S1 is before S2, and so proves 3.3.

As we said earlier, one split can be the I-split for many initial intervals I; but we can enumerate
the distinct splits of minimum size by the following:

3.4 Let (L, (Wt : t ∈ L)) be a tidy line-decomposition of G, such that for some m, every split has
size at least m. Then we can number the splits with size exactly m as {Si : i ∈ K}, where K is an
interval of Z, in such a way that Si is before Sj for i, j ∈ K with i < j.

Proof. Let S be the set of all splits with size m. By 3.3, the relation “is before” is a linear order on
S, and we need to show it is integral. For S, S′ ∈ S, we write S ≤ S′ if S is before S′. Suppose that
there exist S1, S2 ∈ I such that S1 ≤ S2, and there are infinitely many S ∈ S such that S1 ≤ S ≤ S2.
Choose a subset X ⊆ V (G), maximal such that there are infinitely many S ∈ S with S1 ≤ S ≤ S2
and with X ⊆ S. (This is possible since every such X has size at most the width.) A path of G
avoids X if it has no vertex in X.

(1) There is no path of G \X between S1, S2 avoiding X.

4



Suppose that there is a path P of G between S1, S2 avoiding X, and choose such a path P minimal.
Thus, none of its internal vertices belong to S1 ∪ S2. But for each S ∈ S with S1 ⊆ S ⊆ S2, some
vertex of P belongs to S; and since P has finite length, there is a vertex v ∈ V (P ) such that v belongs
to S for infinitely many S with S1 ⊆ S ⊆ S2, contradicting the maximality of X. This proves (1).

For i = 1, 2, choose an initial interval Ii such that Si is the Ii-split, and let I be the set of all
t ∈ I2 such that either t ∈ I1 or there is a path of G between S1,Wt avoiding X.

(2) I is an initial interval.

Let s, t ∈ L with s ≤L t and t ∈ I; we need to show that s ∈ I. If s ∈ I1 the claim is true,
so we assume that s /∈ I1; and so s, t ∈ I \ I1. Hence there is a path of G between S1,Wt avoiding
X; but this path intersects Ws, and so s ∈ I. This proves (2).

Let S be the I-split.

(3) S ⊆ X.

Suppose that there exists v ∈ S \ X. Since v ∈ W (L \ I), there exists t ∈ L \ I with v ∈ Wt;
and hence t /∈ I1 and there is no path of G between S1,Wt avoiding X. In particular, v /∈ S1. Since
v ∈W (I), there exists s ∈ I with v ∈Ws; and therefore either s ∈ I1 or there is a path of G between
S1,Ws avoiding X. Since v ∈Ws ∩Wt and v /∈ S1, it follows that s /∈ I1. Hence there is a path of G
between S1,Ws avoiding X, and so there is a path of G between S1, v avoiding X, since v ∈Ws \X
and Ws is a clique. But there is no path of G between S1,Wt avoiding X, a contradiction. This
proves (3).

Since S is a split, it follows from the hypothesis that |S| ≥ m. But X is a subset of infinitely
many distinct splits all of size m, and so |X| < m, contrary to (3). This proves 3.4.

If (L, (Wt : t ∈ L)) is a line-decomposition of G, we say a vertex v of G is a left-limit vertex of
the line-decomposition if for all s, t ∈ L with s ≤L t, if v ∈Wt then v ∈Ws. (There may be no such
vertices.) Similarly, v is a right-limit vertex if for all s, t ∈ L with s ≤L t, if v ∈Ws then v ∈Wt.

3.5 Let (L, (Wt : t ∈ L)) be a tidy line-decomposition of G, such that for some m, every split has
size at least m. Let S be a split of size m, and let I be the set of all initial intervals I such that S is
the I-split. Then either

⋂
I∈I I = ∅ and S is the set of all left-limit vertices of (L, (Wt : t ∈ L)), or⋂

I∈I I is the minimal member of I. Similarly, either
⋃
I∈I I = L and S is the set of all right-limit

vertices, or
⋃
I∈I I is the maximal member of I.

Proof. Let I1 =
⋂
I∈I I. Suppose first that I1 = ∅. We must show that S is the set of all left-limit

vertices. We show first that every vertex in S is a left-limit vertex. Let v ∈ S and let s, t ∈ L with
s ≤L t and v ∈ Wt. Since

⋂
I∈I I = ∅, there exists I ∈ I with s /∈ I and hence t /∈ I. Since S is the

I-split, v ∈ W (I), and so v ∈ Wr for some r ∈ I; but r ≤L s ≤L t and v ∈ Wr ∩Wt, and therefore
v ∈Ws. This proves that every vertex in S is a left-limit vertex. For the converse inclusion, we must
show that if I1 = ∅ then every left-limit vertex belongs to S. Thus, let v be a left-limit vertex, and
choose t ∈ L with v ∈ Wt. Since

⋂
I∈I I = ∅, there exists I ∈ I with t ∈ L \ I. Choose s ∈ I; then
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s ≤L t, and so v ∈Ws since v is a left-limit vertex; and consequently v ∈W (I)∩W (L\ I) = S. This
proves that if

⋂
I∈I I = ∅ then S is the set of all left-limit vertices.

Next we assume that I1 6= ∅. Since I 6= ∅, it follows that I1 is an initial interval; let S1 be the
I1-split. If S1 ⊆ S, then since S1 is a split, and S is a split of minimum size, it follows that S1 = S
and therefore I1 is the minimal member of I; so we assume for a contradiction that there exists
v ∈ S1 \S. Since v ∈ S1, there exists s ∈ I1 and t ∈ L \ I1 such that v ∈Ws ∩Wt. Since t /∈ I1, there
exists I ∈ I with t /∈ I and therefore t ∈ L \ I. But s ∈ I1 ⊆ I, and

v ∈Ws ∩Wt ⊆W (I) ∩W (L \ I) = S,

a contradiction. This proves the first statement, and the second follows similarly.
This proves 3.5.

We say (L, (Wt : t ∈ L)) is a line-decomposition of G from Z1 to Z2 if Z1 is a set of left-limit
vertices and Z2 is a set of right-limit vertices. (We emphasize that Z1 need not be the entire set of
left-limit vertices, just a subset, and similarly for Z2.) We will need the following lemma:

3.6 Let (L, (Wt : t ∈ L)) be a line-decomposition of G from Z1 to Z2, of width at most k, and
let I be an initial interval. Let S be the I-split, and let G1 = W (I) and G2 = W (L \ I). Then:
(I, (Wt : t ∈ Wi)) is a line-decomposition of G1 from Z1 to S, and (L \ I : (Wt : t ∈ L \ I)) is a
line-decomposition of G2 from S to Z2, both of width at most k.

Proof. Certainly (I, (Wt : t ∈ Wi)) is a line-decomposition of G1, and we need to check it is from
Z1 to S. Thus, we need to check that every member of Z1 is a left-limit vertex of (I, (Wt : t ∈Wi)),
and every vertex in S is a right-limit vertex of (I, (Wt : t ∈Wi)).

Let v ∈ Z1. Then v ∈Wt for some t ∈ L, and v ∈Ws for all s ∈ L with s ≤L t. Since I 6= ∅, there
exists s ∈ I, and hence either t ∈ I or v ∈Ws, and in the second case we may replace t by s. Thus,
we may assume that t ∈ I. Since v ∈ Wr for all r ∈ L with r ≤L t, it follows that v is a left-limit
vertex of (I, (Wt : t ∈Wi)). So every member of Z1 is a left-limit vertex of (I, (Wt : t ∈Wi)).

Now let u ∈ S. Since S is the I-split, there exists s ∈ I and t ∈ L \ I such that u ∈Ws ∩Wt; but
then u ∈ Ws′ for all s′ ∈ I with s ≤L s′, since s ≤L s′ ≤L t. Consequently u is a right-limit vertex
of (I, (Wt : t ∈Wi)), and so every vertex in S is a right-limit vertex of (I, (Wt : t ∈Wi)).

This proves that (I, (Wt : t ∈ Wi)) is a line-decomposition of G1 from Z1 to S. Similarly,
(L \ I : (Wt : t ∈ L \ I)) is a line-decomposition of G2 from S to Z2, and clearly both these
decompositions have width at most k. This proves 3.6.

3.7 Let Z1, Z2, S ⊆ V (G), and let G1, G2 be induced subgraphs of G with G1∪G2 = G and V (G1)∩
V (G2) = S, and Zi ⊆ V (Gi) for i = 1, 2. If G1 admits a wo-decomposition from Z1 to S, and
G2 admits a wo-decomposition from S to Z2, both of width at most some k′, then G admits a wo-
decomposition from Z1 to Z2 of width at most k′.

Proof. For i = 1, 2, let (Li, (Wt : t ∈ Li)) be a wo-decomposition of Gi of width at most k′, from
Z1 to S if i = 1, and from S to Z2 if i = 2. We may assume that L1 ∩ L2 = ∅. Let L be the linear
order on L1 ∪ L2 defined by x ≤L y if and only if either x ∈ L1 and y ∈ L2, or for some i ∈ {1, 2},
x, y ∈ Li and x ≤Li y. To see that (L, (Wt : t ∈ L)) is a line-decomposition of G, observe first that⋃

t∈L
Wt =

⋃
t∈L1

Wt ∪
⋃
t∈L2

Wt = G1 ∪G2 = G.

6



Now suppose that r ≤L s ≤L t; we must show that Wr ∩Wt ⊆ Ws. This is true if t ∈ L1 (because
then r, s ∈ L1), or if r ∈ L2; so we assume that r ∈ L1 and t ∈ L2. Now s may belong to either
of L1, L2, but from the symmetry we may assume that s ∈ L1. (This is a small cheat, since we are
working with well-orders, and so there is no real symmetry between L1, L2, but the argument for the
case when s ∈ L2 is exactly the same, with L1, L2 exchanged.) Now

Wr ∩Wt ⊆ V (G1) ∩ V (G2) = S,

so it suffices to show that Wr ∩ S ⊆ Ws. Let v ∈ Wr ∩ S. Thus, v is a right-limit vertex in
(L1, (Wt : t ∈ L1)), and since r ≤L1 s it follows that v ∈ Ws. This proves that Wr ∩Wt ⊆ Ws,
and so (L, (Wt : t ∈ L)) is a line-decomposition of G. Evidently its width is at most k′, and it is a
wo-decomposition. This proves 3.7.

We will prove the following, which immediately implies 1.3 by taking Z1, Z2 = ∅:

3.8 Let (L, (Wt : t ∈ L)) be a line-decomposition of G from Z1 to Z2, of width at most k, and let
m ≤ k such that every split has size at least m, and |Z1| ≤ m. Then G admits a wo-decomposition
from Z1 to Z2 of width at most 2k − |Z1|.

Proof. We proceed by induction on k, and for fixed k, by induction on k −m. As we discussed in
the previous section, we may assume that (L, (Wt : t ∈ L)) is tidy. We observe first:

(1) We may assume that G is connected.

Suppose that G is not connected, and let C1 be a component of G. Let I1 be the set of t ∈ L
such that Wt ∩ V (C1) 6= ∅. Since each Wt is a clique, it follows that Wt ⊆ V (C1) for each t ∈ I1.
Moreover, we claim that I1 is an interval of L. To see this, let r, t ∈ I1 and suppose that r ≤L s ≤L t.
There is a path of C1 joining Wr,Wt, and every such path intersects Ws, and so s ∈ I1. Thus, I1
is an interval. Since I1 6= L (because G is not connected, and so some Wt is disjoint from V (C1)
and hence t /∈ I1), we may assume from the symmetry that there exists s ∈ L such that s ≤L t for
all t ∈ I1, and s /∈ I1. Let J be the set of s ∈ L with this property; then J is an initial interval.
Let S be the J-split. We claim that S = ∅. Suppose not, and let v ∈ S. Choose r, s ∈ L such that
v ∈ Wr ∩Ws and r ∈ J and s /∈ J . Since r ∈ J , Wr ∩ V (C1) = ∅; so Ws 6⊆ V (C1), and therefore
s /∈ I1. Since s /∈ J , and s /∈ I1, the definition of J implies that there exists t ∈ I1 such that s 6≤L t.
Thus, r ≤L t ≤L s, and v ∈ Wr ∩Ws and v /∈ Wt, a contradiction. This proves that S = ∅. Since S
is a split and all splits have size at least m, it follows that m = 0, and therefore Z1 = ∅.

Since (L, (Wt : t ∈ L)) is tidy, it follows that Z2 is a clique (because it is a subset of a bag of
(L, (Wt : t ∈ L))); and therefore there is a component C∗ of G with Z2 ⊆ C∗. We can choose a
well-ordering of the set of components of G different from C∗; choose an ordinal β such that the
components of G can be numbered Gα (α < β), where α ranges over all ordinals < β. Define
Cβ = C∗.

Suppose that the result is true for all components of G; thus, for all α < β, there is a wo-
decomposition from ∅ to ∅ of width at most 2k; and for Cβ there is a wo-decomposition from ∅ to Z2

of width at most 2k. Then by concatenating these in the natural way, we obtain a wo-decomposition
of G of width at most 2k − |I1| (since I1 = ∅), as required. This proves (1).
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Next, suppose that there are no splits with size m. If m ≤ k− 1, then the hypotheses all remain
true with m replaced by m + 1, and the result follows from the second inductive hypothesis. If
m = k, then since all splits have size at most m (because (L, (Wt : t ∈ L)) is tidy and consequently
all its bags are different), we deduce that there are no splits, and so |L| = 1; and since |Z1| ≤ k, the
result is true. Hence we may assume that there is a split of size m. Consequently, m ≥ 1, since G is
connected and therefore all splits are non-null.

From 3.4, we can number the splits with size exactly m as {Si : i ∈ K}, where K is an interval
of Z, in such a way that Si is before Sj for all i, j ∈ K with i ≤ j. For each i ∈ K, let Ai be the set
of all initial intervals I of L such that Si is the I-split. Let Ii =

⋂
I∈Ai

I, and Ji =
⋃
I∈Ai

I. By 3.5,
either Ii = ∅ and Si is the set of all left-limit vertices of (L, (Wt : t ∈ L)), or Ii is the minimal element
of Ai; and either Ji = L and Si is the set of all right-limit vertices, or Ji is the maximal element of Ai.

(2) If Ii = ∅ then i is the smallest member of K, and if Ji = L then i is the largest member of
K.

Suppose that Ii = ∅. Then Ii /∈ Ai, since it is not an initial interval of L; and so Si is the set
of all left-limit vertices of (L, (Wt : t ∈ L)). Suppose that i is not the smallest member of K, and so
i−1 ∈ K. Choose Hi ∈ Ai and Hi−1 ∈ Ai−1. For each v ∈ Si, we have v ∈W (L\Hi) ⊆W (L\Hi−1).
Moreover, v ∈Wt for some t ∈ L, and hence v ∈Ws for some s ∈ Hi−1 since v is a left-limit vertex.
Consequently v ∈ W (Hi−1) ∩ W (L \ Hi−1) = Si−1. This proves that v ∈ Si−1 for each v ∈ Si,
which is impossible since Si−1, Si are distinct and have the same size. Consequently, i is the smallest
member of K. The second statement is proved similarly. This proves (2).

(3) Either Z1 ⊆ Si for some i ∈ K, or K has a smallest member. Similarly, either Z2 ⊆ Si for
some i ∈ K, or K has a largest member.

Suppose that there is no i ∈ K with Z1 ⊆ Si. Since Z1 is finite, and Si ∩ Z1 ⊇ Sj ∩ Z1 for all
i, j ∈ K with i ≤ j, it follows that there exists z ∈ Z1 such that there is no i ∈ K with z ∈ Si.
Let I be the intersection of all the initial intervals in

⋃
i∈K Ai. Since z ∈ Z1 is a left-limit vertex,

and z belongs to none of the splits Si, it follows that I contains all t ∈ L such that z ∈ Wt; and in
particular, I 6= ∅. Consequently I is an initial interval; let S be the I-split. Suppose that there exists
v ∈ S that belongs to none of the splits Si (i ∈ K). Since v belongs to the I-split, there exist s ∈ I
and t ∈ L \ I with v ∈Ws ∩Wt. Since t ∈ L \ I, there exists i ∈ I and H ∈ Ai such that t ∈ L \H.
But s ∈ I ⊆ H, and so

v ∈Ws ∩Wt ⊆W (H) ∩W (L \H) = Si,

a contradiction. Thus, for each v ∈ S there exists i ∈ K with v ∈ Si. Since S is before each Si, it
follows that S ∩ Si ⊇ S ∩ Sj for all i, j ∈ K with i ≤ j; and so there exists j ∈ K with S ⊆ Sj . But
all splits have size at least m, and S is a split, and Sj has size m; so Sj = S. Since S is before Si
for all i ∈ K, it follows that j is the smallest member of K. The second statement of (3) is proved
similarly. This proves (3).

(4) We may assume that K has a smallest element.

Suppose that K has no smallest element. By (3), there exists i ∈ K such that Z1 ⊆ Si, and so
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we may assume that Z1 ⊆ S0. Let G1 = W (I0) and G2 = W (L \ I0). Thus, V (G1) ∩ V (G2) = S0.
Suppose that:

• Either Z1 6= ∅, or G1 admits a wo-decomposition from S0 to ∅ of width at most 2k − |S0|; and

• G2 admits a wo-decomposition from S0 to Z2 of width at most 2k − |S0|.

We claim that G1 admits a wo-decomposition from Z1 to S0 of width at most 2k − |Z1|. To see
this, there are two cases. If Z1 = ∅, then adding S0 to every bag of the decomposition given in the
first bullet gives a wo-decomposition from S0 to S0, and hence from Z1 to S0, as required (since
2k−|Z1| = 2k). Now we assume that Z1 6= ∅. By 3.6, G1 admits a line-decomposition from Z1 to S0
of width at most k, and all its bags include Z1, since Z1 ⊆ S0. By removing Z1 from all these bags,
we obtain a line-decomposition of G1 \ Z1 from ∅ to S0 \ Z1 of width at most k − |Z1|. By reversing
its order, we obtain a line-decomposition of G1 \Z1 from S0 \Z1 to ∅ of width at most k−|Z1|. Since
Z1 6= ∅, the first inductive hypothesis implies that G1 \ Z1 admits a wo-decomposition from S0 \ Z1

to ∅ of width at most 2(k− |Z1|)− |S0 \Z1|. By adding S0 to all the bags of this wo-decomposition,
we have proved that G1 admits a wo-decomposition of width at most

2(k − |Z1|)− |S0 \ Z1|+ |S0| = 2k − |Z1|

from S0 to S0, and hence from Z1 to S0 since Z1 ⊆ S0, as claimed.
From the second bullet above, G2 admits a wo-decomposition from S0 to Z2 of width at most

2k − |Z1|, since |Z1| ≤ |S0|. From 3.7, we deduce that G admits a wo-decomposition from Z1 to Z2

of width at most 2k − |Z1|, so the statement of the theorem holds.
Consequently, to prove the theorem, it suffices to prove the two bullets above. But in both cases,

we claim that the corresponding graph G1 or G2 admits a line-decomposition W of width at most k
(from S0 to ∅ in the first case, and from S0 to Z2 in the second) in which all splits have size at least
m, and either W has no split of size m, or there is one that is before all other splits of W of size m.

To see this, for G1 we take as W the line-decomposition (
←−
I : (Wt : t ∈

←−
I )), where

←−
I is the line

obtained from I by reversing its order (then all splits of W have size at least m, and S−1 is a split
of W of size m, and is before all other splits of size m; note that S0 is not a split of W). For G2 we
take as W the line-decomposition (L \ I0 : (Wt : t ∈ L \ I0)); then if 1 ∈ K, S1 is a split of W that
is before all other splits of the minimum size m, and if 1 /∈ K then W has no split of size at most
m. This proves that W exists with the properties claimed. But if the theorem holds for W, then the
two bullets above hold, so it suffices to prove the theorem for W. This proves (4).

For each i ∈ K, if Ii = Ji, let Gi be the complete graph with vertex set Si. If Ii 6= Ji, let Gi be
the union of the graphs G[Wt] over all t ∈ Ji \ Ii.

(5) For each i ∈ K, there is a wo-decomposition Wi of Gi from Si to Si with width at most 2k −m.

This is trivial if Ii = Ji, so we assume that Ji 6= Ii; let Mi = Ji \ Ii, with order inherited from
L. It follows that Mi is a line, and therefore (Mi : (Wt : t ∈ Mi)) is a line-decomposition of Gi
from Si to Si (because Si is a subset of Wt for each t ∈ Mi). Thus, (Mi, (Wt \ Si : t ∈ Mi)) is
a line-decomposition of Gi \ Si from ∅ to ∅, of width at most k − m, since Si is a subset of Wt

for each t ∈ Mi and |Si| = m. Since m ≥ 1, the first inductive hypothesis tells us that there is a
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wo-decomposition of Gi \ Si from ∅ to ∅, of width at most 2(k −m), and by adding Si to each of its
bags, we obtain a wo-decomposition of Gi from Si to Si, of width at most 2k −m. This proves (5).

For each i ∈ K, we define G′i as follows. If Ji = L (and so i is the largest member of K, by (2)),
let G′i be the complete graph with vertex set Si. If Ji 6= L, and i + 1 /∈ K, let G′i = W (L \ Ji). If
i+ 1 ∈ K, let G′i = W (Ii+1 \ Ji).

(6) For each i ∈ K, there is a wo-decomposition W ′i of G′i from Si to Si+1 if i + 1 ∈ K, and
from Si to Z2 if i+ 1 /∈ K, of width at most 2k −m.

First, we assume that i+1 ∈ K. Since Si is before Si+1, it follows that Ji ⊆ Ii+1. By (2), Ji ∈ Ai and
Ii+1 ∈ Ai+1, and therefore Ii+1 6= Ji, since Si 6= Si+1. Consequently Ii+1 \Ji 6= ∅. Let M ′i = Ii+1 \Ji,
with order inherited from L. It follows that (M ′i , (Wt : t ∈ M ′i)) is a line-decomposition from Si to
Si+1 of G′i of width at most k; and all its splits have size at least m + 1. If m = k, since all splits
of (Mi, (Wt : t ∈ M ′i)) are splits of (L, (Wt : t ∈ L)) and hence have size at most m, it follows that
(Mi, (Wt : t ∈ M ′i)) has no splits, and hence |M ′i | = 1. In that case (M ′i , (Wt : t ∈ M ′i)) satisfies the
statement of (6). Thus, we may assume that m < k. From the second inductive hypothesis, applied
to (Mi, (Wt : t ∈M ′i)), since all its splits have size at least m+ 1, there is a wo-decomposition of G′i
from Si to Si+1 of width at most 2k − |Si| = 2k −m.

Now we assume that i+ 1 /∈ K, and so i is the largest member of K. If Ji = L, the claim is clear,
using a line-decomposition with only one bag Si; so we assume that Ji 6= L. Thus, G′i = W (L \ Ji).
Since Ji 6= L, (L \ Ji, (Wt : t ∈ L \ Ji)) is a line-decomposition of Gi from Si to Z2 of width at most
k, and all its splits have size at least m + 1 (since i is the largest member of K). Again, the claim
follows from the second inductive hypothesis if m < k, or trivially if m = k. This proves (6).

From (4), we may assume that 1 is the smallest member of K. Define G′0 = W (I1) if I1 6= ∅, and
let G′0 be the complete graph with vertex set S1 if I1 = ∅. Then, similarly, there is a wo-decomposition
W ′0 of G0 from Z1 to S1 of width at most 2k − |Z1|. By concatenating

W ′0,W1,W ′1, . . . ,W ′i−1,Wi

if K has a largest member i, or by concatenating

W ′0,W1,W ′1,W2, . . .

otherwise, we deduce that G admits a wo-decomposition of width at most 2k − |Z1| from Z1 to Z2.
(Note that in the case when K has no largest member, Z2 is included in Si for all sufficiently large i,
by (3), and so Z2 is a set of right-limit vertices of the wo-decomposition we just constructed.) This
proves 3.8.

4 Prime decompositions

There is another route we could take to making line-decompositions as palatable as possible. In the
proof of step (1) of 3.8, we used ordinals of arbitrary magnitude, but all the remainder of the proof
of 3.8 was just concatenating sequences of wo-decompositions to make longer wo-decompositions,
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and this process was only iterated k times. If we could find a way to avoid step (1), we might get
something nicer.

That motivates looking at “prime” line-decompositions. Let us say a line-decomposition (L, (Wt :
t ∈ L)) is prime if it is tidy, and G is connected, and the I-split is different from the J-split, for all
distinct initial intervals I, J . If we run the proof of 3.8 starting with a prime line-decomposition,
three nice things happen:

• G is already connected, so we don’t need step (1) of the proof;

• the graphs Gi used in step (5) of the proof are all trivial, because Ii = Ji in the notation of
that proof, so we could skip step (5);

• the line-decompositions (Mi, (Wt : t ∈ M ′i)) of the graphs G′i used in step (6) are also prime,
so we can apply the inductive hypothesis to them.

We deduce:

4.1 If (L, (Wt : t ∈ L)) is a prime line-decomposition of G, of width at most k, then L has order-
type that of a subset of Zk, and G admits a wo-decomposition (L′, (W ′t : t ∈ L′)) of width at most 2k
where L′ is an ordinal and L′ ≤ ωk.

Of course, not every connected graph that admits a tidy line-decomposition admits a prime line-
decomposition of the same width. For instance, a caterpillar is a tree in which some path passes
through every vertex of degree more than two. A connected graph G admits a tidy line-decomposition
of width one if and only if G is a caterpillar, but G admits a prime line-decomposition of width one if
and only if G is a path. Indeed, from the first statement of 4.1, if G admits a prime line-decomposition
of width at most k, then V (G) is countable.

On the other hand, we will show that a general tidy line-decomposition can be built by substi-
tuting prime line-decompositions in one another (iterating only k times, where k is the width). Let
us say this more exactly. Let L be a linear order, and let I be a set of some of its initial intervals.
For each I ∈ I, let LI be a linear order, such that L and all the orders LI are pairwise disjoint. Let
M be the linear order with element set L ∪

⋃
I∈I LI , where s ≤ t if either:

• for some I ∈ I, s, t ∈ Li, and s ≤ t in the order of Li; or

• s, t ∈ L, and s ≤ t in the order of L; or

• s ∈ L, and t ∈ LI for some I ∈ I, and s ∈ I; or

• s ∈ LI for I ∈ I, and t ∈ L, and t /∈ I.

It is easy to check that M is indeed a linear order. Now let (L, (Wt : t ∈ L)) be a line-decomposition
of some graph G, and for each I ∈ I let (LI , (W

I
t : t ∈ LI)) be a line-decomposition of some non-null

graph GI , where the graphs G and GI (I ∈ I) are all pairwise vertex-disjoint. Let H be the graph
obtained from the disjoint union of G and the graphs GI (I ∈ I) by adding an edge between u, v
for each I ∈ I, each u ∈ V (GI) and each v ∈ W (I) ∩W (L \ I). Define M as before, and for each
t ∈ M , define Xt = Wt if t ∈ L, and Xt = Wt ∪ (W (I) ∩W (L \ I)) if t ∈ LI for some I ∈ I. Then
(M, (Xt : t ∈M)) is a line-decomposition of H, tidy if (L, (Wt : t ∈ L)) and each (LI , (W

I
t : t ∈ LI))

are tidy; and we say that (M, (Xt : t ∈ M)) is obtained by substituting ((LI , (W
I
t : t ∈ LI)) I ∈ I)

into (L, (Wt : t ∈ L)). We will prove:
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4.2 Let (M, (Xt : t ∈ M)) be a tidy line-decomposition of some connected graph H. Then there
exist G, (L, (Wt : t ∈ L)), I, GI (I ∈ I), and (LI , (W

I
t : t ∈ LI)) for each I ∈ I, as above, such that

• (M, (Xt : t ∈M)) is obtained by substituting ((LI , (W
I
t : t ∈ LI)) I ∈ I) into (L, (Wt : t ∈ L));

• (L, (Wt : t ∈ L)) is prime, with width at most that of (M, (Xt : t ∈M)); and

• for each I ∈ I, (LI , (W
I
t : t ∈ LI)) is tidy and has width strictly smaller than that of (M, (Xt :

t ∈M)).

Proof. For each split C of (M, (Xt : t ∈ M)), let FC be the set of all initial intervals I of M such
that the I-split of (M, (Xt : t ∈ M)) equals C. If |FC | > 1, we say C is a repeated split. If C is
a repeated split, the set of all t ∈ M such that t belongs to some but not all members of FC is an
interval of M ; let us call this interval the repeat interval of C and denote it by LC .

(1) If C is a repeated split of (M, (Xt : t ∈M)) and t ∈ LC , then C ⊆Wt.

Since t ∈ LC , there exist initial intervals I, J ∈ FC such that t ∈ J \ I. Let v ∈ C. Thus, v
belongs to the I-split, and therefore to X(I); and so there exists s ∈ I with v ∈ Xs. Similarly there
exists s′ ∈M \ J such that v ∈ Xs′ . Since s ≤ t ≤ s′, it follows that v ∈ Xt. This proves (1).

(2) If C is a repeated split of (M, (Xt : t ∈ M)), and C ′ is a split with C 6⊆ C ′, and J ∈ FC′,
then either LC ∩ J = ∅ or LC ⊆ J .

Choose v ∈ C \ C ′. Since v /∈ C ′ = X(J) ∩ X(M \ J), either v /∈ X(J) or v /∈ X(M \ J).
But v ∈ Xt for all t ∈ I, by (1); and so either LC ∩ J = ∅ or LC ∩ (M \ J) = ∅. This proves (2).

(3) If C,C ′ are repeated splits of (M, (Xt : t ∈ M)), then either LC ⊆ LC′ and C is a proper
subset of C ′, or LC′ ⊆ LC and C ′ is a proper subset of C, or LC ∩ LC′ = ∅.

We may assume that C 6= C ′, and so without loss of generality, we assume that C 6⊆ C ′. By
(2), for each initial interval J ∈ FC′ , either LC ∩ J = ∅ or LC ⊆ J . If LC ∩ J = ∅ for every J ∈ FC′ ,
then LC ∩ LC′ = ∅; and if LC ⊆ J for all J ∈ FC then again LC ∩ LC′ = ∅. Finally, we assume that
there exist J1, J2 ∈ FC′ such that LC ∩ J1 = ∅ and LC ⊆ J2. It follows that LC ⊆ LC′ . If C ′ ⊆ C,
then C ′ is a proper subset of C and the claim holds;, so we may assume that C ′ 6⊆ C. By the same
argument with C,C ′ exchanged, we deduce that either

• LC ∩ LC′ = ∅ (and this is false since ∅ 6= LC ⊆ LC′); or

• LC′ ⊆ LC , and so LC′ = LC .

Thus, it remains to handle the case when LC′ = LC and neither of C,C ′ is a subset of the other. Let
J ∈ FC , and suppose that LC ∩ J 6= ∅ and LC 6⊆ J . Then J includes some but not all of LC , and so
there exist s, t ∈ LC with s ∈ J and t /∈ J . Hence Xs ∩Xt is a subset of the J-split, that is, of C;
but by (1), Xs ∩Xt includes C ′ since s, t ∈ LC′ = LC , so C ′ ⊆ C, a contradiction. Thus, if J ∈ FC
then either LC ∩ J = ∅ or LC ⊆ J . Let I1 be the set of all s ∈M such that s /∈ LC and s < t for all
t ∈ I. Thus, I1 is either an initial interval or empty. Similarly, let I2 be the set of all s ∈ M such
that s ≤ t for some t ∈ LC ; then I2 is either an initial interval or equals L.
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We claim that if J ∈ FC then J = I1 or J = I2. To see this, choose s ∈ LC . Suppose first that
LC ∩ J = ∅, so J ⊆ I1. If there exists t ∈ I1 \ J , then t belongs to some but not all of the members
of FC , because it does not belong to J , and belongs to any member of FC that contains s (and there
is such a member, by definition of LC). But then t ∈ LC , a contradiction. So if LC ∩ J = ∅ then
J = I1. Next suppose that LC ⊆ J , If there exists t ∈ J \ I2, then t belongs to some but not all of
the members of FC , because it belongs to J , and does not belong to any member of FC that does not
contains s (and there is such a member, by definition of LC). But then again t ∈ LC , a contradiction.
This proves the claim that if J ∈ FC then either J = I1 or J = I2. Since |FC | ≥ 2, it follows that
FC = {I1, I2}. In particular, I1, I2 are both initial intervals. Similarly FC′ = {I1, I2}; but then the
I1-split equals both C and C ′, a contradiction. This proves (3).

Let C be the set of all repeated splits C such that LC is maximal. By (3), the sets LC (C ∈ C)
are disjoint. Moreover:

(4) For every repeated split C, there exists C ′ ∈ C such that LC ⊆ LC′.

Choose a repeated split C ′ with C ′ maximal such that LC ⊆ LC′ (this is possible since all splits have
size at most the width of (M, (Xt : t ∈M))). But then by (3), C ′ ∈ C. This proves (4).

Let L be the set of all t ∈ L that do not belong to
⋃
C∈C LC , with the linear order inherited from

that of M . For each t ∈ L, let Wt = Xt; then (L, (Wt : t ∈ L)) is a line-decomposition of some
subgraph G of H. For each C ∈ C, and each t ∈ LC , define WC

t = Xt\C; then (LC , (W
C
t : t ∈ LC)) is

a tidy line-decomposition of some subgraph GC of H, of width at most the width of (M, (Xt : t ∈M))
minus |C|. Since each C 6= ∅ (because H is connected), it follows that each (LC , (W

C
t : t ∈ LC))

has width less than that of (M, (Xt : t ∈ M)). To complete the proof, we need to check that
(L, (Wt : t ∈ L)) is prime. If I is an initial interval of L, then there is an initial interval J of M such
that the split of I in (L, (Wt : t ∈ L)) equals the split of J in (M, (Xt : t ∈ M)); and if I ⊆ I ′ are
distinct initial intervals of L, the corresponding initial intervals J ⊆ J ′ of M satisfy that J ′ \J is not
a subset of any member of C. By (4), the splits of J and of J ′ in (M, (Xt : t ∈M)) are distinct, and
so the splits of I and of I ′ in (L, (Wt : t ∈ L)) are distinct. Since H is connected, and is obtained
from the disjoint union of the graphs G and the graphs GC (C ∈ C) by adding edges from each GC
to the clique C of G, it follows that G is connected. Thus, (L, (Wt : t ∈ L)) is prime. This proves
4.2.

This result shows that we can build a tidy line-decomposition of width k of a connected graph
by starting with a prime decomposition and substituting tidy line-decompositions of width < k into
it. But the tidy line-decomposition we are substituting are decompositions of subgraphs that might
not be connected. So to complete a recursive structure theorem, we need another step, a proof that
we can build any tidy line-decomposition of width ≤ k of a graph G from tidy line-decompositions
of width ≤ k of the components of G, by concatenating the latter in some order. This is easy and
we omit it.
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