Proof of a conjecture of Bowlin and Brin on four-colouring triangulations

Paul Seymour
Princeton University, Princeton, NJ 08544

December 28, 2012; revised June 27, 2013

1Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.
Abstract

We prove a conjecture of Bowlin and Brin that for all $n \geq 5$, the n-vertex biwheel is the planar triangulation with n vertices admitting the largest number of four-colourings.
1 Introduction

All graphs in this paper are finite, and have no loops or parallel edges (except immediately after 1.1). A triangulation is a graph drawn in the 2-sphere S^2 such that the boundary of every region is a 3-vertex cycle. A biwheel is a triangulation consisting of a cycle C and two more vertices, each adjacent to every vertex of C, and for $n \geq 5$, we denote the n-vertex biwheel by B_n. For $k > 0$ an integer, a k-colouring of a graph G is a map ϕ from the vertex set $V(G)$ of G to $\{1, \ldots, k\}$, such that $\phi(u) \neq \phi(v)$ for every edge uv. Let $P_k(G)$ denote the number of k-colours of a graph G. Garry Bowlin and Matt Brin [1, 2] conjectured the following, which is the main result of this note:

1.1 If G is a triangulation with $n \geq 5$ vertices, then $P_4(G) \leq P_4(B_n)$.

The hypothesis that G has no parallel edges is important, and without it the extremal “triangulation” is different. Let us say a pseudo-triangulation is a drawing in S^2, possibly with parallel edges but without loops, such that the boundary of every region is a cycle of length three. We claim that every n-vertex pseudo-triangulation has at most $3 \cdot 2^n$ 4-colourings. To see this, let G be an n-vertex pseudo-triangulation, and order its vertex set v_1, \ldots, v_n such that v_1, v_2 are adjacent and for $3 \leq i \leq n$, there is a triangle containing v_i and two of v_1, \ldots, v_{i-1}. For $1 \leq i \leq n$, let $G_i = G|\{v_1, \ldots, v_i\}$. (We use $G|X$ to denote the subdrawing of G induced on X, when $X \subseteq V(G)$.) Thus $P_4(G_2) = 12$, and for $3 \leq i \leq n$ every 4-colouring of G_{i-1} extends to at most two 4-colourings of G_i; and so by induction it follows that for $2 \leq i \leq n$, $P_4(G_i) \leq 3 \cdot 2^i$, and in particular, $P_4(G) \leq 3 \cdot 2^n$. But there is a pseudo-triangulation with n vertices and $3 \cdot 2^n$ 4-colourings, obtained as follows: take a drawing with two vertices x, y and $n - 2$ parallel edges, and for each consecutive pair of parallel edges add a new vertex between them adjacent to x, y.

Our proof of 1.1 is based on the same idea of bounding the number of 4-colourings by ordering the vertex set such that each makes a triangle with two of its predecessors, but we need to treat a few vertices as special, and just order the others.

Bowlin and Brin also raised the question of deciding which n-vertex triangulation has the second most 4-colourings, and conjectured that the number of 4-colourings of the second-best triangulation is asymptotically half of the number for the biwheel. We do not prove this, but prove that the number of 4-colourings of any non-biwheel on n vertices is asymptotically at most $27/32$ of the number for the biwheel. More precisely, we prove the following, which immediately implies 1.1.

1.2 Let G be a triangulation with $n \geq 5$ vertices.

- If G is a biwheel, then $P_4(G) = 2^n - 8$ if n is odd, and $2^n + 32$ if n is even.
- If G is not a biwheel, then $P_4(G) \leq \frac{27}{32} 2^n \leq 2^n - 8$.

2 The main proof

First, we need

2.1 If G is a cycle with n vertices then $P_3(G) = 2^n + 2(-1)^n$.

Proof. The result is well-known and elementary, but we give a proof for completeness. For \(n \geq 1 \), let \(\kappa_n = 2^n + 2(-1)^n \). For \(n \geq 2 \), let \(\alpha_n \) be the number of 3-colourings of an \(n \)-vertex path such that its ends have the same colour, and let \(\beta_n \) be the number of 3-colourings such that its ends have different colours. We prove by induction on \(n \) that \(\alpha_n = \kappa_{n-1} \) and \(\beta_n = \kappa_n \). The result is true when \(n = 2 \), so we assume \(n \geq 3 \). Now \(\alpha_n = \beta_{n-1} \), so the first assertion holds. For the second, let \(G \) be a path with vertices \(v_1, \ldots, v_n \) in order. Each 3-colouring of \(G \setminus \{v_n\} \) with \(v_1, v_{n-1} \) of different colours extends to a unique 3-colouring of \(G \) in which \(v_1, v_n \) have different colours, and each 3-colouring of \(G \setminus \{v_n\} \) with \(v_1, v_{n-1} \) of the same colour extends to two 3-colourings of \(G \) in which \(v_1, v_n \) have different colours. Consequently

\[
\beta_n = \alpha_{n-1} + 2\beta_{n-1} = \kappa_{n-1} + 2\kappa_{n-2} = \kappa_n
\]

as required. This proves that \(\beta_n = \kappa_n \) for all \(n \geq 2 \). Now if \(G \) is a cycle with \(n \) vertices, it follows (by deleting one edge of \(G \)) that \(P_3(G) = \beta_n = \kappa_n \). This proves 2.1.

If \(G \) is a triangulation, a triangle of \(G \) means a region of \(G \), and we denote a triangle incident with vertices \(a, b, c \) by \(abc \). A triangle touches another if they are distinct and share an edge. It is convenient to first prove the result when \(G \) is 4-connected.

2.2 Let \(G \) be a 4-connected triangulation, not a biwheel, with \(n \) vertices, and with minimum degree \(k \) say. (Thus \(k \in \{4,5\} \).) Then \(P_4(G) \leq 27 \cdot 2^{n-5} \) if \(k = 4 \), and \(P_4(G) \leq 45 \cdot 2^{n-6} \) if \(k = 5 \).

Proof. A diamond in \(G \) is a set of four vertices of \(G \), all pairwise adjacent except for one pair, called the apices. A diamond \(a, b, c, d \) with apices \(a, b \) is pure if there is no vertex of \(G \) adjacent to \(a, b \) and non-adjacent to \(c, d \). Let \(v \in V(G) \) have degree \(k \), and let \(N \) be its set of neighbours and \(M = V(G) \setminus (N \cup \{v\}) \).

(1) There is a triangle of \(G \) with vertex set included in \(M \).

For suppose not. If some vertex in \(M \) is adjacent to every vertex of \(N \), then \(G \) is a biwheel, a contradiction; and at most two vertices of \(M \) have \(k-1 \) neighbours in \(N \), by planarity. Moreover, \(G|M \) is connected, since \(G \) is 4-connected. Since every vertex in \(G \) has degree at least four, it follows that at most two vertices in \(M \) have degree one in \(G|M \). Suppose that \(G|M \) is a forest. Then it is a path, with vertices \(v_1, \ldots, v_n \) in order; and \(v_1, v_n \) both have \(k-1 \) neighbours in \(N \), so \(k = 4 \) and \(G \) is a biwheel, a contradiction. Thus there is a cycle in \(G|M \), and hence (1) follows.

(2) Either \(k = 4 \) and \(n = 8 \) and \(P_4(G) = 72 \), or there is a diamond \(D \) of \(G \) such that some vertex of \(G \) with degree \(k \) has no neighbour in \(D \).

For let \(xyz \) be a triangle with \(x, y, z \in M \); and let \(x', y', z' \) be vertices of \(G \) different from \(x, y, z \) such that there are triangles \(x'yz, xy'z, xy'z' \). If one of \(x', y', z' \) is in \(M \) then (2) holds, so we assume that \(x', y', z' \) are all in \(N \). Since \(G|N \) is a cycle of length \(k \), we may assume that \(x', y' \) are adjacent, and so \(z \) has degree four and hence \(|N| = k = 4 \); and so we may also assume that \(y', z' \) are adjacent. It follows that \(x, z \) have degree four in \(G \). Let \(w' \) be the neighbour of \(v \) different from \(x', y', z' \). Let \(px'w' \) touch \(vx'w' \). Thus \(\{p, v, x', w'\} \) is a diamond, and \(x \) is non-adjacent to \(v, x', w' \), so we may
assume that \(v \) is adjacent to \(p \), that is, \(p = y \). But then \(n = 8 \) and \(P_4(G) = 72 \), and the result holds. This proves (2).

In view of (2), we may assume that there is a diamond \(\{a, b, c, d\} \) in \(M \), with apices \(a, b \).

(3) There is a pure diamond included in \(M \).

For we may assume that \(\{a, b, c, d\} \) is not pure, and so there is a vertex \(p \) adjacent to \(a, b \) and not to \(c, d \). From the symmetry between \(c, d \), we may assume that the cycle with vertex set \(\{a, c, b, p\} \) divides \(S^2 \) into two open discs \(D_1, D_2 \), one containing \(d \) and the other containing \(v \), say \(d \in D_1 \). Let \(bdq \) touch \(bdc \). Then \(q \neq p \) since \(q \) is adjacent to \(d \), and so \(q \in D_1 \), and in particular \(q \in M \). Suppose that the diamond \(\{c, q, b, d\} \) is not pure; then there is a vertex \(r \) adjacent to \(c, q \) and not to \(b, d \), which is impossible by planarity. This proves (3).

In view of (3) we may assume that \(\{a, b, c, d\} \) is pure.

(4) We can order \(V(G) \setminus \{a, b, c, d\} \) and \(\{v_1, \ldots, v_{n-4}\} \) in such a way that \(v_1 = v \), \(N = \{v_2, \ldots, v_{k+1}\} \), and for \(k + 2 \leq i \leq n - 4 \) there is a triangle containing \(v_i \) and two of \(v_1, \ldots, v_{i-1} \).

For let \(G' \) be the drawing obtained from \(G \) by deleting \(a, b, c, d \), and let \(D \) be the region of \(G' \) containing \(a, b, c, d \). Then \(D \) is an open disc, and so there is a closed walk tracing its boundary. Since \(G \) is 4-connected and the diamond \(\{a, b, c, d\} \) is pure, it follows that no vertex appears twice in this closed walk, and so \(D \) is bounded by a cycle \(C \) say. Choose a sequence \(v_1, \ldots, v_j \) of distinct members of \(V(G) \setminus \{a, b, c, d\} \), where \(v_1 = v \), \(N = \{v_2, \ldots, v_{k+1}\} \), and for \(k + 2 \leq i \leq j \) there is a triangle containing \(v_i \) and two of \(v_1, \ldots, v_{i-1} \), with \(j \) maximum. Let \(X = \{v_1, \ldots, v_j\} \) and \(Y = V(G) \setminus (\{a, b, c, d\} \cup X) \). Let \(R \) be the set of all triangles with vertex set included in \(X \). Let \(S \) be the closure of the union of the members of \(R \); thus \(S \) is some closed subset of \(S^2 \), with boundary the closure of some set of edges of \(G \). Let \(e \in E(G) \) be an edge of \(G \) in the boundary of \(S \), where \(e = xy \) say, and let \(xyz \in R \) touch some region \(xyz' \notin R \). Thus \(z' \notin X \) from the definition of \(R \), and so from the choice of \(j \) it follows that \(z' \in \{a, b, c, d\} \), and consequently \(e \in E(C) \). Consequently every edge in the boundary of \(S \) belongs to \(E(C) \), and since every vertex of \(G \) is incident with an even number of such edges, it follows that \(C \) is the boundary of \(S \). Consequently \(S \) is a closed disc, and hence contains all vertices of \(G \) not in \(\{a, b, c, d\} \). It follows that \(j = n - 4 \). This proves (4).

For \(1 \leq i \leq n - 4 \), let \(G_i = G \setminus \{v_1, \ldots, v_i\} \). For \(k + 2 \leq i \leq n - 4 \), \(P_4(G_i) \leq 2P_4(G_{i-1}) \), and so \(P_4(G_{n-4}) \leq 2^{n-k-5}P_4(G_{k+1}) \). But every 4-colouring of \(G_{n-4} \) can be extended to at most six 4-colourings of \(G \) (this is easy to check, and we leave it to the reader), and so \(P_4(G) \leq 6 \cdot 2^{n-k-5}P_4(G_{k+1}) \). By 2.1, if \(k = 4 \) then \(P_4(G_{k+1}) = 72 \), and if \(k = 5 \) then \(P_4(G_{k+1}) = 120 \). This proves 2.2.

2.3 Let \(n \geq 6 \) be such that every triangulation with \(n' \) vertices admits at most \(2^{n'} + 32 \) 4-colourings, for \(5 \leq n' \leq n - 1 \). Let \(G \) be a triangulation with \(n \) vertices.

- If \(G \) has a vertex of degree three, then \(P_4(G) \leq 2^{n-1} + 32 \), and \(P_4(G) = 24 \) if \(n = 6 \).
If G has no vertex of degree three and G is not 4-connected, then $n \geq 9$ and $P_4(G) \leq 2^{n-1} + 128$.

Suppose first that some vertex v has degree three. Now $G' = G \setminus v$ is a triangulation, so from the hypothesis $P_4(G') \leq 2^{n-1} + 32$, and $P_4(G') = 24$ if $n = 6$. But every 4-colouring of G' extends to a unique 4-colouring of G, and the result follows.

Now we assume that G has no vertex of degree three, but is not 4-connected. Consequently there is a cycle of length three in G that does not bound a region; and so there are two triangulations G_1, G_2 in S with union G, intersecting just in this cycle, and each with at least four vertices. Let G_i have $n_i + 3$ vertices for $i = 1, 2$. Since G has no vertex of degree three it follows that $n_1, n_2 \geq 3$, and so $n \geq 9$. Moreover, $P_4(G) = P_4(G_1)P_4(G_2)/24$, and from the hypothesis, $P_4(G_i) \leq 2^{n_i+3} + 32$ for $i = 1, 2$. It follows that

$$P_4(G) \leq (2^{n_1+3} + 32)(2^{n_2+3} + 32)/24 \leq (2^{n_1} + 32)(2^{n_2} + 32)/24 = 2^{n-1} + 128,$$

since $n_1, n_2 \geq 3$ and sum to $n - 3$. This proves 2.3.

Proof of 1.2. The first assertion of 1.2 is easy using 2.1 and we leave it to the reader. Note also that $\frac{27}{32} 2^n \leq 2^n - 8$ if $n \geq 6$, and every triangulation with five vertices is a biwheel. Thus for the second assertion, we proceed by induction on n, and we may therefore assume that every triangulation with n' vertices admits at most $2^{n'} + 32$ 4-colourings, for $5 \leq n' \leq n - 1$. Let G be a triangulation with n vertices, not a biwheel, and so $n \geq 6$. If $n \geq 7$ and G has a vertex of degree three, then by 2.3,

$$P_4(G) \leq 2^{n-1} + 32 \leq \frac{27}{32} 2^n$$

as required; while if $n = 6$ and G has a vertex v of degree three, then by 2.3,

$$P_4(G) = 24 \leq \frac{27}{32} 2^n.$$

Thus we may assume that G has no vertex of degree three. If G is not 4-connected, then by 2.3 $n \geq 9$ and

$$P_4(G) \leq 2^{n-1} + 128 \leq \frac{27}{32} 2^n$$

as required. If G is 4-connected and has no vertex of degree four, then by 2.2,

$$P_4(G) \leq 45 \cdot 2^{n-6} \leq \frac{27}{32} 2^n,$$

while if G is 4-connected and has a vertex of degree four then the result follows from 2.2. This proves 1.2.

References
