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Abstract

Robertson and Seymour proved that for every finite tree H, there exists k such that every finite
graph G with no H minor has path-width at most k; and conversely, for every integer k, there is a
finite tree H such that every finite graph G with an H minor has path-width more than k. If we
(twice) replace “path-width” by “line-width”, the same is true for infinite graphs G.

We prove a “coarse graph theory” analogue, as follows. For every finite tree H and every c, there
exist k, L,C such that every graph that does not contain H as a c-fat minor admits an (L,C)-quasi-
isonetry to a graph with line-width at most k; and conversely, for all k, L,C there exist c and a finite
tree H such that every graph that contains H as a c-fat minor admits no (L,C)-quasi-isometry to a
graph with line-width at most k.



1 Introduction

Graphs in this paper may be infinite, and have no loops or parallel edges. If G is a graph and
X ⊆ V (G), G[X] denotes the subgraph of G induced on X. If X is a vertex of G, or a subset of the
vertex set of G, or a subgraph of G, and the same for Y , then distG(X,Y ) denotes the distance in
G between X,Y , that is, the number of edges in the shortest path of G with one end in X and the
other in Y . (If no path exists we set distG(X,Y ) =∞.)

Let G,H be graphs, and let φ : V (G) → V (H) be a map. Let L,C ≥ 0; we say that φ is an
(L,C)-quasi-isometry if:

• for all u, v in V (G), if distG(u, v) is finite then distH(φ(u), φ(v)) ≤ LdistG(u, v) + C;

• for all u, v in V (G), if distH(φ(u), φ(v)) is finite then distG(u, v) ≤ LdistH(φ(u), φ(v))+C; and

• for every y ∈ V (H) there exists v ∈ V (G) such that distH(φ(v), y) ≤ C.

If G is a graph, we write U(G) for V (G)∪E(G). Let G,H be graphs, and let c ≥ 0 be an integer.
For each x ∈ U(H), let η(x) be a non-null connected subgraph of G, all pairwise vertex-disjoint, such
that

• for each uv ∈ E(H), there is an edge of G between η(u) and η(uv);

• distG(η(u), η(v)) > c for all distinct x, y ∈ U(H), except when one of x, y is in V (H), the other
is in E(H), and the edge is incident in H with the vertex.

In these circumstances, we say that G contains H as a c-fat minor, and η exhibits H as a c-fat minor
of G. Sometimes, we are given a subset X ⊆ V (G), and the function η satisfies that η(x) ⊆ G[X]
for all x ∈ U(H). In this case, we say that X contains a c-fat H-minor of G. Note that this is not
the same thing as saying that G[X] contains H as a c-fat minor, because being c-fat depends on a
distance function, and we are using the distance function of G rather than that of G[X].

It is easy to see that:

1.1 Let L,C, c ≥ 0, and let G contain H as a c-fat minor. Let there be an (L,C)-quasi-isometry
from G to some graph G′. If c ≥ L(L+ C) + C then G′ contains H as a minor.

A. Georgakopoulos and P. Papasoglu [6] conjectured that a converse also holds:

1.2 False conjecture: For every graph H and all c ≥ 0, there exists L,C ≥ 0, such that if a graph
G does not contain H as a c-fat minor, then G admits an (L,C)-quasi-isometry to a graph with no
H minor.

This is known to be true when:

• H = K3, by Manning’s theorem [8] (and see [6]);

• H = K1,m, by Georgakopoulos and Papasoglu [6];

• H = K2,3, by Chepoi, Dragan, Newman, Rabinovich, and Vaxes [1];

• H = K−4 (that is, K4 with one edge deleted) by Fujiwara and Papasoglu [5].
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The conjecture has recently been shown to be false in general, by J. Davies, R. Hickingbotham, F.
Illingworth and R. McCarty [3]; but their counterexample H contains a clique of size 15, and there
remains hope that 1.2 is true for some interesting graphs H. (Trees? Planar graphs?)

Our result is not exactly of this type, but has the same flavour. A path-decomposition of a graph
G is a pair (T, (Bt : t ∈ V (T ))), where T is a path (possibly infinite) and each Bt is a subset of V (G)
(called a bag), such that:

•
⋃

t∈V (T )Bt = V (G);

• for every edge e = uv of G, there exists t ∈ V (T ) with u, v ∈ Bt; and

• for all t1, t2, t3 ∈ V (T ), if t2 lies between t1, t3 in T , then Bt1 ∩Bt3 ⊆ Bt2 .

The width of a path-decomposition (T, (Bt : t ∈ V (T ))) is the maximum of the numbers |Bt| − 1 for
t ∈ V (T ), or ∞ if there is no finite maximum; and the path-width of G is the minimum width of a
path-decomposition of G.

Robertson and Seymour [11] proved:

1.3 For every finite tree H, there exists k such that every finite graph G with no H minor has
path-width at most k; and conversely, for every integer k, there is a finite tree H such that every
finite graph with an H minor has path-width more than k.

It is important here that G is finite: for instance, when G consists of the disjoint union of countably
many infinite paths, then G does not contain the claw K1,3 as a minor, and yet G does not have
any finite path-width. This can be fixed. Say a line-decomposition of G is a family (Bt : t ∈ T ) of
subsets of V (G), where T is a linearly-ordered set, satisfying the same three bullets above (with V (T )
replaced by T everywhere). The width of a line-decomposition (T, (Bt : t ∈ T )) is the maximum of
the numbers |Bt| − 1 for t ∈ T , or ∞ if there is no finite maximum; and the line-width of G is the
minimum width of a line-decomposition of G. We proved in [2] that G has line-width at most k if
and only if every finite subgraph has path-width at most k. Consequently, if we replace “path-width”
by “line-width” in 1.3, then the statement of 1.3 is true even for infinite graphs G.

Our aim in this paper is to give a coarse graph theory analogue of this “line-width” version of
1.3. Our main result says:

1.4 For every finite tree H and every c, there exist k, L,C such that every graph that does not
contain H as a c-fat minor admits an (L,C)-quasi-isometry to a graph with line-width at most k;
and conversely, for all k, L,C there exists c and a finite tree H such that every graph that contains
H as a c-fat minor admits no (L,C)-quasi-isometry to a graph with line-width at most k.

The second half is easy: choose c > L(L + C) + C, and let H be a finite tree with line-width more
than k. If G contains H as a c-fat minor, and there is an (L,C)-quasi-isometry from G to G′, then
by 1.1, G′ contains H as a minor and hence has line-width more than k. The first half is much more
difficult and will occupy the whole paper.

As a first step, let us eliminate the (L,C)-quasi-isometry. If X ⊆ V (G), we say X has quasi-size
at most (k, r) if there is a set Y ⊆ V (G) with |Y | ≤ k, such that distG(x, Y ) ≤ r for each x ∈ X. If
X ⊆ V (G), let us say a line-decomposition (Bt : (t ∈ T )) of G[X] is (k, r)-quasi-bounded in G if Bt

has quasi-size at most (k, r) for each t ∈ T . Let us say X has quasi-line-width at most (k, r) if G[X]
admits a (k, r)-quasi-bounded line-decomposition.
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It is important that the distance function used in the definition of quasi-size and (k, r)-quasi-
bounded is that defined by G, not that defined by G[X]. This will be the case throughout the paper.
Even when speaking of subgraphs of G, we will never use their distance functions: the distance
function in use will always be that of G. We sometimes write X for G[X] when X ⊆ V (G). This
should cause no confusion since there is always only one graph G under consideration.

It was proved by R. Hickingbotham [7] that:

1.5 For all k, r, there exist L,C ≥ 1 such that if G has quasi-line-width at most (k, r), then G
admits an (L,C)-quasi-isometry to a graph with line-width at most 2k − 1.

(In [10], we proved a version of this with path-width instead of line-width, and 2k− 1 replaced by k,
but Hickingbotham tells us that his different method of proof yields the result 1.5, and he will add
it to his paper.) Thus, to complete the proof of 1.4, it suffices to prove the following:

1.6 For every finite tree H and every c ≥ 0, there exist k, r such that every graph that does not
contain H as a c-fat minor has quasi-line-width at most (k, r).

H0 denotes the tree with one vertex. For ` ≥ 1 an integer, let H` be the finite tree such that
every vertex has degree one or three, and for some vertex r (called the root) every path from r to
a vertex of degree one has length exactly `. Every tree H is a minor of H` for some choice of `,
and then, if G does not contain H as a c-fat minor then it does not contain H` as a c-fat minor.
Consequently it suffices to prove 1.6 when H = H`, that is:

1.7 For every ` ≥ 1 and every c ≥ 0, there exist k, r such that every graph that does not contain
H` as a c-fat minor has quasi-line-width at most (k, r).

Let ` ≥ 1, let r be the root of H`, let B1, B2, B3 be the three components of H` \ r, and for
i = 1, 2, 3, let ei be the edge of H` between r and V (Bi). We say that η exhibits H` as a c-superfat
minor of G if η exhibits H` as a c-fat minor of a graph G, and distG(x, y) > 3c for all i, j with
1 ≤ i < j ≤ 3, and all x ∈ V (η(Bi)) ∪ V (η(ei)), and all y ∈ V (η(Bj)) ∪ V (η(ej)). When ` = 0, we
say that η exhibits H0 as a c-superfat minor of a graph G if it exhibits H0 as a c-fat minor of G. If
η exhibits H as a c-superfat minor of G, η(H) denotes

⋃
x∈U(H) η(x).

In order to prove 1.7, it suffices to show:

1.8 For every ` ≥ 1 and every c ≥ 0, there exist k, r such that every graph that does not contain
H` as a c-superfat minor has quasi-line-width at most (k, r).

Using superfat instead of fat is helpful for inductive purposes.

2 Some preliminary lemmas

We begin with the reason we use “superfat” instead of “fat”:

2.1 Let c ≥ 2, let t ≥ 0, and for i = 1, 2, 3, let ηi exhibit Ht as a c-superfat minor of a graph G,
such that distG(ηi(Ht), ηj(Ht)) > 5c for all distinct i, j ∈ {1, 2, 3}. Let W ⊆ V (G) such that G[W ]
is connected, and distG(ηi(H),W ) = c for h = 1, 2, 3; and for h = 1, 2, 3, let Ph be a geodesic from
W to ηh(H). Then there is a mapping η that exhibits Ht+1 as a c-superfat minor of G, such that

η(Ht+1) ⊆ G[W ] ∪ η1(Ht) ∪ η2(Ht) ∪ η3(Ht) ∪ P1 ∪ P2 ∪ P3.
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Proof. Let r be the root of Ht, let B1, B2, B3 be the three components of Ht \ r, and for h =
1, 2, 3, let eh be the edge of Ht between r and V (Bh). For h, i ∈ {1, 2, 3}, let ηh(B+

i ) denote⋃
x∈U(Bi)

ηh(x) ∪ ηh(ei). For h = 1, 2, 3, let wh ∈ W be the end of Ph in W . We know that for
h = 1, 2, 3, and all distinct i, j ∈ {1, 2, 3},

distG(ηh(B+
i ), ηh(B+

j )) ≥ 3c+ 1.

Consequently, there is at most one value of i ∈ {1, 2, 3} such that distG(Ph, ηh(B+
i )) ≤ c, since Ph

has length c. By relabelling, we may assume that distG(Ph, ηh(B+
i )) > c for i = 1, 2.

Since distG(ηi(Ht), ηj(Ht) > 5c and Pi, Pj have length c, it follows that distG(Pi, ηj(Ht)) > 4c,
and distG(Pi, Pj) > 3c, for all distinct i, j ∈ {1, 2, 3}. Moreover, distG(Ph, ηh(B+

i )) > c for i = 1, 2
and h = 1, 2, 3.

Let r′ be the root of Ht+1, and let B′1, B
′
2, B

′
3, e
′
1, e
′
2, e
′
3 be defined as usual. Thus, for h = 1, 2, 3,

B′h is isomorphic to Ht\V (B3); let φh be such an isomorphism. Define η(r′) = W , and for h = 1, 2, 3,
let η(x) = ηh(φh(x)) for each x ∈ U(B′h). For h = 1, 2, 3, we define η(e′h) as follows. If there is an
end yh of Ph in ηh(r), let η(e′h) = V (Ph) \ {wh, yh} (since c ≥ 2, this set is nonempty). If not, then
there is an end of Ph in ηh(B+

3 ); let η(e′h) = (V (Ph) \ {wh}) ∪ ηh(B+
3 ). Then η exhibits Ht+1 as a

c-superfat minor of G. This proves 2.1.

If X ⊆ V (G), bd(X) denotes the set of vertices in X that have a neighbour in V (G) \ X, and
is called the boundary of X. A key idea of the proof is that we work with subsets X ⊆ V (G) such
that, simultaneously, G[X] has bounded quasi-line-width and bd(X) has bounded quasi-size, and it
turns out that we can make the two bounds the same with little loss. Let us say X ⊆ V (G) has
quasi-bound at most (a, b) if G[X] has quasi-line-width at most (a, b) and bd(X) has quasi-size at
most (a, b).

We will need the following lemma about composing line-decompositions.

2.2 Let A be a set of disjoint nonempty subsets of V (G), with union W say, such that each A ∈ A
has quasi-bound at most (a, b). Suppose also that there is a line-decomposition of G[W ] in which each
bag is the union of at most k members of A. Then G[W ] has quasi-line-width at most ((k + 1)a, b).

Proof. Let Z be the union of the sets bd(A) (A ∈ A). Then by hypothesis, there is a line-
decomposition (Bt : t ∈ T ) of G[Z] such that each bag is the union of at most k sets of the form
bd(A), and so has quasi-size at most (ka, b). For each A ∈ A, since A is nonempty, there exists
r(A) ∈ T such that Br(A) ∩ A 6= ∅, and hence A ⊆ Br(A) (since Br(A) is a union of boundaries of
members of A and the members of A are pairwise disjoint). By duplicating points of T , we may
assume that the elements r(A) (A ∈ A) are all distinct; and also by duplicating points of T , we
may assume that each r(A) has a successor s(A) ∈ T , that is, an element s(A) ∈ T different from
r(A), such that r(A) < s(A), and there is no t ∈ T with r(A) < t < s(A). For each A ∈ A, let
(CA

t : t ∈ TA) be an (a, b)-quasi-bounded line-decomposition of G[A]. By adding two new elements
to TA, we may assume that TA has a maximum and minimum element; and so, by inserting TA into
T , we may assume that TA equals {t ∈ T : r(A) ≤ t ≤ s(A)}. For each t ∈ T , if t ∈ TA for some
(necessarily unique) A ∈ A, let Dt = Bt ∪ CA

t . If there is no such A, let Dt = Bt.
We claim that (Dt : t ∈ T ) is a line-decomposition of G[W ]. If v ∈W , choose A ∈ A with v ∈ A;

then v ∈ CA
t for some t ∈ TA, and hence v ∈ Dt. Next, suppose that uv ∈ E(G[W ]). If there exists

A ∈ A with u, v ∈ A, then u, v ∈ CA
t for some t ∈ TA, and hence u, v ∈ Dt. If there is no such A,
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choose A,A′ ∈ A with u ∈ A and v ∈ A′. Then u ∈ bd(A) and v ∈ bd(A′), and so uv is an edge of
G[Z]. Choose t ∈ T such that u, v ∈ Bt; then u, v ∈ Dt.

Finally, suppose that r < s < t are elements of T , and v ∈ Dr ∩ Dt. We need to show that
v ∈ Ds. Choose A ∈ A with v ∈ A. If v /∈ Z, then each of r, s, t belong to TA, since no other bags
contain v; and then, since v ∈ CA

r ∩CA
t , it follows that v ∈ CA

s ⊆ Ds as required. Now suppose that
v ∈ Z. Then, for p ∈ T , v belongs to Dp if and only if v ∈ Bp; and so v ∈ Br ∩Bt ⊆ Bs ⊂ Ds. This
proves that (Dt : t ∈ T ) is a line-decomposition of G[W ]. It is easy to check that each of its bags is
((k + 1)a, b))-bounded. This proves 2.2.

3 Buildings and tie-breakers

In the proof of 1.8, we are given a graph G that does not contain H` as a c-superfat minor. As the
proof proceeds, we will group the vertices of G is different ways, but the graph G itself will remain
unchanged. It is helpful also to fix a tie-breaker in G, that is, a well-order Λ of the set of all edges
of G (this is possible from the well-ordering theorem). If P,Q are distinct finite paths of G, we say
P is Λ-shorter than Q if either

• |E(P )| < |E(Q)|; or

• |E(P )| = |E(Q)|, and the first element (under Λ) of (E(P ) \ E(Q)) ∪ (E(Q) \ E(P )) belongs
to P .

This defines a total order on the set of all finite paths of G. A Λ-geodesic means a finite path P such
that no other path joining its ends is Λ-shorter than P . Every Λ-geodesic of G is a geodesic of G,
but the converse is false. (The point of the tie-breaker is that there is only one Λ-geodesic between
any two vertices, while this is not true for geodesics.) It is easy to check that if P is a Λ-geodesic
then so are all subpaths of P . We will keep Λ fixed, and usually suppress the dependence of other
objects on the choice of Λ.

A building in a graph G is a subset X ⊆ V (G) such that G[X] is connected. If T is a set of
pairwise vertex-disjoint buildings, in a graph G, we define V (T ) =

⋃
X∈T X. Again, let T be a set

of pairwise vertex-disjoint buildings, in a graph G, now with a tiebreaker Λ. We say that X ∈ T is
Λ-closest to v if there is a path of G between v,X that is Λ-shorter than any other path between
v and Y for Y ∈ T . For each X ∈ T , let ∆T (X) (or just ∆(X), when T is clear) be the set of all
v ∈ V (G) such that X is Λ-closest to v. We call ∆(X) the Voronoi cell of X, and the collection
of subsets ∆(X) (X ∈ T ) is called the Voronoi partition defined by T . (It is indeed a partition,
provided that each component of G includes a member of T ; and this is true for us since we will
always assume that G is connected and T is non-null.) The main purpose of the tie-breaker is to
make the Voronoi partition defined by T well-defined. We see that:

• X ⊆ ∆(X) for each X ∈ T ;

• the sets ∆(X) (X ∈ T ) are pairwise disjoint and have union V (G);

• for each X ∈ T and each v ∈ ∆(X), distG(v,X) ≤ distG(v, Y ) for each Y ∈ T , and there is a
path of G[∆(X)] between v and X of length distG(v,X).
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We say that distinct sets X,Y ⊆ V (G) touch if either X ∩ Y 6= ∅ or there is an edge between X
and Y . If T is a set of pairwise vertex-disjoint buildings, and X,Y ∈ T are distinct, we say that X
adjoins Y if ∆T (X) touches ∆T (Y ). A set C ⊆ T is adjoin-connected if for every partition of C into
two nonempty sets A,B, some member of A adjoins some member of B.

4 Realms

Let c ≥ 2 and ` ≥ 1 be integers, fixed throughout the paper. (We will be concerned with graphs that
do not contain H` as a c-superfat minor.) We also want to fix throughout the paper a large number
d0, depending on c, `. Actually we will take d0 = 5c · 32`(`+1), but its exact value will not matter
until the final section.

A century is an integer k with 0 ≤ k ≤ `. For each century k, a space requirement is a function
δ : {0, . . . , 2`} → N satisfying:

• δ(i) ≥ 2δ(i+ 1) + 2 for each i with 2k − 2 ≤ i < 2`;

• δ(i) ≤ d0 for all i ∈ {0, . . . , 2`}; and

• δ(2`) ≥ 5c.

A budget is a pair (α, β) of positive integers. For each century k, let us select a space requirement δ
and a budget (α, β): both will be fixed until the century changes, and the century will be fixed until
the final section. The notation α, β, δ does not show the dependence of these quantities on k: this is
for convenience, since they will all be fixed for a long time.

Let Λ be a tie-breaker in a connected graph G. A kth-century society in G is a set T of pairwise
vertex-disjoint buildings in G, where each member of T is assigned to be a “house” or “fort” of T ,
satisfying the following (where rk(X) = k − 1 if X is a house and rk(X) = k if X is a fort):

• For all v ∈ V (G), there exists X ∈ T such that distG(v,X) ≤ d0;

• Every two members X,Y of T have distance more than δ(rk(X) + rk(Y ));

• Every fort of T contains a c-superfat Hk-minor of G;

• For each fort X of T , bd(X) has quasi-bound at most (α, β);

• If C is a maximal adjoin-connected set of houses of T , then
⋃

X∈V (C) ∆T (X) has quasi-bound
at most (α, β − d0).

We plan to combine terms in a society to make new societies, and when we do this, the sets
∆(X) may change, even for sets X that were not involved in the combination, so the final condition
in the definition of “society” is hard to maintain. Our first goal is to simplify it, and we also want to
introduce “castles”, which are combinations of three or four forts. Let us say a kth century realm is
a set T of pairwise vertex-disjoint buildings in G, where each member of T is assigned to be a house,
fort or castle of T , satisfying the following (where rk(X) = k − 1, k or k + 1 depending whether X
is a house, fort or castle):

• For all v ∈ V (G), there exists X ∈ T such that distG(v,X) ≤ d0;
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• If X,Y ∈ T then distG(X,Y ) > δ(rk(X) + rk(Y ));

• Every fort or castle X of T contains a c-superfat Hrk(X)-minor of G;

• Every fort of T has quasi-bound at most (α, β);

• Every castle of T has quasi-bound at most (8α, β + (`− k)d0);

• For every community C of T , V (C) has quasi-bound at most (α, β). (A community of T is an
adjoin-connected set of houses of T , not necessarily maximal.)

If X belongs to a realm T , then it is a house, fort or castle of T , and we call this its class under T .
We claim:

4.1 Let T be a kth-century society in G. Then there is a kth-century realm in G.

Proof. Let us say a kth-century society T2 is an extension of another, T1, if each house of T1 is a sub-
set of a house of T2, and each fort of T1 is a fort of T2. By Zorn’s lemma, since there is a kth-century
society, there is a kth-century society T such that no kth-century society T ′ 6= T is an extension of T .

(1) distG(v,bd(∆(X))) ≤ d0 for every house X of T and every v ∈ bd(X).

Let v ∈ bd(X), and choose a neighbour u of v with u /∈ X. Since distG(X,Y ) > δ(rk(X)+rk(Y )) ≥ 1
for all Y ∈ T with Y 6= X, it follows that u /∈ V (T ). Let T ′ be obtained from T by removing X
and adding a new house X ∪ {u}. From the choice of T , T ′ is not a society, and so either there
is a house or fort Y ∈ T different from X with distG(u, Y ) ≤ δ(k − 1 + rk(Y )) ≤ δ(2k − 2),
or ∆T ′(X ∪ {u}) 6= ∆T (X). In the first case, there is a path between v, Y of length at most
δ(2k − 2) + 1 ≤ d0, and so a path between v,bd(∆T (X)) of length at most d0. In the second case,
there is a vertex w ∈ ∆T ′(X ∪ {u}) \ ∆T (X). Choose Y ∈ T such that distG(u, Y ) ≤ d0. Since
distG(u,w) ≤ distG(u, Y ) (because w ∈ ∆T ′(X ∪ {u}) \ ∆T (X)), it follows that distG(u,w) ≤ d0.
There is an internal vertex x of the shortest path between u,w in bd(∆T (X)), and so distG(u, x) < d0,
and therefore distG(v, x) ≤ d0. This proves (1).

We claim that T is a kth-century realm. Every community of T is a subset of a maximal
adjoin-connected subset of the set of houses of T , so it suffices to check that if C is a maximal
adjoin-connected subset of the set of houses of T , then bd(V (C)) has quasi-size at most (α, β).
We know that bd(

⋃
X∈V (C) ∆T (X)) has quasi-size at most (α, β − d0); but by (1), each vertex in

bd(V (C)) has distance at most d0 from some vertex in bd(
⋃

X∈V (C) ∆T (X)), and so bd(V (C)) indeed
has quasi-size at most (α, β). This proves 4.1.

We observe that:

4.2 In every connected graph G with a tie-breaker Λ, there is a 0th-century society in G.

Proof. By Zorn’s lemma, there exists S ⊆ V (G) maximal such that distG(u, v) > d0 for all distinct
u, v ∈ S. Let T = {{v} : v ∈ S} where each member of T is a fort of T . We claim that T is
a 0th-century society. Let v ∈ S. Then G[{v}] has quasi-line-width at most (α, β), since α ≥ 1.
Moreover bd({v}) ⊆ {v}, and so has quasi-size at most (α, β), since α ≥ 1. Also, trivially, X contains
a c-superfat H0-minor of G.

7



Moreover, distG(X,Y ) > d0 for all distinct X,Y ∈ T . For each v ∈ V (G), either v ∈ S or there
exists u ∈ S with distG(u, v) ≤ d0, from the maximality of S, and so in either case there exists u ∈ S
with distG(u, v) ≤ d0. This proves 4.2.

Our strategy to prove 1.8 is, for each century k, we will give a carefully-chosen space requirement
δ(k) and budget (αk, βk). We are given a graph G that does not contain H` as a c-superfat minor.
We may assume that G is connected, and so admits a 0th-century society by 4.2. We will prove that
for 0 ≤ k < `, if G admits a k-th century society and hence a k-th century realm, then it also admits
(k + 1)st-century society; and hence G admits a `-century society T . No buildings in T are forts or
castles, since G contains no c-superfat H`-minor of G, so they are all houses, and the result follows.

5 Optimizing within a century

Before we move into the (k+ 1)st century, we need to choose a “good” kth-century realm, by which
we mean, roughly, one with the maximum number of castles; but since G and the realm might be
infinite, we need to formulate this more carefully. Let us say a kth-century realm T2 is an extension
of a kth-century realm T1 if for each member X1 ∈ T1 there exists X2 ∈ T2 such that:

• X1 ⊆ X2; and

• either X2 is a building of higher class than X1 (that is, either X1 is a house of T1 and X2 is a
fort or castle of T2, or X1 is a fort of T1 and X2 is a castle of T2), or X1 = X2 and X1 has the
same class under T1 and under T2.

Let us say a kth-century realm T is optimal if no other kth-century realm is an extension of T . It
follows from Zorn’s lemma that if there is a kth-century realm, then one of its extensions is optimal.
In this section we will prove some properties of optimal realms.

Let X ∈ T , and let W ⊆ V (G) be disjoint from X. We say a path P is a c-leg on X in W if one
end p of P is in X, and V (P ) ⊆W ∪{p}, and P is a geodesic of length exactly c, and distG(v,X) > c
for each v ∈W \ V (P ).

The use of optimality is the following:

5.1 Let T be an optimal kth-century realm, in a graph G that does not contain H` as a c-fat minor.
Then there do not exist distinct forts X1, X2, X3 of T , and a subset W ⊆ V (G), with the following
properties, where Z = W ∪X1 ∪X2 ∪X3:

• G[W ] is connected and disjoint from X1 ∪X2 ∪X3;

• W has a c-leg on Xi for i = 1, 2, 3;

• Z has quasi-bound at most (8α, β + (`− k)d0);

• for each Y ∈ T , either distG(W,Y ) > δ(k + 1 + rk(Y )), or Y ⊆ Z and rk(Y ) ≤ k.

Proof. Let T ′ consist of the set of members of T that are not included in Z, together with Z, where
Z is a castle of T ′, and each other member of T ′ has the same class in T ′ that it has in T . We claim,
first, that:
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(1) T ′ is a kth-century realm.

We must check that the members of T ′ are pairwise vertex-disjoint buildings (which is true, since
any member of T ′ that intersects Z is included in Z), and:

• For all v ∈ V (G), there exists X ∈ T ′ such that distG(v,X) ≤ d0;

• If X,Y ∈ T ′ then distG(X,Y ) > δ(rk(X) + rk(Y ));

• Every fort or castle X of T ′ contains a c-superfat Hrk(X)-minor of G.

The first is clear. For the second, we may assume that X = Z, so rk(X) = k + 1. Since Y ∈ T ′ and
therefore Y 6⊆ Z, it follows that distG(W,Y ) > δ(k + 1 + rk(Y )); and

distG(Xi, Y ) > δ(k + rk(Y )) ≥ δ(k + 1 + rk(Y ))

for 1 ≤ i ≤ 3. Consequently the second bullet holds. For the third, for i = 1, 2, 3 let Pi be a c-leg
of W on Xi, and let Pi have ends pi, wi, where pi ∈ Xi. It follows (from the final condition in
the definition of a c-leg) that each vertex of Pi \ wi has no neighbour in W except for its one or
two neighbours in Pi. In particular, P1, P2, P3 are vertex-disjoint except that w1, w2, w3 might be
equal. Let W ′ be obtained from W by deleting the internal vertices of P1, P2, P3. (We recall that
p1, p2, p3 /∈ W .) It follows that G[W ′] is connected, and distG(W ′, Xi) = c for 1 ≤ i ≤ 3. From 2.1
applied to W ′, there is a function η that exhibits Hk+1 as a c-superfat minor of G, with

η(Hk+1) ⊆W ∪ η1(Hk) ∪ η2(Hk) ∪ η3(Hk).

This proves the third bullet and so proves (1).

Since by hypothesis, Z has quasi-bound at most (8α, β + (` − k)d0), it follows that T ′ is a
kth-century realm. But this contradicts the optimality of T , and so proves 5.1.

6 Passages

Let T be a kth-century realm, in the usual notation. A passage is an induced path P of G with the
following properties:

• there exist distinct X1, X2 ∈ T , each either a house or fort of T , such that one end of P is in
X1 and the other in X2 (and consequently P has length more than δ(2k) ≥ 5c);

• no internal vertex of P belongs to X1 ∪X2;

• distG(P, Y ) > δ(k + 1 + rk(Y )) for each Y ∈ T with Y 6= X1, X2;

• for i ∈ {1, 2}, let Pi be the subpath of P with one end in Xi of length c; then Pi is a geodesic,
and for each v ∈ V (P ), distG(v,Xi) ≤ c if and only if v ∈ V (Pi).

We say that P joins X1, X2, and P is incident with X1, X2. We will only need passages of bounded
length.
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6.1 Let T be an optimal kth-century realm in a graph G. There do not exist forts X1, . . . , Xm1 and
communities Y1, . . . , Ym2 of T , and passages P1, . . . , Pm3, with the following properties:

• m1,m3 ≥ 3, and m1 +m2 ≤ 7;

• each of P1, . . . , Pm3 has length at most (`− k)d0 + 1, and joins two members of

{X1, . . . , Xm1} ∪ Y1 ∪ · · · ∪ Ym2 ;

• for 1 ≤ i ≤ 3, Pi is incident with Xi, and none of P1, . . . , Pm3 is incident with Xi except Pi;
and

• G[W ] is connected, where

W = (X4 ∪ · · · ∪Xm1 ∪ V (Y1) ∪ · · · ∪ V (Ym2) ∪ V (P1) ∪ · · · ∪ V (Pm3)) \ (X1 ∪X2 ∪X3).

Proof. Suppose that such X1, . . . , Xm1 , Y1, . . . , Ym2 , P1, . . . , Pm3 exist. Let Z = W ∪X1 ∪X2 ∪X3.
We claim that:

• G[W ] is connected and disjoint from X1 ∪X2 ∪X3;

• W has a c-leg on Xi for i = 1, 2, 3;

• Z has quasi-line-width at most (8α, β + (`− k)d0)), and bd(Z) has quasi-size at most (8α, β +
(`− k)d0));

• for each X ′ ∈ T , either distG(W,X ′) > δ(k + 1 + rk(X ′)), or X ′ ⊆ Z.

The first is clear, and the second and fourth hold from the definition of a passage. To see the third,
let

A = X1 ∪ · · · ∪Xm1 ∪ V (Y1) ∪ · · · ∪ V (Ym2).

Since each of X1, . . . , Xm1 , V (Y1), . . . , V (Ym2) has quasi-line-width at most (α, β), so does A (because
there are no edges between the sets of T ). Since the boundary of each Xi and of each V (Yi) has
quasi-size at most (α, β), and m1 +m2 ≤ 7, it follows that bd(A) has quasi-size at most (7α, β), and
hence bd(A) ∪ V (P1) ∪ · · · ∪ V (Pm3) has quasi-size at most (7α, β + (` − k)d0), since each Pi has
length at most (`− k)d0 + 1 and has both ends in bd(A).

But bd(Z) ⊆ bd(A)∪V (P1)∪· · ·∪V (Pm3), and so bd(Z) has quasi-size at most (7α, β+(`−k)d0).
Since A has quasi-line-width at most (α, β) and Z = A∪V (P1)∪ · · · ∪V (Pm3), it follows that Z has
quasi-line-width at most (8α, β + (`− k)d0). This proves our claim that the four bullets above hold;
but this contradicts 5.1. So there are no such X1, . . . , Xm1 , Y1, . . . , Ym2 , P1, . . . , Pm3 . This proves
6.1.

A community adjoins a fort X if one of its members adjoins X. If A ⊆ T , we denote the set of
members of A that are houses or forts by A0. Let C ⊆ T 0. If X1, X2 ∈ C are both forts, we say
they semiadjoin (in C) if either X1 adjoins X2, or there is a community D of T included in C that
adjoins them both. We say X ∈ C is C-peripheral if either:

• X is a fort, and semiadjoins (in C) at most one other fort in C; or
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• X is a house, and for every community D ⊆ C containing X, D adjoins at most one fort in C,
and any such fort is C-peripheral.

A community included in C is C-peripheral if one (and hence all) of its members are C-peripheral.
An integer interval is a set I of integers such that if a, b ∈ I then I contains all integers between

a, b. We say (a, b) is an end-set of an integer interval I if a, b ∈ I, and a− 1, b+ 1 /∈ I (and hence I
is finite).

6.2 Let G be a graph that does not contain a c-superfat H`-minor, and let T be an optimal kth-
century realm in G. Each community adjoins at most two forts, and each fort semiadjoins (in T )
at most two other forts. Consequently, if C is an adjoin-connected subset of T 0 that contains a fort,
then the forts in C can be numbered as Xi (i ∈ I), where I is an integer interval, with the following
properties:

• for each i ∈ I, if i + 1 ∈ I then Xi semiadjoins (in C) Xi+1, and no other pair of forts in
C semiadjoin (in T ) each other except possibly Xa, Xb, where (a, b) is an end-set of I and
b ≥ a+ 2;

• for each community S with S ⊆ C, S adjoins at most two forts in C.

Moreover, if C,D are disjoint adjoin-connected subsets of T 0, and P is a passage of length at most
(` − k)d0 + 1 joining some X ∈ C and some Y ∈ D, then either X is C-peripheral or D is a
community.

Proof. Let S ⊆ C be a community, and suppose that it adjoins three forts X1, X2, X3 ∈ C. Thus
for i = 1, 2, 3, there is a passage Pi between Xi and some Yi ∈ S, with length at most 2d0 + 1.
Choose more passages P4, . . . , Pm3 joining pairs of members of S, of length at most 2d0 + 1, so that
the union of their vertex sets with V (S) induces a connected subgraph of G (this is possible since S
is a community). This contradicts 6.1, taking m1 = 3 and m2 = 1.

Now let X4 be a fort, and suppose that there are three other forts X1, X2, X3 that C-semiadjoin
X4. Thus for 1 ≤ i ≤ 3, either X4 adjoins Xi, or there is a community Si ⊆ C that adjoins both
X4, Xi. For i = 1, 2, 3, if X4 adjoins Xi, let Pi be a passage of length at most 2d0 + 1 joining them
and let Si = ∅; and otherwise let Si be a community in C that adjoins both X4, Xi, and let Pi be a
passage joining some member of Si and Xi. Then {X4}∪S1 ∪S2 ∪S3 is adjoin-connected, so we can
choose passages P4, . . . , Pm3 , each joining two members of {X4} ∪ S1 ∪ S2 ∪ S3 and each of length
at most 2d0 + 1, such that the union of their vertex sets and X4 ∪ V (S1) ∪ V (S2) ∪ V (S3) induces a
connected subgraph of G. But this contradicts 6.1, taking m1 = 4 and m2 = 3.

Let H be the graph with vertex set the set of forts in C, in which two forts are adjacent if they
semiadjoin. Since C is adjoin-connected, it follows that H is connected, and H has maximum degree
at most two from the argument above. Consequently H is a path (possibly one-way or two-way
infinite) or a cycle (necessarily finite), and so the forst in C can be numbered as in the theorem.

Finally, suppose that C,D are disjoint adjoin-connected subsets of T 0, and P is a passage of length
at most (` − k)d0 + 1 joining some X ∈ C and some Y ∈ D. Suppose that X is not C-peripheral,
and D is not a community. Thus either

• X is a fort, and X is semiadjoins (in C) two other forts of C; or
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• X is a house, and there is a community containing X and included in C that adjoins two forts
of C; or

• X is a house, and there is a community containing X and included in C that adjoins a fort of
C that is not C-peripheral.

Moreover, the end of P in V (D) either belongs to a fort of D, or it belongs to a member of a
community included in D that adjoins a fort of D. This gives a contradiction to 6.1 as before (we
omit the details, since there are several cases, all similar to what we already did twice). This proves
6.2.

6.3 Let G be a graph that does not contain a c-superfat H`-minor, and let T be an optimal kth-
century realm in G, and let S =

⋃
X∈T 0 ∆T (X). Then S has quasi-line-width at most (5α, β + d0).

Proof. Let J be the graph with vertex set the set of forts of T together with the set of all maximal
communities of T , where we say X,Y ∈ V (J) are adjacent if X adjoins Y (and consequently at least
one of X,Y is a fort). From 6.2, each maximal community in J has degree at most two in J , and its
neighbours in J are forts. By 6.2, J has line-width at most three. For each X ∈ V (J), if X is a fort
of T let A(X) = ∆T (X), and if X is a maximal community of T , let A(X) be the union of the sets
∆T (Y ) (Y ∈ X). Thus the sets A(X) (X ∈ V (J)) are pairwise disjoint and have union S. For each
X ∈ V (J), A(X) has quasi-line-width at most (α, β + d0), and its boundary has quasi-size at most
(α, β + d0). By 2.2, S has quasi-line-width at most (5α, β + d0). This proves 6.3.

7 Governments

Let T be an optimal kth-century realm in a graph G, with a tie-breaker Λ.
For k + 1 ≤ t ≤ `− 1, a province A of type t is a subset of T such that:

• there are at most 3t−k − 1 forts that are A0-peripheral;

• the set of houses that are A0-peripheral is the union of 3t−k − 2 communities; and

• there are exactly 3t−k−1 castles in A.

For instance, each castle of T forms a singleton province with type k + 1. If T is an optimal kth-
century realm, we say a government for T is a set G of pairwise vertex-disjoint provinces, together
with the choice of a set F (A) ⊆ V (G) for each A ∈ G, called the framework of A, satisfying:

• If A ∈ G, then G[F (A)] is connected and includes the union of the members of A;

• If A ∈ G has type t, then every vertex in F (A) is joined to some member of A by a path of
G[F (A)] of length at most d0(t− k − 1);

• If A1, A2 ∈ G are distinct, of types i, j respectively, then distG(F (A1), F (A2)) > δ(i+ j);

• Each castle of T is contained in some province in G;
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• If A ∈ G has type t and X ∈ T is not included in any province in G, then distG(F (A), X) >
δ(t+ rk(X));

• If A ∈ G has type t, then F (A) contains a c-superfat Ht-minor of G.

If A is a province of G, we denote its type by type(A). The members of T that are not included in
provinces of G are called rebels. Thus, there may be rebel houses and rebel forts, but no castles are
rebels.

We will fix some optimal kth-century realm T , and will consider different governments for T .
There is a government for T each member of which is a singleton province (taking F (X) = X for all
X ∈ T of rank > k); we call this the primordial government of T .

Let G be a government for T . A stronghold of G is a set X ⊆ V (G) such that either X = F (A)
for some A ∈ G, or X ∈ T is a rebel of G; and V (G) denotes the union of the strongholds of G. If
X is a stronghold, a vertex of G is X-local if its Λ-geodesic to X is Λ-shorter than its Λ-geodesic to
any other stronghold of G. For each stronghold X, let LG(X) be the set of X-local vertices. If X is
a stronghold, a path P of G with ends p, q is X-local if P is a geodesic from p to V (G), and q ∈ X.
Thus q is the only vertex of P in V (G), and all the vertices of P are X-local, and P has length
at most d0. (Thus, whether a vertex or path is X-local depends on the government.) If X,Y are
strongholds, a channel between X,Y is a path R of G, with an edge uv ∈ E(R), such that the two
components of R \ {uv} are respectively X-local and Y -local. Note that passages are defined just
with reference to T , and so are government-independent, while channels are defined with reference
to the current government, and will change if the government changes. We say a stronghold talks to
another stronghold if there is a channel joining them. For each rebel X, LG(X) ⊆ ∆T (X), and so if
two rebels talk to each other then they adjoin each other (but the converse may not be true).

A set C of rebels is in communication if for every partition D,E of C with D,E 6= ∅, some
member of D talks to some member of E. A network of G is a maximal set of rebel houses that
is in communication. Thus, every network is a community; but whether a set is a community is
determined by T and is independent of the current government, while whether a set is a network
depends on the government. We say a set C of rebels is organized if the set of houses in C is a union
of networks.

7.1 In the same notation, let C be an adjoin-connected set of rebels that contains at least one fort,
and let A ∈ G. Let R be the set of u ∈ V (G) such that there exist X ∈ C with u ∈ LG(X), and there
exists v ∈ LG(F (A)) adjacent to u. Then R has quasi-size at most(

i
(

14 · 3`−k−2 − 3
)
α, β + (`− k)d0

)
.

Proof. Let A have type t < `, Let u ∈ R, and choose X ∈ C with u ∈ LG(X), and v ∈ LG(F (A))
adjacent to u. Since u is X-local, there is a geodesic P between u,X that is X-local. Since v is
F (A)-local,

distG(v,X) ≥ dist(X,F (A))/2 ≥ 1

2
δ(t+ rk(X)) ≥ c+ 1,

and so P has length at least c. There is a path in LG(F (A)) between v, F (A) of length at most d0,
and every vertex of F (A) is joined to V (A) by a path of G[F (A)] of length at most d0(t− k− 1). So
there is a path of G[LG(F (A))] between v and V (A) of length at most d0(t− k) ≤ d0(`− k− 1). Let
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Q be the shortest path in G[LG(F (A))] between v, V (A), and let Q have ends v, q where q ∈ Y ∈ A.
Thus Q has length at most (`− k − 1)d0. Since u is X-local, it follows that

distG(v, Y ) ≥ 1

2
distG(X,Y )− 1 >

1

2
δ(rk(X) + t)− 1 ≥ c.

Let Q′ be the subpath of Q of length c with one end q, and let its other end be q′. It follows that Q′

is a geodesic of G (because every vertex with distance at most c from Y has distance more than c
from every other member of T ), and every vertex of Q not in V (Q′) has distance more than c from
Y . So the union of P,Q and the edge uv is a passage of length at most (` − k)d0 + 1, containing
the edge uv. We have proved then that for each such choice of uv, there is a passage of length at
most (` − k)d0 + 1, containing the edge uv, joining some X ∈ C and some Y ∈ A. Since C is not
a community by hypothesis, it follows from 6.2 that Y is special, where we say a member of the
province A is special if either it is a castle, or it is A0-peripheral. The special houses in A can be
partitioned into at most 3t−k − 2 communities, and there are at most 3t−k − 1 special forts in A,
and 3t−k−1 special castles. For each of these communities, the boundary of its union has quasi-size
at most (α, β); and each of the forts has boundary with quasi-size at most (α, β) and each of the
castles has boundary of quasi-size at most (8α, β + (` − k)d0). Consequently, the boundary of the
union of the special members of A has quasi-size at most((

3t−k − 2
)
α+

(
3t−k − 1

)
α+ 3t−k−1(8α), β + (`− k)d0

)
=
((

14 · 3t−k−1 − 3
)
α, β + (`− k)d0

)
.

Since t < `, this proves 7.1.

8 Revolution

Again, let G be a graph that does not contain H` as a c-superfat minor. Let T be an optimal
kth-century realm in a graph G, with a tie-breaker Λ, and let G be a government for T . We say that
a set C of rebels is a cabal if:

• C is in communication, and organized;

• some (at most two) forts in C are designated as “leaders”; and some (at most three) networks
included in C are designated as “leading networks”;

• every element of C that is C-peripheral is either a leader or belongs to a leading network;

• if X ∈ C talks to some rebel not in C, then either X is a leader, or X belongs to a leading
network;

• for some j ∈ {k+ 1, . . . , `− 1} there are three provinces A1, A2, A3 ∈ G of type j, such that for
1 ≤ i ≤ 3, some member of C talks to F (Ai); and

• either |C| = 1, or C is a network, or for each j ∈ {k + 1, . . . , ` − 1} there are at most four
provinces A ∈ G of type j such that some member of C talks to F (A).

14



8.1 With T ,G as above, suppose that C is a cabal. Let W =
⋃

X∈C LG(X). Then bd(W ) has
quasi-size at most

(56(`− k − 1)3`−k−2α, β + (`− k)d0).

Proof. Since C is a cabal, it follows that k ≤ ` − 2. If |C| = 1, say C = {X}, then bd(X) has
quasi-size at most (α, β), and so bd(W ) has quasi-size at most (α, β + d0), since every vertex in
LG(X) has distance at most d0 from some vertex in bd(X). Similarly, if C is a network, and hence a
community, then bd(V (C)) has quasi-size at most (α, β), and hence again bd(W ) has quasi-size at
most (α, β+d0). Thus we may assume that neither of these is true, and so for each j ∈ {k+1, . . . , `−1}
there are at most four provinces A ∈ G of type j such that some member of C talks to F (A). Let Q
be the set of all such provinces in G; so |Q| ≤ 4(`− k− 1). If some X ∈ C talks to some rebel Y not
in C, then either X is a leader, or X belongs to a leading network; and the boundary of each leader
has quasi-size at most (α, β), and so does the boundary of the union of the members of each leading
network. Consequently, bd(W ) is the union of at most five sets of quasi-size at most (α, β+d0), and
at most 4(`− k − 1) further sets each with quasi-size at most((

14 · 3`−k−2 − 3
)
α, β + (`− k)d0

)
,

by 7.1. It follows that bd(W ) has quasi-size at most(
(5 + 56(`− k − 1)3`−k−2 − 12(`− k − 1))α, β + (`− k)d0

)
.

This proves 8.1.

8.2 With T ,G as before, suppose that C is a cabal, and let j, A1, A2, A3 be as in the fifth bullet in
the definition of a cabal. Let A = {A1, A2, A3} ∪C, and define F (A) to be the set of all vertices that
are X-local for some X ∈ C ∪ {F (A1), F (A2), F (A3)}. Let G′ = (G \ {A1, A2, A3}) ∪ {A}. Then G′
is a government, and F (A) has quasi-bound at most(

7(`− k)3`−kα, β + 2(`− k − 1)d0

)
.

Proof. First we show that:

(1) A is a province of type j + 1.

To show this, we need to check that

• there are at most 3j+1−k − 1 forts that are A0-peripheral;

• there is a set of at most 3j+1−k − 2 communities, each included in C, such that every A0-
peripheral house belongs to one of them;

• exactly 3j−k castles belong to A.

15



For the first, there are at most 3(3j−k − 1) forts that are A0-peripheral and belong to A1 ∪A2 ∪A3,
and only two in C, so in total at most 3j+1−k − 1 as required. For the second, for i = 1, 2, 3 there
is a set of at most 3j−k − 2 communities, each included in Ai, such that every house in Ai that is
A0-peripheral belongs to one of them; and at most three more suffice for C, so in total we need at
most 3(3j−k − 2) + 3 ≤ 3j+1−k − 2. The third bullet is clear. This proves (1).

To show that G′ is a government, we need to show in addition that G[F (A)] is connected (which
is clear), and that

• every vertex in F (A) is joined to some member of A by a path of G[F (A)] of length at most
d0(j + 1− k);

• if A′ ∈ G with A′ 6= A, then distG(F (A), F (A′)) > δ(type(A′) + j + 1);

• if Y ∈ T is not included in any province in G′, then distG(F (A), Y ) > δ(rk(Y ) + j + 1);

• j ≤ `− 2, and F (A) contains a c-superfat Hj+1-minor of G.

For the first bullet, let v ∈ F (A). Thus, v is X-local for some X ∈ C∪{F (A1), F (A2), F (A3)}. If
X ∈ C, then v is joined to X by an X-local path, which therefore has length at most d0, as required;
so we may assume that X = F (A1). Let P be an F (A1)-local path between v and F (A1), and let
p be the end of P in F (A1). Thus, P has length at most d0. Since p ∈ F (A1), p is joined to some
member of A1 by a path Q of G[F (A1)] of length at most d0(j − k); and its union with P provides
the path we need. This proves the first bullet.

For the second bullet, let A′ ∈ G with A′ 6= A. Let v ∈ F (A); we need to show that
distG(v, F (A′)) > δ(type(A′) + j + 1). Choose X ∈ C ∪ {F (A1), F (A2), F (A3)} such that v is
X-local. Thus distG(v, F (A′)) ≥ distG(v,X). If X ∈ C, then

distG(v, F (A′)) + distG(v,X) > δ(type(A′) + rk(X)),

so
distG(v, F (A′)) > δ(type(A′) + rk(X))/2 > δ(type(A′) + j + 1)

as required. If X = F (A1) say, then

distG(v, F (A′)) + distG(v,X) > δ(type(A′) + j),

so
distG(v, F (A′)) > δ(type(A′) + j)/2 > δ(type(A′) + j + 1)

as required. This proves the second bullet.
For the third, suppose that Y ∈ T is not included in any province in G′. Let v ∈ F (A); we need

to show that distG(v, Y ) > δ(rk(Y ) + j + 1). Choose X ∈ C ∪ {F (A1), F (A2), F (A3)} such that v is
X-local. Thus distG(v, Y ) ≥ distG(v,X). If X ∈ C, then

distG(v, Y ) + distG(v,X) > δ(rk(Y ) + rk(X)),

so
distG(v, Y ) > δ(rk(Y ) + rk(X))/2 > δ(rk(Y ) + j + 1)
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as required. If X = F (A1) say, then distG(v, Y ) + distG(v,X) > δ(rk(Y ) + j), so

distG(v, Y ) > δ(rk(Y ) + j)/2 > δ(rk(Y ) + j + 1)

as required. This proves the third bullet.
Since δ(2j) ≥ 5c for all j ∈ {k + 1, . . . , `− 1}. 2.1 implies that F (A) contains a c-superfat Hj+1-

minor of G; and hence j ≤ `− 2 since G does not contain H` as a c-superfat minor. This proves the
fourth bullet, and so proves that G′ is a government.

For the quasi-bound of F (A), let W =
⋃

X∈C LG(X), and let B be the set of castles in A.
Thus |B| ≤ 3`−k−2. Every vertex in F (A) is joined to some member of A by a path of G[F (A)] of
length at most d0(` − k − 2), and hence every vertex in F (A) \ (V (A) ∪ (W \ bd(W ))) is joined to
bd(V (B))∪bd(W ) by a path of length at most d0(`−k− 2). Since bd(V (B)) has quasi-size at most(

8 · 3`−k−2α, β + (`− k)d0

)
,

and bd(W ) has quasi-size at most(
56(`− k − 1)3`−k−2α, β + (`− k)d0

)
by 8.1, it follows that F (A) \ (V (A) ∪ (W \ bd(W ))) has quasi-size at most(

56(`− k − 1)3`−k−2α, β + 2(`− k − 1)d0

)
.

Since bd(F (A)) ⊆ (A) \ (V (A) ∪ (W \ bd(W ))), it follows that bd(F (A)) has quasi-size at most the
same.

Since W has quasi-line-width at most (5α, β + d0) by 6.3, and each member of B has quasi-line-
width at most (8α, β+(`−k−1)d0), and there are no edges between any two of the sets in B∪{W},
it follows that W ∪ V (B) has quasi-line-width at most

(8α, β + (`− k − 1)d0) .

Since every vertex of F (A) not in W ∪ V (B) belongs to F (A) \ (V (A) ∪ (W \ bd(W ))), it follows
that F (A) has quasi-line-width at most(

8 · 3`−k−2α+ 56(`− k − 1)3`−k−2α, β + 2(`− k − 1)d0

)
and hence at most (

7(`− k)3`−kα, β + 2(`− k − 1)d0

)
.

This proves 8.2.

If G,G′ are related as in 8.2, we say that G′ is obtained from G by a revolution. Let us say a
government G is small if for each province A ∈ G, F (A) has quasi-bound at most(

7(`− k)3`−kα, β + 3(`− k − 1)d0

)
.

The primordial government is small, and we want to modify it to make the best possible small
government. To do so, let us say a government G2 extends a government G1 if (using F1(A), and
F2(A) as the respectively framework functions):
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• every rebel of G1 either is a rebel of G2, or is a subset of a province of G2;

• every province X1 of G1 is a subset of a province X2 of G2, where F1(X1) ⊆ F2(X2), and either
X1 = X2 and F1(X1) = F2(X2), or the type of X2 in G2 is greater than the type of X1 in G1.

Let us say a small government G is stable if no other small government extends G. Since the primordial
government is small, it follows from Zorn’s lemma that there is a stable small government. If a small
government is stable, then (by the final statement of 8.2) no other government can be obtained from
it by a revolution, and therefore there are no cabals.

8.3 Let T be an optimal kth-century realm, and let G be a stable small government for T . Let C
be a set of rebels, in communication and maximal with this property; and let W be the union of the
sets LG(X) (X ∈ C). Then W has quasi-line-width at most (5α, β + d0), and bd(W ) has quasi-size
at most (

(`− k)3`−k+1α, β + 2(`− k + 1)d0

)
.

Proof. The first claim follows from 6.3, since W is a subset of the set S of 6.3. For the second claim,
if C is a community, then bd(V (C)) has quasi-size at most (α, β), and hence bd(W ) has quasi-size
at most (α, β + d0), since each vertex in bd(W ) has distance at most d0 from bd(V (C)). So we may
assume that C is not a community.

We say that C ′ ⊆ C is dangerous if C ′ is in communication, and there exist j > k and three
members A1, A2, A3 ∈ G, all of type j, such that for 1 ≤ i ≤ 3, some member of C ′ talks to F (Ai).
Suppose that C is not dangerous. Then for k + 1 ≤ j ≤ ` − 1, there are at most two provinces
A ∈ G such that F (A) talks to some member of C. Let Q be the set of all such provinces in G; so
|Q| ≤ 2(` − k). But since C is a maximal set of rebels in communication, it follows that for each
u ∈ bd(W ) there exists A ∈ Q such that u has a neighbour in LG(F (A)); and so by 7.1, bd(W ) has
quasi-size at most (

2(`− k)
(

7 · 3`−k−2 − 3
)
α, β + 2(`− k + 1)d0

)
and the theorem holds.

If some network included in C is dangerous, then it is a cabal (designating itself as the only
leading network), a contradiction. So no network included in C is dangerous.

Thus we may assume that C is dangerous and not a community. Since C is in communication,
it is also adjoin-connected, and so we may number the forts in C as Xi (i ∈ I) where I is an integer
interval, as in 6.2. Since C is a maximal set of rebels that is in communication, it follows that C is
organized.

For i1, i2 ∈ I with i1 ≤ i2, let C(i1, i2) be the union of {Xi1 , . . . , Xi2} and all networks that talk
to one of Xi1 , . . . , Xi2 . It follows that C(i1, i2) is organized. Since C is dangerous, we may choose
i1, i2 with i2− i1 minimal such that C(i1, i2) is dangerous. (Possibly i1 = i2.) Let D be the union of
{Xi1 , . . . , Xi2} and all networks that talk to one of Xi1+1, . . . , Xi2−1. Again, D is organized. Each
member of C(i1, i2) \D is a house, and belongs to a network that talks to one or both of Xi1 , Xi2

and to none of Xi1+1, . . . , Xi2−1.
Since C(i1, i2) is dangerous, there exist j > k and three members A1, A2, A3 ∈ G, all of type

j, such that for 1 ≤ i ≤ 3, some member of C(i1, i2) talks to F (Ai). For i = 1, 2, 3, F (Ai) talks
to either some member of D, or to some network included in C(i1, i2) \ D. So by adding to D at
most three of the networks included in C(i1, i2) \D, we can construct a set D′ that is dangerous, in
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communication, and organized. Let us construct such a set D′ by adding to D as few networks as
possible; so in particular, if D is dangerous then D′ = D. We designate Xi1 , Xi2 as leaders of D′,
and the (at most three) networks with union D′ \D as leading networks of D′. We claim that D′ is
a cabal. To show this, we must check that

• D′ is in communication, and organized;

• some (at most two) forts of D′ are designated as leaders; and some (at most three) networks
of D′ are designated as leading networks;

• every element of D′ that is D′-peripheral is either a leader or belongs to a leading network;

• if X ∈ D′ talks to some rebel not in D′, then either X is a leader, or X belongs to a leading
network;

• for some j ∈ {k+ 1, . . . , `− 1} there are three provinces A1, A2, A3 ∈ G of type j, such that for
1 ≤ i ≤ 3, F (Ai) talks to some member of D′; and

• either |D′| = 1, or D′ is a network, or for each j ∈ {k + 1, . . . , ` − 1} there are at most four
provinces A ∈ G of type j such that F (A) talks to a member of D′.

The first two bullets are clear. The third holds since no member of D is D-peripheral except possibly
Xi1 , Xi2 .

For the fourth bullet, suppose that X ∈ D′ talks to some rebel Y /∈ D′. If X is a fort, then
X = Xi for some i ∈ {i1, . . . , i2}; and since Y /∈ D, it follows that i ∈ {i1, i2} and so X is a leader.
Now we assume that X is a house; let B be the network of G that contains X. Since D′ is organized.
it follows that B ⊆ D′. Since Y /∈ D′, it follows that Y /∈ B, and so B talks to Y and hence Y is a
fort. Choose i ∈ {i1, . . . , i2} such that B talks to Xi, with i /∈ {i1, i2} if possible. If i 6= i1, i2, then
Xi semiadjoins Xi−1, Xi+1 and Y , contrary to 6.2. Hence we cannot choose i /∈ {i1, i2}; so B 6⊆ D,
and therefore B is a leading network. This proves the fourth bullet.

The fifth bullet holds since D′ is dangerous. Finally, for the sixth bullet, if D′ 6= D, then, since
we added as few networks to D as possible to make a dangerous set, and no network is dangerous,
the sixth bullet holds. So we may assume that D′ = D, and so D is dangerous. If i1 6= i2, then
for every province A ∈ G, if F (A) talks to some member of D then it also talks to a member of
one of C(i1 + 1, i2), C(i1, i2 − 1), and since C(i1 + 1, i2) and C(i1, i2 − 1) are not dangerous (by the
minimality of i2 − i1), it follows that the sixth bullet holds. So we may assume that i1 = i2. Since
D = D′, it follows that D = {Xi1} and so |D| = 1, and again the sixth bullet holds. This proves
that D′ is a cabal, a contradiction since G is a stable small government. This proves 8.3.

9 A new century

So far, we have kept fixed the century k, and its space requirement δ and its budget (α, β), but now
we approach another century, and we need more flexible notation. For 0 ≤ k ≤ `, let the space
requirement of the kth century be the function δk, defined by

δk(i) = 5c · 32`(`+1−k)−i
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for 0 ≤ i ≤ 2`. Note that this is indeed a space requirement, for each k ∈ {0, . . . , `}, from the choice
of d0 = 5c · 32`(`+1). Let the budget for the kth century be (αk, βk), where (α0, β0) = (1, 1), and
inductively for 0 ≤ k < `,

αk+1 = 7(`− k)3`−kαk

βk+1 = βk + 2(`− k)d0.

We claim:

9.1 Let G be a graph that contains no c-superfat H`-minor. Suppose that G admits a kth-century
society, where k < `. Then G admits a (k + 1)st-century society.

Proof. Since G admits a kth-century society, it also admits a kth-century realm, by 4.1, and hence
an optimal kth-century realm T say. Since there is a primordial government for T , there is a stable
small government G for T . Let T ′ be the set of strongholds of G. We assign each rebel house or
rebel fort of G to be a house of T ′, and for each A ∈ G, we assign F (A) to be a fort of T ′. If X ∈ T ′,
we write rk′(X) = k or k + 1 depending whether X is a house or fort of T ′. We claim that T ′ is a
(k + 1)st-century society.

We must check that

1. The members of T ′ are pairwise vertex-disjoint and induce connected subgraphs of G.

2. For all v ∈ V (G), there exists X ∈ T ′ such that distG(v,X) ≤ d0.

3. If X,Y ∈ T ′ are distinct then distG(X,Y ) > δk+1(rk
′(X) + rk′(Y )).

4. Every fort of T ′ contains a c-superfat Hk+1-minor of G.

5. For each fort X of T ′, bd(X) has quasi-bound at most (αk+1, βk+1).

6. If C is a maximal adjoin-connected subset of the set of houses of T ′, then bd(
⋃

X∈V (C) ∆T ′(X))
has quasi-bound at most (αk+1, βk+1 − d0).

Statement 1 is true since the strongholds of G are pairwise disjoint, and statement 2 holds since each
member of T is a subset of some member of T ′. For the third statement, if X,Y ∈ T ′, then

distG(X,Y ) ≥ δk(2`) ≥ δk+1(2k) ≥ δk+1(rk
′(X) + rk′(Y )),

and so this statement holds. The fourth statement holds since if X is a fort of T ′, then X = F (A)
for some A ∈ G; and since A has type t > k, F (A) contains a c-superfat Ht-minor of G, and so also
contains a c-superfat Hk+1-minor of G. Statement 5 holds since G is a small government. Finally, for
statement 6, let C is a maximal adjoin-connected subset of the set of houses of T ′. If X,Y are rebel
houses or forts of G, then X talks to Y if and only if ∆T ′(X) touches ∆T ′(Y ); so C is a network of
G, and hence the statement follows from 8.3. This proves 9.1.

Now we can prove our main result, 1.8, which we restate in a slightly stronger form (recalling
that `, c are fixed):

9.2 Every graph that does not contain H` as a c-superfat minor has quasi-line-width at most (α`, β`−
d0).
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Proof. Let G be a graph that does not contain H` as a c-superfat minor. We may assume that G
is connected. By 4.2, G admits a 0th-century society; so by 9.1, G admits an `th-century society
T . Since G does not contain H` as a c-superfat minor, all members of T are houses; and since
G is connected and therefore T is adjoin-connected, we deduce that V (G) =

⋃
X∈V (C) ∆T (X) has

quasi-bound at most (α`, β` − d0). This proves 9.2.
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