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Abstract

We show that if a graph G admits a quasi-isometry φ to a graph H of bounded path-width, then G
admits such a quasi-isometry that has error only an additive constant. Indeed, we will show a much
stronger statement: that we can assign a non-negative integer length to each edge of H, such that
the same function φ is a quasi-isometry to this weighted version of H, with error only an additive
constant.



1 Introduction

We need to begin with some definitions. Graphs in this paper may be infinite. If X is a vertex of a
graph G, or a subset of the vertex set of G, or a subgraph of G, and the same for Y , then distG(X,Y )
denotes the distance in G between X,Y , that is, the number of edges in the shortest path of G with
one end in X and the other in Y . (If no path exists we set distG(X,Y ) =∞.)

Let G,H be graphs, and let φ : V (G) → V (H) be a map. Let L,C ≥ 0; we say that φ is an
(L,C)-quasi-isometry if:

• for all u, v in V (G), if distG(u, v) is finite then distH(φ(u), φ(v)) ≤ LdistG(u, v) + C;

• for all u, v in V (G), if distH(φ(u), φ(v)) is finite then distG(u, v) ≤ LdistH(φ(u), φ(v))+C; and

• for every y ∈ V (H) there exists v ∈ V (G) such that distH(φ(v), y) ≤ C.

What if we want L = 1? There is a remarkable theorem of Chepoi, Dragan, Newman, Rabinovich,
and Vaxès [2], also proved by Kerr [7]:

1.1 For all L,C there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph G to a
tree, then there is a (1, C ′)-quasi-isometry from G to a tree.

Is this special to trees, or can it be made much more general? For instance, Agelos Georgakopoulos
asked (in private communication) whether the same statement was true if we (twice) replace “tree”
by “planar graph”. Let C be a class of graphs. Under what conditions on C can we say the following?

“For all L,C there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph G to a
member of C, then there is a (1, C ′)-quasi-isometry from G to a member of C.”

For this to be true, C must have some closure properties: for instance, if H ∈ C and G is obtained
from H by subdividing every edge once, there is a (2, 0)-quasi-isometry from G to H, but if we want
there to be a (1, C ′)-quasi-isometry from G to a member of C then we need C to contain a graph much
like G; and this is close to asking that C be closed under edge-subdivision. Similarly, if H ∈ C and G
is obtained from H by contracting the edges in some matching of H, there is a (3, 0)-quasi-isometry
from G to H, and so we need C to be more-or-less closed under edge-contraction. Is that enough,
could the following be true?

1.2 Conjecture: Let C be a class of connected graphs, closed under contracting edges and subdi-
viding edges. For all L,C there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph
G to a member of C, then there is a (1, C ′)-quasi-isometry from G to a member of C.

For instance, if G,H are respectively the infinite square lattice and the infinite triangular lattice,
there is a quasi-isometry between them, but no (1, C)-quasi-isometry (for any constant C); but there
is a (1, 2)-quasi-isometry from G to a graph obtained by subdividing edges of H, and a (1, 100)-
quasi-isometry from H to a graph obtained by subdividing and contracting edges of G (we omit the
proofs of all these statements).

We are far from proving the conjecture 1.2 in general, but we will prove a special case, which we
will explain next. A path-decomposition of a graph G is (possibly infinite or doubly-infinite) sequence
(Bt : t ∈ T ), where T is a set of integers, and Bt is a subset of V (G) for each t ∈ V (T ) (called a bag),
such that:
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• V (G) is the union of the sets Bt (t ∈ T );

• for every edge e = uv of G, there exists t ∈ T with u, v ∈ Bt; and

• for all t1, t2, t3 ∈ T , if t1 ≤ t1 ≤ t3, then Bt1 ∩Bt3 ⊆ Bt2 .

The width of a path-decomposition (T, (Bt : t ∈ V (T ))) is the maximum of the numbers |Bt| − 1 for
t ∈ V (T ), or ∞ if there is no finite maximum; and the path-width of G is the minimum width of a
path-decomposition of G.

We will prove:

1.3 For all L,C, k there exists C ′ such that if there is an (L,C)-quasi-isometry from a graph G to
a graph H with path-width at most k, then there is a (1, C ′)-quasi-isometry from G to a graph H ′

obtained from H by subdividing and contracting edges.

Let N denote the set of nonnegative integers. Let H be a graph and let w : E(G)→ N be some
function; we call (H,w) a weighted graph. One can define quasi-isometry for weighted graphs in
the natural way, defining dist(H,w)(u, v) to be the minimum of w(P ) over all paths P of H between
u, v, where w(P ) means

∑
e∈E(P )w(e). Subdividing and contracting edges of H is closely related to

moving from H to (H,w) for an appropriate w, so we could express 1.3 in terms of weighted graphs.
In this modified form of 1.3, rather than replacing H by H ′, we keep H and just put weights on its
edges. But something much stronger is true: we don’t need to change the quasi-isometry either.

1.4 For all L,C, k there exists C ′ such that if φ is an (L,C)-quasi-isometry from a graph G to a
graph H with path-width at most k, then there is a function w : E(H) → N such that the same
function φ is a (1, C ′)-quasi-isometry from G to the weighted graph (H,w).

In view of the conjecture 1.2, one might ask whether the path-width restriction is necessary. It
cannot just be omitted, because Davies, Hatzel and Hickingbotham [4] very recently showed the
following:

1.5 For every integer C > 0, and and every real ε > 0, there exist graphs G and H such that G is
(1 + ε, 1)-quasi-isometric to H but there is no map w : E(H)→ R of H such that G is (1, C)-quasi-
isometric to (H,w).

(Curiously, this does not disprove the conjecture 1.2.) It still might be true that we can replace
“with path-width at most k” in 1.4 by something less restrictive, for instance, by “with tree-width
at most k”, or “that is planar”, or indeed “that is in C” where C is any minor-closed class of graphs
that does not contain all finite graphs.

Is 1.2 true at least when C is the class of connected graphs with tree-width at most k? (A closely-
related question was considered by Dragan and Abu-Ata [5].) Yes when k = 1, by 1.1, and indeed
one can show that 1.3 also holds in this case (see the proof of 1.1 in [1]). What about tree-width
two? A special case is when C is the class of all connected outerplanar graphs, and we can prove 1.2
in that case. (A hint for the proof: every connected outerplanar graph is quasi-isometric to a graph
in which every non-trivial block is a cycle.) But for tree-width two in general, the result is open, as
is the following weaker statement:
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1.6 Conjecture: For all L,C there exist C ′, k such that if there is an (L,C)-quasi-isometry from
a graph G to a graph of tree-width at most two, then there is a (1, C ′)-quasi-isometry from G to a
graph of tree-width at most k.

So far, our statements are true for infinite graphs as well as for finite graphs, but we want to
make an adjustment, because path-width is not the “right” concept for infinite graphs. A graph has
tree-width at most k if and only of all its finite subgraphs have tree-width at most k (Thomas [8]),
but the same is not true for path-width. For instance, the graph consisting of the disjoint union
of infinitely many one-way infinite paths has infinite path-width, and so does the disjoint union of
infinitely many copies of the infinite “star” (one vertex with countably many neighbours); and so
does any graph with uncountably many vertices and no edges. There is a more appropriate concept.
Let us say a line is a set that is linearly ordered by some relation <; and a line-decomposition is a
family (Bt : t ∈ T ), where T is a line, satisfying the same three conditions as in the definition of
path-decomposition. We define the width of a line-decomposition to be the maximum of |Bt| − 1
over all t ∈ T if this exists, and otherwise the width is infinite. The line-width of G is the minimum
integer k such that G admits a line-decomposition of width at most k, if this exists, and otherwise
the line-width is infinite. For finite graphs, path-width and line-width are the same, but for infinite
graphs, they may be different (for instance, in the three examples above), and line-width behaves
better. We proved in [3] that a graph has line-width at most k if and only if all its finite subgraphs
have path-width at most k.

All the theorems about path-width mentioned so far are also true for line-width, and expressing
them this way makes them stronger and more general. In particular, we will prove:

1.7 For all L,C, k there exists C ′ such that if φ is an (L,C)-quasi-isometry from a graph G to
a graph H with line-width at most k, then there is a function w : E(H) → N such that the same
function φ is a (1, C ′)-quasi-isometry from G to the weighted graph (H,w).

Here is an application. A. Georgakopoulos in private communication showed that for all L,C
there exists C ′ such that if a finite graph G is (L,C)-quasi-isometric to a cycle, then G is (1, C ′)-
quasi-isometric to a cycle. This immediately follows from 1.3. Similarly, we (unpublished) proved
some time ago the following result about fat minors (we omit the definitions of fat minor, since we
will not need them any more in this paper): for all k,C, there exists C ′ such that if a graph G
does not contain K1,k as a C-fat minor, then there is a (1, C ′)-quasi-isometry from G to a graph
not containing K1,k as a minor. This strengthened a result of Georgakopoulos and Papasoglu [6]
that all k,C, there exist L,C ′ such that if G does not contain K1,k as a C-fat minor, then there is a
(L,C ′)-quasi-isometry from G to a graph not containing K1,k as a minor. Our proof was complicated,
but connected graphs with no K1,k minor are have line-width at most k−1, and so our result follows
via 1.7 from that of Georgakopoulos and Papasoglu.

2 Finding the weighting close to φ(P )

If (H,w) is a weighted graph, the size of w is the maximum of w(e) over all e ∈ E(G), assuming this
exists: we will only use weighted graphs with bounded size.

Let us reiterate a definition, more explicitly. Let G be a graph and let (H,w) be a weighted
graph. A map φ from V (G) to V (H) is an (L,C)-quasi-isometry from G to (H,w) if:
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• for all u, v in V (G), if distG(u, v) is finite then dist(H,w)(φ(u), φ(v)) ≤ LdistG(u, v) + C;

• for all u, v in V (G), if dist(H,w)(φ(u), φ(v)) is finite then distG(u, v) ≤ Ldist(H,w)(φ(u), φ(v)) +
C; and

• for every y ∈ V (H) there exists v ∈ V (G) such that dist(H,w)(φ(v), y) ≤ C.

For inductive purposes, it is more convenient to prove the following stronger version of 1.4:

2.1 Let L,C, k ≥ 0 be integers; then there exist C ′,W with the following property. Let H be a graph
with line-width at most k, and let φ be an (L,C)-quasi-isometry from a graph G to H. Then there
is a function w : E(H) → N with size at most W such that φ is a (1, C ′)-quasi-isometry from G to
(H,w).

Instead of working with (L,C)-quasi-isometries, we could replace L,C by their common maxi-
mum, and so it would be enough to work with (C,C)-quasi-isometries. Actually, we prefer to use
(C − 1, C)-quasi-isometries, because then the small terms in the various numerical expressions that
come up are easier to dispose of.

If P is a path and u, v ∈ V (P ), we denote by P [u, v] the subpath between u, v. A geodesic in a
graph G means a path P of G (possibly infinite) such that for every two vertices u, v ∈ V (P ), the
subpath P [u, v] is a shortest path of G between u, v. If (H,w) is a weighted graph, a w-geodesic of H
means a path P of H such that dist(H,w)(u, v) = w(P [u, v]) for all u, v ∈ V (P ). An integer interval
means a set of integers I, finite or infinite, such that if i, k ∈ I and j is an integer with i < j < k
then j ∈ I.

Let us sketch an outline of the proof of 2.1. We work by induction on the line-width. Let
(Bt : t ∈ T ) be a line-decomposition of H of width at most k. Thus, H can be thought of intuitively
as a long, thin graph in some sense, and so is G. One would expect there to be a geodesic P of G
running through all the preimages of the bags Bt. If we have such a geodesic, then the vertices φ(p)
move along the length of H as p runs through the vertices of P ; and we find a path Q of H staying
close to all these vertices. Since P is a geodesic in G, we can arrange weights w1 in H such that
Q is a w1-geodesic in H, and in addition, for every two vertices of P , their distance in G is about
the same (up to an additive error) as the weighted distance between their images in H. One can
show that, then, the same is true for all vertices u, v of G that are at most a constant distance from
P : distG(u, v) and dist(H,w1)(φ(u), φ(v)) differ only by a constant. We still need to work on the set
B of vertices that are far from P ; but they map to a subgraph of H with line-width less than k,
so we can use the inductive hypothesis for them, provided that the restriction of φ to B is still a
quasi-isometry with bounded parameters. To fix this last condition needs some fiddling around; we
have to add some new vertices to B to make the distances in B the same as they were in G. But
this works.

There is a major difficulty in finding the geodesic P . It is easy to obtain if H is finite, but if H is
infinite it needs a lot more work. (One difficulty is that such a geodesic need not exist: we have to
grow G into a bigger graph to obtain P .) We have arranged the paper with the arguments to obtain
P at the end, so the reader who wants to understand the proof for finite H does not have to wade
through pages of argument for infinite graphs.

If I, J are nonempty sets of integers, we say that J is cofinal with I if either they both have a
maximum element and these elements are equal, or neither has a maximum element; and either they
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both have a minimum element and these elements are equal, or neither has a minimum element. Our
objective in this section is, given the geodesic P in G, to find an appropriate path Q of H as above,
and find the weight function w1 that makes Q a geodesic and spaces appropriately the images of the
vertices in P . More exactly:

2.2 Let C ≥ 4, and let φ be a (C − 1, C)-quasi-isometry from a graph G to a graph H. Let P be
a geodesic in G, with vertices pi (i ∈ I) in order, where I is an integer interval. Then there is a
function w : E(H) → N, with size at most 8C4, and a path Q of H, and J ⊆ I cofinal with I, and
distinct vertices rj (j ∈ J), in order in Q, with the following properties:

• Q is a w-geodesic in H;

• dist(H,w)(ri, rj) = j − i for all i, j ∈ J with i < j;

• for all i ∈ I there exists j ∈ J with |j − i| ≤ C2 and distH(φ(pi), rj) < C3;

• distH(φ(pj), rj) ≤ 2C for each j ∈ J ; and

• for each v ∈ V (Q) there exists j ∈ J such that distH(v, φ(pj)) ≤ C.

We divide the proof into two steps. First, we show:

2.3 Let L ≥ 1 be an integer. Let J be a set of integers, let Q be a path of a graph H, and let
ri ∈ V (Q) for each i ∈ J , all distinct and numbered in order on Q. Suppose that:

• Q is the union of the subpaths Q[ri, rj ] for i, j ∈ J ;

• for all i, j ∈ J with i ≤ j, if none of i+ 1, . . . , j − 1 belong to J , then j − i ≤ L;

• distH(ri, rj) ≥ (j − i)/L for all i, j ∈ J with j > i; and

• distQ(ri, rj) ≤ L(j − i) for all i, j ∈ J with j > i.

Then there is a function w : E(H)→ N with size at most L(2L+ 1), such that Q is a w-geodesic of
H, and dist(H,w)(ri, rj) = j − i for all i, j ∈ J with j ≥ i.

Proof. We may assume that |J | > 1. Let R = {ri : i ∈ J}. Let us say a gap is a subpath of Q of
length at least one, with both ends in R and with no internal vertex in this set. Thus all gaps have
length at most L, and every vertex of Q belongs to a gap. By hypothesis, the vertices ri (i ∈ J)
are numbered in their order in Q. This extends to an ordering of the vertex set of Q, which we call
“later than”. We begin with:

(1) If x, y ∈ V (Q). Then Q[x, y] is contained in Q[ri, rj ] for some i, j ∈ J with 0 ≤ j − i ≤
L(2L+ 1) distH(x, y).

We may assume that y is later than x. Choose i ∈ J maximum such that x is later than or equal to
ri, and choose j ∈ J minimum such that rj is later than or equal to y. Thus i < j, and distH(x, y) ≥
distH(ri, rj)−2L. But distH(ri, rj) ≥ (j−i)/L, and so distH(x, y) ≥ (j−i)/L−2L. Since x 6= y, it fol-
lows that distH(x, y) ≥ 1 and so 2LdistH(x, y) ≥ 2L. Consequently, (2L+1) distH(x, y) ≥ (j− i)/L.
This proves (1).
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For each gap Q[ri, rj ], and each edge e of this gap, define w(e) = j − i if e is incident with ri,
and w(e) = 0 otherwise. It follows that w(Q[ri, rj ]) = j − i for all i, j ∈ J with i ≤ j. Define
w(e) = L(2L+ 1) for every edge e of H not in E(Q).

It remains to show that Q is a w-geodesic of H. To show this, let x, y ∈ V (Q), and let P
be a w-geodesic of H between x, y. We need to show that w(P ) ≥ w(Q[x, y]), and we prove this
by induction on |E(P )|. If some internal vertex z of P belongs to V (Q), then from the inductive
hypothesis, w(P [x, z]) ≥ w(Q[x, z]), and w(P [z, y]) ≥ w(Q[z, y]), and adding, it follows that w(P ) ≥
w(Q[x, z]) + w(Q[z, y]) ≥ w(Q[x, y]) as required. So we may assume that no internal vertex of P
belongs to V (Q). We may assume that P 6= Q[x, y], and so no edge of P is in E(Q), and therefore

w(P ) = L(2L+ 1)|E(P )| ≥ L(2L+ 1) distH(x, y).

By (1), Q[x, y] is contained in Q[ri, rj ] for some i, j ∈ J with 0 ≤ j− i ≤ L(2L+ 1) distH(x, y). Since
w(Q[x, y]) ≤ w(Q[ri, rj ]) = j − i, we deduce that

w(Q[x, y] ≤ L(2L+ 1) distH(x, y) ≤ w(P ).

This proves 2.3.

The second step is:

2.4 Let C ≥ 2, and let φ be a (C − 1, C)-quasi-isometry from a graph G to a graph H. Let P be a
geodesic in G, with vertices pi (i ∈ I), numbered in order, where I is an integer interval. Then there
exist J ⊆ I, cofinal with I, and a path Q of H, and distinct vertices rj (j ∈ J) of Q, in order in Q,
with the following properties:

• Q is the union of the subpaths Q[ri, rj ] for i, j ∈ J ;

• for all i, j ∈ J with i ≤ j, if none of i+ 1, . . . , j − 1 belong to J , then j − i ≤ 2C2;

• distH(ri, rj) ≥ (j − i)/(6C) for all i, j ∈ J with j > i;

• distQ(ri, rj) ≤ 2C(j − i) for all i, j ∈ J with j > i;

• distH(φ(pj), rj) ≤ 2C for each j ∈ J ; and

• for each v ∈ V (Q), there exists j ∈ J such that distH(v, φ(pj)) ≤ C.

Proof. We may assume that |I| ≥ 1. There are four cases, depending whether I is finite, or
one-way infinite (in two possible ways) or two-way infinite. Suppose first that I has a minimum;
then by renumbering, we can assume this minimum is zero. Let i0 = 0. Inductively, having defined
i0, . . . , ik ∈ I, with i0 <, . . . , ik, if ik is the maximum of I, stop, and otherwise let ik+1 ∈ I be
maximum such that distH(φ(pik), φ(pik+1

)) ≤ 2C; and let Tk be a geodesic between φ(pik , φ(pik+1
).

This exists and ik+1 > ik, since distH(φ(pik), φ(p1+ik)) ≤ 2C (because φ is a (C − 1, C)-quasi-
isometry). Thus T0, T1, . . . , are all paths in H of length at most 2C. Certainly Tk meets Tk+1 for
each k, since they share an end-vertex and perhaps more. We claim that Th, Tk are vertex-disjoint
if k ≥ h+ 2; because suppose v is a vertex in both paths. The sum of the distances between v and
φ(pih−1

), φ(pih), φ(pik−1
), φ(pik) is at most 4C, since the sum of the first two is the length of Th, and

the last two sum to Tk. Consequently, either there is a path between φ(pih−1
), φ(pik−1

) of length at
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most 2C, or one between φ(pih), φ(pik) of length at most 2C, and this contradicts the definition of
ih or of ih+1. Thus, in the sequence T0, T1, . . . ,, non-consecutive terms are vertex-disjoint. Let Q be
the path defined as follows: start with the subpath of T0 from φ(p0) to the first vertex of T0 in T1;
then follow T1 to the first vertex of T1 in T2; and so on, for each integer i ≥ 0 if I is infinite, or until
i is the maximum element of I. In the second case, let ik be this maximum element: extend Q along
Tk−1 to φ(pik).

Let J = {i0, i1, . . . , }. Let r0 = φ(p0), and if I has a maximum element ik let rik = φ(pik). For
each ik ∈ J not the minimum or maximum element of I, choose rik ∈ V (Q) ∩ V (Tk−1 ∩ V (Tk). It
follows that the vertices rj(j ∈ J) are distinct and in order in Q, and Q is the union of the subpaths
Q[ri, rj ] for i, j ∈ J . We claim:

(1) The following hold:

• for all i, j ∈ J with i ≤ j, if none of i+ 1, . . . , j − 1 belong to J , then j − i ≤ 2C2 − C;

• distH(ri, rj) ≥ (j − i)/(6C) for all i, j ∈ J with j > i;

• distQ(ri, rj) ≤ 2C(j − i) for all i, j ∈ J with j > i;x

• for each j ∈ J , distH(φ(pj), rj) ≤ 2C; and

• for each v ∈ V (Q) there exists j ∈ J with distH(v, φ(pj)) ≤ C.

For the first bullet, let i, j ∈ J with i ≤ j, such that none of i + 1, . . . , j − 1 belong to J . We may
assume that j > i and it follows that i = ik and j = ik+1 for some choice of k. Hence Tk exists, and
joins φ(pik , φ(pik+1

). Consequently distH(φ(pik , φ(pik+1
)) ≤ 2C, and so

distG(pik , pik+1
) ≤ (C − 1)(2C) + C = 2C2 − C.

For the second bullet, let i = ik and j = i` where ` > k. Then

distH(ri, rj) ≥ distH(φ(pik), φ(pi`))− 4C.

Since
j − i = i` − ik = distG(pik , pi`) ≤ (C − 1) distH(φ(pik), φ(pi`)) + C,

we deduce that
distH(ri, rj) ≥ (j − i− C)/(C − 1)− 4C.

Since also distH(ri, rj) ≥ 1, it follows that

distH(ri, rj) ≥ (j − i− C)/(C − 1)− 4C distH(ri, rj),

and so
distH(ri, rj) ≥ (j − i)/(1 + 4C + C/(C − 1)) ≥ (j − i)/(6C),

as claimed.
For the third bullet, again let i = ik and j = i` where ` > k. The subpath Q[rik , ri` ] is the

union of subpaths of Tk, Tk+1, . . . , T`−1, and so has length at most 2C(` − k) ≤ 2C(i` − ik), since
`− k ≤ i` − ik. This proves the third bullet.

7



For the fourth bullet, let j = ik ∈ J ; then rj , φ(pj) are both vertices of Tk, which has length at
most 2C. Finally, for the fifth bullet, let v ∈ V (Tk); then Tk has ends φ(pik , φ(pik+1

), and so v has
distance in H at most C from one of these ends. This proves (1).

So in the case when I has a minimum, the theorem holds. Thus we may assume that I has
no minimum, and similarly that it has no maximum; and so I = Z. Choose integers i0 < i1 with
the interval [i0, i1] maximal such that distH(φ(pi0), φ(pi1)) ≤ 2C, and let T0 be a geodesic between
φ(pi0), φ(pi1). We define i1, i2, . . . , inductively as before; that is, for each k ≥ 1, let ik+1 ∈ I be
maximum such that distH(φ(pik), φ(pik+1

)) ≤ 2C, and let Tk be a geodesic between φ(pik), φ(pik+1
)).

Define the 1-way infinite path (previously called Q) as before, and let us call it Q+.
Now we define i−1, i−2 and so on, inductively: having defined i0, i−1, . . . , i−k, let i−k−1 be mini-

mum such that distH(φ(pi−k
), φ(pi−k−1

)) ≤ 2C; and let T−k be a geodesic between φ(pi−k
), φ(pi−k−1

).
Let Q− be defined in the same way that we defined Q+. Now if h < 0 and j > 0, the paths Th, Tj are
vertex-disjoint: because if they meet, then as before, either there is a path between φ(pih−1

), φ(pik−1
)

of length at most 2C, or one between φ(pih), φ(pik) of length at most 2C, in either case contrary to
the maximality of the interval [i0, i1]. So Q+, Q− meet only in vertices of T0; and hence there is a
path Q contained in Q+ ∪ Q−, including all of Q+ and all of Q− except possibly for some vertices
in T0, and containing at least one vertex of T0. Then as before Q satisfies the theorem. This proves
2.4.

By combining these two results, we obtain 2.2, which we restate:

2.5 Let C ≥ 4, and let φ be a (C − 1, C)-quasi-isometry from a graph G to a graph H. Let P be
a geodesic in G, with vertices (pi (i ∈ I) in order, where I is an integer interval. Then there is a
function w : E(H)→ N, with size at most 8C4, and a path Q of H, and J ⊆ I, and distinct vertices
rj (j ∈ J), in order in Q, with the following properties:

• Q is a w-geodesic in H;

• dist(H,w)(ri, rj) = j − i for all i, j ∈ J with i < j;

• for all i ∈ I there exists j ∈ J with |j − i| ≤ C2 and distH(φ(pi), rj) < C3;

• distH(φ(pj), rj) ≤ 2C for each j ∈ J ; and

• for each v ∈ V (Q) there exists j ∈ J such that distH(v, φ(pj)) ≤ C.

Proof. By 2.4, there exist J ⊆ I, and a path Q of H, and distinct vertices rj (j ∈ J) of Q, in order
in Q, with the following properties:

• J is cofinal with I, and Q is the union of the subpaths Q[ri, rj ] for i, j ∈ J ;

• for all i, j ∈ J with i ≤ j, if none of i+ 1, . . . , j − 1 belong to J , then j − i ≤ 2C2;

• distH(ri, rj) ≥ (j − i)/(6C) for all i, j ∈ J with j > i;

• distQ(ri, rj) ≤ 2C(j − i) for all i, j ∈ J with j > i;

• distH(φ(pj), rj) ≤ 2C for each j ∈ J ; and
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• for each v ∈ V (Q), there exists j ∈ J such that distH(v, φ(pj)) ≤ C.

By 2.3, taking L = 2C2 − 1 (note that 6C ≤ L since C ≥ 4), there is a function w : E(H)→ N with
size at most L(2L+ 1) ≤ 8C4, such that Q is a w-geodesic of H, and dist(H,w)(ri, rj) = j − i for all
i, j ∈ J with j ≥ i. Thus the first, second, fourth and fifth bullets of the theorem hold. For the third,
let i ∈ I. There exist j1, j2 ∈ J with j1 ≤ i ≤ j2 such that j2−j1 ≤ 2C2, since J is cofinal with I, and
from the second bullet above. So there exists j ∈ J with distG(pi, pj) = |j − i| ≤ C2. Consequently
distH(φ(pi), φ(pj)) ≤ (C − 1)C2 + C. Since distH(φ(pj), rj) ≤ 2C from the fifth bullet above, it
follows that distH(φ(pi), rj) ≤ (C − 1)C2 + 3C < C3. This proves the third bullet is satisfied, and
so proves 2.5.

3 Extending the local weighting to the whole of H

Now we turn to the second part of the proof of 1.4. We have found the geodesic P of G, and the path
Q of H and a weight function w1 that makes Q a w1-geodesic and makes φ have only additive error
for vertices close to P ; and we know that the theorem is true for graphs H of smaller line-width. We
want to redefine the weights on edges far from Q, to obtain a weight function w on H that satisfies
2.1.

Let us say a function κ : N→ N is an additive bounder for a class C of graphs if for all C ≥ 1, and
every (C−1, C)-quasi-isometry φ from a graph G to a graph H ∈ C, there is a function w : E(H)→ N
with size at most κ(C) such that φ is a (1, κ(C))-quasi-isometry from G to (H,w).

A class C of graphs is hereditary if for every H ∈ C, all induced subgraphs of H also belong to
C. The next result is the second step of the proof of 1.4. (The additive bounder and the hereditary
class in the statement are just a way to avoid talking about the induction on line-width.)

3.1 Let C be a hereditary class of graphs, with an additive bounder κ. For all c ≥ 2 there exists c0
with the following property. Suppose that:

• φ is a (c− 1, c)-quasi-isometry from a graph G to a graph H;

• P is a geodesic in G, with vertices pi (i ∈ I) in order, where I is an interval of integers, and
Q is a path of H;

• J ⊆ I, cofinal with I, and rj (j ∈ J) are vertices of Q in order, and Q is the union of the
subpaths Q[ri, rj ] for i, j ∈ J ;

• distH(φ(pj), rj) ≤ c for each j ∈ J , and for all i ∈ I there exists j ∈ J with |j − i| ≤ c and
distH(φ(pi), rj) < c;

• for each v ∈ V (Q) there exists j ∈ J such that distH(v, φ(pj)) ≤ c;

• w1 : E(H)→ N is a map with size at most c, and Q is a w1-geodesic in H, and dist(H,w1)(ri, rj) =
j − i for all i, j ∈ J with i < j; and

• the subgraph of H induced on the set of all v ∈ V (H) with distH(v, φ(P )) > c belongs to C,
where φ(P ) = {φ(pi) : i ∈ I}.

9



Then there is a function w : E(H)→ N with size at most c0, such that φ is a (1, c0)-quasi-isometry
from G to (H,w).

Proof. Let r = 2c(c+ 1), and c′ = max(κ(c), 1). Let c2 = max(2c+ c′, 4(r + 3)c2). Define

c3 = c2 + c(2(r + 2)c+ 2) + (r + 2)cc′ + (r + 2)c2,

and
c0 = max((r + 2)c2, (r + 2)cc′, c2, 4cc

′ + 2c2 + 2r + 2crc3).

We will show that c0 satisfies the theorem.
Let G,H, φ, P and so on be as in the hypothesis of the theorem. Let A be the set of all v ∈ V (G)

such that distG(v, P ) ≤ r. Let B = V (G) \A. Let X = {φ(v) : v ∈ B}.

(1) distH(X,φ(P )) ≥ r/c− 1.

Let b ∈ B and i ∈ I. Then

distH(φ(b), φ(pi)) ≥ (distG(b, pi)− c)/c ≥ r/c− 1.

This proves (1).

(2) There is a partition (Y,Z) of V (H) \X, such that

• for every y ∈ Y there is a path of H[X ∪ Y ] from y to X, with length at most (r + 2)c, and
distH(y, φ(P )) ≥ (r/c− 1)/2 > c;

• for every z ∈ Z, there is a path of G[Z] from z to φ(P ), with length at most (r + 2)c, and
distH(z,X) > (r/c− 1)/2.

Let Y be the set of all h ∈ V (H)\X such that distH(h,X) ≤ distH(h, φ(P )), and let Z = V (H)\(X∪
Y ). We claim that (2) is satisfied. Let h ∈ V (H) \X. We claim first that either distH(h,X) ≤ c,
or distH(h, φ(P )) ≤ cr + 2c. To see this, choose v ∈ V (G) with distH(φ(v), h) ≤ c. If v ∈ B
then φ(v) ∈ X and the claim holds, so we assume that v ∈ A. Hence distG(v, P ) ≤ r, and so
distH(φ(v), φ(P )) ≤ cr + c. Consequently distH(h, φ(P )) ≤ cr + 2c, and again the claim holds.
Hence

min(distH(h,X),distH(h, φ(P ))) ≤ (r + 2)c,

and so the first assertion of each bullet of (2) holds. For the second assertion, from (1), if distH(h,X) ≤
(r/c− 1)/2 then distH(h,X) ≤ dist(h, φ(P )) and therefore h ∈ Y ; and similarly if distH(h, φ(P )) <
(r/c− 1)/2 then h ∈ Z. This proves (2).

Let H ′ = H[X∪Y ]. From (1) and (2), distH(y, φ(P )) > c for each y ∈ X∪Y . Since the subgraph
of H induced on the set of all v ∈ V (H) with distH(v, φ(P ))) > c belongs to C, by hypothesis, and
C is hereditary, it follows that H ′ ∈ C. For each pair b, b′ ∈ B, if distH′(φ(b), φ(b′)) ≤ 2(r + 2)c+ 1,
let Fb,b′ = Fb′,b be a path between b, b′ of length distG(b, b′), where all its internal vertices are new
vertices. Let F be the union of G[B] and all the paths Fb,b′ . Define ψ : V (F ) → V (H) as follows.
For each v ∈ B, ψ(v) = φ(v). For all b, b′ ∈ B and every internal vertex v of Fb,b′ , let ψ(v) be one of
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b, b′, chosen arbitrarily.

(3) If u, v ∈ V (F ), then distH′(ψ(u), ψ(v)) ≤ (2(r + 2)c+ 1) distF (u, v).

It suffices to show that distH′(ψ(u), ψ(v)) ≤ 2(r+ 2)c+ 1 for every edge uv of F (and then sum over
all edges of a geodesic of F between u, v). Thus, let uv ∈ E(F ). If uv is an edge of one of the paths
Fb,b′ , then

distH′(ψ(u), ψ(v)) ≤ distH′(φ(b), φ(b′)) ≤ 2(r + 2)c+ 1,

as required. If uv ∈ E(G[B]), then distH(φ(u), φ(v)) ≤ 2c since φ is a (c, c)-quasi-isometry from G to
H. Let S be a path of H between φ(u), φ(v) of length at most 2c; so each of its vertices has distance
at most c from one of φ(u), φ(v) ∈ X, and so V (S) ⊆ X ∪ Y , since c ≤ (r/c− 1)/2. Consequently,

distH′(ψ(u), ψ(v)) ≤ 2c ≤ 2(r + 2)c+ 1.

This proves (3).

(4) If u, v ∈ V (F ), then distF (u, v) ≤ 2c(2(r + 2)c+ 1) distH′(ψ(u), ψ(v)) + 4c(2(r + 2)c+ 1).

Choose u′ ∈ B with ψ(u) = φ(u′), and choose v′ similarly for v. Let T be a geodesic of H ′ be-
tween φ(u′), φ(v′), and let its vertices be t0, . . . , tn in order, where t0 = φ(u′) and tn = φ(v′). For
0 ≤ i ≤ n, since ti ∈ X ∪ Y , there is a path Ti of H ′ from ti to X with length at most (r + 2)c; let
its end in X be xi, and choose bi ∈ B with φ(bi) = xi. For 1 ≤ i ≤ n, there is a path from xi−1 to xi
with vertex set a subset of V (Ti−1)∪V (Ti), and its length is at most 2(r+ 2)c+ 1; and consequently
Fbi−1,bi exists, and so

distF (bi−1, bi) = distG(bi−1, bi) ≤ 2cdistH(xi−1, xi) ≤ 2c(2(r + 2)c+ 1);

so distF (bi−1, bi) ≤ 2c(2(r + 2)c+ 1). But distF (b0, bn) is at most
∑

1≤i≤n distF (bi−1, bi) and conse-
quently

distF (u′, v′) ≤ 2c(2(r + 2)c+ 1)n = 2c(2(r + 2)c+ 1) distH′(ψ(u), ψ(v)).

But distF (u, u′) ≤ 2c(2(r + 2)c+ 1), and the same for distF (u, u′); so

distF (u, v) ≤ 2c(2(r + 2)c+ 1) distH′(ψ(u), ψ(v)) + 4c(2(r + 2)c+ 1).

This proves (4).

From the definition of Y , for each y ∈ X ∪ Y there exists v ∈ V (F ) such that distH′(ψ(v), y) ≤
(r + 3)c; and so, from (3) and (4), ψ is a (2c(2(r + 2)c + 1), 4c(2(r + 2)c + 1))-quasi-isometry from
F to H ′. Since κ is an additive bounder for C, and H ′ ∈ C, there is a function w′ : E(H ′)→ N with
size at most c′, such that ψ is a (1, c′)-quasi-isometry from F to (H ′, w′), where c′ = max(κ(c), 1).
Let ∆ be the set of edges of H between X ∪ Y and Z. Define w : E(H)→ N by:

• If e ∈ E(H ′) then w(e) = w′(e);

• If e ∈ E(H[Z]) then w(e) = w1(e);

• If e ∈ ∆ then w(e) = c3.
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Thus w has size at most c3, and we will show that φ is a (1, c0)-quasi-isometry from G to (H,w).

(5) For all i, j ∈ I with i ≤ j, dist(H,w)(φ(pi), φ(pj)) ≤ (j − i) + 2c2.

Since for each v ∈ V (Q) there exists j ∈ J such that distH(v, φ(pj)) ≤ c, it follows that V (Q) ⊆ Z.
From one of the hypotheses of the theorem, there exists i′ ∈ J with |i′−i| ≤ c and distH(φ(pi), ri′) < c;
and there exists j′ ∈ J with |j′ − j| ≤ c and distH(φ(pj), rj′) < c. Every geodesic of H between
φ(pi), ri′ has vertex set in Z, and so dist(H,w)(φ(pi), ri′) ≤ (c − 1)c, since w1 has size at most
c; and similarly dist(H,w)(φ(pj), rj′) ≤ (c − 1)c. Consequently dist(H,w)(φ(pi), φ(pj)) differs from
dist(H,w)(ri′ , rj′) by at most 2(c − 1)c. But dist(H,w)(ri′ , rj′) = |j′ − i′|, since V (Q) ⊆ Z; and so
dist(H,w)(φ(pi), φ(pj)) ≤ |j′ − i′| + 2(c − 1)c. Since |i′ − i| ≤ c and |j′ − j| ≤ c, it follows that
|j′ − i′| ≤ 2c+ (i′ − i), and so

dist(H,w)(φ(pi), φ(pj)) ≤ (i′ − i) + 2(c− 1)c+ 2c.

This proves (5).

(6) Let u, v ∈ V (G). Then

dist(H,w)(φ(u), φ(v)) ≤ distG(u, v) + 4cc′ + 2c2 + 2r + 2crc3.

Observe first that if T is a geodesic of G, with V (T ) ⊆ B and with ends b1, b2 say, then

dist(H,w)(φ(b1), φ(b2)) ≤ dist(H′,w′)(ψ(b1), ψ(b2)) ≤ distF (b1, b2) + c′ = distG(b1, b2) + c′,

from the choice of w′. Now let T be a geodesic in G between u, v; and we may therefore assume that
V (T ) 6⊆ B. Let a1, a2 be the first and last vertices of T that belong to A. If a1 6= u, let b1 ∈ V (T ) be
adjacent in T to a1, and not between a1, a2; thus b1 ∈ B from the definition of a1. Let T1 = T [u, b1].
If a1 = u then b1, T1 are undefined. Define b2, T2 similarly if a2 6= v.

If b1, T1 exist, then T1 is a geodesic of G with vertex set in B, and so

dist(H,w)(φ(u), φ(b1)) ≤ distG(u, b1) + c′,

as we showed above. Since a1b1 ∈ E(G) and φ is a (c− 1, c)-quasi-isometry from G to H, it follows
that distH(φ(a1), φ(b1)) ≤ 2c− 1. Consequently distH′(φ(a1), φ(b1)) ≤ 2c− 1, as the corresponding
path in H is contained in H ′; and since w′ has size at most c′, it follows that dist(H,w)(φ(a1), φ(b1)) ≤
(2c− 1)c′. Thus, if b1, T1 exist, then

dist(H,w)(φ(u), φ(a1)) ≤ distG(u, b1) + c′ + (2c− 1)c′ ≤ distG(u, a1) + 2cc′.

This last is also trivially true if b1, T1 do not exist, since then u = a1. A similar inequality holds for
v, b2.

Since a1 ∈ A, there exists i1 ∈ I such that distG(a1, pi1) ≤ r. Choose i2 similarly for a2. Thus
distG(pi1 , pi2) ≤ distG(a1, a2) + 2r, and so distG(a1, a2) ≥ |i2− i1| − 2r. Now since distG(a1, pi1) ≤ r,
and φ is a (c−1, c)-quasi-isometry from G to H, it follows that distH(φ(a1), φ(pi1)) ≤ (c−1)r+c ≤ cr,
and so dist(H,w)(φ(a1), φ(pi1)) ≤ crc3. The same holds for a2, pi2 ; and so

dist(H,w)(φ(a1), φ(a2)) ≤ dist(H,w)(φ(pi1), φ(pi2)) + 2crc3.
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Since
dist(H,w)(φ(pi1), φ(pi2)) ≤ |i2 − i1|+ 2c2

by (5), we deduce that

dist(H,w)(φ(a1), φ(a2)) ≤ |i2 − i1|+ 2c2 + 2crc3.

But distG(a1, a2) ≥ |i2 − i1| − 2r, and so

dist(H,w)(φ(a1), φ(a2)) ≤ distG(a1, a2) + 2r + 2c2 + 2crc3.

We deduce that

dist(H,w)(φ(u), φ(v))

≤ dist(H,w)(φ(u), φ(a1)) + dist(H,w)(φ(a1), φ(a2)) + dist(H,w)(φ(v), φ(a2))

≤ distG(u, a1) + 2cc′ + distG(a1, a2) + 2r + 2c2 + 2crc3 + distG(v, a2) + 2cc′

= distG(u, v) + 4cc′ + 2c2 + 2r + 2crc3.

This proves (6).

(7) Let T be a path of H[Z] between φ(a1), φ(a2), where a1, a2 ∈ V (G). Then

distG(a1, a2) ≤ w(T ) + 4(r + 3)c2.

For t = 1, 2, since φ(at) ∈ Z, there exists it ∈ I such that there is a path of H[Z] between φ(at), φ(pit)
of length at most (r + 2)c, and there exists jt ∈ J such that |jt − it| ≤ c and distH(φ(pit), rjt) < c.
Since φ is a (c− 1, c)-quasi-isometry, it follows that distG(at, pit) ≤ (c− 1)(r+ 2)c+ c ≤ (r+ 2)c2 for
t = 1, 2, and so

distG(a1, a2) ≤ distG(pi1 , pi2) + 2c2(r + 2).

But
distG(pi1 , pi2) = |i2 − i1| ≤ |j2 − j1|+ 2c = dist(H,w1)(rj1 , rj2) + 2c,

and so
distG(a1, a2) ≤ dist(H,w1)(rj1 , rj2) + 2(r + 2)c2 + 2c.

Since for t = 1, 2 there is a path of H between φ(at), rjt of length at most (r + 2)c + c, and hence
dist(H,w1)(φ(at), rjt) ≤ (r + 3)c2, and w1(T ) = w(T ), it follows that

dist(H,w1)(rj1 , rj2) ≤ dist(H,w1)(φ(a1), φ(a2)) + 2(r + 3)c2 ≤ w(T ) + 2(r + 3)c2.

Thus
distG(a1, a2) ≤ w(T ) + 2(r + 3)c2 + 2(r + 2)c2 + 2c ≤ w(T ) + 4(r + 3)c2.

This proves (7).

(8) Let u, v ∈ V (G), and let T be a path of H between φ(u), φ(v). Then distG(u, v) ≤ w(T ) + c2.

We proceed by induction on |∆ ∩ E(T )|. Suppose first that ∆ ∩ E(T ) = ∅, and so T is a path
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of one of H ′, H[Z]. If T is a path of H[Z], the result holds by (7), so we assume that T is a path of
H ′. Thus there exist b1, b2 ∈ B with φ(b1) = φ(u) and φ(b2) = φ(v). Since φ is a (c, c)-quasi-isometry
from G to H, it follows that distG(u, b1),distG(v, b2) ≤ c. Moreover, distH′(φ(u), φ(v)) ≤ w(T ), and
so distG(b1, b2) ≤ distF (b1, b2) ≤ w(T ) + c′, since φ is a (1, c′)-quasi-isometry from H ′ to H[X ∪ Y ].
It follows that in this case, distG(u, v) ≤ w(T ) + 2c+ c′, and so the result holds.

Thus we may assume that there exists yz ∈ ∆∩E(T ), where y ∈ X∪Y and z ∈ Z. By exchanging
u, v if necessary we may assume that φ(u), y, z, φ(v) are in order in T . Since y ∈ X ∪ Y , there exists
b ∈ B such that distH′(φ(b), y) ≤ (r + 2)c, and hence dist(H,w)(φ(b), y) ≤ (r + 2)cc′, since w′ has
size at most c′; and since z ∈ Z, there exists i ∈ I such that distH[Z](z, φ(pi)) ≤ (r + 2)c, and hence
dist(H,w)(z, φ(pi)) ≤ (r+ 2)c2. By combining these paths with the subpaths T [φ(u), y] and T [z, φ(v)]
respectively, we deduce (since w(yz) = c3) that there are paths R1, R2 of H, where R1 is between
φ(u), φ(b), and R2 is between φ(pi), φ(v), such that

w(R1) + w(R2) ≤ w(T )− c3 + (r + 2)cc′ + (r + 2)c2,

and R1, R2 both have fewer than |∆∩E(T )| edges in ∆. From the inductive hypothesis, distG(u, b) ≤
w(R1) + c2, and distG(pi, v) ≤ w(R2) + c2. But

distG(u, v) ≤ distG(u, b) + distG(b, pi) + distG(pi, v),

and
distG(b, pi) ≤ cdistH(φ(b), φ(pi)) + c ≤ c(2(r + 2)c+ 1) + c;

so

distG(u, v) ≤ distG(u, b) + distG(pi, v) + c(2(r + 2)c+ 2)

≤ w(R1) + c2 + w(R2) + c2 + c(2(r + 2)c+ 2)

≤ w(T ) + 2c2 + c(2(r + 2)c+ 2)− c3 + (r + 2)cc′ + (r + 2)c2

≤ w(T ) + c2.

This proves (8).

(9) For each v ∈ V (H), there exists u ∈ V (G) such that dist(H,w)(φ(u), v) ≤ (r+ 2)cmax(c, c′) ≤ c0.

If v ∈ Z, then by (2), there is a path of H[Z] from v to φ(P ), of length at most (r + 2)c, and
hence dist(H,w)(φ(u), v) ≤ (r+ 2)c2. If v ∈ X ∪Y , by (2) there is a path of H ′ from v to X, of length
at most (r + 2)c, and hence dist(H,w)(v,X) ≤ (r + 2)cc′. This proves (9).

By (6), (8) and (9), φ is a (1, c0)-quasi-isometry from G to (H,w), and its size is c3. This proves
3.1.

4 Combining the two steps

In this section we complete the proof of 2.1 when H is finite, and reduce the problem to finding the
geodesic P when H is infinite. If φ is a quasi-isometry from a graph G to H, and X ⊆ V (H), we
denote by φ−1(X) the set of all v ∈ V (G) with φ(v) ∈ X. We would like to prove 2.1 by induction
on the line-width of H, and the next result is half of the inductive step.
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4.1 Let k ≥ 1 be an integer, and suppose that for all C ≥ 0 there exists C ′ such that if φ is a
(C − 1, C)-quasi-isometry from a graph G to a graph H with line-width at most k − 1, then there is
a function w : E(H) → N with size at most C ′, such that φ is a (1, C ′)-quasi-isometry from G to
(H,w). Then for all C,D ≥ 1 there exists C ′ ≥ 0 with the following property. Suppose that φ is a
(C − 1, C)-quasi-isometry from a graph G to a graph H with a line-decomposition (Bt : t ∈ T ) of
width at most k; and P is a geodesic of G such that distG(P, φ−1(Bt)) ≤ D for each t ∈ V (T ). Then
there is a function w : E(H)→ N with size at most C ′, such that φ is a (1, C ′)-quasi-isometry from
G to (H,w).

Proof. Let C,D ≥ 0; and we may assume that C ≥ 4. From the hypethesis, there is an additive
bounder κ for the class C of all graphs with line-width less than k. Let c0 be as in 3.1, taking
c = 8C4 +D. Define C ′ = c0; we will show that C ′ satisfies the theorem.

Let φ be a (C − 1, C)-quasi-isometry from a graph G to a graph H with a line-decomposition
(Bt : t ∈ T ) of width at most k, and let P be a geodesic of G such that distG(P, φ−1(Bt)) ≤ D for
each t ∈ T . Let the vertices of P be pi (i ∈ I) in order, where I is an integer interval. By 2.5, there
is a function w : E(H) → N, with size at most 8C4, and a path Q of H, and J ⊆ I, cofinal with I,
and distinct vertices rj (j ∈ J), in order in Q, with the following properties:

• Q is a w-geodesic in H;

• dist(H,w)(ri, rj) = j − i for all i, j ∈ J with i < j;

• for all i ∈ I there exists j ∈ J with |j − i| ≤ C2 and distH(φ(pi), rj) < C3;

• distH(φ(pj), rj) ≤ 2C for each j ∈ J ; and

• for each v ∈ V (Q) there exists j ∈ J such that distH(v, φ(pj)) ≤ C.

We may assume that Q is the union of the subpaths Q[ri, rj ] for i, j ∈ J , by replacing Q by this
union if necessary.

(1) For each t ∈ T , there exists h ∈ Bt such that distH(h, φ(P )) ≤ CD + C.

By hypothesis, distG(P, φ−1(Bt)) ≤ D; choose v ∈ φ−1(Bt) with distG(P, v) ≤ D, and let h = φ(v).
Hence distH(φ(v), φ(P )) ≤ (C − 1)D + C ≤ CD + C. This proves (1).

From (1), the subgraph of H induced on the set of all h ∈ V (H) with distH(h, φ(P )) > C + D
has line-width at most k − 1. where φ(P ) = {φ(pi) : i ∈ I}. By 3.1, taking c = 8C4 +D, we deduce
that there is a function w : E(H) → N with size at most c0, such that φ is a (1, c0)-quasi-isometry
from G to (H,w). This proves 4.1.

To complete the proof of 2.1 by induction on the line-width of H, it therefore suffices to obtain
a geodesic P with the properties of 4.1. This is simple in the finite case, and very lengthy in the
infinite case, so let us do the finite case separately, for readers whose only interest is the finite case.
We need:

4.2 Let (Bt : t ∈ T ) be a line-decomposition of a graph H, and let C ≥ 1. Let φ be a surjective
(C − 1, C)-quasi-isometry from a graph G to H. Let t, t′, t′′ ∈ T with t′ ≤ t ≤ t′′, and let K be a

15



connected subgraph of G with V (K) ∩ φ−1(Bt′), V (K) ∩ φ−1(Bt′′) both nonempty. Then there is a
vertex x ∈ V (K) such that distH(φ(x), Bt) ≤ C − 1.

Proof. Since V (K) ∩ φ−1(Bt′), V (K) ∩ φ−1(Bt′′) are both nonempty and K is connected, there is
a path P of K with ends x′, x′′ say, where φ(x′) ∈ Bt′ and φ(x′′) ∈ Bt′′ . If φ(x) ∈ Bt for some
x ∈ V (P ), then x satisfies the theorem, so we suppose not. Since every path in H between Bt′

and Bt′′ has a vertex in Bt, it follows that φ(x′), φ(x′′) belong to different components of H \ Bt.
Consequently there is an edge ab of P such that φ(a), φ(b) belong to different components of H \Bt.
Since distH(φ(a), φ(b)) ≤ 2C − 1, there exists x ∈ {a, b} such that distH(φ(x), Bt) ≤ C − 1. This
proves 4.2.

Let H be a graph that admits a line-decomposition (Bt : t ∈ T ). We can remove from T all t
with Bt = ∅, so we may assume that Bt 6= ∅ for each t ∈ T , that is, (Bt : t ∈ T ) is nowhere-null.

4.3 Suppose that φ is a (C − 1, C)-quasi-isometry from a connected graph G to a finite graph H
with a nowhere-null line-decomposition (Bt : t ∈ T ) of width at most k. Then there is a geodesic P
of G such that distG(P, φ−1(Bt)) ≤ C2 for each t ∈ V (T ).

Proof. Since H is finite, we may assume that T is finite, and so we may assume that T =
{1, . . . , n}. Choose a ∈ B1 and b ∈ Bn, and choose x, y ∈ V (G) such that distH(φ(x), a) ≤ C,
and distH(φ(y), b) ≤ C. Let P be a geodesic in G between x, y (this exists since G is connected).
Choose h ∈ {1, . . . , n} minimum such that φ(u) ∈ Bh, and j ∈ {1, . . . , n} maximum such that
φ(v) ∈ Bj . Now let t ∈ {1, . . . , n}; we need to show that distG(P, φ−1(Bt)) ≤ D. If h ≤ t ≤ j, then
this is true by 4.2, since D ≥ C; so from the symmetry we may assume that t < h. There is a path
of H between B1 and φ(u) of length at most C, and so some vertex of this path belongs to Bt; and
consequently distH(φ(u), Bt) ≤ C, and so distG(u, φ−1(Bt)) ≤ C2. This proves 4.3.

Thus, to complete the proof of 2.1 when H is finite, we may assume that H is connected, and
hence G is connected (because there is a quasi-isometry between them). Choose P as in 4.3; then it
satisfies the hypothesis of 4.1, and so 4.1 completes the inductive proof.

5 Some simplifications

The remainder of the paper concerns obtaining the geodesic P when H is infinite. As before, we can
assume that G,H are connected. Before the main argument, in the next section, we take off some
bite-sized pieces. Let us see first that, to prove 2.1 in general, it suffices to prove the result when φ
is surjective.

5.1 Let L,C ≥ 0; and suppose that there exist C ′,W such that if φ is a surjective (b|L/(2C+1)c, C)-
quasi-isometry from a graph G to a graph H with line-width at most k, then there is a function
w : E(H) → N such that φ is a (1, C ′)-quasi-isometry from G to (H,w). It follows that, if φ is a
(L,C)-quasi-isometry from a graph G to a graph H with line-width at most k, then there is a function
w : E(H)→ N such that φ is a (1, C ′)-quasi-isometry from G to the weighted graph (H,w)

Proof. Let L′ = b|L/(2C + 1)c, and suppose that φ is a (L,C)-quasi-isometry from a graph G to a
graph H with line-width at most k. Let Z = {φ(v) : v ∈ V (G)}. For each x ∈ V (H) \ Z, since φ is
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an (L′, C)-quasi-isometry, there exists z ∈ Z such that dist(H,w)(z, x) ≤ C. For each z ∈ Z, choose
a subset η(z) V (H) with the following properties:

• V (Tz) ∩ Z = {z}, and the sets η(z) (z ∈ Z) are pairwise disjoint and have union V (H);

• for each z ∈ Z and each v ∈ η(z), there is a path P of H[η(z)] between v, z with length at
most C.

Let H1 be obtained from H by contracting each of the connected subgraphs H[η(z)] to a single vertex
p(z). It follows that H1 has line-width at most k. For each v ∈ V (G), let φ1(v) = p(φ(v)). It follows
that if u, v ∈ V (G), then

distH1(φ1(u), φ1(v)) ≤ distH(φ(u), φ(v)) ≤ L′ distG(u, v) + C.

Also, let P be a geodesic of H1 between φ1(u), φ1(v), with vertices p(z0)- · · · -p(zn) in order, say,
where z0, . . . , zk ∈ Z. So z0 = φ(u) and zn = φ(v). For 0 ≤ i < k, let ei be the edge of H1 between
p(zi), p(zi+1). Then ei is an edge of H between η(zi), η(zi+1), and so there is a path Pi of H between
zi, zi+1 with length at most 1 + 2C. By concatenating these paths, we find that

distH(z0, zn) ≤ (2C + 1)|E(P )| = (2C + 1) distH1(φ1(u), φ1(v)).

Consequently

distG(u, v) ≤ L′ distH(φ(u), φ(v)) + C ≤ LdistH1(φ1(u), φ1(v)) + C.

It follows that φ1 is a surjective (L,C)-quasi-isometry from G to (H1, w1), and H1 is connected.
Thus, there is a function w1 : E(H1) → N with size at most W such that φ1 is a (1, C ′)-quasi-

isometry from G to (H1, w1). Let w(e) = w1(e) for each e ∈ E(H1), and let w1(e) = 0 for each edge
e of H that is not an edge of H1 (and so has both ends in η(z) for some z ∈ Z). It follows that for
all z, z′ ∈ Z,

dist(H,w′)(z, z
′) = distH1(p(z), p(z′)),

and consequently, for all u, v ∈ V (G),

dist(H,w)(φ(u), φ(v)) = distH1(φ1(u), φ1(v)).

Since φ1 is a (1, C ′)-quasi-isometry from G to (H1, w1), and dist(H,w)(x, Z) = 0 for each x ∈ V (H)\Z,
it follows that φ is a (1, C ′)-quasi-isometry from G to (H,w). This proves 5.1.

We will prove the following in the next section:

5.2 Let (Bt : t ∈ T ) be a nowhere-null line-decomposition of a connected graph H, with finite width,
and let C ≥ 2. Let φ be a surjective (C − 1, C)-quasi-isometry from a graph G to H. Then there is
a graph G′ and a geodesic P of G′ with the following properties:

• G is an induced subgraph of G′, and distG(u, v) = distG′(u, v) for all u, v ∈ V (G);

• the identity map from V (G) into V (G′) is a (1, 2C2+1)-quasi-isometry, and there is a (1, 4C2+
2)-quasi-isometry from G′ to G that maps each vertex of G to itself; and
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• for each t ∈ T , distG′(P, φ
−1(Bt)) ≤ 6C2.

Next, we show that if 5.2 holds then we can complete the proof of 2.1. We need:

5.3 Let φ be an (L,C)-quasi-isometry from G to H, and let ψ be an (L′, C ′)-quasi-isometry from
F to G. For each v ∈ V (F ), define θ(v) = φ(ψ(v)). Then θ is an (L1L2, C)-quasi-isometry from F
to H, provided that C ≥ max(LC ′ + 2C,L′C + C ′).

The proof is routine calculation and we omit it.

Proof of 2.1, assuming 6.6: We already saw in 5.1 that it suffices to prove 2.1 when φ is
surjective. Let L,C ≥ 0. Let C0 = L(2C2 + 2) + 2C. Choose C ′ as in 4.1, with C,D replaced by
C0, 6C

2 respectively, and let W = C ′. We claim that C ′,W satisfy 2.1, when φ is surjective.
Let H be a graph with line-width at most k and let φ be a surjective (L,C)-quasi-isometry from

a connected graph G to H. By 5.2, there is a graph G′ and a geodesic P of G′ with the following
properties:

• G is an induced subgraph of G′, and distG(u, v) = distG′(u, v) for all u, v ∈ V (G);

• the identity map from V (G) into V (G′) is a (1, 2C2+1)-quasi-isometry, and there is a (1, 4C2+
2)-quasi-isometry ψ from G′ to G that maps each vertex of G to itself; and

• for each t ∈ T , distG′(P, φ
−1(Bt)) ≤ 6C2.

For each v ∈ V (G′), define θ(v) = φ(ψ(v)). Since this is the composition of a (L,C)-quasi-
isometry and a (1, 4C2 + 2)-quasi-isometry, it follows from 5.3 that θ is an (L,L(2C2 + 2) + 2C)-
quasi-isometry from G′ to H, and hence a (C0 − 1, C0)-quasi-isometry. Moreover,

distG′(P, φ
−1(Bt)) ≤ 6C2

for each t ∈ T , and so we can apply 4.1. We deduce that there is a function w : E(H) → N with
size at most C ′, such that θ is a (1, C ′)-quasi-isometry from G′ to (H,w). Since φ is surjective, and
distG(u, v) = distG′(u, v) for all u, v ∈ V (G), it follows that the restriction of θ to V (G) is also a
(1, C ′)-quasi-isometry from G to (H,w). But this restriction is just φ, since ψ maps each vertex of
G to itself. This proves 2.1.

6 Finding a spanning geodesic

We begin with an example. Construct graphs G,H as follows. For each j ≥ 1, let Qj be a path of
length 2j, all vertex-disjoint, and for each j let Qj have vertices

q−jj -q−j+1
j - · · · -q0j - · · · -qj−1j -qjj ,

in order. For each integer i (including negative integers) let vi be a new vertex, adjacent to qij for
each j with 1 ≤ j ≤ |i|, forming G. Every geodesic of G is finite, because every geodesic contains at
most two of the vertices vi (i ∈ Z).
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Let H be the two-way infinite path with vertex set {vi : i ∈ Z}, where vi, vi+1 are adjacent for
each i. For each v ∈ V (G), let φ(v) = v if v ∈ V (H), and let φ(v) = vi if v = qij . Then φ is a
surjective (1, 1)-quasi-isometry from G to H. For each integer i let Bi = {vi, vi+1}; so (Bi : i ∈ Z) is
a path-decomposition of H. It follows easily that there is no geodesic P in G (with respect to this
path-decomposition of H) as we need for 4.1.

Thus P might not always exist, and this section concerns faking up a substitute. An interval of
a linearly ordered set T is a set J ⊆ T such that if t1, t2, t3 ∈ T with t1 < t2 < t3 and t1, t3 ∈ J , then
t2 ∈ J . If (Bt : t ∈ T ) is a line-decomposition of H, then for each v ∈ V (H), the set {t ∈ T : v ∈ Bt}
is an interval of T , and we denote it by τ(v).

If L ⊆ T is an interval, we say that J ⊆ L is an initial interval of L if there do not exist i, j ∈ I
with i ≤ j and j ∈ J and i /∈ J , and a final interval is defined similarly. If L ⊆ T is a final interval
of T , we say that v ∈ V (H) is an southern border vertex (for L) if τ(v) ∩ L 6= ∅ and τ(v) 6⊆ L.

We begin with:

6.1 Let H be a connected graph, and let (Bt : t ∈ T ) be a nowhere-null line-decomposition of H
with finite width. Let J be an initial interval of T and let L = T \ J . If J, L 6= ∅, then there is a
southern border vertex for L, and there exists t ∈ L containing all such vertices.

Proof. Let Y be the set of southern border vertices for L. Let P =
⋃

t∈J Bt and Q =
⋃

t∈LBt.
Thus P ∪ Q = V (H), and we suppose (for a contradiction) that P ∩ Q = ∅. Since (Bt : t ∈ T ) is
non-null, and J, L 6= ∅, it follows that P,Q 6= ∅. Since H is connected, there is an edge of H joining
P,Q, and so there exists t ∈ T such that Bt ∩ P,Bt ∩ Q 6= ∅. But then t /∈ J ∪ L, a contradiction.
This proves that P ∩Q 6= ∅. Since P ∩Q ⊆ Y . we deduce that Y 6= ∅.

We claim that the intervals τ(y) (y ∈ Y ) pairwise intersect. To see this, let y1, y2 ∈ Y , and choose
`1 ∈ L ∩ τ(y1) and `2 ∈ L ∩ τ(y2). We may assume that `1 ≤ `2; but then `1 ∈ τ(y2) since y2 is a
southern border vertex of L. This proves that τ(y1), τ(y2) intersect, and so the intervals τ(y) (y ∈ Y )
pairwise intersect.

From the finite Helly property of intervals, it follows that for every finite subset Y ′ of Y , there
exists t ∈ L that belongs to τ(y) for each y ∈ Y ′. Since (Bt : t ∈ T ) has finite width k say, it follows
that |Y ′| ≤ |Bt| ≤ k + 1, and so Y is finite, and therefore there exists t ∈ L with Y ⊆ Bt. This
proves 6.1.

If (Bt : t ∈ T ) is a non-null line-decomposition of a graph H, we say that Y ⊆ T is upfinal in T if

• for each t ∈ T , there exists y ∈ Y such that either y ≥ t; and

• for each t ∈ T , there are only finitely many y ∈ Y with y < t.

We define downfinal similarly. We say that X ⊆ V (H) is up-pervasive if

• for each t ∈ T , there exists t′ ∈ T with t′ ≥ t such that X ∩Bt′ 6= ∅; and

• for each t ∈ T , only finitely many vertices of X belong to
⋃

t′≤tBt′ .

Down-pervasive is defined similarly, reversing the order of T .
There might be a vertex x such that {x} is up-pervasive; that is, τ(x) is a final interval of T .

Similarly there might be x′ such that {x′} is down-pervasive. If both exist then the problem of this
section is easy to resolve, and if even one exists, it helps a good deal. The main case is when neither

19



exists. Let us say that (Bt : t ∈ T ) is upper-open if no singleton set is up-pervasive, and lower-open
is defined similarly. If (Bt : t ∈ T ) is upper-open then no finite set is up-pervasive.

6.2 Let (Bt : t ∈ T ) be a non-null upper-open line-decomposition of a graph H, with finite width,
and let t0 ∈ T . Then there is an infinite sequence t1, t2, . . . , of vertices with the following properties:

• ti < tj for all i, j with 0 ≤ i < j;

• for each t ∈ T with t ≥ t0, there is at least one and at most two values of i ≥ 0 such that
Bt ∩Bti 6= ∅; and

• for each t ∈ T , there are only finitely many i ≥ 0 such that ti ≤ t.

Consequently there is a countable upfinal subset of T , and there is a countable up-pervasive subset of
V (G).

Proof. Let T+ = {t ∈ T : t ≥ t0}, and define T− similarly. Define J−1 = ∅. Inductively, suppose
that i ≥ 0, and t0, . . . , ti have been defined. Let Ji be the set of all t ∈ T+ such that Bt ∩ Bth 6= ∅
for some h ∈ {0, . . . , i}. Thus Ji is an interval of T+ containing t0, and J0 ⊆ J1 ⊆ · · · ⊆ Ji. Define
Li = T+ \ Ji. If Li = ∅, then the finite set Bti is up-pervasive, contradicting that (Bt : t ∈ T ) is
upper-open. So Li 6= ∅. Let Yi+1 be the set of all southern border vertices of Li. By 6.1, Yi+1 6= ∅,
and there exists ti+1 ∈ Li such that Yi+1 ⊆ Bti+1 . Since ti+1 /∈ Ji it follows that Bti+1 ∩ Bth = ∅
for all h ∈ {0, . . . , i}. This completes the inductive definition. We see that the sets Bti (i ∈ I) are
pairwise disjoint.

(1) For each t ∈ T , there are at most two values of i ≥ 0 such that Bt ∩Bti 6= ∅.

If h, j ≥ 0 with j ≥ h+ 2, and t ∈ T , we claim that not both Bt∩Bth , Bt∩Btj are nonempty. To see
this, choose i with h < i < j. If t ≤ ti, then Bt∩Btj ⊆ Bti from the definition of a line-decomposition,
and yet Bti ∩ Btj = ∅, and therefore Bt ∩ Btj = ∅; Similarly if ti ≤ t then Bt ∩ Bth ⊆ Bti , and so
Bt ∩Bth = ∅. This proves (1).

(2) T+ equals the union of the sets Ji (i ≥ 0).

Let J be the union of the intervals Ji (i ≥ 0); so J is an initial interval of T+. Suppose that
J 6= T+. Let L = T+ \ J , and let Y be the set of southern border vertices of L. By 6.1, there exists
y ∈ Y , and there exists t ∈ J with Y ⊆ Bt. Choose s ∈ J ∩ τ(y), and choose i ≥ 0 with s ∈ Ji.
Since τ(y) ∩ L 6= ∅ and therefore τ(y) ∩ Li 6= ∅, it follows that y ∈ Yi+1 ⊆ Bti+1 , and so t ∈ Ji+1,
contradicting that t /∈ J . This proves (2).

It follows from (1) and (2) that the sequence ti (i ≥ 0) satisfies the first two bullets of the theorem.
For the third, let t ∈ T . From (2) there exists i ≥ 0 with t ∈ Ji. For each j ∈ I with j > i, since
tj /∈ Ji it follows that t < tj . This proves the third bullet, and so proves the first assertion of the
theorem.

For the remainder, we observe first that since the sequence {yi : i ≥ 0} is infinite, the third bullet
of the theorem implies that {yi : i ≥ 0} is up-final. Now let X be the union of all the sets Bti(i ≥ 0).
Then X is countable, since each Bti is finite; and X ∩Bt 6= ∅ for each t ≥ t0 (by the second bullet of
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the theorem). To show that X is up-pervasive, it remains to show that for each t ∈ T , only finitely
many vertices of X belong to

⋃
t′≤tBt′ . Let t ∈ T , and choose j ∈ I such that tj > t for all i ∈ I

with i ≥ j (this is possible by the third assertion of the theorem). Since at most two values of i
satisfy Bti ∩ Bt 6= ∅, it follows that Bi ∩ Bt = ∅ for i ≥ j + 2, and therefore Bi ∩

⋃
t′≤tBt′ = ∅ for

i ≥ j + 2. Consequently, if x ∈ X ∩
⋃

t′≤tBt′ , then x belongs to one of B0, . . . , Bj+1, and hence the
number of such x is finite. This proves 6.2.

We observe:

6.3 If (Bt : t ∈ T ) is a non-null line-decomposition of a graph H, and X ⊆ V (G) is up-pervasive,
then every infinite subset of X is up-pervasive.

Proof. Let X ′ ⊆ X be infinite. We need to show that for each t ∈ T , there exists t′ ∈ T with t′ ≥ t
such that X ′ ∩Bt′ 6= ∅. Suppose not; and so t′ < t for every t′ ∈ T with X ′ ∩Bt′ 6= ∅. In particular,
X ′ ⊆

⋃
t′≤tBt′ . But since X is up-pervasive, X ∩

⋃
t′≤tBt′ is finite, contradicting that X ′ is infinite.

This proves 6.3.

6.4 Let (Bt : t ∈ T ) be a non-null line-decomposition of a graph H, with finite width, and let C ≥ 2.
Let S ⊆ T be countable. Let φ be a surjective (C − 1, C)-quasi-isometry from a graph G to H. Then
for each s ∈ S, there exists vs ∈ V (G), with φ(vs) ∈ Bs, such that for every finite subset X ⊆ S,
there is a geodesic P in G such that distG(vs, P ) ≤ C2 − 1 for each s ∈ X.

Proof. Since φ is surjective, for each v ∈ V (H) there exists u ∈ V (G) such that φ(u) = v; choose
some such u and denote it by ψ(v), for each v ∈ V (H). By 6.2, there is a singleton or countable
set X ⊆ V (H) that is up-pervasive. Let Y = {ψ(x) : x ∈ X}. It follows that X,Y have the
same cardinality. Similarly there is a singleton or countable set Z ⊆ V (G) such that φ(Z) is down-
pervasive. Since S is countable, we may write S = {si : i ≥ 1}.

Take a well-order λ of the set of all edges of G. We call λ a tie-breaker. If P,Q are distinct paths
of G, we say P is λ-shorter than Q if either

• |E(P )| < |E(Q)|; or

• |E(P )| = |E(Q)|, and the first element (under λ) of (E(P ) \ E(Q)) ∪ (E(Q) \ E(P )) belongs
to P .

This defines a total order on the set of all finite paths of G. A λ-geodesic means a finite path P such
that no other path joining its ends is λ-shorter than P . Every λ-geodesic of G is a geodesic of G, but
the converse is false. (The point is that there is only one λ-geodesic between any two vertices, while
this is not true for geodesics; this will be convenient.) It is easy to check that if P is a λ-geodesic
then so are all subpaths of P . For every two vertices u, v ∈ V (G), let Pu,v be the λ-geodesic in G
between u, v.

Let k ≥ 0, and let vi ∈ V (G) for 1 ≤ i ≤ k. We say (v1, . . . , vk) is a good choice if

• φ(vi) ∈ Bsi for 1 ≤ i ≤ k; and

• there is a set Yk ⊆ Y such that {φ(y) : y ∈ Yk} is up-pervasive, and a set Zk ⊆ Z such that
{φ(z) : z ∈ Zk} is down-pervasive; and
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• distG(vi, V (Py,z)) ≤ C2 − 1 for all i ∈ {1, . . . , k}, all y ∈ Yk and all z ∈ Zk.

(1) If k ≥ 0 and (v1, . . . , vk) is a good choice, and k + 1 ∈ I, then then there exists vk+1 such that
(v1, . . . , vk, vk+1) is a good choice.

If Yk is infinite, there are only finitely many vertices y ∈ Yk such that φ(y) ∈
⋃

t≤sk+1
Bt, and

we may remove them from Yk by 6.3; so we may assume that φ(y) /∈
⋃

t≤sk+1
Bt, for each y ∈ Yk.

Thus (even if Yk is not infinite and hence is a singleton), for each y ∈ Yk, there exists t′′ ≥ t such that
φ(y) ∈ Bt′′ . Similarly we may assume that for each z ∈ Zk, there exists t′ ≤ t such that φ(z) ∈ Bt′ .

Let W be the set {ψ(v) : v ∈ Bsk+1
}. Let y ∈ Yk and z ∈ Zk, and choose t′ ≤ sk+1 ≤ t′′

such that φ(y) ∈ Bt′′ and φ(z) ∈ Bt′ . By 4.2, there exists u ∈ V (Py,z) and v ∈ Bsk+1
such that

distH(φ(u), v) ≤ C−1, and so distG(u, ψ(v)) ≤ (C−1)2 +C ≤ C2−1. Define ω(y, z) = ψ(v). Thus,
for all y ∈ Yk and z ∈ Zk, we have defined ω(y, z) ∈W , and distG(P (y, z), ω(y, z)) ≤ C2 − 1.

We claim that there exist vk+1 ∈W and Yk+1 ⊆ Yk and Zk+1 ⊆ Zk such that

• ω(y, z) = vk+1 for all y ∈ Yk+1 and z ∈ Zk+1; and

• φ(Yk+1) is up-pervasive and φ(Zk+1) is down-pervasive.

To see this, there are four cases. We recall that |W | is finite. If |Yk| = |Zk| = 1, let Yk+1 = Yk = {y}
and Zk+1 = Zk = {z} and let vk+1 = ω(y, z). If Yk = {y} and Zk is infinite, then there is an infinite
subset Zk+1 of Zk such that for all z ∈ Zk+1 the vertices ω(y, z) are all equal (to some vk+1); and
{φ(z) (z ∈ Zk+1} is down-pervasive by 6.3. Similarly the result holds if Yk is infinite and |Zk| = 1.
Finally, if both Yk, Zk are infinite, by an infinite form of Ramsey’s theorem for bipartite graphs, there
are infinite subsets Yk+1 ⊆ Yk and Zk+1 ⊆ Zk satisfying the first bullet for some choice of vk+1; and
again {φ(y) (y ∈ Zk+1} is up-pervasive and {φ(z) (z ∈ Zk+1} is down-pervasive, by 6.3. This proves
(1).

Let vi (i ∈ I) be the sequence given by (1); then it satisfies the theorem, and so this proves
6.4.

6.5 Let (Bt : t ∈ T ) be a non-null line-decomposition of a graph H, with finite width, and let C ≥ 1.
Let φ be a surjective (C−1, C)-quasi-isometry from a graph G to H. Then there is an integer interval
I, and vi ∈ V (G) for each i ∈ I, and an integer di > 0 for all i ∈ I with i+ 1 ∈ I, with the following
properties, where R denotes the set of vertices v of G such that distG(v, {vi : i ∈ I}) ≤ 3C2, and
φ(R) denotes {φ(v) : v ∈ R}:

• for each t ∈ T there exist t′, t′′ ∈ T with t′ ≤ t ≤ t′′ such that φ(R) ∩Bt′ 6= ∅ 6= φ(R) ∩Bt′′;

• for all distinct h, j ∈ I, distG(vh, vj) ≥ 2C2; and

• for all distinct h, j ∈ I with j > h, | distG(vh, vj)−
∑

h≤i<j di| ≤ 2C2.

Proof. If (Bt : t ∈ T ) is not up-open, choose y0 ∈ V (G) such that {φ(y0)} is upfinal, and if
(Bt : t ∈ T ) is not down-open, choose z0 ∈ V (G) such that {φ(z0)} is downfinal. Suppose first that
y0, z0 both exist and distG(y0, z0) < 2C2. Then we may set I = {1} and v1 = y and the theorem
is satisfied. Next, if y0, z0 both exist and distG(y0, z0) ≥ 2C2, set I = {1, 2}, v1 = y0, v2 = z0 and
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d1 = distG(y0, z0); then again the theorem is satisfied. So we may assume that not both y0, z0 exist,
and from the symmetry we may assume that y0 does not exist, and so (Bt : t ∈ T ) is up-open.

By 6.2, there is a countable subset of T that is upfinal, and similarly one that is downfinal, either
infinite or the singleton {z0}. Let S1 be their union. Thus S1 is a countable subset of T , and satisfies:

• for each t ∈ T , there exist s, s′ ∈ S1 with s ≤ t ≤ s′; and

• for all t, t′ ∈ T with t < t′, there are only finitely many s ∈ S1 with t < s < t′.

By 6.4, for each s ∈ S1, there exists vs ∈ V (G), with φ(vs) ∈ Bs, such that for every finite subset
X ⊆ S1, there is a geodesic P in G such that distG(vs, P ) ≤ C2− 1 for each s ∈ X. Choose S2 ⊆ S1,
with z0 ∈ S2 if z0 exists, maximal such that distG(vs, vs′) ≥ 2C2 for all distinct s, s′ ∈ S2 (this is
possible by Zorn’s lemma).

(1) For each t ∈ T , either there exists s ∈ S2 such that distG(vs, φ
−1(Bt)) ≤ 3C2 − 1, or there

exist s, s′ ∈ S2 with s < t < s′.

Suppose that there is no s ∈ S2 with s ≥ t (the proof is similar if there is no s with s ≤ t). From
the definition of S1, there exists s′ ∈ S1 such that t ≤ s′. Thus s′ /∈ S2, and so there exists s ∈ S2
such that distG(vs, vs′) < 2C2 (this exists from the maximality of S2). By our assumption, s < t,
and we may assume that vs /∈ φ−1(Bt), that is, φ(vs) /∈ Bt. Let P be a geodesic of G between vs, vs′ .
Thus P has length at most 2C2 − 1. If distG(P, φ−1(Bt)) ≤ C2, then distG(vs, φ

−1(Bt)) ≤ 3C2 − 1,
as required, so we assume that distG(P, φ−1(Bt)) > C2. In particular, φ(vs′) /∈ Bt. Since φ(vs) ∈ Bs

and φ(vs′) ∈ Bs′ and s ≤ t ≤ s′, and φ(vs)φ(vs′) /∈ Bt, it follows that φ(vs), φ(vs′) are in different
components of H \ Bt. Choose a minimal subpath Q of P with ends vs, q say, such that φ(vs), φ(q)
are not in the same component of H \ Bt. Let p be the neighbour of q in Q. It follows that φ(p)
does not belong to the component of H \ Bt that contains φ(q). Since distH(φ(p), φ(q)) ≤ 2C − 1,
it follows that distH(φ(P ), Bt) ≤ C − 1, and so distG(P, φ−1(Bt)) ≤ C2 − 1. Since P has length at
most 2C2, it follows that distG(vs, φ

−1(Bt)) ≤ 3C2 − 1. This proves (1).

Let X ⊆ S2 be finite; then there is a geodesic P in G such that distG(vs, P ) ≤ C2 for each
s ∈ X. For each s ∈ X, choose ps ∈ V (P ) such that distG(vs, ps) ≤ C2 − 1. For all s, s′ ∈ X, let
ns,s′ = distG(ps, ps′). We call the function (ns,s′ : s, s′ ∈ X) a gap matrix for X. One set X might
have several gap matrices, because the matrix also depends on P and the choices of the vertices
ps (s ∈ X). Since

| distG(ps, ps′)− distG(vs, vs′ | ≤ 2(3C2 − 1),

there are fewer than 12C2 possibiilities for each entry ns,s′ of the gap matrix, and so at most

(12C2)|X|
2

possibilites for the gap matrix for X.
If X is a finite subset of S2 and (n(s, t) : s, t ∈ X) is a gap matrix for X, let X ′ ⊆ X; then

(n(s, t) : s, t ∈ X ′) is a gap matrix for X ′, and we say (n(s, t) : s, t ∈ X) extends (n(s, t) : s, t ∈ X ′).
Take a sequence X1 ⊆ X2 ⊆ · · · of finite subsets of S2 with union S2, and for each i ≥ 1, let Ni

be a corresponding gap matrix for Xi. Make a graph K with vertex set the set of all gap matrices
for each Xi, in which a gap matrix for Xi is adjacent to a gap matrix for Xj if j = i + 1 and the
second gap matrix extends the first. Then K is a rooted tree with infinitely many vertices and all
degrees finite, and so it has an infinite path, by König’s lemma. Consequently there exists ds,s′ for
all s, s′ ∈ S2, such that for every finite X ⊆ S2, (d(s, s′) : s, s′ ∈ X) is a gap matrix for X.
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Let X = {x1, x2} ⊆ S2 with |X| = 2; then (d(s, s′) : s, s′ ∈ X) is a gap matrix for X. Let P
and ps (s ∈ X) be as in the definition of gap matrix. The vertices px1 , px2 are distinct, since the
vertices vx1 , vx2 have distance at least 2C2 > 2(C2 − 1). Consequently d(x1, x2) ≥ 1 for all distinct
x1, x2 ∈ S2.

Let X ⊆ S2 with |X| = 3; then (d(s, s′) : s, s′ ∈ X) is a gap matrix for X. Let P and ps (s ∈ X)
be as in the definition of gap matrix. Since the vertices ps(s ∈ X) all belong to the geodesic P , one
of them is between the other two in P ; let X = {x1, x2, x3} where px2 is between the other two in P .
It follows that d(x1, x2) + d(x2, x3) = d(x1, x3). Consequently d(x1, x2), d(x2, x3) < d(x1, x3) since
they are all strictly positive.

Since this holds for all triples of distinct vertices in S2, there is a linear ordering < of S2 such
that if a < b < c ∈ X then d(a, b) + d(b, c) = d(a, c). From the additivity of the d function, there are
only finitely many terms between any two terms of this linear order, and so we can number S2 as
{vi : i ∈ I}, where I is an interval of integers, and define di = d(vi, vi+1) for each i ∈ I with i+1 ∈ I,
such that dh,j =

∑
h≤i<j di for all h, j ∈ I with j > h, and consequently,

| distG(vh, vj)−
∑

h≤i<j

di| ≤ 2C2.

This proves 6.5.

6.6 Let (Bt : t ∈ T ) be a non-null line-decomposition of a graph H, with finite width, and let C ≥ 2.
Let φ be a surjective (C − 1, C)-quasi-isometry from a graph G to H. Then there is a graph G′ and
a geodesic P of G′ with the following properties:

• G is an induced subgraph of G′, and distG(u, v) = distG′(u, v) for all u, v ∈ V (G);

• the identity map from V (G) into V (G′) is a (1, 2C2+1)-quasi-isometry, and there is a (1, 4C2+
2)-quasi-isometry from G′ to G that maps each vertex of G to itself;

• for each t ∈ T , distG′(P, φ
−1(Bt)) ≤ 6C2.

Proof. By 6.5, there is an integer interval I, and vi ∈ V (G) for each i ∈ I, and an integer di > 0
for all i ∈ I with i+ 1 ∈ I, with the following properties, where R denotes the set of vertices v of G
such that distG(v, {vi : i ∈ I}) ≤ 3C2, and φ(R) denotes {φ(v) : v ∈ R}:

• for each t ∈ T there exist t′, t′′ ∈ T with t′ ≤ t ≤ t′′ such that φ(R) ∩Bt′ 6= ∅ 6= φ(R) ∩Bt′′ ;

• for all distinct h, j ∈ I with j > h, |distG(vh, vj)−
∑

h≤i<j di| ≤ 2C2.

For each i ∈ I, let ui be a new vertex. For each i ∈ I with i + 1 ∈ I, let Qi be a geodesic of G
between vi, vi+1, and let Pi be a path of new vertices with ends ui, ui+1, of length di. For each such
i, the lengths of Pi and Qi differ by at most 2C2. Let P be the union of the paths Pi, over all i ∈ I
with i + 1 ∈ I. Thus P is a path. Define a map α from V (P ) into V (G) as follows. Let p ∈ V (P ).
If p = ui for some i ∈ I then α(p) = vi. Otherwise p is an internal vertex of Pi for some i ∈ I with
i + 1 ∈ I. Let Pi[ui, p] have length h. If Qi has length at least h, let α(p) be the vertex q ∈ V (Qi)
such that Qi[vi, q] has length h, and otherwise let α(p) = vi+1. This defines α.
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Now for each p ∈ V (P ), add a path Rp of new vertices between p, α(p) of length 2C2 + 1. Let G′

be the union of G,P and all the paths Rp (p ∈ V (P ). We will show that G′ and P satisfy the theorem.

(1) For all p, p′ ∈ V (P ), let q = α(p) and q′ = α(p′); then distP (p, p′) and distG(q, q′) differ by
at most 4C2.

Suppose first that there exists i ∈ I such that p, p′ ∈ V (Pi). Then α(p), α(p′) ∈ V (Qi). If
q, q′ 6= vi+1, then distP (p, p′) and distG(q, q′) are equal, from the definition of α. Hence we as-
sume that q′ = vi+1. If also q = vi+1, then P [ui, p] and P [ui, p

′] both have length at least E(Qi)|,
and so distP (p, p′) ≤ |E(Pi)|−E(Qi)| ≤ 2C2 and distG(q, q′) = 0, as required. Hence we may assume
that q 6= vi+1, and therefore Pi[ui, p] has the same length as Qi[vi, q]. Since distP (ui, p

′) ≥ |E(Qi)|,
it follows that distP (p, p′) ≥ distG(q, q′). But

distP (ui, p
′) ≤ |E(Pi)| ≤ |E(Qi)|+ 2C2.

Since distP (ui, p
′) = distP (ui, p)+distP (p, p′), and distG(vi, q

′) = distG(vi, q)+distG(q, q′), we deduce
that distP (p, p′) ≤ distG(q, q′) + 4C2, as required.

So we may assume that there is no such i ∈ I, and therefore there are vertices of the form
vi(i ∈ I) that are internal vertices of P [p, p′]. We may assume that p ∈ V (Ph) \ {uh+1}, and
p ∈ V (Pj) \ {uj}, where h, j ∈ I with h < j, and uh+1, . . . , uj are all internal vertices of P [p, p′]. To
show distP (p, p′) ≤ distG(q, q′) + 4C2:

distG(vh, q) + distG(q, q′) + distG(q′, vj+1) ≥ distG(vh, vj+1) ≥ dh + dh+1 + · · ·+ dj − 2C2.

But the latter equals

distP (uh, p) + distP (p, p′) + distP (p′, uj+1)− 2C2.

Consequently

distG(vh, q) + distG(q, q′) + distG(q′, vj+1) ≥ distP (uh, p) + distP (p, p′) + distP (p′, uj+1)− 2C2,

that is,

distG(q, q′)− distP (p, p′) ≥ distP (uh, p)− distG(vh, q) + distP (p′, uj+1)− distG(q′, vj+1)− 2C2.

But distP (uh, p) ≥ distG(vh, q), and distP (p′, uj+1) − distG(q′, vj+1) ≥ −2C2; so distG(q, q′) −
distP (p, p′) ≥ −4C2.

To show distP (p, p′) ≥ distG(q, q′)− 4C2:

distG(q, q′) ≤ distG(q, vh+1) + distG(vh+1, vj) + distG(vj , q
′).

But distG(q, vh+1) ≤ distP (p, uh+1) + 2C2, and

distG(vh+1, vj) ≤ dh+1 + · · · dj−1 + 2C2 = distP (uh+1, uj) + 2C2,

and distG(vj , q
′) ≤ distP (uj , p

′). Consequently

distG(q, q′) ≤ distP (p, uh+1) + 2C2 + distP (uh+1, uj) + 2C2 + distP (uj , p
′) = distP (p, p′) + 4C2.
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This proves (1).

(2) No finite geodesic of G′ with both ends in V (G) has a vertex in P . Consequently if u, v ∈ V (G),
then distG(u, v) = distG′(u, v).

The second statement follows immediately from the first. Suppose that the first is false, and let
L be the shortest geodesic of G′ with both ends in V (G) and with a vertex in V (P ). It follows that
the ends of L are α(p), α(p′) for some p, p′ ∈ V (P ); and L is the union of Rp, Rp′ and the subpath of
P between p, p′. Thus L has length

2(2C2 + 1) + distP (p, p′) ≥ 2 + distG(α(p), α(p′)) ≥ 2 + |E(L)|

since L is a geodesic of G′, a contradiction. This proves (2).

Every vertex in V (G′) has distance in G′ at most 2C2 + 1 from some vertex of G, (2) implies
that the identity map is a (1, 2C2 + 1)-quasi-isometry from G to G′. By (1), the map β from V (G′)
to V (G), with β(v) = v for v ∈ V (G), and with β(v) = α(p) for each p ∈ V (P ) and v ∈ V (Rp), is a
(1, 4C2 + 2)-quasi-isometry from G′ to G.

Finally, let t ∈ T . From the application of 6.5, there exist t′, t′′ ∈ T with t′ ≤ t ≤ t′′ such that
φ(R) ∩Bt′ 6= ∅ 6= φ(R) ∩Bt′′ ; where R denotes the set of vertices v of G such that distG(v, {vi : i ∈
I}) ≤ 3C2, and φ(R) denotes {φ(v) : v ∈ R}. Since φ(R)∩Bt′ 6= ∅, there exists h ∈ I and xh ∈ V (G)
such that distG(vh, xh) ≤ 3C2 and φ(xh) ∈ Bt′ . Let Fh be a geodesic in G between vh, xh. Similarly
there exists j ∈ I and xj ∈ V (G) such that distG(vj , xj) ≤ 3C2 and φ(xj) ∈ Bt′′ , and a geodesic Fj

between vj , xj . We may assume that i ≤ j. The union of the paths Fh, Ph, Ph+1, . . . , Pj−1, Fj is a
connected subgraph of G containing xh and xj , and so one of its vertices has distance in G at most
C2 − 1 from φ−1(Bt), by 4.2. But each of its vertices has distance at most 3C2 + (2C2 + 1) from P
in G′, since the vertices of Fh have distance at most 3C2 from vh and hence at most 3C2 + (2C2 + 1)
from uh, and the same holds for Fj , and for 1 ≤ i ≤ j − 1, each vertex of Pi has distance in G′ at
most 2C2 + 1 from P . Hence distG′(P, φ

−1(Bt)) ≤ 6C2. This proves 6.6.
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