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Abstract. The clustered chromatic number of a class of graphs is the minimum integer k such that
for some integer c every graph in the class is k-colourable with monochromatic components of
size at most c. We prove that for every graph H , the clustered chromatic number of the class of
H-minor-free graphs is tied to the tree-depth of H . In particular, if H has tree-depth t then every
H-minor-free graph is 4t-colourable with monochromatic components of size at most c(H). This
provides evidence for a conjecture of Ossona de Mendez, Oum and Wood (2016). If H is connected
with tree-depth 3, then we prove that 4 colours suffice. We also determine those minor-closed
graph classes with clustered chromatic number 2.

1 Introduction

In a vertex-coloured graph, a monochromatic component is a connected component of the subgraph
induced by all the vertices of one colour. A graph G is k-colourable with clustering c if each
vertex can be assigned one of k colours such that each monochromatic subgraph has at most c

vertices. We shall consider such colourings, where the first priority is to minimise the number of
colours, with small clustering as a secondary goal. With this viewpoint the following definition
arises. The clustered chromatic number of a graph class G, denoted by χ⋆(G), is the minimum
integer k such that, for some integer c, every graph in G has a k-colouring with clustering c.

This paper studies clustered colouring in minor-closed classes of graphs. A graph H is a minor
of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting
edges. A class of graphs M is minor-closed if for every graph G ∈ M every minor of G is in M,
and some graph is not in M. For a graph H , let MH be the class of H-minor-free graphs.

We approach this topic via Hadwiger’s Conjecture, which states that every graph with no Kt-minor
is properly (t − 1)-colourable. This conjecture is easy for t ⩽ 4, is equivalent to the 4-colour
theorem for t = 5, is true for t = 6 [18], and is open for t ⩾ 7. The best known upper bound is
O(t

√
log t), independently due to Kostochka [10, 11] and Thomason [20, 21]. This conjecture is
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widely considered to be one of the most important open problems in graph theory; see [19] for a
survey.

Clustered colourings of Kt-minor-free graphs provide an avenue for attacking Hadwiger’s Conjec-
ture. Kawarabayashi and Mohar [8] first proved a O(t) upper bound on χ⋆(MKt). In particular,
they proved that every Kt-minor-free graph is ⌈312 t⌉-colourable with clustering f(t), for some
function f . The number of colours in this result was improved to ⌈7t−3

2 ⌉ by Wood [23]1, to 4t− 4

by Edwards, Kang, Kim, Oum, and Seymour [4], to 3t − 3 by Liu and Oum [13], and to 2t − 2

by Norin [15]2. Thus χ⋆(MKt) ⩽ 2t − 2. See [6, 7] for analogous results for graphs excluding
odd minors. For all of these results, the function f(t) is very large, often depending on constants
from the Graph Minor Structure Theorem. Van den Heuvel and Wood [22] proved the first such
result with f(t) explicit. In particular, they proved that every Kt-minor-free graph is (2t − 2)-
colourable with clustering ⌈ t−2

2 ⌉. The result of Edwards et al. [4] mentioned below implies that
χ⋆(MKt) ⩾ t− 1. Dvǒrák and Norin [3] have announced a proof that χ⋆(MKt) = t− 1.

Now consider the class MH of H-minor-free graphs for an arbitrary graph H . Hadwiger’s Con-
jecture would imply that the maximum chromatic number of a graph in MH equals |V (H)| − 1

(since K|V (H)|−1 is H-minor-free). However, for clustered colourings, fewer colours often suffice.
For example, Kawarabayashi and Thomassen [9] and Esperet and Ochem [5] proved that graphs
embeddable on any fixed surface are 5-colourable with bounded clustering, whereas the chro-
matic number is Θ(

√
g) for surfaces of Euler genus g. Van den Heuvel and Wood [22] proved that

K2,t-minor-free graphs are 3-colourable with clustering t − 1, and that K3,t-minor-free graphs
are 6-colourable with clustering 2t. These results show that χ⋆(MH) depends on the structure
of H , unlike the usual chromatic number which only depends on |V (H)|.

At the heart of this paper is the following question: what property of H determines the χ⋆(MH)?
The following definition helps to answer this question. The tree-depth of a connected graph H ,
denoted by td(H), is the minimum depth of a rooted tree T such that H is a subgraph of the
closure of T . Here the closure of T is obtained by adding an edge between every ancestor and
descendent in T , and the depth of a rooted tree is the maximum number of vertices on a root–to–
leaf path. The tree-depth of a disconnected graph H is the maximum tree-depth of the connected
components of H . See [14] for background on tree-depth. The following result is the primary
contribution of this paper; it is proved in Section 2.

Theorem 1. For every graph H , χ⋆(MH) is tied to the tree-depth of H . In particular,

td(H)− 1 ⩽ χ⋆(MH) < 4td(H).

Moreover, for each k ⩾ 2, there is a graph Hk with tree-depth k such that χ⋆(MHk
) ⩾ 2k − 2.

The upper bound in Theorem 1 gives evidence for, and was inspired by, a conjecture of Ossona de
Mendez, Oum, and Wood [16], which we now introduce. A graph G is k-colourable with defect d

1 This result depended on a result announced in 2008 which has not yet been written.
2 See [19] for some of the details.
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if each vertex of G can be assigned one of k colours so that each vertex is adjacent to at most
d neighbours of the same colour; that is, each monochromatic subgraph has maximum degree at
most d. The defective chromatic number of a graph class G, denoted by χ∆(G), is the minimum
integer k such that, for some integer d, every graph in G is k-colourable with defect d. Every
colouring of a graph with clustering c has defect c− 1. Thus the defective chromatic number of a
graph class is at most its clustered chromatic number. Ossona de Mendez et al. [16] conjectured
the following behaviour for the defective chromatic number of MH .

Conjecture 2 (Ossona de Mendez et al. [16]). For every graph H ,

χ∆(MH) = td(H)− 1,

unless H has distinct connected components H1 and H2 with td(H1) = td(H2) = td(H), in which
case χ∆(MH) = td(H).

Ossona de Mendez et al. [16] proved the lower bounds in Conjecture 2. In particular, χ∆(MH) ⩾
td(H)− 1. The first lower bound in Theorem 1 follows since χ∆⩽ χ⋆ for every class. The upper
bound in Conjecture 2 is known to hold in some special cases. Edwards et al. [4] proved it if
H = Kt; that is, χ∆(MKt) = t− 1, which can be thought of as a defective version of Hadwiger’s
Conjecture. Ossona de Mendez et al. [16] proved the upper bound in Conjecture 2 if td(H) ⩽ 3

or if H is a complete bipartite graph. In particular, χ∆(MKs,t) = min{s, t}.

Theorem 1 provides some evidence for Conjecture 2 by showing that χ∆(MH) and χ⋆(MH) are
bounded from above by some function of td(H). This was previously not known to be true.

The existence of Hk in Theorem 1 shows some distinction between defective and clustered
colourings. In particular, χ∆(MH) ⩾ td(H) − 1, with equality conjectured for every H . But
χ⋆(MH) ⩾ 2 td(H)− 2 for some graph H . We conjecture:

Conjecture 3. For every graph H ,

χ⋆(MH) ⩽ 2 td(H)− 2,

unless H has distinct connected components H1 and H2 with td(H1) = td(H2) = td(H), in which
case χ⋆(MH) ⩽ 2 td(H)− 1.

The second contribution of the paper is to precisely determine the minor-closed graph classes
with clustered chromatic number 2. This result is introduced and proved in Section 3. Section 4
studies clustered colourings of graph classes excluding a planar minor. This leads to a proof
of Conjecture 3 in the td(H) = 3 case. We conclude in Section 5 with a conjecture about the
clustered chromatic number of an arbitrary minor-closed class that generalises Conjecture 3.

2 Tree-depth Bounds

The main goal of this section is to prove the upper bound in Theorem 1; that is, χ⋆(MH) < 4td(H)

for every graph H .
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Let T be a rooted tree. Recall that the closure of T is the graph G with vertex set V (T ), where
two vertices are adjacent in G if one is an ancestor of the other in T . The weak closure of T is
the graph G with vertex set V (T ), where two vertices are adjacent in G if one is a leaf and the
other is one of its ancestors. For h, k ⩾ 1, let T ⟨h, k⟩ be the rooted complete k-ary tree of depth
h. Let C⟨h, k⟩ be the weak closure of T ⟨h, k⟩.

Lemma 4. For h, k ⩾ 2 the weak closure of T ⟨h, k⟩ contains the closure of T ⟨h, k − 1⟩ as a minor.

Proof. Let r be the root vertex. Colour r blue. For each non-leaf vertex v, colour k − 1 children
of v blue and colour the other child of v red. Let X be the set of blue vertices v in T ⟨h, k⟩, such
that every ancestor of v is blue. Note that X induces a copy of T ⟨h, k − 1⟩ in T ⟨h, k⟩. Consider
each non-leaf vertex v ∈ X in turn. Let w be the red child of v, and let Tv be the subtree of
T ⟨h, k⟩ rooted at w. Then every leaf of Tv is adjacent in C⟨h, k⟩ to v and to every ancestor of v.
Contract Tv and the edge vw into v. Now v is adjacent to every ancestor of v in X . Do this for
each non-leaf vertex in X . Note that Tu and Tv are disjoint for distinct non-leaf vertices u, v ∈ X .
Thus, we obtain the closure of T ⟨h, k − 1⟩ as a minor of C⟨h, k⟩.

A model of a graph H in a graph G is a collection {Jx : x ∈ V (H)} of pairwise disjoint subtrees
of G such that for every xy ∈ E(H) there is an edge of G with one end in V (Jx) and another in
V (Jy). A graph contains H as a minor if and only if it contains a model of H .

Lemma 5. For h ⩾ 2 and k ⩾ 1, if a graph G contains C⟨h, 6k⟩ as a minor, then G contains
subgraphs G′ and G′′, both containing C⟨h, k⟩ as a minor, such that |V (G′) ∩ V (G′′)| ⩽ 1.

Proof. Consider a model {Jx : x ∈ V (C⟨h, 6k⟩)} of C⟨h, 6k⟩ in G. Let r be the root vertex
of C⟨h, 6k⟩. We may assume that for each leaf vertex x of T ⟨h, 6k⟩, there is exactly one edge
between Jx and Jr .

Let Q be a tree obtained from Jr by splitting vertices, where:

• Q has maximum degree at most 3,

• Jr is a minor of Q; let {Qv : v ∈ V (Jr)} be the model of Jr in Q,

• each edge vw of Jr corresponds to an edge of Q between Qv and Qw ,

• there is a set L of leaf vertices in Q, and a bijection ϕ from L to the set of leaves of T ⟨h, 6k⟩,
such that for each leaf x of T ⟨h, 6k⟩, if the edge from Jx to Jr in G is incident to vertex v

in Jr , then ϕ−1(x) is a vertex z in L ∩Qv , in which case we say x and z are associated.

Consider a subset L′ ⊆ L and the corresponding set ϕ(L′) of leaves of T ⟨h, 6k⟩. Apply the
following ‘propagation’ process in T ⟨h, 6k⟩. Initially, say that the vertices in ϕ(L′) are alive with
respect to L′. For each parent vertex y of leaves in T ⟨h, 6k⟩, if at least 2k of its 6k children are
alive with respect to L′, then y is also alive with respect to L′. Now propogate up T ⟨h, 6k⟩, so
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that a non-leaf vertex y of T ⟨h, 6k⟩ is alive if and only if at least 2k of its children are alive with
respect to L′. Say L′ is good if r is alive with respect to L′.

Consider an edge vw of Q. Let Lvw be the set of vertices in L in the subtree of Q−vw containing
v, and let Lwv be the set of vertices in L in the subtree of Q − vw containing w. Since L is
the disjoint union of Lvw and Lwv , every leaf vertex of T ⟨h, 6k⟩ is in exactly one of ϕ(Lvw) or
ϕ(Lwv). By induction, every vertex in T ⟨h, 6k⟩ is alive with respect to Lvw or Lwv (possibly both).
In particular, Lvw or Lwv is good (possibly both).

Suppose that both Lvw and Lwv are good. Then at least 2k children of r are alive with respect
to Lvw , and at least 2k children of r are alive with respect to Lwv . Thus there are disjoint sets
A and B, each consisting of k children of r, where every vertex in A is alive with respect to Lvw ,
and every vertex in B is alive with respect to Lwv . Say each vertex in A is chosen by v. Then for
each non-leaf vertex z chosen by v (which is always alive with respect to Lvw) choose k children
of z that are also alive with respect to Lvw , and say they are chosen by v. Continue this process
down to the leaves of T ⟨h, 6k⟩. We now define the graph G′, which is initially empty. For each
vertex z chosen by v, add the subgraph Jz to G′. Furthermore, for each leaf vertex z of T ⟨h, 6k⟩
chosen by v and for each ancestor y of z chosen by v, add the edge in G between Jz and Jy to
G′. Define G′′ analogously with respect to B and Lwv . At this point G′ and G′′ are disjoint.

The edge vw in Q either corresponds to an edge or a vertex of Jr . First suppose that vw

corresponds to an edge ab of Jr , where v is in Qa and w is in Qb. Let J1
r be the subtree of Jr−ab

containing a. Add J1
r to G′, plus the edge in G between J1

r and Jz for each leaf z of T ⟨h, 6k⟩
chosen by v. Similarly, let J2

r be the subtree of Jr − ab containing b, and Add J2
r to G′′, plus the

edge in G between J2
r and Jz for each leaf z of T ⟨h, 6k⟩ chosen by w. Observe that G′ and G′′

are disjoint, and they both contain C⟨h, k⟩ as a minor, as desired.

Now consider the case in which vw corresponds to a vertex z in Jr . That is, v and w are both
in Qz . Let J1

r be the subtree of Jr corresponding to the subtree of Q − vw containing v (which
includes z). Add J1

r to G′, plus the edge in G between J1
r and Jz for each leaf z of T ⟨h, 6k⟩

chosen by v. Similarly, let J2
r be the subtree of Jr corresponding to the subtree of Q − vw

containing w (which includes z). Add J2
r to G′′, plus the edge in G between J2

r and Jz for each
leaf z of T ⟨h, 6k⟩ chosen by w. Observe that both G′ and G′′ contain C⟨h, k⟩ as a minor, and
V (G1) ∩ V (G2) = {z}, as desired.

We may therefore assume that for each edge vw of Q, exactly one of Lvw and Lwv is good. Orient
vw towards v if Lvw is good, and towards w if Lwv is good. Since at most one leaf of T ⟨h, 6k⟩ is
associated with each leaf of Q, each edge incident to a leaf of Q is oriented away from the leaf.
Since Q is a tree, Q contains a sink vertex v, which is therefore not a leaf. Let w1, w2 and possibly
w3 be the neighbours of v in Q. Let Li be the set of vertices in L in the subtree of Q − vwi

containing wi. Since vwi is oriented towards v, with respect to vwi, the set Li is not good. Since
no leaf of T ⟨h, 6k⟩ is associated with v, the sets ϕ(L1), ϕ(L2) and ϕ(L3) partition the leaves of
T ⟨h, 6k⟩. Since each non-leaf vertex y in T ⟨h, 6k⟩ has 6k children, y is alive with respect to L1,
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L2 or L3. In particular, at least one of L1, L2 or L3 is good. This is a contradiction.

If r is a vertex in a connected graph G and Vi := {v ∈ V (G) : distG(v, r) = i} for i ⩾ 0, then
V0, V1, . . . is called the BFS layering of G starting at r.

Theorem 6. Let f(h) := 1
3(5 · 4

h−1 − 2) for every h ⩾ 1. Then there is a function g : N×N → N
such that for every k ⩾ 1, every graph either contains C⟨h, k⟩ as a minor or is f(h)-colourable
with clustering g(h, k).

Proof. We proceed by induction on h ⩾ 1. In the base case h = 1, the graph C⟨1, k⟩ simply
consists of k isolated vertices. So every graph with no C⟨1, k⟩ minor has less than k vertices.
Thus the result holds with f(1) = 1 and g(1, k) = k − 1. Now assume that h ⩾ 2 and the result
holds for h− 1 and all k. We may assume that g(h− 1, k) ⩾ k − 1.

Consider a graph G, which we may assume is connected. Let V0, V1, . . . be a BFS layering of G.

Fix i ⩾ 1. Let s be the maximum integer such that G[Vi] contains s disjoint subgraphs G1, . . . , Gs

each containing C⟨h− 1,max{1, 6k−s}k⟩ as a minor. First suppose that s ⩾ k. Then G[Vi]

contains k disjoint subgraphs each containing C⟨h− 1, k⟩ minors. Contracting V0 ∪ · · · ∪ Vi−1 to
a single vertex gives a C⟨h, k⟩ minor (since every vertex in Vi has a neighbour in Vi−1), and we
are done. Now assume that s ⩽ k − 1.

If s = 0, then G[Vi] contains no C⟨h− 1, 6k−1k⟩ minor. By induction, G[Vi] is f(h−1)-colourable
with clustering g(h− 1, 6k−1k).

Now consider the case that s ∈ [1, k − 1]. Apply Lemma 5 to Gj for each j ∈ [1, r]. Thus
Gj contains subgraphs G′

j and G′′
j , both containing C⟨h− 1, 6k−s−1k⟩ as a minor, such that

|V (G′
j) ∩ V (G′′

j )| ⩽ 1. Let X :=
∪s

j=1 V (G′
j) ∩ V (G′′

j ). Thus |X| ⩽ s ⩽ k − 1. Let A :=

G[Vi] −
∪s

j=1 V (G′
j) and B := G[Vi] −

∪s
j=1 V (G′′

j ). By the maximality of s, the subgraph
A contains no C⟨h− 1, 6k−s−1k⟩ minor (as otherwise A,G′

1, . . . , G
′
s would give s + 1 pairwise

disjoint subgraphs satisfying the requirements). By induction, A is f(h − 1)-colourable with
clustering g(h− 1, 6kk) since 6k−s−1k ⩽ 6kk. Similarly, B is f(h− 1)-colourable with clustering
g(h− 1, 6kk). By construction, each vertex in G[Vi] is in at least one of X , A or B. Use one new
colour for X , which has size at most s ⩽ k − 1 ⩽ g(h− 1, 6kk).

In both cases, G[Vi] is (2f(h − 1) + 1)-colourable with clustering g(h − 1, 6kk). Use a different
set of 2f(h− 1)+1 colours for even i and for odd i. No edge joins Vi with Vj for j ⩾ i+2. Since
f(h) = 4f(h− 1) + 2, G is f(h)-colourable with clustering g(h, k) := g(h− 1, 6kk).

We now prove the upper bound in Theorem 1.

Theorem 7. For every graph H ,

χ⋆(MH) ⩽ 1
3(5 · 4

td(H)−1 − 2).
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Proof. Let G be a graph not containing H as a minor. Let T := T ⟨td(H), |V (H)|⟩. By the
definition of tree-depth, H is a subgraph of the closure of T . Thus G does not contain the
closure of T as a minor. By Lemma 4, G does not contain C⟨td(H), |V (H)|+ 1⟩ as a minor.
By Theorem 6, there is a constant c = c(H), such that G is 1

3(5 · 4
td(H)−1 − 2)-colourable with

clustering at most c.

Note that small constant-factor improvements to Theorem 7 are possible by improving the base
cases. In a BFS layering of a connected graph with no K1,k minor, less than k vertices appear
in each layer. Alternately 2-colouring the layers, gives a colouring with clustering k. It follows
that if td(H) ⩽ 2, then every H-minor-free graph is 2-colourable with clustering |V (H)|. See
Theorem 22 for an improvement in the td(H) ⩽ 3 case.

We now prove the second lower bound in Theorem 1.

Proposition 8. For k ⩾ 2, let Hk be the closure of the complete ternary tree of depth k (which
has tree-depth k). Then

χ⋆(MHk
) ⩾ 2k − 2.

Proof. Fix an integer c. We now recursively define graphs Gk (depending on c), and show by
induction on k that Gk has no (2k− 3)-colouring with clustering c, and Hk is not a minor of Gk .

For the base case k = 2, let G2 be the path on c+ 1 vertices. Then G2 has no H2 = K1,3 minor,
and G2 has no 1-colouring with clustering c.

Assume Gk−1 is defined for some k ⩾ 3, that Gk−1 has no (2k − 5)-colouring with clustering c,
and Hk−1 is not a minor of Gk−1. As illustrated in Figure 1, let Gk be obtained from a path
(v1, . . . , vc+1) as follows: for i ∈ {1, . . . , c} add 2c− 1 pairwise disjoint copies of Gk−1 complete
to {vi, vi+1}.

Suppose that Gk has a (2k − 3)-colouring with clustering c. Then vi and vi+1 receive distinct
colours for some i ∈ {1, . . . , c}. Consider the 2c − 1 copies of Gk−1 complete to {vi, vi+1}. At

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

v1 v2 v3 v4 v5 v6 b b b vc+1

Figure 1: Construction of Gk .
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most c − 1 such copies contain a vertex assigned the same colour as vi, and at most c − 1 such
copies contain a vertex assigned the same colour as vi+1. Thus some copy avoids both colours.
Hence Gk−1 is (2k − 5)-coloured with clustering c, which is a contradiction. Therefore Gk has
no (2k − 3)-colouring with clustering c.

It remains to show that Hk is not a minor of Gk . Suppose that Gk contains a model {Jx : x ∈
V (Hk)} of Hk . Let r be the root vertex in Hk . Choose the Hk-model to minimise

∑
x∈V (H) |V (Jx)|.

Thus Jr is a connected subgraph of (v1, . . . , vc+1). Say Jr = (vi, . . . , vj). Note that Hk − r

consists of three pairwise disjoint copies of Hk−1. The model X of one such copy avoids vi−1 and
vj+1 (if these vertices are defined). Since Hk−1 is connected, X is contained in a component of
Gk − {vi−1, . . . , vj+1} and is adjacent to (vi, . . . , vj). Each such component is a copy of Gk−1.
Thus Hk−1 is a minor of Gk−1, which is a contradiction. Thus Hk is not a minor of Gk .

3 2-Colouring with Bounded Clustering

This section considers the following question: which minor-closed graph classes have clustered
chromatic number 2? To answer this question we introduce three classes of graphs that are not
2-colourable with bounded clustering, as illustrated in Figure 2.

The first example is the n-fan, which is the graph obtained from the n-vertex path by adding one
dominant vertex. If the n-fan is 2-colourable with clustering c, then the underlying path contains
at most c − 1 vertices of the same colour as the dominant vertex, implying that the other colour
has at most c monochromatic components each with at most c vertices, and n ⩽ c2 + c− 1. That
is, if n ⩾ c2 + c then the n-fan is not 2-colourable with clustering c.

The second example is the n-fat star, which is the graph obtained by adding n degree-2 vertices
adjacent to the endpoints of each edge in the n-star (the star with n leaves). Equivalently, the
n-fat star is the closure of T ⟨3, n⟩. Note that deleting the dominant vertex in the n-fat star gives
n disjoint n-stars. If n ⩾ c+ 1 then in at least one of these n-stars, no vertex receives the same
colour as the dominant vertex, implying there is a monochromatic component of at least c + 2

vertices. Hence, if n ⩾ c+ 1, then the n-fat star is not 2-colourable with clustering c.

The third example is the n-fat path, which is the graph by adding n degree-2 vertices adjacent to
the endpoints of each edge in the n-vertex path. If n ⩾ 2c then in every 2-colouring of the n-fat
path with clustering c, adjacent vertices in the underlying path receive the same colour, implying
that the underlying path is contained in a monochromatic component with more than c vertices.
Thus, for n ⩾ 2c there is no 2-colouring of the n-fat path with clustering c.

These three examples all need three colours in a colouring with bounded clustering. The main
result of this section is the following converse result.

Theorem 9. Let G be a minor-closed graph class. Then χ⋆(G) = 2 if and only if for some integer
k ⩾ 1, the k-fan, the k-fat path, and the k-fat star are not in G.
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b b b

b
b
b

bbb

b
b

b

b
b

b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

fan fat star fat path

Figure 2: Graph classes that are not 2-colourable with bounded clustering.

The following definition is a key to the proof of Theorem 9. For an integer k ⩾ 1 and a graph
H with vertex set {v1, . . . , vh}, a k-strong H-model in a graph G consists of h pairwise disjoint
connected subgraphs X1, . . . , Xh in G, such that for each edge vivj of H there are k vertices in
V (G) \

∪h
i=1 V (Xi) adjacent to both Xi and Xj . This definition leads to the following sufficient

condition for a graph to contain a k-fat star or k-fat path

Lemma 10. If a graph G contains a k(k + 1)-strong H-model for some connected graph H with
kk edges, then G contains a k-fat star or a k-fat path as a minor.

Proof. Use the notation introduced in the definition of k-strong H-model. Since H is connected
with kk edges, H contains a k-vertex path or a k-leaf star as a subgraph. Suppose that (v1, . . . , vk)
is a k-vertex path in H . For i = 1, 2, . . . , k − 1, let Ni be a set of k + 1 vertices in

(V (G) \
h∪

i=1

V (Xi)) \
i−1∪
j=1

Nj ,

each of which is adjacent to both Xi and Xi+1. Such a set exists since Xi and Xi+1 have at least
k(k + 1) common neighbours in V (G) \

∪h
i=1 V (Xi). For i ∈ [1, k − 1], contract one vertex of Ni

into Xi. Then contract each of X1, . . . , Xh into a single vertex. We obtain the k-fat path as a
minor in G. The case of a k-leaf star is analogous.

Lemma 11. If a connected graph G contains a (k + 2c − 2)-strong H-model for some graph
H with c components, then G contains a k-strong H ′-model for some connected graph H ′ with
|E(H ′)| = |E(H)|.

Proof. We proceed by induction on c ⩾ 1. The case c = 1 is vacuous. Assume c ⩾ 2, and the
result holds for c − 1. Let H1, . . . , Hc be the components of H . We may assume that H has no
isolated vertices. Say X1, . . . , Xh is a (k + 2c − 2)-strong H-model in G. For each edge vivj

in H , let Nij be a set of k + 2c − 2 common neighbours of Xi and Xj . For each component
Ha of H , note that (

∪
vi∈V (Ha)

V (Xi)) ∪ (
∪

vivj∈E(Ha)
Nij) induces a connected subgraph in G,

which we denote by Ga. Since G is connected, there is a path P between Ga and Gb, for some
distinct a, b ∈ [1, c], such that no internal vertex of P is in G1 ∪ · · · ∪Gc. Note that P might be
a single vertex. For some edge vivi′ in Ha and some edge vjvj′ in Hb, without loss of generality,
P joins some vertex x in V (Xi) ∪Nii′ and some vertex y in V (Xj) ∪Njj′ . Let H ′ be the graph
obtained from H by identifying vi and vj into a new vertex v0. Now H ′ has c − 1 components
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and |E(H ′)| = |E(H)|. Define X0 := Xi ∪ Xj ∪ P . If x ̸∈ V (Xi) then add the edge between
x and Xi to X0. Similarly, if y ̸∈ V (Xj) then add the edge between y and Xj to X0. Remove
x and/or y from Nαβ for each edge vαvβ of H ′. Now |Nαβ| ⩾ k + 2(c − 1) − 2. We obtain a
(k+2(c−1)−2)-strong H ′-model in G. By induction, G contains a k-strong H ′′-model for some
connected graph H ′′ with |E(H ′′)| = |E(H)|.

Lemma 12. If a connected graph G contains a 3kk-strong H-model for some graph H with at
least kk edges, then G contains a k-fat star or a k-fat path as a minor.

Proof. We may assume that H has exactly kk edges and has no isolated vertices. Say H has c

components. Then c ⩽ kk and 3kk ⩾ k2+k+2c−2. Hence G contains a (k2+k+2c−2)-strong
H-model. The result then follows from Lemmas 10 and 11.

Lemma 13. Let G be a connected graph such that degG(v) ⩾ ℓk for some non-cut-vertex v and
integers k, ℓ ⩾ 1. Then G contains a k-fan as a minor, or G contains a connected subgraph X

and v has ℓ neighbours not in X and all adjacent to X (thus contracting X gives a K2,ℓ minor).

Proof. Let r be a vertex of G − v. For each w ∈ NG(v), let Pw be a wr-path in G − v. If
|Pw∩NG(v)| ⩾ k then G contains a k-fan minor. Now assume that |Pw∩NG(v)| ⩽ k−1 for each
w ∈ NG(v). Let H be the digraph with vertex set NG(v), where N+

H (w) := V (Pw) ∩ NG(v) for
each vertex w. Thus H has maximum outdegree at most k − 1. Since |V (H)| ⩾ ℓk, H contains a
stable set S of size ℓ. Let X :=

∪
{Pw : w ∈ S} − S, which is connected since S is stable. Each

vertex in S is adjacent to v and to X , as desired.

Lemma 14. Let G be a graph with distinct vertices v1, . . . , vk , such that C := G − {v1, . . . , vk}
is connected and degC(vi) ⩾ k3 for each i ∈ [1, k]. Then G contains a k-fan or k-fat star as a
minor.

Proof. The idea of the proof is to attempt to build a k-fan model by constructing a subtree X such
that each vi is adjacent to a subset Si of k leaves of X (where the Si are disjoint). We construct
X and the Si by adding, one at a time, paths to some neighbour w of some vi to increase the size
of Si. We always choose a neighbour at maximal distance from r among all neighbours of all vi
for which Si is not yet large enough: this ensures that later paths will not pass through the sets
Si that have been previously constructed.

We now formalise this idea. Let r be a vertex in C . Let V0, V1, . . . , Vn be a BFS layering of C
starting at r. Initialise t := n and X := {r} and Si := ∅ for i ∈ [1, k] and S := ∅. The following
properties trivially hold:

(0) S =
∪

i∈[1,k] Si and S ⊆ Vt ∪ Vt+1 ∪ · · · ∪ Vn.
(1) X is a (connected) subtree of C rooted at r with (non-root) leaf set S.
(2) Si ∩ Sj = ∅ for distinct i, j ∈ [1, k].
(3) Si is a set of at most k + 1 neighbours of vi for i ∈ [1, k] (and so |S| ⩽ k(k + 1)).
(4) |NC−V (X)(vi)| ⩾ k3 − 1− (k − 1)|S| > 0 for i ∈ [1, k].
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Now execute the following algorithm, which maintains properties (0) – (4). Think of Vt as the
‘current’ layer.

While |Si| ⩽ k for some i ∈ [1, k] repeat the following: If Vt ∩NC−V (X)(vi) = ∅ for all i ∈ [1, k]

with |Si| ⩽ k, then let t := t − 1. Properties (0) – (4) are trivially maintained. Otherwise, let w
be a vertex in Vt ∩NC−V (X)(vi) for some i ∈ [1, k] with |Si| ⩽ k. Since V0, V1, . . . , Vn is a BFS
layering of C rooted at r and r is in X , there is a path P from w to X consisting of at most one
vertex from each of V0, . . . , Vt, and with no internal vertices in X . By (0) and since w ̸∈ S, P
avoids S. By (1), the endpoint of P in X is not a leaf of X . If P contains at least k vertices in
NC(vj) for some j ∈ [1, k], then G contains a k-fan minor and we are done. Now assume that P
contains at most k−1 vertices in NC(vj) for each j ∈ [1, k]. Let Si := Si∪{w} and S := S∪{w}
and X := X ∪ P . Now w is a leaf of X , and property (1) is maintained. Properties (0), (2) and
(3) are maintained by construction. Property (4) is maintained since |S| increases by 1 and P

contains at most k − 1 vertices in NC(vj) for each j ∈ [1, k].

The algorithm terminates when |Si| = k+1 for each i ∈ [1, k]. Delete C−V (X). Contract X−S

(which is connected by (1)) to a single vertex z. Since S is the set of leaves of X , each vertex
in Si is adjacent to both vi and z. Contract one edge between vi and Si for each i ∈ [1, k]. We
obtain the k-fat star as a minor.

Lemma 15. Let G be a bipartite graph with bipartition A,B, such that at least p vertices in
A have degree at least k|A|, and every vertex in B has degree at least 2. Then G contains a
k-strong H-model for some graph H with at least p/2 edges.

Proof. Let H be the graph with V (H) := A where vw ∈ E(H) whenever |NG(v) ∩NG(w)| ⩾ k.
Since every vertex in B has degree at least 2, every vertex in A with degree at least k|A| is
incident with some edge in H . Thus H has at least p/2 edges. By construction, G contains a
k-strong H-model.

For the remainder of this section, let d := (k + 2)kk(9k2k+1 + 1). A vertex v is high-degree if
deg(v) ⩾ d, otherwise v is low-degree.

Lemma 16. If a 2-connected graph G has at least (k+2)kk high-degree vertices, then G contains
a k-fat path, a k-fat star, or a k-fan as a minor.

Proof. Let A be a set of exactly (k + 2)kk high-degree vertices in G. Let C1, . . . , Cp be the
components of G−A. Say (v, Cj) is a heavy pair if v ∈ A and v has at least 3kk+1 neighbours
in Cj . Since 3kk+1 ⩾ k3, by Lemma 14, if some Cj is in at least k heavy pairs, then G contains
a k-fan or k-fat star as a minor, and we are done. Now assume that each Cj is in fewer than
k heavy pairs. Let h be the total number of heavy pairs. Then there is a set P of at least h/k
heavy pairs containing at most one heavy pair for each component Cj . For each such heavy pair
(v, Cj), by Lemma 13 with ℓ = 3kk , G[V (Cj) ∪ {v}] contains a k-fan as a minor (and we are
done) or a K2,3kk minor, where G[{v}] is the subgraph corresponding to one of the vertices in
the colour class of size 2 in K2,3kk . We obtain a 3kk-strong H-model for some graph H , where
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|E(H)| = |P | ⩾ h/k. If h/k ⩾ kk , then we are done by Lemma 12. Now assume that h < kk+1.
In particular, the number of vertices in A that are in a heavy pair is less than kk+1. Let A′ be
the set of vertices in A in no heavy pair; thus |A′| ⩾ 2kk . Let H be the bipartite graph with
bipartition A,B, where there is one vertex wj in B for each component Cj , and v ∈ A is adjacent
to wj ∈ B if and only if v is adjacent to some vertex in Cj . In H , every vertex in A′ has degree
at least (d − |A|)/3kk+1, which is at least 3kk|A|. (Note that d is defined so that this property
holds.) Since G is 2-connected, each Cj is adjacent to at least two vertices in A. Thus every
vertex in B has degree at least 2 in H . By Lemma 15, H contains a 3kk-strong model of a graph
with at least |A′|/2 ⩾ kk edges. By Lemma 12 we are done.

Lemma 17. Let V0, V1, . . . be a BFS layering in a connected graph G. If G[Vi ∪Vi+1 ∪ · · · ∪Vi+c]

contains a path on at least kc+1 vertices for some i, c ⩾ 0, then G contains a k-fan minor.

Proof. We proceed by induction on c. Let P be a path in G[Vi∪Vi+1∪· · ·∪Vi+c] on kc+1 vertices.
First suppose that P contains k vertices v1, . . . , vk in Vi (which must happen in the base case
c = 0). Each vertex vi has a neighbour in Vi−1. Thus, contracting G[V0 ∪ · · · ∪ Vi−1] into a single
vertex and contracting P between vi and vi+1 to an edge (for i ∈ [1, k − 1]) gives a k-fan minor.
Now assume that P contains at most k − 1 vertices in Vi and c ⩾ 1. Thus P − Vi has at least
kc+1 − (k − 1) vertices and at most k components. Thus some component of P − Vi has at least
⌈(kc+1 − k + 1)/k⌉ = kc vertices and is contained in G[Vi+1 ∪ Vi+2 ∪ · · · ∪ Vi+c]. By induction,
G contains a k-fan minor.

Say a vertex v in a coloured graph is properly coloured if no neighbour of v gets the same colour
as v.

Lemma 18. Let G be a 2-connected graph with no k-fan, k-fat star or k-fat path as a minor. Let
h be the number of high-degree vertices in G. Let r be a vertex in G. Then G is 2-colourable
with clustering at most dk3(k+2)kk . Moreover, if h = 0 then we can additionally demand that r is
properly coloured.

Proof. Let V0, V1, . . . be the BFS layering of G starting at r.

First suppose that h = 0. Colour each vertex v ∈ Vi by i mod 2. Then r is properly coloured.
Every monochromatic component is contained in some Vi. Suppose that some component X of
G[Vi] has at least dk vertices. Thus i ⩾ 1. Since G and thus X has maximum degree at most d,
X contains a path of k vertices. Contracting G[V0 ∪ · · · ∪ Vi−1] into a single vertex gives a k-fan
minor. This contradiction shows that the 2-colouring has clustering at most dk .

Now assume that h ⩾ 1. By Lemma 16, h ⩽ (k+2)kk . Colour all the high-degree vertices black.
Let I be the set of integers i ⩾ 0 such that Vi contains a high-degree vertex. Colour all the
low-degree vertices in

∪
{Vi : i ∈ I} white.

Consider a maximal sequence Vi, Vi+1, . . . , Vi+c of layers with no high-degree vertices, where
c ⩾ 0. Thus Vi−1 is empty or contains a high-degree vertex. Similarly, Vi+c+1 is empty or
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contains a high-degree vertex. If c is even, then colour Vi ∪ Vi+2 ∪ · · · ∪ Vi+c white and colour
Vi+1∪Vi+3∪· · ·∪Vi+c−1 black. If c is odd, then colour Vi∪Vi+2∪· · ·∪Vi+c−1 and Vi+c white, and
colour Vi+1 ∪ Vi+3 ∪ · · · ∪ Vi+c−2 black. Note that if c ⩾ 2 then at least one of Vi+1, . . . , Vi+c−1

is black.

We now show that each black component X has bounded size. If X contains some high-degree
vertex, then every vertex in X is high-degree and |X| ⩽ h ⩽ (k + 2)kk . Now assume that X

contains no high-degree vertices. Say X intersects Vj . Since each black layer is preceded by
and followed by a white layer, X is contained in Vj . Every vertex in X has degree at most d

in G. Thus if X has at least dk vertices, then X contains a path of length k, and contracting
V0 ∪ · · · ∪ Vj−1 to a single vertex gives a k-fan. Hence X has at most dk vertices.

Finally, consider a white component X . Then X is contained within at most 3h ⩽ 3(k + 2)kk

consecutive layers (since in the notation above, if all of Vi, Vi+1, . . . , Vi+c are white, then c ⩽ 1).
Suppose that |X| ⩾ dk

3(k+2)kk . Since X has maximum degree at most d, X contains a path of
length k3(k+2)kk . Thus, Lemma 17 with c+1 = 3(k+2)kk implies that G contains a k-fan minor.
Hence |X| ⩽ dk

3(k+2)kk .

We now complete the proof of Theorem 9.

Lemma 19. Let G be a graph with no k-fan, no k-fat path, and no k-fat star as a minor. Then G

is 2-colourable with clustering kdk
3(k+2)kk .

Proof. We may assume that G is connected. Let r be a vertex of G. If B is a block of G containing
r, then consider B to be rooted at r. If B is a block of G not containing r, then consider B to be
rooted at the unique vertex in B that separates B from r. Say (B, v) is a high-degree pair if B
is a block of G and v has high-degree in B. Note that one vertex might be in several high-degree
pairs.

Suppose that some vertex v is in at least k high-degree pairs with blocks B1, . . . , Bk . By
Lemma 13, each Bi contains a K2,k+1 minor rooted at v. Contracting one edge incident to v

in each K2,k+1 gives a k-fat star as a minor. Now assume that each vertex is in fewer than k

high-degree pairs.

Colour each block B in non-decreasing order of the distance in G from r to the root of B. Consider
a block B of G rooted at v (possibly equal to r). Then v is already coloured in the parent block of
B. Let hB be the number of high-degree pairs involving B. By Lemma 18, B is 2-colourable with
clustering at most dk3(k+2)kk , such that if hB = 0 then v is properly coloured. Permute the colours
in B so that the colour assigned to v matches the colour assigned to v by the parent block. Then
the monochromatic component containing v is contained within the parent block of B along with
those blocks rooted at v that form a high-degree pair with v. As shown above, there are at most
k such blocks. Thus each monochromatic component has at most kdk3(k+2)kk vertices.

13



4 Excluding a Fat Star

This section considers colourings of graphs excluding a fat star. We need the following more
general lemma.

Lemma 20. For every planar graph H ,

χ⋆(MH) ⩽ 2χ∆(MH).

Proof. The grid minor theorem of Robertson and Seymour [17] says that every graph in MH

has tree-width at most some function t(H). (Chekuri and Chuzhoy [2] recently showed that t

can be taken to be polynomial in |V (H)|.) Alon, Ding, Oporowski, and Vertigan [1] observed
that every graph with tree-width t and maximum degree ∆ is 2-colourable with clustering 24t∆.
Let k := χ∆(MH). That is, every H-minor-free graph G is k-colourable with monochromatic
components of maximum degree at most some function d(H). Apply the above result of Alon
et al. [1] to each monochromatic component. Thus G is 2k-colourable with clustering 24 t(H) d(H).
Hence χ⋆(MH) ⩽ 2k.

A variant of Lemma 20 holds for arbitrary graphs H with “2” replaced by “3”. The proof uses a
result of Liu and Oum [13] in place of the result of Alon et al. [1]; see [4, 22].

Theorem 21. For k ⩾ 3, the clustered chromatic number of the class of graphs with no k-fat star
minor equals 4.

Proof. As illustrated in Figure 2, the k-fat star is planar. Ossona de Mendez et al. [16] proved
that graphs with no k-fat star minor are 2-colourable with defect O(k13). Thus, Lemma 20 implies
that the clustered chromatic number of the class of graphs with no k-fat star is at most 4. To
obtain a bound on the clustering, note that a result of Leaf and Seymour [12] implies that every
graph with no k-fat star minor has tree-width O(k2). It follows from the proof of Lemma 20 that
every graph with no k-fat star minor is 4-colourable with clustering O(k15). Since the 3-fat star
is the closure of the complete ternary tree of depth 3, Proposition 8 implies that for k ⩾ 3, the
clustered chromatic number of the class of graphs with no k-fat star minor is at least 4.

Theorem 21 leads to a proof of the tree-depth 3 case of Conjecture 3.

Theorem 22. For every graph H with td(H) ⩽ 3,

χ⋆(MH) ⩽ 4,

unless H has distinct connected components H1 and H2 with td(H1) = td(H2) = 3, in which
case χ⋆(MH) ⩽ 5.

Proof. First suppose that H does not have distinct connected components H1 and H2 with
td(H1) = td(H2) = 3. Then H is a subgraph of the k-fat star for some k ⩽ |V (H)|, and
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the k-fat star is not in MH . By Theorem 21, every H-minor-free graph is 4-colourable with
clustering at most some function of k, which is at most some function of H . Now assume H has
distinct connected components H1 and H2 with td(H1) = td(H2) = 3. Say H has p components.
Each component of H is a subgraph of the k-fat star for some k ⩽ |V (H)|. Let H ′ consist of
p pairwise disjoint copies of the k-fat star. Let G be an H-minor-free graph. Thus G is also
H ′-minor-free. By the Erdős-Posa Theorem of Robertson and Seymour [17], there is a constant
c = c(H ′), such that G contains a set X of size at most c and G −X contains no k-fat star as
a minor. As proved above, G − X is 4-colourable with clustering at most some function of H .
Assign vertices in X a fifth colour. Thus G is 5-colourable with clustering at most some function
of H .

5 A Conjecture about Clustered Colouring

We now formulate a conjecture about the clustered chromatic number of an arbitrary minor-
closed class of graphs. Consider the following recursively defined class of graphs. Let X1,c :=

{Pc+1,K1,c}. For k ⩾ 2, let Xk,c be the set of graphs obtained by the following three operations.
For the first two operations, consider an arbitrary graph G ∈ Xk−1,c.

• Let G′ be the graph obtained from c disjoint copies of G by adding one dominant vertex.
Then G′ is in Xk,c.

• Let G+ be the graph obtained from G as follows: for each k-clique D in G, add a stable
set of k(c− 1) + 1 vertices complete to D. Then G+ is in Xk,c.

• If k ⩾ 3 and G ∈ Xk−2,c, then let G++ be the graph obtained from G as follows: for each
(k− 1)-clique D in G, add a path of (c2 − 1)(k− 1)+ (c+1) vertices complete to D. Then
G++ is in Xk,c.

A vertex-coloured graph is rainbow if every vertex receives a distinct colour.

Lemma 23. For every c ⩾ 1 and k ⩾ 2, for every graph G ∈ Xk,c, every colouring of G with clus-
tering c contains a rainbow Kk+1. In particular, no graph in Xk,c is k-colourable with clustering
c.

Proof. We proceed by induction on k ⩾ 1. In the case k = 1, every colouring of Pc+1 or K1,c with
clustering c contains an edge whose endpoints receive distinct colours, and we are done. Now
assume the claim for k − 1 and for k − 2 (if k ⩾ 3).

Let G ∈ Xk−1,c. Consider a colouring of G′ with clustering c. Say the dominant vertex v is blue.
At most c − 1 copies of G contain a blue vertex. Thus, some copy of G has no blue vertex. By
induction, this copy of G contains a rainbow Kk . With v we obtain a rainbow Kk+1.

Now consider a colouring of G+ with clustering c. By induction, the copy of G in G+ contains a
clique w1, . . . , wk receiving distinct colours. Let S be the set of k(c− 1) + 1 vertices adjacent to
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w1, . . . , wk in G+. At most c − 1 vertices in S receive the same colour as wi. Thus some vertex
in S receives a colour distinct from the colours assigned to w1, . . . , wk . Hence G+ contains a
rainbow Kk+1.

Now suppose k ⩾ 3 and G ∈ Xk−2,c. Consider a colouring of G++ with clustering c. By
induction, the copy of G in G++ contains a clique w1, . . . , wk−1 receiving distinct colours. Let P
be the path of (c2 − 1)(k − 1) + (c + 1) vertices in G++ complete to w1, . . . , wk−1. Let Xi be
the set of vertices in P assigned the same colour as wi, and let X :=

∪
iXi. Thus |Xi| ⩽ c − 1

and |X| ⩽ (c − 1)(k − 1). Hence P − X has at most (c − 1)(k − 1) + 1 components, and
|V (P − X)| ⩾ (c2 − 1)(k − 1) + (c + 1) − (c − 1)(k − 1) = c

(
(c − 1)(k − 1) + 1

)
+ 1. Some

component of P − X has at least c + 1 vertices, and therefore contains a bichromatic edge xy.
Then {w1, . . . , wk−1} ∪ {x, y} induces a rainbow Kk+1 in G++.

We conjecture that a minor-closed class that excludes every graph in Xk,c for some c is k-
colourable with bounded clustering. More precisely:

Conjecture 24. For every minor-closed class M of graphs,

χ⋆(M) = min{k : ∃c M ∩Xk,c = ∅}.

To prove the lower bound in Conjecture 24, let k be the minimum integer such that M ∩Xk,c = ∅
for some integer c. Thus for every integer c some graph G ∈ Xk−1,c is in M. By Lemma 23, G
has no (k − 1)-colouring with clustering c. Thus χ⋆(M) ⩾ k.

Note that the k = 1 case of Conjecture 24 is trivial: a graph is 1-colourable with bounded
clustering if and only if each component has bounded size, which holds if and only if every path
has bounded length and every vertex has bounded degree.

We note that Theorem 9 implies Conjecture 24 with k = 2. If G = Pc+1 then G′ contains the
(c + 1)-fan and G+ contains the (c + 1)-fat path. If G = K1,c then G′ and G+ are both the
c-fat-star. Thus, if a minor-closed class M excludes every graph in X2,c for some c, then M

excludes the (c+1)-fan, the (c+1)-fat-path, and the c-fat-star. Then χ⋆(M) ⩽ 2 by Theorem 9.

We now relate Conjectures 3 and 24. Fix a graph H . Conjecture 24 says that the clustered
chromatic number of MH equals the minimum integer k such that for some integer c, every graph
in Xk,c contains H as a minor. Let k := td(H) ⩾ 2. First observe that every graph in X2k−2,c

contains the closure of the complete c-ary tree of depth k as a minor. Thus, for a suitable value
of c, every graph in X2k,c contains H as a minor, unless H has distinct connected components
H1 and H2 with td(H1) = td(H2) = td(H), in which case every graph in X2k−1,c contains H as
a minor. Hence, Conjecture 24 implies Conjecture 3.

We finish with two interesting special cases of Conjectures 3 and 24:

• What is χ⋆(MpKt), where pKt is the graph consisting of p disjoint copies of Kt? Conjec-
ture 24 says the answer is t. The best known upper bound (independent of p) is 1

3(5 ·4
t−2),
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which follows from Theorem 7 since td(pKt) = t+ 1.

• What is χ⋆(MKs,t) for s ⩽ t? Van den Heuvel and Wood [22] proved a lower bound of
s + 1 for t ⩾ max{s, 3}. Their construction is a special case of the construction above.
Conjecture 24 says the answer is s+ 1. The best known upper bound is 3s (see [22]).
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