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Abstract

A graph is claw-free if no induced subgraph is isomorphic to the complete bipartite graph K1,3. In
this series of papers we give a structural description of all claw-free graphs.

The most well-known class of claw-free graphs is the class of line graphs, but there are also
claw-free graphs that are far from being line graphs; and one key distinction turns out to be, are
there four vertices such that at most one pair of them are adjacent? The structure of the connected
claw-free graphs which have such a quadruple (such as the icosahedron, and most line graphs and
circular interval graphs) is quite different from those that do not (such as the Schläfli graph), and
they are handled by different methods.

This paper is the first half of the proof; we prove that every claw-free graph which has such a
quadruple either belongs to one of a few basic classes, or admits a decomposition in a useful way.
The other half of the proof will be in the next paper of this series.



1 Introduction

Let G be a graph. (All graphs in this paper are finite and simple.) If X ⊆ V (G), the subgraph
G|X induced on X is the subgraph with vertex set X and edge-set all edges of G with both ends in
X. (V (G) and E(G) denote the vertex- and edge-sets of G respectively.) We say that X ⊆ V (G)
is a claw in G if |X| = 4 and G|X is isomorphic to the complete bipartite graph K1,3. We say G is
claw-free if no X ⊆ V (G) is a claw in G. Our objective in this series of papers is to show that every
claw-free graph can be built starting from some basic classes by means of some simple constructions.

What constructions should we permit? That is not such an easy question, as we shall see. For
instance, here is a construction that is natural and acceptable, “duplicating” a vertex: if G is claw-
free, and u ∈ V (G) with neighbour set N , we could add a new vertex v to G, with neighbour set
N∪{u}. Here is another “construction” – given any claw-free graph, add to it a vertex with any set of
neighbours, provided that the enlarged graph has no claw. This second construction is evidently not
what we want; if we allow it, constructing claw-free graphs becomes trivial. But it is difficult (indeed,
beyond us) to see any formal difference between the two, at least from the viewpoint of complexity
theory, because one can easily check in polynomial time whether adding a certain vertex introduces
a claw. So it seems that we perhaps have to fall back on nebulous concepts like “naturalness” and
“depth” to justify our work.

On the other hand, there is definitely something under here, waiting to be excavated. For instance,
one of the first things we shall show is that if G is claw-free, and has an induced subgraph that is
a line graph of a (not too small) cyclically 3-connected graph, then either the whole graph G is a
line graph, or G admits a decomposition of one of two possible types. That suggests that we should
investigate which other claw-free graphs do not admit either of these decompositions; and that turns
out to be a good question, because at least when α(G) ≥ 4 there is a nice answer. (We denote the
size of the largest stable set of vertices in G by α(G).) All claw-free graphs G with α(G) ≥ 4 that do
not admit either of these decompositions can be explicitly described, and fall into a few basic classes;
and all connected claw-free graphs G with α(G) ≥ 4 can be built from these basic types by simple
constructions. When α(G) ≤ 3 the situation becomes more complicated; there are both more basic
types and more decompositions required, as we shall explain.

Let us say a graph is prismatic if for every three pairwise adjacent vertices u, v, w, every vertex
different from u, v, w is adjacent to exactly one of them. We say G is antiprismatic if its complement
is prismatic. Antiprismatic graphs are claw-free, but they seem to need to be treated in a different
way from the general case; indeed, the methods that we developed for the general case completely
failed to work on antiprismatic graphs, and we had to find quite different techniques. For that reason,
and the length of the present paper, we decided to write up the antiprismatic case in a separate paper.
Thus, in this paper we just handle claw-free graphs that are not antiprismatic.

There is a difference between a “decomposition theorem” and a “structure theorem”, although
they are closely related. In this paper we prove a decomposition theorem for claw-free graphs that
are not antiprismatic; we show that they all either belong to a few basic classes or admit certain
decompositions. But this can be refined into a structure theorem that is more informative; for
instance, every connected claw-free graph G with α(G) ≥ 4 has the same overall “shape” as a line
graph, and more or less can be regarded as a line graph with “interval graph strips” substituted for
some of the vertices. For reasons of space, that development, and its application to several open
questions about claw-free graphs, is postponed to a future paper.
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2 The main theorem

In this section we state our main theorem, but first we need a number of definitions. A hole in
G means an induced subgraph which is a cycle with at least four vertices. A path in G means an
induced nonnull connected subgraph in which no vertex is adjacent to more than two others. The
length of a path or hole is the number of edges in it. If X ⊆ V (G), the graph obtained from G by
deleting X is denoted by G \ X. We say X ⊆ V (G) is a clique in G if every two members of X
are adjacent. A clique with cardinality 3 is a triangle. A triad in G means a set of three vertices of
G, pairwise nonadjacent. Two subsets X,Y of V (G) with X ∩ Y = ∅ are complete to each other if
every vertex of X is adjacent to every vertex of Y , and anticomplete if no vertex in X is adjacent to
a member of Y . If A ⊆ V (G), and v ∈ V (G) \ A, we say v is A-complete if it is adjacent to every
vertex in A, and A-anticomplete if it has no neighbour in A. Distinct vertices u, v of G are twins (in
G) if they are adjacent and have exactly the same neighbours in V (G) \ {u, v}.

Next, let us explain the decompositions that we shall use in the main theorem. The first is just
that there are two vertices in G that are twins, or briefly, “G admits twins”. For the second, let
A,B be disjoint subsets of V (G). The pair (A,B) is called a homogeneous pair in G if for every
vertex v ∈ V (G) \ (A ∪ B), v is either A-complete or A-anticomplete and either B-complete or B-
anticomplete. Let (A,B) be a homogeneous pair, such that A,B are both cliques, and A is neither
complete nor anticomplete to B. In these circumstances we call (A,B) a W-join. (Note that there
is no requirement that A ∪B 6= V (G). If the complement of G is bipartite, then G admits a W-join
except in degenerate cases.) The pair (A,B) is nondominating if some vertex of G \ (A ∪ B) has no
neighbour in A ∪ B; and it is coherent if the set of all (A ∪ B)-complete vertices in V (G) \ (A ∪ B)
is a clique. In some applications, nondominating W-joins and coherent W-joins are easier to handle
than general W-joins, and it turns out that throughout the proof in this paper, in every instance
where we exhibit a W-join, it is either nondominating or coherent. We might as well take advantage
of that convenient fact to save ourselves trouble in the future, so we confine ourselves to W-joins
which are either nondominating or coherent.

Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are nonempty and there are no
edges between V1 and V2. We call the pair (V1, V2) a 0-join in G. Thus G admits a 0-join if and only
if it is not connected.

Next, suppose that V1, V2 partition V (G), and for i = 1, 2 there is a subset Ai ⊆ Vi such that:

• for i = 1, 2, Ai is a clique, and Ai, Vi \ Ai are both nonempty

• A1 is complete to A2

• every edge between V1 and V2 is between A1 and A2.

In these circumstances, we say that (V1, V2) is a 1-join.
Next, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for i = 1, 2 there are

subsets Ai, Bi of Vi satisfying the following:

• for i = 1, 2, Ai, Bi are cliques, Ai ∩ Bi = ∅ and Ai, Bi and Vi \ (Ai ∪ Bi) are all nonempty

• A1 is complete to A2, and B1 is complete to B2, and there are no other edges between V1 and
V2, and

• V0 is a clique; and for i = 1, 2, V0 is complete to Ai ∪ Bi and anticomplete to Vi \ (Ai ∪ Bi).
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We call the triple (V1, V0, V2) a generalized 2-join, and if V0 = ∅ we call the pair (V1, V2) a 2-join.
(This is closely related to, but not the same as, what has been called a 2-join in other papers.)

We use one more decomposition, the following. Let (V1, V2) be a partition of V (G), such that for
i = 1, 2 there are cliques Ai, Bi, Ci ⊆ Vi with the following properties:

• For i = 1, 2 the sets Ai, Bi, Ci are pairwise disjoint and have union Vi

• V1 is complete to V2 except that there are no edges between A1 and A2, between B1 and B2,
and between C1 and C2.

• V1, V2 are both nonempty.

In these circumstances we say that G is a hex-join of G|V1 and G|V2. Note that if G is expressible as
a hex-join as above, then the sets A1 ∪ B2, B1 ∪ C2 and C1 ∪ A2 are three cliques with union V (G),
and consequently no graph G with α(G) > 3 is expressible as a hex-join.

Next, we list some basic classes of graphs.

• Line graphs. If H is a graph, its line graph L(H) is the graph with vertex set E(H), in which
distinct e, f ∈ E(H) are adjacent if and only if they have a common end in H. We say G ∈ S0

if G is isomorphic to a line graph.

• The icosahedron. This is the unique planar graph with twelve vertices all of degree five. For
0 ≤ k ≤ 3, icosa(−k) denotes the graph obtained from the icosahedron by deleting k pairwise
adjacent vertices. We say G ∈ S1 if G is isomorphic to icosa(0), icosa(−1) or icosa(−2).

• The graphs S2. Let G be the graph with vertex set {v1, . . . , v13}, with adjacency as follows.
v1- · · · -v6 is a hole in G of length 6. Next, v7 is adjacent to v1, v2; v8 is adjacent to v4, v5,
and possibly to v7; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6, v9; v11 is
adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent to
v1, v2, v4, v5, v7, v8. We say H ∈ S2 if H is isomorphic to G \ X, where X ⊆ {v11, v12, v13}.

• Circular interval graphs. Let Σ be a circle and let F1, . . . , Fk be subsets of Σ, each home-
omorphic to the closed interval [0, 1], and no three with union Σ. Let V be a finite subset
of Σ, and let G be the graph with vertex set V in which v1, v2 ∈ V are adjacent if and only
v1, v2 ∈ Fi for some i. Such a graph is called a circular interval graph. We write G ∈ S3 if G
is a circular interval graph.

• An extension of L(K6). Let H be the graph with seven vertices h0, . . . , h6, in which h1, . . . , h6

are pairwise adjacent and h0 is adjacent to h1. Let G be the graph obtained from the line graph
L(H) of H by adding one new vertex, adjacent precisely to the members of V (L(H)) = E(H)
that are not incident with h1 in H. Then G is claw-free. Let S4 be the class of all graphs
isomorphic to induced subgraphs of G.

• The graphs S5. Let n ≥ 0. Let A = {a1, . . . , an}, B = {b1, . . . , bn} and C = {c1, . . . , cn} be
three cliques, pairwise disjoint. For 1 ≤ i, j ≤ n, let ai, bj be adjacent if and only if i = j,
and let ci be adjacent to aj, bj if and only if i 6= j. Let d1, d2, d3, d4, d5 be five more vertices,
where d1 is A ∪ B ∪ C-complete; d2 is complete to A ∪ B ∪ {d1}; d3 is complete to A ∪ {d2};
d4 is complete to B ∪ {d2, d3}; d5 is adjacent to d3, d4; and there are no more edges. Let the
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graph just constructed be G. We say H ∈ S5 if (for some n) H is isomorphic to G\X for some
X ⊆ A ∪ B ∪ C.

• 2-simplicial graphs of antihat type. Let n ≥ 0. Let A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn}
and C = {c1, . . . , cn} be three cliques, pairwise disjoint. For 0 ≤ i, j ≤ n, let ai, bj be adjacent
if and only if i = j > 0, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to aj , bj if and
only if i 6= j 6= 0. Let the graph just constructed be G. We say H ∈ S6 if (for some n) H is
isomorphic to G \ X for some X ⊆ A∪B ∪C, and then H is said to be 2-simplicial of antihat
type.

Now we can state the main result of this paper, the following.

2.1 Let G be claw-free. Then either

• G ∈ S0 ∪ · · · ∪ S6, or

• G admits either twins, a nondominating W-join, a coherent W-join, a 0-join, a 1-join, a
generalized 2-join, or a hex-join, or

• G is antiprismatic.

The proof is given in the final section of the paper. We postpone to future papers the study
of antiprismatic graphs, and the problem of converting this decomposition theorem to a structure
theorem.

3 More on decompositions

Before we begin the main proof, it is helpful to develop a few tools that will enable us to prove
more easily that graphs are decomposable. First, here is another useful decomposition. Suppose
that there is a partition (A,B,X) of V (G) such that X is a clique, and |A|, |B| ≥ 2, and A is
anticomplete to B. In these circumstances we say that X is an internal clique cutset. This is not
one of the decompositions used in the statement of the main theorem (indeed, it is not the inverse
of a composition that preserves being claw-free, unlike the other decompositions we mentioned).
Nevertheless, we win if we can prove that our graph admits an internal clique cutset, because of the
following, proved in [1]. (G is said to be a linear interval graph if there is a linear order v1, . . . , vn

of its vertex set such that for every edge vivj with j > i, the set {vi, vi+1, . . . , vj} is a clique. Every
such graph is a circular interval graph.)

3.1 Let G be claw-free. If G admits an internal clique cutset, then either G is a linear interval
graph, or G admits either a 1-join, or a 0-join, or a coherent W-join, or twins.

For brevity, let us say that G is decomposable if it admits either a generalized 2-join, or a 1-join,
or a 0-join, or a nondominating W-join, or a coherent W-join, or twins, or an internal clique cutset,
or a hex-join. There follow four lemmas that will speed up our recognition of decomposable graphs.

3.2 Let G be claw-free, and let A,C ⊆ V (G) be disjoint, such that
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• A is a clique

• if C = ∅ then |A| > 1

• every vertex in V (G) \ (A ∪ C) is C-anticomplete, and either A-complete or A-anticomplete

• |V (G) \ (A ∪ C)| ≥ 2.

Then G is decomposable.

Proof. If C is empty then |A| > 1 and any two members of A are twins. So we may assume that
C is nonempty. If A is anticomplete to C then G admits a 0-join, so we may assume that a ∈ A
and c ∈ C are adjacent. Let Y be the set of vertices in V (G) \ (A ∪C) that are A-complete, and let
Z = V (G) \ (A ∪ C ∪ Y ). If y1, y2 ∈ Y , then since {c, a, y1, y2} is not a claw, it follows that y1, y2

are adjacent, and so Y is a clique. If Z is nonempty then (A ∪ C, Y ∪ Z) is a 1-join, so we assume
that Z is empty. But then |Y | ≥ 2 by hypothesis, and all members of Y are twins, and so G is
decomposable. This proves 3.2.

3.3 Let G be claw-free, and let (A,B) be a homogeneous pair of cliques in G. Suppose that at least
one of A,B has cardinality > 1, and either (A,B) is nondominating or the set of all (A∪B)-complete
vertices in V (G) \ (A ∪ B) is a clique. Then either

• (A,B) is a nondominating W-join, or a coherent W-join (respectively), or

• one of A,B has cardinality > 1 and all its members are twins.

Proof. We may assume that |A| > 1. If B is either complete or anticomplete to A then the elements
of A are twins, and otherwise (A,B) is either a nondominating or coherent W-join. This proves 3.3.

We say a triple (A,C,B) is a breaker in G if it satisfies:

• A,B,C are disjoint nonempty subsets of V (G), and A,B are cliques

• every vertex in V (G)\(A∪B∪C) is either A-complete or A-anticomplete, and either B-complete
or B-anticomplete, and C-anticomplete

• there is a vertex in V (G) \ (A∪B ∪C) with a neighbour in A and a nonneighbour in B; there
is a vertex in V (G) \ (A ∪ B ∪ C) with a neighbour in B and a nonneighbour in A; and there
is a vertex in V (G) \ (A ∪ B ∪ C) with a nonneighbour in A and a nonneighbour in B

• if A is complete to B, then there do not exist adjacent x, y ∈ V (G) \ (A ∪ B ∪ C) such that x
is A ∪ B-complete and y is A ∪ B-anticomplete.

The reason for interest in breakers is that they allow us to deduce that our graph admits one of
our decompositions, without having to figure out which one, in view of the following theorem.

3.4 Let G be claw-free. If G admits a breaker, then G admits either a 0-join, a 1-join, or a
generalized 2-join.

5



Proof. Let (A1, C1, B1) be a breaker; let V1 = A1∪B1∪C1, let V0 be the set of all vertices not in V1

that are A1∪B1-complete, and let V2 = V (G)\(V1∪V0). Let A2 be the set of A1-complete vertices in
V2, and B2 the set of B1-complete vertices in V2. Let C2 = V2 \ (A2 ∪B2). By hypothesis, A2, B2, C2

are all nonempty. If there are no edges between C1 and A1 ∪B1 then G admits a 0-join, so from the
symmetry we may assume that there is an edge between C1 and A1. Since A1∪C1∪A2∪V0 includes
no claw, it follows that A2∪V0 is a clique. Let A′ be the set of vertices in A1 with a neighbour in C1.
Since B2 6= ∅ and we may assume that (C1 ∪A′, V (G) \ (C1 ∪A′)) is not a 1-join, it follows that A′ is
not anticomplete to B1. Consequently some vertex a ∈ A1 has a neighbour b ∈ B1 and a neighbour
c ∈ C1. Since A2 6= ∅ and there is no claw, it follows that b, c are adjacent. Consequently B2∪V0 is a
clique. Suppose that there is an edge xy between some x ∈ V0 and y ∈ C2. By hypothesis, A1 is not
complete to B1; choose a ∈ A1 and b ∈ B1, nonadjacent. Then {x, y, a, b} is a claw, a contradiction.
It follows that there is no such edge xy, and so V0 is anticomplete to C2, and consequently (V1, V0, V2)
is a generalized 2-join. This proves 3.4.

Here is another shortcut, this time useful for handling hex-joins.

3.5 Let G be claw-free, and let A,B,C be disjoint nonempty cliques. Suppose that every vertex in
V (G) \ (A ∪ B ∪ C) is complete to two of A,B,C and anticomplete to the third. Suppose also that
one of A,B,C has cardinality > 1, and A ∪ B ∪ C 6= V (G). Then G admits either a hex-join, or a
nondominating W-join, or twins.

Proof. Let V1 = A ∪ B ∪ C, and V2 = V (G) \ V1. Let A2 be the set of vertices in V2 that are
anticomplete to A, and define B2, C2 similarly. If A2, B2, C2 are cliques, then G is the hex-join of
G|V1 and G|V2, so we may assume that there exist nonadjacent u, v ∈ A2. For w ∈ A and x ∈ B∪C,
{x,w, u, v} is not a claw, and so w, x are nonadjacent; and consequently A is anticomplete to B ∪C.
Thus (B,C) is a homogeneous pair of cliques, and it is nondominating since A is nonempty; so by 3.3
we may assume that |B|, |C| = 1, and therefore |A| > 1 by hypothesis, and yet every two members
of A are twins. This proves 3.5.

4 The icosahedron

Our first main goal is to prove that claw-free graphs that include a “substantial” line graph either
are line graphs or are decomposable. To make this theorem as useful as possible, we want to weaken
the meaning of “substantial” as far as we can; and on the borderline where the theorem is just about
to become false, there are two situations where the theorem is false in a way we can handle. It is
convenient to deal with them first before we embark on line graphs in general. We do one in this
section and the other in the next, and then start on line graphs proper in the section after that.

The icosahedron is claw-free, and in this section we study claw-free graphs which contain it (or
most of it) as an induced subgraph. If H is an induced subgraph of G, and v ∈ V (G) \ V (H), we
say that v is a clone of u ∈ V (H) (with respect to H) if v is adjacent to u and u, v have exactly the
same neighbours in V (H) \ {u}.

Frequently we assume that our current claw-free graph G has an induced subgraph H that we
know, and we wish to enumerate all the possibilities for the neighbours set in V (H) of vertices in
V (G) \ V (H). And having done so, then we try to figure out the adjacencies between the vertices

6



in V (G) \ V (H). To aid with that, here are three trivial facts that are used so often that it is worth
stating them explicitly. (All three proofs are obvious and we omit them.)

4.1 Let G be claw-free, and let H be an induced subgraph of G. Let v ∈ V (G) \ V (H), and let N be
the set of neighbours of v in V (H). Then N includes no triad.

4.2 Let G be claw-free, and let H be an induced subgraph of G. Let v ∈ V (G) \ V (H), and let N be
the set of neighbours of v in V (H). Then there is no path of length 2 in H with middle vertex in N
and no other vertex in N .

4.3 Let G be claw-free, and let H be an induced subgraph of G. Let u, v ∈ V (G) \ V (H) have a
common neighbour a ∈ V (H) and a common non-neighbour b ∈ V (H). If a, b are adjacent then u, v
are adjacent.

4.4 Let G be claw-free, containing icosa(−1) as an induced subgraph. Then either G ∈ S1, or two
vertices of G are twins, or G admits a 0-join. In particular, either G ∈ S1, or G is decomposable.

Proof. Let H = icosa(−1). Number the vertex set of H as {v1, . . . , v11}, where for 1 ≤ i < j ≤ 10,
vi is adjacent to vj if either j − i ≤ 2 or j − i ≥ 8, and v11 is adjacent to v1, v3, v5, v7, v9.

For 1 ≤ i ≤ 11, let Ni be the union of {vi} and the set of neighbours of vi in H, and let
Ci be the union of {vi} and the set of all clones of v (with respect to H) in V (G) \ V (H). Let
N12 = {v2, v4, v6, v8, v10}, and let C12 be the set of all v ∈ V (G) \ V (H) whose set of neighbours in
V (H) is N12.

(1) Every vertex in V (G) with at least one neighbour in V (H) belongs to one of C1, . . . , C12.

For certainly each vi belongs to Ci, for 1 ≤ i ≤ 11; let v ∈ V (G) \ V (H), and let N be the set
of neighbours of v in V (H). By hypothesis N is nonempty. Suppose first that v11 ∈ N . By 4.2 with
v1-v11-v5, at least one of v1, v5 ∈ N . Similarly N contains at least one of every two nonadjacent
members of {v1, v3, v5, v7, v9}, and so we may assume that v1, v3, v5 ∈ N , from the symmetry. If
v7, v9 ∈ N , then by 4.1, it follows that |N | = 6 and v is a clone of v11. So we may assume from the
symmetry that v9 /∈ N . By 4.2 with v2-v1-v9, v2 ∈ N . By 4.1, it follows that v6, v8 /∈ N . By 4.2 with
v6-v7-v9, v7 /∈ N , and by 4.2 with v4-v5-v7, v4 ∈ N . By 4.1 with {v4, v10, v11}, v10 /∈ N . Thus v is a
clone of v3.

We may therefore assume that v11 /∈ N . Suppose next that v1 ∈ N . By 4.2 with v11-v1-v2,
v2 ∈ N , and similarly v10 ∈ N . By 4.2 with v3-v1-v9, one of v3, v9 ∈ N , and from the symmetry
we may assume that v3 ∈ N . By 4.2 with v4-v3-v11, v4 ∈ N . By 4.1, v6, v7, v8 /∈ N . By 4.2 with
v6-v5-v11 and with v8-v9-v11, v5, v9 /∈ N . But then v is a clone of v2.

We may therefore assume that v1 /∈ N , and by the symmetry that v3, v5, v7, v9 /∈ N . By 4.2 with
v1-v2-v4 and v2-v4-v5, it follows that N contains both or neither of v2, v4, and the same holds for all
adjacent pairs of v2, v4, v6, v8, v10. Thus either N consists of all these vertices or none. Since N is
nonempty, the first case applies, and so v ∈ C12. This proves (1).

We may assume that G is connected, for otherwise the theorem holds.

(2) Every vertex of G has a neighbour in V (H).
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For let C0 be the set of all vertices of G with no neighbour in V (H), and suppose that C0 is
nonempty. Since G is connected, there exist x ∈ C0 and y ∈ V (G) \C0, adjacent. Since y has neigh-
bours in V (H), it follows from (1) that y belongs to some Ci. In particular, y has two nonadjacent
neighbours in V (H), say a, b. But then {y, a, b, x} is a claw, a contradiction. This proves (2).

From (1) and (2), the sets C1, . . . , C12 are pairwise disjoint and have union V (G).

(3) Each Ci is a clique, and for 1 ≤ i < j ≤ 12, Ci, Cj are either complete or anticomplete to
each other.

The first statement follows from 4.3. For the second, let 1 ≤ i < j ≤ 12, and let u ∈ Ci and
v ∈ Cj . We claim that v is adjacent to u if and only if vi ∈ Nj. This is clear if either of u, v belongs
to V (H), so we assume that both belong to V (G) \ V (H). Let H ′ = G|({u} ∪ V (H) \ {vi}); then H ′

is isomorphic to H. For 1 ≤ k ≤ 12, let N ′

k = Nk if vi /∈ Nk, and N ′

k = {u} ∪ (Nk \ {vi}) otherwise.
From (1) and (2) applied to H ′, the set of neighbours of v in V (H ′) is one of N ′

1, . . . , N
′

12, say N ′

k.
The set of neighbours of v in V (H) is Nj, and since H and H ′ differ only by the vertices u, vi, it
follows that N ′

k ⊆ Nj ∪ {u}. But Nk ⊆ N ′

k ∪ {vi}, and since u /∈ Nk we deduce that Nk ⊆ Nj ∪ {vi}.
Consequently j = k, and the set of neighbours of v in V (H ′) is N ′

j , and so v is adjacent to u if and
only if u ∈ N ′

j , that is, if and only if vi ∈ Nj. This proves our claim. Consequently whether u, v are
adjacent depends only on i, j, and this proves (3).

By (3) every two members of each Ci are twins; and so we may assume that each Ci has at most
one member, for otherwise the theorem holds. Since vi ∈ Ci for 1 ≤ i ≤ 11, we deduce that either
G = H or G is isomorphic to the icosahedron, depending whether C12 has cardinality 0 or 1. This
proves 4.4.

4.4 handles claw-free graphs that contain icosa(−1); next we need to consider icosa(−2).

4.5 Let G be claw-free, with an induced subgraph isomorphic to icosa(−2). Then either G ∈ S1, or
G is decomposable.

Proof. Since G has an induced subgraph isomorphic to icosa(−2), we may choose ten disjoint
nonempty cliques A1, B1, C1, A2, B2, C2, D1, D2, E, F in G, satisfying:

• The following pairs are complete: for i = 1, 2, AiCi, BiCi, AiDi, BiDi, CiDi, AiE,DiE,BiF,DiF ,
also, A1A2, B1B2, EF .

• The pairs A1B1 and A2B2 are not complete (but not necessarily anticomplete).

• All remaining pairs are anticomplete.

Let us choose such a set of cliques with maximal union W say. Suppose first that W = V (G). Then
(A1, B1) is a homogeneous pair of cliques, nondominating since C2 6= ∅, and so by 3.3 we may assume
|A1| = |B1| = 1, and similarly |A2| = B2| = 1. If one of the other six cliques has cardinality > 1,
say X, then the members of X are twins and the theorem holds. If all ten cliques have cardinality
1 then G is isomorphic to icosa(−2), as required. So we may assume that W 6= V (G).
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We may assume that G is connected, and so there exists v ∈ V (G)\W with at least one neighbour
in W . Let N be the set of neighbours of v in W .

(1) If N meets both C1, C2 then the theorem holds.

For in that case, by 4.1 N is disjoint from E,F . Since A1, B1 are not complete, 4.1 (with A1, B1, C2)
implies that A1 ∪B1 6⊆ N ; and so 4.2 (with A1, D1, F if A1 6⊆ N) implies that D1 ∩N = ∅. Similarly
D2 ∩N = ∅. Since A1, B1 are not complete, 4.2 (with A1, B1, C1) implies that N meets at least one
of A1, B1, say A1. Then 4.2 (with D1, A1, A2) implies A2 ⊆ N , and by symmetry A1 ⊆ N . Similarly,
if B1 meets N then B2 ⊆ N , contrary to 4.1 (with A2, B2, C1), and so B1 ∩N = ∅, and by symmetry
B2 ∩ N = ∅. Then G contains an induced subgraph isomorphic to icosa(−1) (choose one vertex
from each of the ten cliques, choosing neighbours of v from C1, C2, and such that for i = 1, 2 the
representatives of Ai, Bi are nonadjacent; and take v as the eleventh vertex). But the the theorem
holds by 4.4. This proves (1).

(2) If N meets C1 ∪ C2 then the theorem holds.

For by (1) we may assume that N meets C1 and is disjoint from C2. Suppose first that N meets A2.
4.2 (with A1, A2, C2 and with E,A2, C2) implies that A1, E ⊆ N . 4.1 (with A2, C1, F ) implies that
N ∩ F = ∅. 4.2, applied in turn to the triples A2, E, F ; C2, B2, F ; C2, D2, F ; D1, E,D2; C1, D1, F
implies that A2 ⊆ N ; N ∩ B2 = ∅; N ∩ D2 = ∅; D1 ⊆ N , and C1 ⊆ N . But then v can be added to
A1, contrary to the maximality of W . This proves that N ∩ A2 = ∅, and by symmetry N ∩ B2 = ∅.
4.2 (with A2, D2, B2) implies that N ∩ D2 = ∅. 4.2 (with A1, C1, B1) implies that N meets one of
A1, B1. 4.2 (with D1, A1, A2 if N meets A1)implies that D1 ⊆ N . Suppose first that N is disjoint
from both E,F . Then 4.2 (with B1, D1, E and A1, D1, F ) implies that B1, A1 ⊆ N , and 4.2 (with
A2, A1, C1) implies that C1 ⊆ N . But then v can be added to C1, contradicting the maximality of
W . Hence N is not disjoint from both E,F , and from the symmetry we may assume it meets E.
4.2 (with A2, E, F ) implies that F ⊆ N , and from symmetry E ⊆ N . 4.2 (with A1, E,D2) implies
A1 ⊆ N , and by symmetry B1 ⊆ N ; and 4.2 (with C1, A1, A2) implies that C1 ⊆ N . Then v can be
added to D1, contrary to the maximality of W . This proves (2).

To finish the proof, we assume by (2) that N is disjoint from C1 ∪ C2. Suppose that N meets
A1. 4.2 (with C1, A1, A2 and A1, A2, C2) implies that A2, A1 ⊆ N . 4.2 (with C1, A1, E) implies that
E ⊆ N . Suppose in addition that N meets B1 ∪ B2. Then from the symmetry, B1 ∪ B2 ∪ F ⊆ N ;
4.1 (with A1, B1, D2 and A2, B2, D1) implies that N is disjoint from D1, D2, contrary to 4.2 (with
D1, E,D2). So N is disjoint from B1, B2. 4.2 (with D1, E,D2) implies that N includes one of D1, D2,
say D1; 4.2 (with C1, D1, F ) implies that F ⊆ N ; 4.2 (with B1, F,D2) implies that D2 ⊆ N ; but
then v can be added to E, contrary to the maximality of W . This proves that N is disjoint from A1,
and by symmetry from B1, A2, B2. 4.2 (with A1, D1, B1) implies that N ∩D1 = ∅, and by symmetry
N ∩ D2 = ∅; and then 4.2 (with D1, E,D2 and D1, F,D2) implies that N is disjoint from E,F . But
then N = ∅, a contradiction. Thus there is no such vertex v. This proves 4.5.

Next we need to consider deleting two vertices (distance 2 apart) from the icosahedron. This is
the smallest graph in S2; it is also a case of what we call an XX-configuration. Let G be a graph.
An XX-configuration in G means an induced subgraph H, consisting of
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• eight vertices b1, b2, b3, c1, c2, c3, d1, d2

• edges aibi, aici, bici, bidi, cidi, bib3, cic3, dib3, dic3 for i = 1, 2, the edge d1d2, and possibly the
edge a1a2.

4.6 Let G be claw-free, and contain an XX-configuration. Then either G ∈ S1 ∪ S2, or G is
decomposable.

Proof. Let H be an XX-configuration in G, and let a1, a2, . . . be as in the definition of an XX-
configuration. We may therefore choose eleven disjoint subsets A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2,
with the following properties:

• the ten sets A1, A2, B1, B2, B3, C1, C2, C3, D1, D2 are nonempty cliques

• the pairs AiBi, AiCi, BiCi, BiB3, CiC3, BiDi, CiDi, B3Di, C3Di are complete for i = 1, 2, and
all the other pairs of the eleven subsets named are anticomplete, with the exception of D1D2, A1A2,
A1A3, A2A3

• a1 ∈ A1, a2 ∈ A2 and so on.

(To see this, take A1 = {a1}, B1 = {b1} and so on, with A3 = ∅.) Consequently we may choose these
eleven sets with maximal union. Let J be the subgraph of G induced on their union.

(1) Let v ∈ V (G) \ V (J), and let N be the set of neighbours of v in V (J). Then either

• N = A1 ∪ B1 ∪ C1 ∪ A2 ∪ B2 ∪ C2, or

• N = B1 ∪ B3 ∪ D1 ∪ D2 ∪ C3 ∪ C2 or C1 ∪ C3 ∪ D1 ∪ D2 ∪ B3 ∪ B2, or

• A1 is complete to A2 and N = A1 ∪ A2 ∪ B1 ∪ B2 ∪ B3 or A1 ∪ A2 ∪ C1 ∪ C2 ∪ C3.

For first assume that N meets both B3 and C3. By 4.1, N is disjoint from A1 ∪ A2 ∪ A3. By
4.2 (with B1, B3, B2), N includes one of B1, B2, and we may assume that it includes B1 from the
symmetry. By 4.1, N ∩ B2 = ∅. By 4.2 (with B2, B3, D1), D1 ⊆ N . By 4.2 (with A1, B1, B3),
B3 ⊆ N . Suppose that N ∩ C1 is nonempty. By 4.1, N ∩ C2 = ∅; by 4.2 (with C1, C3, C2), C1 ⊆ N ,
and by 4.2 (with C3, C1, A1), C3 ⊆ N ; but then v can be added to D1, contrary to the maximality
of V (J). Thus N ∩C1 = ∅. By 4.2 (with D2, C3, C1), D2 ⊆ N ; by 4.2 (with C1, C3, C2), C2 ⊆ N ; by
4.2 (with B2, D2, C3), C3 ⊆ N ; and the second assertion of the claim holds.

So we may assume that N is disjoint from one of B3 and C3, say C3. Next assume that N meets
both D1 and D2. By 4.2 (with B3, D1, C3), B3 ⊆ N . By 4.2 (with B1, D1, C3), B1 ⊆ N , and similarly
B2 ⊆ N . By 4.1, N is disjoint from A1 ∪ A2 ∪ A3. By 4.2 (with A1, B1, D1), D1 ⊆ N , and similarly
D2 ⊆ N . By 4.2 (with A1, C1, C3), N ∩C1 = ∅, and similarly N ∩C2 = ∅. But then v can be added
to B3, contrary to the maximality of V (J).

So we may assume that N is disjoint from both C3 and D2 say. We recall that d1 ∈ D1, and
d1 is adjacent to d2 ∈ D2. Suppose that d1 ∈ N . By 4.2 (with B1, d1, C3), B1 ⊆ N . By 4.2 (with
B3, d1, C3), B3 ⊆ N . By 4.2 (with C1, d1, d2), C1 ∈ N . By 4.2 (with A1, C1, C3), A1 ⊆ N . By 4.1,
N ∩ (B2 ∪ C2) = ∅, and N ∩ (A2 ∪ A3) = ∅. By 4.2 (with B2, B3, D1), D1 ⊆ N . But then v can be
added to B1, contrary to the maximality of V (J).
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We may therefore assume that d1 /∈ N . Suppose next that N ∩ B3 is nonempty. By 4.2 (with
d1, B3, B2), B2 ⊆ N , and similarly B1 ⊆ N . By 4.2 (with d1, B1, A1), A1 ⊆ N , and similarly A2 ⊆ N .
By 4.1, A1 is complete to A2, and for the same reason, N is disjoint from A3 ∪ C1 ∪ C2 ∪ D1. But
then the final statement of (1) holds.

So we may assume that N ∩B3 = ∅. By 4.2 (with B3, D1, C3), N ∩D1 = ∅, and so N is disjoint
from all four of B3, C3, D1, D2. If N intersects none of B1, B2, C1, C2, then v can be added to A3,
contrary to the maximality of V (J). So we may assume from the symmetry that N meets B1. By
4.2 (with C1, B1, B3), C1 ⊆ N , and similarly B1 ⊆ N ; and by 4.2 (with B3, B1, A1), A1 ⊆ N . If
N intersects either B2 or C2, then similarly it includes A2 ∪ B2 ∪ C2, and therefore is disjoint from
A3 (by 4.1), and the first statement of the claim holds. So we may assume that N is disjoint from
B2 ∪ C2. But then v can be added to A1, contrary to the maximality of V (J). This proves (1).

By (1), any two vertices of B1 are twins in G, and the same holds B2, B3, C1, C2, C3, and so
we may assume that these sets all have cardinality 1. Moreover, by (1) (D1, D2) is a homogeneous
pair of cliques, nondominating since A1 6= ∅, and so by 3.3, we may assume that D1, D2 both have
cardinality 1. If there is a vertex v satisfying the final statement of (1), then there is an induced
subgraph isomorphic to icosa(−1), and the claim follows from 4.4. Thus we may assume that no
vertex satisfies the final statement of (1). Let U0 be the set of all v ∈ V (G) \ V (J) whose set
of neighbours in V (J) is A1 ∪ A2 ∪ {b1, c1, b2, c2}; and let U1, U2 be those with neighbours sets
{b1, b3, d1, d2, c3, c2} and {c1, c3, d1, d2, b3, b2} respectively. Thus the sets U0, U1, U2 are disjoint and
have union V (G)\V (J). By 4.3, U0, U1, U2 are cliques. If some u0 ∈ U0 is adjacent to some u1 ∈ U1,
then {u0, u1, c1, b2} is a claw, while if some u1 ∈ U1 is adjacent to some u2 ∈ U2, then {u1, u2, b1, c2}
is a claw, in either case a contradiction. Thus U0, U1, U2 are anticomplete to each other. Hence for
i = 0, 1, 2, every two vertices in Ui are twins, and so we may assume that |Ui| ≤ 1. Now every
vertex not in A1 ∪ A2 ∪ A3 is either A1-complete or A1-anticomplete, and either A2-complete or
A2-anticomplete, and A3-anticomplete. Also, if x, y ∈ V (G)\A1∪A2∪A3 and x is A1∪A2-complete
and y is A1 ∪ A2-anticomplete, then x ∈ U0, and either y ∈ U1 ∪ U2 or y is one of b3, c3, d1, d2, and
in either case x, y are not adjacent. If A3 6= ∅ then (A1, A3, A2) is a breaker, and the theorem holds
by 3.4, so may assume that A3 = ∅. Consequently (A1, A2) is a homogeneous pair, nondominating
since D1 6= ∅, and therefore by 3.3 we may assume that Ai = {ai} for i = 1, 2. But then G ∈ S2, and
the theorem holds. This proves 4.6.

5 The second line graph anomaly

Now we handle the second peculiarity that will turn up when we come to treat line graphs. Let H
be an induced subgraph of G, with 11 vertices a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, and the following
edges: for i = 1, 2, {ai, bi, ci, di} are cliques, and so are {b1, b2, b3} and {c1, c2, c3}; every pair of
a3, b3, c3, d1, d2 are adjacent except the pair d1, d2; and possibly a1, a2 are adjacent. We call such a
subgraph H a YY-configuration. We need to show the following.

5.1 Let G be claw-free, and contain an YY-configuration. Then G is decomposable.

Proof. Since there is a YY-configuration in G, we may choose nine cliques Ai
j (1 ≤ i, j ≤ 3), with

the following properties (for 1 ≤ i ≤ 3, Ai denotes Ai
1 ∪ Ai

2 ∪ Ai
3, and Ai denotes A1

i ∪ A2
i ∪ A3

i ):
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• these nine sets are nonempty and pairwise disjoint

• for 1 ≤ i, j, i′, j′ ≤ 3, if i 6= i′ and j 6= j′ then Ai
j is anticomplete to Ai′

j′

• for 1 ≤ j ≤ 3, Aj is a clique

• for i = 1, 2, Ai is a clique

• A3
1 and A3

2 are not complete to A3
3

• for 1 ≤ j ≤ 3, let Sj be the set of all vertices that are anticomplete to Aj and complete to the
other two of A1, A2, A3; then S1 is not complete to S2

• subject to these conditions, the union W of the sets Ai
j (1 ≤ i, j ≤ 3) is maximal.

(To see this, take a YY-configuration, with vertices a1, a2, . . . as before, and let A1
j = {bj}, A

2
j =

{cj}, A
3
j = {aj} for j = 1, 2, 3; then d1, d2 belongs to S2, S1 respectively.) Let Z = V (G) \ (W ∪S1 ∪

S2∪S3), and for i = 1, 2, let Hi be the set of vertices in A3
i with no neighbour in A3

3. Choose s1 ∈ S1

and s2 ∈ S2, nonadjacent.

(1) Every vertex in W ∪ S1 ∪ S2 ∪ S3 with a neighbour in Z belongs to H1 ∪ H2.

For suppose that z ∈ Z, and let N be the set of neighbours of z. We will show that

N ∩ (W ∪ S1 ∪ S2 ∪ S3) ⊆ H1 ∪ H2.

Assume first that s1, s2 ∈ N . We claim that A1
3 ⊆ N . For suppose not. 4.2 (with A1

3, S2, A
2
1 ∪ A3

1)
implies that A2

1 ∪ A3
1 ⊆ N , and similarly A2

2 ∪ A3
2 ⊆ N . Since A3

1 is not complete to A3
3, 4.1 (with

A3
1, A

3
3, A

2
2) implies that A3

3 6⊆ N . 4.2 (with A1
j , A

3
j , A

3
3) implies that A1

j ⊆ N for j = 1, 2; and then
three applications of 4.1 imply that N ∩ A3 = ∅. But then z ∈ S3, a contradiction. This proves
our claim that A1

3 ⊆ N , and similarly A2
3 ⊆ N . Suppose that A3

3 6⊆ N . Then for 1 ≤ i, j ≤ 2, 4.2
(with A3

3, A
i
3, A

i
j) implies that Ai

j ⊆ N ; and two applications of 4.1 imply that N is disjoint from

A3
1, A

3
3, contrary to 4.2 (with A3

1, s2, A
3
3). Thus A3

3 ⊆ N . Since z cannot be added to A3
3, N meets

one of the sets Ai
j where 1 ≤ i, j ≤ 2, and from the symmetry we may assume that N ∩ A1

1 6= ∅.

4.1 implies that N is disjoint from A2
2, A

3
2. If N meets A1

2, then similarly N is disjoint from A2
1, A

3
2,

and 4.2 (with A2
1, A

1
1, A

1
2) implies that A1

2 ⊆ N , and similarly A1
1 ⊆ N ; but then z can be added to

A1
3, a contradiction. Thus N ∩ A1

2 = ∅. By 4.2 (with A1
2, A

1
1, A

2
1 ∪ A3

1), A2
1 ∪ A3

1 ⊆ N and 4.2 (with
A1

1, A
2
1, A

2
2) implies that A1

1 ⊆ N ; but then z ∈ S2, a contradiction. This completes the case when
s1, s2 ∈ N .

Next assume that s1 ∈ N and s2 /∈ N . Suppose first that A1
2 6⊆ N . 4.2 (with A1

2, s1, A
2
3 ∪ A3

3)
implies that A2

3∪A3
3 ⊆ N ; 4.2 (with s2, A

1
3, A

1
2) implies that N ∩A1

3 = ∅; 4.2 (with A1
3, s1, A

3
2) implies

A3
2 ⊆ N ; 4.1 (with A2

1, A
3
3, A

3
2) implies that N ∩ A2

1 = ∅; and this contradicts 4.2 (with A2
1, A

2
3, A

1
3),

This proves that A1
2 ⊆ N . Similarly A2

2 ⊆ N . If A3
2 6⊆ N , then 4.2 (with A3

2, A
i
2, A

i
j) implies that

Ai
j ⊆ N , for i = 1, 2 and j = 1, 3; and then 4.1 implies that N is disjoint from both A3

3, A
3
2, contrary

to 4.2 (with A3
3, s1, A

3
2). Hence A3

2 ⊆ N . Suppose that N ∩ (A1
3 ∪ A2

3) = ∅. Since z cannot be added
to A3

2, it follows that N ∩ (A1
1 ∪ A2

1) 6= ∅, and from the symmetry we may assume that N ∩ A1
1 6= ∅.

4.2 (with (A2
1 ∪ A3

1), A
1
1, A

1
3) implies that A2

1 ∪ A3
1 ⊆ N , and similarly A1

1 ⊆ N , and 4.1 implies that
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N ∩ A3
3 = ∅; but then z ∈ S3, a contradiction. Thus N ∩ (A1

3 ∪ A2
3) 6= ∅, and from the symmetry we

may assume that N ∩ A1
3 6= ∅. Suppose that A1

1 6⊆ N . Then 4.2 (with A1
1, A

1
3, A

2
3 ∪ A3

3) implies that
A2

3 ∪ A3
3 ⊆ N ; three applications of 4.1 imply that N ∩ A1 = ∅; and 4.2 (with A2

1, A
2
3, A

1
3) implies

that A1
3 ⊆ N . But then z ∈ S1, a contradiction. This proves that A1

1 ⊆ N . By 4.1, N ∩ Ai
j = ∅ for

i = 2, 3 and j = 1, 3; and 4.2 (with A2
1, A

1
1, A

1
3) implies that A1

3 ⊆ N . But then z can be added to
A1

2, a contradiction. This completes the case when s1 ∈ N and s2 /∈ N .
We deduce that s1 /∈ N , and similarly s2 /∈ N . 4.2 (with s1, A3, s2) implies that N ∩ A3 = ∅.

Suppose that N ∩ (A1
1 ∪ A2

1) 6= ∅. Then 4.2 (with A1
3, A

1
1, A

2
1 and A2

3, A
2
1, A

1
1 ∪ A3

1) implies that
A1 ⊆ N . Similarly if N ∩ (A1

2 ∪ A2
2) 6= ∅ then A2 ⊆ N and therefore z ∈ S3, a contradiction; and so

N∩(A1
2∪A2

2) = ∅. But then z can be added to A3
1, a contradiction. This proves that N∩(A1

1∪A2
1) = ∅,

and similarly N ∩ (A1
2 ∪ A2

2) = ∅. 4.2 (with A1
j , A

3
j \ Hj, A

3
3) implies that N ∩ A3

j ⊆ Hj for j = 1, 2.

Consequently N ∩ W ⊆ H1 ∪ H2. But 4.2 (with A1
1, S2, A

2
3) implies that N ∩ S2 = ∅, and similarly

N ∩ S1 = N ∩ S3 = ∅. This proves (1).

(2) If v ∈ V (G) \ H1 ∪ H2 ∪ Z, then v has a neighbour in H1 if and only if v ∈ A1 ∪ S2 ∪ S3,
and if so then v is complete to H1. An analogous statement holds for H2.

For if v ∈ A1 ∪ S2 ∪ S3 then v is complete to H1, and if v ∈ A3 ∪ S1 ∪ A1
2 ∪ A2

2 then v is anti-
complete to H1, so we may assume that v ∈ A3

2. Let a2
2 ∈ A2

2. Since v /∈ H2, v has a neighbour
a3

3 ∈ A3
3; and if v also has a neighbour h1 ∈ H1, then {v, h1, a

2
2, a

3
3} is a claw, a contradiction. Thus

v is anticomplete to H1. This proves (2).

We claim that there do not exist adjacent x, y ∈ V (G) \ (H1 ∪ H2 ∪ Z)) such that x is H1 ∪ H2-
complete and y is H1 ∪ H2-anticomplete. For suppose that such x, y exist. By (2), x ∈ S3, and
y ∈ A3; but then x, y are nonadjacent, a contradiction. If Z 6= ∅, then (H1, Z,H2) is a breaker, by
(1) and (2), and the theorem holds by 3.4. We may therefore assume that Z = ∅. Now S1, S2, S3 are
cliques by 4.3, and so G is the hex-join of G|W and G|(S1 ∪ S2 ∪ S3). This proves 5.1.

6 Line graphs

Our next goal is to prove that if G is claw-free and contains an induced subgraph which is a line
graph L(H) say, and H is sufficiently nondegenerate, then either G itself is a line graph or it is
decomposable. We need to consider the possible neighbour sets in this line graph of the other
vertices of G; and it is convenient to work in terms of H rather than in terms of L(H). Thus, the
neighbour set becomes a set of edges of H.

In this paper, a separation of G means a pair (A,B) of subsets of V (G), such that A∪B = V (G)
and every edge of G has both ends in one of A, B. A k-separation means a separation (A,B) such
that |A ∩ B| ≤ k, and a separation (A,B) is cyclic if both G|A,G|B contain cycles. We say that
G is cyclically 3-connected if it is 2-connected and not a cycle, and there is no cyclic 2-separation.
(For instance, we wish to consider the complete bipartite graph K2,3 as cyclically 3-connected, but
we wish to exclude the graph obtained from K4 by deleting an edge. This differs slightly from the
definition we used in [3].)

A branch-vertex of a graph H means a vertex with degree ≥ 3; and, if H is cyclically 3-connected,
a branch of H means a maximal path B in H such that no internal vertex of B is a branch-vertex.
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(The reason for insisting that G is cyclically 3-connected is because of our convention that all “paths”
are induced subgraphs, and that is not our intention for branches; but no conflict arises when G is
cyclically 3-connected.)

6.1 Let H be a cyclically 3-connected graph with |V (H)| ≥ 7, such that |V (H)\V (B)| ≥ 4 for every
branch B of H. Let X ⊆ E(H), satisfying the following:

(Z1) there do not exist three pairwise nonadjacent edges in X

(Z2) there do not exist distinct vertices t1, t2, t3, t4 of H, such that ti is adjacent to ti+1 for i = 1, 2, 3,
and the edge t2t3 belongs to X, and the other two edges t1t2, t3t4 do not belong to X.

Then one of the following holds:

• There is a subset Y ⊆ V (H) with |Y | ≤ 2 such that X is the set of all edges of H incident with
a vertex in Y .

• There are vertices s1, s2, s3, t1, t2, t3, u1, u2 ∈ V (H), all distinct except that possibly t1 = t2, such
that the following pairs are adjacent in G: siti, siu1, siu2 for i = 1, 2, 3, and s1s3. Moreover,
X contains exactly six of these ten edges, the six not incident with s1.

• There is a subgraph J of H isomorphic to a subdivision of K4 (let its branch-vertices be
v1, . . . , v4, and let Bi,j denote the branch between vi, vj); and B2,3, B3,4, B2,4 all have length
1, B1,2, B1,3 have length 2, and B1,4 has length ≥ 2. Moreover, the edges of J in X are
precisely the five edges of B1,2, B1,3 and B2,3.

Proof. Since H is cyclically 3-connected, we have:

(1) No vertex of H of degree 2 is in a triangle.

(2) If there is a vertex y ∈ V (H) such that every edge in X is incident with y, then the theorem holds.

For suppose y is such a vertex; let N be the set of neighbours v of y such that the edge yv ∈ X, and
M the remaining neighbours of y. If M = ∅ or N = ∅ then the first statement of the theorem holds,
so we assume that there exist m ∈ M and n ∈ N . The only edge in X incident with n is ny, and by
(Z2), there is no edge in E(H) \ X incident with n except possibly nm. Since n has degree ≥ 2, it
follows that n has degree 2 and is in a triangle, contrary to (1). This proves (2).

(3) If there exist two vertices y1, y2 of H such that every edge in X is incident with one of y1, y2,
then the theorem holds.

For let us choose y1, y2 with the given property, adjacent if possible. For i = 1, 2, let Ni be the
set of all neighbours v ∈ V (H) \ {y1, y2} of yi such that the edge yiv ∈ X, and let Mi be the other
neighbours of yi in V (H) \ {y1, y2}. If M1,M2 are both empty, then the first statement of the the-
orem holds, so we may assume that there exists m1 ∈ M1. By (2) we may assume that there exists
n1 ∈ N1. Let a be any neighbour of n1 different from y1. If an1 ∈ X then a = y2, since every edge
in X is incident with one of y1, y2; and if an1 /∈ X then a = m1, by (Z2) applied to m1-y1-n1-a.
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In particular, if n1 /∈ N2 then n1 has degree 2 and belongs to a triangle, contrary to (1). It follows
that N1 ⊆ N2. Suppose that |M1| > 1. Then no vertex in N1 has a neighbour in M1, and therefore
every vertex in N1 has degree 2. Since H is cyclically 3-connected, it follows that N1 = {n1}; and
so every edge in X is incident with one of n1, y2. From the choice of y1, y2 it follows that y1, y2

are adjacent, and so n1 belongs to a triangle, contrary to (1). This proves that M1 = {m1}. Since
H is cyclically 3-connected, every vertex in N1 is adjacent to m1 except possibly one. Moreover,
(N1∪{y1, y2,m1}, V (H)\(N1∪{y1})) is a 2-separation of H, and so either N1∪{y1, y2,m1} = V (H),
or H \ (N1 ∪ {y1})) is a path of length > 1 between m1, y2. In the first case, it follows that |N1| ≥ 4
since |V (H)| ≥ 7, and the second statement of the theorem holds. Thus we assume the second case
applies. Let P be the path H \ (N1 ∪ {y1})). By hypothesis, at least 4 vertices of H do not belong
to V (P ), and so |N | ≥ 3. Let x be the neighbour of y2 in P ; then x 6= m1. Choose n′

1 ∈ N1 adjacent
to m1; then from (Z2) applied to x-y2-n

′

1-m1 we deduce that the edge xy2 belongs to X. But then
again the second statement of the theorem holds. This proves (3).

(4) If there are three edges in X forming a cycle of length 3, then there is a fourth edge in X
incident with a vertex of this cycle.

For suppose that y1, y2, y3 are vertices such that y1y2, y2y3, y3y1 ∈ X, and for i = 1, 2, 3 no other
edge in X is incident with yi. Since H is cyclically 3-connected and we may assume that |V (H)| ≥ 5,
it follows that there are two edges between {y1, y2, y3} and V (H)\{y1, y2, y3}, with no common end.
But then both these edges belong to E(H) \ X, and (Z2) is violated. This proves (4).

(5) There do not exist Y ⊆ V (H) with |Y | = 3 and y4 ∈ V (H \ Y , such that every two mem-
bers of Y are joined by an edge in X, and every other edge in X is incident with y4.

For let Y = {y1, y2, y3}, and suppose first that there is a matching of size 2 consisting of edges
of H \ {y4}, each with one end in Y and the other not in this set. These two edges therefore do
not belong to X, and so (Z2) is violated. Thus there is no such matching. Consequently, there is a
vertex y5 such that every edge of H with one end in Y and the other not in this set is incident with
one of y4, y5. It follows that (Y ∪ {y4, y5}, V (H) \ Y ) is a 2-separation of H, and therefore H \ Y is
a path between y4, y5, contrary to the hypothesis. This proves (5).

In view of (3),(4),(5), (Z1) and (for instance) Tutte’s theorem [4], it follows that there is a set
Y ⊆ V (H) with |Y | = 5 such that every edge in X has both ends in Y , and H|(Y \{y}) has a 2-edge
matching with both edges in X, for every vertex y ∈ Y . (We call this “criticality”.) Criticality
implies that among every three vertices in Y , some two are joined by an edge in X. Suppose that
there is a 3-edge matching between V (H)\Y and Y . None of these three edges belongs to X, and so
from (Z2) it follows that no two of y1, y2, y3 are joined by an edge in X, contrary to criticality. We
deduce that no such matching of size 3 exists. Consequently there is a set Z ⊆ V (H) with |Z| ≤ 2,
such that every edge between Y and V (H) \ Y is incident with a member of Z. By choosing Z
with Z ∪ Y minimal, we deduce that every vertex in Z \ Y has at least two neighbours in Y . Now
(Y ∪ Z, (V (H) \ Y ) ∪ Z) is a 2-separation. Since H|Y has a cycle, it follows that H \ (Y \ Z) has
no cycle; and consequently, either Y ∪ Z = V (H) (which implies that |Z| = 2, since |V (H)| ≥ 7), or
|Z| = 2 and H \ (Y \ Z) is a path joining the two members of Z. Thus in either case, |Z| = 2.

Suppose first that Y ∩ Z = ∅. From the choice of Z minimizing Y ∪ Z, it follows that we can
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write Z = {z1, z2} and Y = {y1, . . . , y5} such that z1y1, z2y2, z2y3 are edges. By criticality, some
two of y1, y2, y3 are joined by an edge in X. From (Z2), this edge is not y1y2 or y1y3, so it must
be y2y3; that is, y2, y3 are adjacent and X contains the edge joining them. Consequently, by (Z2),
z1, y1 are both nonadjacent to both of y2, y3. Since z1 has at least two neighbours in Y , we may
assume that z1 is adjacent to y4; and so, by the symmetry between y1, y4 we deduce that y4 is
nonadjacent to y2, y3, and exchanging z1, z2 implies that y1y4 ∈ X, and z2 is nonadjacent to y1, y4.
Then ({z1, y1, y4, y5}, V (H) \ {z1, y5}) is a cyclic 2-separation of H, a contradiction.

So Y ∩Z is nonempty, and in particular Y ∪Z 6= V (H), since |V (H)| ≥ 7. Consequently H\(Y \Z)
is a path P say, joining the two vertices in Z. Let Z = {z1, z2} and Y = {y1, . . . , y5}. Suppose first
that Z 6⊆ Y ; then we may assume that z2 = y4 (since we have shown that Y ∩ Z is nonempty),
and z1 is adjacent to y1, y2, and P has length ≥ 2. By criticality, some two of y1, y2, y4 are joined
by an edge in X, and by (Z2) it must be y1y2; and therefore, by (Z2) again, y4 is nonadjacent to
y1, y2. Consequently, by criticality, y4 is adjacent to y3, y5, and the edges y3y4, y4y5 ∈ X. Thus z1

is nonadjacent to y3, y5. Since H is cyclically 3-connected, we may assume that y2y3, y1y5 are edges;
and (Z2) implies they are both in X. Thus all edges of the cycle y1-y2-y3-y4-y5-y1 belong to X. But
then the third statement of the theorem holds.

Finally, we may assume that Z ⊆ Y ; but then |V (H) \ V (P )| = 3, contrary to the hypothesis.
This proves 6.1.

We need a small lemma for the next proof.

6.2 Let H be cyclically 3-connected, and let B be a branch of H. Let Y ⊆ V (B) with |Y | ≤ 2, such
that if |Y | = 1 then the member of Y is an internal vertex of B. Let e be an edge of H not in E(B)
and not incident with any vertex in Y . There is no Z ⊆ V (H) with |Z| ≤ 2 such that for every edge
f ∈ E(H), f has an end in Z if and only if either f = e or f has an end in Y .

Proof. Suppose Z is such a subset, and let N be the set of edges of H with an end in Y . Since
N ∪ {f} is the set of edges with an end in Z, it follows that N 6= ∅, and therefore Y 6= ∅. Since
Y ⊆ V (B), it follows that N ∩E(B) 6= ∅, and therefore Z ∩V (B) 6= ∅. Let z ∈ Z be incident with e.
Since e /∈ E(B), z does not belong to the interior of B, and therefore is incident with an edge e ′ 6= e
and not in B. Hence e′ ∈ N , and therefore is incident with a member of Y , say y; and consequently
y is an end of B. There is an edge e′′ 6= e′ incident with y and not in B, and since e′′ ∈ N , it
follows that y ∈ Z. But y 6= z since e is not incident with any member of Y ; and so Z = {y, z}, and
z /∈ V (B) since H is cyclically 3-connected. Since y is an end of B, by hypothesis there is a second
member y′ ∈ Y . There is an edge incident with y′ and not incident with y or z, a contradiction.
This proves 6.2.

Let us say H is a theta if it is cyclically 3-connected and has exactly two branch-vertices and
three branches. A subset X ⊆ V (G) is connected if X 6= ∅ and G|X is connected; and a component
of G is a maximal connected subset of V (G). The previous results of this section are combined with
4.6 and 5.1 to prove the following.

6.3 Let H be a cyclically 3-connected graph with |V (H)| ≥ 7, such that there is no branch B of H
with |V (H) \ V (B)| ≤ 3. Let G be a claw-free graph, with an induced subgraph isomorphic to L(H).
Then either G ∈ S0 ∪ S1 ∪ S2, or G is decomposable.
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Proof. We may choose H with |V (H)| maximum satisfying the hypotheses of the theorem (we call
this the “maximality” of H), and to simplify notation we assume that the line graph of H is an
induced subgraph of G (rather than just isomorphic to one). In particular, E(H) ⊆ V (G). For each
h ∈ V (H), let D(h) denote the set of edges of H incident with h in H. For each v ∈ V (G) \ E(H),
let N(v) be the set of members of E(H) adjacent to v in G. We begin with:

(1) For each v ∈ V (G) \ E(H), we may assume that there exists Y ⊆ V (H) with |Y | ≤ 2 such
that N(v) =

⋃
(D(y) : y ∈ Y ), and there is a branch of H including Y .

For N(v) ⊆ E(H), and satisfies the hypotheses of 6.1, by 4.1 and 4.2. Thus one of the three
conclusions of 6.1 holds. If the second holds, then G contains a YY-configuration, and so by 5.1,
we deduce that G is decomposable, and the theorem holds. If the third holds, then G contains an
XX-configuration (take the edges of the subgraph described in 6.1, except for those in the interior of
branches, together with the vertex v), and by 4.6, either G is decomposable, or it belongs to S1 ∪S2.
Thus we may assume that the first outcome holds. Choose Y ⊆ V (H) with |Y | ≤ 2 such that
N(v) =

⋃
(D(y) : y ∈ Y ). If |Y | ≤ 1, or |Y | = 2 and some branch of H contains both members of Y ,

then (1) holds, so we assume that Y = {h1, h2} say, and no branch of H contains both h1, h2. Let H ′

be the graph obtained from H by adding the edge v incident with both h1, h2. Then H ′ is cyclically
3-connected (since h1, h2 do not belong to the same branch of H), and no branch of H ′ contains all
its vertices except at most three, and yet L(H ′) is an induced subgraph of G, a contradiction to the
maximality of H. This proves (1).

For each v ∈ V (G) \ E(H), let Y (v) ⊆ V (H) be the set Y described in (1). For each v ∈ E(H),
let Y (v) be the set consisting of the two vertices of H incident with v in H. Make the following
definitions:

• For each branch-vertex t of H let M(t) = {v ∈ V (G) : Y (v) = {t}}.

• For each branch B with ends t1, t2 say, let M(B) = {v ∈ V (G) : Y (v) = {t1, t2}}.

• For each branch B and each end t of B, let

M(t, B) = {v ∈ V (G) : Y (v) = {t, h} for some h in the interior of B}.

• For each branch B with ends t1, t2 say, let

S(B) = {v ∈ V (G) : ∅ 6= Y (v) ⊆ V (B) \ {t1, t2}}.

• Let Z = {v ∈ V (G) : Y (v) = ∅}.

From (1), we see that all these sets are pairwise disjoint (unless H is a theta, in which case all the
sets M(B) are equal), and have union V (G).

(2) Let B be a branch of H with ends t1, t2, let v ∈ M(B), and let u ∈ V (G) be adjacent to v.
Then either:

• u ∈ M(t1) ∪ M(t2), or
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• u ∈ M(ti, B
′) ∪ M(B′) for some i ∈ {1, 2} and some branch B ′ incident with ti.

For Y (v) = {t1, t2}. If Y (u) contains one of t1, t2 then the theorem holds, so we assume not. For
i = 1, 2, let ei be an edge of H incident with ti, not in B, such that e1, e2 have no common end. In
G, v is adjacent to both e1, e2, and since {v, e1, e2, u} is not a claw in G, it follows that u is adjacent
in G to one of e1, e2. Consequently Y (u) is nonempty, and contains a vertex not in B but adjacent
to one of t1, t2.

Suppose that |Y (u)| = 1, say Y (u) = {t3}. Since t1, t2 /∈ Y (u), it follows that t3 6= t1, t2. Let
B1 6= B be a branch incident with t1 and with t3 /∈ V (B1), with ends t1, t4 say. Let e1 be the edge
of B1 incident with t1, and let e2 be any edge incident with t2. Since {v, e1, e2, u} is not a claw of
G, we deduce that for every choice of e2, either e2 is incident with t3 or e2 shares an end with e1. In
particular, choosing e2 from B tells us that t1, t2 are adjacent, and so H is not a theta, and therefore
t4 6= t2. Also, the pairs t1t2, t2t3, t1t4, t2t4 are adjacent; and t2 has degree 3 in H. By exchanging
t1, t2 we deduce also that t1 has degree 3 and t1, t3 are adjacent. Consequently H is a subdivision of
K4, and there is a branch of H with ends t3, t4. There are only two vertices of H not in this branch,
contrary to hypothesis.

This proves that |Y (u)| = 2, say Y (u) = {s1, s2}. Let B′ be a branch with Y (u) ⊆ V (B ′). Since
we have already seen that one of s1, s2 does not belong to B, it follows that B ′ 6= B. Suppose that
B,B′ share an end, say t1, and let t3 be the other end of B ′. There is an edge e1 of H incident
with t1, that belongs to neither of B,B ′. Let e2 be any edge incident with t2; for each such choice,
{v, u, e1, e2} is not a claw in G. By choosing e2 from B we deduce that t1, t2 are adjacent and
therefore H is not a theta. It follows that for all choices of e2, either e2 has an end in Y (u) (which,
since H is not a theta, implies that e2 is incident with t3 and t3 ∈ Y (u)), or e2 shares an end with
e1. There is at most one choice for which the first occurs, and two for which the second occurs; and
since t2 has degree ≥ 3, we have equality throughout. More precisely, t2 has degree 3, t3 ∈ Y (u),
and the pairs t1t2, t2t3, t2t4 are adjacent, where e1 has ends t1, t4. Moreover, no other choice of e1 is
possible, and so t1 also has degree 3. Consequently H is a subdivision of K4, and there is a branch
P between t3, t4. By hypothesis, at least four vertices of H do not belong to P , and so B ′ has length
≥ 3. Let f1 be an edge of B ′ incident with a vertex in Y (u) but not incident with either of t1, t3
(this exists since B ′ has length ≥ 3 and one of its internal vertices is in Y (u)). Let f2 be the edge of
P incident with t3. Then {u, v, f1, f2} is a claw in G, a contradiction.

This proves that B,B ′ do not share an end, and so H is not a theta. We have already seen that
one of s1, s2 is adjacent to one of t1, t2, say s1, t1 are adjacent. Consequently s1 is an end of B ′.
Suppose that s2 belongs to the interior of B ′. Let e1 be an edge incident with t1, not in B and not
incident with s1; and let e2 be any edge incident with t2. Since {v, u, e1, e2} is not a claw in G, it
follows that for all choices of e2, either e2 is adjacent to s1 or to an end of e1. Consequently t2 has
degree 3, and t2 is adjacent to s1 and to both ends of e1. Since this also holds for all choices of e1,
we deduce that t1 also has degree 3. Let e1 have ends t1, t3 say. Since H is cyclically 3-connected,
it follows H is a subdivision of K4 and t3 is an end of B ′. But then only two vertices of H do not
belong to the branch B ′, contrary to hypothesis.

This proves that s1, s2 are both ends of B ′, and so u ∈ M(B ′). Thus there is symmetry between
u, v. Suppose that B has length 1, and let q be the edge of H incident with t1, t2. Let H ′ be the
graph obtained from H by deleting q and adding a new edge v with the same ends t1, t2 as q. Then
H ′ is isomorphic to H, and L(H ′) is an induced subgraph of G, and so by (1) we may assume that
there is a set Y ⊆ V (H ′) with |Y | ≤ 2 such that an edge of H ′ is adjacent to u in G if and only if
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it is incident in H ′ with a member of Y . But the edges of H ′ adjacent to u in G are precisely those
with an end in {s1, s2}, together with the new edge v, and this contradicts 6.2. We may therefore
assume that B has length > 1, and by symmetry we may assume the same for B ′.

Let e1 be the edge of B incident with t1, and let e2 be any edge of H incident with t2. Since
{v, u, e1, e2} is not a claw in G, it follows that for all choices of e2, either e2 is incident in H with one
of s1, s2, or it shares an end with e1. Consequently t2 has degree 3, and t2 is adjacent to both s1, s2,
and B has length 2. Similarly t1, s1, s2 have degree 3, and B ′ has length 2, and s1, s2 are adjacent
to both of t1, t2. But then |V (H)| = 6, a contradiction. This proves (2).

(3) Let p1- · · · -pk be a path of G such that k ≥ 2, p1, pk /∈ Z, and p2, . . . , pk−1 ∈ Z. Then either

• There is a branch B of H with ends t1, t2 say, such that p1, pk both belong to

M(t1) ∪ M(t2) ∪ M(t1, B) ∪ M(t2, B) ∪ S(B),

or

• k = 2, and there are two branches B1, B2 with a common end t (possibly equal), such that
p1 ∈ M(t) ∪ M(t, B1) ∪ M(B1) and p2 ∈ M(t) ∪ M(t, B2) ∪ M(B2).

For suppose first that p1 ∈ M(B) for some branch B. By (2), k = 2 and the second statement of
the claim holds. So we may assume that p1 does not belong to any M(B), and the same for pk. Since
p1 /∈ Z, it follows that either Y (p1) = {t1} for some branch-vertex t1 of H, or there is a branch B1 of
H such that Y (p1) ⊆ V (B1) and some internal vertex of B1 belongs to Y (p1). Analogous statements
hold for pk. Suppose that |Y (p1)| = 1 and |Y (pk)| = 1, say Y (p1) = {y1} and Y (pk) = {y2}. The
graph G|(E(H) ∪ {p1, . . . , pk}) is the line graph of the graph H ′, obtained from H by adding a new
branch between y1, y2 with edges p1, . . . , pk. If y1, y2 do not belong to the same branch of H, it
follows that H ′ is cyclically 3-connected, contrary to the maximality of H. If y1, y2 belong to the
same branch of H then the first statement of the claim holds.

Thus we may assume that at least one of |Y (p1)|, |Y (pk)| = 2, say |Y (p1)| = 2. Then N(p1) is
not a clique, and since p2 is adjacent to p1 and G contains no claw, it follows that p2 has a neighbour
in N(p1), and in particular p2 /∈ Z. Thus k = 2.

Since |Y (p1)| = 2, it follows that for some branch B1 of H, Y (p1) ⊆ V (B1) and some internal
vertex of B1 belongs to Y (p1). Let Y (p1) = {y, y′} say, where y′ belongs to the interior of B1. Next
suppose that |Y (p2)| = 1, say Y (p2) = {z}. We may assume that z /∈ V (B1), for otherwise the first
statement of the claim holds. Let e′ be an edge of B1 incident with y′ and not with y. Let e be an
edge of H incident with y, not incident with z, and with no common end with e′. (This exists, since
if y is an end of B1 there are at least two edges incident with y and disjoint from e′, and at most
one of them is incident with z.) But then {p1, p2, e, e

′} is a claw in G, a contradiction. This proves
that |Y (p2)| = 2. Let Y (p2) = {z, z′} say, and let B2 be a branch of H with z, z ′ ∈ V (B2) and with
z′ in the interior of B2. We may assume that B2 6= B1, for otherwise the first statement of the claim
holds.

Suppose that Y (p1) ∩ Y (p2) 6= ∅. It follows that y = z is a common end of B1, B2. But then
p1 ∈ M(y,B1) and p2 ∈ M(y,B2), and the second statement of the claim holds. We assume therefore
that Y (p1) ∩ Y (p2) = ∅.

If p2 ∈ E(H), then its ends in H are z, z ′, and therefore it has no end in Y (p1), a contradiction
since p1, p2 are adjacent in G. Thus p2 /∈ E(H), and similarly p1 /∈ E(H). Next suppose that z, z ′
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are adjacent in H. Let q be the edge of B2 joining them. Since Y (p1) ∩ Y (p2) = ∅, it follows that
q is not adjacent to p1 in G. Let H ′ be the graph obtained from H by deleting q and replacing
it by an edge p2, joining the same two vertices z, z ′. Hence L(H ′) is also an induced subgraph of
G, namely the subgraph induced on (V (H) \ {q}) ∪ {p2}. Since H ′ is isomorphic to H, it follows
from (1) applied to H ′ that we may assume that there is a subset Y ⊆ V (H ′) such that the set of
members of E(H ′) adjacent in G to p1 equals the set of edges of H ′ with an end in Y . Now the set
of members of E(H ′) adjacent in G to p1 equals N(p1) ∪ {p2}, since q is not adjacent to p1 in G.
Moreover, N(p1) is the set of edges of H with an end in Y (p1), and since q has no end in Y (p1), this
is equal to the set of edges of H ′ with an end in Y (p1). Consequently, the set of edges of H ′ with
an end in Y equals the union of {p2} and the set of edges of H ′ with an end in Y (p1). But this is
impossible, by 6.2. This proves that z, z ′ are nonadjacent, and similarly y, y ′ are nonadjacent.

Since y, y′ are nonadjacent vertices of B1, there are edges e, e′ of B1 incident with y, y′ respec-
tively, such that e, e′ have no end in common. Since {p1, p2, e, e

′} is not a claw in G, it follows that
p2 is adjacent in G to one of e, e′, and so some vertex of Y (p2) belongs to V (B1). Since z′ is an
internal vertex of B2, we deduce that B1, B2 have a common end z. Similarly their common end is
y, and so y = z, contradicting that Y (p1) ∩ Y (p2) = ∅. This proves (3).

(4) Let t ∈ V (H) be a branch-vertex. If v1, v2 ∈ V (G) are distinct and nonadjacent, and t ∈
Y (v1)∩Y (v2), then there are distinct branches B1, B2, both of length ≥ 2, with vi ∈ M(Bi) (i = 1, 2);
and every vertex of V (H) adjacent to t in H either belongs to one of B1, B2, or has degree 3 in H
and is adjacent to all the ends of B1, B2.

For suppose v1, v2 are not adjacent. It follows that v1, v2 /∈ E(H). By (1), there are branches
B1, B2 of H, incident with t, such that Y (vi) ⊆ V (Bi) (i = 1, 2). (If H is a theta, and some Y (vi)
consists of the two branch-vertices, then we can choose any branch to be Bi; in this case, choose a
shortest branch.) Let Bi have ends t, ti (i = 1, 2) say. Let x be a neighbour of t, not in V (B1)∪V (B2).
Let y 6= t be a second neighbour of x. Let e, f be the edges tx, xy. Since {e, f, v1, v2} is not a claw
in G, it follows that f is adjacent in G to at least one of v1, v2; that is, y ∈ Y (v1) ∪ Y (v2). Since
Y (vi) ⊆ V (Bi) (i = 1, 2), we deduce that for some i ∈ {1, 2}, y = ti ∈ Y (vi). If H is a theta, then
x is the internal vertex of some branch of length 2; and since vi ∈ M(Bi), from the choice of Bi it
follows that Bi has length ≤ 2. But then a branch of H contains all its vertices except two, contrary
to the hypothesis. Thus, H is not a theta. Since no two branches have the same pair of ends, it
follows that x is a branch-vertex; and since this holds for all choices of y, we deduce that x has degree
3 and is adjacent to both t1, t2, and ti ∈ Y (vi) (i = 1, 2). Moreover, B1, B2 are distinct. Suppose
that say B2 has length 1, and let q be the edge tt2. Let H ′ be obtained from H by deleting q and
adding a new edge v2 incident with the same two vertices t, t2. Then H ′ is isomorphic to H, and
L(H ′) = G|((E(H)\{q})∪{v2}), and so by (1) we may assume that there exists Y ⊆ V (H ′) = V (H)
with |Y | ≤ 2, such that the set of edges of H ′ with an end in Y equals the set of edges of H ′ that
are adjacent to v1 in G. But in the triangle {x, t, t2} of H ′, exactly one of its edges is adjacent to v1

in G, a contradiction. This proves that B2, and similarly B1, has length ≥ 2, and so proves (4).

(5) If B is a branch of H of length 1, with ends t1, t2, then M(t1) is anticomplete to M(t2).

If there exists v1 ∈ M(t1) adjacent to some v2 ∈ M(t2), let H ′ be the graph obtained from H
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by deleting the edge between t1, t2, and adding a two-edge path between these vertices, with edges
v1, v2 (with vi incident with ti for i = 1, 2, and the middle vertex of this path being a new vertex).
Then H ′ satisfies the hypotheses of the theorem, and L(H ′) is an induced subgraph of G, contrary
to the maximality of H. This proves (5).

For each branch B of H with ends t1, t2, we define C(B), A(t1, B), A(t2, B) as follows. Let C(B)
be the union of S(B) and the set of all v ∈ Z such that there is a path with interior in Z from v to
some vertex in S(B). (Thus if B has length 1 then C(B) is empty.) Let A(t1, B) be the set of all
v ∈ M(t1) ∪ M(t1, B) with a neighbour in C(B). Define A(t2, B) similarly.

(6) For every branch B with ends t1, t2, every vertex in V (G) \ C(B) with a neighbour in C(B)
belongs to A(t1, B) ∪ A(t2, B).

For let v ∈ V (G) \ C(B), with a neighbour in C(B). From the definition of C(B), v /∈ S(B) ∪ Z.
Let P be a minimal path of G between S(B) and v with interior in Z. By (3),

v ∈ M(t1) ∪ M(t1, B) ∪ M(t2) ∪ M(t2, B).

Hence v ∈ A(t1, B) ∪ A(t2, B). This proves (6).

(7) Let B be a branch with ends t1, t2. If v ∈ V (G) \ (A(t1, B)∪A(t2, B)∪C(B)) has a neighbour in
A(t1, B), then there is a branch B ′ of H incident with t1 such that v ∈ M(t1) ∪ M(B′) ∪ M(t1, B

′).
In particular, v is either complete or anticomplete to A(t1, B).

The second claim follows from the first and (4). To prove the first, let v ∈ V (G) \ (A(t1, B) ∪
A(t2, B) ∪ C(B)), and assume it has a neighbour in A(t1, B). Since A(t1, B) is nonempty, it follows
that t1, t2 are nonadjacent in H. If t1 ∈ Y (v), then the claim holds, so we may assume that t1 /∈ Y (v).
Suppose first that v is adjacent in G to every e ∈ D(t1) that is not in B. Since t1 /∈ Y (v), it follows
that Y (v) contains all vertices of H that are adjacent to t1 and not in V (B). There are at least two
such vertices, and |Y (v)| ≤ 2, and so t1 has degree 3, and its two neighbours not in B are both in
Y (v). By (1), there is a branch B ′ joining these two vertices, and v ∈ M(B ′), contrary to (2). Thus
there is an edge e of H not in B, such that no end of e belongs to Y (v). Now v has a neighbour
a ∈ A(t1, B). By definition of A(t1, B), a has a neighbour c ∈ C(B). Now a is adjacent in G to
v, e, c, and v, e are nonadjacent. Moreover, v, e /∈ A(t1, B) ∪ A(t2, B) ∪C(B), and since c ∈ C(B), it
follows from (6) that c is nonadjacent to v, e. But then {a, v, e, c} is a claw in G, a contradiction.
This proves (7).

(8) If there is a branch B of H with S(B) nonempty, then G is decomposable, so we may assume
there is no such branch (and consequently every branch has length at most 2). In particular, H is
not a theta.

For suppose that B is a branch with S(B) nonempty. Let its ends be t1, t2. Since S(B) is nonempty,
it follows that B has length ≥ 2. We claim that (A(t1, B), C(B), A(t2, B)) is a breaker. To show
this, in view of (6) and (7) it remains to check that:

• A(t1, B), A(t2, B) are nonempty cliques
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• there is a vertex in V (G) \ (A(t1, B) ∪ A(t2, B) ∪ C(B)) with a neighbour in A(t1, B) and
a nonneighbour in A(t2, B); there is a vertex in V (G) \ (A(t1, B) ∪ A(t2, B) ∪ C(B)) with a
neighbour in A(t2, B) and a nonneighbour in A(t1, B); and there is a vertex in V (G)\(A(t1, B)∪
A(t2, B) ∪ C(B)) with a nonneighbour in A(t2, B) and a nonneighbour in A(t1, B)

• if A(t1, B) is complete to A(t2, B), then there do not exist adjacent x, y ∈ V (G) \ (A(t1, B) ∪
A(t2, B) ∪ C(B)) such that x is A(t1, B) ∪ A(t2, B)-complete and y is A(t1, B) ∪ A(t2, B)-
anticomplete.

Since B has length > 1, and S(B) 6= ∅, it follows that M(t1, B) is nonempty and is a subset of
A(t1, B), and in particular, A(t1, B) 6= ∅, and similarly A(t2, B) 6= ∅. By (4), A(t1, B), A(t2, B) are
cliques, and so the first statement holds. For the second, let e ∈ E(H) \ E(B) be incident with t1;
then e has a neighbour in A(t1, B) and a nonneighbour in A(t2, B), namely the first and last edges
of B. Moreover, since H is cyclically 3-connected and at least four vertices of H do not belong to
B, it follows that some edge f of H has no end in V (B), and therefore is nonadjacent in G to both
the first and last edges of B. The second claim follows. Thus, it remains to check the third.

Suppose then that x, y ∈ V (G) \ (A(t1, B) ∪ A(t2, B) ∪ C(B)); x is A(t1, B) ∪ A(t2, B)-complete
and y is A(t1, B) ∪ A(t2, B)-anticomplete, and x, y are adjacent. By (7), x ∈ M(B). Since x, y are
adjacent, (2) implies that we may assume that y ∈ M(t1) ∪ M(B′) ∪ M(t1, B

′) for some branch B ′

incident with t1. But then y is complete to A(t1, B), by (4). Since A(t1, B) is nonempty, it is not
also anticomplete to A(t1, B), a contradiction. Consequently (A(t1, B), C(B), A(t2, B)) is a breaker.
By 3.4, G is decomposable. This proves (8).

(9) We may assume that Z = ∅.

For suppose not, and let W be a component of G|Z. Since we may assume that G is connected, there
are vertices not in W with neighbours in W ; let X be the set of all such vertices. Thus, for each
x ∈ X, x /∈ E(H) (since it has a neighbour in Z) and Y (x) is nonempty (since W is a component of
G|Z). Moreover, the set of neighbours of x in E(H) is a clique, since G contains no claw; and conse-
quently |Y (x)| = 1, say Y (x) = {t}. If t belongs to the interior of a branch B then x ∈ S(B), contrary
to (8); and so t is a branch-vertex. Suppose that there exists x1, x2 ∈ X with Y (xi) = {ti} (i = 1, 2),
where t1 6= t2. There is a path P between x1, x2 with interior in W ; and by (3) applied to this path,
there is a branch B with ends t1, t2. By (8), B has length ≤ 2. Let H ′ be obtained from H by
deleting the edges and interior vertices of B, and adding the members of V (P ) to H as the edges
of a new branch B ′ between t1, t2, in the appropriate order. Then L(H ′) is an induced subgraph
of G, and satisfies the hypotheses of the theorem, and so by the maximality of H, we deduce that
B′ has length at most that of B. In particular, B ′ has length at most 2, and so |V (P )| ≤ 2. But
x1, x2 ∈ V (P ), and so x1, x2 are adjacent; and moreover, B has length 2. Now we recall that x1 has
a neighbour w say in W . Since {x1, w, x2, e} is not a claw in G (where e is some edge of H incident
with t1 and not with t2), it follows that x2 is adjacent to w. Thus x1, x2 are the only edges of H ′

that are adjacent to w in G. We deduce that when H is replaced by H ′, and Y ′ denotes the function
analogous to Y for H ′, then Y ′(w) contains the middle vertex of B ′. But then by (8), G is decom-
posable. Consequently we may assume that there is no such x2; and so there is a branch-vertex t of
H such that Y (x) = {t} for all x ∈ X. By 4.3, X is a clique. By (3) and (4), every vertex of G not in
W ∪X is either complete or anticomplete to X. But then the result follows from 3.2. This proves (9).
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(10) We may assume that for every branch B with ends t1, t2, if vi ∈ M(ti) ∪ M(ti, B) for i = 1, 2,
and v1, v2 are adjacent, then B has length 2 and v1, v2 are its two edges.

For let F1 be the set of vertices in M(t1) ∪ M(t1, B) with a neighbour in M(t2) ∪ M(t2, B), and
define F2 similarly. By (4), F1, F2 are cliques. We claim that every vertex v /∈ F1 ∪ F2 is either
complete or anticomplete to Fi, for i = 1, 2. For let v have a neighbour f1 ∈ F1 say. We may assume
that t1 /∈ Y (v), for otherwise v is complete to F1, by (4). By (3) and (9), there is a branch B ′ with
ends t1, t3 say, such that v ∈ M(t3) ∪ M(t3, B

′), and in particular, t3 ∈ Y (v) ⊆ V (B ′) \ {t1}. Since
v /∈ F2, it follows that B ′ 6= B, and therefore t3 6= t2, since H is not a theta. Since v, f1 are adjacent,
(3) implies that f1 /∈ M(t1, B), and so f1 ∈ M(t1). Let e be an edge of H incident with t1 and
not in B,B ′, let f1 ∈ F1 be adjacent in G to v, and let f2 ∈ F2 be adjacent in G to f1. Then f1

is adjacent in G to all of v, f2, e. Since Y (v) ⊆ V (B ′) \ {t1}, it follows that v, e are nonadjacent in
G. Similarly, since f2 ∈ M(t2) ∪ M(t2, B), f2, e are nonadjacent in G. Since {f1, v, f2, e} is not a
claw, it follows that v, f2 are adjacent in G. By (3), v /∈ M(t3, B

′), and so v ∈ M(t3); and similarly
f2 ∈ M(t2); and also by (3), there is a branch B ′′ of H with ends t2, t3. Let H ′ be the graph obtained
from H by adding a new vertex x and three new edges f1, v, f2, joining x to t1, t2, t3 respectively.
Then H ′ satisfies the hypotheses of the theorem, and L(H ′) = G|(E(H) ∪ {v, f1, f2}), contrary to
the maximality of H. This proves our claim that every vertex not in F1 ∪ F2 is either complete or
anticomplete to Fi, for i = 1, 2. Thus (F1, F2) is a homogeneous pair, nondominating since H is not
a theta and therefore some edge of H is incident with no vertex in B; and so by 3.3 we may assume
that F1, F2 both contain at most one element. To deduce the claim, let v1, v2 be as in the statement
of (10); if B has length 2, then the edges of B belong to F1 ∪ F2 and the claim follows. If B has
length 1, then vi ∈ M(ti) for i = 1, 2, contrary to (5). This proves (10).

From (10), we may assume that every vertex of G not in E(H) belongs to M(B) for some branch
B, or to M(t) for some branch-vertex t. If for all pairs v1, v2 of vertices in V (G)\E(H), v1 is adjacent
to v2 if and only if Y (v1) ∩ Y (v2) 6= ∅, then G is a line graph and the theorem holds. And we have
already shown that this statement for all v1, v2 such that one of |Y (v1)|, |Y (v2)| = 1, by (4) and (10),
and the “only if” implication holds for all v1, v2, by (2). From (4), we may therefore assume that
there are nonadjacent v1, v2 ∈ V (G), and distinct branch-vertices t1, t2, t3 of H, and branches B1, B2

between t1, t3 and t2, t3 respectively, such that:

• vi ∈ M(Bi) (i = 1, 2)

• B1, B2 both have length 2, and

• every vertex of V (H) adjacent to t3 in H either belongs to one of B1, B2, or has degree 3 in H
and is adjacent to all the ends of B1, B2.

Now H is not a theta. Let B3 be the branch of H with ends t1, t2, if it exists. Let N be the set
of all neighbours of t3 that do not belong to B1, B2, let V1 = N ∪{t1, t2, t3}∪V (B1)∪V (B2) and let
V2 = (V (H) \ V1) ∪ {t1, t2}. Since (V1, V2) is a 2-separation of H, we deduce that either V (H) = V1,
or the branch B3 exists and V (H) = V1 ∪ V (B3). In either case, no branches of H have length > 1
except possibly B1, B2 and B3 if it exists.
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(11) For u1, u2 ∈ V (G) \ E(H), either u1, u2 belong to distinct sets M(Bi) (i = 1, 2, 3), or u1, u2 are
adjacent if and only if Y (u1) ∩ Y (u2) 6= ∅.

For we have seen that if u1, u2 are adjacent, then Y (u1) ∩ Y (u2) 6= ∅; and the converse holds
by (4) unless u1 ∈ M(B) and u2 ∈ M(B′) for distinct branches B,B ′, both of length ≥ 2. But
B1, B2, B3 are the only such branches. This proves (11).

(12) M(t) = ∅ for all branch-vertices t 6= t1, t2, t3 of H.

For suppose that x ∈ M(t) where t 6= t1, t2, t3. We have seen that t is adjacent in H to all of
t1, t2, t3. Let e be the edge of H between t, t3. Then e is adjacent in G to all of x, v1, v2. But v1, v2

are nonadjacent, and x is nonadjacent to v1, v2 by (2). Hence {e, x, v1, v2} is a claw, a contradiction.
This proves (12).

For i = 1, 2, 3, let Ei = E(Bi) ∪ M(Bi), setting E3 = ∅ if B3 does not exist. Thus E1, E2, E3 are
three cliques. For i = 1, 2, 3, let

Fi = M(ti) ∪
⋃

(M(B) : B 6= B1, B2, B3 is a branch of H incident with ti).

From (8), (9), (10), (12) it follows that the six sets E1, E2, E3, F1, F2, F3 are pairwise disjoint and
have union V (G). From (4) and (11), F1, F2, F3 are cliques. By (4) and (11) Ei is complete to Fi

and to F3 for i = 1, 2, and E3 is complete to F1 ∪ F2. By (2), E1 is anticomplete to F2, and E2 is
anticomplete to F1, and E3 is anticomplete to F3. Thus G is expressible as a hex-join. This proves
6.3.

7 Prisms

A prism means a graph consisting of two vertex-disjoint triangles {a1, a2, a3}, {b1, b2, b3}, and three
paths P1, P2, P3, where each Pi has ends ai, bi, and for 1 ≤ i < j ≤ 3 the only edges between V (Pi)
and V (Pj) are aiaj and bibj; and we say that the three paths P1, P2, P3 form the prism. Thus a
prism is just the line graph of a theta. A prism formed by paths of length n1, n2, n3 ≥ 1 is called an
(n1, n2, n3)-prism.

Our objective in this section is to handle the claw-free graphs that contain certain prisms. For big
enough prisms, this is accomplished by 6.3. More precisely, we have (immediately from 6.3, taking
H to be the prism):

7.1 Let G be claw-free, with an (n1, n2, n3)-prism as an induced subgraph, where either n1, n2, n3 ≥
2, or n1, n2 ≥ 3. Then either G ∈ S0 ∪ S1 ∪ S2, or G is decomposable.

In this section we prove the same thing for some slightly smaller prisms, namely the (3, 2, 1)-
prism, the (2, 2, 1)-prism and the (3, 1, 1)-prism. We need first some lemmas about strips. A strip in
G means a triple (A,C,B) of disjoint subsets of V (G), such that

• A,B are nonempty cliques
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• every vertex of A ∪ B belongs to a rung of the strip (a rung means a path between A and B
with interior in C)

• for every vertex v ∈ C, there is a path from A to v with interior in C, and a path from v to B
with interior in C.

Let (Ai, Bi, Ci) be a strip for i = 1, 2. We say they are parallel if

• A1, B1, C1 are disjoint from A2, B2, C2

• A1 is complete to A2 and B1 is complete to B2, and

• every edge between A1 ∪B1 ∪C1 and A2 ∪B2 ∪C2 is either between A1 and A2 or between B1

and B2.

Then (A1 ∪ A2, C1 ∪ C2, B1 ∪ B2) is a strip that we call the disjoint union of the first two strips. If
a strip is not expressible as the disjoint union of two strips, we say it is nonseparable. We need the
following lemma.

7.2 Let G be claw-free, and let (A1, B1, C1), (A2, B2, C2) be parallel strips. Suppose that (A1, C1, B1)
is nonseparable and C1 is nonempty. Then C1 is connected and every vertex of A1∪B1 has a neighbour
in C1.

Proof. Let C3 be a component of C1 and C4 = C1 \ C3. Let A3 be the set of members of A1 with
a neighbour in C3, and A4 = A1 \ A3, and define B3, B4 similarly.

(1) If a ∈ A3, then no neighbour of a belongs to B4 ∪ C4.

For suppose that x ∈ B4 ∪ C4 is a neighbour of a. By definition of A3, a also has a neighbour
c ∈ C3; and let a2 ∈ A2. Since {a, a2, x, c} is not a claw, it follows that x is adjacent to c. Since
x /∈ C3 and C3 is a component of C1, we deduce that x /∈ C4; and since x has a neighbour in C3, we
deduce that x /∈ B4, a contradiction. This proves (1).

(2) Let R be a rung of (A1, C1, B1). Then either V (R) ⊆ A3 ∪ C3 ∪ B3, or V (R) ⊆ A4 ∪ C4 ∪ B4.

For suppose first that some vertex of the interior of R belongs to C3. Then C3 contains all the
interior of R, since C3 is a component of C1, and so the ends of R belong to A3 ∪ B3 and the claim
holds. We may therefore assume that C3 is disjoint from the interior of R. Let a be the end of R in
A1. Let r be the neighbour of a in R. If a ∈ A3, then by (1), r ∈ B3 ∪ C3, and since C3 is disjoint
from the interior of R, we deduce that R has length 1 and r ∈ B3 and the claim holds. Thus we may
assume that a /∈ A3, and similarly the other end of R is not in B3; but then V (R) ⊆ A4 ∪ C4 ∪ B4

and the claim holds. This proves (2).

(3) (A3, C3, B3) is a strip.

For since C3 is nonempty, and (A1, B1, C1) is a strip, it follows that there is a path between C3

and A1 with interior in C1 and hence in C3; and consequently A3 is nonempty, and similarly B3 is
nonempty. Consequently (A3, C3, B3) is a strip, by (2). This proves (3).
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Suppose that A4 ∪ B4 6= ∅. Then by (2), (A4, C4, B4) is a strip, and by (1) the two strips
(A3, C3, B3), (A4, C4, B4) are parallel, contrary to hypothesis that (A1, B1, C1) is nonseparable. Thus
A4 = B4 = ∅. If there exists v ∈ C4, then there is a path from v to A1 with interior in C1, which is
therefore disjoint from C3; and consequently this path has interior in C4. Let its end in A1 be a. By
(1), a ∈ A4, a contradiction since A4 = ∅. This proves 7.2.

In several applications later in the paper, we shall have two parallel strips, and a path between
them. Here is a lemma for use in that situation.

7.3 Let G be claw-free, and for i = 1, 2 let Ri be a path of length ≥ 1, with ends ai, bi. Suppose
that a1a2 and b1b2 are edges, and there are no other edges between R1 and R2. Let X ⊆ V (G) \
{a1, b1, a2, b2} be connected, and for i = 1, 2 let there be a vertex in Ri with a neighbour in X. Then
there is a path p1- · · · -pk with p1, . . . , pk ∈ X \ (V (R1) ∪ V (R2)) such that:

• none of p1, . . . , pk belong to R1 ∪ R2, and

• for 1 ≤ i ≤ k, pi has a neighbour in V (R1) if and only if i = k, and pi has a neighbour in R2

if and only if i = 1.

Moreover, either:

1. p1 has exactly two neighbours in R2 and they are adjacent, and the same for pk in R1, or

2. k = 1, and one of R1, R2 has length 1, and the other has length 2, and p1 is complete to
V (R1) ∪ V (R2), or

3. k = 1 and for i = 1, 2 the neighbours of p1 in Ri are {ai, bi}, or

4. k = 1, and p1 has a unique neighbour in one of R1, R2, and p1 is adjacent to both {a1, a2} or
to both {b1, b2}.

Proof. We may assume that X is minimal with the given property, and therefore X is disjoint from
V (R1) ∪ V (R2), and X = {p1, . . . , pk} for some path p1- · · · -pk such that for 1 ≤ i ≤ k, pi has a
neighbour in V (R1) if and only if i = k, and pi has a neighbour in R2 if and only if i = 1. Let M
be the set of neighbours of p1 in V (R2), and let N be the set of neighbours of pk in V (R1). Suppose
first that |N | = 1. By 4.2, the vertex of N is not an internal vertex of R1, and so we may assume
that N = {a1}. By 4.2, pk is adjacent to a2, and therefore k = 1 and a2 ∈ M . But then the final
statement of the theorem holds.

We may therefore assume that |M |, |N | ≥ 2. If M consists of two adjacent vertices, and so does
N , then the first statement of the theorem holds. So we may assume that there exist x, y ∈ N ,
nonadjacent. Since {pk, x, y, pk−1} is not a claw, k = 1. Since {p1, x, y, z} is not a claw for z in
the interior of R2, it follows that M = {a2, b2}. Since {p1, x, y, a2} is not a claw, it follows that
a1 ∈ {x, y} and the same for b1. If |N | = 2 then the third statement of the theorem holds, and so
we may assume that N contains some vertex c from the interior of R1. Since {p1, c, a2, b2} is not a
claw, R2 has length 1. Since {p1, c, a1, b2} is not a claw, c is adjacent to a1 and similarly to b1. But
then R1 has length 2 and the second statement of the theorem holds. This proves 7.3.
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Next we show, for several different prisms, that if one is present as an induced subgraph then G
is decomposable, or belongs to one of our basic classes. These proofs are quite similar, so we have
extracted the main argument in the following lemma.

7.4 Let G be claw-free, and let the three paths R1, R2, R3 form a prism in G. Let Ri have ends
ai, bi for 1 ≤ i ≤ 3, where {a1, a2, a3} and {b1, b2, b3} are triangles. Suppose that R1 has length > 1.
Then one of the following holds (possibly after exchanging R2, R3):

• R1 has length 2, R2 has length 1, and there is a vertex v complete to V (R1) ∪ V (R2) and
anticomplete to V (R3), or

• R2 has length 1, and either R3 has length 1 or R1 has length 2, and there is a vertex v that
is complete to V (R2) and anticomplete to V (R3), with exactly two neighbours in R1, namely
either the first two or last two vertices of R1, or

• R2 and R3 both have length 1, and there is no vertex w that is complete to one of V (R2), V (R3)
and anticomplete to the other and to V (R1), or

• G ∈ S0 ∪ S1 ∪ S2, or G is decomposable.

Proof. For i = 2, 3, let Ai = {ai}, Bi = {bi} and Ci be the interior of Ri. Then (Ai, Ci, Bi) is a
strip with a unique rung Ri. It follows that there is a strip (A1, C1, B1) such that:

• (Ai, Ci, Bi) (i = 1, 2, 3) are three parallel strips,

• R1 is a rung of (A1, B1, C1), and

• (A1, B1, C1) is nonseparable.

Choose (A1, B1, C1) such that W is maximal, where W denotes the union of the vertex sets of the
three strips.

(1) We may assume that every vertex v ∈ V (G) \ (A1 ∪ B1 ∪ C1) is anticomplete to C1.

For let v ∈ V (G) \ (A1 ∪ B1 ∪ C1), and suppose it has a neighbour in C1. Consequently v /∈ W .
Let N be the set of neighbours of v in W . From the maximality of W , it follows that N meets
one of V (R2), V (R3). Suppose first that a2, a3 ∈ N . Since N meets C1, it follows from 4.1 that
N ∩ V (Ri) = {ai} for i = 2, 3; but then A1 ⊆ N , by 4.2 (with A1, a2, c2, where c2 is the neighbour
of a2 in R2), and so v can be added to A1, contrary to the maximality of W . Thus N contains at
most one of a2, a3, and at most one of b2, b3 by symmetry. By 4.1, it follows that N meets exactly
one of R2, R3, say R2.

Now C1 ∪ {v} is connected, and so by 7.3 there is a path p1- · · · -pk of G with v = p1 and with
p2, . . . , pk ∈ C1, satisfying one of the four statements of 7.3. Certainly none of p1, . . . , pk have neigh-
bours in R3, and so 4.2 implies that that the fourth statement of 7.3 is impossible. Also 4.2 implies
the third is impossible, since R1 has length > 1. If the second statement of 7.3 holds, then the first
statement of the theorem holds. Consequently we may assume that the first statement of 7.3 holds.
Then the subgraph of G induced on V (R1)∪V (R2)∪V (R3)∪ {p1, . . . , pk} is a line graph of a graph
H. If H satisfies the hypotheses of 6.3, then the theorem holds by 6.3, so we assume not. But H is
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a subdivision of K4, and |V (H)| ≥ 6 . If |V (H)| = 6 then k = 1 and the second statement of the
theorem holds. If |V (H)| ≥ 7 then some branch of H contains all its vertices except at most three,
and so k = 1 and again the second statement holds. This proves (1).

(2) We may assume that every vertex v ∈ V (G) \ (A1 ∪ B1 ∪ C1) is either complete or anticom-
plete to A1.

For let v ∈ V (G) \ (A1 ∪ B1 ∪ C1), and suppose it has a neighbour and a nonneighbour in A1.
Then v /∈ W . Let N be the set of neighbours of v in W . By (1), we may assume that N ∩C1 = ∅. By
7.2, every vertex in A1 has a neighbour in C1. Since N meets A1, 4.2 (with a2, A1, C1 and a3, A1, C1)
implies that a2, a3 ∈ N . Choose a′1 ∈ A1 such that a′1 /∈ N . For i = 2, 3, if Ci is nonempty then 4.2
(with a′1, ai, Ci) implies that N meets Ci, and if Ci = ∅ then 4.2 (with a′

1-ai-bi) implies that bi ∈ N .
By 4.1, N ∩(B2∪C2) is complete to N ∩(B3∪C3); and so C2, C3 are empty, and b2, b3 ∈ N . Suppose
there is a vertex w that is complete to one of V (R2), V (R3) and anticomplete to the other and to
V (R1). Thus w /∈ W . Let w be complete to V (R2) say. By 4.2 (with a′

1-a2-w) it follows that w ∈ N ;
but that contradicts 4.1, since N ∩ (A1 ∪{w, b3}) includes a triad. Thus there is no such w; but then
the third statement of the theorem holds. This proves (2).

If every vertex in V (G) \ (A1 ∪ B1 ∪ C1) is complete to one of A1, B1, then the third statement
of the theorem holds. If not, then from (1) and (2), (A1, C1, B1) is a breaker, and so by 3.4 G is
decomposable. This proves 7.4.

Now we can process the little prisms.

7.5 Let G be claw-free, with an (n1, n2, n3)-prism as an induced subgraph, where n1 ≥ 3 and n2 ≥ 2.
Then either G ∈ S0 ∪ S1 ∪ S2 or G is decomposable.

Proof. By 7.1 we may assume that n2 = 2 and n3 = 1. Then the result is immediate from 7.4.

7.6 Let G be claw-free, with an (n1, n2, n3)-prism as an induced subgraph, where n1, n2 ≥ 2. Then
either G ∈ S0 ∪ S1 ∪ S2 or G is decomposable.

Proof. By 7.5 and 7.1, we may assume that n1 = n2 = 2 and n3 = 1. Let R1, R2, R3 be three
paths of G, forming a prism, with lengths 2, 2, 1. Let W be the union of their vertex sets. Let Ri be
ai-ci-bi for i = 1, 2, and let R3 have vertices a3-b3, where {a1, a2, a3} and {b1, b2, b3} are triangles.
By 7.4, we may assume there is a vertex v1 ∈ V (G) \W , complete to V (R3), anticomplete to V (R2),
and adjacent to c1 and to at least one of a1, b1. By exchanging R1, R2, we may also assume there
exists v2 ∈ V (G) \ W complete to V (R3), anticomplete to V (R1), and adjacent to c2 and to at least
one of a2, b2. Suppose first that v1 is adjacent to both a1, b1. Since {v1, v2, a1, b1} is not a claw, v1

is not adjacent to v2. Since {a3, v1, v2, a2} is not a claw, v2 is adjacent to a2, and by symmetry v2

is adjacent to b2. But then the subgraph induced on these ten vertices is isomorphic to icosa(−2),
and the theorem follows from 4.5. We may therefore assume that v1 is adjacent to exactly one of
a1, b1, and v2 to exactly one of a2, b2. Since {a3, a1, v1, v2} and {b3, b1, v1, v2} are not claws, v1, v2

are adjacent. Then the subgraph induced on these ten vertices is the line graph of a graph satisfying
the hypotheses of 6.3, and the result follows. This proves 7.6.
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Let (A, ∅, B) be a strip. A step (in this strip) means a hole a1-a2-b2-b1-a1 where a1, a2 ∈ A and
b1, b2 ∈ B. We say the strip is step-connected if for every partition (X,Y ) of A or of B with X,Y 6= ∅,
there is a step meeting both X,Y . We say an (n1, n2, n3)-prism is long if n1 + n2 + n3 ≥ 5.

7.7 Let G be claw-free, with a long prism as an induced subgraph. Then either G ∈ S0 ∪S1 ∪S2, or
G is decomposable.

Proof. Let the paths R1, R2, R3 form a long (n1, n2, n3)-prism in G. By 7.6 we may assume that
n1 ≥ 3, and n2 = n3 = 1. Let the paths Ri have ends ai, bi as usual, where R1 has length ≥ 3, and
R2, R3 have length 1.

(1) We may assume that, for every such choice of R1, R2, R3, there is no vertex w that is com-
plete to one of V (R2), V (R3) and anticomplete to the other and to V (R1).

For if not then by 7.4, we may assume that there is a vertex v that is complete to V (R2) and
anticomplete to V (R3), with exactly two neighbours in R1, namely either the first two or last two
vertices of R1. From the symmetry we may assume that v is adjacent to a1 and its neighbour in
R1. But then G|((V (R1)∪V (R2)∪V (R3)∪{v}) \ {a2} is a (2, 2, 1)-prism (or longer), and the result
follows from 7.6. So we may assume that the statement of (1) holds.

Let A1 = {a1}, B1 = {b1}, and let C1 be the interior of R1. Now ({a2, a3}, ∅, {b2, b3}) is a
step-connected strip, parallel to (A1, C1, B1); and therefore we may choose a strip (A2, ∅, B2) such
that

• (A2, ∅, B2) is step-connected, and a2, a3 ∈ A2 and b2, b3 ∈ B2

• the strips (A1, C1, B1), (A2, ∅, B2) are parallel, and

• A2 ∪ B2 is maximal.

Let W = V (R1) ∪ A2 ∪ B2.

(2) Every vertex v ∈ V (G) \ (A2 ∪ B2) is either complete or anticomplete to A2.

For let v ∈ V (G) \ (A2 ∪ B2), and suppose it has a neighbour and a nonneighbour in A2. Thus
v /∈ W . Let N be the set of neighbours of v in W . Since (A2, ∅, B2) is step-connected, there is a
step a′2-a

′

3-b
′

3-b
′

2-a
′

2 such that a′2 ∈ N and a′3 /∈ N . 4.2 (with a′

3-a
′

2-b
′

2) implies that b′2 ∈ N . Suppose
that b′3 ∈ N . Then 4.2 (with a′

3-b
′

3-b1) implies that b1 ∈ N ; 4.1 implies that C1 ∩ N = ∅; 4.2 (with
a′3, a1, C1) implies that a1 /∈ N ; and 4.2 (with B2, b1, C1) implies that B2 ⊆ N . If we add v to B2

then a′2-a
′

3-b
′

3-v-a′2 is a step of the enlarged strip, showing that this new strip is step-connected; but
this contradicts the maximality of W . Thus b′3 /∈ N . Let R′

2, R
′

3 be the rungs a′2-b
′

2 and a′3-b
′

3; then
v is complete to V (R′

2), and anticomplete to V (R′

3). By (1) applied to the paths R1, R
′

2, R
′

3, v has
a neighbour in V (R1). Let us apply 7.3 to R1, R

′

2. Since a′3, b
′

3 /∈ N , the third and fourth outcomes
of 7.3 contradict 4.2, and so one of the first two outcomes applies. The second is impossible since
R1, R

′

2 both do not have length 2, and so v has two adjacent neighbours in both R1 and R′

2. If v
is adjacent to both internal vertices of R1, then G|((V (R1) ∪ V (R′

2) ∪ V (R′

3) ∪ {v}) is a line graph
satisfying the hypothesis of 6.3. So we may assume that v is adjacent to a1 and to its neighbour in
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R1. Hence G|((V (R1) ∪ V (R′

2) ∪ V (R′

3) ∪ {v}) \ {a′2} is a (2, 2, 1)-prism, and the result follows from
7.6. This proves (2).

From (1) and (2), we deduce that (A2, B2) is a homogeneous pair of cliques, nondominating since
C1 6= ∅, and the result follows from 3.3. This proves 7.7.

8 Wheels and holes

Our goal in the next few sections is to handle claw-free graphs that contain holes of length ≥ 7. First,
some definitions: An n-hole in G means a hole in G of length n. Let C be a n-hole, with vertices
c1- · · · -cn-c1 in order; we call this an n-numbering. (We shall read these and similar subscripts modulo
n, usually without saying so.) Let v ∈ V (G), and let N be the set of neighbours of v in C, together
with v if v ∈ V (C). For i = 1, . . . , n, we say that:

• v is in position i (relative to C, and to the given n-numbering) if either v = ci or N =
{ci−1, ci, ci+1}, and if v 6= ci we say v is a clone

• v is a hat in position i + 1

2
if N = {ci, ci+1}

• v is a star in position i + 1

2
if n ≥ 5 and N = {ci−1, ci, ci+1, ci+2}

• v is a centre if N = V (C) (and therefore n ≤ 5)

• c is a hub if n ≥ 6, and |N | = 4, and N = {a, b, c, d} where ab and cd are edges, and there are
no edges between {a, b} and {c, d}.

We observe the following:

8.1 Let C be a hole in a claw-free graph G, and let v ∈ V (G) \ V (C), with at least one neighbour
in V (C). Then v is either a hat, clone, star, centre or hub relative to C.

The proof is clear.

For convenient reference, here is a lemma that will have many uses later.

8.2 Let G be claw-free, and let C be a hole in G. Let v1, v2 ∈ V (G) \ V (C), and suppose that for
i = 1, 2, the set of neighbours of vi in C is the vertex set of a path Pi in C. Suppose also that no
induced subgraph of G is a long prism. Then:

1. If P1 is a subpath of P2, and they have a common end, then v1, v2 are adjacent

2. If P1 is a subpath of P2 and they have no common end, then v1, v2 are nonadjacent

3. If neither of P1, P2 is a subpath of the other, and at least three vertices of P1 do not belong to
P2, then v1, v2 are nonadjacent

4. If C has length ≥ 6 and P1, P2 both have length 1 and have no common end, then v1, v2 are
nonadjacent

30



5. If P1, P2 both have length 1 and are different but with a common end, and C is a hole of
maximum length in G, then v1, v2 are nonadjacent.

Proof. Since every path has at least one vertex by definition, it follows that v1, v2 both have
neighbours in C. The first assertion follows from 4.3. For the second, let x, y be the ends of P2;
then {v2, v1, x, y} is not a claw, and so v1, v2 are nonadjacent. For the third, suppose three vertices
of P1 do not belong to P2; then some two of them, say x, y, are nonadjacent, and since {v1, v2, x, y}
is not a claw, it follows that v1, v2 are nonadjacent. The fourth holds since if v1, v2 are adjacent,
the subgraph induced on V (C) ∪ {v1, v2} is a long prism (since C has length ≥ 6). Finally, if P1, P2

share one end c, then the subgraph induced on (V (C) \ {c}) ∪ {v1, v2} is not a longer hole than C,
and so v1, v2 are nonadjacent. This proves 8.2.

8.3 Let G be claw-free, and let C be a hole in G of length ≥ 7, with a hub. Then either G ∈
S0 ∪ S1 ∪ S2 or G is decomposable.

Proof. Let w be a hub for C. Let w have neighbours a1, a2, b1, b2 in C, where a1a2 and b1b2 are
edges, and a1, b1, b2, a2 lie in this order in C. Let R1, R2 be the two disjoint paths of C between
{a1, a2} and {b1, b2}, where Ri is between ai, bi for i = 1, 2. Thus R1, R2 both have length ≥ 2, and
since C has length ≥ 7 we may assume that R1 has length ≥ 3. Let A1 = {a1}, B1 = {b1}, and let
C1 be the interior of R1. Choose a strip (A2, C2, B2) with the following properties:

• (Ai, Ci, Bi) (i = 1, 2) are parallel strips

• a2 ∈ A2, b2 ∈ B2 and R2 is a rung of (A2, C2, B2)

• (A2, C2, B2) is nonseparable

• w is complete to A2 ∪ B2 and anticomplete to C2, and

• W = V (R1) ∪ A2 ∪ C2 ∪ B2 is maximal with these properties.

(1) We may assume that every v ∈ V (G) \ (A2 ∪ B2 ∪ C2) is anticomplete to C2.

For suppose that v ∈ V (G) \ (A2 ∪ B2 ∪ C2) has a neighbour in C2. Then v /∈ W ; let N be
the set of neighbours of v in W . From the maximality of W , N meets {w} ∪ V (R1). Suppose first
that w ∈ N . From 4.2 (with a1-w-b1), we may assume that a1 ∈ N . From 4.1 (with C2, w, C1 and
C2, a1, b1) it follows that N ∩C1 = ∅, and b1 /∈ N . From 4.2 (with A2, a1, C1), it follows that A2 ⊆ N .
But then v can be added to A2, contrary to the maximality of W . Thus w /∈ N . Consequently N
meets V (R1). Choose p1- · · · -pk as in 7.3 (with R1, R2 exchanged), where p1 = v, and p2, . . . , pk ∈ C2.
Then none of p1, . . . , pk are adjacent to w. By 4.2, p1 is adjacent to more than one vertex of R1, and
pk to more than one of R2, so the fourth outcome of 7.3 is impossible; and since R1 has length > 1,
4.2 implies the third is impossible. The second is false since R1 has length ≥ 3, and so the first holds.
Then G|(V (C) ∪ {w, p1, . . . , pk}) is a line graph of a cyclically 3-connected graph H. If either k > 1
or the four vertices of N in the hole C are not consecutive or R2 has length > 2, then H satisfies the
hypotheses of 6.3 and the theorem holds. If k = 1 and the four vertices of N in C are consecutive
and R2 has length 2, we may assume that v is adjacent to a1, a2 and their neighbours in C. But then
G|(V (C)∪{v, w}\{a2}) is a (2, 2, 1)-prism or longer, and the result follows from 7.6. This proves (1).
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(2) Every v ∈ V (G) \ (A2 ∪ B2 ∪ C2) is either complete or anticomplete to A2.

For suppose that v ∈ V (G) \ (A2 ∪ B2 ∪ C2) has a neighbour and a nonneighbour in A2. Then
v /∈ W ; let N be the set of neighbours of v in W . By the assumption of (1), N ∩ C2 = ∅. By
7.2, every vertex in A2 has a neighbour in C2, and so 4.2 (with C2, A2, w; C2, A2, a1; A2, w, b1; and
A2, a1, C1) implies that w, a1, b1 ∈ N , and N contains the neighbour of a1 in R1. But this contradicts
4.1. This proves (2).

From (1) and (2) we deduce that (A2, C2, B2) is a breaker, and the result follows from 3.4. This
proves 8.3.

8.4 Let G be claw-free, and let C be a hole in G of length ≥ 7. Let a1-a2-b2-b1 be a path in C, and
let h,w ∈ V (G) \ V (C), such that the neighbours of w in C are a1, a2, b2, b1, and the neighbours of
h in C are a2, b2. Then G is decomposable.

Proof. Let R1 be the path C \ {a2, b2}, and let C1 = V (C) \ {a1, a2, b1, b2}. Let R2 be the path
a2-b2. Thus ({a1}, C1, {b1}) is a strip, and ({a2}, {h}, {b2}) is another strip parallel to the first. By
8.2, w, h are nonadjacent, so we may choose a strip (A2, C2, B2) with the following properties:

• (A2, C2, B2) is parallel to ({a1}, C1, {b1})

• a2 ∈ A2, h ∈ C2, b2 ∈ B2

• (A2, C2, B2) is nonseparable

• w is complete to A2 ∪ B2 and anticomplete to C2

• W = V (R1) ∪ A2 ∪ B2 ∪ C2 is maximal subject to these condition.

(1) We may assume that every v ∈ V (G) \ (A2 ∪ B2 ∪ C2) is anticomplete to C2.

For suppose that v ∈ V (G) \ (A2 ∪B2 ∪C2) has a neighbour in C2. Then v /∈ W ; let N be the set of
neighbours of v in W . From the maximality of W , N meets {w}∪V (R1). Suppose first that w ∈ N .
From 4.2 (with a1-w-b1), we may assume that a1 ∈ N . From 4.1 (with C2, w, C1 and C2, a1, b1) it
follows that N ∩C1 = ∅, and b1 /∈ N . From 4.2 (with A2, a1, C1), it follows that A2 ⊆ N . But then v
can be added to A2, contrary to the maximality of W . Thus w /∈ N . Consequently N meets V (R1).
Choose p1- · · · -pk as in 7.3 (with R1, R2 exchanged), where p1 = v, and p2, . . . , pk ∈ C2. Then none
of p1, . . . , pk are adjacent to w. By 4.2, p1 is adjacent to more than one vertex of R1. Suppose that
the fourth outcome of 7.3 holds; then pk has a unique neighbour in R2, say a2. By 4.2 applied to
w-a2-h and to a1-a2-b2, it follows that pk is adjacent to h and to a1, and hence k = 1 and pk = v.
Let c1 be the neighbour of a1 in R1; then by 4.2 applied to w-a1-c1, v is adjacent to c1. By 4.1, v has
no neighbours in C except c1, a1, a2; but then the subgraph of G induced on (V (C) \ {a2}) ∪ {h, v}
is a long prism, and the result follows from 7.7. Thus we may assume that the fourth outcome of
7.3 does not hold. Since R1 has length > 1, 4.2 implies the third outcome is impossible. The second
is false since R1 has length ≥ 3, and so the first holds. Then G|(V (R1) ∪ V (R2) ∪ {w, p1, . . . , pk})
is a line graph of a cyclically 3-connected graph H. If k > 1 then G|(V (C) ∪ {p1, . . . , pk}) is a long
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prism, and the result follows from 7.7; so we assume that k = 1. If the four vertices of N in the
hole C are not consecutive, then v is a hub for C and the result follows from 8.3. We may therefore
assume that v is adjacent to a1, a2 and their neighbours in C. But then G|(V (C) ∪ {v, w} \ {a2}) is
a long prism, and the result follows from 7.7. This proves (1).

The remainder of the proof of 8.4 is identical with the latter part of the proof of 8.3, and we omit
it. This proves 8.4.

9 Circular interval graphs

So far, our method has been to show that claw-free graphs containing subgraphs of certain types
either are line graphs, or are decomposable (with a few sporadic exceptions). That is not adequate
to handle all claw-free graphs containing holes of length ≥ 7, because there is another major basic
class of them, the circular interval graphs. In this section we prove the following (we recall that S3

is the class of all circular interval graphs):

9.1 Let G be claw-free, containing a hole of length ≥ 7. Then either G ∈ S0 ∪ · · · ∪ S3, or G is
decomposable.

To prove this we need two lemmas. A subset X ⊆ V (G) is said to be dominating if every vertex
of G either belongs to X or has a neighbour in X; and a subgraph H of G is said to be dominating
if V (H) is dominating.

9.2 Let C be a hole of maximum length (n say) in a claw-free graph G. Then either some induced
subgraph of G is an (n1, n2, n3)-prism, for some n1, n2, n3 ≥ 1 with n1 + n2 = n − 2, or G is
decomposable, or C is dominating.

Proof. Let Z be the set of all vertices of G that are not in V (C) and have no neighbour in V (C).
We may assume that Z is nonempty; let W be a component of G|Z. Let X be the set of all vertices
not in W but with a neighbour in W . Let x ∈ X; we claim that it has exactly two neighbours in
V (C) and they are adjacent. For if it has two nonadjacent neighbours u, v ∈ V (C), let w ∈ W be
adjacent to x; then {x, u, v, w} is a claw, a contradiction. From 8.1, this proves that there is an edge
e of C such that the neighbours of x in V (C) are precisely the ends of e. We write e(x) = e. Suppose
there exist x1, x2 ∈ X with e(x1) 6= e(x2). Let P be a path between x1, x2 with interior in W . If
e(x1), e(x2) share no end, then the subgraph of G induced on V (C) ∪ V (P ) is an (n1, n2, |E(P )|)-
prism for some n1, n2 ≥ 1 with n1 + n2 = n− 2, and the theorem holds. If e(x1), e(x2) share an end
c, then the subgraph induced on V (C)∪V (P ) \ {c} is a hole of length > n, a contradiction. We may
therefore assume that there are no such x1, x2. Thus there is an edge e of C such that every vertex
in X is adjacent to both ends of e and to no other vertex of C. Let C have vertices c1- · · · -cn-c1

say, where e has ends c1, c2. By 4.3, X is a clique. Let v ∈ V (G) \ (X ∪ W ); we claim that v is
either complete or anticomplete to X. If v ∈ V (C) this is true, so we assume v /∈ V (C). Suppose
that v is adjacent to x1 ∈ X and nonadjacent to x2 ∈ X. Let w ∈ W be adjacent to x1. Since
v /∈ W ∪ X it follows that v, w are nonadjacent. Since {x1, w, v, c1} is not a claw, v is adjacent to
c1 and similarly to c2. Since {c2, c3, v, x2} is not a claw, v is adjacent to c3 and similarly to cn; but
then {v, x1, c3, cn} is a claw, a contradiction. This proves that v is either complete or anticomplete
to X. By 3.2, (X ∪ W,V (G) \ (X ∪ W )) is decomposable. This proves 9.2.
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Before the second lemma, we need a few definitions. Let C be a n-hole, with vertices c1- · · · -cn-c1

in order. We say that:

• If h1, h2 are adjacent hats, with no common neighbour in C, {h1, h2} is a hat-diagonal for C

• If n ≥ 5 and h, s are a hat and a star relative to C, and h is adjacent to ci, ci+1 and s is adjacent
to ci−1, ci, ci+1, ci+2 for some i ∈ {1, . . . , n}, we call {h, s} a coronet for C.

• If n ≥ 5 and s1, s2 are nonadjacent stars, adjacent respectively to ci, ci+1, ci+2, ci+3 and to
ci+1, ci+2, ci+3, ci+4 for some i, we call {s1, s2} a crown for C.

• If n = 5 or 6 and s1, s2 are adjacent stars, adjacent respectively to ci, ci+1, ci+2, ci+3 and to
ci+3, ci+4, ci+5, ci+6 for some i, we call {s1, s2} a star-diagonal for C.

• If n = 6 and s1, s2, s3 are three pairwise adjacent stars, adjacent respectively to ci, ci+1, ci+2, ci+3,
to ci+2, ci+3, ci+4, ci+5 and to ci−2, ci−1, ci, ci+1 for some i, we call {s1, s2, s3} a star-triangle for
C.

The second lemma we need is the following, the main result of [2].

9.3 Let G be claw-free, with a hole, and let n be the maximum length of holes in G. Suppose that
every hole of length n is dominating, and has no hub, coronet, crown, hat-diagonal, star-diagonal,
star-triangle or centre. Then either G admits a coherent W-join, or G is a circular interval graph.

Now we are ready to prove the main result of this section.
Proof of 9.1. Let G be claw-free, and let the longest hole in G have length n ≥ 7. By 7.7, we
may assume that no induced subgraph of G is a long prism, and that G is not decomposable. By
9.2, every n-hole is dominating. By 8.3, we may assume that no n-hole has a hub, and by 8.4, we
may assume that no n-hole has a coronet. If {s1, s2} is a crown for an n-hole C, then G contains a
long prism (obtained from G|V (C) ∪ {s1, s2} by deleting the middle common neighbour of s1, s2 in
C), which is impossible. Also no n-hole has a hat-diagonal, since G has no long prism. By 9.3, we
deduce that G ∈ S3. This proves 9.1.

10 The icosahedron minus a triangle

Now we begin the next part of the paper. The objective of the next several sections is to prove 16.2,
that every claw-free graph with a hole of length ≥ 6 either belongs to one of our basic classes or is
antiprismatic, or decomposable. We begin by outlining the plan of the proof, as follows.

• We can assume G is claw-free, with a 6-hole, but with no long prism or hole of length > 6.
Consequently we may assume that every 6-hole is dominating, by 9.2.

• (In 11.5) If some 6-hole has both a hub and a clone, then G is decomposable.

• (In 11.6) If some 6-hole has both a star-diagonal and a clone then G is decomposable.

• (In 13.2) Every 5-hole is dominating (or else either G is decomposable, or it belongs to one of
our basic classes). Consequently, no 6-hole has a coronet.
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• (In 14.1) If some 6-hole has both a hub and a hat, then either G is a line graph or it is
decomposable.

• (In 14.2) If some 6-hole has both a star-diagonal and a hat, then G is decomposable.

• (In 15.3) If no 6-hole has a hub, but some 6-hole has both a star-triangle and either a hat or
clone, then G is decomposable.

• (In 15.4) If no 6-hole has a hub or star-diagonal, but some 6-hole has a crown, then G is
decomposable.

• (In 16.1) If no 6-hole has a hub, star-diagonal, star-triangle or crown, then either G is a circular
interval graph or G is decomposable.

• To complete the proof of 16.2, we may therefore assume that some 6-hole has either a hub, a
star-diagonal, or a star-triangle, and has no hat or clone. We deduce that G is antiprismatic.

The first step is to handle icosa(−3), and that is the goal of this section. We recall that icosa(−3)
is the graph obtained from icosa(0) by deleting three pairwise adjacent vertices. Thus it has nine
vertices c1, . . . , c6, b1, b3, b5, where c1- · · · -c6-c1 is a 6-numbering and b1, b3, b5 are clones in positions
1, 3, 5 respectively, pairwise adjacent.

10.1 Let G be claw-free, and with no long prism or hole of length > 6, containing icosa(−3) as an
induced subgraph. Then G is decomposable.

Proof. In view of the given subgraph, we can choose nine pairwise disjoint subsets C1, . . . , C6, B1, B3, B5

of V (G) such that

• all nine subsets are nonempty cliques

• for 1 ≤ i ≤ 6, Ci is complete to Ci+1, Ci−1, and anticomplete to Ci+2, Ci+3, Ci+4

• for i ∈ {1, 3, 5}, Bi is complete to Ci−1, Ci, Ci+1 and anticomplete to Ci+2, Ci+3, Ci+4

• B1, B3, B5 are pairwise complete

• the union W = C1 ∪ - · · · - ∪ C6 ∪ B1 ∪ B2 ∪ B3 is maximal subject to these conditions.

(1) For v ∈ V (G) \ W , let N be the set of neighbours of v in W ; then, up to symmetry, either:

• N is the union of C4, C5, C6, B5 and a nonempty subset of C1, or

• N is the union of C3, C4, C5, C6, B5 and a subset of B3, or

• N is the union of C3, C4, C5, B3, B5 and a nonempty subset of C6.

Suppose first that none of C1, C3, C5 is a subset of N . Then by 4.2, N is disjoint from C2, C4, C6; by
4.2 again, it is disjoint from C1, C3, C5; and by 4.2 again, it is disjoint from B1, B3, B5. Thus N = ∅,
and therefore G is decomposable by 9.2. We may therefore assume that C5 ⊆ N .

Next assume that C1, C3 6⊆ N . By 4.2, N ∩ C2 = ∅; by 4.2 (with C4, C5, C6), N includes one of
C4, C6; and by 4.2 (with C3, C4, B5 and C1, C6, B5), B5 ⊆ N . Suppose that N∩(B1∪B3) is nonempty,
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say N ∩ B3 6= ∅; then 4.2 (with B1, B3, C3) implies that B1 ⊆ N , and similarly B3 ⊆ N ; 4.1 implies
that N is disjoint from C1, C3; 4.2 (with C2, B3, C4 and C2, B1, C6) implies that C4, C6 ⊆ N ; but
then v can be added to B5, a contradiction. Thus N ∩ (B1 ∪ B3) is empty. By 4.2 (with B1, B5, C4

and B3, B5, C6), C4, C6 ⊆ N ; by 4.1, N does not meet both C1, C3; if it meets neither then v can be
added to C5, a contradiction; and if it meets exactly one of C1, C3 then the claim holds.

Thus we may assume that N includes C3 (as well as C5). By 4.1, N∩(B1∪C1) = ∅. Suppose that
C4 6⊆ N . Then by 4.2 (with C4, C5, C6), N includes C6 and similarly C2; by 4.2 (with C4, B3, B1), N
is disjoint from B3; and then 4.2 (with C1, C2, B3) is violated. This proves that C4 ⊆ N . By 4.1, N is
disjoint from one of C2, C6, say C2. Suppose that B5 6⊆ N . Then 4.2 implies that N ∩ (B3 ∪C6) = ∅,
and then the subgraph of G induced on W ∪ {v} \ (B1 ∪ C4) contains a long prism, a contradiction.
Hence B5 ⊆ N . By 4.2, N includes one of B3, C6; and if it includes B3 then it meets C6, for otherwise
v could be added to C4. This proves (1).

For i = 1, 3, 5, let Xi be the union of Bi, Ci, and the set of all v ∈ V (G) \ W such that v is
complete to Ci−1, Ci, Ci+1, Bi and has nonneighbours in both Bi+2, Bi−2. Note that, from (1), every
vertex in Xi is anticomplete to one of Ci−2, Ci+2. For i = 2, 4, 6, let Xi be the union of Ci and the
set of all vertices in V (G) \ W that are complete to Ci−1, Ci, Ci+1, Bi−1 and Bi+1. By (1), every
vertex of G belongs to exactly one of the sets X1, . . . , X6.

(2) For 1 ≤ i ≤ 6, Xi is a clique.

For first suppose that i is odd. Let u, v ∈ Xi. From the definition of Xi, it is clear that u, v
are adjacent if either of them belongs to Bi ∪ Ci, so we may assume that u, v /∈ W . From (1), u is
anticomplete to one of Bi+2, Bi−2 and has a nonneighbour in the other, and the same holds for v,
and so we may assume that they have a common nonneighbour z ∈ Bi+2 say. But they also have
a common neighbour w ∈ Bi, and since {w, u, v, z} is not a claw, it follows that u, v are adjacent.
Thus Xi is a clique if i is odd. Now let i be even, and again let u, v ∈ Xi. Choose z ∈ Bi+3 and
w ∈ Bi+1; then u, v are both adjacent to w and nonadjacent to z. Since {w, u, v, z} is not a claw,
u, v are adjacent, and so again Xi is a clique. This proves (2).

(3) For 1 ≤ i ≤ 6, Xi is complete to Xi+1.

For we may assume that i is odd, from the symmetry. Let u ∈ Xi, v ∈ Xi+1. If either u ∈ Bi ∪Ci or
v ∈ Bi+1, then u, v are adjacent from the definitions of Xi, Xi+1, so we may assume that u, v /∈ W .
Suppose that u, v are nonadjacent. Let z be a nonneighbour of u in Bi−2, and let w ∈ Bi. Since v
has no neighbour in Bi−2, and u, v are both Bi-complete, and {w, u, v, z} is not a claw, we deduce
that u, v are adjacent. This proves (3).

(4) For 1 ≤ i ≤ 6, Xi is anticomplete to Xi+3.

For we may assume that i is odd, from the symmetry. Let u ∈ Xi, v ∈ Xi+3. Now u is anti-
complete to one of Ci−2, Ci+2, say Ci−2; and u has a nonneighbour w in Bi+2. Choose z ∈ Ci−2;
then since {v, u, w, z} is not a claw, it follows that u, v are nonadjacent. This proves (4).
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From (2)–(4), we see that G is the hex-join of G|(X1 ∪ X3 ∪ X5) and G|(X2 ∪ X4 ∪ X6), and
therefore is decomposable. This proves 10.1.

11 6-holes with clones

Let c1- · · · -c6-c1 be a 6-numbering of a 6-hole C. If v is a hub relative to C, we say that v is in
hub-position i if v is adjacent to ci−2, ci−1, ci+1, ci+2. (Thus a hub in hub-position i is the same as a
hub in hub-position i + 3.)

11.1 Let G be claw-free. Let C be a 6-hole in G with vertices c1- · · · -c6-c1 in order, and let w be a
hub in hub-position i. Let v ∈ V (G) \ (V (C) ∪ {w}). Then w, v are adjacent if and only if either:

• v is a hub in hub-position i, or

• v is a hat in position i + 1 1

2
or in position i − 1 1

2
, or

• v is a clone in position i + 1, i + 2, i − 2i or i − 1, or

• v is a star in position i + 1

2
, i + 21

2
, i − 1

2
or i − 21

2

Proof. In each case listed, if v, w are nonadjacent there is a claw; and in the cases not listed, if v, w
are adjacent there is a claw. We leave the details to the reader.

This has the following consequence.

11.2 Let G be claw-free. Let C be a 6-hole in G with vertices c1- · · · -c6-c1 in order. If there are two
hubs in the same hub-position, then G admits twins.

Proof. By 11.1, any two hubs in the same hub-position are adjacent, and every other vertex is
adjacent to both or neither of them. Thus they are twins. This proves 11.2.

Two n-numberings are proximate if they differ in exactly one place (and therefore they number
n-holes with n − 1 vertices in common; the exceptional vertex of each is a clone with respect to the
other). Note that we regard c1- · · · -cn-c1 and c2-c3- · · · -cn-c1-c2 as different numberings; the choice
of initial vertex is important. A nonempty set C of n-numberings is connected by proximity if the
graph with vertex set C, in which two n-numberings are adjacent if they are proximate, is connected.
The proximity distance between two n-numberings is the length of the shortest path between them
in this graph, if such a path exists, and is undefined otherwise. A proximity component of order n
means a set C of n-numberings that is connected by proximity and maximal with this property.

11.3 Let G be claw-free, and let C be a proximity component of order 6. Let v ∈ V (G) be a hub in
hub-position i for some member of C. Then v is a hub in hub-position i for every member of C.

Proof. It suffices to show that if c1- · · · -c6-c1 and c′1- · · · -c
′

6-c
′

1 are proximate, and v is a hub in
hub-position i for the first 6-numbering, then v is a hub in hub-position i for the second. We may
assume that i = 1. From the symmetry we may assume that cj = c′j for j = 3, 4, 5; and since v is
adjacent to c3, c5 and not to c4, it follows from 8.1 that v is a hub for c′1- · · · -c

′

6-c
′

1 in hub-position 1.
This proves 11.3.
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If C is a proximity component of order n, we denote the union of the vertex sets of its members
by V (C); and for 1 ≤ i ≤ n, the set of vertices that are the ith term of some member of C is denoted
by Ai(C), or just Ai when there is no ambiguity. If these n sets are pairwise disjoint, we say that C
is pure.

11.4 Let G be claw-free, in which every 6-hole is dominating, and containing no 7-hole or long
prism. Let C be a pure proximity component of order 6. Then

• For 1 ≤ i ≤ 6, Ai is a clique and there are no edges between Ai and Ai+3

• If v ∈ V (G) and v /∈ A1 ∪ · · · ∪ A6, then for 1 ≤ i ≤ 6, v is either complete or anticomplete to
Ai; and v is complete to either two or four of the sets A1, . . . , A6.

• For 1 ≤ i ≤ 6, every v ∈ Ai is either complete to Ai+1 or anticomplete to Ai+2

• For 1 ≤ i ≤ 6, either Ai is complete to Ai−1 or Ai is anticomplete to Ai+2

• For 1 ≤ i ≤ 6, Ai is complete to one of Ai−1, Ai+1.

Proof. For each vertex v ∈ V (G), let P (v) be the set of all k such that v is in position k relative
to some member of C.

(1) For every vertex v ∈ V (G), if k is an integer, then k ∈ P (v) if and only if v ∈ Ak. More-
over, |P (v)| ≤ 3, and the members of P (v) are consecutive multiples of 1

2
modulo 6.

For suppose first that v ∈ Ak. Then since the sets A1, . . . , A6 are pairwise disjoint, v is the kth
term of every member of C that contains it, and there is such a member since v ∈ Ak; and so
k ∈ P (v). For the converse, suppose that k is an integer and k ∈ P (v). We may assume that k = 1.
Choose a 6-numbering c1- · · · -c6-c1 ∈ C such that v is in position 1 relative to this 6-numbering.
The 6-numbering v-c2- · · · -c6-v also belongs to C, because of the maximality of C, and since none
of c2, . . . , c6 belong to A1, it follows that v ∈ A1. This proves the first claim. Now note that the
positions of v relative to two proximate 6-numberings differ by at most 1

2
; and so the members of

P (v) are consecutive multiples of 1

2
(modulo 6). Since P (v) contains at most one integer, as we have

seen, it follows that |P (v)| ≤ 3. This proves (1).

To prove the first statement of the theorem, we may assume that i = 1. Let u, v ∈ A1, and let
c1- · · · -c6-c1 ∈ C containing u. Since v ∈ A1, it follows that 1 ∈ P (v); and so P (v) ⊆ { 1

2
, 1, 11

2
} by

(1). In particular, v is in position 1

2
, 1 or 11

2
relative to c1- · · · -c6-c1; and in each case, it is adjacent

to u. Hence A1 is a clique. Now let u ∈ A1 and v ∈ A4. As before, P (u) ⊆ { 1

2
, 1, 11

2
}. Choose

c1- · · · -c6-c1 ∈ C with c4 = v; then u is in position 1

2
, 1 or 11

2
relative to c1- · · · -c6-c1, and in each case

u, v are nonadjacent. This proves the first statement.
For the second statement, let v ∈ V (G) with v /∈ A1 ∪ · · · ∪A6. By 11.3 we may assume that v is

not a hub relative to any member of C. By (1), P (v) contains no integer, and so P (v) = {i + 1

2
} for

some integer i. Thus v is in position i + 1

2
relative to every member of C, and it is either a hat or a

star. If it is sometimes a hat and sometimes a star, then there are two proximate members of C such
that v is a hat relative to one and a star relative to the other, which is impossible. Hence either it is
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a hat in position i + 1

2
relative to all members of C, or it is a star in the same position for them all,

and in either case the claim follows. This proves the second statement.
For the third statement, we may assume that i = 1; let v ∈ A1, and suppose it has a neighbour

a3 ∈ A3 and a nonneighbour a2 ∈ A2. Choose c1-c2- · · · -c6-c1 ∈ C so that a2 = c2. Since v ∈ A1

it follows that P (v) ⊆ { 1

2
, 1, 11

2
}, and since v is nonadjacent to c2, we deduce that v is a hat in

position 1

2
relative to c1-c2- · · · -c6-c1. Since a3 ∈ A3, it follows that P (a3) ⊆ {21

2
, 3, 31

2
}. If a3 is

adjacent to both c2, c4 then {a3, c2, c4, v} is a claw; and so a3 is a hat in position 2 1

2
or 31

2
relative to

c1-c2- · · · -c6-c1. But then G|{c1, . . . , c6, v, a3} is a long prism, a contradiction. This proves the third
statement.

For the fourth statement, let us first prove the following.

(2) If 1 ≤ i ≤ 6, then every vertex in Ai is either complete to Ai−1 or anticomplete to Ai+2.

For we may assume that i = 2. Let v ∈ A2, and suppose that v has a neighbour a4 ∈ A4 and
a nonneighbour in a1 ∈ A1. Choose c1-c2- · · · -c6-c1 and c′1-c

′

2- · · · -c
′

6-c
′

1 in C, with c1 = a1 and
c′4 = a4, and choose these two 6-numberings so that their proximity distance (k say) is as small as
possible. Since v ∈ A2, it follows that P (v) ⊆ {1 1

2
, 2, 21

2
}. Since v is nonadjacent to c1 we deduce

that v is in position 2 1

2
relative to c1-c2- · · · -c6-c1, and is a hat; and similarly it is in position 2 1

2

relative to c′1-c
′

2- · · · -c
′

6-c
′

1, and is a star. In particular, v belongs to neither of the 6-numberings;
and c1 6= c′1, and c4 6= c′4. It follows that the two 6-numberings are not proximate, and so k > 1.
Consequently there is a third 6-numbering c′′1-c

′′

2- · · · -c
′′

6-c
′′

1 in C, proximate to c′1-c
′

2- · · · -c
′

6-c
′

1, and
with proximity distance to c1-c2- · · · -c6-c1 less than k. From the minimality of k, it follows that c′′4 is
nonadjacent to v, and therefore c′′4 6= a4; and so c′′i = c′i for all i ∈ {1, . . . , 6} with i 6= 4. Consequently
c′1-v-c′3-c

′′

4-c
′

5-c
′

6-c
′

1 is a 6-numbering, and therefore belongs to C. Since c1 is nonadjacent to v, and
P (c1) ⊆ {1

2
, 1, 11

2
}, it follows that relative to this last 6-numbering, c1 is in position 1

2
and is a hat.

Consequently c1 is nonadjacent to c′3, c
′

5, and is adjacent to c′6.
Suppose that c1 is in position 1 relative to c′1-c

′

2- · · · -c
′

6-c
′

1. Then c1-c
′

2-c3-- · · · -c
′

6-c1 belongs to C,
and yet v is in position 3 relative to it, contradicting that P (v) ⊆ {1 1

2
, 2, 21

2
}. So c1 is not in position

1 relative to c′1-c
′

2- · · · -c
′

6-c
′

1. Since P (c1) ⊆ {1

2
, 1, 11

2
} and c1 is nonadjacent to c′3 and adjacent to c′6,

we deduce that c1 is in position 1

2
relative to c′1-c

′

2- · · · -c
′

6-c
′

1 Since c1 is nonadjacent to c′5, it follows
that c1 is nonadjacent to c′2.

Since {c2, c
′

2, c
′

4, c1} is not a claw, it follows that c2, c
′

4 are nonadjacent. Since A4 is a clique,
c′4 is adjacent to c4. Since {c′4, v, c4, c6} is not a claw, c′4 is not adjacent to c6. Thus if c′4 is in
position 4 1

2
relative to c1- · · · -c6-c1, then it is a hat; but then G|{c1, . . . , c6, v, c′4} is a long prism,

a contradiction. If c′4 is in position 4 relative to c1-c2- · · · -c6-c1, then v is in position 3 relative to
c1-c2-c3-c

′

4-c5-c6-c1, contradicting that P (v) = {1 1

2
, 2, 21

2
}. Thus, c′4 is in position 3 1

2
relative to

c1-c2- · · · -c6-c1, and therefore is a hat, since c2, c
′

4 are nonadjacent. Then c1-c2-v-c′4-c4-c5-c6-c1 is a
7-hole, a contradiction. Thus there is no such vertex v. This proves (2).

To complete the proof of the fourth statement of the theorem, again we may assume that i = 2.
Suppose that v, v′ ∈ A2, and v has a neighbour a4 ∈ A4, and v′ has a nonneighbour a1 ∈ A1. By
(2), v′, a4 are nonadjacent, and v, a1 are adjacent. But then {v, v′, a1, a4} is a claw, a contradiction.
This proves the fourth statement of the theorem.

For the fifth statement, let us first prove the following:
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(3) For 1 ≤ i ≤ 6, every vertex in Ai is either Ai+1-complete or Ai−1-complete.

For we may assume that i = 2. Let a2 ∈ A2, and assume it has nonneighbours a1 ∈ A1 and
a3 ∈ A3. Since a1 is not complete to A2, it is therefore anticomplete to A3 by the third statement
of the theorem; and in particular, a1, a3 are nonadjacent. Choose x, y ∈ A2 adjacent to a1, a3 re-
spectively. Since {x, a1, a2, a3} is not a claw, it follows that x is not adjacent to a3, and similarly
y is not adjacent to a1. Thus a1-x-y-a3 is a path. Choose c1-c2- · · · -c6-c1 ∈ C with a2 = c2. Now
P (a1) ⊆ {1

2
, 1, 11

2
}, and a1 is not adjacent to a2; and so relative to c1-c2- · · · -c6-c1, a1 is a hat in posi-

tion 1

2
. Similarly, a3 is a hat in position 3 1

2
. Now x has no neighbours in A4, A5, A6, by respectively

the third, first and fourth statements of the theorem, since x is not complete to A3. Similarly y is
anticomplete to A4 ∪ A5 ∪ A6. It follows that a1-x-y-a3-c4-c5-c6-a1 is a 7-hole in G, a contradiction.
This proves (3).

Now to prove the fifth statement of the theorem, we may assume that i = 2. Suppose that
a1 ∈ A1 and a3 ∈ A3 both have nonneighbours in A2. By (3) they have no common nonneighbour,
and so there is a path a1-x-y-a3 where x, y ∈ A2. Choose ci ∈ Ai for i = 4, 5, 6, such that c4-c5-c6 is
a path. By (3) and the first, third and fourth statements of the theorem, a1-x-y-a3-c4-c5-c6-a1 is a
7-hole in G, a contradiction. This proves the fifth statement, and therefore proves 11.4.

We have two applications for the previous theorem. The first is the following.

11.5 Let G be claw-free, containing no long prism, and such that every 6-hole in G is dominating.
Let C0 be a 6-hole in G; and suppose that there is a hub for C0, and some vertex of V (G) \ V (C0)
is a clone with respect to C0. Then G is decomposable.

Proof. Let C0 have vertices a1- · · · -a6-a1, and let w be a hub, adjacent to a1, a2, a4, a5 say. Let C
be the proximity component containing C0, and let Ai = Ai(C) for 1 ≤ i ≤ 6. By 11.3, w is a hub
in hub-position 3 relative to every member of C. Consequently, w is complete to A1 ∪ A2 ∪A4 ∪A5,
and anticomplete to A3 ∪ A6. We observe first that:

(1) Let 1 ≤ i ≤ 6, let v ∈ Ai, and let N be the union of {v} and the set of neighbours of v in
G. Let c1- · · · -c6-c1 ∈ C. If i = 3, 6, N contains ci and at least one of ci−1, ci+1, and none of
ci+2, ci+3, ci+4. (Consequently, A3 is anticomplete to A5 ∪ A6 ∪ A1.) If i = 1, 2 N contains both of
c1, c2, and at most one of c4, c5 (and symmetrically if i = 4, 5).

For v belongs to some member of C, and the claim holds for that member. Consequently it suf-
fices to show that if c1- · · · -c6-c1 and c′1- · · · -c

′

6-c
′

1 are proximate members of C, and the claim holds
for c1- · · · -c6-c1 then it holds for c′1- · · · -c

′

6-c
′

1. Let these two 6-numberings differ in their jth entry.
Assume first that i ∈ {3, 6}, say i = 3. Thus N contains at least two of c2, c3, c4 and none of
w, c5, c6, c1. Hence if j ∈ {5, 6, 1} then N contains least two of c′2, c

′

3, c
′

4, and if j ∈ {2, 3, 4} then N
contains none of c′5, c

′

6, c
′

1; and in either case, since w /∈ N , it follows from 11.1 that N contains c′3
and at least one of c′2, c

′

4, and contains none of c′5, c
′

6, c
′

1 as required. Now assume that i ∈ {1, 2}, and
consequently c1, c2, w ∈ N , and not both c4, c5 ∈ N . Thus if j ∈ {3, 4, 5, 6} then c′1, c

′

2 ∈ N , and if
j ∈ {6, 1, 2, 3} then not both c′4, c

′

5 ∈ N . Since w ∈ N and v is not a hub relative to c′1- · · · -c
′

6-c
′

1 (by
11.3), it follows in either case from 11.1 applied to c′1- · · · -c

′

6-c
′

1 that ai is {c′1, c
′

2}-complete and not
{c′4, c

′

5}-complete, as required. This proves (1).
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(2) C is pure.

We must show that A1, . . . , A6 are pairwise disjoint. The members of A1, A2, A4, A5 are adjacent
to w, and those of A3, A6 are not. Also, by (1), members of A1 ∪ A2 are {a1, a2}-complete and not
{a4, a5}-complete; and members A4 ∪A5 are {a4, a5}-complete and not {a1, a2}-complete. Thus the
three sets A3∪A6, A1∪A2, A4∪A5 are pairwise disjoint. To prove the claim, it remains to show that
the intersections A3∩A6, A1 ∩A2, A4 ∩A5 are all empty. Now members of A3 are adjacent to a3 and
not to a6 by (1), and vice versa for A6, and so A3 ∩ A6 = ∅. Suppose that v ∈ A1 ∩ A2 say. Since
v ∈ A1, there exists c1- · · · -c6-c1 ∈ C with c1 = v; and since c6 ∈ A6, it follows that v has a neighbour
x say in A6. Similarly v has a neighbour y in A3; and since A3, A6 are anticomplete by (1), it follows
that {v, w, x, y} is a claw, a contradiction. Thus A1 ∩A2 = ∅ and similarly A4 ∩A5 = ∅. This proves
(2).

We deduce that the five statements of 11.4 hold. In particular, each Ai is a clique, and there are
no edges between Ai and Ai+3, and every vertex not in A1 ∪ · · · ∪A6 is complete or anticomplete to
each Ai.

(3) A1, A2 are complete to each other, and so are A4, A5.

For suppose that x ∈ A1 is nonadjacent to y ∈ A2. Since x belongs to some member of C, it
has a nonneighbour z ∈ A5; and by 11.4, y is also nonadjacent to z. But then {w, x, y, z} is a claw,
a contradiction. This proves (3).

By hypothesis, there is a vertex with exactly three neighbours in C0, and so at least one of
A1, . . . , A6 has cardinality > 1. From the symmetry we may assume that this is one of A2, A3, A4.
By the final statement of 11.4, A3 is complete to one of A2, A4, say A4. Let A′

2 be the set of vertices
in A2 with a nonneighbour in A3. By the third statement of 11.4, A′

2 is anticomplete to A4. Then
(A′

2, A3) and (A2 \A′

2, A4) are both homogeneous pairs of cliques, and they are both nondominating
since A6 6= ∅. We may therefore assume that all four of these sets have cardinality at most one, for
otherwise G is decomposable by 3.3. Hence A4 = {a4} and A3 = {a3}. Now every vertex of A2 has
at least one neighbour in A3, and since |A3| = 1, it follows that they are all complete to A3, that
is, A′

2 = ∅. Thus A2 = {a2}, and so all three of A2, A3, A4 have cardinality 1, a contradiction. This
proves 11.5.

Let c1- · · · -c6-c1 be a 6-hole. We recall that if b1, b2 are adjacent stars in positions i+ 1

2
, i+31

2
for

some i ∈ {1, . . . , 6}, we call {b1, b2} a star-diagonal. The subgraph formed by these eight vertices is
also an induced subgraph of the icosahedron, obtained by deleting two vertices at distance two and
both their common neighbours. The next result is our second application of 11.4.

11.6 Let G be claw-free, such that every 6-hole in G is dominating, and G contains no long prism.
Let C0 be a 6-hole in G with a star-diagonal. If some vertex of V (G) \ V (C0) is a clone with respect
to C0, then G is decomposable.

Proof. Let C0 have vertices a1- · · · -a6-a1, and let b1, b2 be adjacent stars in positions 1 1

2
,−11

2
re-

spectively, say. By 10.1, we may assume that G does not contain icosa(−3). By 11.5, we may assume
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that no vertex is a hub for C0. Let C be the proximity component containing a1- · · · -a6-a1, and let
Ai = Ai(C) for 1 ≤ i ≤ 6.

(1) For every c1- · · · -c6-c1 ∈ C, b1, b2 are stars in positions 1 1

2
,−11

2
respectively.

For let c1- · · · -c6-c1 and c′1- · · · -c
′

6-c
′

1 be proximate members of C, differing only in their jth term say;
it suffices to show that if the claim holds for c1- · · · -c6-c1 then it holds for c′1- · · · -c

′

6-c
′

1. Let N be the
union of {c′j} and the set of neighbours of c′j in G. Thus cj−1, cj , cj+1 ∈ N , and cj+2, cj+3, cj+4 /∈ N .
From the symmetry we may assume that j ∈ {2, 3}. Suppose first that j = 2. Then we must prove
that b1 ∈ N and b2 /∈ N . Now 4.2 (with b1-c3-c4) implies that b1 ∈ N ; and 4.2 (with c4-b2-c6)
implies that b2 /∈ N . Next, suppose that j = 3; we must prove that b1, b2 ∈ N . If b1, b2 /∈ N , then
G|{c1, . . . , c6, b1, b2, c

′

3} is isomorphic to icosa(−3), a contradiction. Thus N contains at least one of
b1, b2, and from the symmetry we may assume it contains b1. By 4.2 (with c1-b1-b2), it follows that
b2 ∈ N . This proves (1).

(2) Let 1 ≤ i ≤ 6, let v ∈ Ai, and let N be the union of {v} and the set of neighbours of v in G.
Let c1- · · · -c6-c1 ∈ C. If i = 3, 6, ci+3 /∈ N , and ci−1, ci, ci+1 ∈ N . (Consequently A3 is anticomplete
to A6.) If i = 1, 2, N contains both of c1, c2, and at most one of c4, c5 (and symmetrically if i = 4, 5).

For v belongs to some member of C, and the claim is true for that member. Consequently, it
suffices to show that if c1- · · · -c6-c1 and c′1- · · · -c

′

6-c
′

1 are proximate members of C, and the claim
holds for c1- · · · -c6-c1, then it holds for c′1- · · · -c

′

6-c
′

1. Let these two 6-numberings differ in their jth
entry. Assume first that i ∈ {3, 6}, say i = 3. Thus N contains b1, b2, c2, c3, c4 and c6 /∈ N . If j 6= 6,
then c′6 = c6 /∈ N , and by 4.2 (with c′2-b1-c

′

6, c′3-b1-c
′

6, and c′4-b2-c
′

6), it follows that c′2, c
′

3, c
′

4 ∈ N . If
j = 6, then c′2, c

′

4 ∈ N , and so c′6 /∈ N by 4.1. Thus in either case the claim holds. Now assume that
i = 1. Thus b1 ∈ N and b2 /∈ N . By 4.2 (with b2-b1-c

′

1), c′1 ∈ N and similarly c′2 ∈ N . Since v is not
a hub relative to c′1- · · · -c

′

6-c
′

1 by 11.3, it follows that N contains at most one of c′4, c
′

5. This proves (2).

(3) C is pure.

We must show that A1, . . . , A6 are pairwise disjoint. By (1), the members of A3 ∪ A6 are adja-
cent to both b1, b2; the members of A1 ∪ A2 are adjacent to b1 and not to b2; and the members of
A4 ∪A5 are adjacent to b2 and not to b1. Consequently the three sets A3 ∪A6, A1 ∪A2, A4 ∪A5 are
pairwise disjoint. By (2), the members of A3 \ {a3} are adjacent to a3, and the members of A6 are
not adjacent to a3, and so A3 ∩ A6 = ∅. Suppose that v ∈ A1 ∩ A2 say. Since v ∈ A1, there exists
c1- · · · -c6-c1 ∈ C with c1 = v; and since c3 ∈ A3, it follows that v has a nonneighbour x say in A3.
Similarly v has a nonneighbour y in A6; and since A3, A6 are anticomplete by (1), it follows that
{b1, v, x, y} is a claw, a contradiction. Thus A1 ∩A2 = ∅ and similarly A4 ∩A5 = ∅. This proves (3).

We deduce that the five statements of 11.4 hold. In particular, each Ai is a clique, and there are
no edges between Ai and Ai+3, and every vertex not in A1 ∪ · · · ∪A6 is complete or anticomplete to
each Ai.

(4) We may assume (possibly after renumbering A1, . . . , A6) that there is a vertex h ∈ V (G) \ (A1 ∪
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· · · ∪ A6 ∪ {b1, b2}), such that h is A1 ∪ A2-complete and anticomplete to A3, A4, A5, A6.

For since some vertex is a clone relative to C0, at least one of the sets A1, . . . , A6 has at least
two members, and therefore from the symmetry we may assume that not all of A1, A3, A5 have car-
dinality 1. Now A1, A3, A5 are cliques, all nonempty, and their union is not equal to V (G); so by 3.5,
we may assume that some h ∈ V (G) \ (A1 ∪A3 ∪A5) does not have the property that it is complete
to two of A1, A3, A5 and anticomplete to the third. Consequently h /∈ A1 ∪ · · · ∪ A6 ∪ {b1, b2}, and
therefore h is complete or anticomplete to each Ai, and is complete to exactly two of A1, . . . , A6,
necessarily consecutive. If say h is complete to A2, A3, then by 8.1 h is adjacent to b1 and not to b2;
and then {b1, b2, h, a1} is a claw, a contradiction. Thus h is complete to either A1, A2 or to A4, A5,
and anticomplete to the other four sets. This proves (4).

(5) For 1 ≤ i ≤ 6, Ai is complete to Ai+1; and A2 is anticomplete to A4 ∪ A6, and A1 is anti-
complete to A3 ∪ A5.

For if x ∈ A1 and y ∈ A2, they are both adjacent to b1 and nonadjacent to b2, and since {b1, b2, x, y}
is not a claw, it follows that x, y are adjacent. Thus A1 is complete to A2, and similarly A4 is
complete to A5. Now let x ∈ A2, y ∈ A3. Choose z ∈ A6 nonadjacent to x; then since {b1, x, y, z}
is not a claw, x, y are adjacent. Hence A2, A3 are complete, and similarly Ai is complete to Ai+1

for 1 ≤ i ≤ 6. Now let x ∈ A2 and y ∈ A4, and let h be as in (4). Then h is adjacent to x and
not to y; and h is nonadjacent to b1 by 8.2. Since {x, b1, y, h} is not a claw, it follows that x, y are
nonadjacent. Thus A2, A4 are anticomplete, and similarly so are A1, A5. Now let x ∈ A2, y ∈ A6.
Let z be a neighbour of x in A3 (this exists, since x belongs to a member of C). Since {x, y, z, h} is
not a claw, x, y are nonadjacent, and so A2, A6 are anticomplete. Similarly A1, A3 are anticomplete.
This proves (5).

To complete the proof, suppose that A3 is not anticomplete to A5; then (A3, A5) is a homogeneous
pair, nondominating since A1 6= ∅; and since some vertex of A3 has a neighbour in A5, and every
vertex in A3 has a nonneighbour in A5, it follows that |A5| > 1, and therefore G is decomposable, by
3.3. We may therefore assume that A3 is anticomplete to A5, and similarly A4 is anticomplete to A6.
Hence for 1 ≤ i ≤ 6, all members of Ai are twins, and since there is a clone relative to a1- · · · -a6-a1

and therefore one of A1, . . . , A6 has cardinality > 1, we deduce that G is decomposable. This proves
11.6.

12 Generalized breakers

Let us say that a triple (A,C,B) is a generalized breaker in G if it satisfies:

• A,B,C are disjoint nonempty subsets of V (G), and A,B are cliques

• every vertex in V (G)\(A∪B∪C) is either A-complete or A-anticomplete, and either B-complete
or B-anticomplete, and C-anticomplete,

• there is a vertex in V (G) \ (A∪B ∪C) with a neighbour in A and a nonneighbour in B; there
is a vertex in V (G) \ (A ∪ B ∪ C) with a neighbour in B and a nonneighbour in A; and there
is a vertex in V (G) \ (A ∪ B ∪ C) with a nonneighbour in A and a nonneighbour in B.
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Thus, this is the same as the definition of a breaker, except that the final condition has been
removed. There is an analogue of 3.4 for generalized breakers, the following.

12.1 Let G be claw-free, such that G contains no long prism, and every 6-hole in G is dominating.
If there is a generalized breaker in G, then either G is decomposable, or G ∈ S2 ∪ S4 ∪ S5.

Proof. We assume G is not decomposable. Let (A,C,B) be a generalized breaker; let V1 = A∪B∪C,
let V0 be the set of vertices in V (G) \ V0 that are A ∪ B-complete, and let V2 = V (G) \ (V0 ∪ V1).
Let A2 be the set of vertices in V2 that are A-complete, and B2 the set that are B-complete. Let
X be the set of all vertices in V2 \ (A2 ∪ B2) with a neighbour in V0. By hypothesis, A,B,A2, B2

are nonempty, and as in the proof of 3.4, it follows that A2 ∪ V0 and B2 ∪ V0 are cliques. By
3.4, X 6= ∅ and A is complete to B. Since A ∪ B is not an internal clique cutset, it follows that
|C| = 1, C = {c} say. We may assume that c has a neighbour a ∈ A. Let b ∈ B and a2 ∈ A2;
then since {a, a2, c, b} is not a claw, it follows that c, b are adjacent, and therefore that c is complete
to B. Similarly c is complete to A. Hence all vertices in A are twins, so |A| = 1 and similarly
|B| = 1, and c is adjacent to both members of A∪B. Every vertex in X has a neighbour in V0, and
since V0 ∪ A2 ∪ X ∪ B includes no claw, X ∪ A2 is a clique and similarly X ∪ B2 is a clique. Let
V3 = V2 \ (A2 ∪ B2 ∪ X). Let S be the set of vertices in V3 with a neighbour in A2, and T those
with a neighbour in B2. Define Y = S ∩ T,M = S \ Y,N = T \ Y , and Z = V3 \ (S ∪ T ); thus,
M,N, Y, Z are pairwise disjoint and have union V3. Since A2 ∪A∪X ∪Y includes no claw, it follows
that X ∪ Y is a clique, and similarly X ∪ M and X ∪ N are cliques. Since X ∪ V0 ∪ M ∪ N ∪ Y
includes no claw, M ∪N∪Y is a clique. Since X∪M∪N ∪Y is not an internal clique cutset, |Z| ≤ 1.

(1) A2 is not complete to B2.

For assume it is. Since A2 ∪ B2 ∪ V0 is not an internal clique cutset, it follows that |X| = 1
and Y,M,N,Z are all empty. But then (A ∪ B,A2 ∪ B2) is a homogeneous pair, coherent since V0

is a clique, a contradiction to 3.3. This proves (1).

From (1), and since X ∪ Z ∪ A2 ∪ B2 includes no claw, we deduce that X is anticomplete to Z.
Thus (V0, X) is a homogeneous pair, nondominating since C 6= ∅, and so 3.3 implies that V0, X both
have cardinality 1. Let V0 = {v0} and X = {x}.

(2) Every vertex in A2 with a neighbour in B2 is anticomplete to M , and every vertex in A2 with a
nonneighbour in B2 is complete to M .

For let v ∈ A2. If v has a neighbour in M and a neighbour in B2, then {v} ∪ A ∪ B2 ∪ M in-
cludes a claw, while if v has a nonneighbour in M and a nonneighbour in B2, then {x, v} ∪ B2 ∪ M
includes a claw. This proves (2).

Let A′ be the set of vertices in A2 with a neighbour in M ; then by (2), every vertex in A′ is
anticomplete to B2 and is complete to M . Let B ′ be the set of vertices in B2 with a neighbour in
N . Let a1 ∈ A, and b1 ∈ B.

(3) If M,N are both nonempty then G ∈ S2 ∪ S4.
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For assume that M,N are nonempty, and choose m ∈ M and n ∈ N . Since m has a neighbour
in a′ ∈ A2, it follows that a′ ∈ A′. Choose b′ ∈ B′ similarly. By (2), a′ is anticomplete to B2 and
b′ to A2. Suppose there exist a′′ ∈ A2 and b′′ ∈ B2, such that a′′, b′′ are adjacent. By (2), a′′ is
anticomplete to M and b′′ to N , and it follows that a′-m-n-b′-b′′-a′′-a′ is a 6-hole, and it does not
dominate the vertex in C, contrary to the hypothesis. Thus A2 is anticomplete to B2, and so (2)
implies that A′ = A2 and B′ = B2. Now a1-a

′-m-n-b′-b1-a1 is a 6-hole, and therefore it dominates
every vertex in Z; and so m,n are Z-complete. Since this holds for all choices of m,n, we deduce
that M,N are Z-complete. Hence all vertices in M are twins, and so |M | = 1, and similarly |N | = 1.
Since every vertex in Y has neighbours in A2 and in B2, and these are therefore nonadjacent, it
follows that Y is anticomplete to Z (for otherwise Y ∪Z∪A2∪B2 would include a claw). Any vertex
in A2 different from a′ is a clone with respect to the 6-numbering a1-a

′-m-n-b′-b1-a1, and yet {v0, x}
is a star-diagonal relative to this 6-hole, and so 11.6 implies that A2 = {a′}, and similarly B2 = {b′}.
Then (V0, X ∪ Y ) is a homogeneous pair, nondominating since C 6= ∅, and so Y = ∅. If Z is empty,
then G ∈ S4, so we may assume that |Z| = 1. But then G has 10 vertices and belongs to S2. This
proves (3).

By (3), we may assume henceforth that N = ∅.

(4) If M is nonempty then G ∈ S2 ∪ S4.

For by (2), A2 \ A′ is complete to B2; and since every vertex in Y has a neighbour in B2, it follows
that Y is complete to A2 \ A′, for otherwise B2 ∪ B ∪ Y ∪ A2 would include a claw. Let Y ′ be the
set of all vertices in Y with a nonneighbour in A2 (necessarily in A′), and assume first that Y ′ is
nonempty. Let y′ ∈ Y ′, and choose a′ ∈ A′ such that y′ is nonadjacent to a′. Choose m ∈ M adjacent
to a′, and choose b2 ∈ B2. Since {x, y′, b2, a

′} is not a claw, y′ is adjacent to b2, and therefore y′ is
B2-complete. Moreover, b2-b1-a1-a

′-m-y′-b2 is a 6-hole with a star-diagonal {v0, x}; and consequently
there are no clones relative to this 6-hole, by 11.6. Since every vertex in B2 \ {b2} is adjacent to y′

and is therefore a clone with respect to the 6-hole, it follows that B2 = {b2}, and consequently Y is
B2-complete. Moreover, every vertex in M \ {m} is also a clone, and so M = {m}. Since the same
6-hole dominates every vertex of Z it follows that Z is M ∪ Y ′-complete. For y ∈ Y \ Y ′ and z ∈ Z,
since {y, z, a′, b2} is not a claw, it follows that y, z are nonadjacent; and so Y \ Y ′ is anticomplete to
Z. Since (Y ′, A′) is a homogeneous pair, nondominating since C 6= ∅, it follows that Y ′ = {y′} and
A′ = {a′}; and also, (V0, X ∪ (Y \ Y ′)) is a homogeneous pair, nondominating since C 6= ∅, and so
Y ′ = Y , that is, Y = {y′}; and all members of A2 \ A′ are twins, so |A2 \ A′| ≤ 1. But then G ∈ S2

if X 6= ∅, and G ∈ S4 otherwise. This completes the argument when Y ′ 6= ∅.
Now assume that Y ′ = ∅, that is, Y is complete to A2. Since X ∪Y ∪A′ is not an internal clique

cutset, it follows that Z = ∅ and |M | = 1. Then (B2, Y ) is a nondominating homogeneous pair, so
|B2| = 1 and |Y | ≤ 1, and Y is B2-complete. Hence (V0, X ∪ Y ) is a nondominating homogeneous
pair, and so Y = ∅. Then ((A2 \ A′) ∪ V0, B) is a homogeneous pair, nondominating since M 6= ∅,
so A2 = A′; and all vertices in A′ are twins, so |A2| = 1. But then G has only seven vertices, and
belongs to S4. This proves (4).

In view of (4), we assume henceforth that M,N are both empty. Let H be the bipartite subgraph
of G with vertex set A2 ∪ B2 and edge set the edges of G with an end in A2 and an end in B2.
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(5) Every component H0 of H has at most two vertices, and every vertex in Y is complete or
anticomplete to H0. Moreover, for every y ∈ Y , the set of members of A2 ∪B2 that are nonadjacent
to y is a clique.

For if a2 ∈ A2 and b2 ∈ B2 are adjacent, and y ∈ Y is adjacent to a2, then since {a2, y, b2, a}
is not a claw, it follows that y is adjacent to b2. Hence y is complete or anticomplete to every
component of H. If H0 is any such component, then (A2 ∩ H0, B2 ∩ H0) is a homogeneous pair,
nondominating since C 6= ∅, and so A2 ∩ H0, B2 ∩ H0 both have cardinality at most 1. This proves
the first two assertions of (5). For the final assertion, suppose that y ∈ Y has two nonneighbours in
A2 ∪ B2 that are nonadjacent; since x is adjacent to all three vertices, this forms a claw, a contra-
diction. This proves (5).

(6) If Z 6= ∅ then G ∈ S2.

For we have already seen that |Z| ≤ 1; assume that Z = {z} say. Let Y0 be the set of all neighbours
of z; then Y0 ⊆ Y . If y ∈ Y0 then its set of neighbours in A2 ∪ B2 is a clique, for y, z together with
two nonadjacent neighbours would form a claw. Since y has at least one neighbour in each of A2, B2,
it follows from (5) that y has exactly one neighbour in each, and they are adjacent. If every member
of Y0 has the same two neighbours (say a2, b2) in A2∪B2, then {x, a2, b2} is an internal clique cutset;
so we may assume that there exists y′ ∈ Y0, adjacent to a different pair of vertices a′

2 ∈ A2, b
′

2 ∈ B2.
Since every component of H has at most two vertices it follows that a2, a

′

2, b2, b
′

2 are all distinct.
Since the nonneighbours of y in A2 ∪ B2 form a clique by (5), it follows that A2 = {a2, a

′

2} and
B2 = {b2, b

′

2}. Let W,W ′,W ′′ be the sets of vertices in Y with neighbours {a2, b2}, {a
′

2, b
′

2} and
{a2, b2, a

′

2, b
′

2} respectively. By (5), W ∪ W ′ ∪ W ′′ = Y and Y0 ⊆ W ∪ W ′. If w ∈ W , then since
{y′, w, z, a′2} is not a claw, it follows that w, z are adjacent. Thus any two vertices in W are twins,
and therefore W = {y}. Similarly W ′ = {y′}. Now (V0, X ∪ W ′′) is a nondominating homogeneous
pair, and therefore W ′′ = ∅. Consequently |V (G)| = 12, and G ∈ S2. This proves (6).

We therefore assume that Z = ∅. Let a1, . . . , an be the vertices in A2 with a neighbour (necessarily
unique) in B2, and let b1, . . . , bn be their respective neighbours. Let A0 = A2 \ {a1, . . . , an}, and
B0 = B2 \{b1, . . . , bn}. For each y ∈ Y , let My be the set of vertices in A2 ∪B2 that are not adjacent
to y. By (5), My is a clique, and a union of components of H; and so either it is a subset of one
of A0, B0, or it is one of the sets {ai, bi}. For 1 ≤ i ≤ n let Yi be the set of vertices y ∈ Y with
My = {ai, bi}. Any two vertices in Yi are twins, so each Yi has cardinality ≤ 1. Let P be the set of
vertices y ∈ Y with My ⊆ A0, and Q the set with My ⊆ B0. Any vertex y ∈ P ∩Q therefore satisfies
My = ∅. Now (P,A0) is a nondominating homogeneous pair, and so |P |, |A0| ≤ 1, and similarly
|Q|, |B0| ≤ 1. But then G ∈ S5. This proves 12.1.

13 Nondominating 5-holes

Before the main result of this section, we prove a lemma.

46



13.1 Let H be a graph with seven vertices v1, . . . , v7, where v1- · · · -v5-v1 is a cycle of length 5, v6

has three neighbours in this hole, and v7 has two. Then some subgraph of H is a theta with seven
vertices.

Proof. By deleting one (appropriately chosen) edge incident with v6, we obtain a subgraph consisting
of the cycle v1- · · · -v5-v1, a vertex with two consecutive neighbours (say v1, v2) in this cycle, and a
second vertex with two nonconsecutive neighbours in the cycle. Delete the edge v1v2 from this
subgraph; the result is a 7-vertex theta. This proves 13.1.

The main result of this section is the following, which will have a number of consequences.

13.2 Let G be claw-free, containing no hole of length > 6 or long prism. If some 5-hole in G is not
dominating, then either G is decomposable or G ∈ S0 ∪ S2 ∪ S4 ∪ S5.

Proof. We assume that G is not decomposable. Let C0 be a 5-hole, and let c1- · · · -c5-c1 be a
5-numbering of it. Let Z be the set of all vertices that are V (C0)-anticomplete, and assume that Z
is nonempty. Let z ∈ Z, and let Y be the set of vertices in V (G) \ Z that have a neighbour in the
component of Z containing z.

(1) Z is a stable set, and Y is a clique, and Y is the set of neighbours of z. Moreover, every
member of Y is a hat relative to c1- · · · -c5-c1.

For let Z0 be the component of Z containing z, and let y ∈ Y . Then y has a neighbour in Z0,
say z0, and has a neighbour in {c1, . . . , c5} from the maximality of Z0. For any two of its neighbours
x1, x2 ∈ {c1, . . . , c5}, {y, z0, x1, x2} is not a claw, and so x1, x2 are adjacent. Hence y is a hat. To
see that Y is a clique, let y1, y2 ∈ Y , and suppose that they are nonadjacent. y1, y2 are both hats,
and are necessarily not in the same position, since they are nonadjacent and G is claw-free; let P
be a path between y1, y2 with interior in Z0. If y1, y2 share a neighbour in {c1, . . . , c5}, say c5,
then G|({c1, . . . , c4} ∪ V (P )) is a hole of length > 6, a contradiction. If y1, y2 share no neighbour
in {c1, . . . , c5}, then G|({c1, . . . , c5} ∪ V (P )) is a long prism, a contradiction. Consequently Y is a
clique. Since Y is not an internal clique cutset, it follows that |Z0| = 1, and therefore Z0 = {z}. In
particular, Y is the set of neighbours of z, and z has no neighbours in Z. Since the latter holds for
all choices of Z, it follows that Z is a stable set. This proves (1).

For 1 ≤ i ≤ 5, let Yi be the set of all members of Y that are hats in position i + 2 1

2
relative to

c1- · · · -c5-c1.

(2) Let v ∈ V (G) \ (Y ∪ {z}). Then for 1 ≤ i ≤ 5, v is complete or anticomplete to Yi. More-
over, if v is a hat relative to c1- · · · -c5-c1, then v is complete to Yi if and only if v is in position
i + 21

2
.

For suppose that v has a neighbour y1 and a nonneighbour y2, both in Yi. Since v /∈ Y ∪ {z},
it follows that v is nonadjacent to z. Now y1, y2 are hats in position i + 2 1

2
. By 4.2 applied to

ci+2-y1-z, it follows that v is adjacent to ci+2 and similarly to ci+3. By 4.2 applied to y2-ci+2-ci+1,
we deduce that v is adjacent to ci+1 and similarly to ci−1. But then {v, y1, ci+1, ci−1} is a claw, a
contradiction. This proves the first claim of (2). For the second claim, suppose that v is a hat, in
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position j + 2 1

2
say. Since v /∈ Y , it follows that v, z are nonadjacent. If j = i then v is Yi-complete

by 4.3. If j 6= i, choose a ∈ {ci+2, ci−2} nonadjacent to v; then for y ∈ Yi, {y, z, a, v} is not a claw,
and so y is nonadjacent to v. This proves (2).

(3) We may assume that Yi 6= ∅ for at least three values of i ∈ {1, . . . , 5}. Also, we may assume
that every hat nonadjacent to z is nonadjacent to every other hat except those in the same position
relative to c1- · · · -c5-c1.

For if all the sets Yi are empty except possibly for say Y1, then G is decomposable, by (2) and
3.2 applied to Y1, {z}. If exactly two of the sets are nonempty, say Yi, Yj , then (Yi, {z}, Yj) is a
generalized breaker by (2), and the result follows from 12.1. This proves the first assertion of (3).
For the second, let h be a hat nonadjacent to z, and let h′ be some other hat in a different position.
Suppose that h, h′ are adjacent. By (2), h′ is nonadjacent to z. Choose three hats adjacent to z, all
in different positions, say y1, y2, y3. Then G|{c1, . . . , c5, y1, y2, y3, h, h′} is the line graph of a graph
satisfying the hypotheses of 13.1; and so by 13.1, G contains a long prism, a contradiction. This
proves (3).

(4) |Z| = 1.

For choose y1, y2, y3 ∈ Y , all hats in different positions relative to c1- · · · -c5-c1. Suppose that z′ ∈ Z
is different from z; then similarly there are vertices y ′

1, y
′

2, y
′

3, all hats in different positions, and all
adjacent to z′. If say y′1 is adjacent to z, then {y′

1, z, z′, a} is a claw, where a ∈ {c1, . . . , c5} is adjacent
to y′1. Thus y′1, y

′

2, y
′

3 are nonadjacent to z, and yet they are adjacent to each other by (1), contrary
to (3). This proves (4).

Let C be the proximity component containing c1- · · · -c5-c1, and for 1 ≤ i ≤ 5 let Ai = Ai(C).

(5) z has no neighbours in A1 ∪ · · · ∪ A5. Moreover, for 1 ≤ i ≤ 5 and each y ∈ Yi, if a1- · · · -a5-a1

belongs to C then y is a hat in position i + 2 1

2
relative to a1- · · · -a5-a1.

For let a1- · · · -a5-a1 and a′1- · · · -a
′

5-a
′

1 be proximate, with a′

j 6= aj say. Suppose first that z is
nonadjacent to a1, . . . , a5; then since {a′j , aj−1, aj+1, z} is not a claw, it follows that z is nonadjacent
to a′j. Consequently z has no neighbours in A1 ∪ · · · ∪A5. Now, with a1- · · · -a5-a1 and a′1- · · · -a

′

5-a
′

1

as before, suppose that y ∈ Y is a hat in position i+2 1

2
relative to a1- · · · -a5-a1. If j = i+2, then by

8.2, a′j is adjacent to y and therefore y is a hat in position i + 2 1

2
relative to a′1- · · · -a

′

5-a
′

1. If j = i,

then by 8.2, a′j is nonadjacent to y, and again y is a hat in position i + 2 1

2
relative to a′1- · · · -a

′

5-a
′

1.
Thus from the symmetry we may assume that j = i−1. Since {y, a′

j , z, ai+2} is not a claw, it follows
that y, a′j are not adjacent, and again the claim holds. This proves (5).

From (3) we may assume that there exist y3 ∈ Y3, and y5 ∈ Y5.

(6) A1, . . . , A5 are pairwise disjoint; A4 is anticomplete to A1, A2; A1 is anticomplete to A3; A2

is anticomplete to A5; and A1 ∪ A5, A2 ∪ A3, A4 are cliques.

By (5), y3 is complete to A5 ∪ A1 and anticomplete to A2 ∪ A3 ∪ A4, and y5 is complete to A2 ∪ A3
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and anticomplete to A1 ∪ A4 ∪ A5. Consequently A5 ∪ A1, A2 ∪ A3, A4 are pairwise disjoint. Let H
be the bipartite subgraph of G with vertex set A1∪A2 and edges the edges of G between A1 and A2.
Since C is a proximity component, it follows that H is connected. Let a4 ∈ A4, and assume that a4

has a neighbour in A1 ∪A2. Since it also has a nonneighbour in A1 ∪A2 (because a4 belongs to some
member of C), it follows that a4 is adjacent to exactly one end of some edge of H; say a1 ∈ A1 and
a2 ∈ A2 are adjacent, and a4 is adjacent to a1 and not to a2. But then {a1, a2, a4, y3} is a claw, a
contradiction. This proves that a4 is A1∪A2-anticomplete, and so A4 is A1∪A2-anticomplete. Since
no vertex of A3 is A4-anticomplete, it follows that A2 ∩ A3 = ∅, and similarly A1 ∩ A5 = ∅. Thus
A1, . . . , A5 are pairwise disjoint. Let a1 ∈ A1 and a3 ∈ A3, and let a4 ∈ A4 be adjacent to a3. Since
{a3, a1, y5, a4} is not a claw, it follows that a1, a3 are nonadjacent. So A1 is anticomplete to A3, and
similarly A2 is anticomplete to A5. Next, let u, v ∈ A1 ∪A5; since {y3, z, u, v} is not a claw it follows
that u, v are adjacent. Consequently A1 ∪ A5 and similarly A2 ∪ A3 are cliques. Finally, suppose
that u, v ∈ A4 are nonadjacent. Choose a1- · · · -a5-a1 ∈ C with a4 = u. Since A4 is anticomplete to
A1 ∪ A2, it follows that v is nonadjacent to a1, a2, a4, and therefore also to a3, a5, since there is no
claw. But then by (4), with v, z exchanged, it follows that v has no neighbour in any member of C,
a contradiction. Thus A4 is a clique. This proves (6).

Let W = A1 ∪ · · · ∪ A5.

(7) For every vertex v ∈ V (G) \ W , let N be the set of neighbours of v in W . Then either

• N = ∅ and v = z, or

• for some i ∈ {1, . . . , 5}, N = Ai+2 ∪ Ai−2 (let Hi be the set of all such v), or

• for some i ∈ {1, . . . , 5}, N = W \ Ai (let Si be the set of all such v), or

• N contains at least four of a1, . . . , a5 for every a1- · · · -a5-a1 ∈ C, and contains all five vertices
for some choice of a1- · · · -a5-a1 (let T be the set of all such v).

For we may assume that v 6= z. From the maximality of C, N contains exactly two or at least
four of a1, . . . , a5 for every a1- · · · -a5-a1 ∈ C; and since C is connected by proximity, the claim follows.
This proves (7).

(8) The sets Hi and Si are cliques, for 1 ≤ i ≤ 5, and so is T . For 1 ≤ i, j ≤ 5, Hi is complete to Sj if
j = i+1 or i−1, and otherwise Hi is anticomplete to Sj. Also, T is anticomplete to Hi for 1 ≤ i ≤ 5.

For Hi and Si are cliques by 4.3, and the adjacency between the sets Hi and the sets Sj is forced by
8.2. Let t ∈ T ; if t is adjacent to some h ∈ Hi, then {t, h, ai+1, ai−1} is a claw (where a1- · · · -a5-a1 ∈ C
is chosen so that t is adjacent to all of a1, . . . , a5), a contradiction. Thus T is anticomplete to all
the sets Hi. Let t1, t2 ∈ T . Since they are both adjacent to at least four of c1, . . . , c5, they have at
least three common neighbours in {c1, . . . , c5}; and consequently one of these common neighbours,
say a, is adjacent to one of y3, y5, say to y3. Since {a, y3, t1, t2} is not a claw, it follows that t1, t2 are
adjacent, and so T is a clique. This proves (8).

(9) For 1 ≤ i ≤ 5, if Hi 6= ∅, then T is complete to Ai−1 and to Ai+1.
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For let t ∈ T and h ∈ Hi. By (8), t, h are nonadjacent. Let a1- · · · -a5-a1 ∈ C. Since t, h are
nonadjacent and t has at least four neighbours in the hole a1- · · · -a5-a1, 8.2 implies that t, ai−1 are
adjacent. This proves (9).

(10) T is complete to W .

For by (9), T is complete to A1 ∪ A2 ∪ A4. Suppose that H4 is nonempty. Then by (9), T is
also complete to A3, A5 and the claim holds. So we may assume that H4 = ∅. By (3), we may
assume that there exists y1 ∈ Y1, and so T is complete to A5 by (9). By (6) with y5, y1 exchanged,
A3 is complete to A4 and anticomplete to A5. If H2 is nonempty, then again the claim follows from
(9), so we assume that H2 = ∅. Let T ′ be the set of vertices in T that are not W -complete, and
assume that T ′ 6= ∅. Since T is complete to A1∪A2∪A4∪A5, and every vertex in T has a neighbour
in A3, we deduce that every vertex in T ′ has a neighbour and a nonneighbour in A3, and in particular
|A3| > 1.

Let v ∈ V (G) \ (T ′ ∪ A3); we claim that v is T ′-complete or T ′-anticomplete. If v ∈ W , v is
T -complete, and if v ∈ Hi for some i then v is T -anticomplete by (8). If v ∈ T \ T ′ then v is
T ′-complete by (8); so we may assume that v ∈ Si for some i ∈ {1, 2, 3, 4, 5}. If v ∈ S1 then v is
T ′-complete, since for t ∈ T ′, {c5, v, t, y3} is not a claw. Similarly v is T ′-complete if v ∈ S5. If
v ∈ S2 then v is T ′-complete, since for t ∈ T ′, {a3, v, t, y5} is not a claw, where a3 ∈ A3 is adjacent
to t; and similarly v is T ′-complete if v ∈ S4. If v ∈ S3 then v is T ′-complete by 4.3. This proves the
claim. But every such v is also complete or anticomplete to A3, and so (A3, T

′) is a homogeneous
pair, nondominating since Z 6= ∅; and therefore G is decomposable, by 3.3, since |A3| > 1. This
proves (10).

(11) A1, . . . , A5 all have cardinality 1.

For by (10), T is complete to A1 ∪ A2, and so (A1, A2) is a homogeneous pair, nondominating since
Z 6= ∅; and hence |A1| = |A2| = 1. Suppose that there exists y1 ∈ Y1. Then similarly |A4| = |A5| = 1.
But then all members of A3 are twins, and so |A3| = 1 and the claim holds. Thus we may assume
that Y1 is empty, and similarly Y2 = ∅. Hence there exists y4 ∈ Y4, by (3). Suppose that A4 is not
complete to A5, and choose a4 ∈ A4 and a5 ∈ A5, nonadjacent. If there exists t ∈ S1 ∪ S3 ∪ T then
{t, a4, a5, c2} is a claw, and so T, S1, S3 = ∅. Suppose that there exists h ∈ H2, necessarily not adja-
cent to z; then by (2) it is nonadjacent to y3, y4. Let a3 ∈ A3 be adjacent to a4. Since {a3, a4, a5, y5}
is not a claw, a3 is nonadjacent to a5; but then c2-a3-a4-h-a5-y3-y4-c2 is a 7-hole, a contradiction.
Thus H2 is empty. Suppose that also A4 is not complete to A3; then similarly S2, S5,H1 = ∅. But
then (A3, A4, A5) is a breaker, and the theorem holds. We may therefore assume that A4 is complete
to A3. Let A′

5 be the set of vertices in A5 with a nonneighbour in A4. Since A′

5 is nonempty and
every member of A′

5 has a neighbour and a nonneighbour in A4, it follows that |A4| > 1. No member
a′5 ∈ A′

5 has a neighbour a′

3 ∈ A3, because {a′3, a
′

4, a
′

5, y5} would be a claw, where a′

4 ∈ A4 is a non-
neighbour of a′5. Thus (A′

5, A4) is a nondominating homogeneous pair, contrary to 3.3. This proves
that A4 is complete to A5, and similarly to A3. Hence (A3, A5) is a nondominating homogeneous pair,
and so A3, A5 both have cardinality 1; and all members of A4 are twins, so |A4| = 1. This proves (11).

(12) Let 1 ≤ i, j ≤ 5, such that Hi 6= ∅. Then if j ∈ {i, i + 2, i − 2}, Si is complete to Sj, and
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otherwise Si is anticomplete to Sj. Also, T is complete to S1, . . . , S5.

By 4.3, if i = j then Si is complete to Sj. Let h ∈ Hi. Suppose that j = i + 2, and that
si ∈ Si and sj ∈ Sj are nonadjacent. Then {ci−2, si, h, sj} is a claw, a contradiction. Hence in this
case Si is complete to Sj, and similarly if j = i − 2. Now assume that j = i + 1, and si ∈ Si and
sj ∈ Sj are adjacent. Then {sj , h, si, ci} is a claw, a contradiction. Thus Si is anticomplete to Si+1,
and similarly to Si−1. Finally, suppose that t ∈ T and sj ∈ Sj are nonadjacent, for some j with
1 ≤ j ≤ 5. Now one of Hj,Hj+2,Hj−2 is nonempty, and both t, sj are anticomplete to these three
sets; so there is a hat h nonadjacent to both t, sj . But one of c1, . . . , c5 is adjacent to all of t, sj, h,
and hence these four vertices form a claw, a contradiction. This proves (12).

(13) Let 1 ≤ i, j ≤ 5. Then if j ∈ {i, i + 2, i − 2}, Si is complete to Sj, and otherwise Si is
anticomplete to Sj.

Suppose first that j = i + 1 and Si,Sj are not anticomplete. By (12), Hi,Hi+1 are both empty,
and since H3,H5 are nonempty, it follows that i = 1, and Y4 is nonempty. Choose s1 ∈ S1 and
s2 ∈ S2, adjacent. If there exists s3 ∈ S3, then by (12) s3 is adjacent to s1 and not to s2 (since
H3 6= ∅), and so {s1, s3, s2, y5} is a claw, a contradiction. Thus S3 is empty, and similarly S5 is empty.
But then (S2 ∪ A5, S1 ∪ A3) is a nondominating homogeneous pair, and |S2 ∪ A5| ≥ 2, contrary to
3.3. This proves that Si is anticomplete to Si+1 for i ≤ i ≤ 5. Now assume that j = i + 2, and Si, Sj

are not complete. By (12), Hi,Hj are empty, and since H3,H5 are nonempty, it follows that one of
i, j = 4; and from the symmetry, we may assume that i = 2, j = 4. Let s2 ∈ S2 and s4 ∈ S4 be
nonadjacent. But then {y3, z, s2, s4} is a claw, a contradiction. This proves (13).

To finish the proof, (13) implies that for each of the sets H1, . . . ,H5, S1, . . . , S5, T , any two of its
members are twins; and therefore all these sets have cardinality at most 1. From (3), (8) and (13),
if T = ∅ then G is a line graph, so we assume T = {t} say. If H1 ∪ · · · ∪ H5 ⊆ Y then G ∈ S4, so we
assume that there exists h ∈ Hj \ Y for some j. If there exists y ∈ Yj−1 then {cj+2, y, h, t} is a claw,
a contradiction. So Yj−1 and similarly Yj+1 are empty. Since Y3, Y5 are nonempty, it follows that
j ∈ {3, 5} and from the symmetry we may assume that j = 3. Thus Y2, Y4 are empty, and therefore
there exists y1 ∈ Y1. It follows that j is unique, and so Hi ⊆ Y for i = 1, 2, 4, 5. If there exists
s ∈ S2, then {s, h, t, y1} is a claw, a contradiction; so S2 = ∅, and similarly S4 = ∅. If S3 6= ∅, then
(S3 ∪ T,A3) is a nondominating homogeneous pair, contrary to 3.3; and so S3 = ∅. It follows that
G ∈ S0. This proves 13.2.

14 6-holes with hubs and hats

In this section we handle 6-holes that have both a hub and a hat.

14.1 Let G be claw-free, containing no long prism and no hole of length > 6, and such that every
hole of length 5 or 6 is dominating. If there is a 6-hole in G relative to which some vertex is a hub
and some vertex is either a hat or a clone, then either G is a line graph, or G is decomposable.

Proof. For a contradiction, we assume that G is not decomposable. Let C0 be the 6-hole, and let its
vertices be a1

2, a
1
3, a

2
3, a

2
1, a

3
1, a

3
2 in order. Define Ai

j = {ai
j} for 1 ≤ i, j ≤ 3 with i 6= j. For 1 ≤ i ≤ 3
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let Ai
i be the set of all hubs that are nonadjacent to aj

k, a
k
j , where {i, j, k} = {1, 2, 3}. By hypothesis,

at least one of the sets Ai
i is nonempty. By 11.2, |Ai

i| ≤ 1 for 1 ≤ i ≤ 3, since G is not decomposable;
if Ai

i is nonempty, let ai
i be its unique member. Let W be the union of the nine sets Ai

j.

For 1 ≤ i ≤ 3, define Ai = Ai
1 ∪ Ai

2 ∪ Ai
3, and for 1 ≤ j ≤ 3 define Aj = A1

j ∪ A2
j ∪ A3

j . For

1 ≤ i ≤ 3, let H i,Hi, S
i, Si be four subsets of V (G) \ W , defined as follows. For v ∈ V (G) \ W , let

N denote the set of neighbours of v in W ; then

• v ∈ H i if N = Ai

• v ∈ Hi if N = Ai

• v ∈ Si if N = W \ Ai

• v ∈ Si if N = W \ Ai.

Since there is a hat relative to C0, it follows that one of H1,H2,H3,H1,H2,H3 is nonempty.

(1) The twelve sets H i,Hi, S
i, Si (1 ≤ i ≤ 3) are pairwise disjoint cliques, and they have union

V (G) \ W .

For clearly they are pairwise disjoint, and they are all cliques by 4.3. Let v ∈ V (G) \ W . If it
is a hub relative to C0, then it belongs to one of the sets Ai

i, and therefore belongs to W , a contra-
diction. Since C0 is dominating, it follows from 8.1 that v either has two, three or four neighbours
in C, and they are consecutive. If it has three, then it is a clone relative to C0, which is impossible
by 11.5 since G is not decomposable. Thus it has two or four, and by 11.1 it belongs to one of the
twelve sets. This proves (1).

(2) The six sets H1,H2,H3,H1,H2,H3 are pairwise anticomplete.

For these are hats in different position relative to C0; if some two are adjacent, then either G
contains a hole of length > 6 or a long prism, in either case a contradiction. This proves (2).

(3) For 1 ≤ i, j ≤ 3, H i is anticomplete to Sj; and H i is complete to Sj if j 6= i, and anticom-
plete to Si. Analogous statements hold for Hi.

This follows from 8.2.

(4) For 1 ≤ i ≤ 3 one of H i, Si is empty, and one of Hi, S
i is empty.

For suppose that h1 ∈ H1 and s1 ∈ S1 say. Then s1-a
2
3-a

2
1-a

3
1-a

3
2-s1 is a 5-hole that does not

dominate h1, a contradiction.

(5) For 1 ≤ i ≤ 3, Si is anticomplete to Si.

For suppose that s1 ∈ S1 and s1 ∈ S1 are adjacent, say. By (4), H1,H1 = ∅, and so from the
symmetry we may assume that there exists h2 ∈ H2. Then {s1, s1, h

2, a3
1} is a claw, a contradiction.
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This proves (5).

(6) For 1 ≤ i ≤ 3, if Si 6= ∅ and H1 ∪ H2 ∪ H3 6= ∅ then Ai
i = ∅.

For suppose that, say, s1 ∈ S1 and h ∈ H1 ∪ H2 ∪ H3, and A1
1 = {a1

1}. By (4), h /∈ H1, and
so we may assume that h ∈ H2. But then s1-a3

1-a
1
1-a

1
3-a

2
3-s

1 is a 5-hole not dominating h, a contra-
diction. This proves (6).

(7) If H1 ∪ H2 ∪ H3 6= ∅ then S1, S2, S3 are pairwise complete.

For suppose that s1 ∈ S1 is nonadjacent to s2 ∈ S2 say, and let h ∈ H1 ∪ H2 ∪ H3. By (4),
h ∈ H3. By (6), A1

1 = A2
2 = ∅, and so A3

3 = {a3
3}. But then {a3

3, s
1, s2, h} is a claw, a contradiction.

This proves (7).

(8) We may assume that S1 ∪ S2 ∪ S3 is not anticomplete to S1 ∪ S2 ∪ S3.

For suppose it is. If also S1, S2, S3 are pairwise complete and S1, S2, S3 are pairwise complete
then G is a line graph by (1)–(3), so we may assume that, say, S1, S2 are not complete. By (7),
H1,H2,H3 = ∅. Suppose that there exists sj ∈ Sj for some j with 1 ≤ j ≤ 3. Choose s1 ∈ S1

and s2 ∈ S2, nonadjacent. One of a3
1, a

3
2 is adjacent to sj , say x; and then {x, sj , s

1, s2} is a claw,
a contradiction. Thus S1, S2, S3 = ∅. Now each of the three cliques S1, S2, S3 is complete to two of
the three cliques A1 ∪H1, A2 ∪H2, A3 ∪ H3 and anticomplete to the third, and so G is the hex-join
of G|(W ∪ H1 ∪ H2 ∪ H3) and G|(S1 ∪ S2 ∪ S3), a contradiction. This proves (8).

(9) For 1 ≤ i ≤ 3, not both H i,Hi are nonempty.

For suppose that h1 ∈ H1 and h1 ∈ H1 say. By (4), S1 = S1 = ∅. By (7), S2 is complete to
S3, and S2 is complete to S3. By (5), Si is anticomplete to Si for i = 2, 3. By (8) we may assume
from the symmetry that there exist s3 ∈ S3 and s2 ∈ S2, adjacent. From (6), A2

2 = A3
3 = ∅, and so

A1
1 = {a1

1}. By (4), H3 = H2 = ∅. Then (S2 ∪ A2
1, S

3 ∪ A1
3) is a homogeneous pair, nondominating

since A3
2 6= ∅, a contradiction. This proves (9).

(10) Not both H1 ∪ H2 ∪ H3, H1 ∪ H2 ∪ H3 are nonempty.

For suppose they are; then by (9), we may assume from the symmetry that there exist h1 ∈ H1

and h2 ∈ H2. By (4), S1, S2 = ∅, and by (9), H1,H2 = ∅. By (7), S1 is complete to S3 and S2 is
complete to S3. By (5), S3 is anticomplete to S3. Suppose first that S2 = ∅. From (8), there exist
s3 ∈ S3 and s1 ∈ S1, adjacent. From (6), A1

1, A
3
3 = ∅. Then (S1 ∪ A1

2, S
3 ∪ A2

3) is a homogeneous
pair, nondominating since A3

1 6= ∅, a contradiction. Hence S2 6= ∅, and similarly S1 6= ∅. From (6),
A1

1 = A2
2 = ∅, and therefore A3

3 = {a3
3}. By (6) again, S3 = S3 = ∅. But now (A3

1,H1 ∪H2 ∪A2
1, A

2
3)

is a breaker, contrary to 3.4. This proves (10).

(11) Exactly one of H1,H2,H3,H1,H2,H3 is nonempty.
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For by hypothesis, at least one is nonempty, say H1. By (10), H1,H2,H3 = ∅. Suppose that
H2 6= ∅. By (4), S1, S2 = ∅, and by (8), S3 is nonempty. From (4), H3 = ∅, and from (6), A3

3 = ∅.
Then (H1 ∪A3

1,H2 ∪A3
2) is a homogeneous pair, nondominating since A1

3 6= ∅, a contradiction. This
proves (11).

In view of (11) we assume henceforth that H3 is nonempty, and therefore H1,H2,H3,H1,H2 are
empty. By (4), S3 = ∅.

(12) S1, S2 are both nonempty, and consequently A1
1 = A2

2 = ∅, and A3
3 = {a3

3}.

For suppose that S2 = ∅, say. From (8), S1 6= ∅. From (6), A1
1 = ∅. But then (H3 ∪ A1

3, A
1
2) is a

homogeneous pair, nondominating since A2
1 6= ∅, a contradiction. Thus S1, S2 are both nonempty.

By (6), A1
1 = A2

2 = ∅, and so A3
3 = {a3

3}. This proves (12).

(13) S3 is complete to S1 ∪ S2.

For suppose not; then from the symmetry we may assume that there exist s3 ∈ S3 and s2 ∈ S2,
nonadjacent. By (12) we may choose s1 ∈ S1. By (7), s1, s2 are adjacent. If s3, s

1 are nonadjacent,
then s3-a

1
2-s

2-s1-a2
1-s3 is a 5-hole, not dominating H3, a contradiction. If s3, s

1 are adjacent, then
{s1, s3, s

2, a2
3} is a claw, a contradiction. This proves (13).

Let S′

1 be the set of vertices in S1 with a nonneighbour in S2, and let S ′

2 be the set of vertices in
S2 with a nonneighbour in S1.

(14) S′

1 ∪ S′

2 is anticomplete to S3, S′

1 is complete to S2, and S′

2 is complete to S1.

For suppose that some vertex s1 ∈ S′

1 say has a neighbour s3 ∈ S3. Let s2 ∈ S2 be a nonneighbour
of s1. Then {s3, s1, s

2, a2
1} is a claw, a contradiction. Thus S3 is anticomplete to S ′

1, and similarly
to S′

2. Now suppose that some s1 ∈ S′

1 has a nonneighbour s2 ∈ S2. Let s2 ∈ S2 be a nonneighbour
of s1; then by (5), {a3

3, s2, s1, s
2} is a claw, a contradiction. Hence S ′

1 is complete to S2. Similarly
S′

2 is complete to S1. This proves (14).

But now the following six sets are cliques: S1 \S′

1; S2 \S′

2; S3; S1∪A1; S2∪A2;H3∪A3∪S′

1∪S′

2.
Every vertex belongs to exactly one of these cliques; and each of the first three cliques is complete
to two of the final three, and anticomplete to the other, in the manner required for a hex-join.
Consequently G is expressible as a hex-join, a contradiction. This proves 14.1.

There is an (easy) analogue of 14.1 for 6-holes with a star-diagonal and a hat, the following.

14.2 Let G be claw-free, containing no long prism and no hole of length > 6, and such that every
hole of length 5 or 6 is dominating. If there is a 6-hole in G with a star-diagonal, relative to which
some vertex is either a hat or a clone, then G is decomposable.

Proof. Let C0 be the 6-hole, with vertices c1, . . . , c6-c1. Let b1, b2 be adjacent stars, in positions
11

2
,−11

2
respectively. Let h be either a hat or clone relative to C0. If it is a clone, the result follows

from 11.6. We assume then that h is a hat. From the symmetry we may assume that it is in position
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1

2
or 11

2
. If it is in position 1

2
, then by 8.2 h is adjacent to b1 and not to b2, and then {b1, h, b2, c3}

is a claw, a contradiction. If it is in position 1 1

2
, then it is nonadjacent to b1 by 8.2, and then

b1-c4-c5-c6-c1-b1 is a nondominating 5-hole, a contradiction. This proves 14.2.

15 Star-triangles.

We recall that, if c1- · · · -c6-c1 is a 6-hole, and there are three pairwise adjacent stars in positions
11

2
, 31

2
, 51

2
respectively, we call the set of these three stars a star-triangle for the 6-hole. Our next

goal is prove an analogue of 11.6 for star-triangles. We need the following lemma.

15.1 Let G be claw-free, and let B1, B2, B3 be disjoint cliques in G. Let B = B1∪B2∪B3. Suppose
that:

• B 6= V (G),

• there are two triads T1, T2 ⊆ B with |T1 ∩ T2| = 2, and

• there is no triad T in G with |T ∩ B| = 2.

Then G is decomposable.

Proof. Since there are two triads in B sharing two vertices, it follows that there is a sequence
u1, . . . , ut ∈ B with t ≥ 4, satisfying the following:

• u1, . . . , ut are distinct

• u1, u2, u3 are pairwise nonadjacent

• for 3 ≤ s ≤ t, if us ∈ Bi say, then for all j ∈ {1, 2, 3} with j 6= i, there exists r with 1 ≤ r < s
such that ur ∈ Bj and ur is nonadjacent to us.

Choose such a sequence with t maximum. For i = 1, 2, 3, let Ui = {u1, . . . , ut} ∩ Bi.

(1) {u1, . . . , ut} is a union of triads.

We prove by induction on t′ that for 3 ≤ t′ ≤ t, there is a triad in {u1, . . . , ut′} containing ut′ .
The result is clear if t′ = 3, so we assume that t′ > 3. From the symmetry, we may assume that
ut′ ∈ B3. Choose s with 1 ≤ s < t′ minimum such that ut′ has a nonneighbour in B1 ∩ {u1, . . . , us}
and a nonneighbour in B2 ∩ {u1, . . . , us}. If s ≤ 3 then ut′ is in a triad (since u1, u2, u3 are pairwise
nonadjacent), so we may assume that s > 3. From the minimality of s, us is the unique nonneighbour
of ut′ in one of B1 ∩ {u1, . . . , us}, B2 ∩ {u1, . . . , us}; and so we may assume that us ∈ B1 and ut′ is
complete to B1 ∩{u1, . . . , us−1}. By hypothesis, there exists r with 1 ≤ r < s such that ur ∈ B2 and
ur is nonadjacent to us. Since s > 3, there exist p, q with 1 ≤ p, q ≤ s − 1, such that {up, uq, ur} is
a triad. (This is clear if r ≤ 3, taking {p, q, r} = {1, 2, 3}, and follows by the inductive hypothesis
otherwise.) Hence up, uq ∈ B1∪B3, and therefore are adjacent to ut′ , from the minimality of s. Since
{ut′ , up, uq, ur} is not a claw, ut′ is not adjacent to ur. But then {ur, us, ut′} is a triad. This proves (1).
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(2) Every vertex not in U1 ∪ U2 ∪ U3 is complete to two of U1, U2, U3 and anticomplete to the third.

For let v ∈ V (G) \ U1 ∪ U2 ∪ U3. Suppose first that v ∈ B, say v ∈ B1. Thus from the maxi-
mality of the sequence, v is complete to at least one of U2, U3, since otherwise we could set ut+1 = v.
We assume v is complete to U2 say. Let x ∈ U3. By (1), there is a triad T ⊆ U1 ∪U2 ∪U3 containing
x, and therefore T \ {x} ⊆ U1 ∪ U2. Since G is claw-free, v is not complete to T , and so v, x are not
adjacent. Hence v is anticomplete to U3, as required. Now assume that v /∈ B. Let N be the set of
neighbours of v in B. By hypothesis, B \ N is a clique (for otherwise there would be a triad with
exactly two vertices in B). In particular, N contains at least two of u1, u2, u3, since they are pairwise
nonadjacent; and N does not contain all three, since G is claw-free. Consequently N contains exactly
two of u1, u2, u3. From the symmetry we may assume that when s = 3, N includes {u1, . . . , us}∩B1

and {u1, . . . , us} ∩ B2 and is disjoint from {u1, . . . , us} ∩ B3; and therefore we may choose s with
3 ≤ s ≤ t, maximum such that the same statement holds. Suppose that s < t. If us+1 ∈ U3, then
since N includes no triad by 4.1, it follows from (1) that us+1 /∈ N , contrary to the maximality of
s. Thus us+1 ∈ B1 ∪ B2, and from the symmetry we may assume that us+1 ∈ B1. But us+1 has a
nonneighbour in {u1, . . . , us} ∩B3, from the definition of the sequence, and since B \N is a clique it
follows that us+1 ∈ N , again contrary to the maximality of N . This proves that s = t, and therefore
proves (2).

Now since t ≥ 4, it follows that one of U1, U2, U3 has cardinality > 1, and so from 3.5, G is
decomposable. This proves 15.1.

15.2 Let G be claw-free, and let A = {a1, a2, a3} be a dominating triangle. Suppose that there are
distinct vertices u1, u2, u3, u4 ∈ V (G) \ A such that:

• u1, . . . , u4 each have exactly two neighbours in A, and

• G|{u1, . . . , u4} has at most one edge.

Then G is decomposable.

Proof. For i = 1, 2, 3 let Bi be the set of all vertices in V (G) \ A that are nonadjacent to ai

and adjacent to the other two members of A. From 4.3 it follows that B1, B2, B3 are cliques. Let
B = B1 ∪B2 ∪B3. From the hypothesis, there are two triads included in B that have two vertices in
common, and so the first two hypotheses of 15.1 hold. For the third, let v ∈ V (G) \ B, and suppose
that there is a triad {v, b1, b2}, where b1 ∈ B1 and b2 ∈ B2. By 4.2 (with b1-a3-b2) it follows that
v is not adjacent to a3. Since v /∈ B3, it is not adjacent to both a1, a2, and from the symmetry we
may assume that v is not adjacent to a2. From 4.2 (with a2-a1-b2) it follows that v is not adjacent
to a1, contrary to the hypothesis that A is dominating. Thus all the hypotheses of 15.1 hold, and
the result follows. This proves 15.2.

15.3 Let G be claw-free, such that every 5- and 6-hole in G is dominating, and no 6-hole in G has
a hub. Let C0 be a 6-hole in G, with a star-triangle. If some vertex of V (G) \ V (C0) is a hat or a
clone with respect to C0, then G is decomposable.
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Proof. Let C0 have vertices c1- · · · -c6-c1, and let A = {a1, a3, a5} be a star-triangle, where a1, a3, a5

are in positions 1 1

2
, 31

2
, 51

2
respectively.

(1) There is no hat in position 1 1

2
, 31

2
, or 51

2
relative to c1- · · · -c6-c1.

For suppose that h is a hat in position 1 1

2
say. Then the 5-hole a1-c3-c4-c5-c6-a1 is not domi-

nating, a contradiction. This proves (1).

(2) A is dominating.

For suppose that v ∈ V (G) \ A, with no neighbour in A. Then v /∈ V (C0), and so, since there
is no hub for C0, it follows that v is a hat, clone or star relative to C0. By (1) and 8.2, v is not a
hat; and by 8.2 it is not a clone, and not a star in position 1 1

2
, 31

2
or 51

2
. Thus we may assume v is a

star in position 2 1

2
say; but then v-c3-a2-c5-c6-c1-v is a 6-hole, and a1 is a hub for it, a contradiction.

This proves (2).

For i = 1, 3, 5, let Bi be the set of all vertices in V (G)\A that are anticomplete to ai and complete
to the other two members of A. Thus c4, c5 ∈ B1, c6, c1 ∈ B3, and c2, c3 ∈ B5. By hypothesis, some
vertex v ∈ V (G)\V (C0) is either a hat or a clone with respect to C0, say either a hat in position 1

2
or a

clone in position 1 without loss of generality. By 8.2, v is adjacent to a1 and nonadjacent to a3. Since
{a1, v, a5, c3} is not a claw, v is adjacent to a5 and so v ∈ B3. But then c1, c3, c5, v ∈ B1 ∪ B3 ∪ B5,
and G|{c1, c3, c5, v} has only one edge, namely vc1, and so the result follows from (1) and 15.2. This
proves 15.3.

15.4 Let G be claw-free, such that every 5-hole in G is dominating, and there is no 6-hole with a
hub or with a star-diagonal. Suppose that some 6-hole has a crown. Then G is decomposable.

Proof. Let C be a 6-hole with vertices c1- · · · -c6-c1 in order, and let s1, s2 be nonadjacent stars in
positions 2 1

2
, 31

2
respectively. Thus the strip ({s1, c2}, ∅, {s2, c4}) is step-connected and parallel to

the strip ({c1}, {c6}, {c5}). Choose a step-connected strip (A, ∅, B) with s1, c2 ∈ A and s2, c4 ∈ B,
with A ∪ B maximal such that c3 is A ∪ B-complete and the strips (A, ∅, B), ({c1}, {c6}, {c5}) are
parallel. Suppose that v ∈ V (G) \ (A ∪ B), and v has both a neighbour and a nonneighbour in A.
Then v /∈ {c1, c3, c5, c6}. Let N be the set of neighbours of v. Choose a step a1-a2-b2-b1-a1 in the strip
(A, ∅, B) such that a1 ∈ N and a2 /∈ N . By 4.2, b1 ∈ N . Suppose that b2 ∈ N . Then 4.2 implies that
c5 ∈ N ; 4.1 implies that c6 /∈ N ; 4.2 implies that c1 /∈ N ; 4.2 implies that B ⊆ N and c3 ∈ N ; and
then v can be added to B, contrary to the maximality of A∪B. Thus b2 /∈ N . Since c1-c6-c5-b2-a2-c1

is dominating, we may assume from the symmetry that c1, c6 ∈ N . If c5 /∈ N , then v-c6-c5-b2-a2-a1-v
is a 6-hole, and b1 is a hub for it, a contradiction. Thus c5 ∈ N ; but then 4.1 implies that c3 /∈ N ,
and so c1-c6-c5-b1-c3-a2-c1 is a 6-hole, with a star-diagonal {a1, v}, again a contradiction. So there is
no such vertex v. We deduce from the symmetry that (A,B) is a homogeneous pair, nondominating
because of c6, and so by 3.3, G is decomposable. This proves 15.4.

16 6-holes in non-antiprismatic graphs

The next lemma, a consequence of 9.3, is complementary to the last few results.
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16.1 Let G be claw-free, containing no hole of length > 6 or long prism, and such that every hole
of length 5 or 6 is dominating. Suppose that G contains a 6-hole, but there is no 6-hole in G with a
hub, a star-diagonal, or a star-triangle. Then either G ∈ S3, or G is decomposable.

Proof. Since every 5-hole is dominating, no 6-hole has a coronet; by hypothesis, no 6-hole has a
hub, star-diagonal or star-triangle; by 15.4, we may assume that none has a crown; and none has a
hat-diagonal since G contains no long prism. By 9.3, this proves 16.1.

We recall that G is prismatic if for every triangle A, every vertex v ∈ V (G) \ A has a unique
neighbour in A; and G is antiprismatic if its complement is prismatic. We combine 16.1 with the
previous results, to prove the next theorem, which has been the goal of the last several sections.

16.2 Let G be claw-free, with a hole of length ≥ 6. Then either G is antiprismatic, or G ∈
S0 ∪ · · · ∪ S5, or G is decomposable.

Proof. By 7.7, 9.1, 9.2 and 13.2, we may assume that G has no hole of length > 6 or long prism,
and every hole of length 5 or 6 is dominating.

(1) We may assume that there is a 6-hole C in G such that no vertex of G is a hat or clone relative
to C.

For by hypothesis there is a hole of length ≥ 6, and therefore of length 6. If there is no 6-hole
in G with a hub, a star-diagonal, or a star-triangle, then either G ∈ S3, or G is decomposable, by
16.1. Thus we may assume that there is a 6-hole C with either a hub, a star-diagonal, or a star-
triangle, choosing C with a hub if possible. By 14.1 and 14.2, if C has a hub or a star-diagonal, then
we may assume that no vertex is a hat or clone with respect to C. If C has a star-triangle and has
no hub, then no 6-hole has a hub, and so by 15.3, again we may assume that no vertex is a hat or
clone with respect to C. This proves (1).

(2) There do not exist four pairwise nonadjacent vertices in G.

For suppose that a1, . . . , a4 are pairwise nonadjacent. Not all of a1, . . . , a4 belong to C; and each ai

that does not belong to C has exactly four neighbours in C, since C is dominating and no vertex is a
clone or hat relative to C. We may assume that a1 /∈ V (C). Since it has four neighbours in C and is
nonadjacent to a2, a3, a4, at most two of a2, a3, a4 belong to C, and we may assume that a2 /∈ V (C).
By 4.3, a1, a2 do not have exactly the same four neighbours in C, and so at most one vertex of C
is nonadjacent to both a1, a2; and so not both a3, a4 ∈ V (C), and we may assume that a3 /∈ V (C).
Then a1, a2, a3 each have four neighbours in C. But they have no common neighbour, and therefore
every vertex of C is adjacent to exactly two of them. Consequently a4 /∈ V (C), and therefore a4

also has four neighbours in C; and so some three of a1, . . . , a4 have a common neighbour in V (C), a
contradiction. This proves (2).

Let C have vertices c1- · · · -c6-c1 in order.

(3) If there exist stars s1, s2, s3, each in position 1 1

2
or 21

2
, such that s3 is nonadjacent to both

s1, s2, then G is decomposable.
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For suppose that such s1, s2, s3 exist. s1, s3 are in different positions, by 8.2, and so are s2, s3,
and therefore s1, s2 are in the same positions. Choose A,B with A ∪ B maximal such that:

• A is a set of stars in position 1 1

2

• B is a set of stars in position 2 1

2

• s1, s2, s3 ∈ A ∪ B

• let H be the graph with V (H) = A ∪ B, in which x, y are adjacent if and only if x, y are
nonadjacent in G and exactly one of x, y belongs to A; then H is connected.

We claim that (A,B) is a homogeneous pair. For suppose that v /∈ A ∪ B has a neighbour and a
nonneighbour in A say. Since H is connected, we may choose a1, a2 ∈ A and b ∈ B such that v
is adjacent to a1 and not to a2, and b is nonadjacent in G to both a1, a2. Since v has a neighbour
and a nonneighbour in A, it follows that v /∈ V (C), and therefore v has exactly four neighbours
in C. Since v has a nonneighbour in A, it is not a star in position 1 1

2
or a hub in hub-position 2;

and from the maximality of A ∪ B, it is not a star in position 2 1

2
. Consequently v is adjacent to

c5. Since {v, a1, b, c5} is not a claw, v is not adjacent to b. But v is adjacent to one of c1, c2, c3, say
ci, and then {ci, a2, b, v} is a claw, a contradiction. This proves that (A,B) is a homogeneous pair,
nondominating because of c5, and so G is decomposable, by 3.3. This proves (3).

(4) If there exist a hub t in hub-position 1, and stars s2, s3, s4, each in positions 2 1

2
or 51

2
, such

that s4 is nonadjacent to s2, s3, then G is decomposable.

For choose A,B with A ∪ B maximal such that:

• A is a set of stars in position 2 1

2

• B is a set of stars in position 5 1

2

• s2, s3, s4 ∈ A ∪ B

• let H be the graph with V (H) = A ∪ B, in which x, y are adjacent if and only if x, y are
nonadjacent in G and exactly one of x, y belongs to A; then H is connected.

We claim that (A,B) is a homogeneous pair. For let v ∈ V (G)\A∪B, and suppose it has a neighbour
and a nonneighbour in A say. Thus v /∈ V (C). Since H is connected, we may choose a1, a2 ∈ A and
b ∈ B such that v is adjacent to a1 and not to a2, and b is nonadjacent to both a1, a2. By 11.1,
v is not a hub, and not a star in position 2 1

2
; and by the maximality of A ∪ B, v is not a star in

position 5 1

2
. Hence v is a star in some other position. Consequently v is adjacent to t by 11.1, and

v is adjacent to one of c1, c4, say c1. By 11.1, t is nonadjacent to all of a1, a2, b. If v is nonadjacent
to b, then {c1, v, a2, b} is a claw, while if v is adjacent to b, then {v, a1, b, t} is a claw, in either case
a contradiction. Thus (A,B) is a homogeneous pair. By 11.1, t has no neighbours in A ∪ B, and so
(A,B) is nondominating. By 3.3, G is decomposable. This proves (4).

(5) If there exist stars s1, . . . , s4, each in position 1 1

2
, 31

2
or 51

2
, and all pairwise nonadjacent except
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for s3s4, then G is decomposable.

For let B1, B2, B3 be the set of all stars in positions 1 1

2
, 31

2
and 51

2
respectively. By 4.3, B1, B2, B3

are all cliques. Let B = B1 ∪ B2 ∪ B3. Because of s1, . . . , s4, there are two triads in B with two
vertices in common. Suppose that T is a triad with |T ∩ B| = 2; say T = {v, b1, b2}, where v /∈ B
and b1 ∈ B1, b2 ∈ B2. Since every vertex of C is adjacent to one of b1, b2 it follows that v /∈ V (C),
and therefore v has four neighbours in C. Since {c2, v, b1, b2} is not a claw, v is not adjacent to c2

and similarly not to c3; and so it is a star in position 5 1

2
, contradicting that v /∈ B. Thus there is no

such triad. By 15.1, it follows that G is decomposable. This proves (5).

We may assume that G is not antiprismatic. Therefore there are four vertices a1, . . . , a4, pairwise
nonadjacent except possibly for a3a4. By (2), a3, a4 are adjacent. Suppose first that a1, a2 ∈ V (C).
Then at least one of a3, a4 is not in V (C), say a3, and therefore a3 is adjacent to every vertex of C
except a1, a2. Since a1, a2 are nonadjacent, it follows that a3 is a hub, and so we may assume that
a1 = c1, a2 = c4. Then every other vertex of C is adjacent to one of a1, a2, and so a4 /∈ V (C); and
therefore a4 is also a hub, in the same hub-position as c3. Then G is decomposable, by 11.2.

We may therefore assume that not both a1, a2 ∈ V (C), say a1 /∈ V (C). Consequently a1 has four
neighbours in V (C). Assume that a2, a3 ∈ V (C). Then since a1, a2, a3 are pairwise nonadjacent, it
follows that a1 is a hub, and we may assume that a2 = c1, a3 = c4. Since a4 is adjacent to a3 and
a4 /∈ V (C), it follows that a4 is a star in position 2 1

2
, 31

2
, 41

2
, or 51

2
, or a hub in hub-position 2 or 3.

Since a4 is nonadjacent to a2 = c1, we may assume from the symmetry that a4 is a star in position
21

2
; but then it is adjacent to a1 by 11.1, a contradiction.
This proves that not both a2, a3 ∈ V (C). Assume that a2 ∈ V (C), say a2 = c1. Then a3 /∈ V (C),

and similarly a4 /∈ V (C). Each of a1, a3, a4 is adjacent to four of c2, . . . , c6, and is therefore either a
star in position 3 1

2
or 41

2
, or a hub in hub-position 1. If any of them is a hub in hub-position 1, then

it is adjacent to both the others by 11.1, a contradiction; and so all three are stars. But then the
result follows by (3). So we may assume that a2 /∈ V (C).

Since a1, a2 do not have exactly the same neighbours in C by 4.3, it follows that at least one
of a3, a4 /∈ V (C), say a3. Hence a1, a2, a3 each has four neighbours in V (C), and yet they have
no common neighbour. Consequently each vertex of C is adjacent to exactly two of a1, a2, a3, and
therefore a4 /∈ V (C). Thus a4 also has exactly four neighbours in C, and no vertex is adjacent to all
of a1, a2, a4, and therefore a3, a4 have the same neighbours in C. By 11.2 we may assume that a3, a4

are not hubs. If one of a1, a2 is a hub, then G is decomposable by (4); and if a1, a2 are not hubs,
then G is decomposable by (5). This proves 16.2.

17 Stable sets of size 4

In this section we finish the case that α(G) ≥ 4. We have already handled such graphs that have a
hole of length at least 6, so it suffices to prove the following.

17.1 Let G be claw-free, such that G has no hole of length > 5, every 5-hole in G is dominating,
α(G) ≥ 4, and G is not decomposable. Then G is either a line graph or a circular interval graph.

The proof of 17.1 falls into several parts, as follows. Let G satisfy the hypotheses of 17.1. We
shall prove the following.
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• (In 17.7) If some 5-hole has a coronet, then G is a line graph.

• (In 17.8) If G contains a (1, 1, 1)-prism, then G is a line graph.

• (In 17.9) If G has a 5-hole, but no 5-hole has a coronet, and G contains no (1, 1, 1)-prism, then
G is a circular interval graph.

• (In 17.10) If G has a 4-hole but no 5-hole, then G is a line graph.

• (In 17.11) It is impossible that G has no holes at all.

We begin with a few lemmas.

17.2 Let B be a clique in a claw-free graph G, and let a1, a2 ∈ V (G)\B be nonadjacent. If a1, a2 are
not B-complete and not B-anticomplete, then there is a path of length 3 between a1, a2 with interior
in B.

Proof. For i = 1, 2, let Ni be the set of neighbours of ai in B. By hypothesis, Ni 6= ∅, B. Suppose
that N1 ⊆ N2. Since N1 6= ∅, there exists x ∈ N1; and since N2 6= B, there exists y ∈ B \ N2.
But then {x, y, a1, a2} is a claw, a contradiction. Thus N1 6⊆ N2, and similarly N2 6⊆ N1. Choose
n1 ∈ N1 \ N2, and n2 ∈ N2 \ N1. Then a1-n1-n2-a2 is a path. This proves 17.2.

17.3 Let G be claw-free, with no hole of length > 5, not decomposable, and such that every 5-hole
is dominating. Let the paths a1-b1, a2-b2 and a3-c3-b3 form a prism in G, where {a1, a2, a3} and
{b1, b2, b3} are triangles. Then there is a 5-hole in G with a centre, and every neighbour of c3 that is
nonadjacent to a1, b1, a2, b2 is adjacent to both of a3, b3.

Proof. Choose a step-connected strip (A, ∅, B) with a1, a2 ∈ A and b1, b2 ∈ B, parallel to the strip
({a3}, {c3}, {b3}), and maximal with this property. Since c3 is anticomplete to A ∪ B and G is not
decomposable, 3.3 implies that (A,B) is not a nondominating homogeneous pair. Thus we may
assume that there exists v ∈ V (G) \ (A ∪ B) with a neighbour and a nonneighbour in A. Then
v /∈ {a3, b3, c3}. Choose a step a′

1-a
′

2-b
′

2-b
′

1-a
′

1 such that v is adjacent to a′

1 and not to a′2. By 4.2, v
is adjacent to b′1. If v is adjacent to b′2, then by 4.2 v is adjacent to b3; by 4.1 v is nonadjacent to
c3; and by 4.2 v is nonadjacent to a3. But then v can be added to B, contrary to the maximality
of A ∪ B. Thus v is nonadjacent to b′2. Since the 5-hole a3-c3-b3-b

′

2-a
′

2-a3 is dominating, v has a
neighbour in the path a3-c3-b3, and therefore is adjacent to at least two adjacent vertices of this
path. In particular, v is adjacent to c3. Since v-c3-b3-b

′

2-a
′

2-a
′

1-v is not a 6-hole, v is adjacent to
b3 and similarly to a3. Hence v is a centre for the 5-hole a3-c3-b3-b

′

1-a
′

1-a3. Now suppose that d is
a neighbour of c3, nonadjacent to a1, b1, a2, b2. Hence d has a nonneighbour in A. If d also has a
neighbour in A, then by exchanging v, d we deduce that d is adjacent to both a3, b3 as required.
Thus we may assume that d has no neighbour in A, and similarly none in B. From the symmetry,
we may assume that d is adjacent to a3. By 4.2 (with d-a3-a

′

2), v is adjacent to d; and by 4.1 (with
{d, a′1, b3}) it follows that d is adjacent to b3 as required. This proves 17.3.

17.4 Let G be claw-free, with no hole of length > 5, and such that every 5-hole is dominating. Let
C be a 4-hole. If there exist adjacent vertices of G \ V (C), both with no neighbour in V (C), then G
is decomposable.
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Proof. Let C have vertices c1- · · · -c4-c1 in order. Let Z ⊆ V (G) \ V (C) be maximal such that
Z is connected and no vertex in Z has a neighbour in V (C), with |Z| > 1. Let Y be the set of
vertices of V (G) \ Z with a neighbour in Z. Then from the maximality of Z, every vertex of Y has
a neighbour in V (C); and since G is claw-free, it follows that every vertex in Y is a hat relative to
C. Let Y = Y1 ∪ · · · ∪ Y4, where for i = 1, . . . , 4, Yi is the set of vertices in Y that are adjacent to
ci, ci+1 (reading subscripts modulo 4).

(1) Y1, . . . , Y4 are cliques; and for 1 ≤ i ≤ 4, Yi is complete to Yi+1.

The first assertion follows from 4.3. For the second, suppose that y1 ∈ Y1 and y2 ∈ Y2 say are
nonadjacent, and let P be a path between y1, y2 with interior in Z. Then y1-c1-c4-c3-y2-P -y1 is a
hole of length ≥ 6, a contradiction. This proves (1).

(2) We may assume that if y, y′ ∈ Y are nonadjacent then every vertex in Z is adjacent to both
y, y′.

For let y ∈ Y1, y
′ ∈ Y3 say (without loss of generality, by (1)). Let P be a path between y, y ′

with interior in Z. Since the hole y-c2-c3-y
′-P -y has length ≤ 5, it follows that P has length 2, and

the hole has length 5. Let z be the middle vertex of P . Since every 5-hole is dominating, every
vertex in Z \ {z} has a neighbour in P , and therefore is adjacent to z and to at least one of y, y ′.
If some z′ ∈ Z \ {z} is nonadjacent to one of y, y′, then the three paths c1-c4, c2-c3 and P form a
prism satisfying the hypotheses of 17.3, and the result follows. Thus we may assume that they are
all adjacent to both y, y′. This proves (2).

(3) For 1 ≤ i < j ≤ 4, if yi ∈ Yi and yj ∈ Yj then yi, yj have the same neighbours in Z.

For if yi, yj are nonadjacent this follows from (2). If they are adjacent, suppose that z ∈ Z is
adjacent to yi and not to yj, and choose c ∈ V (C) adjacent to yi and not to yj; then {yi, z, yj , c} is
a claw, a contradiction. This proves (3).

If Y is a clique then Y is an internal clique cutset and the theorem holds. Thus by (1), we may
assume that Y1 is not complete to Y3 (and therefore Y1, Y3 are nonempty). By (2) and (3) it follows
that Y is complete to Z, and therefore Z is a clique by 4.3; but then all members of Z are twins.
This proves 17.4.

17.5 Let G be claw-free, let C be a dominating 5-hole in G, and let X ⊆ V (G) be stable with
|X| = 4. Then there is a 5-numbering of C such that either

• there are three hats in X, in positions 1 1

2
, 21

2
and 31

2
, or

• X consists of two hats in positions 1 1

2
and 21

2
and two clones in positions 4, 5, or

• X consists of three hats in positions 1 1

2
, 21

2
and 41

2
and a star in position 4 1

2
.

Proof. Let C have vertices c1- · · · -c5-c1 and let X = {v1, . . . , v4}. Each member of X \ V (C) has
at least two neighbours in V (C), since C is dominating; and on the other hand, every vertex of C
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is adjacent to at most two members of X, since G is claw-free. At most two members of X belong
to C, so we may assume that v1, v2 ∈ X \ V (C). But v1, v2 both have at least two neighbours in C,
and since they are not hats in the same position by 4.3and v3, v4 are nonadjacent, it follows that not
both v3, v4 ∈ V (C). Thus we assume that v3 /∈ V (C). Suppose that v4 ∈ V (C), say v4 = c5. Then
each of c1, c4 is adjacent to at most one of v1, v2, v3, and each of c2, c3 is adjacent to at most two of
v1, v2, v3. On the other hand, v1, v2, v3 each have at least two neighbours in C. Hence equality holds,
and therefore v1, v2, v3 are hats in positions 1 1

2
, 21

2
, 31

2
, as required. We may therefore assume that

v4 /∈ V (C). Now c1, . . . , c5 are each adjacent to at most two of members of X, and every member
of X is adjacent to at least two of c1, . . . , c5. Consequently at least two members of X are hats, say
v1, v2. Suppose that no two members of X are hats in consecutive positions. Then we may assume
that v1, v2 are in positions 1 1

2
, 31

2
, and v3, v4 are not hats; and from counting the edges between V (C)

and X, it follows that v3, v4 are clones, in positions 1, 4. But since they are nonadjacent to v1, v2,
this contradicts 8.2. Thus at least two members of X are hats in consecutive positions; and so we
may assume that v1, v2 are hats in positions 1 1

2
, 21

2
respectively. If v3, v4 are not hats, then they are

clones in positions 4, 5 and the theorem holds. Thus we may assume that v3 is a hat. If it is in
position 3 1

2
or 1

2
then the theorem holds, so we may assume it is in position 4 1

2
. If v4 is a hat, then

it is in position 3 1

2
or 1

2
and the theorem holds; and by 8.2 is it not a clone. So we may assume it is

a star, and hence in position 4 1

2
; but then the theorem holds. This proves 17.5.

17.6 Let G be claw-free, such that G has no hole of length > 5, every 5-hole in G is dominating,
and α(G) ≥ 4. Then no 5-hole in G has a centre; and G does not contain a (2, 1, 1)-prism.

Proof. For suppose first that c1- · · · -c5-c1 is a 5-hole C, with a centre z. Since α(G) ≥ 4, we may
assume by 17.5 that there are nonadjacent hats h1, h2 in positions 1 1

2
, 21

2
say. Since {z, h1, c3, c5} is

not a claw, z is not adjacent to h1, and similarly it is not adjacent to h2. But then {c2, z, h1, h2} is a
claw, a contradiction. This proves that no 5-hole has a centre. The second assertion of the theorem
follows from 17.3. This proves 17.6.

The following completes the first step of the proof of 17.1.

17.7 Let G be claw-free, such that G has no hole of length > 5, every 5-hole in G is dominating,
α(G) ≥ 4, and G is not decomposable. If some 5-hole has a coronet then G is a line graph.

Proof. Let c1- · · · -c5-c1 be a 5-numbering of a 5-hole C, such that there is a hat h and a star s
both in position 1 1

2
. By 8.2, h and s are nonadjacent. Let C be the proximity component of order 5

containing C.

(1) For every a1- · · · -a5-a1 in C, h is a hat and s is a star, both in position 1 1

2
.

For it suffices to show that if two 5-numberings are proximate, and the claim is true for one of
them, then it is true for the other. Thus, suppose that a1- · · · -a5-a1 is a 5-numbering and h is a
hat and s is a star, both in position 1 1

2
, relative to a1- · · · -a5-a1. Let 1 ≤ i ≤ 5, and let a′

i be a
clone in position i relative to a1- · · · -a5-a1. We must show that ai and a′i have the same neighbours
in {h, s}. If i = 1, then a′

1 is adjacent to s, h by 8.1. If i = 4, then a′

4 is nonadjacent to h by 8.1,
and nonadjacent to s by 17.6, since otherwise s would be a centre for a1-a2-a3-a

′

4-a5-a1. Thus from
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the symmetry we may assume that i = 5. Since {a′

5, h, s, a4} is not a claw, it follows that a′

5 is
nonadjacent to at least one of h, s. Since {a1, a

′

5, h, s} is not a claw, a′

5 is adjacent to at least one of
h, s. If a′5 is adjacent to h and not to s, then the 5-hole h-a2-s-a5-a

′

5-h has a centre a1, contrary to
17.6. Thus a′5 is adjacent to s and not to h. This proves (1).

For 1 ≤ i ≤ 5, let Ai = Ai(C). From (1), A1 ∪ A2 is complete to both h, s; A3 ∪ A5 is complete
to s and anticomplete to h; and A4 is anticomplete to both h, s. Let W = A1 ∪ · · · ∪ A5. For each
v ∈ V (G) \ {h, s}, let P (v) be the set of all k such that v is in position k relative to some member of
C. (Note that since every 5-hole is dominating, and none has a centre, it follows that v has a position
relative to each member of C.) If two 5-numberings are proximate, then the positions of v relative to
them differ by at most 1

2
, and it follows that P (v) is a set of consecutive 1

2
-integers modulo 5, that

is, P (v) is an “interval”.

(2) The sets A1, . . . , A5 are pairwise disjoint; and every vertex in V (G) \ W is either complete
to four of A1, . . . , A5 and anticomplete to the fifth, or complete to two consecutive of A1, . . . , A5 and
anticomplete to the other three.

For certainly the sets A1 ∪ A2, A3 ∪ A5 and A4 are pairwise disjoint. Suppose that there exists
v ∈ A1 ∩A2. Then 1, 2 ∈ P (v), and v is adjacent to h, s. Hence 3, 4, 5 /∈ P (v), by (1), and since P (v)
is an interval, it follows that 1 1

2
∈ P (v). So relative to some member of C, v is a hat or star in position

11

2
. But by 8.2, a hat in position 1 1

2
is nonadjacent to s, and a star in position 1 1

2
is nonadjacent

to h, in either case a contradiction. This proves that A1 ∩ A2 = ∅. Now assume that there exists
v ∈ A3 ∩ A5. Thus 3, 5 ∈ P (v), and by (1) v is adjacent to s and not to h. By (1) 1, 2, 4 /∈ P (v),
contradicting that P (v) is an interval. This proves that A1, . . . , A5 are pairwise disjoint. Now if
v ∈ V (G) \ W , it follows that P (v) contains no integer, and so P (v) has only one member, since it
is an interval; and the final assertion of (2) follows. This proves (2).

(3) Ai = {ci} for i = 1, 2.

For if a1 ∈ A1 and a4 ∈ A4, then since {a1, a4, h, s} is not a claw it follows that a1, a4 are non-
adjacent. Thus A1 ∪ A2 is anticomplete to A4. Let a1- · · · -a5-a1 be in C, and suppose that some
v ∈ A1 is adjacent to a3. Since v is anticomplete to A4 as we saw, it follows that v is adjacent
to a2; by 8.2 v is not a hat, since it is adjacent to h, and so v is adjacent to a1; and by 8.2, v is
nonadjacent to a5 since it is adjacent to h. Hence v is in position 2 relative to a1- · · · -a5-a1, and
hence v ∈ A1 ∩ A2, contrary to (2). This proves that A1 is anticomplete to A3, and similarly A2 is
anticomplete to A5. Now let a1- · · · -a5-a1 be in C, and suppose that some a′

1 ∈ A1 is nonadjacent to
a5. Then {s, a′1, a5, a3} is a claw, a contradiction. Consequently A1 is complete to A5, and similarly
A2 to A3. Since every vertex in V (G) \ W is either complete or anticomplete to Ai for i = 1, 2, it
follows that (A1, A2) is a homogeneous pair, nondominating since A4 6= ∅; and so by 3.3, A1, A2 both
have cardinality 1, since G is not decomposable. This proves (3).

(4) A3, A4, A5 are cliques.

For if a3, a
′

3 ∈ A3 then they are adjacent since {s, a3, a
′

3, c1} is not a claw, and so A3 is a clique, and
similarly so is A5. Now let a1- · · · -a5-a1 be in C, and let a′

4 ∈ A4 be different from a4. Since A4
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is disjoint from A3, A5, it follows that 3, 5 /∈ P (a′

4); and since 4 ∈ P (a′

4) and P (a′4) is an interval,
it follows that P (a′

4) ⊆ {31

2
, 4, 41

2
}. In particular, relative to a1- · · · -a5-a1, a′4 has position one of

31

2
, 4, 41

2
, and therefore is adjacent to a4. This proves that A4 is a clique, and therefore proves (4).

For i = 3, 5, let A′

i be the set of members of Ai with a nonneighbour in A4.

(5) A′

3 is complete to A′

5; A′

3 is anticomplete to A5 \ A′

5; and A3 \ A′

3 is anticomplete to A′

5.

For suppose that a3 ∈ A′

3 and a5 ∈ A′

5 are nonadjacent. Each of them is not A4-complete and
not A4-anticomplete, and therefore by 17.2, there is a path between them of length 3 with interior
in A4. But also a5-c1-c2-a3 is a path, and the union of these two paths is a 6-hole, contrary to
hypothesis. This proves the first assertion of (5). Now suppose that a3 ∈ A′

3 and a5 ∈ A5 \ A′

5 are
adjacent. Choose a4 ∈ A4 nonadjacent to a3. Since a5 /∈ A′

5, it follows that a4, a5 are adjacent; but
then {a5, a3, a4, c1} is a claw, a contradiction. Thus A′

3 is anticomplete to A5 \ A′

5, and the third
assertion of (5) follows by symmetry. This proves (5).

(6) One of A′

3, A
′

5 is empty.

For suppose they are both nonempty. Choose a′

3 ∈ A′

3 and a′5 ∈ A′

5. Choose a4, a
′

4 ∈ A4 with
a4 adjacent to a′3 and a′4 nonadjacent to a′

3. Since {a′5, a
′

3, a
′

4, c1} is not a claw, a′

4 is nonadjacent
to a′5, and since {a′3, a

′

5, a4, c2} is not a claw, a4 is adjacent to a′

5. Let G be the complement of G.
Since C is connected by proximity, it follows that G|(A3 ∪A5) is connected, and so A′

3 ∪ (A5 \A′

5) is
not complete to A′

5 ∪ (A3 \ A′

3). Hence by (4) and (5), there exist a3 ∈ A3 \ A′

3 and a5 ∈ A5 \ A′

5,
nonadjacent. But then a3-a

′

4-a5-a
′

5-a
′

3-a3 is a 5-hole with a centre a4, contrary to 17.6. This proves
(6).

(7) Ai = {ci} for 1 ≤ i ≤ 5.

For from (6) we may assume that A′

5 = ∅. Then (A′

3, A4) and (A3 \ A′

3, A5) are both homoge-
neous pairs, by (5), and they are both nondominating because of h, and so by 3.3, A ′

3, A4, A3 \A′

3, A5

all have cardinality at most 1. In particular A4 = {c4} and A5 = {c5}. Since every vertex in A3 has
a neighbour in A4, it follows that A′

3 = ∅, and therefore A3 = {c3}. From (3), this proves (7).

For 1 ≤ i ≤ 5 let Hi be the set of all hats in position i + 2 1

2
, and let Si be the set of all stars in

this position. Thus h ∈ H4 and s ∈ S4. From 4.3, each Hi and each Si is a clique. From (7), we see
that V (G) is the union of H1, . . . ,H5, S1, . . . , S5 and V (C).

(8) The following hold:

• For 1 ≤ i, j ≤ 5, Hi is complete to Sj if j = i+1 or j = i−1, and otherwise Hi is anticomplete
to Sj

• For 1 ≤ i < j ≤ 5, Hi is anticomplete to Hj

• For 1 ≤ i ≤ 5, if Hi 6= ∅ then Si is anticomplete to Si−1, Si+1

• For 1 ≤ i ≤ 5, if Hi 6= ∅ then Si is complete to Si−2, Si+2
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• For 1 ≤ i ≤ 5, if Hi, Si 6= ∅ then Si−1 is complete to Si+1.

For the first claim follows from 8.2. No two hats in consecutive positions are adjacent, by 8.2,
and no two hats in distinct nonconsecutive positions are adjacent, by 17.6, since the union of two
such adjacent hats with C would be a (2, 1, 1)-prism. Hence the second claim holds. The third and
fourth claims are trivial if Si = ∅, so we may assume that Si,Hi are both nonempty; and therefore,
since S4,H4 are nonempty by hypothesis, we may assume that i = 4. Since S3∪S4 ∪{h, c4} includes
no claw, S3 is anticomplete to S4, and similarly S4 to S5. This proves the third claim. Since
{c1, s} ∪ S3 ∪ S5 includes no claw, S3 is complete to S5. Since {c1, h} ∪ S2 ∪ S4 includes no claw,
S2 is complete to S4 and similarly S1 is complete to S4. This proves the fourth claim. For the
final claim, suppose that si ∈ Si. By the third claim, Si is anticomplete to Si−1, Si+1, and since
{ci+2, si} ∪ Si−1 ∪ Si+1 includes no claw, Si−1 is complete to Si+1. This proves (8).

If Si is anticomplete to Si+1 and complete to Si+2 for 1 ≤ i ≤ 5, then by (8), G is a line graph
and the theorem holds. Therefore, in view of (8), we may assume the following (for a contradiction):

(9) Either Si is not anticomplete to Si+1 for some i ∈ {1, 2, 5} or Si is not complete to Si+2 for
some i ∈ {1, 5}.

(10) H1,H2 = ∅.

For suppose that there exists h1 ∈ H1 say. Since S2 ∪ S3 ∪ {s, h1} includes no claw, S2 is anti-
complete to S3. By (8), S1 is anticomplete to S5, S2 and complete to S3. By (9), there exist s2 ∈ S2

and s5 ∈ S5, nonadjacent. Then s-c2-s5-c4-c5-s is a 5-hole; and relative to this 5-numbering, c3, h
are a star and a hat both in position 2 1

2
, and s2 is a clone in position 5, contrary to (7) applied to

this 5-hole. Thus there is no such h1, and similarly H2 = ∅. This proves (10).

By (7), there are no clones relative to c1- · · · -c5-c1, and so by 17.5 there are hats in at least
three positions. By (10) it follows that H3,H5 are both nonempty. From (8), S3 is complete to
S1 and anticomplete to S2; and S5 is complete to S2 and anticomplete to S1. By (9), S1 is not
anticomplete to S2. Since S1 ∪S2∪S3∪H5 includes no claw, S3 = ∅, and similarly S5 = ∅. But then
(S1 ∪ {c3}, S2 ∪ {c5}) is a homogeneous pair, nondominating because of h, contrary to 3.3. Hence
our assumption in (9) was false. This proves 17.7.

Let the paths ai-bi (i = 1, 2, 3) form a (1, 1, 1)-prism. For 1 ≤ i ≤ 3, a hat on ai-bi means a vertex
adjacent to ai, bi and nonadjacent to the other four vertices in {a1, a2, a3, b1, b2, b3}. The following
completes the second step of the proof of 17.1.

17.8 Let G be claw-free, such that G has no hole of length > 5, every 5-hole in G is dominating,
α(G) ≥ 4, and G is not decomposable. If G contains a (1, 1, 1)-prism then G is a line graph.

Proof. By 17.7, we may assume that no 5-hole has a coronet.

(1) G contains a (1, 1, 1)-prism with a hat.

For let the paths ai-bi (i = 1, 2, 3) form a (1, 1, 1)-prism, where A = {a1, a2, a3} and B = {b1, b2, b3}
are triangles. Suppose first that A ∪ B is dominating. By hypothesis, α(G) ≥ 4, and so there exist
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pairwise disjoint vertices v1, . . . , v4. For 1 ≤ i ≤ 4, let Ni be the set of neighbours of vi in A ∪ B,
together with vi itself if vi ∈ A ∪ B. Thus each |Ni| ≥ 2, and if |Ni| = 2 then vi is a hat, so we
may assume that |Ni| ≥ 3 for each i. If |Ni| = 3, then vi /∈ A ∪ B and Ni = A or B; and so by 4.3,
|Ni| = 3 for at most two values of i. Consequently |N1| + |N2| + |N3| + |N4| ≥ 14, and therefore
we may assume that a1 belongs to Ni for at least three values of i. But then G contains a claw, a
contradiction. So if A ∪ B is dominating then (1) holds.

Now assume that A ∪ B is not dominating. Let z ∈ V (G) have no neighbours in A ∪ B, and let
N be the set of neighbours of z. For n ∈ N , let Y (n) be the set of neighbours of n in A ∪ B. By
17.4, Y (n) is nonempty; and since G is claw-free, Y (n) is a clique. We claim we may assume that
either Y (n) = A or Y (n) = B. For we may assume that a1 ∈ Y (n). If b1 ∈ Y (n) then since Y (n) is a
clique, it follows that n is a hat as required. We assume then that b1 /∈ Y (n). By 4.2, a2, a3 ∈ Y (n),
and since Y (n) is a clique, we deduce that Y (n) = A. Thus for every n ∈ N , Y (n) = A or Y (n) = B.
Suppose there exist m,n ∈ N with Y (m) = A and Y (n) = B. If m,n are not adjacent, then the paths
m-z-n, a1-b1 and a2-b2 form a (2, 1, 1)-prism, contrary to 17.6. If m,n are adjacent, then the paths
m-n, a1-b1, a2-b2 form a (1, 1, 1)-prism with a hat z on m-n, as required. Thus we may assume that
Y (n) = A for all n ∈ N . By 4.3, N is a clique. Let X be the set of all vertices in V (G)\(N∪{z}) with
a neighbour in N . We claim that X is a clique. Let x1, x2 ∈ X, and assume they are nonadjacent.
Thus not both x1, x2 ∈ A, say x1 /∈ A. Since some vertex in N is adjacent to x1 and to z, 4.2 implies
that x1 is complete to A, and therefore x2 /∈ A. If x1, x2 have a common neighbour n ∈ N , then
{n, z, x1, x2} is a claw, a contradiction. Thus x1, x2 have no common neighbour in N . Let n1, n2 ∈ N
be adjacent to x1, x2 respectively. Since {ai, n2, x1, bi} is not a claw, it follows that x1 is adjacent
to bi for 1 ≤ i ≤ n and similarly x2 is complete to B. Hence b1-x1-n1-n2-x2-b1 is a 5-hole with a
centre a1, contrary to 17.6. Thus X is a clique, and therefore X is an internal clique cutset (unless
N = ∅, when G is expressible as a 0-join). Hence G is decomposable, a contradiction. This proves (1).

(2) G contains a (1, 1, 1)-prism with hats on two different paths.

For by (1) we may choose paths ai-bi (i = 1, 2, 3) forming a (1, 1, 1)-prism, where A = {a1, a2, a3}
and {b1, b2, b3} are triangles, such that there is a hat h on a3-b3. Choose a step-connected strip
(A, ∅, B) with a1, a2 ∈ A and b1, b2 ∈ B, parallel to ({a3}, {h}, {b3}), and with A ∪ B maximal with
this property. Since (A,B) is not a nondominating homogeneous pair, by 3.3, we may assume there
is a vertex v /∈ A ∪ B with a neighbour and a nonneighbour in A. Let N be the set of neighbours
of v, and let a′1-a

′

2-b
′

2-b
′

1-a
′

1 be a step with a′1 ∈ N and a′2 /∈ N . By 4.2, b′1 ∈ N . If b′2 ∈ N , then by
4.2, b3 ∈ N ; by 4.1, h /∈ N ; by 4.2, B ⊆ N ; and by 4.2, a3 /∈ N ; and then v can be added to B,
contrary to the maximality of A ∪ B. Thus b′2 /∈ N . Suppose that h ∈ N . Since v-h-a3-a

′

2-b
′

2-b
′

1-v is
not a 6-hole, it follows that a3 ∈ N , and similarly b3 ∈ N . But then v-a3-a

′

2-b
′

2-b
′

1-v is a 5-hole, and
{a′1, h} is a coronet for it, a contradiction. Thus h /∈ N . From 4.2, a3, b3 /∈ N ; and so h, v are both
hats for the prism formed by a′

1-b
′

1, a′2-b
′

2 and a3-b3, on different paths. This proves (2).

From (2), we may choose k ≥ 3, and disjoint cliques A1, . . . , Ak, B1, . . . , Bk and C1, . . . , Ck with
the following properties (let A = A1 ∪ · · · ∪ Ak, B = B1 ∪ · · · ∪ Bk and C = C1 ∪ · · · ∪ Ck):

• A1, . . . , Ak−1, B1, . . . , Bk−1 and C1, . . . , Ck−1 are all nonempty; and if k = 3 then A3, B3 are
both nonempty
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• A and B are cliques

• for 1 ≤ i, j ≤ k with i 6= j, Ai is anticomplete to Bj

• for 1 ≤ i ≤ k − 1, Ai is complete to Bi

• every vertex in Ak has a neighbour in Bk, and every vertex in Bk has a neighbour in Ak; and
if Ck is nonempty then Ak, Bk are both nonempty and are complete to each other

• for 1 ≤ i ≤ k, Ci is complete to Ai ∪ Bi, and anticomplete to A ∪ B \ (Ai ∪ Bi)

• A ∪ B ∪ C is maximal with these properties.

Note that if Ck is nonempty then there is symmetry between Ck and C1, . . . , Ck−1 (this will be used
in the case analysis below).

(3) C1, . . . , Ck are pairwise anticomplete.

For suppose not; then from the symmetry we may assume that c1 ∈ C1 is adjacent to c2 ∈ C2.
Choose ai ∈ Ai and bi ∈ Bi for i = 1, 2, 3, such that a3, b3 are adjacent (this is possible even if
k = 3). Then c1-c2-b2-b3-a3-a1-c1 is a 6-hole, a contradiction. This proves (3).

(4) For every v ∈ V (G) \ (A ∪ B ∪ C), let N be the set of neighbours of v in A ∪ B ∪ C; then
N = ∅, A,B or A ∪ B.

For suppose first that N ∩ C 6= ∅; there exists c1 ∈ N ∩ C1, say. Suppose that N meets both
A \ A1 and B \ B1. By 4.1, N ∩ (A \ A1) is complete to N ∩ (B \ B1), and so there exists i with
2 ≤ i ≤ k such that N ∩ A ⊆ A1 ∪ Ai and N ∩ B ⊆ B1 ∪ Bi. Choose ai ∈ N ∩ Ai and bi ∈ N ∩ Bi,
necessarily adjacent. Choose j 6= i with 2 ≤ j ≤ k, and choose aj ∈ Aj and bj ∈ Bj , adjacent. For
a1 ∈ A1, v-c1-a1-aj-bj-bi-v is not a 6-hole, and so a1 ∈ N . But then v-a1-aj-bj-bi-v is a 5-hole, and
{ai, c1} is a coronet for it, a contradiction. Hence N does not have nonempty intersection with both
A \ A1 and B \ B1. Suppose next that N meets A \ A1 (and therefore does not meet B \ B1). If
A \ A1 6⊆ N , we may choose distinct i, j with 2 ≤ i, j ≤ k, such that ai ∈ N and aj /∈ N ; but then
{ai, aj , v} ∪ Bi includes a claw, a contradiction. Thus A \ A1 ⊆ N . 4.2 (with A1, A2, B2) implies
that A1 ⊆ N . 4.1 (with C1, C2, A3) implies that N ∩ C2 = ∅, and similarly N ∩ C ⊆ C1. If b1 ∈ B1

is nonadjacent to v, then v-c1-b1-b3-a3-v is a 5-hole (where a3 ∈ A3 and b3 ∈ B3 are adjacent), and
it does not dominate the vertices in C2, a contradiction. Thus B1 ⊆ N . By 4.2 (with C1, B1, B2),
C1 ⊆ N ; but then v can be added to A1, a contradiction. Finally, if N meets neither of A \ A1 and
B \ B1, then A2 ∪ A3 ∪ B2 ∪ B3 includes a 4-hole that does not dominate either of v, c1, contrary to
17.4. This proves that N ∩ C = ∅.

Next assume that N ∩ A1 6= ∅. 4.2 (with C1, A1, Ai) implies that A \ A1 ⊆ N . In particular,
N ∩ A2 6= ∅, and so 4.2 (with C2, A2, A1) implies that A ⊆ N . If N intersects B \ Bk, then the
same argument implies that B ⊆ N and the theorem holds. We assume then that N ∩ B ⊆ Bk. If
N ∩ Bk = ∅ then again the theorem holds; and otherwise v can be added to Ak, a contradiction.

Thus we may assume that N ∩ A ⊆ Ak and N ∩ B ⊆ Bk; and since we may assume that N 6= ∅,
it follows that Ck = ∅. By 4.2 (with A1, N ∩ Ak, Bk \ N), it follows that N ∩ Ak is anticomplete to
Bk \ N , and similarly N ∩ Bk is anticomplete to Ak \ N . Also, N ∩ Ak is complete to N ∩ Bk, for
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otherwise G contains a (2, 1, 1)-prism, contrary to 17.6. Let C ′

k = {v}, A′

k = Ak ∩ N , B′

k = Bk ∩ N ,
A′

k+1
= Ak \N , and B′

k+1
= Bk \N (and set A′

i = Ai and so on, for 1 ≤ i < k); then this contradicts
the maximality of A ∪ B ∪ C. This proves (4).

Let A0, B0,M,Z be the sets of vertices v ∈ V (G) \ (A ∪ B ∪ C) whose set of neighbours in
A∪B ∪C is A,B,A∪B and ∅ respectively. By 4.3, A0, B0,M are cliques. Suppose that there exist
adjacent a ∈ A0 and b ∈ B0. If Ck = ∅, we can add a to Ak and b to Bk, and if Ck 6= ∅, we can define
Ak+1 = {a} and Bk+1 = {b}, in either case contradicting the maximality of A ∪ B ∪ C. Thus A0 is
anticomplete to B0. Since A1 ∪ C1 ∪ A0 ∪ M includes no claw, M is complete to A0 and similarly
to B0. Suppose that there exists z ∈ Z, and let N be the set of neighbours of z. Then by 17.4,
N ⊆ A0 ∪ B0 ∪ M , and N ∩ M = ∅ since M ∩ A1 ∪ B2 ∪ {z} includes no claw. If N meets both A0

and B0, then G contains a (2, 1, 1)-prism, contrary to 17.6, so we may assume that N ⊆ A0. Since G
is claw-free and Z is stable by 17.4, no other member of Z has a neighbour in N . Hence every vertex
in V (G) \ (N ∪ {z}) is {z}-anticomplete, and either complete or anticomplete to N . By 3.2, applied
to N, {z}, it follows that G is decomposable, a contradiction. This proves that Z = ∅. Moreover,
(Ak, Bk) is a homogeneous pair, nondominating since C1 6= ∅, and so Ak, Bk both have cardinality
≤ 1, and therefore Ak is complete to Bk. But then G is a line graph. This proves 17.8.

The following completes the third step of the proof of 17.1.

17.9 Let G be claw-free, such that G has a 5-hole, G has no hole of length > 5, every 5-hole in G
is dominating, α(G) ≥ 4, and G is not decomposable. If no 5-hole has a coronet, and G contains no
(1, 1, 1)-prism, then G is a circular interval graph.

Proof. By 9.3 it suffices to show that no 5-hole has a coronet, crown, hat-diagonal, star-diagonal or
centre. Let C be a 5-hole. By hypothesis, C has no coronet. Also, if {s1, s2} is a crown for C, then
G|(V (C) ∪ {s1, s2}) contains a (1, 1, 1)-prism (delete the middle of the three common neighbours of
s1, s2 in C), a contradiction. C has no hat-diagonal since by 17.6, G contains no (2, 1, 1)-prism. By
17.6, C has no centre; so it remains to prove that C has no star-diagonal.

Suppose that it does; let C have vertices c1- · · · -c5-c1 in order, and let s1, s2 be adjacent stars,
adjacent respectively to c1, . . . , c4 and to c3, c4, c5, c1. Since C has no coronet, there are no hats in
positions 2 1

2
, 41

2
; and there is not both a hat and a star in position 3 1

2
. Consequently, the first and

third outcomes of 17.5 are impossible, and so 17.5 implies that there is a stable set X with |X| = 4,
consisting of two hats x1, x2 in positions 1

2
and 11

2
respectively, and two clones x3, x4 in positions 3, 4

respectively. By 8.2, s1 is adjacent to x2, x3 and not to x1, and s2 is adjacent to x1, x4 and not x2. If
x3 is adjacent to s2 then {s2, x1, x3, x4} is a claw, while if x3 is not adjacent to s2 then {s1, s2, x2, x3}
is a claw, in either case a contradiction. Hence C has no star-diagonal, and 9.3 implies that G is a
circular interval graph. This proves 17.9.

For the fourth step of the proof of 17.1, we use the following.

17.10 Let G be claw-free, such that G has a hole of length 4, G has no hole of length > 4, α(G) ≥ 4,
and G is not decomposable. Then G is a line graph.

Proof. By 17.8, we may assume that G contains no (1, 1, 1)-prism. Let c1- · · · -c4-c1 be a 4-hole.
It is dominating, by 9.2, since G contains no (1, 1, 1)-prism. By hypothesis, there is a stable set X
with |X| = 4. Thus each member of X either belongs to {c1, . . . , c4} or has at least two neighbours
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in this set. If say c1 ∈ X, then c2, c4 /∈ X, and each is adjacent to at most one member of X \ {c1},
which is impossible. Thus c1, . . . , c4 /∈ X. Also, c1, . . . , c4 each are adjacent to at most two members
of X, and so equality holds, and therefore each member of X is a hat relative to c1- · · · -c4-c1, all in
different positions. Let X = {x1, . . . , x4}, where xi is a hat adjacent to ci, ci+1.

Consequently there are four nonempty cliques A1, . . . , A4, pairwise disjoint, such that:

• Ai is complete to Ai+1 and anticomplete to Ai+2 for 1 ≤ i ≤ 4 (reading subscripts modulo 4)

• xi is complete to Ai, Ai+1 and anticomplete to Ai+2, Ai+3, for 1 ≤ i ≤ 4.

Choose A1, . . . , A4 with maximal union W . Let B be the set of all vertices v ∈ V (G) \ W that are
W -complete. For i = 1, 2, 3, 4, let Hi be the set of all v ∈ V (G) \ W such that v is complete to
Ai ∪ Ai+1 and anticomplete to Ai+2 ∪ Ai+3. Thus xi ∈ Hi (1 ≤ i ≤ 4).

(1) V (G) = W ∪ B ∪ H1 ∪ H2 ∪ H3 ∪ H4.

For suppose that v ∈ V (G) \ W . We claim that v ∈ B ∪ H1 ∪ H2 ∪ H3 ∪ H4. For let N be
the set of neighbours of v. Since every 4-hole is dominating, we may assume that A1 ⊆ N . 4.2
(with A4, A1, A2) implies that N includes one of A4, A2, and from the symmetry we may assume
that A2 ⊆ N . Suppose that N intersects but does not include A3. Choose a3, a

′

3 ∈ A3 such that
a3 ∈ N and a′3 /∈ N . Then 4.2 (with x1, A2, a

′

3) implies that x1 ∈ N ; 4.1 implies that x4 /∈ N ;
4.2 (with a′3, A4, x4) implies that N ∩ A4 = ∅; 4.2 (with x2, a3, A4) implies that x2 ∈ N ; and then
v-x2-a

′

3-a4-a1-v is a 5-hole (where a1 ∈ A1 and a4 ∈ A4), a contradiction. Thus N either includes A3

or is disjoint from A3, and the same holds for A4. If N is disjoint from both A3, A4 then v ∈ H1 as
claimed, and if N includes both A3, A4 then v ∈ B as claimed. We assume therefore that N includes
just one of them, say A3, and is disjoint from A4. By 4.2, x1, x2 ∈ N , and by 4.1, x3, x4 /∈ N , and
so v can be added to A2, contrary to the maximality of W . This proves (1).

It follows from (1) that for 1 ≤ i ≤ 4, all members of Ai are twins, and therefore |Ai| = 1, and so
Ai = {ci}. For 1 ≤ i ≤ 4, there are no edges between Hi and Hi+1, since G has no 5-hole, and there
is no edge between Hi and Hi+2 since G contains no (1, 1, 1)-prism. Thus H1, . . . ,H4 are pairwise
anticomplete. By 4.3, each Hi is a clique. Let B1 be the set of all v ∈ B that are complete to H1∪H3

and anticomplete to H2 ∪ H4, and let B2 be those that are complete to H2 ∪ H4 and anticomplete
to H1 ∪ H3. We claim that B = B1 ∪ B2. For let b ∈ B, and let N be the set of its neighbours. 4.2
(with H1, c2,H2) implies that N includes one of H1,H2, say H1. By 4.1, N is disjoint from at least
two of H2,H3,H4. By 4.2 (with H2, c3,H3 and H3, c3,H4), H3 ⊆ N , and so N ∩ (H2 ∪ H4) = ∅.
Thus v ∈ B1. This proves that B = B1 ∪ B2. Consequently all members of Hi are twins, and so
Hi = {xi} for 1 ≤ i ≤ 4. Now if b1 ∈ B1 and b2 ∈ B2 then {b1, b2, x1, x3} is not a claw, and so b1, b2

are nonadjacent. Thus B1 is anticomplete to B2. By 4.3, B1, B2 are cliques, and so for i = 1, 2, all
members of Bi are twins. Hence |B1|, |B2| ≤ 1. But then G is a line graph. This proves 17.10.

Finally, we handle graphs without any holes at all, in the following.

17.11 Let G be claw-free, such that G has no holes and α(G) ≥ 4. Then G is decomposable.

Proof. For a contradiction, suppose that G is not decomposable.
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(1) There do not exist distinct x1, . . . , x4 ∈ V (G) such that x1x2, x3x4 are edges and {x1, x2} is
anticomplete to {x3, x4}.

For suppose that such x1, . . . , x4 exist. Choose connected sets A1, A2 with A1 ∪ A2 maximal such
that x1, x2 ∈ A1, x3, x4 ∈ A4, A1∩A2 = ∅, and A1 is anticomplete to A2. Let X be the set of vertices
in V (G) \ (A1 ∪ A2) with a neighbour in A1 ∪ A2. We claim that X is a clique; for let u, v ∈ X. By
the maximality of A1 ∪A2, both u, v have neighbours in both A1 and A2; and so for i = 1, 2, there is
a path Pi between u, v with interior in Ai. If u, v are nonadjacent, P1 ∪P2 is a hole, a contradiction.
This proves that X is a clique, and therefore it is an internal clique cutset, since |A1|, |A2| > 1, a
contradiction. This proves (1).

Say a subset Y ⊆ V (G) is split if |Y | ≥ 4 and every connected subset C ⊆ Y satisfies |C| ≤ |Y |−2.
Since α(G) ≥ 4, there is a split subset Y ⊆ V (G). Choose Y maximal, and let the components of
G|Y be C1, . . . , Ck. Let V (G)\Y = X. For each x ∈ X, we observe that x has neighbours in at most
two of C1, . . . , Ck, since G is claw-free; and if it has neighbours in at most one of C1, . . . , Ck, then
Y ∪ {x} is split, a contradiction. Thus each x ∈ X has neighbours in exactly two of C1, . . . , Ck. We
claim that X is a clique. For let u, v ∈ X, and suppose they are nonadjacent. Choose 1 ≤ i < i ′ ≤ k
such that u has neighbours in Ci and in Ci′ , and define j, j ′ similarly for v. If {i, i′} 6= {j, j′}, then
we may assume that i 6= j, j ′ and j 6= i, i′; choose a ∈ Ci adjacent to u and b ∈ Cj adjacent to
v, and then the existence of x, u, y, b is contrary to (1). Hence {i, i′} = {j, j′}; but then there are
paths joining u, v with interior in Ci and in Ci′ , and their union is a hole, a contradiction. This
proves that X is a clique. Since Y is split and |Y | ≥ 4, there is a partition Y1, Y2 of Y such that
|Y1|, |Y2| ≥ 2 and Y1 is anticomplete to Y2; and so X is an internal clique cutset, a contradiction.
Thus G is decomposable. This proves 17.11, and therefore completes the proof of 17.1.

18 Non-antiprismatic graphs

In view of 17.1, to complete the proof of 2.1 it remains to study graphs G with α(G) ≤ 3 that are
not antiprismatic, and that is the topic of this section. We need a number of lemmas before the main
theorem. A vertex v ∈ V (G) is simplicial if all neighbours of G are pairwise adjacent. An edge of G
is a leaf-edge if one of its ends has degree 1.

18.1 Let G be claw-free, with α(G) ≤ 3, and let a0, b0 be simplicial vertices of G, nonadjacent and
with no common neighbour. Then either

• G admits a nondominating or coherent W-join or twins, or

• G is a linear interval graph, and a0, b0 are the first and last vertices of the corresponding linear
order of V (G), or

• G is the line graph of some graph H, and a0, b0 are both leaf-edges of H, or

• there is a graph H with E(H) = V (G), such that a0, b0 are leaf-edges of H, and there is a path
of H of length 4 with edges a0, a, b, b0, such that G is obtained from L(H) by deleting the edge
ab, (and consequently G is expressible as a hex-join), or
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• G is 2-simplicial of antihat type.

In particular, either G ∈ S0 ∪ S3 ∪ S6 or G is decomposable.

Proof. We assume that G does not admit a nondominating or coherent W-join or twins. Let A,B
and C be the sets of all vertices different from a0, b0 that are adjacent to a0, to b0 and to neither of
a0, b0 respectively. Thus V (G) = A ∪B ∪C ∪ {a0, b0}. Moreover, A ∪ {a0} and B ∪ {b0} are cliques
since a0, b0 are simplicial; and C is a clique since if c1, c2 ∈ C are nonadjacent then {a0, b0, c1, c2} is
a stable set, contradicting that α(G) ≤ 3.

(1) A,B 6= ∅. Moreover, if a ∈ A and b ∈ B are adjacent, they have the same neighbours in
C.

For suppose that A = ∅, say. Thus a0 has degree 0. Then (B ∪ {b0}, C) is a homogeneous pair
of cliques, nondominating, and so 3.3 implies that B = ∅. But then a0, b0 are twins, a contradiction.
This proves the first claim. For the second, note that if c ∈ C is adjacent to a ∈ A and not to b say,
then {a, a0, b, c} is a claw, a contradiction. This proves (1).

(2) Every vertex in A has at most one neighbour in B, and vice versa.

For let H be the graph with vertex set A ∪ B and edge set the edges of G with one end in A
and one in B. Let X be any component of H; then by (1), (X ∩A,X ∩B) is a homogeneous pair of
cliques, coherent since all X-complete vertices belong to C, and so |X ∩A|, |X ∩B| ≤ 1. This proves
(2).

(3) Every vertex in A ∪ B has a neighbour in C; and in particular, C 6= ∅.

For let A0 be the set of vertices in A with no neighbour in C, and define B0 similarly. By (1),
there are no edges between A0 and B \ B0, and no edges between B0 and A \ A0. Consequently,
(A0 ∪{a0}, B0 ∪{b0}) is a homogeneous pair of cliques, coherent since a0, b0 have no common neigh-
bours. By 3.3 it follows that A0, B0 are empty. This proves (3).

(4) G is connected and we may assume that it admits no 1-join.

For A,B are nonempty, and by (3) C is nonempty, and since C is a clique, (3) implies that G
is connected. Suppose that G admits a 1-join; let V (G) = P1∪Q1∪P2∪Q2, where P1, Q1, P2, Q2 are
all nonempty and pairwise disjoint, and Q1∪Q2 is a clique, and P1 is anticomplete to P2∪Q2, and P2

is anticomplete to P1 ∪Q1. Suppose first that both of P1, P2 are cliques. Then (P1, Q2) is a homoge-
neous pair of cliques, nondominating since P2 is nonempty, and so 3.3 implies that |P1| = |Q1| = 1,
and similarly |P2| = |Q2| = 1, and therefore |V (G)| = 4, contrary to (1) and (3). We may therefore
assume that one of P1, P2 is not a clique, say P1. Since α(G) ≤ 3, it follows that P2 ∪Q2 is a clique;
and since G does not admit twins, it follows that |P2| = |Q2| = 1. Let P2 = {p2}, Q2 = {q2} say. If
x, y ∈ P1 are nonadjacent, then x, y have no common neighbour in Q1 (since if q1 were a common
neighbour then {q1, q2, x, y} would be a claw) and they have no common nonneighbour in Q1 (for if
q1 were a common nonneighbour then {x, y, q1, p2} would be stable, contradicting α(G) ≤ 3). Hence

72



the set of neighbours of x in Q1 is precisely the complement in Q1 of the set of neighbours of y in
Q1. Since this holds for all nonadjacent pairs x, y ∈ P1, it follows that there is no odd length cycle
in the complement graph of G|P1, and so this graph is bipartite; and consequently P1 is the union of
two cliques of G, say X,Y . Now not both a0, b0 belong to Q1 ∪P2 ∪Q2, since a0, b0 are nonadjacent
and have no common neighbour; so we may assume that a0 ∈ X. The set of nonneighbours of a0 in
P1 is a clique (because it is a subset of Y ); and so we may assume that X = (A ∪ {a0}) ∩ P1 and
Y = P1 \ X. For y ∈ Y , since y, a0 are nonadjacent, it follows that the set of neighbours of y in Q1

is Q1 \ A; and so Y ∪ (Q1 \ A) is a clique, and Y is anticomplete to Q1 ∩ A. Let X1 be the set of
vertices in X with a neighbour in Q1 \A, and X2 = X \X1. If x1 ∈ X1 and y ∈ Y , let q1 ∈ Q1 \A be
adjacent to x1; then since {q1, x1, y, q2} is not a claw, it follows that x1, y are adjacent. Hence X1 is
complete to Y . Consequently (X2, Y ) is a homogeneous pair of cliques, nondominating since P2 6= ∅,
and so by 3.3, |X2|, |Y | ≤ 1 and hence X2 = {a0}. Moreover, (X1, Q1 \ A) is also a nondominating
homogeneous pair of cliques, and so 3.3 implies that |X1|, |Q1 \ A| ≤ 1. Also, every two members of
Q1 ∩A are twins, and so |Q1 ∩A| ≤ 1. Hence |V (G)| ≤ 7, and G is the line graph of some graph H,
and since b0 is simplicial it follows that a0, b0 are both leaf-edges of H, and the theorem holds. This
proves (4).

(5) We may assume that G admits no internal clique cutset.

For suppose it does. By (4) and 3.1, we may assume that G is a linear interval graph. Let v1, . . . , vn

be the corresponding ordering of the vertex set. If {a0, b0} = {v1, vn} then the theorem holds, so we
may assume that a0 = vh and b0 = vj say for some h, j with 1 ≤ h < j < n. Since G is connected
and j > 1, it follows that vj−1, vj+1 are adjacent to vj . Choose i, k with 1 ≤ i < j < k ≤ n such
that vi, vk are adjacent to vj, with i minimum and k maximum. Since vh, vj are nonadjacent, it
follows that h < i. Since vj is simplicial, all of vi, . . . , vj−1 are adjacent to all of vj+1, . . . , vk. Since
vj , vk are not twins, it follows that k < n. Since α(G) ≤ 3, {v1, . . . , vi−1} is a clique. For all m with
j < m ≤ n, if vm is adjacent to any of vi, . . . , vj , then it is adjacent to vj, and therefore m ≤ k; and
it follows that vm is adjacent to all of vi, . . . , vj . We deduce that ({v1, . . . , vi−1}, {vi, . . . , vj}) is a
homogeneous pair, nondominating since k < n. By 3.3, this is impossible. This proves (5).

Let there be k edges between A and B. By (5), C is not an internal clique cutset, and so k > 0.
Let A = {a1, . . . , am} and B = {b1, . . . , bn}, where for 1 ≤ i ≤ k ai is adjacent to bi, and there are
no other edges between A and B. Define A′ = {ak+1, . . . , am}, and B′ = {bk+1, . . . , bn}. For each
c ∈ C, let

Ic = {i : 1 ≤ i ≤ k and c is adjacent to ai, bi.}

(6) If c, c′ ∈ C, and i ∈ Ic \ Ic′, then ai, bi are the only vertices in A ∪ B that are adjacent to c
and not to c′. In particular, |Ic \ Ic′ | ≤ 1.

For suppose that aj is adjacent to c and not to c′, say, where j 6= i. Then {c, c′, aj , bi} is a claw by
(2), a contradiction. This proves (6).
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Let j be the maximum cardinality of the sets Ic (c ∈ C). By (6), |Ic| = j or j − 1 for all c ∈ C.
By (3) j ≥ 1. Let

P = {c ∈ C : |Ic| = j − 1}

and Q = C \ P . Let Z be the set of vertices in A′ ∪ B′ with a neighbour in Q. By (6), if p ∈ P
and q ∈ Q, then Ip ⊆ Iq, and every vertex in A′ ∪ B′ that is adjacent to q is also adjacent to p. In
particular, Z is complete to P . By definition, Q is nonempty. Now there are four cases:

• P is empty and Iq1
= Iq2

for all q1, q2 ∈ Q

• There exist q1, q2 ∈ Q with Iq1
6= Iq2

• There exist p1, p2 ∈ P with Ip1
6= Ip2

, and

• P is nonempty, Iq1
= Iq2

for all q1, q2 ∈ Q, and Ip1
= Ip2

for all p1, p2 ∈ P .

We treat these cases separately.

(7) If P is empty and Iq1
= Iq2

for all q1, q2 ∈ Q then the theorem holds.

For then by (3), j = k and {a1, . . . , ak, b1, . . . , bk} is complete to C, and so ({a1, . . . , ak}, {b1, . . . , bk})
is a coherent homogeneous pair of cliques. By 3.3, k = 1. By (5), we may assume that C ∪ {a1} is
not an internal clique cutset, and so m = 1, and similarly n = 1. Hence all members of C are twins,
and so |C| = 1, and the third outcome of the theorem holds. This proves (7).

(8) If there exist q1, q2 ∈ Q with Iq1
6= Iq2

then the theorem holds.

For then let X be the set of neighbours of q1 in A′ ∪ B′. By (5), q1, q2 have the same neigh-
bours in A′ ∪ B′. Thus X is the set of neighbours of q2 in A′ ∪ B′. For any third member q ∈ Q,
Iq is different from one of Iq1

, Iq2
, and so by the same argument, X is the set of neighbours of q in

A′ ∪ B′. Consequently Q is complete to X and anticomplete to (A′ ∪ B′) \ X. Hence X = Z, and
therefore X is complete to P and hence to C.

Choose q1, q2 ∈ Q with Iq1
6= Iq2

, and let Y = Iq1
∩ Iq2

. Now Ip = Y for every p ∈ P , by
(6). Suppose that there exists q3 ∈ Q with Y 6⊆ Iq3

. (Hence P = ∅.) Let Y ′ = Iq1
∪ Iq2

. Since
|Iq ∪ Iq′ | ≤ j + 1 for all q, q′ ∈ Q, it follows that |Y ′| = j + 1 and Iq3

⊆ Y ′; and since no subset
Y ′′ ⊆ Y ′ with |Y ′′i| ≤ j − 1 has intersection of cardinality ≥ j − 1 with each of Iq1

, Iq2
, Iq3

, it follows
that Iq ⊆ Y ′ for all q ∈ Q. By (3), j + 1 = k. Moreover, there do not exist q, q ′ ∈ Q with Iq = Iq′ ,
since then q, q′ would be twins. Consequently, G is 2-simplicial of antihat type, and the theorem
holds.

We may therefore assume that Y ⊆ Iq for all q ∈ Q. If p ∈ P has a neighbour a ∈ A \ Z and
b ∈ B \ Z then {p, q1, a, b} is a claw, a contradiction; so P = P1 ∪ P2 where P1, P2 are the sets
of vertices in P anticomplete to A′ \ Z,B′ \ Z respectively. Since Ip = Y for all p ∈ P , it follows
that (P1, A

′ \ Z) is a homogeneous pair, nondominating because of b0, and so |P1|, |A
′ \ Z| ≤ 1; and

similarly |P2|, |B
′ \ Z| ≤ 1. Moreover ({ai : i ∈ Y } ∪ (A′ ∩ Z), {bi : i ∈ Y } ∪ (B ′ ∩ Z)) is a coherent

homogeneous pair of cliques, and so by 3.3, |Y | ≤ 1, that is, j ≤ 2; and moreover, either j = 1 or
A′ ∩ Z = B′ ∩ Z = ∅. But then in either case G is the line graph of a graph H such that a0, b0 are
both leaf-edges of H, and the theorem holds. This proves (8).
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(9) If there exist p1, p2 ∈ P with Ip1
6= Ip2

, then the theorem holds.

For let Y = Ip1
∪ Ip2

; then |Y | = j. By (6), Iq = Y for all q ∈ Q. Choose q ∈ Q; then by (6), Ip ⊆ Iq

and therefore Ip ⊆ Y , for all p ∈ P . By (3), j = k, and so Q is complete to (A \ A′) ∪ (B \ B′). Let
W be the set of neighbours of p1 in A′ ∪ B′. By (6), W is also the set of neighbours in A′ ∪ B′ of
p2. Moreover, if p ∈ P then Ip is different from one of Ip1

, Ip2
, and so W is the set of neighbours of

p in A′ ∪ B′. We deduce that P is complete to W and anticomplete to (A′ ∪ B′) \ W . But by (3),
every vertex in A′ ∪ B′ has a neighbour in C, and Z is complete to P ; so every vertex in A′ ∪ B′

has a neighbour in P , and therefore belongs to W . We deduce that P is complete to A ′ ∪ B′. If
q ∈ Q has nonneighbours a′ ∈ A′ and b′ ∈ B′, then {p1, q, a

′, b′} is a claw, a contradiction; so every
member of Q is either complete to A′ or complete to B ′. Let Q1 be those complete to B ′, and Q2

those complete to A′. Since (Q1, A
′) is a homogeneous pair of cliques, nondominating because of b0,

3.3 implies that |Q1|, |A
′| ≤ 1, and similarly |Q2|, |B

′| ≤ 1. Now there do not exist p, p′ ∈ P with
Ip = Ip′ , because they would be twins. Consequently, if |Q| ≤ 1 then G is 2-simplicial of antihat
type; so we may assume that Q1 = {q1} and Q2 = {q2}, and Q1 ∩ Q2 = ∅. In particular, q1 is not
complete to A′, and so A′ is nonempty; let A′ = {a′} say, where q1, a

′ are nonadjacent. Similarly,
B′ = {b′} where b′, q2 are nonadjacent. But then again, G is 2-simplicial of antihat type. This proves
(9).

In view of (7)–(9), we may henceforth assume that P is nonempty, Iq1
= Iq2

for all q1, q2 ∈ Q, and
Ip1

= Ip2
for all p1, p2 ∈ P . Let Ip = Y for all p ∈ P . Then |Y | = j−1, and ({ai : i ∈ P}, {bi : i ∈ P})

is a coherent homogeneous pair of cliques, and so 3.3 implies that j ≤ 2. By (3), k = j. If some
q ∈ Q has nonneighbours a′ ∈ A′ ∩ Z and b′ ∈ B′ ∩ Z, then {p, q, a′, b′} is a claw where p ∈ P , a
contradiction. Thus Q = Q1 ∪ Q2, where Q1, Q2 are the sets of members of Q which are complete
to B′ ∩ Z and to A′ ∩ Z respectively. Since (Q1, A

′ ∩ Z) is a homogeneous pair, nondominating
because of b0, 3.3 implies that |Q1|, |A

′ ∩ Z| ≤ 1, and similarly |Q2|, |B
′ ∩ Z| ≤ 1. If some p ∈ P

has neighbours a′ ∈ A′ \ Z and b′ ∈ B′ \ Z then {p, q, a′, b′} is a claw, where q ∈ Q, a contradiction.
Thus P = P1 ∪P2, where P1, P2 are the sets of members of P that are anticomplete to B ′ \Z and to
A′ \ Z respectively. Since (P1, A

′ \ Z) is a nondominating homogeneous pair of cliques, 3.3 implies
that |P1|, |A

′ \ Z| ≤ 1, and similarly |P2|, |B
′ \ Z| ≤ 1.

(10) If |Q| ≥ 2 then the theorem holds.

For in this case it follows that Q1, Q2 6= Q. Since Q1 ∪ Q2 = Q and |Q1|, |Q2| ≤ 1, we deduce
that Q = {q1, q2}, where Qi = {qi} for i = 1, 2. Since q1 /∈ Q2, there exists a′ ∈ A′ ∩ Z nonadjacent
to q1. Suppose that there exists p ∈ P \ P1. Since p /∈ P1, p has a neighbour b′ ∈ B′ \ Z; but
then {p, q1, a

′, b′} is a claw, a contradiction. This proves that P1 = P , and similarly P2 = P . Hence
|P | = 1, P = {p} say. Since p ∈ P1, p has no neighbours in B ′ \ Z; but every vertex in B ′ \ Z is
adjacent to p, by (3), and so B ′ ⊆ Z. Similarly A′ ⊆ Z, and so G is 2-simplicial of antihat type, and
the theorem holds. This proves (10).

In view of (10) we may assume that |Q| = 1. Since every vertex in Z has a neighbour in Q, it
follows that Q is complete to Z, and so Q1 = Q2 = Q. If Z = ∅ then G is a line graph of some graph
of which a0, b0 are both leaf-edges, and the theorem holds. Thus we may assume that Z is nonempty.
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If Y 6= ∅, let 1 ∈ Y , say; then ((Z ∩ A′) ∪ {a1}, (Z ∩ B′) ∪ {b1}) is a coherent homogeneous pair of
cliques, and therefore G is decomposable by 3.3 (since Z is nonempty) and the theorem holds. Thus
we may assume that Y is empty. If not both Z ∩ A′, Z ∩ B′ are nonempty, then G is a line graph
and the theorem holds; so let Z ∩ A′ = {a′} and Z ∩ B′ = {b′} say. Then G is the hex-join of G|Z
and G|(V (G) \ Z); and if we add the edge a′b′ to G we obtain the line graph of a graph in which
a0, b0 are leaf-edges and there is a path with edge set {a0, a

′, b′, b0}, and again the theorem holds.
This proves 18.1.

18.2 Let G be claw-free, such that there is no hole in G of length > 5, every hole of length 5 is
dominating, and α(G) ≤ 3. Let C be a 5-hole in G with vertices c1- · · · -c5-c1, and let there be hats
in positions 1 1

2
, 21

2
respectively. Then G is decomposable.

Proof. For i = 1, . . . , 5, let Ci be the set of all clones in position i, and let Hi+ 1

2

, Si+ 1

2

be the set of

all hats and stars in position i+ 1

2
respectively. By 8.2, Hi− 1

2

is anticomplete to Hi+ 1

2

for i = 1, . . . , 5.

By hypothesis, we may choose h1 ∈ H
1

1

2

and h2 ∈ H
2

1

2

.

(1) There is no centre for C.

For suppose that z is a centre for C. Since {z, h1, c3, c5} is not a claw, z is not adjacent to h1,
and similarly z is not adjacent to h2. But then {c2, h1, h2, z} is a claw, a contradiction. This proves
(1).

(2) H 1

2

,H
3

1

2

are empty; at least one of H
4

1

2

, S
4

1

2

is empty; and C4 is complete to C5.

For suppose that there exists h3 ∈ H
3

1

2

say. Since H
2

1

2

is anticomplete to H
3

1

2

, it follows that

h2, h3 are nonadjacent. Since every 5-hole is dominating, h1-h3-c4-c5-c1-h1 is not a 5-hole (because
h2 has no neighbours in it), and so h1, h3 are nonadjacent. But then {h1, h2, h3, c5} is stable, con-
tradicting that α(G) ≤ 3. This proves the first assertion of (2). Suppose that h ∈ H

4
1

2

and s ∈ S
4

1

2

.

By 8.2, s is nonadjacent to h, h1, h2. If h is nonadjacent to both h1, h2 then {s, h, h1, h2} is stable,
a contradiction; if h is adjacent to say h1 and not h2 then s-c4-h-h1-c1-s is a 5-hole and h2 has no
neighbour in it, a contradiction; while if h is adjacent to both h1, h2 then {h, h1, h2, c4} is a claw, a
contradiction. Thus not both H

4
1

2

, S
4

1

2

are nonempty, and this proves the second assertion of (2).

For the third assertion, suppose that x ∈ C4 and y ∈ C5 are nonadjacent. By 8.2, x is nonadjacent
to h1 and y is nonadjacent to h2. Since {x, y, h1, h2} is not stable, we may assume that x is adjacent
to h2; but then x-c4-y-c1-c2-h2-x is a 6-hole, a contradiction. Thus C4 is complete to C5. This proves
(2).

Let

B1 = H
1

1

2

∪ C1 ∪ {c1} ∪ S 1

2

∪ S
2

1

2

B2 = H
2

1

2

∪ C3 ∪ {c3} ∪ S
3

1

2

∪ S
1

1

2

B3 = C4 ∪ C5 ∪ {c4, c5} ∪ S
4

1

2

∪ H
4

1

2

B = B1 ∪ B2 ∪ B3.
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(3) B1, B2, B3 are cliques.

For by 8.2, H
1

1

2

∪ C1 ∪ {c1} ∪ S 1

2

is a clique, and S
2

1

2

is a clique. We must show that S
2

1

2

is

complete to H
1

1

2

∪ C1 ∪ {c1} ∪ S 1

2

. Let s ∈ S
2

1

2

. Certainly s is adjacent to c1, and s is nonadjacent

to h2 and complete to H
1

1

2

, by 8.2 (and in particular, s is adjacent to h1). Suppose that x ∈ S 1

2

.

By 8.2, x is not adjacent to h2, and since {c2, x, h2, s} is not a claw it follows that s, x are adjacent.
Thus s is complete to S 1

2

. Now suppose that x ∈ C1. By 8.2, x is adjacent to h1. Since {x, h1, h2, c5}

is not a claw, x is not adjacent to h2. Since {c2, x, h2, s} is not a claw, s is adjacent to x, and so
s is complete to C1. This proves that B1 is a clique, and similarly B2 is a clique. By 4.3, the sets
C4 ∪{c4}, C5 ∪{c5}, S4

1

2

,H
4

1

2

are cliques; by (2), it follows that C4 ∪C5 ∪{c4, c5} and S
4

1

2

∪H
4

1

2

are

cliques; and by 8.2, C4 ∪ C5 ∪ {c4, c5} is complete to S
4

1

2

∪ H
4

1

2

, and therefore B3 is a clique. This

proves (3).

(4) There is no triad T with |T ∩ B| = 2.

For suppose that {x, y, z} is a triad, where x, y ∈ B and z /∈ B. Since C is dominating and
has no centre, and H 1

2

,H
3

1

2

are empty, it follows that z ∈ C2 ∪ {c2}. Thus x, y 6= c1, c3 and by 8.2,

z is complete to all of H
1

1

2

, H
2

1

2

, S
1

1

2

, S
2

1

2

, and so x, y /∈ H
1

1

2

∪ H
2

1

2

∪ S
1

1

2

∪ S
2

1

2

. If x ∈ C1, then

x is adjacent to h1 by 8.2, and so x-h1-z-c3-c4-c5-x is a 6-hole, a contradiction. Thus x /∈ C1, and
similarly x, y /∈ C1 ∪ C3.

Since B is the union of the three cliques B1, B2, B3, and there is symmetry between B1, B2, we
may assume that x ∈ B1, and therefore x ∈ S 1

2

. Moreover, y ∈ B2 ∪ B3, and so

y ∈ C4 ∪ C5 ∪ {c4, c5} ∪ S
3

1

2

∪ S
4

1

2

∪ H
4

1

2

.

Since x ∈ S 1

2

, it follows that z 6= c2, and so z ∈ C2; and y 6= c4, c5. By 8.2, y /∈ C5 ∪ H
4

1

2

. Since

x, y, z have no common neighbour (since G is claw-free) it follows that y is nonadjacent to c1, c2, and
so y /∈ S

3
1

2

∪ S
4

1

2

. We deduce that y ∈ C4. By 8.2, x is adjacent to h1, and y is nonadjacent to h1;

but then x-h1-z-c3-y-c5-x is a 6-hole, a contradiction. This proves (4).

Now {h1, h2, c4} and {h1, h2, c5} are triads, both contained in B and sharing two vertices. From
15.1, we deduce that G is decomposable. This proves 18.2.

Let G be a graph. We say a triple (A1, A2, A3) is a spread in G if

• A1, A2, A3 are nonempty cliques, pairwise disjoint and pairwise anticomplete

• |A1| + |A2| + |A3| ≥ 4

• there is no vertex in V (G)\(A1∪A2∪A3) that is complete to one of A1, A2, A3 and anticomplete
to the other two.

If (A1, A2, A3) is a spread, no vertex has neighbours in all three of A1, A2, A3 since G is claw-free.
For 1 ≤ i, j ≤ 3 with i 6= j, let Mi,j be the set of all vertices in V (G) \ (Ai ∪Aj) complete to Ai ∪Aj ,
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and let Ni,j be the set of all vertices in V (G) \ (Ai ∪ Aj) that are complete to Ai and have both a
neighbour and a nonneighbour in Aj . Thus Mi,j = Mj,i but Ni,j and Nj,i are disjoint. A spread
(A1, A2, A3) is poor if M1,2 = N1,2 = N2,1 = ∅.

18.3 Let G be claw-free, with α(G) ≤ 3, with no hole of length > 5, and such that every 5-hole in
G is dominating; and let (A1, A2, A3) be a spread. Then

• the sets A1, A2, A3, Mi,j (1 ≤ i < j ≤ 3) and Ni,j (1 ≤ i 6= j ≤ 3) are pairwise disjoint and
have union V (G)

• if i, j, k ∈ {1, 2, 3} are distinct, then Ni,j is anticomplete to Mj,k ∪ Nj,k

• if i, j ∈ {1, 2, 3} are distinct, then Ni,j is a clique

• if i, j, k ∈ {1, 2, 3} are distinct, and some vertex has neighbours in both Aj and Ak, then Ni,j

is complete to Ni,k

• if i, j, k ∈ {1, 2, 3} are distinct, and some vertex has neighbours in both Aj and Ak, then either
Nj,i is complete to Nk,i or G is decomposable.

Proof. For the first claim, clearly these sets are pairwise disjoint. Let v ∈ V (G) \ (A1 ∪ A2 ∪ A3);
we must show that v belongs to one of the given sets. Since no vertex has neighbours in all of
A1, A2, A3, we may assume that v has no neighbour in A3. If it has both a nonneighbour a1 ∈ A1 and
a nonneighbour a2 ∈ A2, then {v, a1, a2, a3} is a stable set of size 4 (for any a3 ∈ A3), contradicting
that α(G) ≤ 3. Thus we may assume that v is A1-complete. From the third condition in the
definition of a spread, v has a neighbour in A2. If v is A2-complete then v ∈ M1,2, and otherwise
v ∈ N1,2, and in either case the theorem holds. This proves the first claim of the theorem.

For the second claim, suppose that x ∈ Ni,j is adjacent to y ∈ Mj,k ∪ Nj,k. Choose ai ∈ Ai,
choose aj ∈ Aj nonadjacent to x, and choose ak ∈ Ak adjacent to y. Then {y, x, ai, ak} is a claw, a
contradiction. This proves the second statement.

For the third, let i, j, k ∈ {1, 2, 3} be distinct, and suppose that x, y ∈ Ni,j are nonadjacent. Let
ai ∈ Ai and ak ∈ Ak. By 17.2, there is a path x-p-q-y with p, q ∈ Aj. Then x-p-q-y-ai-x is a 5-hole,
not dominating ak, a contradiction. This proves the third claim.

For the fourth claim, suppose that x ∈ Ni,j is nonadjacent to y ∈ Ni,k, and there exists z ∈ V (G)
with neighbours in Aj, Ak. The set Aj ∪ {z} ∪ Ak is connected, and x, y both have neighbours in it,
and so there is a path P between x, y with interior in Aj ∪{z}∪Ak , necessarily using z. Let ai ∈ Ai;
then P can be completed to a hole C via y-ai-x. Since G has no hole of length > 5, C has length
≤ 5, and so P has length ≤ 3. Since z belongs to P , we may assume that no vertex of Aj is in P .
Let aj ∈ Aj be a nonneighbour of x. Then aj has at most one neighbour in C, and therefore it has
none; and since every 5-hole is dominating, it follows that C has length 4. Consequently P is x-z-y.
Now z is complete to one of Aj , Ak, say Aj ; and so z ∈ Mj,k ∪ Nj,k, and yet x ∈ Ni,j and x, z are
adjacent, contrary to the second assertion above. This proves the fourth claim.

For the fifth claim, suppose that ni ∈ Ni,k is nonadjacent to some nj ∈ Nj,k. By hypothesis there
exist ai ∈ Ai and aj ∈ Aj, and a vertex z adjacent to ai, aj . Hence there is a path P between ni, nj

with interior in {ai, aj , z}. Since ni, nj are both not complete and not anticomplete to Ak, it follows
from 17.2 that there is a path Q of length 3 between ni, nj with interior in Ak. The union of P,Q
is a hole, and since G has no hole of length > 5 it follows that P has length 2, and therefore ni, nj

78



are adjacent to z. Relative to this 5-hole, ai, aj are hats in consecutive positions, and therefore G is
decomposable by 18.2. This proves the fifth claim, and therefore proves 18.3.

18.4 Let G be claw-free, with α(G) ≤ 3, with no hole of length > 5 and such that every 5-hole in G
is dominating. If G has a poor spread then either G ∈ S0 ∪ S3 ∪ S6 or G is decomposable.

Proof. We assume that G is not decomposable. Choose a poor spread (A1, A2, A3) with |A3| max-
imum, and define Mi,j etc as before.

(1) N3,1, N3,2 are both empty.

For suppose that N3,1 is nonempty, and choose x ∈ N3,1 with as few neighbours in A1 as possi-
ble. Let Y be the set of vertices in A1 adjacent to x. Let X be the set of all vertices in N3,1 that
are complete to Y and anticomplete to A1 \ Y ; thus, x ∈ X. Define A′

3 = A3 ∪X, A′

1 = A1 \ Y , and
A′

2 = A2. We claim that (A′

1, A
′

2, A
′

3) is a poor spread. For certainly A′

1, A
′

2 are cliques, and so is
A′

3 from the third statement of 18.3; and since Y 6= A1, it follows that A′

1, A
′

2, A
′

3 are all nonempty.
Moreover, A′

1, A
′

2, A
′

3 are pairwise anticomplete. Suppose that v ∈ V (G) \A′

1 ∪A′

2 ∪A′

3, and is com-
plete to one of A′

1, A
′

2, A
′

3, say Ai, and anticomplete to the other two. Consequently v /∈ A1\Y,A2, A3.
Moreover, every vertex in Y is X-complete and A3-anticomplete, and therefore has both a neighbour
and a nonneighbour in A′

3; and consequently v /∈ Y . If i = 1, then v is anticomplete to both A2, A3,
contrary to the first assertion of 18.3. If i = 2, then by the first assertion of 18.3, v has a neighbour
y ∈ A1, which is impossible since (A1, A2, A3) is a poor spread. If i = 3, then by the first statement
of 18.3, it follows that v has a neighbour in A1 ∪ A2; and since v has no neighbour in A′

1 ∪ A′

2 it
follows that every neighbour of v in A1 ∪ A2 belongs to Y , and in particular v ∈ N3,1. From the
choice of x we deduce that v is Y -complete, and therefore v ∈ X, a contradiction. This proves that
(A′

1, A
′

2, A
′

3) is a spread. Since (A1, A2, A3) is poor, no vertex of G has neighbours in both A1, A2.
Consequently, no vertex of G has neighbours in both A′

1, A
′

2, and therefore the spread (A′

1, A
′

2, A
′

3)
is poor. But this contradicts the maximality of |A3|. Hence N3,1 = ∅, and similarly N3,2 = ∅. This
proves (1).

From (1), it follows that all members of A1 are twins, and so we may assume that A1 = {a1} say,
and similarly A2 = {a2} say. For i = 1, 2, let Pi be the set of members of Mi,3 with a nonneighbour
in Ni,3, and let Qi be the set of members of Ni,3 with a nonneighbour in Mi,3. Note that, by the
second assertion of 18.3, N1,3 is anticomplete to M2,3, and N2,3 is anticomplete to M1,3.

(2) P1 is complete to M2,3, and P2 is complete to M1,3. Moreover, Q1 is complete to N2,3, and
Q2 is complete to N1,3.

For if p1 ∈ P1 has a nonneighbour x ∈ M2,3, choose q1 ∈ Q1 nonadjacent to p1, and let a3 ∈ A3 be
adjacent to q1. Then {a3, p1, q1, x} is a claw, a contradiction. This proves the first assertion, and
the second follows by symmetry. For the third, suppose that q1 ∈ Q1 has a nonneighbour x ∈ N2,3;
let p1 ∈ P1 be nonadjacent to q1, and let a3 ∈ A3 be adjacent to q1. Then a1-p1-a3-q1-a1 is a 4-hole,
and since x, a2 are adjacent and a2 has no neighbour in this 4-hole, it follows that x has a neighbour
in this 4-hole, by 17.4. But x is nonadjacent to q1, p1, a1, and so it is adjacent to a3, and therefore
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{a3, p1, q1, x} is a claw, a contradiction. This proves the third claim, and the fourth follows by sym-
metry. This proves (2).

(3) Either M1,3 is complete to N1,3 or M2,3 is complete to N2,3.

For suppose not; then P1, Q1, P2, Q2 are all nonempty. For i = 1, 2 choose pi ∈ Pi and qi ∈ Qi,
nonadjacent. By (2), p1 is adjacent to p2 and q1 to q2. But then a1-p1-p2-a2-q2-q1-a1 is a 6-hole, a
contradiction. This proves (3).

(4) N1,3, N2,3 are both nonempty, and M1,3,M2,3 are both cliques.

For suppose that, say, N2,3 = ∅. Since G admits no 0-join, it follows that a2 has degree > 0,
and so there exists m ∈ M2,3. Let S, T be the set of all v ∈ M1,3 ∪N1,3 ∪A3 that are M2,3-complete
and M2,3-anticomplete respectively. Thus A3 ⊆ S and N1,3 ⊆ T . We claim that (S, T ) is a homo-
geneous pair of cliques. First let us see that they are cliques. If s1, s2 ∈ S are nonadjacent, then
{m, s1, s2, a2} is a claw, a contradiction; so S is a clique. If t1, t2 ∈ T are nonadjacent, then since N1,3

is a clique, it follows that at least one of t1, t2 ∈ M1,3, and therefore t1, t2 have a common neighbour
in A3, say a3; but then {a3, s, t,m} is a claw, a contradiction. This proves that S, T are both cliques.
Now suppose that v ∈ V (G) \ (S ∪ T ). We claim that v is either S-complete or S-anticomplete,
and either T -complete or T -anticomplete. If v ∈ A1 ∪ A2 ∪ M2,3 the claim holds, so we may assume
that v ∈ M1,3 ∪ N1,3 ∪ A3, and therefore v ∈ M1,3. Since v /∈ T , it has a neighbour x ∈ M2,3 say;
and since every s ∈ S is adjacent to x, and {x, s, v, a2} is not a claw, it follows that v is complete
to S. Since v /∈ S, it has a nonneighbour y ∈ M2,3. If t ∈ T , choose a3 ∈ A3 adjacent to t; then
since {a3, v, t, y} is not a claw, it follows that v, t are adjacent, and so v is T -complete. This proves
that (S, T ) is a homogeneous pair of cliques, nondominating because A2 6= ∅. Now A3 ⊆ S, and by
hypothesis |A3| ≥ 2, since A1, A2 both have only one member; and so G is decomposable, by 3.3, a
contradiction. Hence N1,3, N2,3 are both nonempty. If there exist x, y ∈ M1,3, nonadjacent, choose
z ∈ N2,3, let a3 ∈ A3 be a neighbour of z, and then {a3, x, y, z} is a claw, a contradiction. Thus M1,3

is a clique, and similarly M2,3 is a clique. This proves (4).

(5) Mi,3 ⊆ Pi for i = 1, 2.

For by (3) and the symmetry, we may assume that M2,3 is complete to N2,3. Define V1 = (M1,3 \
P1)∪M2,3, and V2 = V (G) \ V1. If V1 = ∅ then the claim holds, so we may assume that V1 6= ∅; and
clearly V2 6= ∅. We claim that G is the hex-join of G|V1 and G|V2. For V1 is the union of the two
cliques M1,3 \P1 and M2,3, and V2 is the union of the three cliques N2,3 ∪A2, N1,3 ∪A1 and P1 ∪A3.
Since M1,3 \ P1 is anticomplete to N2,3 ∪ A2 and complete to N1,3 ∪ A1 and P1 ∪ A3, and M2,3 is
anticomplete to N1,3 ∪A1 and complete to N2,3 ∪A2 and P1 ∪A3, it follows that G is a hex-join and
therefore decomposable, a contradiction. This proves (5).

(6) M1,3 = M2,3 = ∅.

For from (3) P2 = ∅, and therefore from (5) M2,3 = ∅. Suppose that M1,3 6= ∅. By (5), P1 6= ∅, and
therefore Q1 6= ∅. If x ∈ N1,3 and y ∈ N2,3 are adjacent, and a3 ∈ A3, then since {x, a1, a3, y} and
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{y, a3, a2, x} are not claws, it follows that a3 is adjacent to both or neither of x, y. Consequently
x, y have the same neighbours in A3, for every such adjacent pair x, y. Choose x ∈ Q1, and let
Z be the set of neighbours of x in A3. By (2), x is complete to N2,3, and therefore every vertex
in N2,3 is complete to Z and anticomplete to A3 \ Z. In particular, every vertex in A3 is either
complete or anticomplete to N2,3. We claim that every vertex x ∈ V (G) \ N2,3 is either complete
or anticomplete to N2,3. For suppose not; then x ∈ N1,3 \ Q1. Since x has a neighbour in N2,3, it
follows as before that x is complete to Z and anticomplete to A3 \ Z. Let y ∈ N2,3 be nonadjacent
to x. Choose z ∈ Z, and a3 ∈ A3 nonadjacent to x. (a3 exists since x ∈ N1,3.) Thus a3 /∈ Z, and
so y is nonadjacent to a3; but then {z, a3, x, y} is a claw, a contradiction. This proves our claim
that every vertex in V (G) \ N2,3 is either complete or anticomplete to N2,3. Hence every vertex in
V (G) \ (N2,3 ∪ A2) is either complete or anticomplete to N2,3, and anticomplete to A2. By 3.2 it
follows that G is decomposable, a contradiction. M1,3 = ∅. This proves (6).

From (6), it follows that G satisfies the hypotheses of 18.1, and the result follows. This proves
18.4.

Now we can prove the main result of this section.

18.5 Let G be claw-free, with α(G) ≤ 3, with no hole of length > 5 and such that every 5-hole in G
is dominating. If G is not antiprismatic then either G ∈ S0 ∪ S3 ∪ S6 or G is decomposable.

Proof. We assume that G is not decomposable. Since G is not antiprismatic, and α(G) ≤ 3, it
follows that there are three cliques A1, A2, A3, all nonempty and pairwise disjoint and anticomplete,
such that |A1∪A2∪A3| ≥ 4. Choose them with A1∪A2∪A3 maximal; then (A1, A2, A3) is a spread.
Choose a spread (A1, A2, A3) with |A3| maximal, and define the sets Mi,j, Ni,j as before. It follows
that |A3| ≥ 2. By 18.4, we may assume that the spread (A1, A2, A3) is not poor, and nor are the
spreads (A2, A3, A1), (A3, A1, A2).

(1) N1,2 ∪ N2,1 ∪ M1,2 is a clique.

For suppose that there are two nonadjacent vertices in this set, say x, y. Since x, y both have
neighbours in A1, and both have neighbours in A2, there is a hole C containing x, y with V (C) ⊆
A1 ∪ A2 ∪ {x, y}. No vertex of A3 has a neighbour in C, and since G has no hole of length > 5 and
every 5-hole is dominating, it follows that C has length 4. Since |A3| ≥ 2, we deduce from 17.4 that
G is decomposable, a contradiction. This proves (1).

(2) N3,1 = N3,2 = ∅; N1,2 is complete to M1,3, and N2,1 is complete to M2,3.

For suppose that there exists x ∈ N3,1. Choose a1 ∈ A1 nonadjacent to x. Then the cliques
{a1}, A2, and A3∪{x} are pairwise disjoint, and there are no edges between them, and consequently
they may be enlarged to form a spread, contradicting the maximality of |A3|. Hence N3,1 = N3,2 = ∅.
Now suppose that x ∈ N1,2 has a nonneighbour y ∈ M1,3. Let a2 ∈ A2 be a nonneighbour of x. Then
the three cliques {x}, {a2} and A3 ∪ {y} again may be enlarged to form a spread, contrary to the
maximality of |A3|. This proves (2).

(3) N1,2, N2,1 = ∅, and A1, A2 both have cardinality 1.
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For we claim that (N1,2 ∪ A1, N2,1 ∪ A2) is a homogeneous pair of cliques. Certainly both sets
are cliques, so let v ∈ V (G) with v /∈ N1,2 ∪N2,1∪A1 ∪A2. We will show that v is either complete or
anticomplete to N1,2 ∪ A1. Now v belongs to one of the sets A3,M1,3, N1,3,M2,3, N2,3,M1,2, by (2).
If v ∈ A3 ∪ M2,3 ∪ N2,3 then it is anticomplete to N1,2 ∪ A1, by 18.3, and if v ∈ M1,3 ∪ N1,3 ∪ M1,2

then v is complete to N1,2 ∪ A1, by (1), (2) and the final assertion of 18.3, since (A2, A3, A1) is not
poor. This proves that v is either complete or anticomplete to N1,2 ∪ A1, and similarly it is either
complete or anticomplete to N2,1∪A2. Hence (N1,2∪A1, N2,1∪A2) is a homogeneous pair of cliques,
nondominating because A3 6= ∅, and so by 3.3, the claim follows. This proves (3).

For i = 1, 2, let Ai = {ai}.

(4) Either M1,3 is complete to N1,3, or M2,3 is complete to N2,3.

For suppose that for i = 1, 2 there exist mi ∈ Mi,3 and ni ∈ Ni,3, nonadjacent. Hence n1, n2

are adjacent, by the final assertion of 18.3. If m1,m2 are adjacent, then m1-a1-n1-n2-a2-m2-m1 is
a 6-hole, a contradiction. Thus m1,m2 are nonadjacent, and so m1-a1-n1-n2-a2-m2 is a path P of
length 5. Choose a3 ∈ A3 nonadjacent to n1. Then since {n2, n1, a3, a2} is not a claw, a3 is not
adjacent to n2; and so P can be completed to a 7-hole via m2-a3-m1, a contradiction. This proves
(4).

For i = 1, 2, let Xi be the set of all vertices in M1,2 with a nonneighbour in Ni,3. Let X0 =
M1,2 \ (X1 ∪ X2).

(5) X1 ∩ X2 = ∅, X1 is complete to M2,3 and X2 is complete to M1,3.

For suppose first that x ∈ X1 ∩ X2. For i = 1, 2, let ni ∈ Ni,3 be nonadjacent to x. Then
x-a1-n1-n2-a2-x is a 5-hole, and a3 has at most one neighbour in it, where a3 ∈ A3 is a nonneighbour
of n1, a contradiction. This proves the first assertion. Now suppose that x1 ∈ X1 is nonadjacent
to m ∈ M2,3. Choose n ∈ N1,3 nonadjacent to x1; and choose a3 ∈ A3 adjacent to n. Then
x1-a2-m-a3-n-a1-x1 is a 6-hole, a contradiction. Thus X1 is complete to M2,3 and similarly X2 is
complete to M1,3. This proves (5).

(6) At least one of M1,3,M2,3 is nonempty.

For suppose not. Then by 18.3, N1,3 ∪ N2,3 is an internal clique cutset, and therefore G is de-
composable, a contradiction.

(7) It is not the case that M1,3 is complete to N1,3 and M2,3 is complete to N2,3.

For let B1 = A1 ∪ N1,3 ∪ X2, B2 = A2 ∪ N2,3 ∪ X1, and B3 = A3. Then B1, B2, B3 are disjoint
cliques, and their union is not V (G), by (6); and since {a1, a2, a3} is a triad for each a3 ∈ A3, and
there are at least two such vertices a3, it follows from 15.1 that there is a triad {t1, t2, t3} with
t1, t2 ∈ B1 ∪ B2 ∪ B3 and t3 /∈ B1 ∪ B2 ∪ B3. Not both t1, t2 ∈ B3, so we may assume from the
symmetry that t1 ∈ B1. Consequently t3 /∈ X0 ∪M1,3, since X0 ∪M1,3 is complete to B1 by hypoth-
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esis, (1) and (5), and so t3 ∈ M2,3. Hence t3 is complete to B2 ∪ B3 by (5) and the hypothesis, and
therefore t1, t2 ∈ B1, a contradiction since t1, t2 are nonadjacent. This proves (7).

In view of (4) and (7), we may assume that M1,3 is complete to N1,3 and M2,3 is not complete to
N2,3.

(8) X1 = ∅, that is, N1,3 is complete to M1,2.

For suppose not, and choose n ∈ N1,3 and m ∈ M1,2, nonadjacent. Then m ∈ X1, and so m /∈ X2 by
(5). Choose x ∈ N2,3 and y ∈ M2,3, nonadjacent. Since m /∈ X2, it follows that m,x are adjacent.
Thus x-n-a1-m-x is a 4-hole C. Choose a3 ∈ A3 nonadjacent to x. Since {n, a3, x, a1} is not a claw, it
follows that a3 is not adjacent to n. Since {m,x, y, a1} is not a claw, m, y are not adjacent. But a3, y
are adjacent, and neither of them has any neighbours in the 4-hole; and therefore G is decomposable,
by 17.4, a contradiction. This proves (8).

(9) Not both M1,3, X2 are nonempty.

For suppose they are, and choose m1 ∈ M1,3 and m2 ∈ X2. Choose n ∈ N2,3 nonadjacent to
m2, and choose a3 ∈ A3 adjacent to n, and a′

3 ∈ A3 nonadjacent to n. By the second assertion of
(5), m1,m2 are adjacent; but then m2-m1-a3-n-a2-m2 is a 5-numbering of a 5-hole, and a1, a

′

3 are
hats in positions 1 1

2
, 21

2
respectively, and 18.2 implies that G is decomposable, a contradiction. This

proves (9).

Let Y be the set of all vertices in M2,3 with a nonneighbour in N2,3.

(10) Y is complete to M1,3; Y is a clique; and Y is anticomplete to M1,2 \ X2.

For suppose that y ∈ Y is nonadjacent to m ∈ M1,3. Choose x ∈ N2,3 nonadjacent to y, and
choose a3 ∈ A3 adjacent to x; then {a3, x, y,m} is a claw, a contradiction. Thus Y is complete to
M1,3. Now suppose that there exist nonadjacent y1, y2 ∈ Y . Since the spread (A3, A1, A2) is not
poor, one of M1,3, N1,3 is nonempty. If there exists n ∈ N1,3, let a3 ∈ A3 be adjacent to n; then
{a3, n, x, y} is a claw, a contradiction. Thus there exists m ∈ M1,3, adjacent to y1, y2 since Y is com-
plete to M1,3. But then {m,a1, y1, y2} is a claw, a contradiction. Thus Y is a clique. Finally suppose
that y ∈ Y has a neighbour m ∈ M1,2 \X2. Let x ∈ N2,3 be nonadjacent to y; then {m,x, y, a1} is a
claw, a contradiction. This proves (10).

Let B1 = A1 ∪N1,3 ∪X2, B2 = A2 ∪N2,3 and B3 = A3 ∪ Y . From (5), (10) and 18.3, these three
sets are all cliques.

(11) B1 ∪ B2 ∪ B3 = V (G).

For suppose not. Since {a1, a2, a3} is a triad for all a3 ∈ A3, 15.1 implies that there is a triad
{t1, t2, t3} with t1, t2 ∈ B1∪B2∪B3 and t3 /∈ B1∪B2∪B3. It follows that t3 ∈ X0∪M1,3∪(M2,3\Y ).
Now X0 is complete to B1 ∪ B2, and M1,3 is complete to B1 ∪ B3, by (5) and (10); and therefore
t3 ∈ M2,3\Y . Hence t3 is complete to B2, and so we may assume that t1 ∈ B1 and t2 ∈ B3. Since t3 is
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complete to A3, it follows that t2 ∈ Y . If there exists n ∈ N1,3, let a3 ∈ A3 be adjacent to n, and then
{a3, n, t2, t3} is a claw, a contradiction. Thus N1,3 = ∅. Since (A3, A1, A2) is not poor, there exists
m1 ∈ M1,3. By (9), X2 = ∅, and so X0 = M1,2. Choose m2 ∈ M1,2. Let Z = A2 ∪ A3 ∪ M2,3 ∪ N2,3;
thus, A1 is anticomplete to Z. Let P be the set of all vertices in Z complete to M1,2 and anticomplete
to M1,3, and let Q be the set of all vertices in Z that are complete to M1,3 and anticomplete to M1,2.
Since m1,m2 exist, it follows that P ∩ Q = ∅. Moreover, A2 ∪ N2,3 ⊆ P , and A3 ∪ Y ⊆ Q, by (10).
If p1, p2 ∈ P are nonadjacent, then {m2, a1, p1, p2} is a claw, while if q1, q2 ∈ Q are nonadjacent then
{m1, a1, q1, q2} is a claw, in either case a contradiction; thus, P,Q are cliques. We claim that (P,Q)
is a homogeneous pair of cliques. For let v ∈ V (G) \ (P ∪ Q). We claim that v is either complete or
anticomplete to P , and either complete or anticomplete to Q. This is true if v /∈ Z, so we assume
that v ∈ Z, and consequently v ∈ Z \ (P ∪ Q) ⊆ M2,3 \ Y . Suppose first that v has a nonneighbour
p ∈ P . Since v is complete to A2 ∪A3 ∪N2,3, it follows that p ∈ M2,3. If v has a neighbour x ∈ M1,2,
then {x, a1, p, v} is a claw, while if v has a nonneighbour x ∈ M1,3 then {a3, x, p, v} is a claw, in either
case a contradiction; and otherwise v is complete to M1,3 and anticomplete to M1,2, and therefore
belongs to Q, a contradiction. Thus v is complete to P . Suppose that v has a nonneighbour q ∈ Q.
Since v is complete to A2 ∪ A3 ∪ N2,3, it follows that q ∈ M2,3. If v has a neighbour x ∈ M1,3 then
{x, a1, v, q} is a claw, and if v has a nonneighbour x ∈ M1,2 then {a2, x, v, q} is a claw, in either case
a contradiction; and otherwise v is anticomplete to M1,3 and complete to M1,2, and therefore belongs
to P , a contradiction. This proves that (P,Q) is a homogeneous pair, nondominating since A1 6= ∅.
Since A3 ⊆ P and |A3| ≥ 2, 3.3 implies that G is decomposable, a contradiction. This proves (11).

From (11) it follows that X0 = M1,3 = ∅ and Y = M2,3. Since (A3, A1, A2) is not poor, N1,3 is
nonempty; and since (A2, A3, A1) is not poor, one of M2,3, N2,3 is nonempty. If M2,3 is nonempty then
Y 6= ∅, and therefore N2,3 6= ∅ from the definition of Y . Consequently N1,3, N2,3 are both nonempty.
If x ∈ N1,3 and y ∈ N2,3, then x, y are adjacent by 18.3; and if a3 ∈ A3, then since {x, a1, a3, y} and
{y, a2, a3, x} are not claws, it follows that a3 is adjacent to both or neither of x, y. Consequently x, y
have the same neighbours in A3. Since this holds for all choices of x, y, and since N1,3, N2,3 are both
nonempty, it follows that there exists Z ⊆ A3 such that every vertex in N1,3 ∪N2,3 is complete to Z
and anticomplete to A3 \Z. Since every vertex in N1,3 has a neighbour and a nonneighbour in A3, it
follows that Z 6= ∅, and Z 6= A3. Since all vertices in Z are twins, and all vertices in A3 \Z are twins,
it follows that |Z| = 1 and |A3| = 2. Let a3 ∈ A3 \ Z, and z ∈ Z. If x, y ∈ M2,3 are nonadjacent
then {z, x, y, n} is a claw, where n ∈ N1,3. It follows that a1, a3 are both simplicial vertices, with no
common neighbour, and the theorem follows from 18.1. This proves 18.5.

Finally, let us explicitly prove the main theorem.

Proof of 2.1. If some hole has length ≥ 6, the result follows from 16.2, so we assume that every
hole has length at most 5. By 9.2, we may assume that every 5-hole is dominating. If α(G) ≥ 4, the
result follows from 17.1, and otherwise it follows from 18.5. This proves 2.1.
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