Claw-free Graphs. III. Sparse decomposition

Maria Chudnovsky ${ }^{1}$ and Paul Seymour ${ }^{2}$
Princeton University, Princeton NJ 08544

October 14, 2003; revised May 28, 2004
${ }^{1}$ This research was conducted while the author served as a Clay Mathematics Institute Research Fellow.
${ }^{2}$ Supported by ONR grant N00014-01-1-0608 and NSF
${ }^{2}$ Supported by ONR grant N00014-01-1-0608 and NSF grant DMS-0070912.

Abstract

A graph is claw-free if no induced subgraph is isomorphic to the complete bipartite graph $K_{1,3}$. In this series of papers we give a structural description of all claw-free graphs.

The most well-known class of claw-free graphs is the class of line graphs, but there are also claw-free graphs that are far from being line graphs; and one key distinction turns out to be, are there four vertices such that at most one pair of them are adjacent? The structure of the connected claw-free graphs which have such a quadruple (such as the icosahedron, and most line graphs and circular interval graphs) is quite different from those that do not (such as the Schläfli graph), and they are handled by different methods.

This paper is the first half of the proof; we prove that every claw-free graph which has such a quadruple either belongs to one of a few basic classes, or admits a decomposition in a useful way. The other half of the proof will be in the next paper of this series.

1 Introduction

Let G be a graph. (All graphs in this paper are finite and simple.) If $X \subseteq V(G)$, the subgraph $G \mid X$ induced on X is the subgraph with vertex set X and edge-set all edges of G with both ends in $X .(V(G)$ and $E(G)$ denote the vertex- and edge-sets of G respectively.) We say that $X \subseteq V(G)$ is a claw in G if $|X|=4$ and $G \mid X$ is isomorphic to the complete bipartite graph $K_{1,3}$. We say G is claw-free if no $X \subseteq V(G)$ is a claw in G. Our objective in this series of papers is to show that every claw-free graph can be built starting from some basic classes by means of some simple constructions.

What constructions should we permit? That is not such an easy question, as we shall see. For instance, here is a construction that is natural and acceptable, "duplicating" a vertex: if G is clawfree, and $u \in V(G)$ with neighbour set N, we could add a new vertex v to G, with neighbour set $N \cup\{u\}$. Here is another "construction" - given any claw-free graph, add to it a vertex with any set of neighbours, provided that the enlarged graph has no claw. This second construction is evidently not what we want; if we allow it, constructing claw-free graphs becomes trivial. But it is difficult (indeed, beyond us) to see any formal difference between the two, at least from the viewpoint of complexity theory, because one can easily check in polynomial time whether adding a certain vertex introduces a claw. So it seems that we perhaps have to fall back on nebulous concepts like "naturalness" and "depth" to justify our work.

On the other hand, there is definitely something under here, waiting to be excavated. For instance, one of the first things we shall show is that if G is claw-free, and has an induced subgraph that is a line graph of a (not too small) cyclically 3 -connected graph, then either the whole graph G is a line graph, or G admits a decomposition of one of two possible types. That suggests that we should investigate which other claw-free graphs do not admit either of these decompositions; and that turns out to be a good question, because at least when $\alpha(G) \geq 4$ there is a nice answer. (We denote the size of the largest stable set of vertices in G by $\alpha(G)$.) All claw-free graphs G with $\alpha(G) \geq 4$ that do not admit either of these decompositions can be explicitly described, and fall into a few basic classes; and all connected claw-free graphs G with $\alpha(G) \geq 4$ can be built from these basic types by simple constructions. When $\alpha(G) \leq 3$ the situation becomes more complicated; there are both more basic types and more decompositions required, as we shall explain.

Let us say a graph is prismatic if for every three pairwise adjacent vertices u, v, w, every vertex different from u, v, w is adjacent to exactly one of them. We say G is antiprismatic if its complement is prismatic. Antiprismatic graphs are claw-free, but they seem to need to be treated in a different way from the general case; indeed, the methods that we developed for the general case completely failed to work on antiprismatic graphs, and we had to find quite different techniques. For that reason, and the length of the present paper, we decided to write up the antiprismatic case in a separate paper. Thus, in this paper we just handle claw-free graphs that are not antiprismatic.

There is a difference between a "decomposition theorem" and a "structure theorem", although they are closely related. In this paper we prove a decomposition theorem for claw-free graphs that are not antiprismatic; we show that they all either belong to a few basic classes or admit certain decompositions. But this can be refined into a structure theorem that is more informative; for instance, every connected claw-free graph G with $\alpha(G) \geq 4$ has the same overall "shape" as a line graph, and more or less can be regarded as a line graph with "interval graph strips" substituted for some of the vertices. For reasons of space, that development, and its application to several open questions about claw-free graphs, is postponed to a future paper.

2 The main theorem

In this section we state our main theorem, but first we need a number of definitions. A hole in G means an induced subgraph which is a cycle with at least four vertices. A path in G means an induced nonnull connected subgraph in which no vertex is adjacent to more than two others. The length of a path or hole is the number of edges in it. If $X \subseteq V(G)$, the graph obtained from G by deleting X is denoted by $G \backslash X$. We say $X \subseteq V(G)$ is a clique in G if every two members of X are adjacent. A clique with cardinality 3 is a triangle. A triad in G means a set of three vertices of G, pairwise nonadjacent. Two subsets X, Y of $V(G)$ with $X \cap Y=\emptyset$ are complete to each other if every vertex of X is adjacent to every vertex of Y, and anticomplete if no vertex in X is adjacent to a member of Y. If $A \subseteq V(G)$, and $v \in V(G) \backslash A$, we say v is A-complete if it is adjacent to every vertex in A, and A-anticomplete if it has no neighbour in A. Distinct vertices u, v of G are twins (in $G)$ if they are adjacent and have exactly the same neighbours in $V(G) \backslash\{u, v\}$.

Next, let us explain the decompositions that we shall use in the main theorem. The first is just that there are two vertices in G that are twins, or briefly, " G admits twins". For the second, let A, B be disjoint subsets of $V(G)$. The pair (A, B) is called a homogeneous pair in G if for every vertex $v \in V(G) \backslash(A \cup B), v$ is either A-complete or A-anticomplete and either B-complete or B anticomplete. Let (A, B) be a homogeneous pair, such that A, B are both cliques, and A is neither complete nor anticomplete to B. In these circumstances we call (A, B) a W-join. (Note that there is no requirement that $A \cup B \neq V(G)$. If the complement of G is bipartite, then G admits a W-join except in degenerate cases.) The pair (A, B) is nondominating if some vertex of $G \backslash(A \cup B)$ has no neighbour in $A \cup B$; and it is coherent if the set of all $(A \cup B)$-complete vertices in $V(G) \backslash(A \cup B)$ is a clique. In some applications, nondominating W -joins and coherent W -joins are easier to handle than general W-joins, and it turns out that throughout the proof in this paper, in every instance where we exhibit a W -join, it is either nondominating or coherent. We might as well take advantage of that convenient fact to save ourselves trouble in the future, so we confine ourselves to W -joins which are either nondominating or coherent.

Next, suppose that V_{1}, V_{2} is a partition of $V(G)$ such that V_{1}, V_{2} are nonempty and there are no edges between V_{1} and V_{2}. We call the pair $\left(V_{1}, V_{2}\right)$ a 0 -join in G. Thus G admits a 0 -join if and only if it is not connected.

Next, suppose that V_{1}, V_{2} partition $V(G)$, and for $i=1,2$ there is a subset $A_{i} \subseteq V_{i}$ such that:

- for $i=1,2, A_{i}$ is a clique, and $A_{i}, V_{i} \backslash A_{i}$ are both nonempty
- A_{1} is complete to A_{2}
- every edge between V_{1} and V_{2} is between A_{1} and A_{2}.

In these circumstances, we say that $\left(V_{1}, V_{2}\right)$ is a 1 -join.
Next, suppose that V_{0}, V_{1}, V_{2} are disjoint subsets with union $V(G)$, and for $i=1,2$ there are subsets A_{i}, B_{i} of V_{i} satisfying the following:

- for $i=1,2, A_{i}, B_{i}$ are cliques, $A_{i} \cap B_{i}=\emptyset$ and A_{i}, B_{i} and $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$ are all nonempty
- A_{1} is complete to A_{2}, and B_{1} is complete to B_{2}, and there are no other edges between V_{1} and V_{2}, and
- V_{0} is a clique; and for $i=1,2, V_{0}$ is complete to $A_{i} \cup B_{i}$ and anticomplete to $V_{i} \backslash\left(A_{i} \cup B_{i}\right)$.

We call the triple $\left(V_{1}, V_{0}, V_{2}\right)$ a generalized 2-join, and if $V_{0}=\emptyset$ we call the pair $\left(V_{1}, V_{2}\right)$ a 2-join. (This is closely related to, but not the same as, what has been called a 2 -join in other papers.)

We use one more decomposition, the following. Let $\left(V_{1}, V_{2}\right)$ be a partition of $V(G)$, such that for $i=1,2$ there are cliques $A_{i}, B_{i}, C_{i} \subseteq V_{i}$ with the following properties:

- For $i=1,2$ the sets A_{i}, B_{i}, C_{i} are pairwise disjoint and have union V_{i}
- V_{1} is complete to V_{2} except that there are no edges between A_{1} and A_{2}, between B_{1} and B_{2}, and between C_{1} and C_{2}.
- V_{1}, V_{2} are both nonempty.

In these circumstances we say that G is a hex-join of $G \mid V_{1}$ and $G \mid V_{2}$. Note that if G is expressible as a hex-join as above, then the sets $A_{1} \cup B_{2}, B_{1} \cup C_{2}$ and $C_{1} \cup A_{2}$ are three cliques with union $V(G)$, and consequently no graph G with $\alpha(G)>3$ is expressible as a hex-join.

Next, we list some basic classes of graphs.

- Line graphs. If H is a graph, its line graph $L(H)$ is the graph with vertex set $E(H)$, in which distinct $e, f \in E(H)$ are adjacent if and only if they have a common end in H. We say $G \in \mathcal{S}_{0}$ if G is isomorphic to a line graph.
- The icosahedron. This is the unique planar graph with twelve vertices all of degree five. For $0 \leq k \leq 3$, $\operatorname{icosa}(-k)$ denotes the graph obtained from the icosahedron by deleting k pairwise adjacent vertices. We say $G \in \mathcal{S}_{1}$ if G is isomorphic to $i \operatorname{cosa}(0), i \operatorname{cosa} a(-1)$ or $i \operatorname{cosa} a(-2)$.
- The graphs \mathcal{S}_{2}. Let G be the graph with vertex set $\left\{v_{1}, \ldots, v_{13}\right\}$, with adjacency as follows. $v_{1}-\cdots-v_{6}$ is a hole in G of length 6. Next, v_{7} is adjacent to $v_{1}, v_{2} ; v_{8}$ is adjacent to v_{4}, v_{5}, and possibly to $v_{7} ; v_{9}$ is adjacent to $v_{6}, v_{1}, v_{2}, v_{3} ; v_{10}$ is adjacent to $v_{3}, v_{4}, v_{5}, v_{6}, v_{9} ; v_{11}$ is adjacent to $v_{3}, v_{4}, v_{6}, v_{1}, v_{9}, v_{10} ; v_{12}$ is adjacent to $v_{2}, v_{3}, v_{5}, v_{6}, v_{9}, v_{10}$; and v_{13} is adjacent to $v_{1}, v_{2}, v_{4}, v_{5}, v_{7}, v_{8}$. We say $H \in \mathcal{S}_{2}$ if H is isomorphic to $G \backslash X$, where $X \subseteq\left\{v_{11}, v_{12}, v_{13}\right\}$.
- Circular interval graphs. Let Σ be a circle and let F_{1}, \ldots, F_{k} be subsets of Σ, each homeomorphic to the closed interval $[0,1]$, and no three with union Σ. Let V be a finite subset of Σ, and let G be the graph with vertex set V in which $v_{1}, v_{2} \in V$ are adjacent if and only $v_{1}, v_{2} \in F_{i}$ for some i. Such a graph is called a circular interval graph. We write $G \in \mathcal{S}_{3}$ if G is a circular interval graph.
- An extension of $L\left(K_{6}\right)$. Let H be the graph with seven vertices h_{0}, \ldots, h_{6}, in which h_{1}, \ldots, h_{6} are pairwise adjacent and h_{0} is adjacent to h_{1}. Let G be the graph obtained from the line graph $L(H)$ of H by adding one new vertex, adjacent precisely to the members of $V(L(H))=E(H)$ that are not incident with h_{1} in H. Then G is claw-free. Let \mathcal{S}_{4} be the class of all graphs isomorphic to induced subgraphs of G.
- The graphs \mathcal{S}_{5}. Let $n \geq 0$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three cliques, pairwise disjoint. For $1 \leq i, j \leq n$, let a_{i}, b_{j} be adjacent if and only if $i=j$, and let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j$. Let $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$ be five more vertices, where d_{1} is $A \cup B \cup C$-complete; d_{2} is complete to $A \cup B \cup\left\{d_{1}\right\} ; d_{3}$ is complete to $A \cup\left\{d_{2}\right\}$; d_{4} is complete to $B \cup\left\{d_{2}, d_{3}\right\} ; d_{5}$ is adjacent to d_{3}, d_{4}; and there are no more edges. Let the
graph just constructed be G. We say $H \in \mathcal{S}_{5}$ if (for some n) H is isomorphic to $G \backslash X$ for some $X \subseteq A \cup B \cup C$.
- 2-simplicial graphs of antihat type. Let $n \geq 0$. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be three cliques, pairwise disjoint. For $0 \leq i, j \leq n$, let a_{i}, b_{j} be adjacent if and only if $i=j>0$, and for $1 \leq i \leq n$ and $0 \leq j \leq n$ let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j \neq 0$. Let the graph just constructed be G. We say $H \in \mathcal{S}_{6}$ if (for some n) H is isomorphic to $G \backslash X$ for some $X \subseteq A \cup B \cup C$, and then H is said to be 2-simplicial of antihat type.

Now we can state the main result of this paper, the following.
2.1 Let G be claw-free. Then either

- $G \in \mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{6}$, or
- G admits either twins, a nondominating W-join, a coherent W-join, a 0-join, a 1-join, a generalized 2-join, or a hex-join, or
- G is antiprismatic.

The proof is given in the final section of the paper. We postpone to future papers the study of antiprismatic graphs, and the problem of converting this decomposition theorem to a structure theorem.

3 More on decompositions

Before we begin the main proof, it is helpful to develop a few tools that will enable us to prove more easily that graphs are decomposable. First, here is another useful decomposition. Suppose that there is a partition (A, B, X) of $V(G)$ such that X is a clique, and $|A|,|B| \geq 2$, and A is anticomplete to B. In these circumstances we say that X is an internal clique cutset. This is not one of the decompositions used in the statement of the main theorem (indeed, it is not the inverse of a composition that preserves being claw-free, unlike the other decompositions we mentioned). Nevertheless, we win if we can prove that our graph admits an internal clique cutset, because of the following, proved in [1]. (G is said to be a linear interval graph if there is a linear order v_{1}, \ldots, v_{n} of its vertex set such that for every edge $v_{i} v_{j}$ with $j>i$, the set $\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ is a clique. Every such graph is a circular interval graph.)
3.1 Let G be claw-free. If G admits an internal clique cutset, then either G is a linear interval graph, or G admits either a 1-join, or a 0 -join, or a coherent W-join, or twins.

For brevity, let us say that G is decomposable if it admits either a generalized 2-join, or a 1-join, or a 0 -join, or a nondominating W -join, or a coherent W -join, or twins, or an internal clique cutset, or a hex-join. There follow four lemmas that will speed up our recognition of decomposable graphs.
3.2 Let G be claw-free, and let $A, C \subseteq V(G)$ be disjoint, such that

- A is a clique
- if $C=\emptyset$ then $|A|>1$
- every vertex in $V(G) \backslash(A \cup C)$ is C-anticomplete, and either A-complete or A-anticomplete
- $|V(G) \backslash(A \cup C)| \geq 2$.

Then G is decomposable.
Proof. If C is empty then $|A|>1$ and any two members of A are twins. So we may assume that C is nonempty. If A is anticomplete to C then G admits a 0 -join, so we may assume that $a \in A$ and $c \in C$ are adjacent. Let Y be the set of vertices in $V(G) \backslash(A \cup C)$ that are A-complete, and let $Z=V(G) \backslash(A \cup C \cup Y)$. If $y_{1}, y_{2} \in Y$, then since $\left\{c, a, y_{1}, y_{2}\right\}$ is not a claw, it follows that y_{1}, y_{2} are adjacent, and so Y is a clique. If Z is nonempty then $(A \cup C, Y \cup Z)$ is a 1-join, so we assume that Z is empty. But then $|Y| \geq 2$ by hypothesis, and all members of Y are twins, and so G is decomposable. This proves 3.2.
3.3 Let G be claw-free, and let (A, B) be a homogeneous pair of cliques in G. Suppose that at least one of A, B has cardinality >1, and either (A, B) is nondominating or the set of all $(A \cup B)$-complete vertices in $V(G) \backslash(A \cup B)$ is a clique. Then either

- (A, B) is a nondominating W-join, or a coherent W-join (respectively), or
- one of A, B has cardinality >1 and all its members are twins.

Proof. We may assume that $|A|>1$. If B is either complete or anticomplete to A then the elements of A are twins, and otherwise (A, B) is either a nondominating or coherent W -join. This proves 3.3.

We say a triple (A, C, B) is a breaker in G if it satisfies:

- A, B, C are disjoint nonempty subsets of $V(G)$, and A, B are cliques
- every vertex in $V(G) \backslash(A \cup B \cup C)$ is either A-complete or A-anticomplete, and either B-complete or B-anticomplete, and C-anticomplete
- there is a vertex in $V(G) \backslash(A \cup B \cup C)$ with a neighbour in A and a nonneighbour in B; there is a vertex in $V(G) \backslash(A \cup B \cup C)$ with a neighbour in B and a nonneighbour in A; and there is a vertex in $V(G) \backslash(A \cup B \cup C)$ with a nonneighbour in A and a nonneighbour in B
- if A is complete to B, then there do not exist adjacent $x, y \in V(G) \backslash(A \cup B \cup C)$ such that x is $A \cup B$-complete and y is $A \cup B$-anticomplete.

The reason for interest in breakers is that they allow us to deduce that our graph admits one of our decompositions, without having to figure out which one, in view of the following theorem.
3.4 Let G be claw-free. If G admits a breaker, then G admits either a 0-join, a 1-join, or a generalized 2-join.

Proof. Let $\left(A_{1}, C_{1}, B_{1}\right)$ be a breaker; let $V_{1}=A_{1} \cup B_{1} \cup C_{1}$, let V_{0} be the set of all vertices not in V_{1} that are $A_{1} \cup B_{1}$-complete, and let $V_{2}=V(G) \backslash\left(V_{1} \cup V_{0}\right)$. Let A_{2} be the set of A_{1}-complete vertices in V_{2}, and B_{2} the set of B_{1}-complete vertices in V_{2}. Let $C_{2}=V_{2} \backslash\left(A_{2} \cup B_{2}\right)$. By hypothesis, A_{2}, B_{2}, C_{2} are all nonempty. If there are no edges between C_{1} and $A_{1} \cup B_{1}$ then G admits a 0 -join, so from the symmetry we may assume that there is an edge between C_{1} and A_{1}. Since $A_{1} \cup C_{1} \cup A_{2} \cup V_{0}$ includes no claw, it follows that $A_{2} \cup V_{0}$ is a clique. Let A^{\prime} be the set of vertices in A_{1} with a neighbour in C_{1}. Since $B_{2} \neq \emptyset$ and we may assume that $\left(C_{1} \cup A^{\prime}, V(G) \backslash\left(C_{1} \cup A^{\prime}\right)\right)$ is not a 1-join, it follows that A^{\prime} is not anticomplete to B_{1}. Consequently some vertex $a \in A_{1}$ has a neighbour $b \in B_{1}$ and a neighbour $c \in C_{1}$. Since $A_{2} \neq \emptyset$ and there is no claw, it follows that b, c are adjacent. Consequently $B_{2} \cup V_{0}$ is a clique. Suppose that there is an edge $x y$ between some $x \in V_{0}$ and $y \in C_{2}$. By hypothesis, A_{1} is not complete to B_{1}; choose $a \in A_{1}$ and $b \in B_{1}$, nonadjacent. Then $\{x, y, a, b\}$ is a claw, a contradiction. It follows that there is no such edge $x y$, and so V_{0} is anticomplete to C_{2}, and consequently (V_{1}, V_{0}, V_{2}) is a generalized 2-join. This proves 3.4.

Here is another shortcut, this time useful for handling hex-joins.
3.5 Let G be claw-free, and let A, B, C be disjoint nonempty cliques. Suppose that every vertex in $V(G) \backslash(A \cup B \cup C)$ is complete to two of A, B, C and anticomplete to the third. Suppose also that one of A, B, C has cardinality >1, and $A \cup B \cup C \neq V(G)$. Then G admits either a hex-join, or a nondominating W-join, or twins.

Proof. Let $V_{1}=A \cup B \cup C$, and $V_{2}=V(G) \backslash V_{1}$. Let A_{2} be the set of vertices in V_{2} that are anticomplete to A, and define B_{2}, C_{2} similarly. If A_{2}, B_{2}, C_{2} are cliques, then G is the hex-join of $G \mid V_{1}$ and $G \mid V_{2}$, so we may assume that there exist nonadjacent $u, v \in A_{2}$. For $w \in A$ and $x \in B \cup C$, $\{x, w, u, v\}$ is not a claw, and so w, x are nonadjacent; and consequently A is anticomplete to $B \cup C$. Thus (B, C) is a homogeneous pair of cliques, and it is nondominating since A is nonempty; so by 3.3 we may assume that $|B|,|C|=1$, and therefore $|A|>1$ by hypothesis, and yet every two members of A are twins. This proves 3.5.

4 The icosahedron

Our first main goal is to prove that claw-free graphs that include a "substantial" line graph either are line graphs or are decomposable. To make this theorem as useful as possible, we want to weaken the meaning of "substantial" as far as we can; and on the borderline where the theorem is just about to become false, there are two situations where the theorem is false in a way we can handle. It is convenient to deal with them first before we embark on line graphs in general. We do one in this section and the other in the next, and then start on line graphs proper in the section after that.

The icosahedron is claw-free, and in this section we study claw-free graphs which contain it (or most of it) as an induced subgraph. If H is an induced subgraph of G, and $v \in V(G) \backslash V(H)$, we say that v is a clone of $u \in V(H)$ (with respect to H) if v is adjacent to u and u, v have exactly the same neighbours in $V(H) \backslash\{u\}$.

Frequently we assume that our current claw-free graph G has an induced subgraph H that we know, and we wish to enumerate all the possibilities for the neighbours set in $V(H)$ of vertices in $V(G) \backslash V(H)$. And having done so, then we try to figure out the adjacencies between the vertices
in $V(G) \backslash V(H)$. To aid with that, here are three trivial facts that are used so often that it is worth stating them explicitly. (All three proofs are obvious and we omit them.)
4.1 Let G be claw-free, and let H be an induced subgraph of G. Let $v \in V(G) \backslash V(H)$, and let N be the set of neighbours of v in $V(H)$. Then N includes no triad.
4.2 Let G be claw-free, and let H be an induced subgraph of G. Let $v \in V(G) \backslash V(H)$, and let N be the set of neighbours of v in $V(H)$. Then there is no path of length 2 in H with middle vertex in N and no other vertex in N.
4.3 Let G be claw-free, and let H be an induced subgraph of G. Let $u, v \in V(G) \backslash V(H)$ have a common neighbour $a \in V(H)$ and a common non-neighbour $b \in V(H)$. If a, b are adjacent then u, v are adjacent.
4.4 Let G be claw-free, containing icosa(-1) as an induced subgraph. Then either $G \in \mathcal{S}_{1}$, or two vertices of G are twins, or G admits a 0 -join. In particular, either $G \in \mathcal{S}_{1}$, or G is decomposable.

Proof. Let $H=i \operatorname{cosa}(-1)$. Number the vertex set of H as $\left\{v_{1}, \ldots, v_{11}\right\}$, where for $1 \leq i<j \leq 10$, v_{i} is adjacent to v_{j} if either $j-i \leq 2$ or $j-i \geq 8$, and v_{11} is adjacent to $v_{1}, v_{3}, v_{5}, v_{7}, v_{9}$.

For $1 \leq i \leq 11$, let N_{i} be the union of $\left\{v_{i}\right\}$ and the set of neighbours of v_{i} in H, and let C_{i} be the union of $\left\{v_{i}\right\}$ and the set of all clones of v (with respect to H) in $V(G) \backslash V(H)$. Let $N_{12}=\left\{v_{2}, v_{4}, v_{6}, v_{8}, v_{10}\right\}$, and let C_{12} be the set of all $v \in V(G) \backslash V(H)$ whose set of neighbours in $V(H)$ is N_{12}.
(1) Every vertex in $V(G)$ with at least one neighbour in $V(H)$ belongs to one of C_{1}, \ldots, C_{12}.

For certainly each v_{i} belongs to C_{i}, for $1 \leq i \leq 11$; let $v \in V(G) \backslash V(H)$, and let N be the set of neighbours of v in $V(H)$. By hypothesis N is nonempty. Suppose first that $v_{11} \in N$. By 4.2 with $v_{1}-v_{11}-v_{5}$, at least one of $v_{1}, v_{5} \in N$. Similarly N contains at least one of every two nonadjacent members of $\left\{v_{1}, v_{3}, v_{5}, v_{7}, v_{9}\right\}$, and so we may assume that $v_{1}, v_{3}, v_{5} \in N$, from the symmetry. If $v_{7}, v_{9} \in N$, then by 4.1, it follows that $|N|=6$ and v is a clone of v_{11}. So we may assume from the symmetry that $v_{9} \notin N$. By 4.2 with $v_{2}-v_{1}-v_{9}, v_{2} \in N$. By 4.1 , it follows that $v_{6}, v_{8} \notin N$. By 4.2 with $v_{6}-v_{7}-v_{9}, v_{7} \notin N$, and by 4.2 with $v_{4}-v_{5}-v_{7}, v_{4} \in N$. By 4.1 with $\left\{v_{4}, v_{10}, v_{11}\right\}, v_{10} \notin N$. Thus v is a clone of v_{3}.

We may therefore assume that $v_{11} \notin N$. Suppose next that $v_{1} \in N$. By 4.2 with $v_{11}-v_{1}-v_{2}$, $v_{2} \in N$, and similarly $v_{10} \in N$. By 4.2 with $v_{3}-v_{1}-v_{9}$, one of $v_{3}, v_{9} \in N$, and from the symmetry we may assume that $v_{3} \in N$. By 4.2 with $v_{4}-v_{3}-v_{11}, v_{4} \in N$. By $4.1, v_{6}, v_{7}, v_{8} \notin N$. By 4.2 with $v_{6}-v_{5}-v_{11}$ and with $v_{8}-v_{9}-v_{11}, v_{5}, v_{9} \notin N$. But then v is a clone of v_{2}.

We may therefore assume that $v_{1} \notin N$, and by the symmetry that $v_{3}, v_{5}, v_{7}, v_{9} \notin N$. By 4.2 with $v_{1}-v_{2}-v_{4}$ and $v_{2}-v_{4}-v_{5}$, it follows that N contains both or neither of v_{2}, v_{4}, and the same holds for all adjacent pairs of $v_{2}, v_{4}, v_{6}, v_{8}, v_{10}$. Thus either N consists of all these vertices or none. Since N is nonempty, the first case applies, and so $v \in C_{12}$. This proves (1).

We may assume that G is connected, for otherwise the theorem holds.
(2) Every vertex of G has a neighbour in $V(H)$.

For let C_{0} be the set of all vertices of G with no neighbour in $V(H)$, and suppose that C_{0} is nonempty. Since G is connected, there exist $x \in C_{0}$ and $y \in V(G) \backslash C_{0}$, adjacent. Since y has neighbours in $V(H)$, it follows from (1) that y belongs to some C_{i}. In particular, y has two nonadjacent neighbours in $V(H)$, say a, b. But then $\{y, a, b, x\}$ is a claw, a contradiction. This proves (2).

From (1) and (2), the sets C_{1}, \ldots, C_{12} are pairwise disjoint and have union $V(G)$.
(3) Each C_{i} is a clique, and for $1 \leq i<j \leq 12, C_{i}, C_{j}$ are either complete or anticomplete to each other.

The first statement follows from 4.3. For the second, let $1 \leq i<j \leq 12$, and let $u \in C_{i}$ and $v \in C_{j}$. We claim that v is adjacent to u if and only if $v_{i} \in N_{j}$. This is clear if either of u, v belongs to $V(H)$, so we assume that both belong to $V(G) \backslash V(H)$. Let $H^{\prime}=G \mid\left(\{u\} \cup V(H) \backslash\left\{v_{i}\right\}\right)$; then H^{\prime} is isomorphic to H. For $1 \leq k \leq 12$, let $N_{k}^{\prime}=N_{k}$ if $v_{i} \notin N_{k}$, and $N_{k}^{\prime}=\{u\} \cup\left(N_{k} \backslash\left\{v_{i}\right\}\right)$ otherwise. From (1) and (2) applied to H^{\prime}, the set of neighbours of v in $V\left(H^{\prime}\right)$ is one of $N_{1}^{\prime}, \ldots, N_{12}^{\prime}$, say N_{k}^{\prime}. The set of neighbours of v in $V(H)$ is N_{j}, and since H and H^{\prime} differ only by the vertices u, v_{i}, it follows that $N_{k}^{\prime} \subseteq N_{j} \cup\{u\}$. But $N_{k} \subseteq N_{k}^{\prime} \cup\left\{v_{i}\right\}$, and since $u \notin N_{k}$ we deduce that $N_{k} \subseteq N_{j} \cup\left\{v_{i}\right\}$. Consequently $j=k$, and the set of neighbours of v in $V\left(H^{\prime}\right)$ is N_{j}^{\prime}, and so v is adjacent to u if and only if $u \in N_{j}^{\prime}$, that is, if and only if $v_{i} \in N_{j}$. This proves our claim. Consequently whether u, v are adjacent depends only on i, j, and this proves (3).

By (3) every two members of each C_{i} are twins; and so we may assume that each C_{i} has at most one member, for otherwise the theorem holds. Since $v_{i} \in C_{i}$ for $1 \leq i \leq 11$, we deduce that either $G=H$ or G is isomorphic to the icosahedron, depending whether C_{12} has cardinality 0 or 1 . This proves 4.4.
4.4 handles claw-free graphs that contain $i \operatorname{cosa}(-1)$; next we need to consider $i \cos a(-2)$.
4.5 Let G be claw-free, with an induced subgraph isomorphic to icosa(-2). Then either $G \in \mathcal{S}_{1}$, or G is decomposable.

Proof. Since G has an induced subgraph isomorphic to $i \operatorname{cosa}(-2)$, we may choose ten disjoint nonempty cliques $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}, D_{1}, D_{2}, E, F$ in G, satisfying:

- The following pairs are complete: for $i=1,2, A_{i} C_{i}, B_{i} C_{i}, A_{i} D_{i}, B_{i} D_{i}, C_{i} D_{i}, A_{i} E, D_{i} E, B_{i} F, D_{i} F$, also, $A_{1} A_{2}, B_{1} B_{2}, E F$.
- The pairs $A_{1} B_{1}$ and $A_{2} B_{2}$ are not complete (but not necessarily anticomplete).
- All remaining pairs are anticomplete.

Let us choose such a set of cliques with maximal union W say. Suppose first that $W=V(G)$. Then $\left(A_{1}, B_{1}\right)$ is a homogeneous pair of cliques, nondominating since $C_{2} \neq \emptyset$, and so by 3.3 we may assume $\left|A_{1}\right|=\left|B_{1}\right|=1$, and similarly $\left|A_{2}\right|=B_{2} \mid=1$. If one of the other six cliques has cardinality >1, say X, then the members of X are twins and the theorem holds. If all ten cliques have cardinality 1 then G is isomorphic to $i \operatorname{cosa}(-2)$, as required. So we may assume that $W \neq V(G)$.

We may assume that G is connected, and so there exists $v \in V(G) \backslash W$ with at least one neighbour in W. Let N be the set of neighbours of v in W.
(1) If N meets both C_{1}, C_{2} then the theorem holds.

For in that case, by $4.1 N$ is disjoint from E, F. Since A_{1}, B_{1} are not complete, 4.1 (with A_{1}, B_{1}, C_{2}) implies that $A_{1} \cup B_{1} \nsubseteq N$; and so 4.2 (with A_{1}, D_{1}, F if $A_{1} \nsubseteq N$) implies that $D_{1} \cap N=\emptyset$. Similarly $D_{2} \cap N=\emptyset$. Since A_{1}, B_{1} are not complete, 4.2 (with A_{1}, B_{1}, C_{1}) implies that N meets at least one of A_{1}, B_{1}, say A_{1}. Then 4.2 (with D_{1}, A_{1}, A_{2}) implies $A_{2} \subseteq N$, and by symmetry $A_{1} \subseteq N$. Similarly, if B_{1} meets N then $B_{2} \subseteq N$, contrary to 4.1 (with A_{2}, B_{2}, C_{1}), and so $B_{1} \cap N=\emptyset$, and by symmetry $B_{2} \cap N=\emptyset$. Then G contains an induced subgraph isomorphic to $i \operatorname{cosa}(-1)$ (choose one vertex from each of the ten cliques, choosing neighbours of v from C_{1}, C_{2}, and such that for $i=1,2$ the representatives of A_{i}, B_{i} are nonadjacent; and take v as the eleventh vertex). But the the theorem holds by 4.4. This proves (1).
(2) If N meets $C_{1} \cup C_{2}$ then the theorem holds.

For by (1) we may assume that N meets C_{1} and is disjoint from C_{2}. Suppose first that N meets A_{2}. 4.2 (with A_{1}, A_{2}, C_{2} and with E, A_{2}, C_{2}) implies that $A_{1}, E \subseteq N .4 .1$ (with A_{2}, C_{1}, F) implies that $N \cap F=\emptyset .4 .2$, applied in turn to the triples $A_{2}, E, F ; C_{2}, B_{2}, F ; C_{2}, D_{2}, F ; D_{1}, E, D_{2} ; C_{1}, D_{1}, F$ implies that $A_{2} \subseteq N ; N \cap B_{2}=\emptyset ; N \cap D_{2}=\emptyset ; D_{1} \subseteq N$, and $C_{1} \subseteq N$. But then v can be added to A_{1}, contrary to the maximality of W. This proves that $N \cap A_{2}=\emptyset$, and by symmetry $N \cap B_{2}=\emptyset$. 4.2 (with A_{2}, D_{2}, B_{2}) implies that $N \cap D_{2}=\emptyset .4 .2$ (with A_{1}, C_{1}, B_{1}) implies that N meets one of $A_{1}, B_{1} .4 .2$ (with D_{1}, A_{1}, A_{2} if N meets A_{1})implies that $D_{1} \subseteq N$. Suppose first that N is disjoint from both E, F. Then 4.2 (with B_{1}, D_{1}, E and A_{1}, D_{1}, F) implies that $B_{1}, A_{1} \subseteq N$, and 4.2 (with A_{2}, A_{1}, C_{1}) implies that $C_{1} \subseteq N$. But then v can be added to C_{1}, contradicting the maximality of W. Hence N is not disjoint from both E, F, and from the symmetry we may assume it meets E. 4.2 (with A_{2}, E, F) implies that $F \subseteq N$, and from symmetry $E \subseteq N .4 .2$ (with A_{1}, E, D_{2}) implies $A_{1} \subseteq N$, and by symmetry $B_{1} \subseteq N$; and 4.2 (with C_{1}, A_{1}, A_{2}) implies that $C_{1} \subseteq N$. Then v can be added to D_{1}, contrary to the maximality of W. This proves (2).

To finish the proof, we assume by (2) that N is disjoint from $C_{1} \cup C_{2}$. Suppose that N meets $A_{1} .4 .2$ (with C_{1}, A_{1}, A_{2} and A_{1}, A_{2}, C_{2}) implies that $A_{2}, A_{1} \subseteq N .4 .2$ (with C_{1}, A_{1}, E) implies that $E \subseteq N$. Suppose in addition that N meets $B_{1} \cup B_{2}$. Then from the symmetry, $B_{1} \cup B_{2} \cup F \subseteq N$; 4.1 (with A_{1}, B_{1}, D_{2} and A_{2}, B_{2}, D_{1}) implies that N is disjoint from D_{1}, D_{2}, contrary to 4.2 (with D_{1}, E, D_{2}). So N is disjoint from $B_{1}, B_{2} .4 .2$ (with D_{1}, E, D_{2}) implies that N includes one of D_{1}, D_{2}, say $D_{1} ; 4.2$ (with $\left.C_{1}, D_{1}, F\right)$ implies that $F \subseteq N ; 4.2$ (with B_{1}, F, D_{2}) implies that $D_{2} \subseteq N$; but then v can be added to E, contrary to the maximality of W. This proves that N is disjoint from A_{1}, and by symmetry from $B_{1}, A_{2}, B_{2} .4 .2$ (with A_{1}, D_{1}, B_{1}) implies that $N \cap D_{1}=\emptyset$, and by symmetry $N \cap D_{2}=\emptyset$; and then 4.2 (with D_{1}, E, D_{2} and D_{1}, F, D_{2}) implies that N is disjoint from E, F. But then $N=\emptyset$, a contradiction. Thus there is no such vertex v. This proves 4.5.

Next we need to consider deleting two vertices (distance 2 apart) from the icosahedron. This is the smallest graph in \mathcal{S}_{2}; it is also a case of what we call an XX-configuration. Let G be a graph. An $X X$-configuration in G means an induced subgraph H, consisting of

- eight vertices $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, d_{1}, d_{2}$
- edges $a_{i} b_{i}, a_{i} c_{i}, b_{i} c_{i}, b_{i} d_{i}, c_{i} d_{i}, b_{i} b_{3}, c_{i} c_{3}, d_{i} b_{3}, d_{i} c_{3}$ for $i=1,2$, the edge $d_{1} d_{2}$, and possibly the edge $a_{1} a_{2}$.
4.6 Let G be claw-free, and contain an XX-configuration. Then either $G \in \mathcal{S}_{1} \cup \mathcal{S}_{2}$, or G is decomposable.

Proof. Let H be an XX-configuration in G, and let a_{1}, a_{2}, \ldots be as in the definition of an XXconfiguration. We may therefore choose eleven disjoint subsets $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}, D_{1}, D_{2}$, with the following properties:

- the ten sets $A_{1}, A_{2}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}, D_{1}, D_{2}$ are nonempty cliques
- the pairs $A_{i} B_{i}, A_{i} C_{i}, B_{i} C_{i}, B_{i} B_{3}, C_{i} C_{3}, B_{i} D_{i}, C_{i} D_{i}, B_{3} D_{i}, C_{3} D_{i}$ are complete for $i=1,2$, and all the other pairs of the eleven subsets named are anticomplete, with the exception of $D_{1} D_{2}, A_{1} A_{2}$, $A_{1} A_{3}, A_{2} A_{3}$
- $a_{1} \in A_{1}, a_{2} \in A_{2}$ and so on.
(To see this, take $A_{1}=\left\{a_{1}\right\}, B_{1}=\left\{b_{1}\right\}$ and so on, with $A_{3}=\emptyset$.) Consequently we may choose these eleven sets with maximal union. Let J be the subgraph of G induced on their union.
(1) Let $v \in V(G) \backslash V(J)$, and let N be the set of neighbours of v in $V(J)$. Then either
- $N=A_{1} \cup B_{1} \cup C_{1} \cup A_{2} \cup B_{2} \cup C_{2}$, or
- $N=B_{1} \cup B_{3} \cup D_{1} \cup D_{2} \cup C_{3} \cup C_{2}$ or $C_{1} \cup C_{3} \cup D_{1} \cup D_{2} \cup B_{3} \cup B_{2}$, or
- A_{1} is complete to A_{2} and $N=A_{1} \cup A_{2} \cup B_{1} \cup B_{2} \cup B_{3}$ or $A_{1} \cup A_{2} \cup C_{1} \cup C_{2} \cup C_{3}$.

For first assume that N meets both B_{3} and C_{3}. By 4.1, N is disjoint from $A_{1} \cup A_{2} \cup A_{3}$. By 4.2 (with $\left.B_{1}, B_{3}, B_{2}\right), N$ includes one of B_{1}, B_{2}, and we may assume that it includes B_{1} from the symmetry. By $4.1, N \cap B_{2}=\emptyset$. By 4.2 (with B_{2}, B_{3}, D_{1}), $D_{1} \subseteq N$. By 4.2 (with A_{1}, B_{1}, B_{3}), $B_{3} \subseteq N$. Suppose that $N \cap C_{1}$ is nonempty. By $4.1, N \cap C_{2}=\emptyset$; by 4.2 (with C_{1}, C_{3}, C_{2}), $C_{1} \subseteq N$, and by 4.2 (with C_{3}, C_{1}, A_{1}), $C_{3} \subseteq N$; but then v can be added to D_{1}, contrary to the maximality of $V(J)$. Thus $N \cap C_{1}=\emptyset$. By 4.2 (with D_{2}, C_{3}, C_{1}), $D_{2} \subseteq N$; by 4.2 (with C_{1}, C_{3}, C_{2}), $C_{2} \subseteq N$; by 4.2 (with B_{2}, D_{2}, C_{3}), $C_{3} \subseteq N$; and the second assertion of the claim holds.

So we may assume that N is disjoint from one of B_{3} and C_{3}, say C_{3}. Next assume that N meets both D_{1} and D_{2}. By 4.2 (with B_{3}, D_{1}, C_{3}), $B_{3} \subseteq N$. By 4.2 (with B_{1}, D_{1}, C_{3}), $B_{1} \subseteq N$, and similarly $B_{2} \subseteq N$. By 4.1, N is disjoint from $A_{1} \cup A_{2} \cup A_{3}$. By 4.2 (with A_{1}, B_{1}, D_{1}), $D_{1} \subseteq N$, and similarly $D_{2} \subseteq N$. By 4.2 (with A_{1}, C_{1}, C_{3}), $N \cap C_{1}=\emptyset$, and similarly $N \cap C_{2}=\emptyset$. But then v can be added to B_{3}, contrary to the maximality of $V(J)$.

So we may assume that N is disjoint from both C_{3} and D_{2} say. We recall that $d_{1} \in D_{1}$, and d_{1} is adjacent to $d_{2} \in D_{2}$. Suppose that $d_{1} \in N$. By 4.2 (with B_{1}, d_{1}, C_{3}), $B_{1} \subseteq N$. By 4.2 (with B_{3}, d_{1}, C_{3}), $B_{3} \subseteq N$. By 4.2 (with C_{1}, d_{1}, d_{2}), $C_{1} \in N$. By 4.2 (with A_{1}, C_{1}, C_{3}), $A_{1} \subseteq N$. By 4.1, $N \cap\left(B_{2} \cup C_{2}\right)=\emptyset$, and $N \cap\left(A_{2} \cup A_{3}\right)=\emptyset$. By 4.2 (with $\left.B_{2}, B_{3}, D_{1}\right), D_{1} \subseteq N$. But then v can be added to B_{1}, contrary to the maximality of $V(J)$.

We may therefore assume that $d_{1} \notin N$. Suppose next that $N \cap B_{3}$ is nonempty. By 4.2 (with d_{1}, B_{3}, B_{2}), $B_{2} \subseteq N$, and similarly $B_{1} \subseteq N$. By 4.2 (with d_{1}, B_{1}, A_{1}), $A_{1} \subseteq N$, and similarly $A_{2} \subseteq N$. By 4.1, A_{1} is complete to A_{2}, and for the same reason, N is disjoint from $A_{3} \cup C_{1} \cup C_{2} \cup D_{1}$. But then the final statement of (1) holds.

So we may assume that $N \cap B_{3}=\emptyset$. By 4.2 (with B_{3}, D_{1}, C_{3}), $N \cap D_{1}=\emptyset$, and so N is disjoint from all four of $B_{3}, C_{3}, D_{1}, D_{2}$. If N intersects none of $B_{1}, B_{2}, C_{1}, C_{2}$, then v can be added to A_{3}, contrary to the maximality of $V(J)$. So we may assume from the symmetry that N meets B_{1}. By 4.2 (with C_{1}, B_{1}, B_{3}), $C_{1} \subseteq N$, and similarly $B_{1} \subseteq N$; and by 4.2 (with B_{3}, B_{1}, A_{1}), $A_{1} \subseteq N$. If N intersects either B_{2} or C_{2}, then similarly it includes $A_{2} \cup B_{2} \cup C_{2}$, and therefore is disjoint from A_{3} (by 4.1), and the first statement of the claim holds. So we may assume that N is disjoint from $B_{2} \cup C_{2}$. But then v can be added to A_{1}, contrary to the maximality of $V(J)$. This proves (1).

By (1), any two vertices of B_{1} are twins in G, and the same holds $B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$, and so we may assume that these sets all have cardinality 1 . Moreover, by (1) $\left(D_{1}, D_{2}\right)$ is a homogeneous pair of cliques, nondominating since $A_{1} \neq \emptyset$, and so by 3.3 , we may assume that D_{1}, D_{2} both have cardinality 1 . If there is a vertex v satisfying the final statement of (1), then there is an induced subgraph isomorphic to $i \operatorname{cosa}(-1)$, and the claim follows from 4.4. Thus we may assume that no vertex satisfies the final statement of (1). Let U_{0} be the set of all $v \in V(G) \backslash V(J)$ whose set of neighbours in $V(J)$ is $A_{1} \cup A_{2} \cup\left\{b_{1}, c_{1}, b_{2}, c_{2}\right\}$; and let U_{1}, U_{2} be those with neighbours sets $\left\{b_{1}, b_{3}, d_{1}, d_{2}, c_{3}, c_{2}\right\}$ and $\left\{c_{1}, c_{3}, d_{1}, d_{2}, b_{3}, b_{2}\right\}$ respectively. Thus the sets U_{0}, U_{1}, U_{2} are disjoint and have union $V(G) \backslash V(J)$. By 4.3, U_{0}, U_{1}, U_{2} are cliques. If some $u_{0} \in U_{0}$ is adjacent to some $u_{1} \in U_{1}$, then $\left\{u_{0}, u_{1}, c_{1}, b_{2}\right\}$ is a claw, while if some $u_{1} \in U_{1}$ is adjacent to some $u_{2} \in U_{2}$, then $\left\{u_{1}, u_{2}, b_{1}, c_{2}\right\}$ is a claw, in either case a contradiction. Thus U_{0}, U_{1}, U_{2} are anticomplete to each other. Hence for $i=0,1,2$, every two vertices in U_{i} are twins, and so we may assume that $\left|U_{i}\right| \leq 1$. Now every vertex not in $A_{1} \cup A_{2} \cup A_{3}$ is either A_{1}-complete or A_{1}-anticomplete, and either A_{2}-complete or A_{2}-anticomplete, and A_{3}-anticomplete. Also, if $x, y \in V(G) \backslash A_{1} \cup A_{2} \cup A_{3}$ and x is $A_{1} \cup A_{2}$-complete and y is $A_{1} \cup A_{2}$-anticomplete, then $x \in U_{0}$, and either $y \in U_{1} \cup U_{2}$ or y is one of $b_{3}, c_{3}, d_{1}, d_{2}$, and in either case x, y are not adjacent. If $A_{3} \neq \emptyset$ then $\left(A_{1}, A_{3}, A_{2}\right)$ is a breaker, and the theorem holds by 3.4, so may assume that $A_{3}=\emptyset$. Consequently $\left(A_{1}, A_{2}\right)$ is a homogeneous pair, nondominating since $D_{1} \neq \emptyset$, and therefore by 3.3 we may assume that $A_{i}=\left\{a_{i}\right\}$ for $i=1,2$. But then $G \in \mathcal{S}_{2}$, and the theorem holds. This proves 4.6.

5 The second line graph anomaly

Now we handle the second peculiarity that will turn up when we come to treat line graphs. Let H be an induced subgraph of G, with 11 vertices $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, d_{1}, d_{2}$, and the following edges: for $i=1,2,\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ are cliques, and so are $\left\{b_{1}, b_{2}, b_{3}\right\}$ and $\left\{c_{1}, c_{2}, c_{3}\right\}$; every pair of $a_{3}, b_{3}, c_{3}, d_{1}, d_{2}$ are adjacent except the pair d_{1}, d_{2}; and possibly a_{1}, a_{2} are adjacent. We call such a subgraph H a $Y Y$-configuration. We need to show the following.
5.1 Let G be claw-free, and contain an $Y Y$-configuration. Then G is decomposable.

Proof. Since there is a YY-configuration in G, we may choose nine cliques $A_{j}^{i}(1 \leq i, j \leq 3)$, with the following properties (for $1 \leq i \leq 3, A^{i}$ denotes $A_{1}^{i} \cup A_{2}^{i} \cup A_{3}^{i}$, and A_{i} denotes $A_{i}^{1} \cup A_{i}^{2} \cup A_{i}^{3}$):

- these nine sets are nonempty and pairwise disjoint
- for $1 \leq i, j, i^{\prime}, j^{\prime} \leq 3$, if $i \neq i^{\prime}$ and $j \neq j^{\prime}$ then A_{j}^{i} is anticomplete to $A_{j^{\prime}}^{i^{\prime}}$
- for $1 \leq j \leq 3, A_{j}$ is a clique
- for $i=1,2, A^{i}$ is a clique
- A_{1}^{3} and A_{2}^{3} are not complete to A_{3}^{3}
- for $1 \leq j \leq 3$, let S_{j} be the set of all vertices that are anticomplete to A_{j} and complete to the other two of A_{1}, A_{2}, A_{3}; then S_{1} is not complete to S_{2}
- subject to these conditions, the union W of the sets $A_{j}^{i}(1 \leq i, j \leq 3)$ is maximal.
(To see this, take a YY-configuration, with vertices a_{1}, a_{2}, \ldots as before, and let $A_{j}^{1}=\left\{b_{j}\right\}, A_{j}^{2}=$ $\left\{c_{j}\right\}, A_{j}^{3}=\left\{a_{j}\right\}$ for $j=1,2,3$; then d_{1}, d_{2} belongs to S_{2}, S_{1} respectively. $)$ Let $Z=V(G) \backslash\left(W \cup S_{1} \cup\right.$ $S_{2} \cup S_{3}$), and for $i=1,2$, let H_{i} be the set of vertices in A_{i}^{3} with no neighbour in A_{3}^{3}. Choose $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$, nonadjacent.
(1) Every vertex in $W \cup S_{1} \cup S_{2} \cup S_{3}$ with a neighbour in Z belongs to $H_{1} \cup H_{2}$.

For suppose that $z \in Z$, and let N be the set of neighbours of z. We will show that

$$
N \cap\left(W \cup S_{1} \cup S_{2} \cup S_{3}\right) \subseteq H_{1} \cup H_{2}
$$

Assume first that $s_{1}, s_{2} \in N$. We claim that $A_{3}^{1} \subseteq N$. For suppose not. 4.2 (with $A_{3}^{1}, S_{2}, A_{1}^{2} \cup A_{1}^{3}$) implies that $A_{1}^{2} \cup A_{1}^{3} \subseteq N$, and similarly $A_{2}^{2} \cup A_{2}^{3} \subseteq N$. Since A_{1}^{3} is not complete to A_{3}^{3}, 4.1 (with $A_{1}^{3}, A_{3}^{3}, A_{2}^{2}$) implies that $A_{3}^{3} \nsubseteq N$. 4.2 (with $A_{j}^{1}, A_{j}^{3}, A_{3}^{3}$) implies that $A_{j}^{1} \subseteq N$ for $j=1,2$; and then three applications of 4.1 imply that $N \cap A_{3}=\emptyset$. But then $z \in S_{3}$, a contradiction. This proves our claim that $A_{3}^{1} \subseteq N$, and similarly $A_{3}^{2} \subseteq N$. Suppose that $A_{3}^{3} \nsubseteq N$. Then for $1 \leq i, j \leq 2,4.2$ (with $A_{3}^{3}, A_{3}^{i}, A_{j}^{i}$) implies that $A_{j}^{i} \subseteq N$; and two applications of 4.1 imply that N is disjoint from A_{1}^{3}, A_{3}^{3}, contrary to 4.2 (with $A_{1}^{3}, s_{2}, A_{3}^{3}$). Thus $A_{3}^{3} \subseteq N$. Since z cannot be added to A_{3}^{3}, N meets one of the sets A_{j}^{i} where $1 \leq i, j \leq 2$, and from the symmetry we may assume that $N \cap A_{1}^{1} \neq \emptyset$. 4.1 implies that N is disjoint from A_{2}^{2}, A_{2}^{3}. If N meets A_{2}^{1}, then similarly N is disjoint from A_{1}^{2}, A_{2}^{3}, and 4.2 (with $A_{1}^{2}, A_{1}^{1}, A_{2}^{1}$) implies that $A_{2}^{1} \subseteq N$, and similarly $A_{1}^{1} \subseteq N$; but then z can be added to A_{3}^{1}, a contradiction. Thus $N \cap A_{2}^{1}=\emptyset$. By 4.2 (with $A_{2}^{1}, A_{1}^{1}, A_{1}^{2} \cup A_{1}^{3}$), $A_{1}^{2} \cup A_{1}^{3} \subseteq N$ and 4.2 (with $A_{1}^{1}, A_{1}^{2}, A_{2}^{2}$) implies that $A_{1}^{1} \subseteq N$; but then $z \in S_{2}$, a contradiction. This completes the case when $s_{1}, s_{2} \in N$.

Next assume that $s_{1} \in N$ and $s_{2} \notin N$. Suppose first that $A_{2}^{1} \nsubseteq N .4 .2$ (with $A_{2}^{1}, s_{1}, A_{3}^{2} \cup A_{3}^{3}$) implies that $A_{3}^{2} \cup A_{3}^{3} \subseteq N ; 4.2$ (with $s_{2}, A_{3}^{1}, A_{2}^{1}$) implies that $N \cap A_{3}^{1}=\emptyset ; 4.2$ (with $A_{3}^{1}, s_{1}, A_{2}^{3}$) implies $A_{2}^{3} \subseteq N ; 4.1$ (with $A_{1}^{2}, A_{3}^{3}, A_{2}^{3}$) implies that $N \cap A_{1}^{2}=\emptyset ;$ and this contradicts 4.2 (with $A_{1}^{2}, A_{3}^{2}, A_{3}^{1}$), This proves that $A_{2}^{1} \subseteq N$. Similarly $A_{2}^{2} \subseteq N$. If $A_{2}^{3} \nsubseteq N$, then 4.2 (with $A_{2}^{3}, A_{2}^{i}, A_{j}^{i}$) implies that $A_{j}^{i} \subseteq N$, for $i=1,2$ and $j=1,3$; and then 4.1 implies that N is disjoint from both A_{3}^{3}, A_{2}^{3}, contrary to 4.2 (with $A_{3}^{3}, s_{1}, A_{2}^{3}$). Hence $A_{2}^{3} \subseteq N$. Suppose that $N \cap\left(A_{3}^{1} \cup A_{3}^{2}\right)=\emptyset$. Since z cannot be added to A_{2}^{3}, it follows that $N \cap\left(A_{1}^{1} \cup A_{1}^{2}\right) \neq \emptyset$, and from the symmetry we may assume that $N \cap A_{1}^{1} \neq \emptyset$. 4.2 (with $\left(A_{1}^{2} \cup A_{1}^{3}\right), A_{1}^{1}, A_{3}^{1}$) implies that $A_{1}^{2} \cup A_{1}^{3} \subseteq N$, and similarly $A_{1}^{1} \subseteq N$, and 4.1 implies that
$N \cap A_{3}^{3}=\emptyset$; but then $z \in S_{3}$, a contradiction. Thus $N \cap\left(A_{3}^{1} \cup A_{3}^{2}\right) \neq \emptyset$, and from the symmetry we may assume that $N \cap A_{3}^{1} \neq \emptyset$. Suppose that $A_{1}^{1} \nsubseteq N$. Then 4.2 (with $A_{1}^{1}, A_{3}^{1}, A_{3}^{2} \cup A_{3}^{3}$) implies that $A_{3}^{2} \cup A_{3}^{3} \subseteq N$; three applications of 4.1 imply that $N \cap A_{1}=\emptyset$; and 4.2 (with $A_{1}^{2}, A_{3}^{2}, A_{3}^{1}$) implies that $A_{3}^{1} \subseteq N$. But then $z \in S_{1}$, a contradiction. This proves that $A_{1}^{1} \subseteq N$. By 4.1, $N \cap A_{j}^{i}=\emptyset$ for $i=2,3$ and $j=1,3$; and 4.2 (with $A_{1}^{2}, A_{1}^{1}, A_{3}^{1}$) implies that $A_{3}^{1} \subseteq N$. But then z can be added to A_{2}^{1}, a contradiction. This completes the case when $s_{1} \in N$ and $s_{2} \notin N$.

We deduce that $s_{1} \notin N$, and similarly $s_{2} \notin N .4 .2$ (with s_{1}, A_{3}, s_{2}) implies that $N \cap A_{3}=\emptyset$. Suppose that $N \cap\left(A_{1}^{1} \cup A_{1}^{2}\right) \neq \emptyset$. Then 4.2 (with $A_{3}^{1}, A_{1}^{1}, A_{1}^{2}$ and $A_{3}^{2}, A_{1}^{2}, A_{1}^{1} \cup A_{1}^{3}$) implies that $A_{1} \subseteq N$. Similarly if $N \cap\left(A_{2}^{1} \cup A_{2}^{2}\right) \neq \emptyset$ then $A_{2} \subseteq N$ and therefore $z \in S_{3}$, a contradiction; and so $N \cap\left(A_{2}^{1} \cup A_{2}^{2}\right)=\emptyset$. But then z can be added to A_{1}^{3}, a contradiction. This proves that $N \cap\left(A_{1}^{1} \cup A_{1}^{2}\right)=\emptyset$, and similarly $N \cap\left(A_{2}^{1} \cup A_{2}^{2}\right)=\emptyset .4 .2$ (with $A_{j}^{1}, A_{j}^{3} \backslash H_{j}, A_{3}^{3}$) implies that $N \cap A_{j}^{3} \subseteq H_{j}$ for $j=1,2$. Consequently $N \cap W \subseteq H_{1} \cup H_{2}$. But 4.2 (with $A_{1}^{1}, S_{2}, A_{3}^{2}$) implies that $N \cap S_{2}=\emptyset$, and similarly $N \cap S_{1}=N \cap S_{3}=\emptyset$. This proves (1).
(2) If $v \in V(G) \backslash H_{1} \cup H_{2} \cup Z$, then v has a neighbour in H_{1} if and only if $v \in A_{1} \cup S_{2} \cup S_{3}$, and if so then v is complete to H_{1}. An analogous statement holds for H_{2}.

For if $v \in A_{1} \cup S_{2} \cup S_{3}$ then v is complete to H_{1}, and if $v \in A_{3} \cup S_{1} \cup A_{2}^{1} \cup A_{2}^{2}$ then v is anticomplete to H_{1}, so we may assume that $v \in A_{2}^{3}$. Let $a_{2}^{2} \in A_{2}^{2}$. Since $v \notin H_{2}$, v has a neighbour $a_{3}^{3} \in A_{3}^{3}$; and if v also has a neighbour $h_{1} \in H_{1}$, then $\left\{v, h_{1}, a_{2}^{2}, a_{3}^{3}\right\}$ is a claw, a contradiction. Thus v is anticomplete to H_{1}. This proves (2).

We claim that there do not exist adjacent $\left.x, y \in V(G) \backslash\left(H_{1} \cup H_{2} \cup Z\right)\right)$ such that x is $H_{1} \cup H_{2^{-}}$ complete and y is $H_{1} \cup H_{2}$-anticomplete. For suppose that such x, y exist. By (2), $x \in S_{3}$, and $y \in A_{3}$; but then x, y are nonadjacent, a contradiction. If $Z \neq \emptyset$, then $\left(H_{1}, Z, H_{2}\right)$ is a breaker, by (1) and (2), and the theorem holds by 3.4. We may therefore assume that $Z=\emptyset$. Now S_{1}, S_{2}, S_{3} are cliques by 4.3, and so G is the hex-join of $G \mid W$ and $G \mid\left(S_{1} \cup S_{2} \cup S_{3}\right)$. This proves 5.1.

6 Line graphs

Our next goal is to prove that if G is claw-free and contains an induced subgraph which is a line graph $L(H)$ say, and H is sufficiently nondegenerate, then either G itself is a line graph or it is decomposable. We need to consider the possible neighbour sets in this line graph of the other vertices of G; and it is convenient to work in terms of H rather than in terms of $L(H)$. Thus, the neighbour set becomes a set of edges of H.

In this paper, a separation of G means a pair (A, B) of subsets of $V(G)$, such that $A \cup B=V(G)$ and every edge of G has both ends in one of A, B. A k-separation means a separation (A, B) such that $|A \cap B| \leq k$, and a separation (A, B) is cyclic if both $G|A, G| B$ contain cycles. We say that G is cyclically 3 -connected if it is 2 -connected and not a cycle, and there is no cyclic 2 -separation. (For instance, we wish to consider the complete bipartite graph $K_{2,3}$ as cyclically 3 -connected, but we wish to exclude the graph obtained from K_{4} by deleting an edge. This differs slightly from the definition we used in [3].)

A branch-vertex of a graph H means a vertex with degree ≥ 3; and, if H is cyclically 3 -connected, a branch of H means a maximal path B in H such that no internal vertex of B is a branch-vertex.
(The reason for insisting that G is cyclically 3 -connected is because of our convention that all "paths" are induced subgraphs, and that is not our intention for branches; but no conflict arises when G is cyclically 3 -connected.)
6.1 Let H be a cyclically 3-connected graph with $|V(H)| \geq 7$, such that $|V(H) \backslash V(B)| \geq 4$ for every branch B of H. Let $X \subseteq E(H)$, satisfying the following:
(Z1) there do not exist three pairwise nonadjacent edges in X
(Z2) there do not exist distinct vertices $t_{1}, t_{2}, t_{3}, t_{4}$ of H, such that t_{i} is adjacent to t_{i+1} for $i=1,2,3$, and the edge $t_{2} t_{3}$ belongs to X, and the other two edges $t_{1} t_{2}, t_{3} t_{4}$ do not belong to X.

Then one of the following holds:

- There is a subset $Y \subseteq V(H)$ with $|Y| \leq 2$ such that X is the set of all edges of H incident with a vertex in Y.
- There are vertices $s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}, u_{1}, u_{2} \in V(H)$, all distinct except that possibly $t_{1}=t_{2}$, such that the following pairs are adjacent in $G: s_{i} t_{i}, s_{i} u_{1}, s_{i} u_{2}$ for $i=1,2,3$, and $s_{1} s_{3}$. Moreover, X contains exactly six of these ten edges, the six not incident with s_{1}.
- There is a subgraph J of H isomorphic to a subdivision of K_{4} (let its branch-vertices be v_{1}, \ldots, v_{4}, and let $B_{i, j}$ denote the branch between $\left.v_{i}, v_{j}\right)$; and $B_{2,3}, B_{3,4}, B_{2,4}$ all have length 1, $B_{1,2}, B_{1,3}$ have length 2 , and $B_{1,4}$ has length ≥ 2. Moreover, the edges of J in X are precisely the five edges of $B_{1,2}, B_{1,3}$ and $B_{2,3}$.

Proof. Since H is cyclically 3 -connected, we have:
(1) No vertex of H of degree 2 is in a triangle.
(2) If there is a vertex $y \in V(H)$ such that every edge in X is incident with y, then the theorem holds.

For suppose y is such a vertex; let N be the set of neighbours v of y such that the edge $y v \in X$, and M the remaining neighbours of y. If $M=\emptyset$ or $N=\emptyset$ then the first statement of the theorem holds, so we assume that there exist $m \in M$ and $n \in N$. The only edge in X incident with n is $n y$, and by (Z2), there is no edge in $E(H) \backslash X$ incident with n except possibly $n m$. Since n has degree ≥ 2, it follows that n has degree 2 and is in a triangle, contrary to (1). This proves (2).
(3) If there exist two vertices y_{1}, y_{2} of H such that every edge in X is incident with one of y_{1}, y_{2}, then the theorem holds.

For let us choose y_{1}, y_{2} with the given property, adjacent if possible. For $i=1,2$, let N_{i} be the set of all neighbours $v \in V(H) \backslash\left\{y_{1}, y_{2}\right\}$ of y_{i} such that the edge $y_{i} v \in X$, and let M_{i} be the other neighbours of y_{i} in $V(H) \backslash\left\{y_{1}, y_{2}\right\}$. If M_{1}, M_{2} are both empty, then the first statement of the theorem holds, so we may assume that there exists $m_{1} \in M_{1}$. By (2) we may assume that there exists $n_{1} \in N_{1}$. Let a be any neighbour of n_{1} different from y_{1}. If $a n_{1} \in X$ then $a=y_{2}$, since every edge in X is incident with one of y_{1}, y_{2}; and if $a n_{1} \notin X$ then $a=m_{1}$, by (Z2) applied to $m_{1}-y_{1}-n_{1}-a$.

In particular, if $n_{1} \notin N_{2}$ then n_{1} has degree 2 and belongs to a triangle, contrary to (1). It follows that $N_{1} \subseteq N_{2}$. Suppose that $\left|M_{1}\right|>1$. Then no vertex in N_{1} has a neighbour in M_{1}, and therefore every vertex in N_{1} has degree 2 . Since H is cyclically 3 -connected, it follows that $N_{1}=\left\{n_{1}\right\}$; and so every edge in X is incident with one of n_{1}, y_{2}. From the choice of y_{1}, y_{2} it follows that y_{1}, y_{2} are adjacent, and so n_{1} belongs to a triangle, contrary to (1). This proves that $M_{1}=\left\{m_{1}\right\}$. Since H is cyclically 3 -connected, every vertex in N_{1} is adjacent to m_{1} except possibly one. Moreover, $\left(N_{1} \cup\left\{y_{1}, y_{2}, m_{1}\right\}, V(H) \backslash\left(N_{1} \cup\left\{y_{1}\right\}\right)\right)$ is a 2-separation of H, and so either $N_{1} \cup\left\{y_{1}, y_{2}, m_{1}\right\}=V(H)$, or $\left.H \backslash\left(N_{1} \cup\left\{y_{1}\right\}\right)\right)$ is a path of length >1 between m_{1}, y_{2}. In the first case, it follows that $\left|N_{1}\right| \geq 4$ since $|V(H)| \geq 7$, and the second statement of the theorem holds. Thus we assume the second case applies. Let P be the path $\left.H \backslash\left(N_{1} \cup\left\{y_{1}\right\}\right)\right)$. By hypothesis, at least 4 vertices of H do not belong to $V(P)$, and so $|N| \geq 3$. Let x be the neighbour of y_{2} in P; then $x \neq m_{1}$. Choose $n_{1}^{\prime} \in N_{1}$ adjacent to m_{1}; then from (Z2) applied to $x-y_{2}-n_{1}^{\prime}-m_{1}$ we deduce that the edge $x y_{2}$ belongs to X. But then again the second statement of the theorem holds. This proves (3).
(4) If there are three edges in X forming a cycle of length 3, then there is a fourth edge in X incident with a vertex of this cycle.

For suppose that y_{1}, y_{2}, y_{3} are vertices such that $y_{1} y_{2}, y_{2} y_{3}, y_{3} y_{1} \in X$, and for $i=1,2,3$ no other edge in X is incident with y_{i}. Since H is cyclically 3 -connected and we may assume that $|V(H)| \geq 5$, it follows that there are two edges between $\left\{y_{1}, y_{2}, y_{3}\right\}$ and $V(H) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$, with no common end. But then both these edges belong to $E(H) \backslash X$, and (Z2) is violated. This proves (4).
(5) There do not exist $Y \subseteq V(H)$ with $|Y|=3$ and $y_{4} \in V(H \backslash Y$, such that every two members of Y are joined by an edge in X, and every other edge in X is incident with y_{4}.

For let $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$, and suppose first that there is a matching of size 2 consisting of edges of $H \backslash\left\{y_{4}\right\}$, each with one end in Y and the other not in this set. These two edges therefore do not belong to X, and so (Z2) is violated. Thus there is no such matching. Consequently, there is a vertex y_{5} such that every edge of H with one end in Y and the other not in this set is incident with one of y_{4}, y_{5}. It follows that $\left(Y \cup\left\{y_{4}, y_{5}\right\}, V(H) \backslash Y\right)$ is a 2-separation of H, and therefore $H \backslash Y$ is a path between y_{4}, y_{5}, contrary to the hypothesis. This proves (5).

In view of (3),(4),(5), (Z1) and (for instance) Tutte's theorem [4], it follows that there is a set $Y \subseteq V(H)$ with $|Y|=5$ such that every edge in X has both ends in Y, and $H \mid(Y \backslash\{y\})$ has a 2-edge matching with both edges in X, for every vertex $y \in Y$. (We call this "criticality".) Criticality implies that among every three vertices in Y, some two are joined by an edge in X. Suppose that there is a 3-edge matching between $V(H) \backslash Y$ and Y. None of these three edges belongs to X, and so from (Z2) it follows that no two of y_{1}, y_{2}, y_{3} are joined by an edge in X, contrary to criticality. We deduce that no such matching of size 3 exists. Consequently there is a set $Z \subseteq V(H)$ with $|Z| \leq 2$, such that every edge between Y and $V(H) \backslash Y$ is incident with a member of Z. By choosing Z with $Z \cup Y$ minimal, we deduce that every vertex in $Z \backslash Y$ has at least two neighbours in Y. Now $(Y \cup Z,(V(H) \backslash Y) \cup Z)$ is a 2-separation. Since $H \mid Y$ has a cycle, it follows that $H \backslash(Y \backslash Z)$ has no cycle; and consequently, either $Y \cup Z=V(H)$ (which implies that $|Z|=2$, since $|V(H)| \geq 7$), or $|Z|=2$ and $H \backslash(Y \backslash Z)$ is a path joining the two members of Z. Thus in either case, $|Z|=2$.

Suppose first that $Y \cap Z=\emptyset$. From the choice of Z minimizing $Y \cup Z$, it follows that we can
write $Z=\left\{z_{1}, z_{2}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{5}\right\}$ such that $z_{1} y_{1}, z_{2} y_{2}, z_{2} y_{3}$ are edges. By criticality, some two of y_{1}, y_{2}, y_{3} are joined by an edge in X. From (Z2), this edge is not $y_{1} y_{2}$ or $y_{1} y_{3}$, so it must be $y_{2} y_{3}$; that is, y_{2}, y_{3} are adjacent and X contains the edge joining them. Consequently, by (Z2), z_{1}, y_{1} are both nonadjacent to both of y_{2}, y_{3}. Since z_{1} has at least two neighbours in Y, we may assume that z_{1} is adjacent to y_{4}; and so, by the symmetry between y_{1}, y_{4} we deduce that y_{4} is nonadjacent to y_{2}, y_{3}, and exchanging z_{1}, z_{2} implies that $y_{1} y_{4} \in X$, and z_{2} is nonadjacent to y_{1}, y_{4}. Then $\left(\left\{z_{1}, y_{1}, y_{4}, y_{5}\right\}, V(H) \backslash\left\{z_{1}, y_{5}\right\}\right)$ is a cyclic 2 -separation of H, a contradiction.

So $Y \cap Z$ is nonempty, and in particular $Y \cup Z \neq V(H)$, since $|V(H)| \geq 7$. Consequently $H \backslash(Y \backslash Z)$ is a path P say, joining the two vertices in Z. Let $Z=\left\{z_{1}, z_{2}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{5}\right\}$. Suppose first that $Z \nsubseteq Y$; then we may assume that $z_{2}=y_{4}$ (since we have shown that $Y \cap Z$ is nonempty), and z_{1} is adjacent to y_{1}, y_{2}, and P has length ≥ 2. By criticality, some two of y_{1}, y_{2}, y_{4} are joined by an edge in X, and by ($\mathbf{Z 2}$) it must be $y_{1} y_{2}$; and therefore, by ($\mathbf{Z 2}$) again, y_{4} is nonadjacent to y_{1}, y_{2}. Consequently, by criticality, y_{4} is adjacent to y_{3}, y_{5}, and the edges $y_{3} y_{4}, y_{4} y_{5} \in X$. Thus z_{1} is nonadjacent to y_{3}, y_{5}. Since H is cyclically 3 -connected, we may assume that $y_{2} y_{3}, y_{1} y_{5}$ are edges; and (Z2) implies they are both in X. Thus all edges of the cycle $y_{1}-y_{2}-y_{3}-y_{4}-y_{5}-y_{1}$ belong to X. But then the third statement of the theorem holds.

Finally, we may assume that $Z \subseteq Y$; but then $|V(H) \backslash V(P)|=3$, contrary to the hypothesis. This proves 6.1.

We need a small lemma for the next proof.
6.2 Let H be cyclically 3-connected, and let B be a branch of H. Let $Y \subseteq V(B)$ with $|Y| \leq 2$, such that if $|Y|=1$ then the member of Y is an internal vertex of B. Let e be an edge of H not in $E(B)$ and not incident with any vertex in Y. There is no $Z \subseteq V(H)$ with $|Z| \leq 2$ such that for every edge $f \in E(H), f$ has an end in Z if and only if either $f=e$ or f has an end in Y.

Proof. Suppose Z is such a subset, and let N be the set of edges of H with an end in Y. Since $N \cup\{f\}$ is the set of edges with an end in Z, it follows that $N \neq \emptyset$, and therefore $Y \neq \emptyset$. Since $Y \subseteq V(B)$, it follows that $N \cap E(B) \neq \emptyset$, and therefore $Z \cap V(B) \neq \emptyset$. Let $z \in Z$ be incident with e. Since $e \notin E(B), z$ does not belong to the interior of B, and therefore is incident with an edge $e^{\prime} \neq e$ and not in B. Hence $e^{\prime} \in N$, and therefore is incident with a member of Y, say y; and consequently y is an end of B. There is an edge $e^{\prime \prime} \neq e^{\prime}$ incident with y and not in B, and since $e^{\prime \prime} \in N$, it follows that $y \in Z$. But $y \neq z$ since e is not incident with any member of Y; and so $Z=\{y, z\}$, and $z \notin V(B)$ since H is cyclically 3 -connected. Since y is an end of B, by hypothesis there is a second member $y^{\prime} \in Y$. There is an edge incident with y^{\prime} and not incident with y or z, a contradiction. This proves 6.2.

Let us say H is a theta if it is cyclically 3 -connected and has exactly two branch-vertices and three branches. A subset $X \subseteq V(G)$ is connected if $X \neq \emptyset$ and $G \mid X$ is connected; and a component of G is a maximal connected subset of $V(G)$. The previous results of this section are combined with 4.6 and 5.1 to prove the following.
6.3 Let H be a cyclically 3-connected graph with $|V(H)| \geq 7$, such that there is no branch B of H with $|V(H) \backslash V(B)| \leq 3$. Let G be a claw-free graph, with an induced subgraph isomorphic to $L(H)$. Then either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}$, or G is decomposable.

Proof. We may choose H with $|V(H)|$ maximum satisfying the hypotheses of the theorem (we call this the "maximality" of H), and to simplify notation we assume that the line graph of H is an induced subgraph of G (rather than just isomorphic to one). In particular, $E(H) \subseteq V(G)$. For each $h \in V(H)$, let $D(h)$ denote the set of edges of H incident with h in H. For each $v \in V(G) \backslash E(H)$, let $N(v)$ be the set of members of $E(H)$ adjacent to v in G. We begin with:
(1) For each $v \in V(G) \backslash E(H)$, we may assume that there exists $Y \subseteq V(H)$ with $|Y| \leq 2$ such that $N(v)=\bigcup(D(y): y \in Y)$, and there is a branch of H including Y.

For $N(v) \subseteq E(H)$, and satisfies the hypotheses of 6.1 , by 4.1 and 4.2. Thus one of the three conclusions of 6.1 holds. If the second holds, then G contains a YY-configuration, and so by 5.1, we deduce that G is decomposable, and the theorem holds. If the third holds, then G contains an XX-configuration (take the edges of the subgraph described in 6.1, except for those in the interior of branches, together with the vertex v), and by 4.6 , either G is decomposable, or it belongs to $\mathcal{S}_{1} \cup \mathcal{S}_{2}$. Thus we may assume that the first outcome holds. Choose $Y \subseteq V(H)$ with $|Y| \leq 2$ such that $N(v)=\bigcup(D(y): y \in Y)$. If $|Y| \leq 1$, or $|Y|=2$ and some branch of H contains both members of Y, then (1) holds, so we assume that $Y=\left\{h_{1}, h_{2}\right\}$ say, and no branch of H contains both h_{1}, h_{2}. Let H^{\prime} be the graph obtained from H by adding the edge v incident with both h_{1}, h_{2}. Then H^{\prime} is cyclically 3 -connected (since h_{1}, h_{2} do not belong to the same branch of H), and no branch of H^{\prime} contains all its vertices except at most three, and yet $L\left(H^{\prime}\right)$ is an induced subgraph of G, a contradiction to the maximality of H. This proves (1).

For each $v \in V(G) \backslash E(H)$, let $Y(v) \subseteq V(H)$ be the set Y described in (1). For each $v \in E(H)$, let $Y(v)$ be the set consisting of the two vertices of H incident with v in H. Make the following definitions:

- For each branch-vertex t of H let $M(t)=\{v \in V(G): Y(v)=\{t\}\}$.
- For each branch B with ends t_{1}, t_{2} say, let $M(B)=\left\{v \in V(G): Y(v)=\left\{t_{1}, t_{2}\right\}\right\}$.
- For each branch B and each end t of B, let

$$
M(t, B)=\{v \in V(G): Y(v)=\{t, h\} \text { for some } h \text { in the interior of } B\} .
$$

- For each branch B with ends t_{1}, t_{2} say, let

$$
S(B)=\left\{v \in V(G): \emptyset \neq Y(v) \subseteq V(B) \backslash\left\{t_{1}, t_{2}\right\}\right\}
$$

- Let $Z=\{v \in V(G): Y(v)=\emptyset\}$.

From (1), we see that all these sets are pairwise disjoint (unless H is a theta, in which case all the sets $M(B)$ are equal), and have union $V(G)$.
(2) Let B be a branch of H with ends t_{1}, t_{2}, let $v \in M(B)$, and let $u \in V(G)$ be adjacent to v. Then either:

- $u \in M\left(t_{1}\right) \cup M\left(t_{2}\right)$, or
- $u \in M\left(t_{i}, B^{\prime}\right) \cup M\left(B^{\prime}\right)$ for some $i \in\{1,2\}$ and some branch B^{\prime} incident with t_{i}.

For $Y(v)=\left\{t_{1}, t_{2}\right\}$. If $Y(u)$ contains one of t_{1}, t_{2} then the theorem holds, so we assume not. For $i=1,2$, let e_{i} be an edge of H incident with t_{i}, not in B, such that e_{1}, e_{2} have no common end. In G, v is adjacent to both e_{1}, e_{2}, and since $\left\{v, e_{1}, e_{2}, u\right\}$ is not a claw in G, it follows that u is adjacent in G to one of e_{1}, e_{2}. Consequently $Y(u)$ is nonempty, and contains a vertex not in B but adjacent to one of t_{1}, t_{2}.

Suppose that $|Y(u)|=1$, say $Y(u)=\left\{t_{3}\right\}$. Since $t_{1}, t_{2} \notin Y(u)$, it follows that $t_{3} \neq t_{1}, t_{2}$. Let $B_{1} \neq B$ be a branch incident with t_{1} and with $t_{3} \notin V\left(B_{1}\right)$, with ends t_{1}, t_{4} say. Let e_{1} be the edge of B_{1} incident with t_{1}, and let e_{2} be any edge incident with t_{2}. Since $\left\{v, e_{1}, e_{2}, u\right\}$ is not a claw of G, we deduce that for every choice of e_{2}, either e_{2} is incident with t_{3} or e_{2} shares an end with e_{1}. In particular, choosing e_{2} from B tells us that t_{1}, t_{2} are adjacent, and so H is not a theta, and therefore $t_{4} \neq t_{2}$. Also, the pairs $t_{1} t_{2}, t_{2} t_{3}, t_{1} t_{4}, t_{2} t_{4}$ are adjacent; and t_{2} has degree 3 in H. By exchanging t_{1}, t_{2} we deduce also that t_{1} has degree 3 and t_{1}, t_{3} are adjacent. Consequently H is a subdivision of K_{4}, and there is a branch of H with ends t_{3}, t_{4}. There are only two vertices of H not in this branch, contrary to hypothesis.

This proves that $|Y(u)|=2$, say $Y(u)=\left\{s_{1}, s_{2}\right\}$. Let B^{\prime} be a branch with $Y(u) \subseteq V\left(B^{\prime}\right)$. Since we have already seen that one of s_{1}, s_{2} does not belong to B, it follows that $B^{\prime} \neq B$. Suppose that B, B^{\prime} share an end, say t_{1}, and let t_{3} be the other end of B^{\prime}. There is an edge e_{1} of H incident with t_{1}, that belongs to neither of B, B^{\prime}. Let e_{2} be any edge incident with t_{2}; for each such choice, $\left\{v, u, e_{1}, e_{2}\right\}$ is not a claw in G. By choosing e_{2} from B we deduce that t_{1}, t_{2} are adjacent and therefore H is not a theta. It follows that for all choices of e_{2}, either e_{2} has an end in $Y(u)$ (which, since H is not a theta, implies that e_{2} is incident with t_{3} and $t_{3} \in Y(u)$), or e_{2} shares an end with e_{1}. There is at most one choice for which the first occurs, and two for which the second occurs; and since t_{2} has degree ≥ 3, we have equality throughout. More precisely, t_{2} has degree 3 , $t_{3} \in Y(u)$, and the pairs $t_{1} t_{2}, t_{2} t_{3}, t_{2} t_{4}$ are adjacent, where e_{1} has ends t_{1}, t_{4}. Moreover, no other choice of e_{1} is possible, and so t_{1} also has degree 3 . Consequently H is a subdivision of K_{4}, and there is a branch P between t_{3}, t_{4}. By hypothesis, at least four vertices of H do not belong to P, and so B^{\prime} has length ≥ 3. Let f_{1} be an edge of B^{\prime} incident with a vertex in $Y(u)$ but not incident with either of t_{1}, t_{3} (this exists since B^{\prime} has length ≥ 3 and one of its internal vertices is in $Y(u)$). Let f_{2} be the edge of P incident with t_{3}. Then $\left\{u, v, f_{1}, f_{2}\right\}$ is a claw in G, a contradiction.

This proves that B, B^{\prime} do not share an end, and so H is not a theta. We have already seen that one of s_{1}, s_{2} is adjacent to one of t_{1}, t_{2}, say s_{1}, t_{1} are adjacent. Consequently s_{1} is an end of B^{\prime}. Suppose that s_{2} belongs to the interior of B^{\prime}. Let e_{1} be an edge incident with t_{1}, not in B and not incident with s_{1}; and let e_{2} be any edge incident with t_{2}. Since $\left\{v, u, e_{1}, e_{2}\right\}$ is not a claw in G, it follows that for all choices of e_{2}, either e_{2} is adjacent to s_{1} or to an end of e_{1}. Consequently t_{2} has degree 3 , and t_{2} is adjacent to s_{1} and to both ends of e_{1}. Since this also holds for all choices of e_{1}, we deduce that t_{1} also has degree 3 . Let e_{1} have ends t_{1}, t_{3} say. Since H is cyclically 3 -connected, it follows H is a subdivision of K_{4} and t_{3} is an end of B^{\prime}. But then only two vertices of H do not belong to the branch B^{\prime}, contrary to hypothesis.

This proves that s_{1}, s_{2} are both ends of B^{\prime}, and so $u \in M\left(B^{\prime}\right)$. Thus there is symmetry between u, v. Suppose that B has length 1 , and let q be the edge of H incident with t_{1}, t_{2}. Let H^{\prime} be the graph obtained from H by deleting q and adding a new edge v with the same ends t_{1}, t_{2} as q. Then H^{\prime} is isomorphic to H, and $L\left(H^{\prime}\right)$ is an induced subgraph of G, and so by (1) we may assume that there is a set $Y \subseteq V\left(H^{\prime}\right)$ with $|Y| \leq 2$ such that an edge of H^{\prime} is adjacent to u in G if and only if
it is incident in H^{\prime} with a member of Y. But the edges of H^{\prime} adjacent to u in G are precisely those with an end in $\left\{s_{1}, s_{2}\right\}$, together with the new edge v, and this contradicts 6.2 . We may therefore assume that B has length >1, and by symmetry we may assume the same for B^{\prime}.

Let e_{1} be the edge of B incident with t_{1}, and let e_{2} be any edge of H incident with t_{2}. Since $\left\{v, u, e_{1}, e_{2}\right\}$ is not a claw in G, it follows that for all choices of e_{2}, either e_{2} is incident in H with one of s_{1}, s_{2}, or it shares an end with e_{1}. Consequently t_{2} has degree 3 , and t_{2} is adjacent to both s_{1}, s_{2}, and B has length 2 . Similarly t_{1}, s_{1}, s_{2} have degree 3 , and B^{\prime} has length 2 , and s_{1}, s_{2} are adjacent to both of t_{1}, t_{2}. But then $|V(H)|=6$, a contradiction. This proves (2).
(3) Let $p_{1} \cdots-p_{k}$ be a path of G such that $k \geq 2, p_{1}, p_{k} \notin Z$, and $p_{2}, \ldots, p_{k-1} \in Z$. Then either

- There is a branch B of H with ends t_{1}, t_{2} say, such that p_{1}, p_{k} both belong to

$$
M\left(t_{1}\right) \cup M\left(t_{2}\right) \cup M\left(t_{1}, B\right) \cup M\left(t_{2}, B\right) \cup S(B)
$$

or

- $k=2$, and there are two branches B_{1}, B_{2} with a common end t (possibly equal), such that $p_{1} \in M(t) \cup M\left(t, B_{1}\right) \cup M\left(B_{1}\right)$ and $p_{2} \in M(t) \cup M\left(t, B_{2}\right) \cup M\left(B_{2}\right)$.

For suppose first that $p_{1} \in M(B)$ for some branch B. By (2), $k=2$ and the second statement of the claim holds. So we may assume that p_{1} does not belong to any $M(B)$, and the same for p_{k}. Since $p_{1} \notin Z$, it follows that either $Y\left(p_{1}\right)=\left\{t_{1}\right\}$ for some branch-vertex t_{1} of H, or there is a branch B_{1} of H such that $Y\left(p_{1}\right) \subseteq V\left(B_{1}\right)$ and some internal vertex of B_{1} belongs to $Y\left(p_{1}\right)$. Analogous statements hold for p_{k}. Suppose that $\left|Y\left(p_{1}\right)\right|=1$ and $\left|Y\left(p_{k}\right)\right|=1$, say $Y\left(p_{1}\right)=\left\{y_{1}\right\}$ and $Y\left(p_{k}\right)=\left\{y_{2}\right\}$. The graph $G \mid\left(E(H) \cup\left\{p_{1}, \ldots, p_{k}\right\}\right)$ is the line graph of the graph H^{\prime}, obtained from H by adding a new branch between y_{1}, y_{2} with edges p_{1}, \ldots, p_{k}. If y_{1}, y_{2} do not belong to the same branch of H, it follows that H^{\prime} is cyclically 3 -connected, contrary to the maximality of H. If y_{1}, y_{2} belong to the same branch of H then the first statement of the claim holds.

Thus we may assume that at least one of $\left|Y\left(p_{1}\right)\right|,\left|Y\left(p_{k}\right)\right|=2$, say $\left|Y\left(p_{1}\right)\right|=2$. Then $N\left(p_{1}\right)$ is not a clique, and since p_{2} is adjacent to p_{1} and G contains no claw, it follows that p_{2} has a neighbour in $N\left(p_{1}\right)$, and in particular $p_{2} \notin Z$. Thus $k=2$.

Since $\left|Y\left(p_{1}\right)\right|=2$, it follows that for some branch B_{1} of $H, Y\left(p_{1}\right) \subseteq V\left(B_{1}\right)$ and some internal vertex of B_{1} belongs to $Y\left(p_{1}\right)$. Let $Y\left(p_{1}\right)=\left\{y, y^{\prime}\right\}$ say, where y^{\prime} belongs to the interior of B_{1}. Next suppose that $\left|Y\left(p_{2}\right)\right|=1$, say $Y\left(p_{2}\right)=\{z\}$. We may assume that $z \notin V\left(B_{1}\right)$, for otherwise the first statement of the claim holds. Let e^{\prime} be an edge of B_{1} incident with y^{\prime} and not with y. Let e be an edge of H incident with y, not incident with z, and with no common end with e^{\prime}. (This exists, since if y is an end of B_{1} there are at least two edges incident with y and disjoint from e^{\prime}, and at most one of them is incident with z.) But then $\left\{p_{1}, p_{2}, e, e^{\prime}\right\}$ is a claw in G, a contradiction. This proves that $\left|Y\left(p_{2}\right)\right|=2$. Let $Y\left(p_{2}\right)=\left\{z, z^{\prime}\right\}$ say, and let B_{2} be a branch of H with $z, z^{\prime} \in V\left(B_{2}\right)$ and with z^{\prime} in the interior of B_{2}. We may assume that $B_{2} \neq B_{1}$, for otherwise the first statement of the claim holds.

Suppose that $Y\left(p_{1}\right) \cap Y\left(p_{2}\right) \neq \emptyset$. It follows that $y=z$ is a common end of B_{1}, B_{2}. But then $p_{1} \in M\left(y, B_{1}\right)$ and $p_{2} \in M\left(y, B_{2}\right)$, and the second statement of the claim holds. We assume therefore that $Y\left(p_{1}\right) \cap Y\left(p_{2}\right)=\emptyset$.

If $p_{2} \in E(H)$, then its ends in H are z, z^{\prime}, and therefore it has no end in $Y\left(p_{1}\right)$, a contradiction since p_{1}, p_{2} are adjacent in G. Thus $p_{2} \notin E(H)$, and similarly $p_{1} \notin E(H)$. Next suppose that z, z^{\prime}
are adjacent in H. Let q be the edge of B_{2} joining them. Since $Y\left(p_{1}\right) \cap Y\left(p_{2}\right)=\emptyset$, it follows that q is not adjacent to p_{1} in G. Let H^{\prime} be the graph obtained from H by deleting q and replacing it by an edge p_{2}, joining the same two vertices z, z^{\prime}. Hence $L\left(H^{\prime}\right)$ is also an induced subgraph of G, namely the subgraph induced on $(V(H) \backslash\{q\}) \cup\left\{p_{2}\right\}$. Since H^{\prime} is isomorphic to H, it follows from (1) applied to H^{\prime} that we may assume that there is a subset $Y \subseteq V\left(H^{\prime}\right)$ such that the set of members of $E\left(H^{\prime}\right)$ adjacent in G to p_{1} equals the set of edges of H^{\prime} with an end in Y. Now the set of members of $E\left(H^{\prime}\right)$ adjacent in G to p_{1} equals $N\left(p_{1}\right) \cup\left\{p_{2}\right\}$, since q is not adjacent to p_{1} in G. Moreover, $N\left(p_{1}\right)$ is the set of edges of H with an end in $Y\left(p_{1}\right)$, and since q has no end in $Y\left(p_{1}\right)$, this is equal to the set of edges of H^{\prime} with an end in $Y\left(p_{1}\right)$. Consequently, the set of edges of H^{\prime} with an end in Y equals the union of $\left\{p_{2}\right\}$ and the set of edges of H^{\prime} with an end in $Y\left(p_{1}\right)$. But this is impossible, by 6.2. This proves that z, z^{\prime} are nonadjacent, and similarly y, y^{\prime} are nonadjacent.

Since y, y^{\prime} are nonadjacent vertices of B_{1}, there are edges e, e^{\prime} of B_{1} incident with y, y^{\prime} respectively, such that e, e^{\prime} have no end in common. Since $\left\{p_{1}, p_{2}, e, e^{\prime}\right\}$ is not a claw in G, it follows that p_{2} is adjacent in G to one of e, e^{\prime}, and so some vertex of $Y\left(p_{2}\right)$ belongs to $V\left(B_{1}\right)$. Since z^{\prime} is an internal vertex of B_{2}, we deduce that B_{1}, B_{2} have a common end z. Similarly their common end is y, and so $y=z$, contradicting that $Y\left(p_{1}\right) \cap Y\left(p_{2}\right)=\emptyset$. This proves (3).
(4) Let $t \in V(H)$ be a branch-vertex. If $v_{1}, v_{2} \in V(G)$ are distinct and nonadjacent, and $t \in$ $Y\left(v_{1}\right) \cap Y\left(v_{2}\right)$, then there are distinct branches B_{1}, B_{2}, both of length ≥ 2, with $v_{i} \in M\left(B_{i}\right)(i=1,2)$; and every vertex of $V(H)$ adjacent to t in H either belongs to one of B_{1}, B_{2}, or has degree 3 in H and is adjacent to all the ends of B_{1}, B_{2}.

For suppose v_{1}, v_{2} are not adjacent. It follows that $v_{1}, v_{2} \notin E(H)$. By (1), there are branches B_{1}, B_{2} of H, incident with t, such that $Y\left(v_{i}\right) \subseteq V\left(B_{i}\right)(i=1,2)$. (If H is a theta, and some $Y\left(v_{i}\right)$ consists of the two branch-vertices, then we can choose any branch to be B_{i}; in this case, choose a shortest branch.) Let B_{i} have ends $t, t_{i}(i=1,2)$ say. Let x be a neighbour of t, not in $V\left(B_{1}\right) \cup V\left(B_{2}\right)$. Let $y \neq t$ be a second neighbour of x. Let e, f be the edges $t x, x y$. Since $\left\{e, f, v_{1}, v_{2}\right\}$ is not a claw in G, it follows that f is adjacent in G to at least one of v_{1}, v_{2}; that is, $y \in Y\left(v_{1}\right) \cup Y\left(v_{2}\right)$. Since $Y\left(v_{i}\right) \subseteq V\left(B_{i}\right)(i=1,2)$, we deduce that for some $i \in\{1,2\}, y=t_{i} \in Y\left(v_{i}\right)$. If H is a theta, then x is the internal vertex of some branch of length 2 ; and since $v_{i} \in M\left(B_{i}\right)$, from the choice of B_{i} it follows that B_{i} has length ≤ 2. But then a branch of H contains all its vertices except two, contrary to the hypothesis. Thus, H is not a theta. Since no two branches have the same pair of ends, it follows that x is a branch-vertex; and since this holds for all choices of y, we deduce that x has degree 3 and is adjacent to both t_{1}, t_{2}, and $t_{i} \in Y\left(v_{i}\right)(i=1,2)$. Moreover, B_{1}, B_{2} are distinct. Suppose that say B_{2} has length 1 , and let q be the edge $t t_{2}$. Let H^{\prime} be obtained from H by deleting q and adding a new edge v_{2} incident with the same two vertices t, t_{2}. Then H^{\prime} is isomorphic to H, and $L\left(H^{\prime}\right)=G \mid\left((E(H) \backslash\{q\}) \cup\left\{v_{2}\right\}\right)$, and so by (1) we may assume that there exists $Y \subseteq V\left(H^{\prime}\right)=V(H)$ with $|Y| \leq 2$, such that the set of edges of H^{\prime} with an end in Y equals the set of edges of H^{\prime} that are adjacent to v_{1} in G. But in the triangle $\left\{x, t, t_{2}\right\}$ of H^{\prime}, exactly one of its edges is adjacent to v_{1} in G, a contradiction. This proves that B_{2}, and similarly B_{1}, has length ≥ 2, and so proves (4).
(5) If B is a branch of H of length 1 , with ends t_{1}, t_{2}, then $M\left(t_{1}\right)$ is anticomplete to $M\left(t_{2}\right)$.

If there exists $v_{1} \in M\left(t_{1}\right)$ adjacent to some $v_{2} \in M\left(t_{2}\right)$, let H^{\prime} be the graph obtained from H
by deleting the edge between t_{1}, t_{2}, and adding a two-edge path between these vertices, with edges v_{1}, v_{2} (with v_{i} incident with t_{i} for $i=1,2$, and the middle vertex of this path being a new vertex). Then H^{\prime} satisfies the hypotheses of the theorem, and $L\left(H^{\prime}\right)$ is an induced subgraph of G, contrary to the maximality of H. This proves (5).

For each branch B of H with ends t_{1}, t_{2}, we define $C(B), A\left(t_{1}, B\right), A\left(t_{2}, B\right)$ as follows. Let $C(B)$ be the union of $S(B)$ and the set of all $v \in Z$ such that there is a path with interior in Z from v to some vertex in $S(B)$. (Thus if B has length 1 then $C(B)$ is empty.) Let $A\left(t_{1}, B\right)$ be the set of all $v \in M\left(t_{1}\right) \cup M\left(t_{1}, B\right)$ with a neighbour in $C(B)$. Define $A\left(t_{2}, B\right)$ similarly.
(6) For every branch B with ends t_{1}, t_{2}, every vertex in $V(G) \backslash C(B)$ with a neighbour in $C(B)$ belongs to $A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right)$.

For let $v \in V(G) \backslash C(B)$, with a neighbour in $C(B)$. From the definition of $C(B), v \notin S(B) \cup Z$. Let P be a minimal path of G between $S(B)$ and v with interior in Z. By (3),

$$
v \in M\left(t_{1}\right) \cup M\left(t_{1}, B\right) \cup M\left(t_{2}\right) \cup M\left(t_{2}, B\right) .
$$

Hence $v \in A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right)$. This proves (6).
(7) Let B be a branch with ends t_{1}, t_{2}. If $v \in V(G) \backslash\left(A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right) \cup C(B)\right)$ has a neighbour in $A\left(t_{1}, B\right)$, then there is a branch B^{\prime} of H incident with t_{1} such that $v \in M\left(t_{1}\right) \cup M\left(B^{\prime}\right) \cup M\left(t_{1}, B^{\prime}\right)$. In particular, v is either complete or anticomplete to $A\left(t_{1}, B\right)$.

The second claim follows from the first and (4). To prove the first, let $v \in V(G) \backslash\left(A\left(t_{1}, B\right) \cup\right.$ $\left.A\left(t_{2}, B\right) \cup C(B)\right)$, and assume it has a neighbour in $A\left(t_{1}, B\right)$. Since $A\left(t_{1}, B\right)$ is nonempty, it follows that t_{1}, t_{2} are nonadjacent in H. If $t_{1} \in Y(v)$, then the claim holds, so we may assume that $t_{1} \notin Y(v)$. Suppose first that v is adjacent in G to every $e \in D\left(t_{1}\right)$ that is not in B. Since $t_{1} \notin Y(v)$, it follows that $Y(v)$ contains all vertices of H that are adjacent to t_{1} and not in $V(B)$. There are at least two such vertices, and $|Y(v)| \leq 2$, and so t_{1} has degree 3 , and its two neighbours not in B are both in $Y(v)$. By (1), there is a branch B^{\prime} joining these two vertices, and $v \in M\left(B^{\prime}\right)$, contrary to (2). Thus there is an edge e of H not in B, such that no end of e belongs to $Y(v)$. Now v has a neighbour $a \in A\left(t_{1}, B\right)$. By definition of $A\left(t_{1}, B\right)$, a has a neighbour $c \in C(B)$. Now a is adjacent in G to v, e, c, and v, e are nonadjacent. Moreover, $v, e \notin A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right) \cup C(B)$, and since $c \in C(B)$, it follows from (6) that c is nonadjacent to v, e. But then $\{a, v, e, c\}$ is a claw in G, a contradiction. This proves (7).
(8) If there is a branch B of H with $S(B)$ nonempty, then G is decomposable, so we may assume there is no such branch (and consequently every branch has length at most 2). In particular, H is not a theta.

For suppose that B is a branch with $S(B)$ nonempty. Let its ends be t_{1}, t_{2}. Since $S(B)$ is nonempty, it follows that B has length ≥ 2. We claim that $\left(A\left(t_{1}, B\right), C(B), A\left(t_{2}, B\right)\right)$ is a breaker. To show this, in view of (6) and (7) it remains to check that:

- $A\left(t_{1}, B\right), A\left(t_{2}, B\right)$ are nonempty cliques
- there is a vertex in $V(G) \backslash\left(A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right) \cup C(B)\right)$ with a neighbour in $A\left(t_{1}, B\right)$ and a nonneighbour in $A\left(t_{2}, B\right)$; there is a vertex in $V(G) \backslash\left(A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right) \cup C(B)\right)$ with a neighbour in $A\left(t_{2}, B\right)$ and a nonneighbour in $A\left(t_{1}, B\right)$; and there is a vertex in $V(G) \backslash\left(A\left(t_{1}, B\right) \cup\right.$ $\left.A\left(t_{2}, B\right) \cup C(B)\right)$ with a nonneighbour in $A\left(t_{2}, B\right)$ and a nonneighbour in $A\left(t_{1}, B\right)$
- if $A\left(t_{1}, B\right)$ is complete to $A\left(t_{2}, B\right)$, then there do not exist adjacent $x, y \in V(G) \backslash\left(A\left(t_{1}, B\right) \cup\right.$ $\left.A\left(t_{2}, B\right) \cup C(B)\right)$ such that x is $A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right)$-complete and y is $A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right)$ anticomplete.

Since B has length >1, and $S(B) \neq \emptyset$, it follows that $M\left(t_{1}, B\right)$ is nonempty and is a subset of $A\left(t_{1}, B\right)$, and in particular, $A\left(t_{1}, B\right) \neq \emptyset$, and similarly $A\left(t_{2}, B\right) \neq \emptyset$. By $(4), A\left(t_{1}, B\right), A\left(t_{2}, B\right)$ are cliques, and so the first statement holds. For the second, let $e \in E(H) \backslash E(B)$ be incident with t_{1}; then e has a neighbour in $A\left(t_{1}, B\right)$ and a nonneighbour in $A\left(t_{2}, B\right)$, namely the first and last edges of B. Moreover, since H is cyclically 3 -connected and at least four vertices of H do not belong to B, it follows that some edge f of H has no end in $V(B)$, and therefore is nonadjacent in G to both the first and last edges of B. The second claim follows. Thus, it remains to check the third.

Suppose then that $x, y \in V(G) \backslash\left(A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right) \cup C(B)\right) ; x$ is $A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right)$-complete and y is $A\left(t_{1}, B\right) \cup A\left(t_{2}, B\right)$-anticomplete, and x, y are adjacent. By (7), $x \in M(B)$. Since x, y are adjacent, (2) implies that we may assume that $y \in M\left(t_{1}\right) \cup M\left(B^{\prime}\right) \cup M\left(t_{1}, B^{\prime}\right)$ for some branch B^{\prime} incident with t_{1}. But then y is complete to $A\left(t_{1}, B\right)$, by (4). Since $A\left(t_{1}, B\right)$ is nonempty, it is not also anticomplete to $A\left(t_{1}, B\right)$, a contradiction. Consequently $\left(A\left(t_{1}, B\right), C(B), A\left(t_{2}, B\right)\right)$ is a breaker. By 3.4, G is decomposable. This proves (8).
(9) We may assume that $Z=\emptyset$.

For suppose not, and let W be a component of $G \mid Z$. Since we may assume that G is connected, there are vertices not in W with neighbours in W; let X be the set of all such vertices. Thus, for each $x \in X, x \notin E(H)$ (since it has a neighbour in Z) and $Y(x)$ is nonempty (since W is a component of $G \mid Z)$. Moreover, the set of neighbours of x in $E(H)$ is a clique, since G contains no claw; and consequently $|Y(x)|=1$, say $Y(x)=\{t\}$. If t belongs to the interior of a branch B then $x \in S(B)$, contrary to (8); and so t is a branch-vertex. Suppose that there exists $x_{1}, x_{2} \in X$ with $Y\left(x_{i}\right)=\left\{t_{i}\right\}(i=1,2)$, where $t_{1} \neq t_{2}$. There is a path P between x_{1}, x_{2} with interior in W; and by (3) applied to this path, there is a branch B with ends t_{1}, t_{2}. By (8), B has length ≤ 2. Let H^{\prime} be obtained from H by deleting the edges and interior vertices of B, and adding the members of $V(P)$ to H as the edges of a new branch B^{\prime} between t_{1}, t_{2}, in the appropriate order. Then $L\left(H^{\prime}\right)$ is an induced subgraph of G, and satisfies the hypotheses of the theorem, and so by the maximality of H, we deduce that B^{\prime} has length at most that of B. In particular, B^{\prime} has length at most 2 , and so $|V(P)| \leq 2$. But $x_{1}, x_{2} \in V(P)$, and so x_{1}, x_{2} are adjacent; and moreover, B has length 2 . Now we recall that x_{1} has a neighbour w say in W. Since $\left\{x_{1}, w, x_{2}, e\right\}$ is not a claw in G (where e is some edge of H incident with t_{1} and not with t_{2}), it follows that x_{2} is adjacent to w. Thus x_{1}, x_{2} are the only edges of H^{\prime} that are adjacent to w in G. We deduce that when H is replaced by H^{\prime}, and Y^{\prime} denotes the function analogous to Y for H^{\prime}, then $Y^{\prime}(w)$ contains the middle vertex of B^{\prime}. But then by (8), G is decomposable. Consequently we may assume that there is no such x_{2}; and so there is a branch-vertex t of H such that $Y(x)=\{t\}$ for all $x \in X$. By $4.3, X$ is a clique. By (3) and (4), every vertex of G not in $W \cup X$ is either complete or anticomplete to X. But then the result follows from 3.2. This proves (9).
(10) We may assume that for every branch B with ends t_{1}, t_{2}, if $v_{i} \in M\left(t_{i}\right) \cup M\left(t_{i}, B\right)$ for $i=1,2$, and v_{1}, v_{2} are adjacent, then B has length 2 and v_{1}, v_{2} are its two edges.

For let F_{1} be the set of vertices in $M\left(t_{1}\right) \cup M\left(t_{1}, B\right)$ with a neighbour in $M\left(t_{2}\right) \cup M\left(t_{2}, B\right)$, and define F_{2} similarly. By (4), F_{1}, F_{2} are cliques. We claim that every vertex $v \notin F_{1} \cup F_{2}$ is either complete or anticomplete to F_{i}, for $i=1,2$. For let v have a neighbour $f_{1} \in F_{1}$ say. We may assume that $t_{1} \notin Y(v)$, for otherwise v is complete to F_{1}, by (4). By (3) and (9), there is a branch B^{\prime} with ends t_{1}, t_{3} say, such that $v \in M\left(t_{3}\right) \cup M\left(t_{3}, B^{\prime}\right)$, and in particular, $t_{3} \in Y(v) \subseteq V\left(B^{\prime}\right) \backslash\left\{t_{1}\right\}$. Since $v \notin F_{2}$, it follows that $B^{\prime} \neq B$, and therefore $t_{3} \neq t_{2}$, since H is not a theta. Since v, f_{1} are adjacent, (3) implies that $f_{1} \notin M\left(t_{1}, B\right)$, and so $f_{1} \in M\left(t_{1}\right)$. Let e be an edge of H incident with t_{1} and not in B, B^{\prime}, let $f_{1} \in F_{1}$ be adjacent in G to v, and let $f_{2} \in F_{2}$ be adjacent in G to f_{1}. Then f_{1} is adjacent in G to all of v, f_{2}, e. Since $Y(v) \subseteq V\left(B^{\prime}\right) \backslash\left\{t_{1}\right\}$, it follows that v, e are nonadjacent in G. Similarly, since $f_{2} \in M\left(t_{2}\right) \cup M\left(t_{2}, B\right), f_{2}, e$ are nonadjacent in G. Since $\left\{f_{1}, v, f_{2}, e\right\}$ is not a claw, it follows that v, f_{2} are adjacent in G. By (3), $v \notin M\left(t_{3}, B^{\prime}\right)$, and so $v \in M\left(t_{3}\right)$; and similarly $f_{2} \in M\left(t_{2}\right)$; and also by (3), there is a branch $B^{\prime \prime}$ of H with ends t_{2}, t_{3}. Let H^{\prime} be the graph obtained from H by adding a new vertex x and three new edges f_{1}, v, f_{2}, joining x to t_{1}, t_{2}, t_{3} respectively. Then H^{\prime} satisfies the hypotheses of the theorem, and $L\left(H^{\prime}\right)=G \mid\left(E(H) \cup\left\{v, f_{1}, f_{2}\right\}\right)$, contrary to the maximality of H. This proves our claim that every vertex not in $F_{1} \cup F_{2}$ is either complete or anticomplete to F_{i}, for $i=1,2$. Thus $\left(F_{1}, F_{2}\right)$ is a homogeneous pair, nondominating since H is not a theta and therefore some edge of H is incident with no vertex in B; and so by 3.3 we may assume that F_{1}, F_{2} both contain at most one element. To deduce the claim, let v_{1}, v_{2} be as in the statement of (10); if B has length 2 , then the edges of B belong to $F_{1} \cup F_{2}$ and the claim follows. If B has length 1 , then $v_{i} \in M\left(t_{i}\right)$ for $i=1,2$, contrary to (5). This proves (10).

From (10), we may assume that every vertex of G not in $E(H)$ belongs to $M(B)$ for some branch B, or to $M(t)$ for some branch-vertex t. If for all pairs v_{1}, v_{2} of vertices in $V(G) \backslash E(H), v_{1}$ is adjacent to v_{2} if and only if $Y\left(v_{1}\right) \cap Y\left(v_{2}\right) \neq \emptyset$, then G is a line graph and the theorem holds. And we have already shown that this statement for all v_{1}, v_{2} such that one of $\left|Y\left(v_{1}\right)\right|,\left|Y\left(v_{2}\right)\right|=1$, by (4) and (10), and the "only if" implication holds for all v_{1}, v_{2}, by (2). From (4), we may therefore assume that there are nonadjacent $v_{1}, v_{2} \in V(G)$, and distinct branch-vertices t_{1}, t_{2}, t_{3} of H, and branches B_{1}, B_{2} between t_{1}, t_{3} and t_{2}, t_{3} respectively, such that:

- $v_{i} \in M\left(B_{i}\right)(i=1,2)$
- B_{1}, B_{2} both have length 2 , and
- every vertex of $V(H)$ adjacent to t_{3} in H either belongs to one of B_{1}, B_{2}, or has degree 3 in H and is adjacent to all the ends of B_{1}, B_{2}.

Now H is not a theta. Let B_{3} be the branch of H with ends t_{1}, t_{2}, if it exists. Let N be the set of all neighbours of t_{3} that do not belong to B_{1}, B_{2}, let $V_{1}=N \cup\left\{t_{1}, t_{2}, t_{3}\right\} \cup V\left(B_{1}\right) \cup V\left(B_{2}\right)$ and let $V_{2}=\left(V(H) \backslash V_{1}\right) \cup\left\{t_{1}, t_{2}\right\}$. Since $\left(V_{1}, V_{2}\right)$ is a 2-separation of H, we deduce that either $V(H)=V_{1}$, or the branch B_{3} exists and $V(H)=V_{1} \cup V\left(B_{3}\right)$. In either case, no branches of H have length >1 except possibly B_{1}, B_{2} and B_{3} if it exists.
(11) For $u_{1}, u_{2} \in V(G) \backslash E(H)$, either u_{1}, u_{2} belong to distinct sets $M\left(B_{i}\right)(i=1,2,3)$, or u_{1}, u_{2} are adjacent if and only if $Y\left(u_{1}\right) \cap Y\left(u_{2}\right) \neq \emptyset$.

For we have seen that if u_{1}, u_{2} are adjacent, then $Y\left(u_{1}\right) \cap Y\left(u_{2}\right) \neq \emptyset$; and the converse holds by (4) unless $u_{1} \in M(B)$ and $u_{2} \in M\left(B^{\prime}\right)$ for distinct branches B, B^{\prime}, both of length ≥ 2. But B_{1}, B_{2}, B_{3} are the only such branches. This proves (11).
(12) $M(t)=\emptyset$ for all branch-vertices $t \neq t_{1}, t_{2}, t_{3}$ of H.

For suppose that $x \in M(t)$ where $t \neq t_{1}, t_{2}, t_{3}$. We have seen that t is adjacent in H to all of t_{1}, t_{2}, t_{3}. Let e be the edge of H between t, t_{3}. Then e is adjacent in G to all of x, v_{1}, v_{2}. But v_{1}, v_{2} are nonadjacent, and x is nonadjacent to v_{1}, v_{2} by (2). Hence $\left\{e, x, v_{1}, v_{2}\right\}$ is a claw, a contradiction. This proves (12).

For $i=1,2,3$, let $E_{i}=E\left(B_{i}\right) \cup M\left(B_{i}\right)$, setting $E_{3}=\emptyset$ if B_{3} does not exist. Thus E_{1}, E_{2}, E_{3} are three cliques. For $i=1,2,3$, let

$$
F_{i}=M\left(t_{i}\right) \cup \bigcup\left(M(B): B \neq B_{1}, B_{2}, B_{3} \text { is a branch of } H \text { incident with } t_{i}\right) .
$$

From (8), (9), (10), (12) it follows that the six sets $E_{1}, E_{2}, E_{3}, F_{1}, F_{2}, F_{3}$ are pairwise disjoint and have union $V(G)$. From (4) and (11), F_{1}, F_{2}, F_{3} are cliques. By (4) and (11) E_{i} is complete to F_{i} and to F_{3} for $i=1,2$, and E_{3} is complete to $F_{1} \cup F_{2}$. By (2), E_{1} is anticomplete to F_{2}, and E_{2} is anticomplete to F_{1}, and E_{3} is anticomplete to F_{3}. Thus G is expressible as a hex-join. This proves 6.3.

7 Prisms

A prism means a graph consisting of two vertex-disjoint triangles $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}\right\}$, and three paths P_{1}, P_{2}, P_{3}, where each P_{i} has ends a_{i}, b_{i}, and for $1 \leq i<j \leq 3$ the only edges between $V\left(P_{i}\right)$ and $V\left(P_{j}\right)$ are $a_{i} a_{j}$ and $b_{i} b_{j}$; and we say that the three paths P_{1}, P_{2}, P_{3} form the prism. Thus a prism is just the line graph of a theta. A prism formed by paths of length $n_{1}, n_{2}, n_{3} \geq 1$ is called an $\left(n_{1}, n_{2}, n_{3}\right)$-prism.

Our objective in this section is to handle the claw-free graphs that contain certain prisms. For big enough prisms, this is accomplished by 6.3. More precisely, we have (immediately from 6.3, taking H to be the prism):
7.1 Let G be claw-free, with an $\left(n_{1}, n_{2}, n_{3}\right)$-prism as an induced subgraph, where either $n_{1}, n_{2}, n_{3} \geq$ 2 , or $n_{1}, n_{2} \geq 3$. Then either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}$, or G is decomposable.

In this section we prove the same thing for some slightly smaller prisms, namely the $(3,2,1)$ prism, the $(2,2,1)$-prism and the (3,1,1)-prism. We need first some lemmas about strips. A strip in G means a triple (A, C, B) of disjoint subsets of $V(G)$, such that

- A, B are nonempty cliques
- every vertex of $A \cup B$ belongs to a rung of the strip (a rung means a path between A and B with interior in C)
- for every vertex $v \in C$, there is a path from A to v with interior in C, and a path from v to B with interior in C.

Let $\left(A_{i}, B_{i}, C_{i}\right)$ be a strip for $i=1,2$. We say they are parallel if

- A_{1}, B_{1}, C_{1} are disjoint from A_{2}, B_{2}, C_{2}
- A_{1} is complete to A_{2} and B_{1} is complete to B_{2}, and
- every edge between $A_{1} \cup B_{1} \cup C_{1}$ and $A_{2} \cup B_{2} \cup C_{2}$ is either between A_{1} and A_{2} or between B_{1} and B_{2}.

Then ($A_{1} \cup A_{2}, C_{1} \cup C_{2}, B_{1} \cup B_{2}$) is a strip that we call the disjoint union of the first two strips. If a strip is not expressible as the disjoint union of two strips, we say it is nonseparable. We need the following lemma.
7.2 Let G be claw-free, and let $\left(A_{1}, B_{1}, C_{1}\right),\left(A_{2}, B_{2}, C_{2}\right)$ be parallel strips. Suppose that $\left(A_{1}, C_{1}, B_{1}\right)$ is nonseparable and C_{1} is nonempty. Then C_{1} is connected and every vertex of $A_{1} \cup B_{1}$ has a neighbour in C_{1}.

Proof. Let C_{3} be a component of C_{1} and $C_{4}=C_{1} \backslash C_{3}$. Let A_{3} be the set of members of A_{1} with a neighbour in C_{3}, and $A_{4}=A_{1} \backslash A_{3}$, and define B_{3}, B_{4} similarly.
(1) If $a \in A_{3}$, then no neighbour of a belongs to $B_{4} \cup C_{4}$.

For suppose that $x \in B_{4} \cup C_{4}$ is a neighbour of a. By definition of A_{3}, a also has a neighbour $c \in C_{3}$; and let $a_{2} \in A_{2}$. Since $\left\{a, a_{2}, x, c\right\}$ is not a claw, it follows that x is adjacent to c. Since $x \notin C_{3}$ and C_{3} is a component of C_{1}, we deduce that $x \notin C_{4}$; and since x has a neighbour in C_{3}, we deduce that $x \notin B_{4}$, a contradiction. This proves (1).
(2) Let R be a rung of $\left(A_{1}, C_{1}, B_{1}\right)$. Then either $V(R) \subseteq A_{3} \cup C_{3} \cup B_{3}$, or $V(R) \subseteq A_{4} \cup C_{4} \cup B_{4}$.

For suppose first that some vertex of the interior of R belongs to C_{3}. Then C_{3} contains all the interior of R, since C_{3} is a component of C_{1}, and so the ends of R belong to $A_{3} \cup B_{3}$ and the claim holds. We may therefore assume that C_{3} is disjoint from the interior of R. Let a be the end of R in A_{1}. Let r be the neighbour of a in R. If $a \in A_{3}$, then by (1), $r \in B_{3} \cup C_{3}$, and since C_{3} is disjoint from the interior of R, we deduce that R has length 1 and $r \in B_{3}$ and the claim holds. Thus we may assume that $a \notin A_{3}$, and similarly the other end of R is not in B_{3}; but then $V(R) \subseteq A_{4} \cup C_{4} \cup B_{4}$ and the claim holds. This proves (2).
(3) $\left(A_{3}, C_{3}, B_{3}\right)$ is a strip.

For since C_{3} is nonempty, and $\left(A_{1}, B_{1}, C_{1}\right)$ is a strip, it follows that there is a path between C_{3} and A_{1} with interior in C_{1} and hence in C_{3}; and consequently A_{3} is nonempty, and similarly B_{3} is nonempty. Consequently $\left(A_{3}, C_{3}, B_{3}\right)$ is a strip, by (2). This proves (3).

Suppose that $A_{4} \cup B_{4} \neq \emptyset$. Then by (2), $\left(A_{4}, C_{4}, B_{4}\right)$ is a strip, and by (1) the two strips $\left(A_{3}, C_{3}, B_{3}\right),\left(A_{4}, C_{4}, B_{4}\right)$ are parallel, contrary to hypothesis that $\left(A_{1}, B_{1}, C_{1}\right)$ is nonseparable. Thus $A_{4}=B_{4}=\emptyset$. If there exists $v \in C_{4}$, then there is a path from v to A_{1} with interior in C_{1}, which is therefore disjoint from C_{3}; and consequently this path has interior in C_{4}. Let its end in A_{1} be a. By (1), $a \in A_{4}$, a contradiction since $A_{4}=\emptyset$. This proves 7.2.

In several applications later in the paper, we shall have two parallel strips, and a path between them. Here is a lemma for use in that situation.
7.3 Let G be claw-free, and for $i=1,2$ let R_{i} be a path of length ≥ 1, with ends a_{i}, b_{i}. Suppose that $a_{1} a_{2}$ and $b_{1} b_{2}$ are edges, and there are no other edges between R_{1} and R_{2}. Let $X \subseteq V(G) \backslash$ $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$ be connected, and for $i=1,2$ let there be a vertex in R_{i} with a neighbour in X. Then there is a path $p_{1} \cdots-p_{k}$ with $p_{1}, \ldots, p_{k} \in X \backslash\left(V\left(R_{1}\right) \cup V\left(R_{2}\right)\right)$ such that:

- none of p_{1}, \ldots, p_{k} belong to $R_{1} \cup R_{2}$, and
- for $1 \leq i \leq k$, p_{i} has a neighbour in $V\left(R_{1}\right)$ if and only if $i=k$, and p_{i} has a neighbour in R_{2} if and only if $i=1$.

Moreover, either:

1. p_{1} has exactly two neighbours in R_{2} and they are adjacent, and the same for p_{k} in R_{1}, or
2. $k=1$, and one of R_{1}, R_{2} has length 1 , and the other has length 2 , and p_{1} is complete to $V\left(R_{1}\right) \cup V\left(R_{2}\right)$, or
3. $k=1$ and for $i=1,2$ the neighbours of p_{1} in R_{i} are $\left\{a_{i}, b_{i}\right\}$, or
4. $k=1$, and p_{1} has a unique neighbour in one of R_{1}, R_{2}, and p_{1} is adjacent to both $\left\{a_{1}, a_{2}\right\}$ or to both $\left\{b_{1}, b_{2}\right\}$.

Proof. We may assume that X is minimal with the given property, and therefore X is disjoint from $V\left(R_{1}\right) \cup V\left(R_{2}\right)$, and $X=\left\{p_{1}, \ldots, p_{k}\right\}$ for some path $p_{1} \cdots-p_{k}$ such that for $1 \leq i \leq k, p_{i}$ has a neighbour in $V\left(R_{1}\right)$ if and only if $i=k$, and p_{i} has a neighbour in R_{2} if and only if $i=1$. Let M be the set of neighbours of p_{1} in $V\left(R_{2}\right)$, and let N be the set of neighbours of p_{k} in $V\left(R_{1}\right)$. Suppose first that $|N|=1$. By 4.2, the vertex of N is not an internal vertex of R_{1}, and so we may assume that $N=\left\{a_{1}\right\}$. By 4.2, p_{k} is adjacent to a_{2}, and therefore $k=1$ and $a_{2} \in M$. But then the final statement of the theorem holds.

We may therefore assume that $|M|,|N| \geq 2$. If M consists of two adjacent vertices, and so does N, then the first statement of the theorem holds. So we may assume that there exist $x, y \in N$, nonadjacent. Since $\left\{p_{k}, x, y, p_{k-1}\right\}$ is not a claw, $k=1$. Since $\left\{p_{1}, x, y, z\right\}$ is not a claw for z in the interior of R_{2}, it follows that $M=\left\{a_{2}, b_{2}\right\}$. Since $\left\{p_{1}, x, y, a_{2}\right\}$ is not a claw, it follows that $a_{1} \in\{x, y\}$ and the same for b_{1}. If $|N|=2$ then the third statement of the theorem holds, and so we may assume that N contains some vertex c from the interior of R_{1}. Since $\left\{p_{1}, c, a_{2}, b_{2}\right\}$ is not a claw, R_{2} has length 1 . Since $\left\{p_{1}, c, a_{1}, b_{2}\right\}$ is not a claw, c is adjacent to a_{1} and similarly to b_{1}. But then R_{1} has length 2 and the second statement of the theorem holds. This proves 7.3.

Next we show, for several different prisms, that if one is present as an induced subgraph then G is decomposable, or belongs to one of our basic classes. These proofs are quite similar, so we have extracted the main argument in the following lemma.
7.4 Let G be claw-free, and let the three paths R_{1}, R_{2}, R_{3} form a prism in G. Let R_{i} have ends a_{i}, b_{i} for $1 \leq i \leq 3$, where $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles. Suppose that R_{1} has length >1. Then one of the following holds (possibly after exchanging R_{2}, R_{3}):

- R_{1} has length $2, R_{2}$ has length 1 , and there is a vertex v complete to $V\left(R_{1}\right) \cup V\left(R_{2}\right)$ and anticomplete to $V\left(R_{3}\right)$, or
- R_{2} has length 1 , and either R_{3} has length 1 or R_{1} has length 2 , and there is a vertex v that is complete to $V\left(R_{2}\right)$ and anticomplete to $V\left(R_{3}\right)$, with exactly two neighbours in R_{1}, namely either the first two or last two vertices of R_{1}, or
- R_{2} and R_{3} both have length 1 , and there is no vertex w that is complete to one of $V\left(R_{2}\right), V\left(R_{3}\right)$ and anticomplete to the other and to $V\left(R_{1}\right)$, or
- $G \in \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}$, or G is decomposable.

Proof. For $i=2,3$, let $A_{i}=\left\{a_{i}\right\}, B_{i}=\left\{b_{i}\right\}$ and C_{i} be the interior of R_{i}. Then $\left(A_{i}, C_{i}, B_{i}\right)$ is a strip with a unique rung R_{i}. It follows that there is a strip $\left(A_{1}, C_{1}, B_{1}\right)$ such that:

- $\left(A_{i}, C_{i}, B_{i}\right)(i=1,2,3)$ are three parallel strips,
- R_{1} is a rung of $\left(A_{1}, B_{1}, C_{1}\right)$, and
- $\left(A_{1}, B_{1}, C_{1}\right)$ is nonseparable.

Choose $\left(A_{1}, B_{1}, C_{1}\right)$ such that W is maximal, where W denotes the union of the vertex sets of the three strips.
(1) We may assume that every vertex $v \in V(G) \backslash\left(A_{1} \cup B_{1} \cup C_{1}\right)$ is anticomplete to C_{1}.

For let $v \in V(G) \backslash\left(A_{1} \cup B_{1} \cup C_{1}\right)$, and suppose it has a neighbour in C_{1}. Consequently $v \notin W$. Let N be the set of neighbours of v in W. From the maximality of W, it follows that N meets one of $V\left(R_{2}\right), V\left(R_{3}\right)$. Suppose first that $a_{2}, a_{3} \in N$. Since N meets C_{1}, it follows from 4.1 that $N \cap V\left(R_{i}\right)=\left\{a_{i}\right\}$ for $i=2,3$; but then $A_{1} \subseteq N$, by 4.2 (with A_{1}, a_{2}, c_{2}, where c_{2} is the neighbour of a_{2} in R_{2}), and so v can be added to A_{1}, contrary to the maximality of W. Thus N contains at most one of a_{2}, a_{3}, and at most one of b_{2}, b_{3} by symmetry. By 4.1 , it follows that N meets exactly one of R_{2}, R_{3}, say R_{2}.

Now $C_{1} \cup\{v\}$ is connected, and so by 7.3 there is a path $p_{1}-\cdots-p_{k}$ of G with $v=p_{1}$ and with $p_{2}, \ldots, p_{k} \in C_{1}$, satisfying one of the four statements of 7.3 . Certainly none of p_{1}, \ldots, p_{k} have neighbours in R_{3}, and so 4.2 implies that that the fourth statement of 7.3 is impossible. Also 4.2 implies the third is impossible, since R_{1} has length >1. If the second statement of 7.3 holds, then the first statement of the theorem holds. Consequently we may assume that the first statement of 7.3 holds. Then the subgraph of G induced on $V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup\left\{p_{1}, \ldots, p_{k}\right\}$ is a line graph of a graph H. If H satisfies the hypotheses of 6.3 , then the theorem holds by 6.3 , so we assume not. But H is
a subdivision of K_{4}, and $|V(H)| \geq 6$. If $|V(H)|=6$ then $k=1$ and the second statement of the theorem holds. If $|V(H)| \geq 7$ then some branch of H contains all its vertices except at most three, and so $k=1$ and again the second statement holds. This proves (1).
(2) We may assume that every vertex $v \in V(G) \backslash\left(A_{1} \cup B_{1} \cup C_{1}\right)$ is either complete or anticomplete to A_{1}.

For let $v \in V(G) \backslash\left(A_{1} \cup B_{1} \cup C_{1}\right)$, and suppose it has a neighbour and a nonneighbour in A_{1}. Then $v \notin W$. Let N be the set of neighbours of v in W. By (1), we may assume that $N \cap C_{1}=\emptyset$. By 7.2 , every vertex in A_{1} has a neighbour in C_{1}. Since N meets $A_{1}, 4.2$ (with a_{2}, A_{1}, C_{1} and a_{3}, A_{1}, C_{1}) implies that $a_{2}, a_{3} \in N$. Choose $a_{1}^{\prime} \in A_{1}$ such that $a_{1}^{\prime} \notin N$. For $i=2,3$, if C_{i} is nonempty then 4.2 (with $a_{1}^{\prime}, a_{i}, C_{i}$) implies that N meets C_{i}, and if $C_{i}=\emptyset$ then 4.2 (with $a_{1}^{\prime}-a_{i}-b_{i}$) implies that $b_{i} \in N$. By 4.1, $N \cap\left(B_{2} \cup C_{2}\right)$ is complete to $N \cap\left(B_{3} \cup C_{3}\right)$; and so C_{2}, C_{3} are empty, and $b_{2}, b_{3} \in N$. Suppose there is a vertex w that is complete to one of $V\left(R_{2}\right), V\left(R_{3}\right)$ and anticomplete to the other and to $V\left(R_{1}\right)$. Thus $w \notin W$. Let w be complete to $V\left(R_{2}\right)$ say. By 4.2 (with $a_{1}^{\prime}-a_{2}-w$) it follows that $w \in N$; but that contradicts 4.1, since $N \cap\left(A_{1} \cup\left\{w, b_{3}\right\}\right)$ includes a triad. Thus there is no such w; but then the third statement of the theorem holds. This proves (2).

If every vertex in $V(G) \backslash\left(A_{1} \cup B_{1} \cup C_{1}\right)$ is complete to one of A_{1}, B_{1}, then the third statement of the theorem holds. If not, then from (1) and (2), (A_{1}, C_{1}, B_{1}) is a breaker, and so by $3.4 G$ is decomposable. This proves 7.4.

Now we can process the little prisms.
7.5 Let G be claw-free, with an $\left(n_{1}, n_{2}, n_{3}\right)$-prism as an induced subgraph, where $n_{1} \geq 3$ and $n_{2} \geq 2$. Then either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}$ or G is decomposable.

Proof. By 7.1 we may assume that $n_{2}=2$ and $n_{3}=1$. Then the result is immediate from 7.4.
7.6 Let G be claw-free, with an $\left(n_{1}, n_{2}, n_{3}\right)$-prism as an induced subgraph, where $n_{1}, n_{2} \geq 2$. Then either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}$ or G is decomposable.

Proof. By 7.5 and 7.1, we may assume that $n_{1}=n_{2}=2$ and $n_{3}=1$. Let R_{1}, R_{2}, R_{3} be three paths of G, forming a prism, with lengths $2,2,1$. Let W be the union of their vertex sets. Let R_{i} be $a_{i}-c_{i}-b_{i}$ for $i=1,2$, and let R_{3} have vertices $a_{3}-b_{3}$, where $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles. By 7.4, we may assume there is a vertex $v_{1} \in V(G) \backslash W$, complete to $V\left(R_{3}\right)$, anticomplete to $V\left(R_{2}\right)$, and adjacent to c_{1} and to at least one of a_{1}, b_{1}. By exchanging R_{1}, R_{2}, we may also assume there exists $v_{2} \in V(G) \backslash W$ complete to $V\left(R_{3}\right)$, anticomplete to $V\left(R_{1}\right)$, and adjacent to c_{2} and to at least one of a_{2}, b_{2}. Suppose first that v_{1} is adjacent to both a_{1}, b_{1}. Since $\left\{v_{1}, v_{2}, a_{1}, b_{1}\right\}$ is not a claw, v_{1} is not adjacent to v_{2}. Since $\left\{a_{3}, v_{1}, v_{2}, a_{2}\right\}$ is not a claw, v_{2} is adjacent to a_{2}, and by symmetry v_{2} is adjacent to b_{2}. But then the subgraph induced on these ten vertices is isomorphic to $i \operatorname{cosa}(-2)$, and the theorem follows from 4.5. We may therefore assume that v_{1} is adjacent to exactly one of a_{1}, b_{1}, and v_{2} to exactly one of a_{2}, b_{2}. Since $\left\{a_{3}, a_{1}, v_{1}, v_{2}\right\}$ and $\left\{b_{3}, b_{1}, v_{1}, v_{2}\right\}$ are not claws, v_{1}, v_{2} are adjacent. Then the subgraph induced on these ten vertices is the line graph of a graph satisfying the hypotheses of 6.3 , and the result follows. This proves 7.6.

Let (A, \emptyset, B) be a strip. A step (in this strip) means a hole $a_{1}-a_{2}-b_{2}-b_{1}-a_{1}$ where $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. We say the strip is step-connected if for every partition (X, Y) of A or of B with $X, Y \neq \emptyset$, there is a step meeting both X, Y. We say an $\left(n_{1}, n_{2}, n_{3}\right)$-prism is long if $n_{1}+n_{2}+n_{3} \geq 5$.
7.7 Let G be claw-free, with a long prism as an induced subgraph. Then either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}$, or G is decomposable.

Proof. Let the paths R_{1}, R_{2}, R_{3} form a long $\left(n_{1}, n_{2}, n_{3}\right)$-prism in G. By 7.6 we may assume that $n_{1} \geq 3$, and $n_{2}=n_{3}=1$. Let the paths R_{i} have ends a_{i}, b_{i} as usual, where R_{1} has length ≥ 3, and R_{2}, R_{3} have length 1 .
(1) We may assume that, for every such choice of R_{1}, R_{2}, R_{3}, there is no vertex w that is complete to one of $V\left(R_{2}\right), V\left(R_{3}\right)$ and anticomplete to the other and to $V\left(R_{1}\right)$.

For if not then by 7.4, we may assume that there is a vertex v that is complete to $V\left(R_{2}\right)$ and anticomplete to $V\left(R_{3}\right)$, with exactly two neighbours in R_{1}, namely either the first two or last two vertices of R_{1}. From the symmetry we may assume that v is adjacent to a_{1} and its neighbour in R_{1}. But then $G \mid\left(\left(V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup\{v\}\right) \backslash\left\{a_{2}\right\}\right.$ is a (2,2,1)-prism (or longer), and the result follows from 7.6. So we may assume that the statement of (1) holds.

Let $A_{1}=\left\{a_{1}\right\}, B_{1}=\left\{b_{1}\right\}$, and let C_{1} be the interior of R_{1}. Now $\left(\left\{a_{2}, a_{3}\right\}, \emptyset,\left\{b_{2}, b_{3}\right\}\right)$ is a step-connected strip, parallel to $\left(A_{1}, C_{1}, B_{1}\right)$; and therefore we may choose a strip $\left(A_{2}, \emptyset, B_{2}\right)$ such that

- $\left(A_{2}, \emptyset, B_{2}\right)$ is step-connected, and $a_{2}, a_{3} \in A_{2}$ and $b_{2}, b_{3} \in B_{2}$
- the strips $\left(A_{1}, C_{1}, B_{1}\right),\left(A_{2}, \emptyset, B_{2}\right)$ are parallel, and
- $A_{2} \cup B_{2}$ is maximal.

Let $W=V\left(R_{1}\right) \cup A_{2} \cup B_{2}$.
(2) Every vertex $v \in V(G) \backslash\left(A_{2} \cup B_{2}\right)$ is either complete or anticomplete to A_{2}.

For let $v \in V(G) \backslash\left(A_{2} \cup B_{2}\right)$, and suppose it has a neighbour and a nonneighbour in A_{2}. Thus $v \notin W$. Let N be the set of neighbours of v in W. Since $\left(A_{2}, \emptyset, B_{2}\right)$ is step-connected, there is a step $a_{2}^{\prime}-a_{3}^{\prime}-b_{3}^{\prime}-b_{2}^{\prime}-a_{2}^{\prime}$ such that $a_{2}^{\prime} \in N$ and $a_{3}^{\prime} \notin N .4 .2$ (with $a_{3}^{\prime}-a_{2}^{\prime}-b_{2}^{\prime}$) implies that $b_{2}^{\prime} \in N$. Suppose that $b_{3}^{\prime} \in N$. Then 4.2 (with $a_{3}^{\prime}-b_{3}^{\prime}-b_{1}$) implies that $b_{1} \in N ; 4.1$ implies that $C_{1} \cap N=\emptyset ; 4.2$ (with $a_{3}^{\prime}, a_{1}, C_{1}$) implies that $a_{1} \notin N$; and 4.2 (with B_{2}, b_{1}, C_{1}) implies that $B_{2} \subseteq N$. If we add v to B_{2} then $a_{2}^{\prime}-a_{3}^{\prime}-b_{3}^{\prime}-v-a_{2}^{\prime}$ is a step of the enlarged strip, showing that this new strip is step-connected; but this contradicts the maximality of W. Thus $b_{3}^{\prime} \notin N$. Let $R_{2}^{\prime}, R_{3}^{\prime}$ be the rungs $a_{2}^{\prime}-b_{2}^{\prime}$ and $a_{3}^{\prime}-b_{3}^{\prime}$; then v is complete to $V\left(R_{2}^{\prime}\right)$, and anticomplete to $V\left(R_{3}^{\prime}\right)$. By (1) applied to the paths $R_{1}, R_{2}^{\prime}, R_{3}^{\prime}$, v has a neighbour in $V\left(R_{1}\right)$. Let us apply 7.3 to R_{1}, R_{2}^{\prime}. Since $a_{3}^{\prime}, b_{3}^{\prime} \notin N$, the third and fourth outcomes of 7.3 contradict 4.2, and so one of the first two outcomes applies. The second is impossible since R_{1}, R_{2}^{\prime} both do not have length 2 , and so v has two adjacent neighbours in both R_{1} and R_{2}^{\prime}. If v is adjacent to both internal vertices of R_{1}, then $G \mid\left(\left(V\left(R_{1}\right) \cup V\left(R_{2}^{\prime}\right) \cup V\left(R_{3}^{\prime}\right) \cup\{v\}\right)\right.$ is a line graph satisfying the hypothesis of 6.3. So we may assume that v is adjacent to a_{1} and to its neighbour in
R_{1}. Hence $G \mid\left(\left(V\left(R_{1}\right) \cup V\left(R_{2}^{\prime}\right) \cup V\left(R_{3}^{\prime}\right) \cup\{v\}\right) \backslash\left\{a_{2}^{\prime}\right\}\right.$ is a $(2,2,1)$-prism, and the result follows from 7.6. This proves (2).

From (1) and (2), we deduce that $\left(A_{2}, B_{2}\right)$ is a homogeneous pair of cliques, nondominating since $C_{1} \neq \emptyset$, and the result follows from 3.3. This proves 7.7.

8 Wheels and holes

Our goal in the next few sections is to handle claw-free graphs that contain holes of length ≥ 7. First, some definitions: An n-hole in G means a hole in G of length n. Let C be a n-hole, with vertices $c_{1}-\cdots-c_{n}-c_{1}$ in order; we call this an n-numbering. (We shall read these and similar subscripts modulo n, usually without saying so.) Let $v \in V(G)$, and let N be the set of neighbours of v in C, together with v if $v \in V(C)$. For $i=1, \ldots, n$, we say that:

- v is in position i (relative to C, and to the given n-numbering) if either $v=c_{i}$ or $N=$ $\left\{c_{i-1}, c_{i}, c_{i+1}\right\}$, and if $v \neq c_{i}$ we say v is a clone
- v is a hat in position $i+\frac{1}{2}$ if $N=\left\{c_{i}, c_{i+1}\right\}$
- v is a star in position $i+\frac{1}{2}$ if $n \geq 5$ and $N=\left\{c_{i-1}, c_{i}, c_{i+1}, c_{i+2}\right\}$
- v is a centre if $N=V(C)$ (and therefore $n \leq 5)$
- c is a hub if $n \geq 6$, and $|N|=4$, and $N=\{a, b, c, d\}$ where $a b$ and $c d$ are edges, and there are no edges between $\{a, b\}$ and $\{c, d\}$.

We observe the following:
8.1 Let C be a hole in a claw-free graph G, and let $v \in V(G) \backslash V(C)$, with at least one neighbour in $V(C)$. Then v is either a hat, clone, star, centre or hub relative to C.

The proof is clear.
For convenient reference, here is a lemma that will have many uses later.
8.2 Let G be claw-free, and let C be a hole in G. Let $v_{1}, v_{2} \in V(G) \backslash V(C)$, and suppose that for $i=1,2$, the set of neighbours of v_{i} in C is the vertex set of a path P_{i} in C. Suppose also that no induced subgraph of G is a long prism. Then:

1. If P_{1} is a subpath of P_{2}, and they have a common end, then v_{1}, v_{2} are adjacent
2. If P_{1} is a subpath of P_{2} and they have no common end, then v_{1}, v_{2} are nonadjacent
3. If neither of P_{1}, P_{2} is a subpath of the other, and at least three vertices of P_{1} do not belong to P_{2}, then v_{1}, v_{2} are nonadjacent
4. If C has length ≥ 6 and P_{1}, P_{2} both have length 1 and have no common end, then v_{1}, v_{2} are nonadjacent
5. If P_{1}, P_{2} both have length 1 and are different but with a common end, and C is a hole of maximum length in G, then v_{1}, v_{2} are nonadjacent.

Proof. Since every path has at least one vertex by definition, it follows that v_{1}, v_{2} both have neighbours in C. The first assertion follows from 4.3. For the second, let x, y be the ends of P_{2}; then $\left\{v_{2}, v_{1}, x, y\right\}$ is not a claw, and so v_{1}, v_{2} are nonadjacent. For the third, suppose three vertices of P_{1} do not belong to P_{2}; then some two of them, say x, y, are nonadjacent, and since $\left\{v_{1}, v_{2}, x, y\right\}$ is not a claw, it follows that v_{1}, v_{2} are nonadjacent. The fourth holds since if v_{1}, v_{2} are adjacent, the subgraph induced on $V(C) \cup\left\{v_{1}, v_{2}\right\}$ is a long prism (since C has length ≥ 6). Finally, if P_{1}, P_{2} share one end c, then the subgraph induced on $(V(C) \backslash\{c\}) \cup\left\{v_{1}, v_{2}\right\}$ is not a longer hole than C, and so v_{1}, v_{2} are nonadjacent. This proves 8.2.
8.3 Let G be claw-free, and let C be a hole in G of length ≥ 7, with a hub. Then either $G \in$ $\mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}$ or G is decomposable.

Proof. Let w be a hub for C. Let w have neighbours $a_{1}, a_{2}, b_{1}, b_{2}$ in C, where $a_{1} a_{2}$ and $b_{1} b_{2}$ are edges, and $a_{1}, b_{1}, b_{2}, a_{2}$ lie in this order in C. Let R_{1}, R_{2} be the two disjoint paths of C between $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$, where R_{i} is between a_{i}, b_{i} for $i=1,2$. Thus R_{1}, R_{2} both have length ≥ 2, and since C has length ≥ 7 we may assume that R_{1} has length ≥ 3. Let $A_{1}=\left\{a_{1}\right\}, B_{1}=\left\{b_{1}\right\}$, and let C_{1} be the interior of R_{1}. Choose a strip $\left(A_{2}, C_{2}, B_{2}\right)$ with the following properties:

- $\left(A_{i}, C_{i}, B_{i}\right)(i=1,2)$ are parallel strips
- $a_{2} \in A_{2}, b_{2} \in B_{2}$ and R_{2} is a rung of $\left(A_{2}, C_{2}, B_{2}\right)$
- $\left(A_{2}, C_{2}, B_{2}\right)$ is nonseparable
- w is complete to $A_{2} \cup B_{2}$ and anticomplete to C_{2}, and
- $W=V\left(R_{1}\right) \cup A_{2} \cup C_{2} \cup B_{2}$ is maximal with these properties.
(1) We may assume that every $v \in V(G) \backslash\left(A_{2} \cup B_{2} \cup C_{2}\right)$ is anticomplete to C_{2}.

For suppose that $v \in V(G) \backslash\left(A_{2} \cup B_{2} \cup C_{2}\right)$ has a neighbour in C_{2}. Then $v \notin W$; let N be the set of neighbours of v in W. From the maximality of W, N meets $\{w\} \cup V\left(R_{1}\right)$. Suppose first that $w \in N$. From 4.2 (with $a_{1}-w-b_{1}$), we may assume that $a_{1} \in N$. From 4.1 (with C_{2}, w, C_{1} and C_{2}, a_{1}, b_{1}) it follows that $N \cap C_{1}=\emptyset$, and $b_{1} \notin N$. From 4.2 (with A_{2}, a_{1}, C_{1}), it follows that $A_{2} \subseteq N$. But then v can be added to A_{2}, contrary to the maximality of W. Thus $w \notin N$. Consequently N meets $V\left(R_{1}\right)$. Choose $p_{1} \cdots-p_{k}$ as in 7.3 (with R_{1}, R_{2} exchanged), where $p_{1}=v$, and $p_{2}, \ldots, p_{k} \in C_{2}$. Then none of p_{1}, \ldots, p_{k} are adjacent to w. By $4.2, p_{1}$ is adjacent to more than one vertex of R_{1}, and p_{k} to more than one of R_{2}, so the fourth outcome of 7.3 is impossible; and since R_{1} has length >1, 4.2 implies the third is impossible. The second is false since R_{1} has length ≥ 3, and so the first holds. Then $G \mid\left(V(C) \cup\left\{w, p_{1}, \ldots, p_{k}\right\}\right)$ is a line graph of a cyclically 3 -connected graph H. If either $k>1$ or the four vertices of N in the hole C are not consecutive or R_{2} has length >2, then H satisfies the hypotheses of 6.3 and the theorem holds. If $k=1$ and the four vertices of N in C are consecutive and R_{2} has length 2 , we may assume that v is adjacent to a_{1}, a_{2} and their neighbours in C. But then $G \mid\left(V(C) \cup\{v, w\} \backslash\left\{a_{2}\right\}\right)$ is a (2,2,1)-prism or longer, and the result follows from 7.6. This proves (1).
(2) Every $v \in V(G) \backslash\left(A_{2} \cup B_{2} \cup C_{2}\right)$ is either complete or anticomplete to A_{2}.

For suppose that $v \in V(G) \backslash\left(A_{2} \cup B_{2} \cup C_{2}\right)$ has a neighbour and a nonneighbour in A_{2}. Then $v \notin W$; let N be the set of neighbours of v in W. By the assumption of (1), $N \cap C_{2}=\emptyset$. By 7.2 , every vertex in A_{2} has a neighbour in C_{2}, and so 4.2 (with $C_{2}, A_{2}, w ; C_{2}, A_{2}, a_{1} ; A_{2}, w, b_{1}$; and A_{2}, a_{1}, C_{1}) implies that $w, a_{1}, b_{1} \in N$, and N contains the neighbour of a_{1} in R_{1}. But this contradicts 4.1. This proves (2).

From (1) and (2) we deduce that $\left(A_{2}, C_{2}, B_{2}\right)$ is a breaker, and the result follows from 3.4. This proves 8.3.
8.4 Let G be claw-free, and let C be a hole in G of length ≥ 7. Let $a_{1}-a_{2}-b_{2}-b_{1}$ be a path in C, and let $h, w \in V(G) \backslash V(C)$, such that the neighbours of w in C are $a_{1}, a_{2}, b_{2}, b_{1}$, and the neighbours of h in C are a_{2}, b_{2}. Then G is decomposable.

Proof. Let R_{1} be the path $C \backslash\left\{a_{2}, b_{2}\right\}$, and let $C_{1}=V(C) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Let R_{2} be the path $a_{2}-b_{2}$. Thus $\left(\left\{a_{1}\right\}, C_{1},\left\{b_{1}\right\}\right)$ is a strip, and $\left(\left\{a_{2}\right\},\{h\},\left\{b_{2}\right\}\right)$ is another strip parallel to the first. By $8.2, w, h$ are nonadjacent, so we may choose a strip $\left(A_{2}, C_{2}, B_{2}\right)$ with the following properties:

- $\left(A_{2}, C_{2}, B_{2}\right)$ is parallel to $\left(\left\{a_{1}\right\}, C_{1},\left\{b_{1}\right\}\right)$
- $a_{2} \in A_{2}, h \in C_{2}, b_{2} \in B_{2}$
- $\left(A_{2}, C_{2}, B_{2}\right)$ is nonseparable
- w is complete to $A_{2} \cup B_{2}$ and anticomplete to C_{2}
- $W=V\left(R_{1}\right) \cup A_{2} \cup B_{2} \cup C_{2}$ is maximal subject to these condition.
(1) We may assume that every $v \in V(G) \backslash\left(A_{2} \cup B_{2} \cup C_{2}\right)$ is anticomplete to C_{2}.

For suppose that $v \in V(G) \backslash\left(A_{2} \cup B_{2} \cup C_{2}\right)$ has a neighbour in C_{2}. Then $v \notin W$; let N be the set of neighbours of v in W. From the maximality of W, N meets $\{w\} \cup V\left(R_{1}\right)$. Suppose first that $w \in N$. From 4.2 (with $a_{1}-w-b_{1}$), we may assume that $a_{1} \in N$. From 4.1 (with C_{2}, w, C_{1} and C_{2}, a_{1}, b_{1}) it follows that $N \cap C_{1}=\emptyset$, and $b_{1} \notin N$. From 4.2 (with A_{2}, a_{1}, C_{1}), it follows that $A_{2} \subseteq N$. But then v can be added to A_{2}, contrary to the maximality of W. Thus $w \notin N$. Consequently N meets $V\left(R_{1}\right)$. Choose $p_{1}-\cdots-p_{k}$ as in 7.3 (with R_{1}, R_{2} exchanged), where $p_{1}=v$, and $p_{2}, \ldots, p_{k} \in C_{2}$. Then none of p_{1}, \ldots, p_{k} are adjacent to w. By $4.2, p_{1}$ is adjacent to more than one vertex of R_{1}. Suppose that the fourth outcome of 7.3 holds; then p_{k} has a unique neighbour in R_{2}, say a_{2}. By 4.2 applied to $w-a_{2}-h$ and to $a_{1}-a_{2}-b_{2}$, it follows that p_{k} is adjacent to h and to a_{1}, and hence $k=1$ and $p_{k}=v$. Let c_{1} be the neighbour of a_{1} in R_{1}; then by 4.2 applied to $w-a_{1}-c_{1}, v$ is adjacent to c_{1}. By 4.1, v has no neighbours in C except c_{1}, a_{1}, a_{2}; but then the subgraph of G induced on $\left(V(C) \backslash\left\{a_{2}\right\}\right) \cup\{h, v\}$ is a long prism, and the result follows from 7.7. Thus we may assume that the fourth outcome of 7.3 does not hold. Since R_{1} has length $>1,4.2$ implies the third outcome is impossible. The second is false since R_{1} has length ≥ 3, and so the first holds. Then $G \mid\left(V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup\left\{w, p_{1}, \ldots, p_{k}\right\}\right)$ is a line graph of a cyclically 3 -connected graph H. If $k>1$ then $G \mid\left(V(C) \cup\left\{p_{1}, \ldots, p_{k}\right\}\right)$ is a long
prism, and the result follows from 7.7; so we assume that $k=1$. If the four vertices of N in the hole C are not consecutive, then v is a hub for C and the result follows from 8.3. We may therefore assume that v is adjacent to a_{1}, a_{2} and their neighbours in C. But then $G \mid\left(V(C) \cup\{v, w\} \backslash\left\{a_{2}\right\}\right)$ is a long prism, and the result follows from 7.7. This proves (1).

The remainder of the proof of 8.4 is identical with the latter part of the proof of 8.3 , and we omit it. This proves 8.4.

9 Circular interval graphs

So far, our method has been to show that claw-free graphs containing subgraphs of certain types either are line graphs, or are decomposable (with a few sporadic exceptions). That is not adequate to handle all claw-free graphs containing holes of length ≥ 7, because there is another major basic class of them, the circular interval graphs. In this section we prove the following (we recall that \mathcal{S}_{3} is the class of all circular interval graphs):
9.1 Let G be claw-free, containing a hole of length ≥ 7. Then either $G \in \mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{3}$, or G is decomposable.

To prove this we need two lemmas. A subset $X \subseteq V(G)$ is said to be dominating if every vertex of G either belongs to X or has a neighbour in X; and a subgraph H of G is said to be dominating if $V(H)$ is dominating.
9.2 Let C be a hole of maximum length (n say) in a claw-free graph G. Then either some induced subgraph of G is an $\left(n_{1}, n_{2}, n_{3}\right)$-prism, for some $n_{1}, n_{2}, n_{3} \geq 1$ with $n_{1}+n_{2}=n-2$, or G is decomposable, or C is dominating.
Proof. Let Z be the set of all vertices of G that are not in $V(C)$ and have no neighbour in $V(C)$. We may assume that Z is nonempty; let W be a component of $G \mid Z$. Let X be the set of all vertices not in W but with a neighbour in W. Let $x \in X$; we claim that it has exactly two neighbours in $V(C)$ and they are adjacent. For if it has two nonadjacent neighbours $u, v \in V(C)$, let $w \in W$ be adjacent to x; then $\{x, u, v, w\}$ is a claw, a contradiction. From 8.1, this proves that there is an edge e of C such that the neighbours of x in $V(C)$ are precisely the ends of e. We write $e(x)=e$. Suppose there exist $x_{1}, x_{2} \in X$ with $e\left(x_{1}\right) \neq e\left(x_{2}\right)$. Let P be a path between x_{1}, x_{2} with interior in W. If $e\left(x_{1}\right), e\left(x_{2}\right)$ share no end, then the subgraph of G induced on $V(C) \cup V(P)$ is an $\left(n_{1}, n_{2},|E(P)|\right)$ prism for some $n_{1}, n_{2} \geq 1$ with $n_{1}+n_{2}=n-2$, and the theorem holds. If $e\left(x_{1}\right), e\left(x_{2}\right)$ share an end c, then the subgraph induced on $V(C) \cup V(P) \backslash\{c\}$ is a hole of length $>n$, a contradiction. We may therefore assume that there are no such x_{1}, x_{2}. Thus there is an edge e of C such that every vertex in X is adjacent to both ends of e and to no other vertex of C. Let C have vertices $c_{1}-\cdots-c_{n}-c_{1}$ say, where e has ends c_{1}, c_{2}. By 4.3, X is a clique. Let $v \in V(G) \backslash(X \cup W)$; we claim that v is either complete or anticomplete to X. If $v \in V(C)$ this is true, so we assume $v \notin V(C)$. Suppose that v is adjacent to $x_{1} \in X$ and nonadjacent to $x_{2} \in X$. Let $w \in W$ be adjacent to x_{1}. Since $v \notin W \cup X$ it follows that v, w are nonadjacent. Since $\left\{x_{1}, w, v, c_{1}\right\}$ is not a claw, v is adjacent to c_{1} and similarly to c_{2}. Since $\left\{c_{2}, c_{3}, v, x_{2}\right\}$ is not a claw, v is adjacent to c_{3} and similarly to c_{n}; but then $\left\{v, x_{1}, c_{3}, c_{n}\right\}$ is a claw, a contradiction. This proves that v is either complete or anticomplete to X. By 3.2, $(X \cup W, V(G) \backslash(X \cup W))$ is decomposable. This proves 9.2.

Before the second lemma, we need a few definitions. Let C be a n-hole, with vertices $c_{1}-\cdots-c_{n}-c_{1}$ in order. We say that:

- If h_{1}, h_{2} are adjacent hats, with no common neighbour in $C,\left\{h_{1}, h_{2}\right\}$ is a hat-diagonal for C
- If $n \geq 5$ and h, s are a hat and a star relative to C, and h is adjacent to c_{i}, c_{i+1} and s is adjacent to $c_{i-1}, c_{i}, c_{i+1}, c_{i+2}$ for some $i \in\{1, \ldots, n\}$, we call $\{h, s\}$ a coronet for C.
- If $n \geq 5$ and s_{1}, s_{2} are nonadjacent stars, adjacent respectively to $c_{i}, c_{i+1}, c_{i+2}, c_{i+3}$ and to $c_{i+1}, c_{i+2}, c_{i+3}, c_{i+4}$ for some i, we call $\left\{s_{1}, s_{2}\right\}$ a crown for C.
- If $n=5$ or 6 and s_{1}, s_{2} are adjacent stars, adjacent respectively to $c_{i}, c_{i+1}, c_{i+2}, c_{i+3}$ and to $c_{i+3}, c_{i+4}, c_{i+5}, c_{i+6}$ for some i, we call $\left\{s_{1}, s_{2}\right\}$ a star-diagonal for C.
- If $n=6$ and s_{1}, s_{2}, s_{3} are three pairwise adjacent stars, adjacent respectively to $c_{i}, c_{i+1}, c_{i+2}, c_{i+3}$, to $c_{i+2}, c_{i+3}, c_{i+4}, c_{i+5}$ and to $c_{i-2}, c_{i-1}, c_{i}, c_{i+1}$ for some i, we call $\left\{s_{1}, s_{2}, s_{3}\right\}$ a star-triangle for C.

The second lemma we need is the following, the main result of [2].
9.3 Let G be claw-free, with a hole, and let n be the maximum length of holes in G. Suppose that every hole of length n is dominating, and has no hub, coronet, crown, hat-diagonal, star-diagonal, star-triangle or centre. Then either G admits a coherent W-join, or G is a circular interval graph.

Now we are ready to prove the main result of this section.
Proof of 9.1. Let G be claw-free, and let the longest hole in G have length $n \geq 7$. By 7.7, we may assume that no induced subgraph of G is a long prism, and that G is not decomposable. By 9.2 , every n-hole is dominating. By 8.3 , we may assume that no n-hole has a hub, and by 8.4 , we may assume that no n-hole has a coronet. If $\left\{s_{1}, s_{2}\right\}$ is a crown for an n-hole C, then G contains a long prism (obtained from $G \mid V(C) \cup\left\{s_{1}, s_{2}\right\}$ by deleting the middle common neighbour of s_{1}, s_{2} in C), which is impossible. Also no n-hole has a hat-diagonal, since G has no long prism. By 9.3, we deduce that $G \in \mathcal{S}_{3}$. This proves 9.1.

10 The icosahedron minus a triangle

Now we begin the next part of the paper. The objective of the next several sections is to prove 16.2, that every claw-free graph with a hole of length ≥ 6 either belongs to one of our basic classes or is antiprismatic, or decomposable. We begin by outlining the plan of the proof, as follows.

- We can assume G is claw-free, with a 6 -hole, but with no long prism or hole of length >6. Consequently we may assume that every 6 -hole is dominating, by 9.2 .
- (In 11.5) If some 6-hole has both a hub and a clone, then G is decomposable.
- (In 11.6) If some 6-hole has both a star-diagonal and a clone then G is decomposable.
- (In 13.2) Every 5 -hole is dominating (or else either G is decomposable, or it belongs to one of our basic classes). Consequently, no 6 -hole has a coronet.
- (In 14.1) If some 6 -hole has both a hub and a hat, then either G is a line graph or it is decomposable.
- (In 14.2) If some 6-hole has both a star-diagonal and a hat, then G is decomposable.
- (In 15.3) If no 6 -hole has a hub, but some 6 -hole has both a star-triangle and either a hat or clone, then G is decomposable.
- (In 15.4) If no 6 -hole has a hub or star-diagonal, but some 6 -hole has a crown, then G is decomposable.
- (In 16.1) If no 6 -hole has a hub, star-diagonal, star-triangle or crown, then either G is a circular interval graph or G is decomposable.
- To complete the proof of 16.2 , we may therefore assume that some 6 -hole has either a hub, a star-diagonal, or a star-triangle, and has no hat or clone. We deduce that G is antiprismatic.

The first step is to handle $i \operatorname{cosa}(-3)$, and that is the goal of this section. We recall that $i \operatorname{cosa}(-3)$ is the graph obtained from $i \operatorname{cosa}(0)$ by deleting three pairwise adjacent vertices. Thus it has nine vertices $c_{1}, \ldots, c_{6}, b_{1}, b_{3}, b_{5}$, where $c_{1}-\cdots-c_{6}-c_{1}$ is a 6 -numbering and b_{1}, b_{3}, b_{5} are clones in positions $1,3,5$ respectively, pairwise adjacent.
10.1 Let G be claw-free, and with no long prism or hole of length >6, containing icosa(-3) as an induced subgraph. Then G is decomposable.

Proof. In view of the given subgraph, we can choose nine pairwise disjoint subsets $C_{1}, \ldots, C_{6}, B_{1}, B_{3}, B_{5}$ of $V(G)$ such that

- all nine subsets are nonempty cliques
- for $1 \leq i \leq 6, C_{i}$ is complete to C_{i+1}, C_{i-1}, and anticomplete to $C_{i+2}, C_{i+3}, C_{i+4}$
- for $i \in\{1,3,5\}, B_{i}$ is complete to C_{i-1}, C_{i}, C_{i+1} and anticomplete to $C_{i+2}, C_{i+3}, C_{i+4}$
- B_{1}, B_{3}, B_{5} are pairwise complete
- the union $W=C_{1} \cup-\cdots \cup C_{6} \cup B_{1} \cup B_{2} \cup B_{3}$ is maximal subject to these conditions.
(1) For $v \in V(G) \backslash W$, let N be the set of neighbours of v in W; then, up to symmetry, either:
- N is the union of $C_{4}, C_{5}, C_{6}, B_{5}$ and a nonempty subset of C_{1}, or
- N is the union of $C_{3}, C_{4}, C_{5}, C_{6}, B_{5}$ and a subset of B_{3}, or
- N is the union of $C_{3}, C_{4}, C_{5}, B_{3}, B_{5}$ and a nonempty subset of C_{6}.

Suppose first that none of C_{1}, C_{3}, C_{5} is a subset of N. Then by $4.2, N$ is disjoint from C_{2}, C_{4}, C_{6}; by 4.2 again, it is disjoint from C_{1}, C_{3}, C_{5}; and by 4.2 again, it is disjoint from B_{1}, B_{3}, B_{5}. Thus $N=\emptyset$, and therefore G is decomposable by 9.2 . We may therefore assume that $C_{5} \subseteq N$.

Next assume that $C_{1}, C_{3} \nsubseteq N$. By 4.2, $N \cap C_{2}=\emptyset$; by 4.2 (with C_{4}, C_{5}, C_{6}), N includes one of C_{4}, C_{6}; and by 4.2 (with C_{3}, C_{4}, B_{5} and $\left.C_{1}, C_{6}, B_{5}\right), B_{5} \subseteq N$. Suppose that $N \cap\left(B_{1} \cup B_{3}\right)$ is nonempty,
say $N \cap B_{3} \neq \emptyset$; then 4.2 (with B_{1}, B_{3}, C_{3}) implies that $B_{1} \subseteq N$, and similarly $B_{3} \subseteq N$; 4.1 implies that N is disjoint from $C_{1}, C_{3} ; 4.2$ (with C_{2}, B_{3}, C_{4} and C_{2}, B_{1}, C_{6}) implies that $C_{4}, C_{6} \subseteq N$; but then v can be added to B_{5}, a contradiction. Thus $N \cap\left(B_{1} \cup B_{3}\right)$ is empty. By 4.2 (with B_{1}, B_{5}, C_{4} and $\left.B_{3}, B_{5}, C_{6}\right), C_{4}, C_{6} \subseteq N$; by 4.1, N does not meet both C_{1}, C_{3}; if it meets neither then v can be added to C_{5}, a contradiction; and if it meets exactly one of C_{1}, C_{3} then the claim holds.

Thus we may assume that N includes C_{3} (as well as C_{5}). By 4.1, $N \cap\left(B_{1} \cup C_{1}\right)=\emptyset$. Suppose that $C_{4} \nsubseteq N$. Then by 4.2 (with C_{4}, C_{5}, C_{6}), N includes C_{6} and similarly C_{2}; by 4.2 (with C_{4}, B_{3}, B_{1}), N is disjoint from B_{3}; and then 4.2 (with C_{1}, C_{2}, B_{3}) is violated. This proves that $C_{4} \subseteq N$. By $4.1, N$ is disjoint from one of C_{2}, C_{6}, say C_{2}. Suppose that $B_{5} \nsubseteq N$. Then 4.2 implies that $N \cap\left(B_{3} \cup C_{6}\right)=\emptyset$, and then the subgraph of G induced on $W \cup\{v\} \backslash\left(B_{1} \cup C_{4}\right)$ contains a long prism, a contradiction. Hence $B_{5} \subseteq N$. By 4.2, N includes one of B_{3}, C_{6}; and if it includes B_{3} then it meets C_{6}, for otherwise v could be added to C_{4}. This proves (1).

For $i=1,3,5$, let X_{i} be the union of B_{i}, C_{i}, and the set of all $v \in V(G) \backslash W$ such that v is complete to $C_{i-1}, C_{i}, C_{i+1}, B_{i}$ and has nonneighbours in both B_{i+2}, B_{i-2}. Note that, from (1), every vertex in X_{i} is anticomplete to one of C_{i-2}, C_{i+2}. For $i=2,4,6$, let X_{i} be the union of C_{i} and the set of all vertices in $V(G) \backslash W$ that are complete to $C_{i-1}, C_{i}, C_{i+1}, B_{i-1}$ and B_{i+1}. By (1), every vertex of G belongs to exactly one of the sets X_{1}, \ldots, X_{6}.
(2) For $1 \leq i \leq 6, X_{i}$ is a clique.

For first suppose that i is odd. Let $u, v \in X_{i}$. From the definition of X_{i}, it is clear that u, v are adjacent if either of them belongs to $B_{i} \cup C_{i}$, so we may assume that $u, v \notin W$. From (1), u is anticomplete to one of B_{i+2}, B_{i-2} and has a nonneighbour in the other, and the same holds for v, and so we may assume that they have a common nonneighbour $z \in B_{i+2}$ say. But they also have a common neighbour $w \in B_{i}$, and since $\{w, u, v, z\}$ is not a claw, it follows that u, v are adjacent. Thus X_{i} is a clique if i is odd. Now let i be even, and again let $u, v \in X_{i}$. Choose $z \in B_{i+3}$ and $w \in B_{i+1}$; then u, v are both adjacent to w and nonadjacent to z. Since $\{w, u, v, z\}$ is not a claw, u, v are adjacent, and so again X_{i} is a clique. This proves (2).

(3) For $1 \leq i \leq 6, X_{i}$ is complete to X_{i+1}.

For we may assume that i is odd, from the symmetry. Let $u \in X_{i}, v \in X_{i+1}$. If either $u \in B_{i} \cup C_{i}$ or $v \in B_{i+1}$, then u, v are adjacent from the definitions of X_{i}, X_{i+1}, so we may assume that $u, v \notin W$. Suppose that u, v are nonadjacent. Let z be a nonneighbour of u in B_{i-2}, and let $w \in B_{i}$. Since v has no neighbour in B_{i-2}, and u, v are both B_{i}-complete, and $\{w, u, v, z\}$ is not a claw, we deduce that u, v are adjacent. This proves (3).
(4) For $1 \leq i \leq 6, X_{i}$ is anticomplete to X_{i+3}.

For we may assume that i is odd, from the symmetry. Let $u \in X_{i}, v \in X_{i+3}$. Now u is anticomplete to one of C_{i-2}, C_{i+2}, say C_{i-2}; and u has a nonneighbour w in B_{i+2}. Choose $z \in C_{i-2}$; then since $\{v, u, w, z\}$ is not a claw, it follows that u, v are nonadjacent. This proves (4).

From (2)-(4), we see that G is the hex-join of $G \mid\left(X_{1} \cup X_{3} \cup X_{5}\right)$ and $G \mid\left(X_{2} \cup X_{4} \cup X_{6}\right)$, and therefore is decomposable. This proves 10.1.

11 6-holes with clones

Let $c_{1}-\cdots-c_{6}-c_{1}$ be a 6 -numbering of a 6 -hole C. If v is a hub relative to C, we say that v is in hub-position i if v is adjacent to $c_{i-2}, c_{i-1}, c_{i+1}, c_{i+2}$. (Thus a hub in hub-position i is the same as a hub in hub-position $i+3$.)
11.1 Let G be claw-free. Let C be a 6 -hole in G with vertices $c_{1}-\cdots-c_{6}-c_{1}$ in order, and let w be a hub in hub-position i. Let $v \in V(G) \backslash(V(C) \cup\{w\})$. Then w, v are adjacent if and only if either:

- v is a hub in hub-position i, or
- v is a hat in position $i+1 \frac{1}{2}$ or in position $i-1 \frac{1}{2}$, or
- v is a clone in position $i+1, i+2, i-2 i$ or $i-1$, or
- v is a star in position $i+\frac{1}{2}, i+2 \frac{1}{2}, i-\frac{1}{2}$ or $i-2 \frac{1}{2}$

Proof. In each case listed, if v, w are nonadjacent there is a claw; and in the cases not listed, if v, w are adjacent there is a claw. We leave the details to the reader.

This has the following consequence.
11.2 Let G be claw-free. Let C be a 6 -hole in G with vertices $c_{1}-\cdots-c_{6}-c_{1}$ in order. If there are two hubs in the same hub-position, then G admits twins.

Proof. By 11.1, any two hubs in the same hub-position are adjacent, and every other vertex is adjacent to both or neither of them. Thus they are twins. This proves 11.2.

Two n-numberings are proximate if they differ in exactly one place (and therefore they number n-holes with $n-1$ vertices in common; the exceptional vertex of each is a clone with respect to the other). Note that we regard $c_{1}-\cdots-c_{n}-c_{1}$ and $c_{2}-c_{3}-\cdots-c_{n}-c_{1}-c_{2}$ as different numberings; the choice of initial vertex is important. A nonempty set \mathcal{C} of n-numberings is connected by proximity if the graph with vertex set \mathcal{C}, in which two n-numberings are adjacent if they are proximate, is connected. The proximity distance between two n-numberings is the length of the shortest path between them in this graph, if such a path exists, and is undefined otherwise. A proximity component of order n means a set \mathcal{C} of n-numberings that is connected by proximity and maximal with this property.
11.3 Let G be claw-free, and let \mathcal{C} be a proximity component of order 6 . Let $v \in V(G)$ be a hub in hub-position i for some member of \mathcal{C}. Then v is a hub in hub-position i for every member of \mathcal{C}.

Proof. It suffices to show that if $c_{1}-\cdots-c_{6}-c_{1}$ and $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ are proximate, and v is a hub in hub-position i for the first 6 -numbering, then v is a hub in hub-position i for the second. We may assume that $i=1$. From the symmetry we may assume that $c_{j}=c_{j}^{\prime}$ for $j=3,4,5$; and since v is adjacent to c_{3}, c_{5} and not to c_{4}, it follows from 8.1 that v is a hub for $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ in hub-position 1 . This proves 11.3.

If \mathcal{C} is a proximity component of order n, we denote the union of the vertex sets of its members by $V(\mathcal{C})$; and for $1 \leq i \leq n$, the set of vertices that are the i th term of some member of \mathcal{C} is denoted by $A_{i}(\mathcal{C})$, or just A_{i} when there is no ambiguity. If these n sets are pairwise disjoint, we say that \mathcal{C} is pure.
11.4 Let G be claw-free, in which every 6 -hole is dominating, and containing no 7 -hole or long prism. Let \mathcal{C} be a pure proximity component of order 6 . Then

- For $1 \leq i \leq 6, A_{i}$ is a clique and there are no edges between A_{i} and A_{i+3}
- If $v \in V(G)$ and $v \notin A_{1} \cup \cdots \cup A_{6}$, then for $1 \leq i \leq 6, v$ is either complete or anticomplete to A_{i}; and v is complete to either two or four of the sets A_{1}, \ldots, A_{6}.
- For $1 \leq i \leq 6$, every $v \in A_{i}$ is either complete to A_{i+1} or anticomplete to A_{i+2}
- For $1 \leq i \leq 6$, either A_{i} is complete to A_{i-1} or A_{i} is anticomplete to A_{i+2}
- For $1 \leq i \leq 6, A_{i}$ is complete to one of A_{i-1}, A_{i+1}.

Proof. For each vertex $v \in V(G)$, let $P(v)$ be the set of all k such that v is in position k relative to some member of \mathcal{C}.
(1) For every vertex $v \in V(G)$, if k is an integer, then $k \in P(v)$ if and only if $v \in A_{k}$. Moreover, $|P(v)| \leq 3$, and the members of $P(v)$ are consecutive multiples of $\frac{1}{2}$ modulo 6 .

For suppose first that $v \in A_{k}$. Then since the sets A_{1}, \ldots, A_{6} are pairwise disjoint, v is the k th term of every member of \mathcal{C} that contains it, and there is such a member since $v \in A_{k}$; and so $k \in P(v)$. For the converse, suppose that k is an integer and $k \in P(v)$. We may assume that $k=1$. Choose a 6 -numbering $c_{1}-\cdots-c_{6}-c_{1} \in \mathcal{C}$ such that v is in position 1 relative to this 6 -numbering. The 6 -numbering $v-c_{2}-\cdots-c_{6}-v$ also belongs to \mathcal{C}, because of the maximality of \mathcal{C}, and since none of c_{2}, \ldots, c_{6} belong to A_{1}, it follows that $v \in A_{1}$. This proves the first claim. Now note that the positions of v relative to two proximate 6 -numberings differ by at most $\frac{1}{2}$; and so the members of $P(v)$ are consecutive multiples of $\frac{1}{2}$ (modulo 6). Since $P(v)$ contains at most one integer, as we have seen, it follows that $|P(v)| \leq 3$. This proves (1).

To prove the first statement of the theorem, we may assume that $i=1$. Let $u, v \in A_{1}$, and let $c_{1}-\cdots-c_{6}-c_{1} \in \mathcal{C}$ containing u. Since $v \in A_{1}$, it follows that $1 \in P(v)$; and so $P(v) \subseteq\left\{\frac{1}{2}, 1,1 \frac{1}{2}\right\}$ by (1). In particular, v is in position $\frac{1}{2}$, 1 or $1 \frac{1}{2}$ relative to $c_{1}-\cdots-c_{6}-c_{1}$; and in each case, it is adjacent to u. Hence A_{1} is a clique. Now let $u \in A_{1}$ and $v \in A_{4}$. As before, $P(u) \subseteq\left\{\frac{1}{2}, 1,1 \frac{1}{2}\right\}$. Choose $c_{1}-\cdots-c_{6}-c_{1} \in \mathcal{C}$ with $c_{4}=v$; then u is in position $\frac{1}{2}, 1$ or $1 \frac{1}{2}$ relative to $c_{1} \cdots-c_{6}-c_{1}$, and in each case u, v are nonadjacent. This proves the first statement.

For the second statement, let $v \in V(G)$ with $v \notin A_{1} \cup \cdots \cup A_{6}$. By 11.3 we may assume that v is not a hub relative to any member of \mathcal{C}. By (1), $P(v)$ contains no integer, and so $P(v)=\left\{i+\frac{1}{2}\right\}$ for some integer i. Thus v is in position $i+\frac{1}{2}$ relative to every member of \mathcal{C}, and it is either a hat or a star. If it is sometimes a hat and sometimes a star, then there are two proximate members of \mathcal{C} such that v is a hat relative to one and a star relative to the other, which is impossible. Hence either it is
a hat in position $i+\frac{1}{2}$ relative to all members of \mathcal{C}, or it is a star in the same position for them all, and in either case the claim follows. This proves the second statement.

For the third statement, we may assume that $i=1$; let $v \in A_{1}$, and suppose it has a neighbour $a_{3} \in A_{3}$ and a nonneighbour $a_{2} \in A_{2}$. Choose $c_{1}-c_{2}-\cdots-c_{6}-c_{1} \in \mathcal{C}$ so that $a_{2}=c_{2}$. Since $v \in A_{1}$ it follows that $P(v) \subseteq\left\{\frac{1}{2}, 1,1 \frac{1}{2}\right\}$, and since v is nonadjacent to c_{2}, we deduce that v is a hat in position $\frac{1}{2}$ relative to $c_{1}-c_{2}-\cdots-c_{6}-c_{1}$. Since $a_{3} \in A_{3}$, it follows that $P\left(a_{3}\right) \subseteq\left\{2 \frac{1}{2}, 3,3 \frac{1}{2}\right\}$. If a_{3} is adjacent to both c_{2}, c_{4} then $\left\{a_{3}, c_{2}, c_{4}, v\right\}$ is a claw; and so a_{3} is a hat in position $2 \frac{1}{2}$ or $3 \frac{1}{2}$ relative to $c_{1}-c_{2}-\cdots-c_{6}-c_{1}$. But then $G \mid\left\{c_{1}, \ldots, c_{6}, v, a_{3}\right\}$ is a long prism, a contradiction. This proves the third statement.

For the fourth statement, let us first prove the following.
(2) If $1 \leq i \leq 6$, then every vertex in A_{i} is either complete to A_{i-1} or anticomplete to A_{i+2}.

For we may assume that $i=2$. Let $v \in A_{2}$, and suppose that v has a neighbour $a_{4} \in A_{4}$ and a nonneighbour in $a_{1} \in A_{1}$. Choose $c_{1}-c_{2}-\cdots-c_{6}-c_{1}$ and $c_{1}^{\prime}-c_{2}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ in \mathcal{C}, with $c_{1}=a_{1}$ and $c_{4}^{\prime}=a_{4}$, and choose these two 6 -numberings so that their proximity distance (k say) is as small as possible. Since $v \in A_{2}$, it follows that $P(v) \subseteq\left\{1 \frac{1}{2}, 2,2 \frac{1}{2}\right\}$. Since v is nonadjacent to c_{1} we deduce that v is in position $2 \frac{1}{2}$ relative to $c_{1}-c_{2}-\cdots-c_{6}-c_{1}$, and is a hat; and similarly it is in position $2 \frac{1}{2}$ relative to $c_{1}^{\prime}-c_{2}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$, and is a star. In particular, v belongs to neither of the 6 -numberings; and $c_{1} \neq c_{1}^{\prime}$, and $c_{4} \neq c_{4}^{\prime}$. It follows that the two 6 -numberings are not proximate, and so $k>1$. Consequently there is a third 6 -numbering $c_{1}^{\prime \prime}-c_{2}^{\prime \prime}-\cdots-c_{6}^{\prime \prime}-c_{1}^{\prime \prime}$ in \mathcal{C}, proximate to $c_{1}^{\prime}-c_{2}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$, and with proximity distance to $c_{1}-c_{2}-\cdots-c_{6}-c_{1}$ less than k. From the minimality of k, it follows that $c_{4}^{\prime \prime}$ is nonadjacent to v, and therefore $c_{4}^{\prime \prime} \neq a_{4}$; and so $c_{i}^{\prime \prime}=c_{i}^{\prime}$ for all $i \in\{1, \ldots, 6\}$ with $i \neq 4$. Consequently $c_{1}^{\prime}-v-c_{3}^{\prime}-c_{4}^{\prime \prime}-c_{5}^{\prime}-c_{6}^{\prime}-c_{1}^{\prime}$ is a 6 -numbering, and therefore belongs to \mathcal{C}. Since c_{1} is nonadjacent to v, and $P\left(c_{1}\right) \subseteq\left\{\frac{1}{2}, 1,1 \frac{1}{2}\right\}$, it follows that relative to this last 6 -numbering, c_{1} is in position $\frac{1}{2}$ and is a hat. Consequently c_{1} is nonadjacent to $c_{3}^{\prime}, c_{5}^{\prime}$, and is adjacent to c_{6}^{\prime}.

Suppose that c_{1} is in position 1 relative to $c_{1}^{\prime}-c_{2}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$. Then $c_{1}-c_{2}^{\prime}-c_{3}--\cdots-c_{6}^{\prime}-c_{1}$ belongs to \mathcal{C}, and yet v is in position 3 relative to it, contradicting that $P(v) \subseteq\left\{1 \frac{1}{2}, 2,2 \frac{1}{2}\right\}$. So c_{1} is not in position 1 relative to $c_{1}^{\prime}-c_{2}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$. Since $P\left(c_{1}\right) \subseteq\left\{\frac{1}{2}, 1,1 \frac{1}{2}\right\}$ and c_{1} is nonadjacent to c_{3}^{\prime} and adjacent to c_{6}^{\prime}, we deduce that c_{1} is in position $\frac{1}{2}$ relative to $c_{1}^{\prime}-c_{2}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ Since c_{1} is nonadjacent to c_{5}^{\prime}, it follows that c_{1} is nonadjacent to c_{2}^{\prime}.

Since $\left\{c_{2}, c_{2}^{\prime}, c_{4}^{\prime}, c_{1}\right\}$ is not a claw, it follows that c_{2}, c_{4}^{\prime} are nonadjacent. Since A_{4} is a clique, c_{4}^{\prime} is adjacent to c_{4}. Since $\left\{c_{4}^{\prime}, v, c_{4}, c_{6}\right\}$ is not a claw, c_{4}^{\prime} is not adjacent to c_{6}. Thus if c_{4}^{\prime} is in position $4 \frac{1}{2}$ relative to $c_{1}-\cdots-c_{6}-c_{1}$, then it is a hat; but then $G \mid\left\{c_{1}, \ldots, c_{6}, v, c_{4}^{\prime}\right\}$ is a long prism, a contradiction. If c_{4}^{\prime} is in position 4 relative to $c_{1}-c_{2}-\cdots-c_{6}-c_{1}$, then v is in position 3 relative to $c_{1}-c_{2}-c_{3}-c_{4}^{\prime}-c_{5}-c_{6}-c_{1}$, contradicting that $P(v)=\left\{1 \frac{1}{2}, 2,2 \frac{1}{2}\right\}$. Thus, c_{4}^{\prime} is in position $3 \frac{1}{2}$ relative to $c_{1}-c_{2}-\cdots-c_{6}-c_{1}$, and therefore is a hat, since c_{2}, c_{4}^{\prime} are nonadjacent. Then $c_{1}-c_{2}-v-c_{4}^{\prime}-c_{4}-c_{5}-c_{6}-c_{1}$ is a 7 -hole, a contradiction. Thus there is no such vertex v. This proves (2).

To complete the proof of the fourth statement of the theorem, again we may assume that $i=2$. Suppose that $v, v^{\prime} \in A_{2}$, and v has a neighbour $a_{4} \in A_{4}$, and v^{\prime} has a nonneighbour $a_{1} \in A_{1}$. By (2), v^{\prime}, a_{4} are nonadjacent, and v, a_{1} are adjacent. But then $\left\{v, v^{\prime}, a_{1}, a_{4}\right\}$ is a claw, a contradiction. This proves the fourth statement of the theorem.

For the fifth statement, let us first prove the following:
(3) For $1 \leq i \leq 6$, every vertex in A_{i} is either A_{i+1}-complete or A_{i-1}-complete.

For we may assume that $i=2$. Let $a_{2} \in A_{2}$, and assume it has nonneighbours $a_{1} \in A_{1}$ and $a_{3} \in A_{3}$. Since a_{1} is not complete to A_{2}, it is therefore anticomplete to A_{3} by the third statement of the theorem; and in particular, a_{1}, a_{3} are nonadjacent. Choose $x, y \in A_{2}$ adjacent to a_{1}, a_{3} respectively. Since $\left\{x, a_{1}, a_{2}, a_{3}\right\}$ is not a claw, it follows that x is not adjacent to a_{3}, and similarly y is not adjacent to a_{1}. Thus $a_{1}-x-y-a_{3}$ is a path. Choose $c_{1}-c_{2}-\cdots-c_{6}-c_{1} \in \mathcal{C}$ with $a_{2}=c_{2}$. Now $P\left(a_{1}\right) \subseteq\left\{\frac{1}{2}, 1,1 \frac{1}{2}\right\}$, and a_{1} is not adjacent to a_{2}; and so relative to $c_{1}-c_{2}-\cdots-c_{6}-c_{1}, a_{1}$ is a hat in position $\frac{1}{2}$. Similarly, a_{3} is a hat in position $3 \frac{1}{2}$. Now x has no neighbours in A_{4}, A_{5}, A_{6}, by respectively the third, first and fourth statements of the theorem, since x is not complete to A_{3}. Similarly y is anticomplete to $A_{4} \cup A_{5} \cup A_{6}$. It follows that $a_{1}-x-y-a_{3}-c_{4}-c_{5}-c_{6}-a_{1}$ is a 7 -hole in G, a contradiction. This proves (3).

Now to prove the fifth statement of the theorem, we may assume that $i=2$. Suppose that $a_{1} \in A_{1}$ and $a_{3} \in A_{3}$ both have nonneighbours in A_{2}. By (3) they have no common nonneighbour, and so there is a path $a_{1}-x-y-a_{3}$ where $x, y \in A_{2}$. Choose $c_{i} \in A_{i}$ for $i=4,5,6$, such that $c_{4}-c_{5}-c_{6}$ is a path. By (3) and the first, third and fourth statements of the theorem, $a_{1}-x-y-a_{3}-c_{4}-c_{5}-c_{6}-a_{1}$ is a 7-hole in G, a contradiction. This proves the fifth statement, and therefore proves 11.4.

We have two applications for the previous theorem. The first is the following.
11.5 Let G be claw-free, containing no long prism, and such that every 6 -hole in G is dominating. Let C_{0} be a 6-hole in G; and suppose that there is a hub for C_{0}, and some vertex of $V(G) \backslash V\left(C_{0}\right)$ is a clone with respect to C_{0}. Then G is decomposable.

Proof. Let C_{0} have vertices $a_{1}-\cdots-a_{6}-a_{1}$, and let w be a hub, adjacent to $a_{1}, a_{2}, a_{4}, a_{5}$ say. Let \mathcal{C} be the proximity component containing C_{0}, and let $A_{i}=A_{i}(\mathcal{C})$ for $1 \leq i \leq 6$. By 11.3, w is a hub in hub-position 3 relative to every member of \mathcal{C}. Consequently, w is complete to $A_{1} \cup A_{2} \cup A_{4} \cup A_{5}$, and anticomplete to $A_{3} \cup A_{6}$. We observe first that:
(1) Let $1 \leq i \leq 6$, let $v \in A_{i}$, and let N be the union of $\{v\}$ and the set of neighbours of v in G. Let $c_{1}-\cdots-c_{6}-c_{1} \in \mathcal{C}$. If $i=3,6, N$ contains c_{i} and at least one of c_{i-1}, c_{i+1}, and none of $c_{i+2}, c_{i+3}, c_{i+4}$. (Consequently, A_{3} is anticomplete to $A_{5} \cup A_{6} \cup A_{1}$.) If $i=1,2 N$ contains both of c_{1}, c_{2}, and at most one of c_{4}, c_{5} (and symmetrically if $i=4,5$).

For v belongs to some member of \mathcal{C}, and the claim holds for that member. Consequently it suffices to show that if $c_{1}-\cdots-c_{6}-c_{1}$ and $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ are proximate members of \mathcal{C}, and the claim holds for $c_{1}-\cdots-c_{6}-c_{1}$ then it holds for $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$. Let these two 6 -numberings differ in their j th entry. Assume first that $i \in\{3,6\}$, say $i=3$. Thus N contains at least two of c_{2}, c_{3}, c_{4} and none of w, c_{5}, c_{6}, c_{1}. Hence if $j \in\{5,6,1\}$ then N contains least two of $c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}$, and if $j \in\{2,3,4\}$ then N contains none of $c_{5}^{\prime}, c_{6}^{\prime}, c_{1}^{\prime}$; and in either case, since $w \notin N$, it follows from 11.1 that N contains c_{3}^{\prime} and at least one of $c_{2}^{\prime}, c_{4}^{\prime}$, and contains none of $c_{5}^{\prime}, c_{6}^{\prime}, c_{1}^{\prime}$ as required. Now assume that $i \in\{1,2\}$, and consequently $c_{1}, c_{2}, w \in N$, and not both $c_{4}, c_{5} \in N$. Thus if $j \in\{3,4,5,6\}$ then $c_{1}^{\prime}, c_{2}^{\prime} \in N$, and if $j \in\{6,1,2,3\}$ then not both $c_{4}^{\prime}, c_{5}^{\prime} \in N$. Since $w \in N$ and v is not a hub relative to $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ (by 11.3), it follows in either case from 11.1 applied to $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ that a_{i} is $\left\{c_{1}^{\prime}, c_{2}^{\prime}\right\}$-complete and not $\left\{c_{4}^{\prime}, c_{5}^{\prime}\right\}$-complete, as required. This proves (1).
(2) \mathcal{C} is pure.

We must show that A_{1}, \ldots, A_{6} are pairwise disjoint. The members of $A_{1}, A_{2}, A_{4}, A_{5}$ are adjacent to w, and those of A_{3}, A_{6} are not. Also, by (1), members of $A_{1} \cup A_{2}$ are $\left\{a_{1}, a_{2}\right\}$-complete and not $\left\{a_{4}, a_{5}\right\}$-complete; and members $A_{4} \cup A_{5}$ are $\left\{a_{4}, a_{5}\right\}$-complete and not $\left\{a_{1}, a_{2}\right\}$-complete. Thus the three sets $A_{3} \cup A_{6}, A_{1} \cup A_{2}, A_{4} \cup A_{5}$ are pairwise disjoint. To prove the claim, it remains to show that the intersections $A_{3} \cap A_{6}, A_{1} \cap A_{2}, A_{4} \cap A_{5}$ are all empty. Now members of A_{3} are adjacent to a_{3} and not to a_{6} by (1), and vice versa for A_{6}, and so $A_{3} \cap A_{6}=\emptyset$. Suppose that $v \in A_{1} \cap A_{2}$ say. Since $v \in A_{1}$, there exists $c_{1}-\cdots-c_{6}-c_{1} \in \mathcal{C}$ with $c_{1}=v$; and since $c_{6} \in A_{6}$, it follows that v has a neighbour x say in A_{6}. Similarly v has a neighbour y in A_{3}; and since A_{3}, A_{6} are anticomplete by (1), it follows that $\{v, w, x, y\}$ is a claw, a contradiction. Thus $A_{1} \cap A_{2}=\emptyset$ and similarly $A_{4} \cap A_{5}=\emptyset$. This proves (2).

We deduce that the five statements of 11.4 hold. In particular, each A_{i} is a clique, and there are no edges between A_{i} and A_{i+3}, and every vertex not in $A_{1} \cup \cdots \cup A_{6}$ is complete or anticomplete to each A_{i}.
(3) A_{1}, A_{2} are complete to each other, and so are A_{4}, A_{5}.

For suppose that $x \in A_{1}$ is nonadjacent to $y \in A_{2}$. Since x belongs to some member of \mathcal{C}, it has a nonneighbour $z \in A_{5}$; and by 11.4, y is also nonadjacent to z. But then $\{w, x, y, z\}$ is a claw, a contradiction. This proves (3).

By hypothesis, there is a vertex with exactly three neighbours in C_{0}, and so at least one of A_{1}, \ldots, A_{6} has cardinality >1. From the symmetry we may assume that this is one of A_{2}, A_{3}, A_{4}. By the final statement of $11.4, A_{3}$ is complete to one of A_{2}, A_{4}, say A_{4}. Let A_{2}^{\prime} be the set of vertices in A_{2} with a nonneighbour in A_{3}. By the third statement of $11.4, A_{2}^{\prime}$ is anticomplete to A_{4}. Then $\left(A_{2}^{\prime}, A_{3}\right)$ and $\left(A_{2} \backslash A_{2}^{\prime}, A_{4}\right)$ are both homogeneous pairs of cliques, and they are both nondominating since $A_{6} \neq \emptyset$. We may therefore assume that all four of these sets have cardinality at most one, for otherwise G is decomposable by 3.3. Hence $A_{4}=\left\{a_{4}\right\}$ and $A_{3}=\left\{a_{3}\right\}$. Now every vertex of A_{2} has at least one neighbour in A_{3}, and since $\left|A_{3}\right|=1$, it follows that they are all complete to A_{3}, that is, $A_{2}^{\prime}=\emptyset$. Thus $A_{2}=\left\{a_{2}\right\}$, and so all three of A_{2}, A_{3}, A_{4} have cardinality 1, a contradiction. This proves 11.5.

Let $c_{1}-\cdots-c_{6}-c_{1}$ be a 6 -hole. We recall that if b_{1}, b_{2} are adjacent stars in positions $i+\frac{1}{2}, i+3 \frac{1}{2}$ for some $i \in\{1, \ldots, 6\}$, we call $\left\{b_{1}, b_{2}\right\}$ a star-diagonal. The subgraph formed by these eight vertices is also an induced subgraph of the icosahedron, obtained by deleting two vertices at distance two and both their common neighbours. The next result is our second application of 11.4.
11.6 Let G be claw-free, such that every 6 -hole in G is dominating, and G contains no long prism. Let C_{0} be a 6 -hole in G with a star-diagonal. If some vertex of $V(G) \backslash V\left(C_{0}\right)$ is a clone with respect to C_{0}, then G is decomposable.

Proof. Let C_{0} have vertices $a_{1}-\cdots-a_{6}-a_{1}$, and let b_{1}, b_{2} be adjacent stars in positions $1 \frac{1}{2},-1 \frac{1}{2}$ respectively, say. By 10.1, we may assume that G does not contain $i \operatorname{cosa}(-3)$. By 11.5, we may assume
that no vertex is a hub for C_{0}. Let \mathcal{C} be the proximity component containing $a_{1}-\cdots-a_{6}-a_{1}$, and let $A_{i}=A_{i}(\mathcal{C})$ for $1 \leq i \leq 6$.
(1) For every $c_{1} \cdots-c_{6}-c_{1} \in \mathcal{C}, b_{1}, b_{2}$ are stars in positions $1 \frac{1}{2},-1 \frac{1}{2}$ respectively.

For let $c_{1}-\cdots-c_{6}-c_{1}$ and $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ be proximate members of \mathcal{C}, differing only in their j th term say; it suffices to show that if the claim holds for $c_{1}-\cdots-c_{6}-c_{1}$ then it holds for $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$. Let N be the union of $\left\{c_{j}^{\prime}\right\}$ and the set of neighbours of c_{j}^{\prime} in G. Thus $c_{j-1}, c_{j}, c_{j+1} \in N$, and $c_{j+2}, c_{j+3}, c_{j+4} \notin N$. From the symmetry we may assume that $j \in\{2,3\}$. Suppose first that $j=2$. Then we must prove that $b_{1} \in N$ and $b_{2} \notin N$. Now 4.2 (with $b_{1}-c_{3}-c_{4}$) implies that $b_{1} \in N$; and 4.2 (with $c_{4}-b_{2}-c_{6}$) implies that $b_{2} \notin N$. Next, suppose that $j=3$; we must prove that $b_{1}, b_{2} \in N$. If $b_{1}, b_{2} \notin N$, then $G \mid\left\{c_{1}, \ldots, c_{6}, b_{1}, b_{2}, c_{3}^{\prime}\right\}$ is isomorphic to $i \cos a(-3)$, a contradiction. Thus N contains at least one of b_{1}, b_{2}, and from the symmetry we may assume it contains b_{1}. By 4.2 (with $c_{1}-b_{1}-b_{2}$), it follows that $b_{2} \in N$. This proves (1).
(2) Let $1 \leq i \leq 6$, let $v \in A_{i}$, and let N be the union of $\{v\}$ and the set of neighbours of v in G. Let $c_{1} \cdots-c_{6}-c_{1} \in \mathcal{C}$. If $i=3,6, c_{i+3} \notin N$, and $c_{i-1}, c_{i}, c_{i+1} \in N$. (Consequently A_{3} is anticomplete to A_{6}.) If $i=1,2, N$ contains both of c_{1}, c_{2}, and at most one of c_{4}, c_{5} (and symmetrically if $i=4,5$).

For v belongs to some member of \mathcal{C}, and the claim is true for that member. Consequently, it suffices to show that if $c_{1}-\cdots-c_{6}-c_{1}$ and $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ are proximate members of \mathcal{C}, and the claim holds for $c_{1}-\cdots-c_{6}-c_{1}$, then it holds for $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$. Let these two 6 -numberings differ in their j th entry. Assume first that $i \in\{3,6\}$, say $i=3$. Thus N contains $b_{1}, b_{2}, c_{2}, c_{3}, c_{4}$ and $c_{6} \notin N$. If $j \neq 6$, then $c_{6}^{\prime}=c_{6} \notin N$, and by 4.2 (with $c_{2}^{\prime}-b_{1}-c_{6}^{\prime}, c_{3}^{\prime}-b_{1}-c_{6}^{\prime}$, and $c_{4}^{\prime}-b_{2}-c_{6}^{\prime}$), it follows that $c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime} \in N$. If $j=6$, then $c_{2}^{\prime}, c_{4}^{\prime} \in N$, and so $c_{6}^{\prime} \notin N$ by 4.1. Thus in either case the claim holds. Now assume that $i=1$. Thus $b_{1} \in N$ and $b_{2} \notin N$. By 4.2 (with $b_{2}-b_{1}-c_{1}^{\prime}$), $c_{1}^{\prime} \in N$ and similarly $c_{2}^{\prime} \in N$. Since v is not a hub relative to $c_{1}^{\prime}-\cdots-c_{6}^{\prime}-c_{1}^{\prime}$ by 11.3, it follows that N contains at most one of $c_{4}^{\prime}, c_{5}^{\prime}$. This proves (2).

(3) \mathcal{C} is pure.

We must show that A_{1}, \ldots, A_{6} are pairwise disjoint. By (1), the members of $A_{3} \cup A_{6}$ are adjacent to both b_{1}, b_{2}; the members of $A_{1} \cup A_{2}$ are adjacent to b_{1} and not to b_{2}; and the members of $A_{4} \cup A_{5}$ are adjacent to b_{2} and not to b_{1}. Consequently the three sets $A_{3} \cup A_{6}, A_{1} \cup A_{2}, A_{4} \cup A_{5}$ are pairwise disjoint. By (2), the members of $A_{3} \backslash\left\{a_{3}\right\}$ are adjacent to a_{3}, and the members of A_{6} are not adjacent to a_{3}, and so $A_{3} \cap A_{6}=\emptyset$. Suppose that $v \in A_{1} \cap A_{2}$ say. Since $v \in A_{1}$, there exists $c_{1}-\cdots-c_{6}-c_{1} \in \mathcal{C}$ with $c_{1}=v$; and since $c_{3} \in A_{3}$, it follows that v has a nonneighbour x say in A_{3}. Similarly v has a nonneighbour y in A_{6}; and since A_{3}, A_{6} are anticomplete by (1), it follows that $\left\{b_{1}, v, x, y\right\}$ is a claw, a contradiction. Thus $A_{1} \cap A_{2}=\emptyset$ and similarly $A_{4} \cap A_{5}=\emptyset$. This proves (3).

We deduce that the five statements of 11.4 hold. In particular, each A_{i} is a clique, and there are no edges between A_{i} and A_{i+3}, and every vertex not in $A_{1} \cup \cdots \cup A_{6}$ is complete or anticomplete to each A_{i}.
(4) We may assume (possibly after renumbering $\left.A_{1}, \ldots, A_{6}\right)$ that there is a vertex $h \in V(G) \backslash\left(A_{1} \cup\right.$
$\left.\cdots \cup A_{6} \cup\left\{b_{1}, b_{2}\right\}\right)$, such that h is $A_{1} \cup A_{2}$-complete and anticomplete to $A_{3}, A_{4}, A_{5}, A_{6}$.
For since some vertex is a clone relative to C_{0}, at least one of the sets A_{1}, \ldots, A_{6} has at least two members, and therefore from the symmetry we may assume that not all of A_{1}, A_{3}, A_{5} have cardinality 1 . Now A_{1}, A_{3}, A_{5} are cliques, all nonempty, and their union is not equal to $V(G)$; so by 3.5 , we may assume that some $h \in V(G) \backslash\left(A_{1} \cup A_{3} \cup A_{5}\right)$ does not have the property that it is complete to two of A_{1}, A_{3}, A_{5} and anticomplete to the third. Consequently $h \notin A_{1} \cup \cdots \cup A_{6} \cup\left\{b_{1}, b_{2}\right\}$, and therefore h is complete or anticomplete to each A_{i}, and is complete to exactly two of A_{1}, \ldots, A_{6}, necessarily consecutive. If say h is complete to A_{2}, A_{3}, then by $8.1 h$ is adjacent to b_{1} and not to b_{2}; and then $\left\{b_{1}, b_{2}, h, a_{1}\right\}$ is a claw, a contradiction. Thus h is complete to either A_{1}, A_{2} or to A_{4}, A_{5}, and anticomplete to the other four sets. This proves (4).
(5) For $1 \leq i \leq 6, A_{i}$ is complete to A_{i+1}; and A_{2} is anticomplete to $A_{4} \cup A_{6}$, and A_{1} is anticomplete to $A_{3} \cup A_{5}$.

For if $x \in A_{1}$ and $y \in A_{2}$, they are both adjacent to b_{1} and nonadjacent to b_{2}, and since $\left\{b_{1}, b_{2}, x, y\right\}$ is not a claw, it follows that x, y are adjacent. Thus A_{1} is complete to A_{2}, and similarly A_{4} is complete to A_{5}. Now let $x \in A_{2}, y \in A_{3}$. Choose $z \in A_{6}$ nonadjacent to x; then since $\left\{b_{1}, x, y, z\right\}$ is not a claw, x, y are adjacent. Hence A_{2}, A_{3} are complete, and similarly A_{i} is complete to A_{i+1} for $1 \leq i \leq 6$. Now let $x \in A_{2}$ and $y \in A_{4}$, and let h be as in (4). Then h is adjacent to x and not to y; and h is nonadjacent to b_{1} by 8.2. Since $\left\{x, b_{1}, y, h\right\}$ is not a claw, it follows that x, y are nonadjacent. Thus A_{2}, A_{4} are anticomplete, and similarly so are A_{1}, A_{5}. Now let $x \in A_{2}, y \in A_{6}$. Let z be a neighbour of x in A_{3} (this exists, since x belongs to a member of \mathcal{C}). Since $\{x, y, z, h\}$ is not a claw, x, y are nonadjacent, and so A_{2}, A_{6} are anticomplete. Similarly A_{1}, A_{3} are anticomplete. This proves (5).

To complete the proof, suppose that A_{3} is not anticomplete to A_{5}; then $\left(A_{3}, A_{5}\right)$ is a homogeneous pair, nondominating since $A_{1} \neq \emptyset$; and since some vertex of A_{3} has a neighbour in A_{5}, and every vertex in A_{3} has a nonneighbour in A_{5}, it follows that $\left|A_{5}\right|>1$, and therefore G is decomposable, by 3.3. We may therefore assume that A_{3} is anticomplete to A_{5}, and similarly A_{4} is anticomplete to A_{6}. Hence for $1 \leq i \leq 6$, all members of A_{i} are twins, and since there is a clone relative to $a_{1}-\cdots-a_{6}-a_{1}$ and therefore one of A_{1}, \ldots, A_{6} has cardinality >1, we deduce that G is decomposable. This proves 11.6.

12 Generalized breakers

Let us say that a triple (A, C, B) is a generalized breaker in G if it satisfies:

- A, B, C are disjoint nonempty subsets of $V(G)$, and A, B are cliques
- every vertex in $V(G) \backslash(A \cup B \cup C)$ is either A-complete or A-anticomplete, and either B-complete or B-anticomplete, and C-anticomplete,
- there is a vertex in $V(G) \backslash(A \cup B \cup C)$ with a neighbour in A and a nonneighbour in B; there is a vertex in $V(G) \backslash(A \cup B \cup C)$ with a neighbour in B and a nonneighbour in A; and there is a vertex in $V(G) \backslash(A \cup B \cup C)$ with a nonneighbour in A and a nonneighbour in B.

Thus, this is the same as the definition of a breaker, except that the final condition has been removed. There is an analogue of 3.4 for generalized breakers, the following.
12.1 Let G be claw-free, such that G contains no long prism, and every 6-hole in G is dominating. If there is a generalized breaker in G, then either G is decomposable, or $G \in \mathcal{S}_{2} \cup \mathcal{S}_{4} \cup \mathcal{S}_{5}$.

Proof. We assume G is not decomposable. Let (A, C, B) be a generalized breaker; let $V_{1}=A \cup B \cup C$, let V_{0} be the set of vertices in $V(G) \backslash V_{0}$ that are $A \cup B$-complete, and let $V_{2}=V(G) \backslash\left(V_{0} \cup V_{1}\right)$. Let A_{2} be the set of vertices in V_{2} that are A-complete, and B_{2} the set that are B-complete. Let X be the set of all vertices in $V_{2} \backslash\left(A_{2} \cup B_{2}\right)$ with a neighbour in V_{0}. By hypothesis, A, B, A_{2}, B_{2} are nonempty, and as in the proof of 3.4, it follows that $A_{2} \cup V_{0}$ and $B_{2} \cup V_{0}$ are cliques. By 3.4, $X \neq \emptyset$ and A is complete to B. Since $A \cup B$ is not an internal clique cutset, it follows that $|C|=1, C=\{c\}$ say. We may assume that c has a neighbour $a \in A$. Let $b \in B$ and $a_{2} \in A_{2}$; then since $\left\{a, a_{2}, c, b\right\}$ is not a claw, it follows that c, b are adjacent, and therefore that c is complete to B. Similarly c is complete to A. Hence all vertices in A are twins, so $|A|=1$ and similarly $|B|=1$, and c is adjacent to both members of $A \cup B$. Every vertex in X has a neighbour in V_{0}, and since $V_{0} \cup A_{2} \cup X \cup B$ includes no claw, $X \cup A_{2}$ is a clique and similarly $X \cup B_{2}$ is a clique. Let $V_{3}=V_{2} \backslash\left(A_{2} \cup B_{2} \cup X\right)$. Let S be the set of vertices in V_{3} with a neighbour in A_{2}, and T those with a neighbour in B_{2}. Define $Y=S \cap T, M=S \backslash Y, N=T \backslash Y$, and $Z=V_{3} \backslash(S \cup T)$; thus, M, N, Y, Z are pairwise disjoint and have union V_{3}. Since $A_{2} \cup A \cup X \cup Y$ includes no claw, it follows that $X \cup Y$ is a clique, and similarly $X \cup M$ and $X \cup N$ are cliques. Since $X \cup V_{0} \cup M \cup N \cup Y$ includes no claw, $M \cup N \cup Y$ is a clique. Since $X \cup M \cup N \cup Y$ is not an internal clique cutset, $|Z| \leq 1$.
(1) A_{2} is not complete to B_{2}.

For assume it is. Since $A_{2} \cup B_{2} \cup V_{0}$ is not an internal clique cutset, it follows that $|X|=1$ and Y, M, N, Z are all empty. But then $\left(A \cup B, A_{2} \cup B_{2}\right)$ is a homogeneous pair, coherent since V_{0} is a clique, a contradiction to 3.3. This proves (1).

From (1), and since $X \cup Z \cup A_{2} \cup B_{2}$ includes no claw, we deduce that X is anticomplete to Z. Thus $\left(V_{0}, X\right)$ is a homogeneous pair, nondominating since $C \neq \emptyset$, and so 3.3 implies that V_{0}, X both have cardinality 1 . Let $V_{0}=\left\{v_{0}\right\}$ and $X=\{x\}$.
(2) Every vertex in A_{2} with a neighbour in B_{2} is anticomplete to M, and every vertex in A_{2} with a nonneighbour in B_{2} is complete to M.

For let $v \in A_{2}$. If v has a neighbour in M and a neighbour in B_{2}, then $\{v\} \cup A \cup B_{2} \cup M$ includes a claw, while if v has a nonneighbour in M and a nonneighbour in B_{2}, then $\{x, v\} \cup B_{2} \cup M$ includes a claw. This proves (2).

Let A^{\prime} be the set of vertices in A_{2} with a neighbour in M; then by (2), every vertex in A^{\prime} is anticomplete to B_{2} and is complete to M. Let B^{\prime} be the set of vertices in B_{2} with a neighbour in N. Let $a_{1} \in A$, and $b_{1} \in B$.
(3) If M, N are both nonempty then $G \in \mathcal{S}_{2} \cup \mathcal{S}_{4}$.

For assume that M, N are nonempty, and choose $m \in M$ and $n \in N$. Since m has a neighbour in $a^{\prime} \in A_{2}$, it follows that $a^{\prime} \in A^{\prime}$. Choose $b^{\prime} \in B^{\prime}$ similarly. By (2), a^{\prime} is anticomplete to B_{2} and b^{\prime} to A_{2}. Suppose there exist $a^{\prime \prime} \in A_{2}$ and $b^{\prime \prime} \in B_{2}$, such that $a^{\prime \prime}, b^{\prime \prime}$ are adjacent. By (2), $a^{\prime \prime}$ is anticomplete to M and $b^{\prime \prime}$ to N, and it follows that $a^{\prime}-m-n-b^{\prime}-b^{\prime \prime}-a^{\prime \prime}-a^{\prime}$ is a 6 -hole, and it does not dominate the vertex in C, contrary to the hypothesis. Thus A_{2} is anticomplete to B_{2}, and so (2) implies that $A^{\prime}=A_{2}$ and $B^{\prime}=B_{2}$. Now $a_{1}-a^{\prime}-m-n-b^{\prime}-b_{1}-a_{1}$ is a 6 -hole, and therefore it dominates every vertex in Z; and so m, n are Z-complete. Since this holds for all choices of m, n, we deduce that M, N are Z-complete. Hence all vertices in M are twins, and so $|M|=1$, and similarly $|N|=1$. Since every vertex in Y has neighbours in A_{2} and in B_{2}, and these are therefore nonadjacent, it follows that Y is anticomplete to Z (for otherwise $Y \cup Z \cup A_{2} \cup B_{2}$ would include a claw). Any vertex in A_{2} different from a^{\prime} is a clone with respect to the 6 -numbering $a_{1}-a^{\prime}-m-n-b^{\prime}-b_{1}-a_{1}$, and yet $\left\{v_{0}, x\right\}$ is a star-diagonal relative to this 6 -hole, and so 11.6 implies that $A_{2}=\left\{a^{\prime}\right\}$, and similarly $B_{2}=\left\{b^{\prime}\right\}$. Then $\left(V_{0}, X \cup Y\right)$ is a homogeneous pair, nondominating since $C \neq \emptyset$, and so $Y=\emptyset$. If Z is empty, then $G \in \mathcal{S}_{4}$, so we may assume that $|Z|=1$. But then G has 10 vertices and belongs to \mathcal{S}_{2}. This proves (3).

By (3), we may assume henceforth that $N=\emptyset$.
(4) If M is nonempty then $G \in \mathcal{S}_{2} \cup \mathcal{S}_{4}$.

For by (2), $A_{2} \backslash A^{\prime}$ is complete to B_{2}; and since every vertex in Y has a neighbour in B_{2}, it follows that Y is complete to $A_{2} \backslash A^{\prime}$, for otherwise $B_{2} \cup B \cup Y \cup A_{2}$ would include a claw. Let Y^{\prime} be the set of all vertices in Y with a nonneighbour in A_{2} (necessarily in A^{\prime}), and assume first that Y^{\prime} is nonempty. Let $y^{\prime} \in Y^{\prime}$, and choose $a^{\prime} \in A^{\prime}$ such that y^{\prime} is nonadjacent to a^{\prime}. Choose $m \in M$ adjacent to a^{\prime}, and choose $b_{2} \in B_{2}$. Since $\left\{x, y^{\prime}, b_{2}, a^{\prime}\right\}$ is not a claw, y^{\prime} is adjacent to b_{2}, and therefore y^{\prime} is B_{2}-complete. Moreover, $b_{2}-b_{1}-a_{1}-a^{\prime}-m-y^{\prime}-b_{2}$ is a 6 -hole with a star-diagonal $\left\{v_{0}, x\right\}$; and consequently there are no clones relative to this 6 -hole, by 11.6. Since every vertex in $B_{2} \backslash\left\{b_{2}\right\}$ is adjacent to y^{\prime} and is therefore a clone with respect to the 6 -hole, it follows that $B_{2}=\left\{b_{2}\right\}$, and consequently Y is B_{2}-complete. Moreover, every vertex in $M \backslash\{m\}$ is also a clone, and so $M=\{m\}$. Since the same 6 -hole dominates every vertex of Z it follows that Z is $M \cup Y^{\prime}$-complete. For $y \in Y \backslash Y^{\prime}$ and $z \in Z$, since $\left\{y, z, a^{\prime}, b_{2}\right\}$ is not a claw, it follows that y, z are nonadjacent; and so $Y \backslash Y^{\prime}$ is anticomplete to Z. Since $\left(Y^{\prime}, A^{\prime}\right)$ is a homogeneous pair, nondominating since $C \neq \emptyset$, it follows that $Y^{\prime}=\left\{y^{\prime}\right\}$ and $A^{\prime}=\left\{a^{\prime}\right\}$; and also, $\left(V_{0}, X \cup\left(Y \backslash Y^{\prime}\right)\right)$ is a homogeneous pair, nondominating since $C \neq \emptyset$, and so $Y^{\prime}=Y$, that is, $Y=\left\{y^{\prime}\right\}$; and all members of $A_{2} \backslash A^{\prime}$ are twins, so $\left|A_{2} \backslash A^{\prime}\right| \leq 1$. But then $G \in \mathcal{S}_{2}$ if $X \neq \emptyset$, and $G \in \mathcal{S}_{4}$ otherwise. This completes the argument when $Y^{\prime} \neq \emptyset$.

Now assume that $Y^{\prime}=\emptyset$, that is, Y is complete to A_{2}. Since $X \cup Y \cup A^{\prime}$ is not an internal clique cutset, it follows that $Z=\emptyset$ and $|M|=1$. Then $\left(B_{2}, Y\right)$ is a nondominating homogeneous pair, so $\left|B_{2}\right|=1$ and $|Y| \leq 1$, and Y is B_{2}-complete. Hence $\left(V_{0}, X \cup Y\right)$ is a nondominating homogeneous pair, and so $Y=\emptyset$. Then $\left(\left(A_{2} \backslash A^{\prime}\right) \cup V_{0}, B\right)$ is a homogeneous pair, nondominating since $M \neq \emptyset$, so $A_{2}=A^{\prime}$; and all vertices in A^{\prime} are twins, so $\left|A_{2}\right|=1$. But then G has only seven vertices, and belongs to \mathcal{S}_{4}. This proves (4).

In view of (4), we assume henceforth that M, N are both empty. Let H be the bipartite subgraph of G with vertex set $A_{2} \cup B_{2}$ and edge set the edges of G with an end in A_{2} and an end in B_{2}.
(5) Every component H_{0} of H has at most two vertices, and every vertex in Y is complete or anticomplete to H_{0}. Moreover, for every $y \in Y$, the set of members of $A_{2} \cup B_{2}$ that are nonadjacent to y is a clique.

For if $a_{2} \in A_{2}$ and $b_{2} \in B_{2}$ are adjacent, and $y \in Y$ is adjacent to a_{2}, then since $\left\{a_{2}, y, b_{2}, a\right\}$ is not a claw, it follows that y is adjacent to b_{2}. Hence y is complete or anticomplete to every component of H. If H_{0} is any such component, then ($A_{2} \cap H_{0}, B_{2} \cap H_{0}$) is a homogeneous pair, nondominating since $C \neq \emptyset$, and so $A_{2} \cap H_{0}, B_{2} \cap H_{0}$ both have cardinality at most 1. This proves the first two assertions of (5). For the final assertion, suppose that $y \in Y$ has two nonneighbours in $A_{2} \cup B_{2}$ that are nonadjacent; since x is adjacent to all three vertices, this forms a claw, a contradiction. This proves (5).
(6) If $Z \neq \emptyset$ then $G \in \mathcal{S}_{2}$.

For we have already seen that $|Z| \leq 1$; assume that $Z=\{z\}$ say. Let Y_{0} be the set of all neighbours of z; then $Y_{0} \subseteq Y$. If $y \in Y_{0}$ then its set of neighbours in $A_{2} \cup B_{2}$ is a clique, for y, z together with two nonadjacent neighbours would form a claw. Since y has at least one neighbour in each of A_{2}, B_{2}, it follows from (5) that y has exactly one neighbour in each, and they are adjacent. If every member of Y_{0} has the same two neighbours (say a_{2}, b_{2}) in $A_{2} \cup B_{2}$, then $\left\{x, a_{2}, b_{2}\right\}$ is an internal clique cutset; so we may assume that there exists $y^{\prime} \in Y_{0}$, adjacent to a different pair of vertices $a_{2}^{\prime} \in A_{2}, b_{2}^{\prime} \in B_{2}$. Since every component of H has at most two vertices it follows that $a_{2}, a_{2}^{\prime}, b_{2}, b_{2}^{\prime}$ are all distinct. Since the nonneighbours of y in $A_{2} \cup B_{2}$ form a clique by (5), it follows that $A_{2}=\left\{a_{2}, a_{2}^{\prime}\right\}$ and $B_{2}=\left\{b_{2}, b_{2}^{\prime}\right\}$. Let $W, W^{\prime}, W^{\prime \prime}$ be the sets of vertices in Y with neighbours $\left\{a_{2}, b_{2}\right\},\left\{a_{2}^{\prime}, b_{2}^{\prime}\right\}$ and $\left\{a_{2}, b_{2}, a_{2}^{\prime}, b_{2}^{\prime}\right\}$ respectively. By (5), $W \cup W^{\prime} \cup W^{\prime \prime}=Y$ and $Y_{0} \subseteq W \cup W^{\prime}$. If $w \in W$, then since $\left\{y^{\prime}, w, z, a_{2}^{\prime}\right\}$ is not a claw, it follows that w, z are adjacent. Thus any two vertices in W are twins, and therefore $W=\{y\}$. Similarly $W^{\prime}=\left\{y^{\prime}\right\}$. Now ($V_{0}, X \cup W^{\prime \prime}$) is a nondominating homogeneous pair, and therefore $W^{\prime \prime}=\emptyset$. Consequently $|V(G)|=12$, and $G \in \mathcal{S}_{2}$. This proves (6).

We therefore assume that $Z=\emptyset$. Let a_{1}, \ldots, a_{n} be the vertices in A_{2} with a neighbour (necessarily unique) in B_{2}, and let b_{1}, \ldots, b_{n} be their respective neighbours. Let $A_{0}=A_{2} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$, and $B_{0}=B_{2} \backslash\left\{b_{1}, \ldots, b_{n}\right\}$. For each $y \in Y$, let M_{y} be the set of vertices in $A_{2} \cup B_{2}$ that are not adjacent to y. By (5), M_{y} is a clique, and a union of components of H; and so either it is a subset of one of A_{0}, B_{0}, or it is one of the sets $\left\{a_{i}, b_{i}\right\}$. For $1 \leq i \leq n$ let Y_{i} be the set of vertices $y \in Y$ with $M_{y}=\left\{a_{i}, b_{i}\right\}$. Any two vertices in Y_{i} are twins, so each Y_{i} has cardinality ≤ 1. Let P be the set of vertices $y \in Y$ with $M_{y} \subseteq A_{0}$, and Q the set with $M_{y} \subseteq B_{0}$. Any vertex $y \in P \cap Q$ therefore satisfies $M_{y}=\emptyset$. Now $\left(P, A_{0}\right)$ is a nondominating homogeneous pair, and so $|P|,\left|A_{0}\right| \leq 1$, and similarly $|Q|,\left|B_{0}\right| \leq 1$. But then $G \in \mathcal{S}_{5}$. This proves 12.1.

13 Nondominating 5-holes

Before the main result of this section, we prove a lemma.
13.1 Let H be a graph with seven vertices v_{1}, \ldots, v_{7}, where $v_{1} \cdots-v_{5}-v_{1}$ is a cycle of length 5 , v_{6} has three neighbours in this hole, and v_{7} has two. Then some subgraph of H is a theta with seven vertices.

Proof. By deleting one (appropriately chosen) edge incident with v_{6}, we obtain a subgraph consisting of the cycle $v_{1}-\cdots-v_{5}-v_{1}$, a vertex with two consecutive neighbours (say v_{1}, v_{2}) in this cycle, and a second vertex with two nonconsecutive neighbours in the cycle. Delete the edge $v_{1} v_{2}$ from this subgraph; the result is a 7 -vertex theta. This proves 13.1 .

The main result of this section is the following, which will have a number of consequences.
13.2 Let G be claw-free, containing no hole of length >6 or long prism. If some 5 -hole in G is not dominating, then either G is decomposable or $G \in \mathcal{S}_{0} \cup \mathcal{S}_{2} \cup \mathcal{S}_{4} \cup \mathcal{S}_{5}$.

Proof. We assume that G is not decomposable. Let C_{0} be a 5 -hole, and let $c_{1}-\cdots-c_{5}-c_{1}$ be a 5 -numbering of it. Let Z be the set of all vertices that are $V\left(C_{0}\right)$-anticomplete, and assume that Z is nonempty. Let $z \in Z$, and let Y be the set of vertices in $V(G) \backslash Z$ that have a neighbour in the component of Z containing z.
(1) Z is a stable set, and Y is a clique, and Y is the set of neighbours of z. Moreover, every member of Y is a hat relative to $c_{1}-\cdots-c_{5}-c_{1}$.

For let Z_{0} be the component of Z containing z, and let $y \in Y$. Then y has a neighbour in Z_{0}, say z_{0}, and has a neighbour in $\left\{c_{1}, \ldots, c_{5}\right\}$ from the maximality of Z_{0}. For any two of its neighbours $x_{1}, x_{2} \in\left\{c_{1}, \ldots, c_{5}\right\},\left\{y, z_{0}, x_{1}, x_{2}\right\}$ is not a claw, and so x_{1}, x_{2} are adjacent. Hence y is a hat. To see that Y is a clique, let $y_{1}, y_{2} \in Y$, and suppose that they are nonadjacent. y_{1}, y_{2} are both hats, and are necessarily not in the same position, since they are nonadjacent and G is claw-free; let P be a path between y_{1}, y_{2} with interior in Z_{0}. If y_{1}, y_{2} share a neighbour in $\left\{c_{1}, \ldots, c_{5}\right\}$, say c_{5}, then $G \mid\left(\left\{c_{1}, \ldots, c_{4}\right\} \cup V(P)\right)$ is a hole of length >6, a contradiction. If y_{1}, y_{2} share no neighbour in $\left\{c_{1}, \ldots, c_{5}\right\}$, then $G \mid\left(\left\{c_{1}, \ldots, c_{5}\right\} \cup V(P)\right)$ is a long prism, a contradiction. Consequently Y is a clique. Since Y is not an internal clique cutset, it follows that $\left|Z_{0}\right|=1$, and therefore $Z_{0}=\{z\}$. In particular, Y is the set of neighbours of z, and z has no neighbours in Z. Since the latter holds for all choices of Z, it follows that Z is a stable set. This proves (1).

For $1 \leq i \leq 5$, let Y_{i} be the set of all members of Y that are hats in position $i+2 \frac{1}{2}$ relative to $c_{1}-\cdots-c_{5}-c_{1}$.
(2) Let $v \in V(G) \backslash(Y \cup\{z\})$. Then for $1 \leq i \leq 5$, v is complete or anticomplete to Y_{i}. Moreover, if v is a hat relative to $c_{1}-\cdots-c_{5}-c_{1}$, then v is complete to Y_{i} if and only if v is in position $i+2 \frac{1}{2}$.

For suppose that v has a neighbour y_{1} and a nonneighbour y_{2}, both in Y_{i}. Since $v \notin Y \cup\{z\}$, it follows that v is nonadjacent to z. Now y_{1}, y_{2} are hats in position $i+2 \frac{1}{2}$. By 4.2 applied to $c_{i+2}-y_{1}-z$, it follows that v is adjacent to c_{i+2} and similarly to c_{i+3}. By 4.2 applied to $y_{2}-c_{i+2}-c_{i+1}$, we deduce that v is adjacent to c_{i+1} and similarly to c_{i-1}. But then $\left\{v, y_{1}, c_{i+1}, c_{i-1}\right\}$ is a claw, a contradiction. This proves the first claim of (2). For the second claim, suppose that v is a hat, in
position $j+2 \frac{1}{2}$ say. Since $v \notin Y$, it follows that v, z are nonadjacent. If $j=i$ then v is Y_{i}-complete by 4.3. If $j \neq i$, choose $a \in\left\{c_{i+2}, c_{i-2}\right\}$ nonadjacent to v; then for $y \in Y_{i},\{y, z, a, v\}$ is not a claw, and so y is nonadjacent to v. This proves (2).
(3) We may assume that $Y_{i} \neq \emptyset$ for at least three values of $i \in\{1, \ldots, 5\}$. Also, we may assume that every hat nonadjacent to z is nonadjacent to every other hat except those in the same position relative to $c_{1}-\cdots-c_{5}-c_{1}$.

For if all the sets Y_{i} are empty except possibly for say Y_{1}, then G is decomposable, by (2) and 3.2 applied to $Y_{1},\{z\}$. If exactly two of the sets are nonempty, say Y_{i}, Y_{j}, then $\left(Y_{i},\{z\}, Y_{j}\right)$ is a generalized breaker by (2), and the result follows from 12.1. This proves the first assertion of (3). For the second, let h be a hat nonadjacent to z, and let h^{\prime} be some other hat in a different position. Suppose that h, h^{\prime} are adjacent. By (2), h^{\prime} is nonadjacent to z. Choose three hats adjacent to z, all in different positions, say y_{1}, y_{2}, y_{3}. Then $G \mid\left\{c_{1}, \ldots, c_{5}, y_{1}, y_{2}, y_{3}, h, h^{\prime}\right\}$ is the line graph of a graph satisfying the hypotheses of 13.1 ; and so by $13.1, G$ contains a long prism, a contradiction. This proves (3).
(4) $|Z|=1$.

For choose $y_{1}, y_{2}, y_{3} \in Y$, all hats in different positions relative to $c_{1}-\cdots-c_{5}-c_{1}$. Suppose that $z^{\prime} \in Z$ is different from z; then similarly there are vertices $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$, all hats in different positions, and all adjacent to z^{\prime}. If say y_{1}^{\prime} is adjacent to z, then $\left\{y_{1}^{\prime}, z, z^{\prime}, a\right\}$ is a claw, where $a \in\left\{c_{1}, \ldots, c_{5}\right\}$ is adjacent to y_{1}^{\prime}. Thus $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$ are nonadjacent to z, and yet they are adjacent to each other by (1), contrary to (3). This proves (4).

Let \mathcal{C} be the proximity component containing $c_{1} \cdots-c_{5}-c_{1}$, and for $1 \leq i \leq 5$ let $A_{i}=A_{i}(\mathcal{C})$.
(5) z has no neighbours in $A_{1} \cup \cdots \cup A_{5}$. Moreover, for $1 \leq i \leq 5$ and each $y \in Y_{i}$, if $a_{1}-\cdots-a_{5}-a_{1}$ belongs to \mathcal{C} then y is a hat in position $i+2 \frac{1}{2}$ relative to $a_{1} \cdots-a_{5}-a_{1}$.

For let $a_{1}-\cdots-a_{5}-a_{1}$ and $a_{1}^{\prime}-\cdots-a_{5}^{\prime}-a_{1}^{\prime}$ be proximate, with $a_{j}^{\prime} \neq a_{j}$ say. Suppose first that z is nonadjacent to a_{1}, \ldots, a_{5}; then since $\left\{a_{j}^{\prime}, a_{j-1}, a_{j+1}, z\right\}$ is not a claw, it follows that z is nonadjacent to a_{j}^{\prime}. Consequently z has no neighbours in $A_{1} \cup \cdots \cup A_{5}$. Now, with $a_{1}-\cdots-a_{5}-a_{1}$ and $a_{1}^{\prime}-\cdots-a_{5}^{\prime}-a_{1}^{\prime}$ as before, suppose that $y \in Y$ is a hat in position $i+2 \frac{1}{2}$ relative to $a_{1} \cdots-a_{5}-a_{1}$. If $j=i+2$, then by $8.2, a_{j}^{\prime}$ is adjacent to y and therefore y is a hat in position $i+2 \frac{1}{2}$ relative to $a_{1}^{\prime} \cdots-a_{5}^{\prime}-a_{1}^{\prime}$. If $j=i$, then by $8.2, a_{j}^{\prime}$ is nonadjacent to y, and again y is a hat in position $i+2 \frac{1}{2}$ relative to $a_{1}^{\prime} \cdots-a_{5}^{\prime}-a_{1}^{\prime}$. Thus from the symmetry we may assume that $j=i-1$. Since $\left\{y, a_{j}^{\prime}, z, a_{i+2}\right\}$ is not a claw, it follows that y, a_{j}^{\prime} are not adjacent, and again the claim holds. This proves (5).

From (3) we may assume that there exist $y_{3} \in Y_{3}$, and $y_{5} \in Y_{5}$.
(6) A_{1}, \ldots, A_{5} are pairwise disjoint; A_{4} is anticomplete to $A_{1}, A_{2} ; A_{1}$ is anticomplete to $A_{3} ; A_{2}$ is anticomplete to A_{5}; and $A_{1} \cup A_{5}, A_{2} \cup A_{3}, A_{4}$ are cliques.

By (5), y_{3} is complete to $A_{5} \cup A_{1}$ and anticomplete to $A_{2} \cup A_{3} \cup A_{4}$, and y_{5} is complete to $A_{2} \cup A_{3}$
and anticomplete to $A_{1} \cup A_{4} \cup A_{5}$. Consequently $A_{5} \cup A_{1}, A_{2} \cup A_{3}, A_{4}$ are pairwise disjoint. Let H be the bipartite subgraph of G with vertex set $A_{1} \cup A_{2}$ and edges the edges of G between A_{1} and A_{2}. Since \mathcal{C} is a proximity component, it follows that H is connected. Let $a_{4} \in A_{4}$, and assume that a_{4} has a neighbour in $A_{1} \cup A_{2}$. Since it also has a nonneighbour in $A_{1} \cup A_{2}$ (because a_{4} belongs to some member of \mathcal{C}), it follows that a_{4} is adjacent to exactly one end of some edge of H; say $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ are adjacent, and a_{4} is adjacent to a_{1} and not to a_{2}. But then $\left\{a_{1}, a_{2}, a_{4}, y_{3}\right\}$ is a claw, a contradiction. This proves that a_{4} is $A_{1} \cup A_{2}$-anticomplete, and so A_{4} is $A_{1} \cup A_{2}$-anticomplete. Since no vertex of A_{3} is A_{4}-anticomplete, it follows that $A_{2} \cap A_{3}=\emptyset$, and similarly $A_{1} \cap A_{5}=\emptyset$. Thus A_{1}, \ldots, A_{5} are pairwise disjoint. Let $a_{1} \in A_{1}$ and $a_{3} \in A_{3}$, and let $a_{4} \in A_{4}$ be adjacent to a_{3}. Since $\left\{a_{3}, a_{1}, y_{5}, a_{4}\right\}$ is not a claw, it follows that a_{1}, a_{3} are nonadjacent. So A_{1} is anticomplete to A_{3}, and similarly A_{2} is anticomplete to A_{5}. Next, let $u, v \in A_{1} \cup A_{5}$; since $\left\{y_{3}, z, u, v\right\}$ is not a claw it follows that u, v are adjacent. Consequently $A_{1} \cup A_{5}$ and similarly $A_{2} \cup A_{3}$ are cliques. Finally, suppose that $u, v \in A_{4}$ are nonadjacent. Choose $a_{1} \cdots \cdots a_{5}-a_{1} \in \mathcal{C}$ with $a_{4}=u$. Since A_{4} is anticomplete to $A_{1} \cup A_{2}$, it follows that v is nonadjacent to a_{1}, a_{2}, a_{4}, and therefore also to a_{3}, a_{5}, since there is no claw. But then by (4), with v, z exchanged, it follows that v has no neighbour in any member of \mathcal{C}, a contradiction. Thus A_{4} is a clique. This proves (6).

Let $W=A_{1} \cup \cdots \cup A_{5}$.
(7) For every vertex $v \in V(G) \backslash W$, let N be the set of neighbours of v in W. Then either

- $N=\emptyset$ and $v=z$, or
- for some $i \in\{1, \ldots, 5\}, N=A_{i+2} \cup A_{i-2}$ (let H_{i} be the set of all such v), or
- for some $i \in\{1, \ldots, 5\}, N=W \backslash A_{i}$ (let S_{i} be the set of all such v), or
- N contains at least four of a_{1}, \ldots, a_{5} for every $a_{1} \cdots \cdots-a_{5}-a_{1} \in \mathcal{C}$, and contains all five vertices for some choice of $a_{1}-\cdots-a_{5}-a_{1}$ (let T be the set of all such v).

For we may assume that $v \neq z$. From the maximality of \mathcal{C}, N contains exactly two or at least four of a_{1}, \ldots, a_{5} for every $a_{1} \cdots-a_{5}-a_{1} \in \mathcal{C}$; and since \mathcal{C} is connected by proximity, the claim follows. This proves (7).
(8) The sets H_{i} and S_{i} are cliques, for $1 \leq i \leq 5$, and so is T. For $1 \leq i, j \leq 5, H_{i}$ is complete to S_{j} if $j=i+1$ or $i-1$, and otherwise H_{i} is anticomplete to S_{j}. Also, T is anticomplete to H_{i} for $1 \leq i \leq 5$.

For H_{i} and S_{i} are cliques by 4.3, and the adjacency between the sets H_{i} and the sets S_{j} is forced by 8.2. Let $t \in T$; if t is adjacent to some $h \in H_{i}$, then $\left\{t, h, a_{i+1}, a_{i-1}\right\}$ is a claw (where $a_{1} \cdots \cdots-a_{5}-a_{1} \in \mathcal{C}$ is chosen so that t is adjacent to all of a_{1}, \ldots, a_{5}), a contradiction. Thus T is anticomplete to all the sets H_{i}. Let $t_{1}, t_{2} \in T$. Since they are both adjacent to at least four of c_{1}, \ldots, c_{5}, they have at least three common neighbours in $\left\{c_{1}, \ldots, c_{5}\right\}$; and consequently one of these common neighbours, say a, is adjacent to one of y_{3}, y_{5}, say to y_{3}. Since $\left\{a, y_{3}, t_{1}, t_{2}\right\}$ is not a claw, it follows that t_{1}, t_{2} are adjacent, and so T is a clique. This proves (8).
(9) For $1 \leq i \leq 5$, if $H_{i} \neq \emptyset$, then T is complete to A_{i-1} and to A_{i+1}.

For let $t \in T$ and $h \in H_{i}$. By (8), t, h are nonadjacent. Let $a_{1} \cdots \cdots-a_{5}-a_{1} \in \mathcal{C}$. Since t, h are nonadjacent and t has at least four neighbours in the hole $a_{1} \cdots \cdots a_{5}-a_{1}, 8.2$ implies that t, a_{i-1} are adjacent. This proves (9).
(10) T is complete to W.

For by (9), T is complete to $A_{1} \cup A_{2} \cup A_{4}$. Suppose that H_{4} is nonempty. Then by (9), T is also complete to A_{3}, A_{5} and the claim holds. So we may assume that $H_{4}=\emptyset$. By (3), we may assume that there exists $y_{1} \in Y_{1}$, and so T is complete to A_{5} by (9). By (6) with y_{5}, y_{1} exchanged, A_{3} is complete to A_{4} and anticomplete to A_{5}. If H_{2} is nonempty, then again the claim follows from (9), so we assume that $H_{2}=\emptyset$. Let T^{\prime} be the set of vertices in T that are not W-complete, and assume that $T^{\prime} \neq \emptyset$. Since T is complete to $A_{1} \cup A_{2} \cup A_{4} \cup A_{5}$, and every vertex in T has a neighbour in A_{3}, we deduce that every vertex in T^{\prime} has a neighbour and a nonneighbour in A_{3}, and in particular $\left|A_{3}\right|>1$.

Let $v \in V(G) \backslash\left(T^{\prime} \cup A_{3}\right)$; we claim that v is T^{\prime}-complete or T^{\prime}-anticomplete. If $v \in W, v$ is T-complete, and if $v \in H_{i}$ for some i then v is T-anticomplete by (8). If $v \in T \backslash T^{\prime}$ then v is T^{\prime}-complete by (8); so we may assume that $v \in S_{i}$ for some $i \in\{1,2,3,4,5\}$. If $v \in S_{1}$ then v is T^{\prime}-complete, since for $t \in T^{\prime},\left\{c_{5}, v, t, y_{3}\right\}$ is not a claw. Similarly v is T^{\prime}-complete if $v \in S_{5}$. If $v \in S_{2}$ then v is T^{\prime}-complete, since for $t \in T^{\prime},\left\{a_{3}, v, t, y_{5}\right\}$ is not a claw, where $a_{3} \in A_{3}$ is adjacent to t; and similarly v is T^{\prime}-complete if $v \in S_{4}$. If $v \in S_{3}$ then v is T^{\prime}-complete by 4.3. This proves the claim. But every such v is also complete or anticomplete to A_{3}, and so (A_{3}, T^{\prime}) is a homogeneous pair, nondominating since $Z \neq \emptyset$; and therefore G is decomposable, by 3.3 , since $\left|A_{3}\right|>1$. This proves (10).
(11) A_{1}, \ldots, A_{5} all have cardinality 1 .

For by (10), T is complete to $A_{1} \cup A_{2}$, and so $\left(A_{1}, A_{2}\right)$ is a homogeneous pair, nondominating since $Z \neq \emptyset$; and hence $\left|A_{1}\right|=\left|A_{2}\right|=1$. Suppose that there exists $y_{1} \in Y_{1}$. Then similarly $\left|A_{4}\right|=\left|A_{5}\right|=1$. But then all members of A_{3} are twins, and so $\left|A_{3}\right|=1$ and the claim holds. Thus we may assume that Y_{1} is empty, and similarly $Y_{2}=\emptyset$. Hence there exists $y_{4} \in Y_{4}$, by (3). Suppose that A_{4} is not complete to A_{5}, and choose $a_{4} \in A_{4}$ and $a_{5} \in A_{5}$, nonadjacent. If there exists $t \in S_{1} \cup S_{3} \cup T$ then $\left\{t, a_{4}, a_{5}, c_{2}\right\}$ is a claw, and so $T, S_{1}, S_{3}=\emptyset$. Suppose that there exists $h \in H_{2}$, necessarily not adjacent to z; then by (2) it is nonadjacent to y_{3}, y_{4}. Let $a_{3} \in A_{3}$ be adjacent to a_{4}. Since $\left\{a_{3}, a_{4}, a_{5}, y_{5}\right\}$ is not a claw, a_{3} is nonadjacent to a_{5}; but then $c_{2}-a_{3}-a_{4}-h-a_{5}-y_{3}-y_{4}-c_{2}$ is a 7 -hole, a contradiction. Thus H_{2} is empty. Suppose that also A_{4} is not complete to A_{3}; then similarly $S_{2}, S_{5}, H_{1}=\emptyset$. But then $\left(A_{3}, A_{4}, A_{5}\right)$ is a breaker, and the theorem holds. We may therefore assume that A_{4} is complete to A_{3}. Let A_{5}^{\prime} be the set of vertices in A_{5} with a nonneighbour in A_{4}. Since A_{5}^{\prime} is nonempty and every member of A_{5}^{\prime} has a neighbour and a nonneighbour in A_{4}, it follows that $\left|A_{4}\right|>1$. No member $a_{5}^{\prime} \in A_{5}^{\prime}$ has a neighbour $a_{3}^{\prime} \in A_{3}$, because $\left\{a_{3}^{\prime}, a_{4}^{\prime}, a_{5}^{\prime}, y_{5}\right\}$ would be a claw, where $a_{4}^{\prime} \in A_{4}$ is a nonneighbour of a_{5}^{\prime}. Thus (A_{5}^{\prime}, A_{4}) is a nondominating homogeneous pair, contrary to 3.3. This proves that A_{4} is complete to A_{5}, and similarly to A_{3}. Hence $\left(A_{3}, A_{5}\right)$ is a nondominating homogeneous pair, and so A_{3}, A_{5} both have cardinality 1 ; and all members of A_{4} are twins, so $\left|A_{4}\right|=1$. This proves (11).
(12) Let $1 \leq i, j \leq 5$, such that $H_{i} \neq \emptyset$. Then if $j \in\{i, i+2, i-2\}$, S_{i} is complete to S_{j}, and
otherwise S_{i} is anticomplete to S_{j}. Also, T is complete to S_{1}, \ldots, S_{5}.
By 4.3, if $i=j$ then S_{i} is complete to S_{j}. Let $h \in H_{i}$. Suppose that $j=i+2$, and that $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ are nonadjacent. Then $\left\{c_{i-2}, s_{i}, h, s_{j}\right\}$ is a claw, a contradiction. Hence in this case S_{i} is complete to S_{j}, and similarly if $j=i-2$. Now assume that $j=i+1$, and $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ are adjacent. Then $\left\{s_{j}, h, s_{i}, c_{i}\right\}$ is a claw, a contradiction. Thus S_{i} is anticomplete to S_{i+1}, and similarly to S_{i-1}. Finally, suppose that $t \in T$ and $s_{j} \in S_{j}$ are nonadjacent, for some j with $1 \leq j \leq 5$. Now one of H_{j}, H_{j+2}, H_{j-2} is nonempty, and both t, s_{j} are anticomplete to these three sets; so there is a hat h nonadjacent to both t, s_{j}. But one of c_{1}, \ldots, c_{5} is adjacent to all of t, s_{j}, h, and hence these four vertices form a claw, a contradiction. This proves (12).
(13) Let $1 \leq i, j \leq 5$. Then if $j \in\{i, i+2, i-2\}, S_{i}$ is complete to S_{j}, and otherwise S_{i} is anticomplete to S_{j}.

Suppose first that $j=i+1$ and S_{i}, S_{j} are not anticomplete. By (12), H_{i}, H_{i+1} are both empty, and since H_{3}, H_{5} are nonempty, it follows that $i=1$, and Y_{4} is nonempty. Choose $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$, adjacent. If there exists $s_{3} \in S_{3}$, then by (12) s_{3} is adjacent to s_{1} and not to s_{2} (since $H_{3} \neq \emptyset$), and so $\left\{s_{1}, s_{3}, s_{2}, y_{5}\right\}$ is a claw, a contradiction. Thus S_{3} is empty, and similarly S_{5} is empty. But then $\left(S_{2} \cup A_{5}, S_{1} \cup A_{3}\right)$ is a nondominating homogeneous pair, and $\left|S_{2} \cup A_{5}\right| \geq 2$, contrary to 3.3. This proves that S_{i} is anticomplete to S_{i+1} for $i \leq i \leq 5$. Now assume that $j=i+2$, and S_{i}, S_{j} are not complete. By (12), H_{i}, H_{j} are empty, and since H_{3}, H_{5} are nonempty, it follows that one of $i, j=4$; and from the symmetry, we may assume that $i=2, j=4$. Let $s_{2} \in S_{2}$ and $s_{4} \in S_{4}$ be nonadjacent. But then $\left\{y_{3}, z, s_{2}, s_{4}\right\}$ is a claw, a contradiction. This proves (13).

To finish the proof, (13) implies that for each of the sets $H_{1}, \ldots, H_{5}, S_{1}, \ldots, S_{5}, T$, any two of its members are twins; and therefore all these sets have cardinality at most 1. From (3), (8) and (13), if $T=\emptyset$ then G is a line graph, so we assume $T=\{t\}$ say. If $H_{1} \cup \cdots \cup H_{5} \subseteq Y$ then $G \in \mathcal{S}_{4}$, so we assume that there exists $h \in H_{j} \backslash Y$ for some j. If there exists $y \in Y_{j-1}$ then $\left\{c_{j+2}, y, h, t\right\}$ is a claw, a contradiction. So Y_{j-1} and similarly Y_{j+1} are empty. Since Y_{3}, Y_{5} are nonempty, it follows that $j \in\{3,5\}$ and from the symmetry we may assume that $j=3$. Thus Y_{2}, Y_{4} are empty, and therefore there exists $y_{1} \in Y_{1}$. It follows that j is unique, and so $H_{i} \subseteq Y$ for $i=1,2,4,5$. If there exists $s \in S_{2}$, then $\left\{s, h, t, y_{1}\right\}$ is a claw, a contradiction; so $S_{2}=\emptyset$, and similarly $S_{4}=\emptyset$. If $S_{3} \neq \emptyset$, then $\left(S_{3} \cup T, A_{3}\right)$ is a nondominating homogeneous pair, contrary to 3.3 ; and so $S_{3}=\emptyset$. It follows that $G \in \mathcal{S}_{0}$. This proves 13.2.

14 6-holes with hubs and hats

In this section we handle 6-holes that have both a hub and a hat.
14.1 Let G be claw-free, containing no long prism and no hole of length >6, and such that every hole of length 5 or 6 is dominating. If there is a 6 -hole in G relative to which some vertex is a hub and some vertex is either a hat or a clone, then either G is a line graph, or G is decomposable.

Proof. For a contradiction, we assume that G is not decomposable. Let C_{0} be the 6 -hole, and let its vertices be $a_{2}^{1}, a_{3}^{1}, a_{3}^{2}, a_{1}^{2}, a_{1}^{3}, a_{2}^{3}$ in order. Define $A_{j}^{i}=\left\{a_{j}^{i}\right\}$ for $1 \leq i, j \leq 3$ with $i \neq j$. For $1 \leq i \leq 3$
let A_{i}^{i} be the set of all hubs that are nonadjacent to a_{k}^{j}, a_{j}^{k}, where $\{i, j, k\}=\{1,2,3\}$. By hypothesis, at least one of the sets A_{i}^{i} is nonempty. By 11.2, $\left|A_{i}^{i}\right| \leq 1$ for $1 \leq i \leq 3$, since G is not decomposable; if A_{i}^{i} is nonempty, let a_{i}^{i} be its unique member. Let W be the union of the nine sets A_{j}^{i}.

For $1 \leq i \leq 3$, define $A^{i}=A_{1}^{i} \cup A_{2}^{i} \cup A_{3}^{i}$, and for $1 \leq j \leq 3$ define $A_{j}=A_{j}^{1} \cup A_{j}^{2} \cup A_{j}^{3}$. For $1 \leq i \leq 3$, let $H^{i}, H_{i}, S^{i}, S_{i}$ be four subsets of $V(G) \backslash W$, defined as follows. For $v \in V(G) \backslash W$, let N denote the set of neighbours of v in W; then

- $v \in H^{i}$ if $N=A^{i}$
- $v \in H_{i}$ if $N=A_{i}$
- $v \in S^{i}$ if $N=W \backslash A^{i}$
- $v \in S_{i}$ if $N=W \backslash A_{i}$.

Since there is a hat relative to C_{0}, it follows that one of $H^{1}, H^{2}, H^{3}, H_{1}, H_{2}, H_{3}$ is nonempty.
(1) The twelve sets $H^{i}, H_{i}, S^{i}, S_{i}(1 \leq i \leq 3)$ are pairwise disjoint cliques, and they have union $V(G) \backslash W$.

For clearly they are pairwise disjoint, and they are all cliques by 4.3. Let $v \in V(G) \backslash W$. If it is a hub relative to C_{0}, then it belongs to one of the sets A_{i}^{i}, and therefore belongs to W, a contradiction. Since C_{0} is dominating, it follows from 8.1 that v either has two, three or four neighbours in C, and they are consecutive. If it has three, then it is a clone relative to C_{0}, which is impossible by 11.5 since G is not decomposable. Thus it has two or four, and by 11.1 it belongs to one of the twelve sets. This proves (1).
(2) The six sets $H^{1}, H^{2}, H^{3}, H_{1}, H_{2}, H_{3}$ are pairwise anticomplete.

For these are hats in different position relative to C_{0}; if some two are adjacent, then either G contains a hole of length >6 or a long prism, in either case a contradiction. This proves (2).
(3) For $1 \leq i, j \leq 3, H^{i}$ is anticomplete to S_{j}; and H^{i} is complete to S^{j} if $j \neq i$, and anticomplete to S^{i}. Analogous statements hold for H_{i}.

This follows from 8.2.
(4) For $1 \leq i \leq 3$ one of H^{i}, S_{i} is empty, and one of H_{i}, S^{i} is empty.

For suppose that $h^{1} \in H^{1}$ and $s_{1} \in S_{1}$ say. Then $s_{1}-a_{3}^{2}-a_{1}^{2}-a_{1}^{3}-a_{2}^{3}-s_{1}$ is a 5 -hole that does not dominate h^{1}, a contradiction.
(5) For $1 \leq i \leq 3, S^{i}$ is anticomplete to S_{i}.

For suppose that $s^{1} \in S^{1}$ and $s_{1} \in S_{1}$ are adjacent, say. By (4), $H^{1}, H_{1}=\emptyset$, and so from the symmetry we may assume that there exists $h^{2} \in H^{2}$. Then $\left\{s^{1}, s_{1}, h^{2}, a_{1}^{3}\right\}$ is a claw, a contradiction.

This proves (5).
(6) For $1 \leq i \leq 3$, if $S^{i} \neq \emptyset$ and $H_{1} \cup H_{2} \cup H_{3} \neq \emptyset$ then $A_{i}^{i}=\emptyset$.

For suppose that, say, $s^{1} \in S^{1}$ and $h \in H_{1} \cup H_{2} \cup H_{3}$, and $A_{1}^{1}=\left\{a_{1}^{1}\right\}$. By (4), $h \notin H_{1}$, and so we may assume that $h \in H_{2}$. But then $s^{1}-a_{1}^{3}-a_{1}^{1}-a_{3}^{1}-a_{3}^{2}-s^{1}$ is a 5 -hole not dominating h, a contradiction. This proves (6).
(7) If $H_{1} \cup H_{2} \cup H_{3} \neq \emptyset$ then S^{1}, S^{2}, S^{3} are pairwise complete.

For suppose that $s^{1} \in S^{1}$ is nonadjacent to $s^{2} \in S^{2}$ say, and let $h \in H_{1} \cup H_{2} \cup H_{3}$. By (4), $h \in H_{3}$. $\mathrm{By}(6), A_{1}^{1}=A_{2}^{2}=\emptyset$, and so $A_{3}^{3}=\left\{a_{3}^{3}\right\}$. But then $\left\{a_{3}^{3}, s^{1}, s^{2}, h\right\}$ is a claw, a contradiction. This proves (7).
(8) We may assume that $S^{1} \cup S^{2} \cup S^{3}$ is not anticomplete to $S_{1} \cup S_{2} \cup S_{3}$.

For suppose it is. If also S^{1}, S^{2}, S^{3} are pairwise complete and S_{1}, S_{2}, S_{3} are pairwise complete then G is a line graph by (1)-(3), so we may assume that, say, S^{1}, S^{2} are not complete. By (7), $H_{1}, H_{2}, H_{3}=\emptyset$. Suppose that there exists $s_{j} \in S_{j}$ for some j with $1 \leq j \leq 3$. Choose $s^{1} \in S^{1}$ and $s^{2} \in S^{2}$, nonadjacent. One of a_{1}^{3}, a_{2}^{3} is adjacent to s_{j}, say x; and then $\left\{x, s_{j}, s^{1}, s^{2}\right\}$ is a claw, a contradiction. Thus $S_{1}, S_{2}, S_{3}=\emptyset$. Now each of the three cliques S^{1}, S^{2}, S^{3} is complete to two of the three cliques $A^{1} \cup H^{1}, A^{2} \cup H^{2}, A^{3} \cup H^{3}$ and anticomplete to the third, and so G is the hex-join of $G \mid\left(W \cup H^{1} \cup H^{2} \cup H^{3}\right)$ and $G \mid\left(S^{1} \cup S^{2} \cup S^{3}\right)$, a contradiction. This proves (8).
(9) For $1 \leq i \leq 3$, not both H^{i}, H_{i} are nonempty.

For suppose that $h^{1} \in H^{1}$ and $h_{1} \in H_{1}$ say. By (4), $S_{1}=S^{1}=\emptyset$. By (7), S^{2} is complete to S^{3}, and S_{2} is complete to S_{3}. By (5), S^{i} is anticomplete to S_{i} for $i=2,3$. By (8) we may assume from the symmetry that there exist $s^{3} \in S^{3}$ and $s_{2} \in S_{2}$, adjacent. From (6), $A_{2}^{2}=A_{3}^{3}=\emptyset$, and so $A_{1}^{1}=\left\{a_{1}^{1}\right\}$. By (4), $H_{3}=H^{2}=\emptyset$. Then $\left(S_{2} \cup A_{1}^{2}, S^{3} \cup A_{3}^{1}\right)$ is a homogeneous pair, nondominating since $A_{2}^{3} \neq \emptyset$, a contradiction. This proves (9).
(10) Not both $H^{1} \cup H^{2} \cup H^{3}, H_{1} \cup H_{2} \cup H_{3}$ are nonempty.

For suppose they are; then by (9), we may assume from the symmetry that there exist $h_{1} \in H_{1}$ and $h^{2} \in H^{2}$. By (4), $S^{1}, S_{2}=\emptyset$, and by (9), $H^{1}, H_{2}=\emptyset$. By (7), S_{1} is complete to S_{3} and S^{2} is complete to S^{3}. By (5), S^{3} is anticomplete to S_{3}. Suppose first that $S^{2}=\emptyset$. From (8), there exist $s^{3} \in S^{3}$ and $s_{1} \in S_{1}$, adjacent. From (6), $A_{1}^{1}, A_{3}^{3}=\emptyset$. Then ($S_{1} \cup A_{2}^{1}, S^{3} \cup A_{3}^{2}$) is a homogeneous pair, nondominating since $A_{1}^{3} \neq \emptyset$, a contradiction. Hence $S^{2} \neq \emptyset$, and similarly $S_{1} \neq \emptyset$. From (6), $A_{1}^{1}=A_{2}^{2}=\emptyset$, and therefore $A_{3}^{3}=\left\{a_{3}^{3}\right\}$. By (6) again, $S^{3}=S_{3}=\emptyset$. But now $\left(A_{1}^{3}, H_{1} \cup H^{2} \cup A_{1}^{2}, A_{3}^{2}\right)$ is a breaker, contrary to 3.4 . This proves (10).
(11) Exactly one of $H^{1}, H^{2}, H^{3}, H_{1}, H_{2}, H_{3}$ is nonempty.

For by hypothesis, at least one is nonempty, say H_{1}. By (10), $H^{1}, H^{2}, H^{3}=\emptyset$. Suppose that $H_{2} \neq \emptyset$. By (4), $S^{1}, S^{2}=\emptyset$, and by (8), S^{3} is nonempty. From (4), $H_{3}=\emptyset$, and from (6), $A_{3}^{3}=\emptyset$. Then $\left(H_{1} \cup A_{1}^{3}, H_{2} \cup A_{2}^{3}\right)$ is a homogeneous pair, nondominating since $A_{3}^{1} \neq \emptyset$, a contradiction. This proves (11).

In view of (11) we assume henceforth that H_{3} is nonempty, and therefore $H^{1}, H^{2}, H^{3}, H_{1}, H_{2}$ are empty. By (4), $S^{3}=\emptyset$.
(12) S^{1}, S^{2} are both nonempty, and consequently $A_{1}^{1}=A_{2}^{2}=\emptyset$, and $A_{3}^{3}=\left\{a_{3}^{3}\right\}$.

For suppose that $S^{2}=\emptyset$, say. From (8), $S_{1} \neq \emptyset$. From (6), $A_{1}^{1}=\emptyset$. But then $\left(H_{3} \cup A_{3}^{1}, A_{2}^{1}\right)$ is a homogeneous pair, nondominating since $A_{1}^{2} \neq \emptyset$, a contradiction. Thus S^{1}, S^{2} are both nonempty. By (6), $A_{1}^{1}=A_{2}^{2}=\emptyset$, and so $A_{3}^{3}=\left\{a_{3}^{3}\right\}$. This proves (12).
(13) S_{3} is complete to $S^{1} \cup S^{2}$.

For suppose not; then from the symmetry we may assume that there exist $s_{3} \in S_{3}$ and $s^{2} \in S^{2}$, nonadjacent. By (12) we may choose $s^{1} \in S^{1}$. By (7), s^{1}, s^{2} are adjacent. If s_{3}, s^{1} are nonadjacent, then $s_{3}-a_{2}^{1}-s^{2}-s^{1}-a_{1}^{2}-s_{3}$ is a 5 -hole, not dominating H_{3}, a contradiction. If s_{3}, s^{1} are adjacent, then $\left\{s^{1}, s_{3}, s^{2}, a_{3}^{2}\right\}$ is a claw, a contradiction. This proves (13).

Let S_{1}^{\prime} be the set of vertices in S_{1} with a nonneighbour in S^{2}, and let S_{2}^{\prime} be the set of vertices in S_{2} with a nonneighbour in S^{1}.
(14) $S_{1}^{\prime} \cup S_{2}^{\prime}$ is anticomplete to S_{3}, S_{1}^{\prime} is complete to S_{2}, and S_{2}^{\prime} is complete to S_{1}.

For suppose that some vertex $s_{1} \in S_{1}^{\prime}$ say has a neighbour $s_{3} \in S_{3}$. Let $s^{2} \in S^{2}$ be a nonneighbour of s_{1}. Then $\left\{s_{3}, s_{1}, s^{2}, a_{1}^{2}\right\}$ is a claw, a contradiction. Thus S_{3} is anticomplete to S_{1}^{\prime}, and similarly to S_{2}^{\prime}. Now suppose that some $s_{1} \in S_{1}^{\prime}$ has a nonneighbour $s_{2} \in S_{2}$. Let $s^{2} \in S^{2}$ be a nonneighbour of s_{1}; then by (5), $\left\{a_{3}^{3}, s_{2}, s_{1}, s^{2}\right\}$ is a claw, a contradiction. Hence S_{1}^{\prime} is complete to S_{2}. Similarly S_{2}^{\prime} is complete to S_{1}. This proves (14).

But now the following six sets are cliques: $S_{1} \backslash S_{1}^{\prime} ; S_{2} \backslash S_{2}^{\prime} ; S_{3} ; S^{1} \cup A_{1} ; S^{2} \cup A_{2} ; H_{3} \cup A_{3} \cup S_{1}^{\prime} \cup S_{2}^{\prime}$. Every vertex belongs to exactly one of these cliques; and each of the first three cliques is complete to two of the final three, and anticomplete to the other, in the manner required for a hex-join. Consequently G is expressible as a hex-join, a contradiction. This proves 14.1.

There is an (easy) analogue of 14.1 for 6 -holes with a star-diagonal and a hat, the following.
14.2 Let G be claw-free, containing no long prism and no hole of length >6, and such that every hole of length 5 or 6 is dominating. If there is a 6 -hole in G with a star-diagonal, relative to which some vertex is either a hat or a clone, then G is decomposable.

Proof. Let C_{0} be the 6 -hole, with vertices $c_{1}, \ldots, c_{6}-c_{1}$. Let b_{1}, b_{2} be adjacent stars, in positions $1 \frac{1}{2},-1 \frac{1}{2}$ respectively. Let h be either a hat or clone relative to C_{0}. If it is a clone, the result follows from 11.6. We assume then that h is a hat. From the symmetry we may assume that it is in position
$\frac{1}{2}$ or $1 \frac{1}{2}$. If it is in position $\frac{1}{2}$, then by $8.2 h$ is adjacent to b_{1} and not to b_{2}, and then $\left\{b_{1}, h, b_{2}, c_{3}\right\}$ is a claw, a contradiction. If it is in position $1 \frac{1}{2}$, then it is nonadjacent to b_{1} by 8.2 , and then $b_{1}-c_{4}-c_{5}-c_{6}-c_{1}-b_{1}$ is a nondominating 5 -hole, a contradiction. This proves 14.2.

15 Star-triangles.

We recall that, if $c_{1}-\cdots-c_{6}-c_{1}$ is a 6 -hole, and there are three pairwise adjacent stars in positions $1 \frac{1}{2}, 3 \frac{1}{2}, 5 \frac{1}{2}$ respectively, we call the set of these three stars a star-triangle for the 6 -hole. Our next goal is prove an analogue of 11.6 for star-triangles. We need the following lemma.
15.1 Let G be claw-free, and let B_{1}, B_{2}, B_{3} be disjoint cliques in G. Let $B=B_{1} \cup B_{2} \cup B_{3}$. Suppose that:

- $B \neq V(G)$,
- there are two triads $T_{1}, T_{2} \subseteq B$ with $\left|T_{1} \cap T_{2}\right|=2$, and
- there is no triad T in G with $|T \cap B|=2$.

Then G is decomposable.
Proof. Since there are two triads in B sharing two vertices, it follows that there is a sequence $u_{1}, \ldots, u_{t} \in B$ with $t \geq 4$, satisfying the following:

- u_{1}, \ldots, u_{t} are distinct
- u_{1}, u_{2}, u_{3} are pairwise nonadjacent
- for $3 \leq s \leq t$, if $u_{s} \in B_{i}$ say, then for all $j \in\{1,2,3\}$ with $j \neq i$, there exists r with $1 \leq r<s$ such that $u_{r} \in B_{j}$ and u_{r} is nonadjacent to u_{s}.

Choose such a sequence with t maximum. For $i=1,2,3$, let $U_{i}=\left\{u_{1}, \ldots, u_{t}\right\} \cap B_{i}$.
(1) $\left\{u_{1}, \ldots, u_{t}\right\}$ is a union of triads.

We prove by induction on t^{\prime} that for $3 \leq t^{\prime} \leq t$, there is a triad in $\left\{u_{1}, \ldots, u_{t^{\prime}}\right\}$ containing $u_{t^{\prime}}$. The result is clear if $t^{\prime}=3$, so we assume that $t^{\prime}>3$. From the symmetry, we may assume that $u_{t^{\prime}} \in B_{3}$. Choose s with $1 \leq s<t^{\prime}$ minimum such that $u_{t^{\prime}}$ has a nonneighbour in $B_{1} \cap\left\{u_{1}, \ldots, u_{s}\right\}$ and a nonneighbour in $B_{2} \cap\left\{u_{1}, \ldots, u_{s}\right\}$. If $s \leq 3$ then $u_{t^{\prime}}$ is in a triad (since u_{1}, u_{2}, u_{3} are pairwise nonadjacent), so we may assume that $s>3$. From the minimality of s, u_{s} is the unique nonneighbour of $u_{t^{\prime}}$ in one of $B_{1} \cap\left\{u_{1}, \ldots, u_{s}\right\}, B_{2} \cap\left\{u_{1}, \ldots, u_{s}\right\}$; and so we may assume that $u_{s} \in B_{1}$ and $u_{t^{\prime}}$ is complete to $B_{1} \cap\left\{u_{1}, \ldots, u_{s-1}\right\}$. By hypothesis, there exists r with $1 \leq r<s$ such that $u_{r} \in B_{2}$ and u_{r} is nonadjacent to u_{s}. Since $s>3$, there exist p, q with $1 \leq p, q \leq s-1$, such that $\left\{u_{p}, u_{q}, u_{r}\right\}$ is a triad. (This is clear if $r \leq 3$, taking $\{p, q, r\}=\{1,2,3\}$, and follows by the inductive hypothesis otherwise.) Hence $u_{p}, u_{q} \in B_{1} \cup B_{3}$, and therefore are adjacent to $u_{t^{\prime}}$, from the minimality of s. Since $\left\{u_{t^{\prime}}, u_{p}, u_{q}, u_{r}\right\}$ is not a claw, $u_{t^{\prime}}$ is not adjacent to u_{r}. But then $\left\{u_{r}, u_{s}, u_{t^{\prime}}\right\}$ is a triad. This proves (1).
(2) Every vertex not in $U_{1} \cup U_{2} \cup U_{3}$ is complete to two of U_{1}, U_{2}, U_{3} and anticomplete to the third.

For let $v \in V(G) \backslash U_{1} \cup U_{2} \cup U_{3}$. Suppose first that $v \in B$, say $v \in B_{1}$. Thus from the maximality of the sequence, v is complete to at least one of U_{2}, U_{3}, since otherwise we could set $u_{t+1}=v$. We assume v is complete to U_{2} say. Let $x \in U_{3}$. By (1), there is a triad $T \subseteq U_{1} \cup U_{2} \cup U_{3}$ containing x, and therefore $T \backslash\{x\} \subseteq U_{1} \cup U_{2}$. Since G is claw-free, v is not complete to T, and so v, x are not adjacent. Hence v is anticomplete to U_{3}, as required. Now assume that $v \notin B$. Let N be the set of neighbours of v in B. By hypothesis, $B \backslash N$ is a clique (for otherwise there would be a triad with exactly two vertices in B). In particular, N contains at least two of u_{1}, u_{2}, u_{3}, since they are pairwise nonadjacent; and N does not contain all three, since G is claw-free. Consequently N contains exactly two of u_{1}, u_{2}, u_{3}. From the symmetry we may assume that when $s=3, N$ includes $\left\{u_{1}, \ldots, u_{s}\right\} \cap B_{1}$ and $\left\{u_{1}, \ldots, u_{s}\right\} \cap B_{2}$ and is disjoint from $\left\{u_{1}, \ldots, u_{s}\right\} \cap B_{3}$; and therefore we may choose s with $3 \leq s \leq t$, maximum such that the same statement holds. Suppose that $s<t$. If $u_{s+1} \in U_{3}$, then since N includes no triad by 4.1, it follows from (1) that $u_{s+1} \notin N$, contrary to the maximality of s. Thus $u_{s+1} \in B_{1} \cup B_{2}$, and from the symmetry we may assume that $u_{s+1} \in B_{1}$. But u_{s+1} has a nonneighbour in $\left\{u_{1}, \ldots, u_{s}\right\} \cap B_{3}$, from the definition of the sequence, and since $B \backslash N$ is a clique it follows that $u_{s+1} \in N$, again contrary to the maximality of N. This proves that $s=t$, and therefore proves (2).

Now since $t \geq 4$, it follows that one of U_{1}, U_{2}, U_{3} has cardinality >1, and so from $3.5, G$ is decomposable. This proves 15.1.
15.2 Let G be claw-free, and let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ be a dominating triangle. Suppose that there are distinct vertices $u_{1}, u_{2}, u_{3}, u_{4} \in V(G) \backslash A$ such that:

- u_{1}, \ldots, u_{4} each have exactly two neighbours in A, and
- $G \mid\left\{u_{1}, \ldots, u_{4}\right\}$ has at most one edge.

Then G is decomposable.
Proof. For $i=1,2,3$ let B_{i} be the set of all vertices in $V(G) \backslash A$ that are nonadjacent to a_{i} and adjacent to the other two members of A. From 4.3 it follows that B_{1}, B_{2}, B_{3} are cliques. Let $B=B_{1} \cup B_{2} \cup B_{3}$. From the hypothesis, there are two triads included in B that have two vertices in common, and so the first two hypotheses of 15.1 hold. For the third, let $v \in V(G) \backslash B$, and suppose that there is a triad $\left\{v, b_{1}, b_{2}\right\}$, where $b_{1} \in B_{1}$ and $b_{2} \in B_{2}$. By 4.2 (with $b_{1}-a_{3}-b_{2}$) it follows that v is not adjacent to a_{3}. Since $v \notin B_{3}$, it is not adjacent to both a_{1}, a_{2}, and from the symmetry we may assume that v is not adjacent to a_{2}. From 4.2 (with $a_{2}-a_{1}-b_{2}$) it follows that v is not adjacent to a_{1}, contrary to the hypothesis that A is dominating. Thus all the hypotheses of 15.1 hold, and the result follows. This proves 15.2.
15.3 Let G be claw-free, such that every 5 - and 6-hole in G is dominating, and no 6-hole in G has a hub. Let C_{0} be a 6-hole in G, with a star-triangle. If some vertex of $V(G) \backslash V\left(C_{0}\right)$ is a hat or a clone with respect to C_{0}, then G is decomposable.

Proof. Let C_{0} have vertices $c_{1}-\cdots-c_{6}-c_{1}$, and let $A=\left\{a_{1}, a_{3}, a_{5}\right\}$ be a star-triangle, where a_{1}, a_{3}, a_{5} are in positions $1 \frac{1}{2}, 3 \frac{1}{2}, 5 \frac{1}{2}$ respectively.
(1) There is no hat in position $1 \frac{1}{2}, 3 \frac{1}{2}$, or $5 \frac{1}{2}$ relative to $c_{1} \cdots-c_{6}-c_{1}$.

For suppose that h is a hat in position $1 \frac{1}{2}$ say. Then the 5 -hole $a_{1}-c_{3}-c_{4}-c_{5}-c_{6}-a_{1}$ is not dominating, a contradiction. This proves (1).
(2) A is dominating.

For suppose that $v \in V(G) \backslash A$, with no neighbour in A. Then $v \notin V\left(C_{0}\right)$, and so, since there is no hub for C_{0}, it follows that v is a hat, clone or star relative to C_{0}. By (1) and 8.2, v is not a hat; and by 8.2 it is not a clone, and not a star in position $1 \frac{1}{2}, 3 \frac{1}{2}$ or $5 \frac{1}{2}$. Thus we may assume v is a star in position $2 \frac{1}{2}$ say; but then $v-c_{3}-a_{2}-c_{5}-c_{6}-c_{1}-v$ is a 6 -hole, and a_{1} is a hub for it, a contradiction. This proves (2).

For $i=1,3,5$, let B_{i} be the set of all vertices in $V(G) \backslash A$ that are anticomplete to a_{i} and complete to the other two members of A. Thus $c_{4}, c_{5} \in B_{1}, c_{6}, c_{1} \in B_{3}$, and $c_{2}, c_{3} \in B_{5}$. By hypothesis, some vertex $v \in V(G) \backslash V\left(C_{0}\right)$ is either a hat or a clone with respect to C_{0}, say either a hat in position $\frac{1}{2}$ or a clone in position 1 without loss of generality. By 8.2, v is adjacent to a_{1} and nonadjacent to a_{3}. Since $\left\{a_{1}, v, a_{5}, c_{3}\right\}$ is not a claw, v is adjacent to a_{5} and so $v \in B_{3}$. But then $c_{1}, c_{3}, c_{5}, v \in B_{1} \cup B_{3} \cup B_{5}$, and $G \mid\left\{c_{1}, c_{3}, c_{5}, v\right\}$ has only one edge, namely $v c_{1}$, and so the result follows from (1) and 15.2. This proves 15.3.
15.4 Let G be claw-free, such that every 5-hole in G is dominating, and there is no 6 -hole with a hub or with a star-diagonal. Suppose that some 6 -hole has a crown. Then G is decomposable.

Proof. Let C be a 6 -hole with vertices $c_{1} \cdots-c_{6}-c_{1}$ in order, and let s_{1}, s_{2} be nonadjacent stars in positions $2 \frac{1}{2}, 3 \frac{1}{2}$ respectively. Thus the strip $\left(\left\{s_{1}, c_{2}\right\}, \emptyset,\left\{s_{2}, c_{4}\right\}\right)$ is step-connected and parallel to the strip $\left(\left\{c_{1}\right\},\left\{c_{6}\right\},\left\{c_{5}\right\}\right)$. Choose a step-connected strip (A, \emptyset, B) with $s_{1}, c_{2} \in A$ and $s_{2}, c_{4} \in B$, with $A \cup B$ maximal such that c_{3} is $A \cup B$-complete and the strips $(A, \emptyset, B),\left(\left\{c_{1}\right\},\left\{c_{6}\right\},\left\{c_{5}\right\}\right)$ are parallel. Suppose that $v \in V(G) \backslash(A \cup B)$, and v has both a neighbour and a nonneighbour in A. Then $v \notin\left\{c_{1}, c_{3}, c_{5}, c_{6}\right\}$. Let N be the set of neighbours of v. Choose a step $a_{1}-a_{2}-b_{2}-b_{1}-a_{1}$ in the strip (A, \emptyset, B) such that $a_{1} \in N$ and $a_{2} \notin N$. By $4.2, b_{1} \in N$. Suppose that $b_{2} \in N$. Then 4.2 implies that $c_{5} \in N ; 4.1$ implies that $c_{6} \notin N ; 4.2$ implies that $c_{1} \notin N ; 4.2$ implies that $B \subseteq N$ and $c_{3} \in N$; and then v can be added to B, contrary to the maximality of $A \cup B$. Thus $b_{2} \notin N$. Since $c_{1}-c_{6}-c_{5}-b_{2}-a_{2}-c_{1}$ is dominating, we may assume from the symmetry that $c_{1}, c_{6} \in N$. If $c_{5} \notin N$, then $v-c_{6}-c_{5}-b_{2}-a_{2}-a_{1}-v$ is a 6 -hole, and b_{1} is a hub for it, a contradiction. Thus $c_{5} \in N$; but then 4.1 implies that $c_{3} \notin N$, and so $c_{1}-c_{6}-c_{5}-b_{1}-c_{3}-a_{2}-c_{1}$ is a 6 -hole, with a star-diagonal $\left\{a_{1}, v\right\}$, again a contradiction. So there is no such vertex v. We deduce from the symmetry that (A, B) is a homogeneous pair, nondominating because of c_{6}, and so by $3.3, G$ is decomposable. This proves 15.4.

16 6-holes in non-antiprismatic graphs

The next lemma, a consequence of 9.3 , is complementary to the last few results.
16.1 Let G be claw-free, containing no hole of length >6 or long prism, and such that every hole of length 5 or 6 is dominating. Suppose that G contains a 6-hole, but there is no 6 -hole in G with a hub, a star-diagonal, or a star-triangle. Then either $G \in \mathcal{S}_{3}$, or G is decomposable.

Proof. Since every 5-hole is dominating, no 6-hole has a coronet; by hypothesis, no 6-hole has a hub, star-diagonal or star-triangle; by 15.4, we may assume that none has a crown; and none has a hat-diagonal since G contains no long prism. By 9.3, this proves 16.1.

We recall that G is prismatic if for every triangle A, every vertex $v \in V(G) \backslash A$ has a unique neighbour in A; and G is antiprismatic if its complement is prismatic. We combine 16.1 with the previous results, to prove the next theorem, which has been the goal of the last several sections.
16.2 Let G be claw-free, with a hole of length ≥ 6. Then either G is antiprismatic, or $G \in$ $\mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{5}$, or G is decomposable.

Proof. By 7.7, 9.1, 9.2 and 13.2 , we may assume that G has no hole of length >6 or long prism, and every hole of length 5 or 6 is dominating.
(1) We may assume that there is a 6-hole C in G such that no vertex of G is a hat or clone relative to C.

For by hypothesis there is a hole of length ≥ 6, and therefore of length 6 . If there is no 6 -hole in G with a hub, a star-diagonal, or a star-triangle, then either $G \in \mathcal{S}_{3}$, or G is decomposable, by 16.1. Thus we may assume that there is a 6 -hole C with either a hub, a star-diagonal, or a startriangle, choosing C with a hub if possible. By 14.1 and 14.2 , if C has a hub or a star-diagonal, then we may assume that no vertex is a hat or clone with respect to C. If C has a star-triangle and has no hub, then no 6 -hole has a hub, and so by 15.3 , again we may assume that no vertex is a hat or clone with respect to C. This proves (1).

(2) There do not exist four pairwise nonadjacent vertices in G.

For suppose that a_{1}, \ldots, a_{4} are pairwise nonadjacent. Not all of a_{1}, \ldots, a_{4} belong to C; and each a_{i} that does not belong to C has exactly four neighbours in C, since C is dominating and no vertex is a clone or hat relative to C. We may assume that $a_{1} \notin V(C)$. Since it has four neighbours in C and is nonadjacent to a_{2}, a_{3}, a_{4}, at most two of a_{2}, a_{3}, a_{4} belong to C, and we may assume that $a_{2} \notin V(C)$. By 4.3, a_{1}, a_{2} do not have exactly the same four neighbours in C, and so at most one vertex of C is nonadjacent to both a_{1}, a_{2}; and so not both $a_{3}, a_{4} \in V(C)$, and we may assume that $a_{3} \notin V(C)$. Then a_{1}, a_{2}, a_{3} each have four neighbours in C. But they have no common neighbour, and therefore every vertex of C is adjacent to exactly two of them. Consequently $a_{4} \notin V(C)$, and therefore a_{4} also has four neighbours in C; and so some three of a_{1}, \ldots, a_{4} have a common neighbour in $V(C)$, a contradiction. This proves (2).

Let C have vertices $c_{1}-\cdots-c_{6}-c_{1}$ in order.
(3) If there exist stars s_{1}, s_{2}, s_{3}, each in position $1 \frac{1}{2}$ or $2 \frac{1}{2}$, such that s_{3} is nonadjacent to both s_{1}, s_{2}, then G is decomposable.

For suppose that such s_{1}, s_{2}, s_{3} exist. s_{1}, s_{3} are in different positions, by 8.2 , and so are s_{2}, s_{3}, and therefore s_{1}, s_{2} are in the same positions. Choose A, B with $A \cup B$ maximal such that:

- A is a set of stars in position $1 \frac{1}{2}$
- B is a set of stars in position $2 \frac{1}{2}$
- $s_{1}, s_{2}, s_{3} \in A \cup B$
- let H be the graph with $V(H)=A \cup B$, in which x, y are adjacent if and only if x, y are nonadjacent in G and exactly one of x, y belongs to A; then H is connected.

We claim that (A, B) is a homogeneous pair. For suppose that $v \notin A \cup B$ has a neighbour and a nonneighbour in A say. Since H is connected, we may choose $a_{1}, a_{2} \in A$ and $b \in B$ such that v is adjacent to a_{1} and not to a_{2}, and b is nonadjacent in G to both a_{1}, a_{2}. Since v has a neighbour and a nonneighbour in A, it follows that $v \notin V(C)$, and therefore v has exactly four neighbours in C. Since v has a nonneighbour in A, it is not a star in position $1 \frac{1}{2}$ or a hub in hub-position 2 ; and from the maximality of $A \cup B$, it is not a star in position $2 \frac{1}{2}$. Consequently v is adjacent to c_{5}. Since $\left\{v, a_{1}, b, c_{5}\right\}$ is not a claw, v is not adjacent to b. But v is adjacent to one of c_{1}, c_{2}, c_{3}, say c_{i}, and then $\left\{c_{i}, a_{2}, b, v\right\}$ is a claw, a contradiction. This proves that (A, B) is a homogeneous pair, nondominating because of c_{5}, and so G is decomposable, by 3.3 . This proves (3).
(4) If there exist a hub t in hub-position 1 , and stars s_{2}, s_{3}, s_{4}, each in positions $2 \frac{1}{2}$ or $5 \frac{1}{2}$, such that s_{4} is nonadjacent to s_{2}, s_{3}, then G is decomposable.

For choose A, B with $A \cup B$ maximal such that:

- A is a set of stars in position $2 \frac{1}{2}$
- B is a set of stars in position $5 \frac{1}{2}$
- $s_{2}, s_{3}, s_{4} \in A \cup B$
- let H be the graph with $V(H)=A \cup B$, in which x, y are adjacent if and only if x, y are nonadjacent in G and exactly one of x, y belongs to A; then H is connected.

We claim that (A, B) is a homogeneous pair. For let $v \in V(G) \backslash A \cup B$, and suppose it has a neighbour and a nonneighbour in A say. Thus $v \notin V(C)$. Since H is connected, we may choose $a_{1}, a_{2} \in A$ and $b \in B$ such that v is adjacent to a_{1} and not to a_{2}, and b is nonadjacent to both a_{1}, a_{2}. By 11.1, v is not a hub, and not a star in position $2 \frac{1}{2}$; and by the maximality of $A \cup B, v$ is not a star in position $5 \frac{1}{2}$. Hence v is a star in some other position. Consequently v is adjacent to t by 11.1, and v is adjacent to one of c_{1}, c_{4}, say c_{1}. By 11.1, t is nonadjacent to all of a_{1}, a_{2}, b. If v is nonadjacent to b, then $\left\{c_{1}, v, a_{2}, b\right\}$ is a claw, while if v is adjacent to b, then $\left\{v, a_{1}, b, t\right\}$ is a claw, in either case a contradiction. Thus (A, B) is a homogeneous pair. By 11.1, t has no neighbours in $A \cup B$, and so (A, B) is nondominating. By 3.3, G is decomposable. This proves (4).
(5) If there exist stars s_{1}, \ldots, s_{4}, each in position $1 \frac{1}{2}, 3 \frac{1}{2}$ or $5 \frac{1}{2}$, and all pairwise nonadjacent except
for $s_{3} s_{4}$, then G is decomposable.
For let B_{1}, B_{2}, B_{3} be the set of all stars in positions $1 \frac{1}{2}, 3 \frac{1}{2}$ and $5 \frac{1}{2}$ respectively. By $4.3, B_{1}, B_{2}, B_{3}$ are all cliques. Let $B=B_{1} \cup B_{2} \cup B_{3}$. Because of s_{1}, \ldots, s_{4}, there are two triads in B with two vertices in common. Suppose that T is a triad with $|T \cap B|=2$; say $T=\left\{v, b_{1}, b_{2}\right\}$, where $v \notin B$ and $b_{1} \in B_{1}, b_{2} \in B_{2}$. Since every vertex of C is adjacent to one of b_{1}, b_{2} it follows that $v \notin V(C)$, and therefore v has four neighbours in C. Since $\left\{c_{2}, v, b_{1}, b_{2}\right\}$ is not a claw, v is not adjacent to c_{2} and similarly not to c_{3}; and so it is a star in position $5 \frac{1}{2}$, contradicting that $v \notin B$. Thus there is no such triad. By 15.1, it follows that G is decomposable. This proves (5).

We may assume that G is not antiprismatic. Therefore there are four vertices a_{1}, \ldots, a_{4}, pairwise nonadjacent except possibly for $a_{3} a_{4}$. By (2), a_{3}, a_{4} are adjacent. Suppose first that $a_{1}, a_{2} \in V(C)$. Then at least one of a_{3}, a_{4} is not in $V(C)$, say a_{3}, and therefore a_{3} is adjacent to every vertex of C except a_{1}, a_{2}. Since a_{1}, a_{2} are nonadjacent, it follows that a_{3} is a hub, and so we may assume that $a_{1}=c_{1}, a_{2}=c_{4}$. Then every other vertex of C is adjacent to one of a_{1}, a_{2}, and so $a_{4} \notin V(C)$; and therefore a_{4} is also a hub, in the same hub-position as c_{3}. Then G is decomposable, by 11.2.

We may therefore assume that not both $a_{1}, a_{2} \in V(C)$, say $a_{1} \notin V(C)$. Consequently a_{1} has four neighbours in $V(C)$. Assume that $a_{2}, a_{3} \in V(C)$. Then since a_{1}, a_{2}, a_{3} are pairwise nonadjacent, it follows that a_{1} is a hub, and we may assume that $a_{2}=c_{1}, a_{3}=c_{4}$. Since a_{4} is adjacent to a_{3} and $a_{4} \notin V(C)$, it follows that a_{4} is a star in position $2 \frac{1}{2}, 3 \frac{1}{2}, 4 \frac{1}{2}$, or $5 \frac{1}{2}$, or a hub in hub-position 2 or 3 . Since a_{4} is nonadjacent to $a_{2}=c_{1}$, we may assume from the symmetry that a_{4} is a star in position $2 \frac{1}{2}$; but then it is adjacent to a_{1} by 11.1, a contradiction.

This proves that not both $a_{2}, a_{3} \in V(C)$. Assume that $a_{2} \in V(C)$, say $a_{2}=c_{1}$. Then $a_{3} \notin V(C)$, and similarly $a_{4} \notin V(C)$. Each of a_{1}, a_{3}, a_{4} is adjacent to four of c_{2}, \ldots, c_{6}, and is therefore either a star in position $3 \frac{1}{2}$ or $4 \frac{1}{2}$, or a hub in hub-position 1 . If any of them is a hub in hub-position 1 , then it is adjacent to both the others by 11.1, a contradiction; and so all three are stars. But then the result follows by (3). So we may assume that $a_{2} \notin V(C)$.

Since a_{1}, a_{2} do not have exactly the same neighbours in C by 4.3 , it follows that at least one of $a_{3}, a_{4} \notin V(C)$, say a_{3}. Hence a_{1}, a_{2}, a_{3} each has four neighbours in $V(C)$, and yet they have no common neighbour. Consequently each vertex of C is adjacent to exactly two of a_{1}, a_{2}, a_{3}, and therefore $a_{4} \notin V(C)$. Thus a_{4} also has exactly four neighbours in C, and no vertex is adjacent to all of a_{1}, a_{2}, a_{4}, and therefore a_{3}, a_{4} have the same neighbours in C. By 11.2 we may assume that a_{3}, a_{4} are not hubs. If one of a_{1}, a_{2} is a hub, then G is decomposable by (4); and if a_{1}, a_{2} are not hubs, then G is decomposable by (5). This proves 16.2.

17 Stable sets of size 4

In this section we finish the case that $\alpha(G) \geq 4$. We have already handled such graphs that have a hole of length at least 6 , so it suffices to prove the following.
17.1 Let G be claw-free, such that G has no hole of length >5, every 5 -hole in G is dominating, $\alpha(G) \geq 4$, and G is not decomposable. Then G is either a line graph or a circular interval graph.

The proof of 17.1 falls into several parts, as follows. Let G satisfy the hypotheses of 17.1. We shall prove the following.

- (In 17.7) If some 5 -hole has a coronet, then G is a line graph.
- (In 17.8) If G contains a $(1,1,1)$-prism, then G is a line graph.
- (In 17.9) If G has a 5 -hole, but no 5 -hole has a coronet, and G contains no ($1,1,1$)-prism, then G is a circular interval graph.
- (In 17.10) If G has a 4 -hole but no 5 -hole, then G is a line graph.
- (In 17.11) It is impossible that G has no holes at all.

We begin with a few lemmas.
17.2 Let B be a clique in a claw-free graph G, and let $a_{1}, a_{2} \in V(G) \backslash B$ be nonadjacent. If a_{1}, a_{2} are not B-complete and not B-anticomplete, then there is a path of length 3 between a_{1}, a_{2} with interior in B.

Proof. For $i=1,2$, let N_{i} be the set of neighbours of a_{i} in B. By hypothesis, $N_{i} \neq \emptyset, B$. Suppose that $N_{1} \subseteq N_{2}$. Since $N_{1} \neq \emptyset$, there exists $x \in N_{1}$; and since $N_{2} \neq B$, there exists $y \in B \backslash N_{2}$. But then $\left\{x, y, a_{1}, a_{2}\right\}$ is a claw, a contradiction. Thus $N_{1} \nsubseteq N_{2}$, and similarly $N_{2} \nsubseteq N_{1}$. Choose $n_{1} \in N_{1} \backslash N_{2}$, and $n_{2} \in N_{2} \backslash N_{1}$. Then $a_{1}-n_{1}-n_{2}-a_{2}$ is a path. This proves 17.2.
17.3 Let G be claw-free, with no hole of length >5, not decomposable, and such that every 5 -hole is dominating. Let the paths $a_{1}-b_{1}, a_{2}-b_{2}$ and $a_{3}-c_{3}-b_{3}$ form a prism in G, where $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles. Then there is a 5 -hole in G with a centre, and every neighbour of c_{3} that is nonadjacent to $a_{1}, b_{1}, a_{2}, b_{2}$ is adjacent to both of a_{3}, b_{3}.

Proof. Choose a step-connected strip (A, \emptyset, B) with $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$, parallel to the strip ($\left\{a_{3}\right\},\left\{c_{3}\right\},\left\{b_{3}\right\}$), and maximal with this property. Since c_{3} is anticomplete to $A \cup B$ and G is not decomposable, 3.3 implies that (A, B) is not a nondominating homogeneous pair. Thus we may assume that there exists $v \in V(G) \backslash(A \cup B)$ with a neighbour and a nonneighbour in A. Then $v \notin\left\{a_{3}, b_{3}, c_{3}\right\}$. Choose a step $a_{1}^{\prime}-a_{2}^{\prime}-b_{2}^{\prime}-b_{1}^{\prime}-a_{1}^{\prime}$ such that v is adjacent to a_{1}^{\prime} and not to a_{2}^{\prime}. By $4.2, v$ is adjacent to b_{1}^{\prime}. If v is adjacent to b_{2}^{\prime}, then by $4.2 v$ is adjacent to b_{3}; by $4.1 v$ is nonadjacent to c_{3}; and by $4.2 v$ is nonadjacent to a_{3}. But then v can be added to B, contrary to the maximality of $A \cup B$. Thus v is nonadjacent to b_{2}^{\prime}. Since the 5 -hole $a_{3}-c_{3}-b_{3}-b_{2}^{\prime}-a_{2}^{\prime}-a_{3}$ is dominating, v has a neighbour in the path $a_{3}-c_{3}-b_{3}$, and therefore is adjacent to at least two adjacent vertices of this path. In particular, v is adjacent to c_{3}. Since $v-c_{3}-b_{3}-b_{2}^{\prime}-a_{2}^{\prime}-a_{1}^{\prime}-v$ is not a 6 -hole, v is adjacent to b_{3} and similarly to a_{3}. Hence v is a centre for the 5 -hole $a_{3}-c_{3}-b_{3}-b_{1}^{\prime}-a_{1}^{\prime}-a_{3}$. Now suppose that d is a neighbour of c_{3}, nonadjacent to $a_{1}, b_{1}, a_{2}, b_{2}$. Hence d has a nonneighbour in A. If d also has a neighbour in A, then by exchanging v, d we deduce that d is adjacent to both a_{3}, b_{3} as required. Thus we may assume that d has no neighbour in A, and similarly none in B. From the symmetry, we may assume that d is adjacent to a_{3}. By 4.2 (with $d-a_{3}-a_{2}^{\prime}$), v is adjacent to d; and by 4.1 (with $\left.\left\{d, a_{1}^{\prime}, b_{3}\right\}\right)$ it follows that d is adjacent to b_{3} as required. This proves 17.3.
17.4 Let G be claw-free, with no hole of length >5, and such that every 5 -hole is dominating. Let C be a 4-hole. If there exist adjacent vertices of $G \backslash V(C)$, both with no neighbour in $V(C)$, then G is decomposable.

Proof. Let C have vertices $c_{1}-\cdots-c_{4}-c_{1}$ in order. Let $Z \subseteq V(G) \backslash V(C)$ be maximal such that Z is connected and no vertex in Z has a neighbour in $V(C)$, with $|Z|>1$. Let Y be the set of vertices of $V(G) \backslash Z$ with a neighbour in Z. Then from the maximality of Z, every vertex of Y has a neighbour in $V(C)$; and since G is claw-free, it follows that every vertex in Y is a hat relative to C. Let $Y=Y_{1} \cup \cdots \cup Y_{4}$, where for $i=1, \ldots, 4, Y_{i}$ is the set of vertices in Y that are adjacent to c_{i}, c_{i+1} (reading subscripts modulo 4).
(1) Y_{1}, \ldots, Y_{4} are cliques; and for $1 \leq i \leq 4, Y_{i}$ is complete to Y_{i+1}.

The first assertion follows from 4.3. For the second, suppose that $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$ say are nonadjacent, and let P be a path between y_{1}, y_{2} with interior in Z. Then $y_{1}-c_{1}-c_{4}-c_{3}-y_{2}-P-y_{1}$ is a hole of length ≥ 6, a contradiction. This proves (1).
(2) We may assume that if $y, y^{\prime} \in Y$ are nonadjacent then every vertex in Z is adjacent to both y, y^{\prime}.

For let $y \in Y_{1}, y^{\prime} \in Y_{3}$ say (without loss of generality, by (1)). Let P be a path between y, y^{\prime} with interior in Z. Since the hole $y-c_{2}-c_{3}-y^{\prime}-P-y$ has length ≤ 5, it follows that P has length 2 , and the hole has length 5 . Let z be the middle vertex of P. Since every 5 -hole is dominating, every vertex in $Z \backslash\{z\}$ has a neighbour in P, and therefore is adjacent to z and to at least one of y, y^{\prime}. If some $z^{\prime} \in Z \backslash\{z\}$ is nonadjacent to one of y, y^{\prime}, then the three paths $c_{1}-c_{4}, c_{2}-c_{3}$ and P form a prism satisfying the hypotheses of 17.3, and the result follows. Thus we may assume that they are all adjacent to both y, y^{\prime}. This proves (2).
(3) For $1 \leq i<j \leq 4$, if $y_{i} \in Y_{i}$ and $y_{j} \in Y_{j}$ then y_{i}, y_{j} have the same neighbours in Z.

For if y_{i}, y_{j} are nonadjacent this follows from (2). If they are adjacent, suppose that $z \in Z$ is adjacent to y_{i} and not to y_{j}, and choose $c \in V(C)$ adjacent to y_{i} and not to y_{j}; then $\left\{y_{i}, z, y_{j}, c\right\}$ is a claw, a contradiction. This proves (3).

If Y is a clique then Y is an internal clique cutset and the theorem holds. Thus by (1), we may assume that Y_{1} is not complete to Y_{3} (and therefore Y_{1}, Y_{3} are nonempty). By (2) and (3) it follows that Y is complete to Z, and therefore Z is a clique by 4.3 ; but then all members of Z are twins. This proves 17.4.
17.5 Let G be claw-free, let C be a dominating 5-hole in G, and let $X \subseteq V(G)$ be stable with $|X|=4$. Then there is a 5 -numbering of C such that either

- there are three hats in X, in positions $1 \frac{1}{2}, 2 \frac{1}{2}$ and $3 \frac{1}{2}$, or
- X consists of two hats in positions $1 \frac{1}{2}$ and $2 \frac{1}{2}$ and two clones in positions 4,5 , or
- X consists of three hats in positions $1 \frac{1}{2}, 2 \frac{1}{2}$ and $4 \frac{1}{2}$ and a star in position $4 \frac{1}{2}$.

Proof. Let C have vertices $c_{1}-\cdots-c_{5}-c_{1}$ and let $X=\left\{v_{1}, \ldots, v_{4}\right\}$. Each member of $X \backslash V(C)$ has at least two neighbours in $V(C)$, since C is dominating; and on the other hand, every vertex of C
is adjacent to at most two members of X, since G is claw-free. At most two members of X belong to C, so we may assume that $v_{1}, v_{2} \in X \backslash V(C)$. But v_{1}, v_{2} both have at least two neighbours in C, and since they are not hats in the same position by 4.3 and v_{3}, v_{4} are nonadjacent, it follows that not both $v_{3}, v_{4} \in V(C)$. Thus we assume that $v_{3} \notin V(C)$. Suppose that $v_{4} \in V(C)$, say $v_{4}=c_{5}$. Then each of c_{1}, c_{4} is adjacent to at most one of v_{1}, v_{2}, v_{3}, and each of c_{2}, c_{3} is adjacent to at most two of v_{1}, v_{2}, v_{3}. On the other hand, v_{1}, v_{2}, v_{3} each have at least two neighbours in C. Hence equality holds, and therefore v_{1}, v_{2}, v_{3} are hats in positions $1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}$, as required. We may therefore assume that $v_{4} \notin V(C)$. Now c_{1}, \ldots, c_{5} are each adjacent to at most two of members of X, and every member of X is adjacent to at least two of c_{1}, \ldots, c_{5}. Consequently at least two members of X are hats, say v_{1}, v_{2}. Suppose that no two members of X are hats in consecutive positions. Then we may assume that v_{1}, v_{2} are in positions $1 \frac{1}{2}, 3 \frac{1}{2}$, and v_{3}, v_{4} are not hats; and from counting the edges between $V(C)$ and X, it follows that v_{3}, v_{4} are clones, in positions 1,4 . But since they are nonadjacent to v_{1}, v_{2}, this contradicts 8.2. Thus at least two members of X are hats in consecutive positions; and so we may assume that v_{1}, v_{2} are hats in positions $1 \frac{1}{2}, 2 \frac{1}{2}$ respectively. If v_{3}, v_{4} are not hats, then they are clones in positions 4,5 and the theorem holds. Thus we may assume that v_{3} is a hat. If it is in position $3 \frac{1}{2}$ or $\frac{1}{2}$ then the theorem holds, so we may assume it is in position $4 \frac{1}{2}$. If v_{4} is a hat, then it is in position $3 \frac{1}{2}$ or $\frac{1}{2}$ and the theorem holds; and by 8.2 is it not a clone. So we may assume it is a star, and hence in position $4 \frac{1}{2}$; but then the theorem holds. This proves 17.5.
17.6 Let G be claw-free, such that G has no hole of length >5, every 5 -hole in G is dominating, and $\alpha(G) \geq 4$. Then no 5 -hole in G has a centre; and G does not contain a (2,1,1)-prism.

Proof. For suppose first that $c_{1}-\cdots-c_{5}-c_{1}$ is a 5 -hole C, with a centre z. Since $\alpha(G) \geq 4$, we may assume by 17.5 that there are nonadjacent hats h_{1}, h_{2} in positions $1 \frac{1}{2}, 2 \frac{1}{2}$ say. Since $\left\{z, h_{1}, c_{3}, c_{5}\right\}$ is not a claw, z is not adjacent to h_{1}, and similarly it is not adjacent to h_{2}. But then $\left\{c_{2}, z, h_{1}, h_{2}\right\}$ is a claw, a contradiction. This proves that no 5 -hole has a centre. The second assertion of the theorem follows from 17.3. This proves 17.6.

The following completes the first step of the proof of 17.1.
17.7 Let G be claw-free, such that G has no hole of length >5, every 5 -hole in G is dominating, $\alpha(G) \geq 4$, and G is not decomposable. If some 5 -hole has a coronet then G is a line graph.

Proof. Let $c_{1}-\cdots-c_{5}-c_{1}$ be a 5 -numbering of a 5 -hole C, such that there is a hat h and a star s both in position $1 \frac{1}{2}$. By $8.2, h$ and s are nonadjacent. Let \mathcal{C} be the proximity component of order 5 containing C.
(1) For every $a_{1}-\cdots-a_{5}-a_{1}$ in \mathcal{C}, h is a hat and s is a star, both in position $1 \frac{1}{2}$.

For it suffices to show that if two 5 -numberings are proximate, and the claim is true for one of them, then it is true for the other. Thus, suppose that $a_{1} \cdots \cdots-a_{5}-a_{1}$ is a 5 -numbering and h is a hat and s is a star, both in position $1 \frac{1}{2}$, relative to $a_{1} \cdots-a_{5}-a_{1}$. Let $1 \leq i \leq 5$, and let a_{i}^{\prime} be a clone in position i relative to $a_{1} \cdots-a_{5}-a_{1}$. We must show that a_{i} and a_{i}^{\prime} have the same neighbours in $\{h, s\}$. If $i=1$, then a_{1}^{\prime} is adjacent to s, h by 8.1. If $i=4$, then a_{4}^{\prime} is nonadjacent to h by 8.1, and nonadjacent to s by 17.6 , since otherwise s would be a centre for $a_{1}-a_{2}-a_{3}-a_{4}^{\prime}-a_{5}-a_{1}$. Thus from
the symmetry we may assume that $i=5$. Since $\left\{a_{5}^{\prime}, h, s, a_{4}\right\}$ is not a claw, it follows that a_{5}^{\prime} is nonadjacent to at least one of h, s. Since $\left\{a_{1}, a_{5}^{\prime}, h, s\right\}$ is not a claw, a_{5}^{\prime} is adjacent to at least one of h, s. If a_{5}^{\prime} is adjacent to h and not to s, then the 5 -hole $h-a_{2}-s-a_{5}-a_{5}^{\prime}-h$ has a centre a_{1}, contrary to 17.6. Thus a_{5}^{\prime} is adjacent to s and not to h. This proves (1).

For $1 \leq i \leq 5$, let $A_{i}=A_{i}(\mathcal{C})$. From (1), $A_{1} \cup A_{2}$ is complete to both $h, s ; A_{3} \cup A_{5}$ is complete to s and anticomplete to h; and A_{4} is anticomplete to both h, s. Let $W=A_{1} \cup \cdots \cup A_{5}$. For each $v \in V(G) \backslash\{h, s\}$, let $P(v)$ be the set of all k such that v is in position k relative to some member of \mathcal{C}. (Note that since every 5 -hole is dominating, and none has a centre, it follows that v has a position relative to each member of \mathcal{C}.) If two 5 -numberings are proximate, then the positions of v relative to them differ by at most $\frac{1}{2}$, and it follows that $P(v)$ is a set of consecutive $\frac{1}{2}$-integers modulo 5 , that is, $P(v)$ is an "interval".
(2) The sets A_{1}, \ldots, A_{5} are pairwise disjoint; and every vertex in $V(G) \backslash W$ is either complete to four of A_{1}, \ldots, A_{5} and anticomplete to the fifth, or complete to two consecutive of A_{1}, \ldots, A_{5} and anticomplete to the other three.

For certainly the sets $A_{1} \cup A_{2}, A_{3} \cup A_{5}$ and A_{4} are pairwise disjoint. Suppose that there exists $v \in A_{1} \cap A_{2}$. Then $1,2 \in P(v)$, and v is adjacent to h, s. Hence $3,4,5 \notin P(v)$, by (1), and since $P(v)$ is an interval, it follows that $1 \frac{1}{2} \in P(v)$. So relative to some member of \mathcal{C}, v is a hat or star in position $1 \frac{1}{2}$. But by 8.2 , a hat in position $1 \frac{1}{2}$ is nonadjacent to s, and a star in position $1 \frac{1}{2}$ is nonadjacent to h, in either case a contradiction. This proves that $A_{1} \cap A_{2}=\emptyset$. Now assume that there exists $v \in A_{3} \cap A_{5}$. Thus $3,5 \in P(v)$, and by (1) v is adjacent to s and not to h. By (1) $1,2,4 \notin P(v)$, contradicting that $P(v)$ is an interval. This proves that A_{1}, \ldots, A_{5} are pairwise disjoint. Now if $v \in V(G) \backslash W$, it follows that $P(v)$ contains no integer, and so $P(v)$ has only one member, since it is an interval; and the final assertion of (2) follows. This proves (2).
(3) $A_{i}=\left\{c_{i}\right\}$ for $i=1,2$.

For if $a_{1} \in A_{1}$ and $a_{4} \in A_{4}$, then since $\left\{a_{1}, a_{4}, h, s\right\}$ is not a claw it follows that a_{1}, a_{4} are nonadjacent. Thus $A_{1} \cup A_{2}$ is anticomplete to A_{4}. Let $a_{1}-\cdots-a_{5}-a_{1}$ be in \mathcal{C}, and suppose that some $v \in A_{1}$ is adjacent to a_{3}. Since v is anticomplete to A_{4} as we saw, it follows that v is adjacent to a_{2}; by $8.2 v$ is not a hat, since it is adjacent to h, and so v is adjacent to a_{1}; and by $8.2, v$ is nonadjacent to a_{5} since it is adjacent to h. Hence v is in position 2 relative to $a_{1}-\cdots-a_{5}-a_{1}$, and hence $v \in A_{1} \cap A_{2}$, contrary to (2). This proves that A_{1} is anticomplete to A_{3}, and similarly A_{2} is anticomplete to A_{5}. Now let $a_{1} \cdots \cdots a_{5}-a_{1}$ be in \mathcal{C}, and suppose that some $a_{1}^{\prime} \in A_{1}$ is nonadjacent to a_{5}. Then $\left\{s, a_{1}^{\prime}, a_{5}, a_{3}\right\}$ is a claw, a contradiction. Consequently A_{1} is complete to A_{5}, and similarly A_{2} to A_{3}. Since every vertex in $V(G) \backslash W$ is either complete or anticomplete to A_{i} for $i=1,2$, it follows that $\left(A_{1}, A_{2}\right)$ is a homogeneous pair, nondominating since $A_{4} \neq \emptyset$; and so by $3.3, A_{1}, A_{2}$ both have cardinality 1 , since G is not decomposable. This proves (3).
(4) A_{3}, A_{4}, A_{5} are cliques.

For if $a_{3}, a_{3}^{\prime} \in A_{3}$ then they are adjacent since $\left\{s, a_{3}, a_{3}^{\prime}, c_{1}\right\}$ is not a claw, and so A_{3} is a clique, and similarly so is A_{5}. Now let $a_{1} \cdots-a_{5}-a_{1}$ be in \mathcal{C}, and let $a_{4}^{\prime} \in A_{4}$ be different from a_{4}. Since A_{4}
is disjoint from A_{3}, A_{5}, it follows that $3,5 \notin P\left(a_{4}^{\prime}\right)$; and since $4 \in P\left(a_{4}^{\prime}\right)$ and $P\left(a_{4}^{\prime}\right)$ is an interval, it follows that $P\left(a_{4}^{\prime}\right) \subseteq\left\{3 \frac{1}{2}, 4,4 \frac{1}{2}\right\}$. In particular, relative to $a_{1}-\cdots-a_{5}-a_{1}, a_{4}^{\prime}$ has position one of $3 \frac{1}{2}, 4,4 \frac{1}{2}$, and therefore is adjacent to a_{4}. This proves that A_{4} is a clique, and therefore proves (4).

For $i=3,5$, let A_{i}^{\prime} be the set of members of A_{i} with a nonneighbour in A_{4}.
(5) A_{3}^{\prime} is complete to $A_{5}^{\prime} ; A_{3}^{\prime}$ is anticomplete to $A_{5} \backslash A_{5}^{\prime}$; and $A_{3} \backslash A_{3}^{\prime}$ is anticomplete to A_{5}^{\prime}.

For suppose that $a_{3} \in A_{3}^{\prime}$ and $a_{5} \in A_{5}^{\prime}$ are nonadjacent. Each of them is not A_{4}-complete and not A_{4}-anticomplete, and therefore by 17.2 , there is a path between them of length 3 with interior in A_{4}. But also $a_{5}-c_{1}-c_{2}-a_{3}$ is a path, and the union of these two paths is a 6 -hole, contrary to hypothesis. This proves the first assertion of (5). Now suppose that $a_{3} \in A_{3}^{\prime}$ and $a_{5} \in A_{5} \backslash A_{5}^{\prime}$ are adjacent. Choose $a_{4} \in A_{4}$ nonadjacent to a_{3}. Since $a_{5} \notin A_{5}^{\prime}$, it follows that a_{4}, a_{5} are adjacent; but then $\left\{a_{5}, a_{3}, a_{4}, c_{1}\right\}$ is a claw, a contradiction. Thus A_{3}^{\prime} is anticomplete to $A_{5} \backslash A_{5}^{\prime}$, and the third assertion of (5) follows by symmetry. This proves (5).
(6) One of $A_{3}^{\prime}, A_{5}^{\prime}$ is empty.

For suppose they are both nonempty. Choose $a_{3}^{\prime} \in A_{3}^{\prime}$ and $a_{5}^{\prime} \in A_{5}^{\prime}$. Choose $a_{4}, a_{4}^{\prime} \in A_{4}$ with a_{4} adjacent to a_{3}^{\prime} and a_{4}^{\prime} nonadjacent to a_{3}^{\prime}. Since $\left\{a_{5}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}, c_{1}\right\}$ is not a claw, a_{4}^{\prime} is nonadjacent to a_{5}^{\prime}, and since $\left\{a_{3}^{\prime}, a_{5}^{\prime}, a_{4}, c_{2}\right\}$ is not a claw, a_{4} is adjacent to a_{5}^{\prime}. Let \bar{G} be the complement of G. Since \mathcal{C} is connected by proximity, it follows that $\bar{G} \mid\left(A_{3} \cup A_{5}\right)$ is connected, and so $A_{3}^{\prime} \cup\left(A_{5} \backslash A_{5}^{\prime}\right)$ is not complete to $A_{5}^{\prime} \cup\left(A_{3} \backslash A_{3}^{\prime}\right)$. Hence by (4) and (5), there exist $a_{3} \in A_{3} \backslash A_{3}^{\prime}$ and $a_{5} \in A_{5} \backslash A_{5}^{\prime}$, nonadjacent. But then $a_{3}-a_{4}^{\prime}-a_{5}-a_{5}^{\prime}-a_{3}^{\prime}-a_{3}$ is a 5 -hole with a centre a_{4}, contrary to 17.6. This proves (6).
(7) $A_{i}=\left\{c_{i}\right\}$ for $1 \leq i \leq 5$.

For from (6) we may assume that $A_{5}^{\prime}=\emptyset$. Then $\left(A_{3}^{\prime}, A_{4}\right)$ and $\left(A_{3} \backslash A_{3}^{\prime}, A_{5}\right)$ are both homogeneous pairs, by (5), and they are both nondominating because of h, and so by 3.3, $A_{3}^{\prime}, A_{4}, A_{3} \backslash A_{3}^{\prime}, A_{5}$ all have cardinality at most 1 . In particular $A_{4}=\left\{c_{4}\right\}$ and $A_{5}=\left\{c_{5}\right\}$. Since every vertex in A_{3} has a neighbour in A_{4}, it follows that $A_{3}^{\prime}=\emptyset$, and therefore $A_{3}=\left\{c_{3}\right\}$. From (3), this proves (7).

For $1 \leq i \leq 5$ let H_{i} be the set of all hats in position $i+2 \frac{1}{2}$, and let S_{i} be the set of all stars in this position. Thus $h \in H_{4}$ and $s \in S_{4}$. From 4.3, each H_{i} and each S_{i} is a clique. From (7), we see that $V(G)$ is the union of $H_{1}, \ldots, H_{5}, S_{1}, \ldots, S_{5}$ and $V(C)$.
(8) The following hold:

- For $1 \leq i, j \leq 5, H_{i}$ is complete to S_{j} if $j=i+1$ or $j=i-1$, and otherwise H_{i} is anticomplete to S_{j}
- For $1 \leq i<j \leq 5, H_{i}$ is anticomplete to H_{j}
- For $1 \leq i \leq 5$, if $H_{i} \neq \emptyset$ then S_{i} is anticomplete to S_{i-1}, S_{i+1}
- For $1 \leq i \leq 5$, if $H_{i} \neq \emptyset$ then S_{i} is complete to S_{i-2}, S_{i+2}
- For $1 \leq i \leq 5$, if $H_{i}, S_{i} \neq \emptyset$ then S_{i-1} is complete to S_{i+1}.

For the first claim follows from 8.2. No two hats in consecutive positions are adjacent, by 8.2, and no two hats in distinct nonconsecutive positions are adjacent, by 17.6 , since the union of two such adjacent hats with C would be a $(2,1,1)$-prism. Hence the second claim holds. The third and fourth claims are trivial if $S_{i}=\emptyset$, so we may assume that S_{i}, H_{i} are both nonempty; and therefore, since S_{4}, H_{4} are nonempty by hypothesis, we may assume that $i=4$. Since $S_{3} \cup S_{4} \cup\left\{h, c_{4}\right\}$ includes no claw, S_{3} is anticomplete to S_{4}, and similarly S_{4} to S_{5}. This proves the third claim. Since $\left\{c_{1}, s\right\} \cup S_{3} \cup S_{5}$ includes no claw, S_{3} is complete to S_{5}. Since $\left\{c_{1}, h\right\} \cup S_{2} \cup S_{4}$ includes no claw, S_{2} is complete to S_{4} and similarly S_{1} is complete to S_{4}. This proves the fourth claim. For the final claim, suppose that $s_{i} \in S_{i}$. By the third claim, S_{i} is anticomplete to S_{i-1}, S_{i+1}, and since $\left\{c_{i+2}, s_{i}\right\} \cup S_{i-1} \cup S_{i+1}$ includes no claw, S_{i-1} is complete to S_{i+1}. This proves (8).

If S_{i} is anticomplete to S_{i+1} and complete to S_{i+2} for $1 \leq i \leq 5$, then by (8), G is a line graph and the theorem holds. Therefore, in view of (8), we may assume the following (for a contradiction):
(9) Either S_{i} is not anticomplete to S_{i+1} for some $i \in\{1,2,5\}$ or S_{i} is not complete to S_{i+2} for some $i \in\{1,5\}$.
(10) $H_{1}, H_{2}=\emptyset$.

For suppose that there exists $h_{1} \in H_{1}$ say. Since $S_{2} \cup S_{3} \cup\left\{s, h_{1}\right\}$ includes no claw, S_{2} is anticomplete to S_{3}. By (8), S_{1} is anticomplete to S_{5}, S_{2} and complete to S_{3}. By (9), there exist $s_{2} \in S_{2}$ and $s_{5} \in S_{5}$, nonadjacent. Then $s-c_{2}-s_{5}-c_{4}-c_{5}-s$ is a 5 -hole; and relative to this 5 -numbering, c_{3}, h are a star and a hat both in position $2 \frac{1}{2}$, and s_{2} is a clone in position 5 , contrary to (7) applied to this 5 -hole. Thus there is no such h_{1}, and similarly $H_{2}=\emptyset$. This proves (10).

By (7), there are no clones relative to $c_{1} \cdots \cdots-c_{5}-c_{1}$, and so by 17.5 there are hats in at least three positions. By (10) it follows that H_{3}, H_{5} are both nonempty. From (8), S_{3} is complete to S_{1} and anticomplete to S_{2}; and S_{5} is complete to S_{2} and anticomplete to S_{1}. By (9), S_{1} is not anticomplete to S_{2}. Since $S_{1} \cup S_{2} \cup S_{3} \cup H_{5}$ includes no claw, $S_{3}=\emptyset$, and similarly $S_{5}=\emptyset$. But then $\left(S_{1} \cup\left\{c_{3}\right\}, S_{2} \cup\left\{c_{5}\right\}\right)$ is a homogeneous pair, nondominating because of h, contrary to 3.3. Hence our assumption in (9) was false. This proves 17.7.

Let the paths $a_{i}-b_{i}(i=1,2,3)$ form a ($1,1,1$)-prism. For $1 \leq i \leq 3$, a hat on $a_{i}-b_{i}$ means a vertex adjacent to a_{i}, b_{i} and nonadjacent to the other four vertices in $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$. The following completes the second step of the proof of 17.1.
17.8 Let G be claw-free, such that G has no hole of length >5, every 5 -hole in G is dominating, $\alpha(G) \geq 4$, and G is not decomposable. If G contains a $(1,1,1)$-prism then G is a line graph.
Proof. By 17.7, we may assume that no 5 -hole has a coronet.
(1) G contains a $(1,1,1)$-prism with a hat.

For let the paths $a_{i}-b_{i}(i=1,2,3)$ form a (1,1,1)-prism, where $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles. Suppose first that $A \cup B$ is dominating. By hypothesis, $\alpha(G) \geq 4$, and so there exist
pairwise disjoint vertices v_{1}, \ldots, v_{4}. For $1 \leq i \leq 4$, let N_{i} be the set of neighbours of v_{i} in $A \cup B$, together with v_{i} itself if $v_{i} \in A \cup B$. Thus each $\left|N_{i}\right| \geq 2$, and if $\left|N_{i}\right|=2$ then v_{i} is a hat, so we may assume that $\left|N_{i}\right| \geq 3$ for each i. If $\left|N_{i}\right|=3$, then $v_{i} \notin A \cup B$ and $N_{i}=A$ or B; and so by 4.3, $\left|N_{i}\right|=3$ for at most two values of i. Consequently $\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|+\left|N_{4}\right| \geq 14$, and therefore we may assume that a_{1} belongs to N_{i} for at least three values of i. But then G contains a claw, a contradiction. So if $A \cup B$ is dominating then (1) holds.

Now assume that $A \cup B$ is not dominating. Let $z \in V(G)$ have no neighbours in $A \cup B$, and let N be the set of neighbours of z. For $n \in N$, let $Y(n)$ be the set of neighbours of n in $A \cup B$. By 17.4, $Y(n)$ is nonempty; and since G is claw-free, $Y(n)$ is a clique. We claim we may assume that either $Y(n)=A$ or $Y(n)=B$. For we may assume that $a_{1} \in Y(n)$. If $b_{1} \in Y(n)$ then since $Y(n)$ is a clique, it follows that n is a hat as required. We assume then that $b_{1} \notin Y(n)$. By 4.2, $a_{2}, a_{3} \in Y(n)$, and since $Y(n)$ is a clique, we deduce that $Y(n)=A$. Thus for every $n \in N, Y(n)=A$ or $Y(n)=B$. Suppose there exist $m, n \in N$ with $Y(m)=A$ and $Y(n)=B$. If m, n are not adjacent, then the paths $m-z-n, a_{1}-b_{1}$ and $a_{2}-b_{2}$ form a ($2,1,1$)-prism, contrary to 17.6. If m, n are adjacent, then the paths $m-n, a_{1}-b_{1}, a_{2}-b_{2}$ form a ($1,1,1$)-prism with a hat z on $m-n$, as required. Thus we may assume that $Y(n)=A$ for all $n \in N$. By 4.3, N is a clique. Let X be the set of all vertices in $V(G) \backslash(N \cup\{z\})$ with a neighbour in N. We claim that X is a clique. Let $x_{1}, x_{2} \in X$, and assume they are nonadjacent. Thus not both $x_{1}, x_{2} \in A$, say $x_{1} \notin A$. Since some vertex in N is adjacent to x_{1} and to $z, 4.2$ implies that x_{1} is complete to A, and therefore $x_{2} \notin A$. If x_{1}, x_{2} have a common neighbour $n \in N$, then $\left\{n, z, x_{1}, x_{2}\right\}$ is a claw, a contradiction. Thus x_{1}, x_{2} have no common neighbour in N. Let $n_{1}, n_{2} \in N$ be adjacent to x_{1}, x_{2} respectively. Since $\left\{a_{i}, n_{2}, x_{1}, b_{i}\right\}$ is not a claw, it follows that x_{1} is adjacent to b_{i} for $1 \leq i \leq n$ and similarly x_{2} is complete to B. Hence $b_{1}-x_{1}-n_{1}-n_{2}-x_{2}-b_{1}$ is a 5 -hole with a centre a_{1}, contrary to 17.6 . Thus X is a clique, and therefore X is an internal clique cutset (unless $N=\emptyset$, when G is expressible as a 0 -join). Hence G is decomposable, a contradiction. This proves (1).
(2) G contains a (1,1,1)-prism with hats on two different paths.

For by (1) we may choose paths $a_{i}-b_{i}(i=1,2,3)$ forming a ($1,1,1$)-prism, where $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles, such that there is a hat h on $a_{3}-b_{3}$. Choose a step-connected strip (A, \emptyset, B) with $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$, parallel to $\left(\left\{a_{3}\right\},\{h\},\left\{b_{3}\right\}\right)$, and with $A \cup B$ maximal with this property. Since (A, B) is not a nondominating homogeneous pair, by 3.3 , we may assume there is a vertex $v \notin A \cup B$ with a neighbour and a nonneighbour in A. Let N be the set of neighbours of v, and let $a_{1}^{\prime}-a_{2}^{\prime}-b_{2}^{\prime}-b_{1}^{\prime}-a_{1}^{\prime}$ be a step with $a_{1}^{\prime} \in N$ and $a_{2}^{\prime} \notin N$. By $4.2, b_{1}^{\prime} \in N$. If $b_{2}^{\prime} \in N$, then by $4.2, b_{3} \in N$; by $4.1, h \notin N$; by $4.2, B \subseteq N$; and by $4.2, a_{3} \notin N$; and then v can be added to B, contrary to the maximality of $A \cup B$. Thus $b_{2}^{\prime} \notin N$. Suppose that $h \in N$. Since $v-h-a_{3}-a_{2}^{\prime}-b_{2}^{\prime}-b_{1}^{\prime}-v$ is not a 6 -hole, it follows that $a_{3} \in N$, and similarly $b_{3} \in N$. But then $v-a_{3}-a_{2}^{\prime}-b_{2}^{\prime}-b_{1}^{\prime}-v$ is a 5 -hole, and $\left\{a_{1}^{\prime}, h\right\}$ is a coronet for it, a contradiction. Thus $h \notin N$. From 4.2, $a_{3}, b_{3} \notin N$; and so h, v are both hats for the prism formed by $a_{1}^{\prime}-b_{1}^{\prime}, a_{2}^{\prime}-b_{2}^{\prime}$ and $a_{3}-b_{3}$, on different paths. This proves (2).

From (2), we may choose $k \geq 3$, and disjoint cliques $A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{k}$ and C_{1}, \ldots, C_{k} with the following properties (let $A=A_{1} \cup \cdots \cup A_{k}, B=B_{1} \cup \cdots \cup B_{k}$ and $C=C_{1} \cup \cdots \cup C_{k}$):

- $A_{1}, \ldots, A_{k-1}, B_{1}, \ldots, B_{k-1}$ and C_{1}, \ldots, C_{k-1} are all nonempty; and if $k=3$ then A_{3}, B_{3} are both nonempty
- A and B are cliques
- for $1 \leq i, j \leq k$ with $i \neq j, A_{i}$ is anticomplete to B_{j}
- for $1 \leq i \leq k-1, A_{i}$ is complete to B_{i}
- every vertex in A_{k} has a neighbour in B_{k}, and every vertex in B_{k} has a neighbour in A_{k}; and if C_{k} is nonempty then A_{k}, B_{k} are both nonempty and are complete to each other
- for $1 \leq i \leq k, C_{i}$ is complete to $A_{i} \cup B_{i}$, and anticomplete to $A \cup B \backslash\left(A_{i} \cup B_{i}\right)$
- $A \cup B \cup C$ is maximal with these properties.

Note that if C_{k} is nonempty then there is symmetry between C_{k} and C_{1}, \ldots, C_{k-1} (this will be used in the case analysis below).
(3) C_{1}, \ldots, C_{k} are pairwise anticomplete.

For suppose not; then from the symmetry we may assume that $c_{1} \in C_{1}$ is adjacent to $c_{2} \in C_{2}$. Choose $a_{i} \in A_{i}$ and $b_{i} \in B_{i}$ for $i=1,2,3$, such that a_{3}, b_{3} are adjacent (this is possible even if $k=3$). Then $c_{1}-c_{2}-b_{2}-b_{3}-a_{3}-a_{1}-c_{1}$ is a 6 -hole, a contradiction. This proves (3).
(4) For every $v \in V(G) \backslash(A \cup B \cup C)$, let N be the set of neighbours of v in $A \cup B \cup C$; then $N=\emptyset, A, B$ or $A \cup B$.

For suppose first that $N \cap C \neq \emptyset$; there exists $c_{1} \in N \cap C_{1}$, say. Suppose that N meets both $A \backslash A_{1}$ and $B \backslash B_{1}$. By 4.1, $N \cap\left(A \backslash A_{1}\right)$ is complete to $N \cap\left(B \backslash B_{1}\right)$, and so there exists i with $2 \leq i \leq k$ such that $N \cap A \subseteq A_{1} \cup A_{i}$ and $N \cap B \subseteq B_{1} \cup B_{i}$. Choose $a_{i} \in N \cap A_{i}$ and $b_{i} \in N \cap B_{i}$, necessarily adjacent. Choose $j \neq i$ with $2 \leq j \leq k$, and choose $a_{j} \in A_{j}$ and $b_{j} \in B_{j}$, adjacent. For $a_{1} \in A_{1}, v-c_{1}-a_{1}-a_{j}-b_{j}-b_{i}-v$ is not a 6 -hole, and so $a_{1} \in N$. But then $v-a_{1}-a_{j}-b_{j}-b_{i}-v$ is a 5 -hole, and $\left\{a_{i}, c_{1}\right\}$ is a coronet for it, a contradiction. Hence N does not have nonempty intersection with both $A \backslash A_{1}$ and $B \backslash B_{1}$. Suppose next that N meets $A \backslash A_{1}$ (and therefore does not meet $B \backslash B_{1}$). If $A \backslash A_{1} \nsubseteq N$, we may choose distinct i, j with $2 \leq i, j \leq k$, such that $a_{i} \in N$ and $a_{j} \notin N$; but then $\left\{a_{i}, a_{j}, v\right\} \cup B_{i}$ includes a claw, a contradiction. Thus $A \backslash A_{1} \subseteq N$. 4.2 (with A_{1}, A_{2}, B_{2}) implies that $A_{1} \subseteq N .4 .1$ (with C_{1}, C_{2}, A_{3}) implies that $N \cap C_{2}=\emptyset$, and similarly $N \cap C \subseteq C_{1}$. If $b_{1} \in B_{1}$ is nonadjacent to v, then $v-c_{1}-b_{1}-b_{3}-a_{3}-v$ is a 5 -hole (where $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$ are adjacent), and it does not dominate the vertices in C_{2}, a contradiction. Thus $B_{1} \subseteq N$. By 4.2 (with C_{1}, B_{1}, B_{2}), $C_{1} \subseteq N$; but then v can be added to A_{1}, a contradiction. Finally, if N meets neither of $A \backslash A_{1}$ and $B \backslash B_{1}$, then $A_{2} \cup A_{3} \cup B_{2} \cup B_{3}$ includes a 4-hole that does not dominate either of v, c_{1}, contrary to 17.4. This proves that $N \cap C=\emptyset$.

Next assume that $N \cap A_{1} \neq \emptyset .4 .2$ (with C_{1}, A_{1}, A_{i}) implies that $A \backslash A_{1} \subseteq N$. In particular, $N \cap A_{2} \neq \emptyset$, and so 4.2 (with C_{2}, A_{2}, A_{1}) implies that $A \subseteq N$. If N intersects $B \backslash B_{k}$, then the same argument implies that $B \subseteq N$ and the theorem holds. We assume then that $N \cap B \subseteq B_{k}$. If $N \cap B_{k}=\emptyset$ then again the theorem holds; and otherwise v can be added to A_{k}, a contradiction.

Thus we may assume that $N \cap A \subseteq A_{k}$ and $N \cap B \subseteq B_{k}$; and since we may assume that $N \neq \emptyset$, it follows that $C_{k}=\emptyset$. By 4.2 (with $A_{1}, N \cap A_{k}, B_{k} \backslash N$), it follows that $N \cap A_{k}$ is anticomplete to $B_{k} \backslash N$, and similarly $N \cap B_{k}$ is anticomplete to $A_{k} \backslash N$. Also, $N \cap A_{k}$ is complete to $N \cap B_{k}$, for
otherwise G contains a (2,1,1)-prism, contrary to 17.6. Let $C_{k}^{\prime}=\{v\}, A_{k}^{\prime}=A_{k} \cap N, B_{k}^{\prime}=B_{k} \cap N$, $A_{k+1}^{\prime}=A_{k} \backslash N$, and $B_{k+1}^{\prime}=B_{k} \backslash N$ (and set $A_{i}^{\prime}=A_{i}$ and so on, for $\left.1 \leq i<k\right)$; then this contradicts the maximality of $A \cup B \cup C$. This proves (4).

Let A_{0}, B_{0}, M, Z be the sets of vertices $v \in V(G) \backslash(A \cup B \cup C)$ whose set of neighbours in $A \cup B \cup C$ is $A, B, A \cup B$ and \emptyset respectively. By 4.3, A_{0}, B_{0}, M are cliques. Suppose that there exist adjacent $a \in A_{0}$ and $b \in B_{0}$. If $C_{k}=\emptyset$, we can add a to A_{k} and b to B_{k}, and if $C_{k} \neq \emptyset$, we can define $A_{k+1}=\{a\}$ and $B_{k+1}=\{b\}$, in either case contradicting the maximality of $A \cup B \cup C$. Thus A_{0} is anticomplete to B_{0}. Since $A_{1} \cup C_{1} \cup A_{0} \cup M$ includes no claw, M is complete to A_{0} and similarly to B_{0}. Suppose that there exists $z \in Z$, and let N be the set of neighbours of z. Then by 17.4, $N \subseteq A_{0} \cup B_{0} \cup M$, and $N \cap M=\emptyset$ since $M \cap A_{1} \cup B_{2} \cup\{z\}$ includes no claw. If N meets both A_{0} and B_{0}, then G contains a $(2,1,1)$-prism, contrary to 17.6 , so we may assume that $N \subseteq A_{0}$. Since G is claw-free and Z is stable by 17.4 , no other member of Z has a neighbour in N. Hence every vertex in $V(G) \backslash(N \cup\{z\})$ is $\{z\}$-anticomplete, and either complete or anticomplete to N. By 3.2, applied to $N,\{z\}$, it follows that G is decomposable, a contradiction. This proves that $Z=\emptyset$. Moreover, $\left(A_{k}, B_{k}\right)$ is a homogeneous pair, nondominating since $C_{1} \neq \emptyset$, and so A_{k}, B_{k} both have cardinality ≤ 1, and therefore A_{k} is complete to B_{k}. But then G is a line graph. This proves 17.8.

The following completes the third step of the proof of 17.1.
17.9 Let G be claw-free, such that G has a 5-hole, G has no hole of length >5, every 5 -hole in G is dominating, $\alpha(G) \geq 4$, and G is not decomposable. If no 5 -hole has a coronet, and G contains no $(1,1,1)$-prism, then G is a circular interval graph.

Proof. By 9.3 it suffices to show that no 5 -hole has a coronet, crown, hat-diagonal, star-diagonal or centre. Let C be a 5 -hole. By hypothesis, C has no coronet. Also, if $\left\{s_{1}, s_{2}\right\}$ is a crown for C, then $G \mid\left(V(C) \cup\left\{s_{1}, s_{2}\right\}\right)$ contains a (1,1,1)-prism (delete the middle of the three common neighbours of s_{1}, s_{2} in C), a contradiction. C has no hat-diagonal since by $17.6, G$ contains no ($2,1,1$)-prism. By 17.6, C has no centre; so it remains to prove that C has no star-diagonal.

Suppose that it does; let C have vertices $c_{1} \cdots \cdots-c_{5}-c_{1}$ in order, and let s_{1}, s_{2} be adjacent stars, adjacent respectively to c_{1}, \ldots, c_{4} and to $c_{3}, c_{4}, c_{5}, c_{1}$. Since C has no coronet, there are no hats in positions $2 \frac{1}{2}, 4 \frac{1}{2}$; and there is not both a hat and a star in position $3 \frac{1}{2}$. Consequently, the first and third outcomes of 17.5 are impossible, and so 17.5 implies that there is a stable set X with $|X|=4$, consisting of two hats x_{1}, x_{2} in positions $\frac{1}{2}$ and $1 \frac{1}{2}$ respectively, and two clones x_{3}, x_{4} in positions 3,4 respectively. By $8.2, s_{1}$ is adjacent to x_{2}, x_{3} and not to x_{1}, and s_{2} is adjacent to x_{1}, x_{4} and not x_{2}. If x_{3} is adjacent to s_{2} then $\left\{s_{2}, x_{1}, x_{3}, x_{4}\right\}$ is a claw, while if x_{3} is not adjacent to s_{2} then $\left\{s_{1}, s_{2}, x_{2}, x_{3}\right\}$ is a claw, in either case a contradiction. Hence C has no star-diagonal, and 9.3 implies that G is a circular interval graph. This proves 17.9.

For the fourth step of the proof of 17.1, we use the following.
17.10 Let G be claw-free, such that G has a hole of length $4, G$ has no hole of length $>4, \alpha(G) \geq 4$, and G is not decomposable. Then G is a line graph.

Proof. By 17.8, we may assume that G contains no ($1,1,1$)-prism. Let $c_{1}-\cdots-c_{4}-c_{1}$ be a 4 -hole. It is dominating, by 9.2 , since G contains no $(1,1,1)$-prism. By hypothesis, there is a stable set X with $|X|=4$. Thus each member of X either belongs to $\left\{c_{1}, \ldots, c_{4}\right\}$ or has at least two neighbours
in this set. If say $c_{1} \in X$, then $c_{2}, c_{4} \notin X$, and each is adjacent to at most one member of $X \backslash\left\{c_{1}\right\}$, which is impossible. Thus $c_{1}, \ldots, c_{4} \notin X$. Also, c_{1}, \ldots, c_{4} each are adjacent to at most two members of X, and so equality holds, and therefore each member of X is a hat relative to $c_{1}-\cdots-c_{4}-c_{1}$, all in different positions. Let $X=\left\{x_{1}, \ldots, x_{4}\right\}$, where x_{i} is a hat adjacent to c_{i}, c_{i+1}.

Consequently there are four nonempty cliques A_{1}, \ldots, A_{4}, pairwise disjoint, such that:

- A_{i} is complete to A_{i+1} and anticomplete to A_{i+2} for $1 \leq i \leq 4$ (reading subscripts modulo 4)
- x_{i} is complete to A_{i}, A_{i+1} and anticomplete to A_{i+2}, A_{i+3}, for $1 \leq i \leq 4$.

Choose A_{1}, \ldots, A_{4} with maximal union W. Let B be the set of all vertices $v \in V(G) \backslash W$ that are W-complete. For $i=1,2,3,4$, let H_{i} be the set of all $v \in V(G) \backslash W$ such that v is complete to $A_{i} \cup A_{i+1}$ and anticomplete to $A_{i+2} \cup A_{i+3}$. Thus $x_{i} \in H_{i}(1 \leq i \leq 4)$.
(1) $V(G)=W \cup B \cup H_{1} \cup H_{2} \cup H_{3} \cup H_{4}$.

For suppose that $v \in V(G) \backslash W$. We claim that $v \in B \cup H_{1} \cup H_{2} \cup H_{3} \cup H_{4}$. For let N be the set of neighbours of v. Since every 4 -hole is dominating, we may assume that $A_{1} \subseteq N$. 4.2 (with A_{4}, A_{1}, A_{2}) implies that N includes one of A_{4}, A_{2}, and from the symmetry we may assume that $A_{2} \subseteq N$. Suppose that N intersects but does not include A_{3}. Choose $a_{3}, a_{3}^{\prime} \in A_{3}$ such that $a_{3} \in N$ and $a_{3}^{\prime} \notin N$. Then 4.2 (with $x_{1}, A_{2}, a_{3}^{\prime}$) implies that $x_{1} \in N ; 4.1$ implies that $x_{4} \notin N$; 4.2 (with $a_{3}^{\prime}, A_{4}, x_{4}$) implies that $N \cap A_{4}=\emptyset ; 4.2$ (with x_{2}, a_{3}, A_{4}) implies that $x_{2} \in N$; and then $v-x_{2}-a_{3}^{\prime}-a_{4}-a_{1}-v$ is a 5 -hole (where $a_{1} \in A_{1}$ and $a_{4} \in A_{4}$), a contradiction. Thus N either includes A_{3} or is disjoint from A_{3}, and the same holds for A_{4}. If N is disjoint from both A_{3}, A_{4} then $v \in H_{1}$ as claimed, and if N includes both A_{3}, A_{4} then $v \in B$ as claimed. We assume therefore that N includes just one of them, say A_{3}, and is disjoint from A_{4}. By $4.2, x_{1}, x_{2} \in N$, and by $4.1, x_{3}, x_{4} \notin N$, and so v can be added to A_{2}, contrary to the maximality of W. This proves (1).

It follows from (1) that for $1 \leq i \leq 4$, all members of A_{i} are twins, and therefore $\left|A_{i}\right|=1$, and so $A_{i}=\left\{c_{i}\right\}$. For $1 \leq i \leq 4$, there are no edges between H_{i} and H_{i+1}, since G has no 5 -hole, and there is no edge between H_{i} and H_{i+2} since G contains no (1,1,1)-prism. Thus H_{1}, \ldots, H_{4} are pairwise anticomplete. By 4.3, each H_{i} is a clique. Let B_{1} be the set of all $v \in B$ that are complete to $H_{1} \cup H_{3}$ and anticomplete to $H_{2} \cup H_{4}$, and let B_{2} be those that are complete to $H_{2} \cup H_{4}$ and anticomplete to $H_{1} \cup H_{3}$. We claim that $B=B_{1} \cup B_{2}$. For let $b \in B$, and let N be the set of its neighbours. 4.2 (with H_{1}, c_{2}, H_{2}) implies that N includes one of H_{1}, H_{2}, say H_{1}. By 4.1, N is disjoint from at least two of H_{2}, H_{3}, H_{4}. By 4.2 (with H_{2}, c_{3}, H_{3} and $\left.H_{3}, c_{3}, H_{4}\right), H_{3} \subseteq N$, and so $N \cap\left(H_{2} \cup H_{4}\right)=\emptyset$. Thus $v \in B_{1}$. This proves that $B=B_{1} \cup B_{2}$. Consequently all members of H_{i} are twins, and so $H_{i}=\left\{x_{i}\right\}$ for $1 \leq i \leq 4$. Now if $b_{1} \in B_{1}$ and $b_{2} \in B_{2}$ then $\left\{b_{1}, b_{2}, x_{1}, x_{3}\right\}$ is not a claw, and so b_{1}, b_{2} are nonadjacent. Thus B_{1} is anticomplete to B_{2}. By 4.3, B_{1}, B_{2} are cliques, and so for $i=1,2$, all members of B_{i} are twins. Hence $\left|B_{1}\right|,\left|B_{2}\right| \leq 1$. But then G is a line graph. This proves 17.10.

Finally, we handle graphs without any holes at all, in the following.
17.11 Let G be claw-free, such that G has no holes and $\alpha(G) \geq 4$. Then G is decomposable.

Proof. For a contradiction, suppose that G is not decomposable.
(1) There do not exist distinct $x_{1}, \ldots, x_{4} \in V(G)$ such that $x_{1} x_{2}, x_{3} x_{4}$ are edges and $\left\{x_{1}, x_{2}\right\}$ is anticomplete to $\left\{x_{3}, x_{4}\right\}$.

For suppose that such x_{1}, \ldots, x_{4} exist. Choose connected sets A_{1}, A_{2} with $A_{1} \cup A_{2}$ maximal such that $x_{1}, x_{2} \in A_{1}, x_{3}, x_{4} \in A_{4}, A_{1} \cap A_{2}=\emptyset$, and A_{1} is anticomplete to A_{2}. Let X be the set of vertices in $V(G) \backslash\left(A_{1} \cup A_{2}\right)$ with a neighbour in $A_{1} \cup A_{2}$. We claim that X is a clique; for let $u, v \in X$. By the maximality of $A_{1} \cup A_{2}$, both u, v have neighbours in both A_{1} and A_{2}; and so for $i=1,2$, there is a path P_{i} between u, v with interior in A_{i}. If u, v are nonadjacent, $P_{1} \cup P_{2}$ is a hole, a contradiction. This proves that X is a clique, and therefore it is an internal clique cutset, since $\left|A_{1}\right|,\left|A_{2}\right|>1$, a contradiction. This proves (1).

Say a subset $Y \subseteq V(G)$ is split if $|Y| \geq 4$ and every connected subset $C \subseteq Y$ satisfies $|C| \leq|Y|-2$. Since $\alpha(G) \geq 4$, there is a split subset $Y \subseteq V(G)$. Choose Y maximal, and let the components of $G \mid Y$ be C_{1}, \ldots, C_{k}. Let $V(G) \backslash Y=X$. For each $x \in X$, we observe that x has neighbours in at most two of C_{1}, \ldots, C_{k}, since G is claw-free; and if it has neighbours in at most one of C_{1}, \ldots, C_{k}, then $Y \cup\{x\}$ is split, a contradiction. Thus each $x \in X$ has neighbours in exactly two of C_{1}, \ldots, C_{k}. We claim that X is a clique. For let $u, v \in X$, and suppose they are nonadjacent. Choose $1 \leq i<i^{\prime} \leq k$ such that u has neighbours in C_{i} and in $C_{i^{\prime}}$, and define j, j^{\prime} similarly for v. If $\left\{i, i^{\prime}\right\} \neq\left\{j, j^{\prime}\right\}$, then we may assume that $i \neq j, j^{\prime}$ and $j \neq i, i^{\prime}$; choose $a \in C_{i}$ adjacent to u and $b \in C_{j}$ adjacent to v, and then the existence of x, u, y, b is contrary to (1). Hence $\left\{i, i^{\prime}\right\}=\left\{j, j^{\prime}\right\}$; but then there are paths joining u, v with interior in C_{i} and in $C_{i^{\prime}}$, and their union is a hole, a contradiction. This proves that X is a clique. Since Y is split and $|Y| \geq 4$, there is a partition Y_{1}, Y_{2} of Y such that $\left|Y_{1}\right|,\left|Y_{2}\right| \geq 2$ and Y_{1} is anticomplete to Y_{2}; and so X is an internal clique cutset, a contradiction. Thus G is decomposable. This proves 17.11, and therefore completes the proof of 17.1.

18 Non-antiprismatic graphs

In view of 17.1 , to complete the proof of 2.1 it remains to study graphs G with $\alpha(G) \leq 3$ that are not antiprismatic, and that is the topic of this section. We need a number of lemmas before the main theorem. A vertex $v \in V(G)$ is simplicial if all neighbours of G are pairwise adjacent. An edge of G is a leaf-edge if one of its ends has degree 1.
18.1 Let G be claw-free, with $\alpha(G) \leq 3$, and let a_{0}, b_{0} be simplicial vertices of G, nonadjacent and with no common neighbour. Then either

- G admits a nondominating or coherent W-join or twins, or
- G is a linear interval graph, and a_{0}, b_{0} are the first and last vertices of the corresponding linear order of $V(G)$, or
- G is the line graph of some graph H, and a_{0}, b_{0} are both leaf-edges of H, or
- there is a graph H with $E(H)=V(G)$, such that a_{0}, b_{0} are leaf-edges of H, and there is a path of H of length 4 with edges a_{0}, a, b, b_{0}, such that G is obtained from $L(H)$ by deleting the edge ab, (and consequently G is expressible as a hex-join), or
- G is 2 -simplicial of antihat type.

In particular, either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{3} \cup \mathcal{S}_{6}$ or G is decomposable.
Proof. We assume that G does not admit a nondominating or coherent W -join or twins. Let A, B and C be the sets of all vertices different from a_{0}, b_{0} that are adjacent to a_{0}, to b_{0} and to neither of a_{0}, b_{0} respectively. Thus $V(G)=A \cup B \cup C \cup\left\{a_{0}, b_{0}\right\}$. Moreover, $A \cup\left\{a_{0}\right\}$ and $B \cup\left\{b_{0}\right\}$ are cliques since a_{0}, b_{0} are simplicial; and C is a clique since if $c_{1}, c_{2} \in C$ are nonadjacent then $\left\{a_{0}, b_{0}, c_{1}, c_{2}\right\}$ is a stable set, contradicting that $\alpha(G) \leq 3$.
(1) $A, B \neq \emptyset$. Moreover, if $a \in A$ and $b \in B$ are adjacent, they have the same neighbours in C.

For suppose that $A=\emptyset$, say. Thus a_{0} has degree 0 . Then $\left(B \cup\left\{b_{0}\right\}, C\right)$ is a homogeneous pair of cliques, nondominating, and so 3.3 implies that $B=\emptyset$. But then a_{0}, b_{0} are twins, a contradiction. This proves the first claim. For the second, note that if $c \in C$ is adjacent to $a \in A$ and not to b say, then $\left\{a, a_{0}, b, c\right\}$ is a claw, a contradiction. This proves (1).
(2) Every vertex in A has at most one neighbour in B, and vice versa.

For let H be the graph with vertex set $A \cup B$ and edge set the edges of G with one end in A and one in B. Let X be any component of H; then by (1), $(X \cap A, X \cap B)$ is a homogeneous pair of cliques, coherent since all X-complete vertices belong to C, and so $|X \cap A|,|X \cap B| \leq 1$. This proves (2).
(3) Every vertex in $A \cup B$ has a neighbour in C; and in particular, $C \neq \emptyset$.

For let A_{0} be the set of vertices in A with no neighbour in C, and define B_{0} similarly. By (1), there are no edges between A_{0} and $B \backslash B_{0}$, and no edges between B_{0} and $A \backslash A_{0}$. Consequently, $\left(A_{0} \cup\left\{a_{0}\right\}, B_{0} \cup\left\{b_{0}\right\}\right)$ is a homogeneous pair of cliques, coherent since a_{0}, b_{0} have no common neighbours. By 3.3 it follows that A_{0}, B_{0} are empty. This proves (3).
(4) G is connected and we may assume that it admits no 1-join.

For A, B are nonempty, and by (3) C is nonempty, and since C is a clique, (3) implies that G is connected. Suppose that G admits a 1-join; let $V(G)=P_{1} \cup Q_{1} \cup P_{2} \cup Q_{2}$, where $P_{1}, Q_{1}, P_{2}, Q_{2}$ are all nonempty and pairwise disjoint, and $Q_{1} \cup Q_{2}$ is a clique, and P_{1} is anticomplete to $P_{2} \cup Q_{2}$, and P_{2} is anticomplete to $P_{1} \cup Q_{1}$. Suppose first that both of P_{1}, P_{2} are cliques. Then $\left(P_{1}, Q_{2}\right)$ is a homogeneous pair of cliques, nondominating since P_{2} is nonempty, and so 3.3 implies that $\left|P_{1}\right|=\left|Q_{1}\right|=1$, and similarly $\left|P_{2}\right|=\left|Q_{2}\right|=1$, and therefore $|V(G)|=4$, contrary to (1) and (3). We may therefore assume that one of P_{1}, P_{2} is not a clique, say P_{1}. Since $\alpha(G) \leq 3$, it follows that $P_{2} \cup Q_{2}$ is a clique; and since G does not admit twins, it follows that $\left|P_{2}\right|=\left|Q_{2}\right|=1$. Let $P_{2}=\left\{p_{2}\right\}, Q_{2}=\left\{q_{2}\right\}$ say. If $x, y \in P_{1}$ are nonadjacent, then x, y have no common neighbour in Q_{1} (since if q_{1} were a common neighbour then $\left\{q_{1}, q_{2}, x, y\right\}$ would be a claw) and they have no common nonneighbour in Q_{1} (for if q_{1} were a common nonneighbour then $\left\{x, y, q_{1}, p_{2}\right\}$ would be stable, contradicting $\alpha(G) \leq 3$). Hence
the set of neighbours of x in Q_{1} is precisely the complement in Q_{1} of the set of neighbours of y in Q_{1}. Since this holds for all nonadjacent pairs $x, y \in P_{1}$, it follows that there is no odd length cycle in the complement graph of $G \mid P_{1}$, and so this graph is bipartite; and consequently P_{1} is the union of two cliques of G, say X, Y. Now not both a_{0}, b_{0} belong to $Q_{1} \cup P_{2} \cup Q_{2}$, since a_{0}, b_{0} are nonadjacent and have no common neighbour; so we may assume that $a_{0} \in X$. The set of nonneighbours of a_{0} in P_{1} is a clique (because it is a subset of Y); and so we may assume that $X=\left(A \cup\left\{a_{0}\right\}\right) \cap P_{1}$ and $Y=P_{1} \backslash X$. For $y \in Y$, since y, a_{0} are nonadjacent, it follows that the set of neighbours of y in Q_{1} is $Q_{1} \backslash A$; and so $Y \cup\left(Q_{1} \backslash A\right)$ is a clique, and Y is anticomplete to $Q_{1} \cap A$. Let X_{1} be the set of vertices in X with a neighbour in $Q_{1} \backslash A$, and $X_{2}=X \backslash X_{1}$. If $x_{1} \in X_{1}$ and $y \in Y$, let $q_{1} \in Q_{1} \backslash A$ be adjacent to x_{1}; then since $\left\{q_{1}, x_{1}, y, q_{2}\right\}$ is not a claw, it follows that x_{1}, y are adjacent. Hence X_{1} is complete to Y. Consequently $\left(X_{2}, Y\right)$ is a homogeneous pair of cliques, nondominating since $P_{2} \neq \emptyset$, and so by $3.3,\left|X_{2}\right|,|Y| \leq 1$ and hence $X_{2}=\left\{a_{0}\right\}$. Moreover, $\left(X_{1}, Q_{1} \backslash A\right)$ is also a nondominating homogeneous pair of cliques, and so 3.3 implies that $\left|X_{1}\right|,\left|Q_{1} \backslash A\right| \leq 1$. Also, every two members of $Q_{1} \cap A$ are twins, and so $\left|Q_{1} \cap A\right| \leq 1$. Hence $|V(G)| \leq 7$, and G is the line graph of some graph H, and since b_{0} is simplicial it follows that a_{0}, b_{0} are both leaf-edges of H, and the theorem holds. This proves (4).
(5) We may assume that G admits no internal clique cutset.

For suppose it does. By (4) and 3.1, we may assume that G is a linear interval graph. Let v_{1}, \ldots, v_{n} be the corresponding ordering of the vertex set. If $\left\{a_{0}, b_{0}\right\}=\left\{v_{1}, v_{n}\right\}$ then the theorem holds, so we may assume that $a_{0}=v_{h}$ and $b_{0}=v_{j}$ say for some h, j with $1 \leq h<j<n$. Since G is connected and $j>1$, it follows that v_{j-1}, v_{j+1} are adjacent to v_{j}. Choose i, k with $1 \leq i<j<k \leq n$ such that v_{i}, v_{k} are adjacent to v_{j}, with i minimum and k maximum. Since v_{h}, v_{j} are nonadjacent, it follows that $h<i$. Since v_{j} is simplicial, all of v_{i}, \ldots, v_{j-1} are adjacent to all of v_{j+1}, \ldots, v_{k}. Since v_{j}, v_{k} are not twins, it follows that $k<n$. Since $\alpha(G) \leq 3,\left\{v_{1}, \ldots, v_{i-1}\right\}$ is a clique. For all m with $j<m \leq n$, if v_{m} is adjacent to any of v_{i}, \ldots, v_{j}, then it is adjacent to v_{j}, and therefore $m \leq k$; and it follows that v_{m} is adjacent to all of v_{i}, \ldots, v_{j}. We deduce that ($\left.\left\{v_{1}, \ldots, v_{i-1}\right\},\left\{v_{i}, \ldots, v_{j}\right\}\right)$ is a homogeneous pair, nondominating since $k<n$. By 3.3, this is impossible. This proves (5).

Let there be k edges between A and B. By (5), C is not an internal clique cutset, and so $k>0$. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$, where for $1 \leq i \leq k a_{i}$ is adjacent to b_{i}, and there are no other edges between A and B. Define $A^{\prime}=\left\{a_{k+1}, \ldots, a_{m}\right\}$, and $B^{\prime}=\left\{b_{k+1}, \ldots, b_{n}\right\}$. For each $c \in C$, let

$$
I_{c}=\left\{i: 1 \leq i \leq k \text { and } c \text { is adjacent to } a_{i}, b_{i} .\right\}
$$

(6) If $c, c^{\prime} \in C$, and $i \in I_{c} \backslash I_{c^{\prime}}$, then a_{i}, b_{i} are the only vertices in $A \cup B$ that are adjacent to c and not to c^{\prime}. In particular, $\left|I_{c} \backslash I_{c^{\prime}}\right| \leq 1$.

For suppose that a_{j} is adjacent to c and not to c^{\prime}, say, where $j \neq i$. Then $\left\{c, c^{\prime}, a_{j}, b_{i}\right\}$ is a claw by (2), a contradiction. This proves (6).

Let j be the maximum cardinality of the sets $I_{c}(c \in C)$. By $(6),\left|I_{c}\right|=j$ or $j-1$ for all $c \in C$. By (3) $j \geq 1$. Let

$$
P=\left\{c \in C:\left|I_{c}\right|=j-1\right\}
$$

and $Q=C \backslash P$. Let Z be the set of vertices in $A^{\prime} \cup B^{\prime}$ with a neighbour in Q. By (6), if $p \in P$ and $q \in Q$, then $I_{p} \subseteq I_{q}$, and every vertex in $A^{\prime} \cup B^{\prime}$ that is adjacent to q is also adjacent to p. In particular, Z is complete to P. By definition, Q is nonempty. Now there are four cases:

- P is empty and $I_{q_{1}}=I_{q_{2}}$ for all $q_{1}, q_{2} \in Q$
- There exist $q_{1}, q_{2} \in Q$ with $I_{q_{1}} \neq I_{q_{2}}$
- There exist $p_{1}, p_{2} \in P$ with $I_{p_{1}} \neq I_{p_{2}}$, and
- P is nonempty, $I_{q_{1}}=I_{q_{2}}$ for all $q_{1}, q_{2} \in Q$, and $I_{p_{1}}=I_{p_{2}}$ for all $p_{1}, p_{2} \in P$.

We treat these cases separately.
(7) If P is empty and $I_{q_{1}}=I_{q_{2}}$ for all $q_{1}, q_{2} \in Q$ then the theorem holds.

For then by (3), $j=k$ and $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right\}$ is complete to C, and so ($\left\{a_{1}, \ldots, a_{k}\right\},\left\{b_{1}, \ldots, b_{k}\right\}$) is a coherent homogeneous pair of cliques. By $3.3, k=1$. By (5), we may assume that $C \cup\left\{a_{1}\right\}$ is not an internal clique cutset, and so $m=1$, and similarly $n=1$. Hence all members of C are twins, and so $|C|=1$, and the third outcome of the theorem holds. This proves (7).
(8) If there exist $q_{1}, q_{2} \in Q$ with $I_{q_{1}} \neq I_{q_{2}}$ then the theorem holds.

For then let X be the set of neighbours of q_{1} in $A^{\prime} \cup B^{\prime}$. By (5), q_{1}, q_{2} have the same neighbours in $A^{\prime} \cup B^{\prime}$. Thus X is the set of neighbours of q_{2} in $A^{\prime} \cup B^{\prime}$. For any third member $q \in Q$, I_{q} is different from one of $I_{q_{1}}, I_{q_{2}}$, and so by the same argument, X is the set of neighbours of q in $A^{\prime} \cup B^{\prime}$. Consequently Q is complete to X and anticomplete to $\left(A^{\prime} \cup B^{\prime}\right) \backslash X$. Hence $X=Z$, and therefore X is complete to P and hence to C.

Choose $q_{1}, q_{2} \in Q$ with $I_{q_{1}} \neq I_{q_{2}}$, and let $Y=I_{q_{1}} \cap I_{q_{2}}$. Now $I_{p}=Y$ for every $p \in P$, by (6). Suppose that there exists $q_{3} \in Q$ with $Y \nsubseteq I_{q_{3}}$. (Hence $P=\emptyset$.) Let $Y^{\prime}=I_{q_{1}} \cup I_{q_{2}}$. Since $\left|I_{q} \cup I_{q^{\prime}}\right| \leq j+1$ for all $q, q^{\prime} \in Q$, it follows that $\left|Y^{\prime}\right|=j+1$ and $I_{q_{3}} \subseteq Y^{\prime}$; and since no subset $Y^{\prime \prime} \subseteq Y^{\prime}$ with $\left|Y^{\prime \prime} i\right| \leq j-1$ has intersection of cardinality $\geq j-1$ with each of $I_{q_{1}}, I_{q_{2}}, I_{q_{3}}$, it follows that $I_{q} \subseteq Y^{\prime}$ for all $q \in Q$. By (3), $j+1=k$. Moreover, there do not exist $q, q^{\prime} \in Q$ with $I_{q}=I_{q^{\prime}}$, since then q, q^{\prime} would be twins. Consequently, G is 2 -simplicial of antihat type, and the theorem holds.

We may therefore assume that $Y \subseteq I_{q}$ for all $q \in Q$. If $p \in P$ has a neighbour $a \in A \backslash Z$ and $b \in B \backslash Z$ then $\left\{p, q_{1}, a, b\right\}$ is a claw, a contradiction; so $P=P_{1} \cup P_{2}$ where P_{1}, P_{2} are the sets of vertices in P anticomplete to $A^{\prime} \backslash Z, B^{\prime} \backslash Z$ respectively. Since $I_{p}=Y$ for all $p \in P$, it follows that $\left(P_{1}, A^{\prime} \backslash Z\right)$ is a homogeneous pair, nondominating because of b_{0}, and so $\left|P_{1}\right|,\left|A^{\prime} \backslash Z\right| \leq 1$; and similarly $\left|P_{2}\right|,\left|B^{\prime} \backslash Z\right| \leq 1$. Moreover $\left(\left\{a_{i}: i \in Y\right\} \cup\left(A^{\prime} \cap Z\right),\left\{b_{i}: i \in Y\right\} \cup\left(B^{\prime} \cap Z\right)\right.$) is a coherent homogeneous pair of cliques, and so by $3.3,|Y| \leq 1$, that is, $j \leq 2$; and moreover, either $j=1$ or $A^{\prime} \cap Z=B^{\prime} \cap Z=\emptyset$. But then in either case G is the line graph of a graph H such that a_{0}, b_{0} are both leaf-edges of H, and the theorem holds. This proves (8).
(9) If there exist $p_{1}, p_{2} \in P$ with $I_{p_{1}} \neq I_{p_{2}}$, then the theorem holds.

For let $Y=I_{p_{1}} \cup I_{p_{2}}$; then $|Y|=j$. By (6), $I_{q}=Y$ for all $q \in Q$. Choose $q \in Q$; then by (6), $I_{p} \subseteq I_{q}$ and therefore $I_{p} \subseteq Y$, for all $p \in P$. By (3), $j=k$, and so Q is complete to ($A \backslash A^{\prime}$) $\cup\left(B \backslash B^{\prime}\right)$. Let W be the set of neighbours of p_{1} in $A^{\prime} \cup B^{\prime}$. By (6), W is also the set of neighbours in $A^{\prime} \cup B^{\prime}$ of p_{2}. Moreover, if $p \in P$ then I_{p} is different from one of $I_{p_{1}}, I_{p_{2}}$, and so W is the set of neighbours of p in $A^{\prime} \cup B^{\prime}$. We deduce that P is complete to W and anticomplete to $\left(A^{\prime} \cup B^{\prime}\right) \backslash W$. But by (3), every vertex in $A^{\prime} \cup B^{\prime}$ has a neighbour in C, and Z is complete to P; so every vertex in $A^{\prime} \cup B^{\prime}$ has a neighbour in P, and therefore belongs to W. We deduce that P is complete to $A^{\prime} \cup B^{\prime}$. If $q \in Q$ has nonneighbours $a^{\prime} \in A^{\prime}$ and $b^{\prime} \in B^{\prime}$, then $\left\{p_{1}, q, a^{\prime}, b^{\prime}\right\}$ is a claw, a contradiction; so every member of Q is either complete to A^{\prime} or complete to B^{\prime}. Let Q_{1} be those complete to B^{\prime}, and Q_{2} those complete to A^{\prime}. Since (Q_{1}, A^{\prime}) is a homogeneous pair of cliques, nondominating because of b_{0}, 3.3 implies that $\left|Q_{1}\right|,\left|A^{\prime}\right| \leq 1$, and similarly $\left|Q_{2}\right|,\left|B^{\prime}\right| \leq 1$. Now there do not exist $p, p^{\prime} \in P$ with $I_{p}=I_{p^{\prime}}$, because they would be twins. Consequently, if $|Q| \leq 1$ then G is 2-simplicial of antihat type; so we may assume that $Q_{1}=\left\{q_{1}\right\}$ and $Q_{2}=\left\{q_{2}\right\}$, and $Q_{1} \cap Q_{2}=\emptyset$. In particular, q_{1} is not complete to A^{\prime}, and so A^{\prime} is nonempty; let $A^{\prime}=\left\{a^{\prime}\right\}$ say, where q_{1}, a^{\prime} are nonadjacent. Similarly, $B^{\prime}=\left\{b^{\prime}\right\}$ where b^{\prime}, q_{2} are nonadjacent. But then again, G is 2 -simplicial of antihat type. This proves (9).

In view of (7)-(9), we may henceforth assume that P is nonempty, $I_{q_{1}}=I_{q_{2}}$ for all $q_{1}, q_{2} \in Q$, and $I_{p_{1}}=I_{p_{2}}$ for all $p_{1}, p_{2} \in P$. Let $I_{p}=Y$ for all $p \in P$. Then $|Y|=j-1$, and ($\left\{a_{i}: i \in P\right\},\left\{b_{i}: i \in P\right\}$) is a coherent homogeneous pair of cliques, and so 3.3 implies that $j \leq 2$. By (3), $k=j$. If some $q \in Q$ has nonneighbours $a^{\prime} \in A^{\prime} \cap Z$ and $b^{\prime} \in B^{\prime} \cap Z$, then $\left\{p, q, a^{\prime}, b^{\prime}\right\}$ is a claw where $p \in P$, a contradiction. Thus $Q=Q_{1} \cup Q_{2}$, where Q_{1}, Q_{2} are the sets of members of Q which are complete to $B^{\prime} \cap Z$ and to $A^{\prime} \cap Z$ respectively. Since $\left(Q_{1}, A^{\prime} \cap Z\right)$ is a homogeneous pair, nondominating because of b_{0}, 3.3 implies that $\left|Q_{1}\right|,\left|A^{\prime} \cap Z\right| \leq 1$, and similarly $\left|Q_{2}\right|,\left|B^{\prime} \cap Z\right| \leq 1$. If some $p \in P$ has neighbours $a^{\prime} \in A^{\prime} \backslash Z$ and $b^{\prime} \in B^{\prime} \backslash Z$ then $\left\{p, q, a^{\prime}, b^{\prime}\right\}$ is a claw, where $q \in Q$, a contradiction. Thus $P=P_{1} \cup P_{2}$, where P_{1}, P_{2} are the sets of members of P that are anticomplete to $B^{\prime} \backslash Z$ and to $A^{\prime} \backslash Z$ respectively. Since $\left(P_{1}, A^{\prime} \backslash Z\right)$ is a nondominating homogeneous pair of cliques, 3.3 implies that $\left|P_{1}\right|,\left|A^{\prime} \backslash Z\right| \leq 1$, and similarly $\left|P_{2}\right|,\left|B^{\prime} \backslash Z\right| \leq 1$.
(10) If $|Q| \geq 2$ then the theorem holds.

For in this case it follows that $Q_{1}, Q_{2} \neq Q$. Since $Q_{1} \cup Q_{2}=Q$ and $\left|Q_{1}\right|,\left|Q_{2}\right| \leq 1$, we deduce that $Q=\left\{q_{1}, q_{2}\right\}$, where $Q_{i}=\left\{q_{i}\right\}$ for $i=1,2$. Since $q_{1} \notin Q_{2}$, there exists $a^{\prime} \in A^{\prime} \cap Z$ nonadjacent to q_{1}. Suppose that there exists $p \in P \backslash P_{1}$. Since $p \notin P_{1}, p$ has a neighbour $b^{\prime} \in B^{\prime} \backslash Z$; but then $\left\{p, q_{1}, a^{\prime}, b^{\prime}\right\}$ is a claw, a contradiction. This proves that $P_{1}=P$, and similarly $P_{2}=P$. Hence $|P|=1, P=\{p\}$ say. Since $p \in P_{1}, p$ has no neighbours in $B^{\prime} \backslash Z$; but every vertex in $B^{\prime} \backslash Z$ is adjacent to p, by (3), and so $B^{\prime} \subseteq Z$. Similarly $A^{\prime} \subseteq Z$, and so G is 2 -simplicial of antihat type, and the theorem holds. This proves (10).

In view of (10) we may assume that $|Q|=1$. Since every vertex in Z has a neighbour in Q, it follows that Q is complete to Z, and so $Q_{1}=Q_{2}=Q$. If $Z=\emptyset$ then G is a line graph of some graph of which a_{0}, b_{0} are both leaf-edges, and the theorem holds. Thus we may assume that Z is nonempty.

If $Y \neq \emptyset$, let $1 \in Y$, say; then $\left(\left(Z \cap A^{\prime}\right) \cup\left\{a_{1}\right\},\left(Z \cap B^{\prime}\right) \cup\left\{b_{1}\right\}\right)$ is a coherent homogeneous pair of cliques, and therefore G is decomposable by 3.3 (since Z is nonempty) and the theorem holds. Thus we may assume that Y is empty. If not both $Z \cap A^{\prime}, Z \cap B^{\prime}$ are nonempty, then G is a line graph and the theorem holds; so let $Z \cap A^{\prime}=\left\{a^{\prime}\right\}$ and $Z \cap B^{\prime}=\left\{b^{\prime}\right\}$ say. Then G is the hex-join of $G \mid Z$ and $G \mid(V(G) \backslash Z)$; and if we add the edge $a^{\prime} b^{\prime}$ to G we obtain the line graph of a graph in which a_{0}, b_{0} are leaf-edges and there is a path with edge set $\left\{a_{0}, a^{\prime}, b^{\prime}, b_{0}\right\}$, and again the theorem holds. This proves 18.1.
18.2 Let G be claw-free, such that there is no hole in G of length >5, every hole of length 5 is dominating, and $\alpha(G) \leq 3$. Let C be a 5 -hole in G with vertices $c_{1}-\cdots-c_{5}-c_{1}$, and let there be hats in positions $1 \frac{1}{2}, 2 \frac{1}{2}$ respectively. Then G is decomposable.

Proof. For $i=1, \ldots, 5$, let C_{i} be the set of all clones in position i, and let $H_{i+\frac{1}{2}}, S_{i+\frac{1}{2}}$ be the set of all hats and stars in position $i+\frac{1}{2}$ respectively. By $8.2, H_{i-\frac{1}{2}}$ is anticomplete to $H_{i+\frac{1}{2}}$ for $i=1, \ldots, 5$. By hypothesis, we may choose $h_{1} \in H_{1 \frac{1}{2}}$ and $h_{2} \in H_{2 \frac{1}{2}}$.
(1) There is no centre for C.

For suppose that z is a centre for C. Since $\left\{z, h_{1}, c_{3}, c_{5}\right\}$ is not a claw, z is not adjacent to h_{1}, and similarly z is not adjacent to h_{2}. But then $\left\{c_{2}, h_{1}, h_{2}, z\right\}$ is a claw, a contradiction. This proves (1).
(2) $H_{\frac{1}{2}}, H_{3 \frac{1}{2}}$ are empty; at least one of $H_{4 \frac{1}{2}}, S_{4 \frac{1}{2}}$ is empty; and C_{4} is complete to C_{5}.

For suppose that there exists $h_{3} \in H_{3 \frac{1}{2}}$ say. Since $H_{2 \frac{1}{2}}$ is anticomplete to $H_{3 \frac{1}{2}}$, it follows that h_{2}, h_{3} are nonadjacent. Since every 5 -hole is dominating, $h_{1}-h_{3}-c_{4}-c_{5}-c_{1}-h_{1}$ is not a 5 -hole (because h_{2} has no neighbours in it), and so h_{1}, h_{3} are nonadjacent. But then $\left\{h_{1}, h_{2}, h_{3}, c_{5}\right\}$ is stable, contradicting that $\alpha(G) \leq 3$. This proves the first assertion of (2). Suppose that $h \in H_{4 \frac{1}{2}}$ and $s \in S_{4 \frac{1}{2}}$. By 8.2, s is nonadjacent to h, h_{1}, h_{2}. If h is nonadjacent to both h_{1}, h_{2} then $\left\{s, h, h_{1}, h_{2}\right\}$ is stable, a contradiction; if h is adjacent to say h_{1} and not h_{2} then $s-c_{4}-h-h_{1}-c_{1}-s$ is a 5 -hole and h_{2} has no neighbour in it, a contradiction; while if h is adjacent to both h_{1}, h_{2} then $\left\{h, h_{1}, h_{2}, c_{4}\right\}$ is a claw, a contradiction. Thus not both $H_{4 \frac{1}{2}}, S_{4 \frac{1}{2}}$ are nonempty, and this proves the second assertion of (2). For the third assertion, suppose that $x \in C_{4}$ and $y \in C_{5}$ are nonadjacent. By 8.2, x is nonadjacent to h_{1} and y is nonadjacent to h_{2}. Since $\left\{x, y, h_{1}, h_{2}\right\}$ is not stable, we may assume that x is adjacent to h_{2}; but then $x-c_{4}-y$ - $c_{1}-c_{2}-h_{2}-x$ is a 6 -hole, a contradiction. Thus C_{4} is complete to C_{5}. This proves (2).

Let

$$
\begin{aligned}
B_{1} & =H_{1 \frac{1}{2}} \cup C_{1} \cup\left\{c_{1}\right\} \cup S_{\frac{1}{2}} \cup S_{2 \frac{1}{2}} \\
B_{2} & =H_{2 \frac{1}{2}} \cup C_{3} \cup\left\{c_{3}\right\} \cup S_{3 \frac{1}{2}} \cup S_{1 \frac{1}{2}} \\
B_{3} & =C_{4} \cup C_{5} \cup\left\{c_{4}, c_{5}\right\} \cup S_{4 \frac{1}{2}} \cup H_{4 \frac{1}{2}} \\
B & =B_{1} \cup B_{2} \cup B_{3} .
\end{aligned}
$$

(3) B_{1}, B_{2}, B_{3} are cliques.

For by 8.2, $H_{1 \frac{1}{2}} \cup C_{1} \cup\left\{c_{1}\right\} \cup S_{\frac{1}{2}}$ is a clique, and $S_{2 \frac{1}{2}}$ is a clique. We must show that $S_{2 \frac{1}{2}}$ is complete to $H_{1 \frac{1}{2}} \cup C_{1} \cup\left\{c_{1}\right\} \cup S_{\frac{1}{2}}$. Let $s \in S_{2 \frac{1}{2}}$. Certainly s is adjacent to c_{1}, and s is nonadjacent to h_{2} and complete to $H_{1 \frac{1}{2}}$, by 8.2 (and in particular, s is adjacent to h_{1}). Suppose that $x \in S_{\frac{1}{2}}$. By $8.2, x$ is not adjacent to h_{2}, and since $\left\{c_{2}, x, h_{2}, s\right\}$ is not a claw it follows that s, x are adjacent. Thus s is complete to $S_{\frac{1}{2}}$. Now suppose that $x \in C_{1}$. By $8.2, x$ is adjacent to h_{1}. Since $\left\{x, h_{1}, h_{2}, c_{5}\right\}$ is not a claw, x is not adjacent to h_{2}. Since $\left\{c_{2}, x, h_{2}, s\right\}$ is not a claw, s is adjacent to x, and so s is complete to C_{1}. This proves that B_{1} is a clique, and similarly B_{2} is a clique. By 4.3 , the sets $C_{4} \cup\left\{c_{4}\right\}, C_{5} \cup\left\{c_{5}\right\}, S_{4 \frac{1}{2}}, H_{4 \frac{1}{2}}$ are cliques; by (2), it follows that $C_{4} \cup C_{5} \cup\left\{c_{4}, c_{5}\right\}$ and $S_{4 \frac{1}{2}} \cup H_{4 \frac{1}{2}}$ are cliques; and by $8.2, C_{4} \cup C_{5} \cup\left\{c_{4}, c_{5}\right\}$ is complete to $S_{4 \frac{1}{2}} \cup H_{4 \frac{1}{2}}$, and therefore B_{3} is a clique. This proves (3).
(4) There is no triad T with $|T \cap B|=2$.

For suppose that $\{x, y, z\}$ is a triad, where $x, y \in B$ and $z \notin B$. Since C is dominating and has no centre, and $H_{\frac{1}{2}}, H_{3 \frac{1}{2}}$ are empty, it follows that $z \in C_{2} \cup\left\{c_{2}\right\}$. Thus $x, y \neq c_{1}, c_{3}$ and by 8.2, z is complete to all of $H_{1 \frac{1}{2}}, H_{2 \frac{1}{2}}, S_{1 \frac{1}{2}}, S_{2 \frac{1}{2}}$, and so $x, y \notin H_{1 \frac{1}{2}} \cup H_{2 \frac{1}{2}} \cup S_{1 \frac{1}{2}} \cup S_{2 \frac{1}{2}}$. If $x \in C_{1}$, then x is adjacent to h_{1} by 8.2 , and so $x-h_{1}-z-c_{3}-c_{4}-c_{5}-x$ is a 6 -hole, a contradiction. Thus $x \notin C_{1}$, and similarly $x, y \notin C_{1} \cup C_{3}$.

Since B is the union of the three cliques B_{1}, B_{2}, B_{3}, and there is symmetry between B_{1}, B_{2}, we may assume that $x \in B_{1}$, and therefore $x \in S_{\frac{1}{2}}$. Moreover, $y \in B_{2} \cup B_{3}$, and so

$$
y \in C_{4} \cup C_{5} \cup\left\{c_{4}, c_{5}\right\} \cup S_{3 \frac{1}{2}} \cup S_{4 \frac{1}{2}} \cup H_{4 \frac{1}{2}}
$$

Since $x \in S_{\frac{1}{2}}$, it follows that $z \neq c_{2}$, and so $z \in C_{2}$; and $y \neq c_{4}, c_{5}$. By $8.2, y \notin C_{5} \cup H_{4 \frac{1}{2}}$. Since x, y, z have no common neighbour (since G is claw-free) it follows that y is nonadjacent to c_{1}, c_{2}, and so $y \notin S_{3 \frac{1}{2}} \cup S_{4 \frac{1}{2}}$. We deduce that $y \in C_{4}$. By $8.2, x$ is adjacent to h_{1}, and y is nonadjacent to h_{1}; but then $x-h_{1}-z-c_{3}-y-c_{5}-x$ is a 6 -hole, a contradiction. This proves (4).

Now $\left\{h_{1}, h_{2}, c_{4}\right\}$ and $\left\{h_{1}, h_{2}, c_{5}\right\}$ are triads, both contained in B and sharing two vertices. From 15.1, we deduce that G is decomposable. This proves 18.2.

Let G be a graph. We say a triple $\left(A_{1}, A_{2}, A_{3}\right)$ is a spread in G if

- A_{1}, A_{2}, A_{3} are nonempty cliques, pairwise disjoint and pairwise anticomplete
- $\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \geq 4$
- there is no vertex in $V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$ that is complete to one of A_{1}, A_{2}, A_{3} and anticomplete to the other two.

If $\left(A_{1}, A_{2}, A_{3}\right)$ is a spread, no vertex has neighbours in all three of A_{1}, A_{2}, A_{3} since G is claw-free. For $1 \leq i, j \leq 3$ with $i \neq j$, let $M_{i, j}$ be the set of all vertices in $V(G) \backslash\left(A_{i} \cup A_{j}\right)$ complete to $A_{i} \cup A_{j}$,
and let $N_{i, j}$ be the set of all vertices in $V(G) \backslash\left(A_{i} \cup A_{j}\right)$ that are complete to A_{i} and have both a neighbour and a nonneighbour in A_{j}. Thus $M_{i, j}=M_{j, i}$ but $N_{i, j}$ and $N_{j, i}$ are disjoint. A spread (A_{1}, A_{2}, A_{3}) is poor if $M_{1,2}=N_{1,2}=N_{2,1}=\emptyset$.
18.3 Let G be claw-free, with $\alpha(G) \leq 3$, with no hole of length >5, and such that every 5 -hole in G is dominating; and let $\left(A_{1}, A_{2}, A_{3}\right)$ be a spread. Then

- the sets $A_{1}, A_{2}, A_{3}, M_{i, j}(1 \leq i<j \leq 3)$ and $N_{i, j}(1 \leq i \neq j \leq 3)$ are pairwise disjoint and have union $V(G)$
- if i,j,k$\in\{1,2,3\}$ are distinct, then $N_{i, j}$ is anticomplete to $M_{j, k} \cup N_{j, k}$
- if $i, j \in\{1,2,3\}$ are distinct, then $N_{i, j}$ is a clique
- if $i, j, k \in\{1,2,3\}$ are distinct, and some vertex has neighbours in both A_{j} and A_{k}, then $N_{i, j}$ is complete to $N_{i, k}$
- if $i, j, k \in\{1,2,3\}$ are distinct, and some vertex has neighbours in both A_{j} and A_{k}, then either $N_{j, i}$ is complete to $N_{k, i}$ or G is decomposable.

Proof. For the first claim, clearly these sets are pairwise disjoint. Let $v \in V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$; we must show that v belongs to one of the given sets. Since no vertex has neighbours in all of A_{1}, A_{2}, A_{3}, we may assume that v has no neighbour in A_{3}. If it has both a nonneighbour $a_{1} \in A_{1}$ and a nonneighbour $a_{2} \in A_{2}$, then $\left\{v, a_{1}, a_{2}, a_{3}\right\}$ is a stable set of size 4 (for any $a_{3} \in A_{3}$), contradicting that $\alpha(G) \leq 3$. Thus we may assume that v is A_{1}-complete. From the third condition in the definition of a spread, v has a neighbour in A_{2}. If v is A_{2}-complete then $v \in M_{1,2}$, and otherwise $v \in N_{1,2}$, and in either case the theorem holds. This proves the first claim of the theorem.

For the second claim, suppose that $x \in N_{i, j}$ is adjacent to $y \in M_{j, k} \cup N_{j, k}$. Choose $a_{i} \in A_{i}$, choose $a_{j} \in A_{j}$ nonadjacent to x, and choose $a_{k} \in A_{k}$ adjacent to y. Then $\left\{y, x, a_{i}, a_{k}\right\}$ is a claw, a contradiction. This proves the second statement.

For the third, let $i, j, k \in\{1,2,3\}$ be distinct, and suppose that $x, y \in N_{i, j}$ are nonadjacent. Let $a_{i} \in A_{i}$ and $a_{k} \in A_{k}$. By 17.2, there is a path $x-p-q-y$ with $p, q \in A_{j}$. Then $x-p-q-y-a_{i}-x$ is a 5 -hole, not dominating a_{k}, a contradiction. This proves the third claim.

For the fourth claim, suppose that $x \in N_{i, j}$ is nonadjacent to $y \in N_{i, k}$, and there exists $z \in V(G)$ with neighbours in A_{j}, A_{k}. The set $A_{j} \cup\{z\} \cup A_{k}$ is connected, and x, y both have neighbours in it, and so there is a path P between x, y with interior in $A_{j} \cup\{z\} \cup A_{k}$, necessarily using z. Let $a_{i} \in A_{i}$; then P can be completed to a hole C via $y-a_{i}-x$. Since G has no hole of length $>5, C$ has length ≤ 5, and so P has length ≤ 3. Since z belongs to P, we may assume that no vertex of A_{j} is in P. Let $a_{j} \in A_{j}$ be a nonneighbour of x. Then a_{j} has at most one neighbour in C, and therefore it has none; and since every 5 -hole is dominating, it follows that C has length 4 . Consequently P is $x-z-y$. Now z is complete to one of A_{j}, A_{k}, say A_{j}; and so $z \in M_{j, k} \cup N_{j, k}$, and yet $x \in N_{i, j}$ and x, z are adjacent, contrary to the second assertion above. This proves the fourth claim.

For the fifth claim, suppose that $n_{i} \in N_{i, k}$ is nonadjacent to some $n_{j} \in N_{j, k}$. By hypothesis there exist $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$, and a vertex z adjacent to a_{i}, a_{j}. Hence there is a path P between n_{i}, n_{j} with interior in $\left\{a_{i}, a_{j}, z\right\}$. Since n_{i}, n_{j} are both not complete and not anticomplete to A_{k}, it follows from 17.2 that there is a path Q of length 3 between n_{i}, n_{j} with interior in A_{k}. The union of P, Q is a hole, and since G has no hole of length >5 it follows that P has length 2, and therefore n_{i}, n_{j}
are adjacent to z. Relative to this 5 -hole, a_{i}, a_{j} are hats in consecutive positions, and therefore G is decomposable by 18.2. This proves the fifth claim, and therefore proves 18.3.
18.4 Let G be claw-free, with $\alpha(G) \leq 3$, with no hole of length >5 and such that every 5 -hole in G is dominating. If G has a poor spread then either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{3} \cup \mathcal{S}_{6}$ or G is decomposable.

Proof. We assume that G is not decomposable. Choose a poor spread $\left(A_{1}, A_{2}, A_{3}\right)$ with $\left|A_{3}\right|$ maximum, and define $M_{i, j}$ etc as before.
(1) $N_{3,1}, N_{3,2}$ are both empty.

For suppose that $N_{3,1}$ is nonempty, and choose $x \in N_{3,1}$ with as few neighbours in A_{1} as possible. Let Y be the set of vertices in A_{1} adjacent to x. Let X be the set of all vertices in $N_{3,1}$ that are complete to Y and anticomplete to $A_{1} \backslash Y$; thus, $x \in X$. Define $A_{3}^{\prime}=A_{3} \cup X, A_{1}^{\prime}=A_{1} \backslash Y$, and $A_{2}^{\prime}=A_{2}$. We claim that $\left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right)$ is a poor spread. For certainly $A_{1}^{\prime}, A_{2}^{\prime}$ are cliques, and so is A_{3}^{\prime} from the third statement of 18.3 ; and since $Y \neq A_{1}$, it follows that $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$ are all nonempty. Moreover, $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$ are pairwise anticomplete. Suppose that $v \in V(G) \backslash A_{1}^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime}$, and is complete to one of $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$, say A_{i}, and anticomplete to the other two. Consequently $v \notin A_{1} \backslash Y, A_{2}, A_{3}$. Moreover, every vertex in Y is X-complete and A_{3}-anticomplete, and therefore has both a neighbour and a nonneighbour in A_{3}^{\prime}; and consequently $v \notin Y$. If $i=1$, then v is anticomplete to both A_{2}, A_{3}, contrary to the first assertion of 18.3. If $i=2$, then by the first assertion of $18.3, v$ has a neighbour $y \in A_{1}$, which is impossible since $\left(A_{1}, A_{2}, A_{3}\right)$ is a poor spread. If $i=3$, then by the first statement of 18.3, it follows that v has a neighbour in $A_{1} \cup A_{2}$; and since v has no neighbour in $A_{1}^{\prime} \cup A_{2}^{\prime}$ it follows that every neighbour of v in $A_{1} \cup A_{2}$ belongs to Y, and in particular $v \in N_{3,1}$. From the choice of x we deduce that v is Y-complete, and therefore $v \in X$, a contradiction. This proves that $\left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right)$ is a spread. Since $\left(A_{1}, A_{2}, A_{3}\right)$ is poor, no vertex of G has neighbours in both A_{1}, A_{2}. Consequently, no vertex of G has neighbours in both $A_{1}^{\prime}, A_{2}^{\prime}$, and therefore the spread ($A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$) is poor. But this contradicts the maximality of $\left|A_{3}\right|$. Hence $N_{3,1}=\emptyset$, and similarly $N_{3,2}=\emptyset$. This proves (1).

From (1), it follows that all members of A_{1} are twins, and so we may assume that $A_{1}=\left\{a_{1}\right\}$ say, and similarly $A_{2}=\left\{a_{2}\right\}$ say. For $i=1,2$, let P_{i} be the set of members of $M_{i, 3}$ with a nonneighbour in $N_{i, 3}$, and let Q_{i} be the set of members of $N_{i, 3}$ with a nonneighbour in $M_{i, 3}$. Note that, by the second assertion of 18.3, $N_{1,3}$ is anticomplete to $M_{2,3}$, and $N_{2,3}$ is anticomplete to $M_{1,3}$.
(2) P_{1} is complete to $M_{2,3}$, and P_{2} is complete to $M_{1,3}$. Moreover, Q_{1} is complete to $N_{2,3}$, and Q_{2} is complete to $N_{1,3}$.

For if $p_{1} \in P_{1}$ has a nonneighbour $x \in M_{2,3}$, choose $q_{1} \in Q_{1}$ nonadjacent to p_{1}, and let $a_{3} \in A_{3}$ be adjacent to q_{1}. Then $\left\{a_{3}, p_{1}, q_{1}, x\right\}$ is a claw, a contradiction. This proves the first assertion, and the second follows by symmetry. For the third, suppose that $q_{1} \in Q_{1}$ has a nonneighbour $x \in N_{2,3}$; let $p_{1} \in P_{1}$ be nonadjacent to q_{1}, and let $a_{3} \in A_{3}$ be adjacent to q_{1}. Then $a_{1}-p_{1}-a_{3}-q_{1}-a_{1}$ is a 4 -hole, and since x, a_{2} are adjacent and a_{2} has no neighbour in this 4-hole, it follows that x has a neighbour in this 4 -hole, by 17.4. But x is nonadjacent to q_{1}, p_{1}, a_{1}, and so it is adjacent to a_{3}, and therefore
$\left\{a_{3}, p_{1}, q_{1}, x\right\}$ is a claw, a contradiction. This proves the third claim, and the fourth follows by symmetry. This proves (2).
(3) Either $M_{1,3}$ is complete to $N_{1,3}$ or $M_{2,3}$ is complete to $N_{2,3}$.

For suppose not; then $P_{1}, Q_{1}, P_{2}, Q_{2}$ are all nonempty. For $i=1,2$ choose $p_{i} \in P_{i}$ and $q_{i} \in Q_{i}$, nonadjacent. By (2), p_{1} is adjacent to p_{2} and q_{1} to q_{2}. But then $a_{1}-p_{1}-p_{2}-a_{2}-q_{2}-q_{1}-a_{1}$ is a 6 -hole, a contradiction. This proves (3).
(4) $N_{1,3}, N_{2,3}$ are both nonempty, and $M_{1,3}, M_{2,3}$ are both cliques.

For suppose that, say, $N_{2,3}=\emptyset$. Since G admits no 0-join, it follows that a_{2} has degree >0, and so there exists $m \in M_{2,3}$. Let S, T be the set of all $v \in M_{1,3} \cup N_{1,3} \cup A_{3}$ that are $M_{2,3}$-complete and $M_{2,3}$-anticomplete respectively. Thus $A_{3} \subseteq S$ and $N_{1,3} \subseteq T$. We claim that (S, T) is a homogeneous pair of cliques. First let us see that they are cliques. If $s_{1}, s_{2} \in S$ are nonadjacent, then $\left\{m, s_{1}, s_{2}, a_{2}\right\}$ is a claw, a contradiction; so S is a clique. If $t_{1}, t_{2} \in T$ are nonadjacent, then since $N_{1,3}$ is a clique, it follows that at least one of $t_{1}, t_{2} \in M_{1,3}$, and therefore t_{1}, t_{2} have a common neighbour in A_{3}, say a_{3}; but then $\left\{a_{3}, s, t, m\right\}$ is a claw, a contradiction. This proves that S, T are both cliques. Now suppose that $v \in V(G) \backslash(S \cup T)$. We claim that v is either S-complete or S-anticomplete, and either T-complete or T-anticomplete. If $v \in A_{1} \cup A_{2} \cup M_{2,3}$ the claim holds, so we may assume that $v \in M_{1,3} \cup N_{1,3} \cup A_{3}$, and therefore $v \in M_{1,3}$. Since $v \notin T$, it has a neighbour $x \in M_{2,3}$ say; and since every $s \in S$ is adjacent to x, and $\left\{x, s, v, a_{2}\right\}$ is not a claw, it follows that v is complete to S. Since $v \notin S$, it has a nonneighbour $y \in M_{2,3}$. If $t \in T$, choose $a_{3} \in A_{3}$ adjacent to t; then since $\left\{a_{3}, v, t, y\right\}$ is not a claw, it follows that v, t are adjacent, and so v is T-complete. This proves that (S, T) is a homogeneous pair of cliques, nondominating because $A_{2} \neq \emptyset$. Now $A_{3} \subseteq S$, and by hypothesis $\left|A_{3}\right| \geq 2$, since A_{1}, A_{2} both have only one member; and so G is decomposable, by 3.3 , a contradiction. Hence $N_{1,3}, N_{2,3}$ are both nonempty. If there exist $x, y \in M_{1,3}$, nonadjacent, choose $z \in N_{2,3}$, let $a_{3} \in A_{3}$ be a neighbour of z, and then $\left\{a_{3}, x, y, z\right\}$ is a claw, a contradiction. Thus $M_{1,3}$ is a clique, and similarly $M_{2,3}$ is a clique. This proves (4).
(5) $M_{i, 3} \subseteq P_{i}$ for $i=1,2$.

For by (3) and the symmetry, we may assume that $M_{2,3}$ is complete to $N_{2,3}$. Define $V_{1}=\left(M_{1,3} \backslash\right.$ $\left.P_{1}\right) \cup M_{2,3}$, and $V_{2}=V(G) \backslash V_{1}$. If $V_{1}=\emptyset$ then the claim holds, so we may assume that $V_{1} \neq \emptyset$; and clearly $V_{2} \neq \emptyset$. We claim that G is the hex-join of $G \mid V_{1}$ and $G \mid V_{2}$. For V_{1} is the union of the two cliques $M_{1,3} \backslash P_{1}$ and $M_{2,3}$, and V_{2} is the union of the three cliques $N_{2,3} \cup A_{2}, N_{1,3} \cup A_{1}$ and $P_{1} \cup A_{3}$. Since $M_{1,3} \backslash P_{1}$ is anticomplete to $N_{2,3} \cup A_{2}$ and complete to $N_{1,3} \cup A_{1}$ and $P_{1} \cup A_{3}$, and $M_{2,3}$ is anticomplete to $N_{1,3} \cup A_{1}$ and complete to $N_{2,3} \cup A_{2}$ and $P_{1} \cup A_{3}$, it follows that G is a hex-join and therefore decomposable, a contradiction. This proves (5).
(6) $M_{1,3}=M_{2,3}=\emptyset$.

For from (3) $P_{2}=\emptyset$, and therefore from (5) $M_{2,3}=\emptyset$. Suppose that $M_{1,3} \neq \emptyset$. By (5), $P_{1} \neq \emptyset$, and therefore $Q_{1} \neq \emptyset$. If $x \in N_{1,3}$ and $y \in N_{2,3}$ are adjacent, and $a_{3} \in A_{3}$, then since $\left\{x, a_{1}, a_{3}, y\right\}$ and
$\left\{y, a_{3}, a_{2}, x\right\}$ are not claws, it follows that a_{3} is adjacent to both or neither of x, y. Consequently x, y have the same neighbours in A_{3}, for every such adjacent pair x, y. Choose $x \in Q_{1}$, and let Z be the set of neighbours of x in A_{3}. By (2), x is complete to $N_{2,3}$, and therefore every vertex in $N_{2,3}$ is complete to Z and anticomplete to $A_{3} \backslash Z$. In particular, every vertex in A_{3} is either complete or anticomplete to $N_{2,3}$. We claim that every vertex $x \in V(G) \backslash N_{2,3}$ is either complete or anticomplete to $N_{2,3}$. For suppose not; then $x \in N_{1,3} \backslash Q_{1}$. Since x has a neighbour in $N_{2,3}$, it follows as before that x is complete to Z and anticomplete to $A_{3} \backslash Z$. Let $y \in N_{2,3}$ be nonadjacent to x. Choose $z \in Z$, and $a_{3} \in A_{3}$ nonadjacent to x. (a_{3} exists since $x \in N_{1,3}$.) Thus $a_{3} \notin Z$, and so y is nonadjacent to a_{3}; but then $\left\{z, a_{3}, x, y\right\}$ is a claw, a contradiction. This proves our claim that every vertex in $V(G) \backslash N_{2,3}$ is either complete or anticomplete to $N_{2,3}$. Hence every vertex in $V(G) \backslash\left(N_{2,3} \cup A_{2}\right)$ is either complete or anticomplete to $N_{2,3}$, and anticomplete to A_{2}. By 3.2 it follows that G is decomposable, a contradiction. $M_{1,3}=\emptyset$. This proves (6).

From (6), it follows that G satisfies the hypotheses of 18.1, and the result follows. This proves 18.4.

Now we can prove the main result of this section.
18.5 Let G be claw-free, with $\alpha(G) \leq 3$, with no hole of length >5 and such that every 5 -hole in G is dominating. If G is not antiprismatic then either $G \in \mathcal{S}_{0} \cup \mathcal{S}_{3} \cup \mathcal{S}_{6}$ or G is decomposable.

Proof. We assume that G is not decomposable. Since G is not antiprismatic, and $\alpha(G) \leq 3$, it follows that there are three cliques A_{1}, A_{2}, A_{3}, all nonempty and pairwise disjoint and anticomplete, such that $\left|A_{1} \cup A_{2} \cup A_{3}\right| \geq 4$. Choose them with $A_{1} \cup A_{2} \cup A_{3}$ maximal; then (A_{1}, A_{2}, A_{3}) is a spread. Choose a spread $\left(A_{1}, A_{2}, A_{3}\right)$ with $\left|A_{3}\right|$ maximal, and define the sets $M_{i, j}, N_{i, j}$ as before. It follows that $\left|A_{3}\right| \geq 2$. By 18.4, we may assume that the spread $\left(A_{1}, A_{2}, A_{3}\right)$ is not poor, and nor are the spreads $\left(A_{2}, A_{3}, A_{1}\right),\left(A_{3}, A_{1}, A_{2}\right)$.
(1) $N_{1,2} \cup N_{2,1} \cup M_{1,2}$ is a clique.

For suppose that there are two nonadjacent vertices in this set, say x, y. Since x, y both have neighbours in A_{1}, and both have neighbours in A_{2}, there is a hole C containing x, y with $V(C) \subseteq$ $A_{1} \cup A_{2} \cup\{x, y\}$. No vertex of A_{3} has a neighbour in C, and since G has no hole of length >5 and every 5 -hole is dominating, it follows that C has length 4 . Since $\left|A_{3}\right| \geq 2$, we deduce from 17.4 that G is decomposable, a contradiction. This proves (1).
(2) $N_{3,1}=N_{3,2}=\emptyset ; N_{1,2}$ is complete to $M_{1,3}$, and $N_{2,1}$ is complete to $M_{2,3}$.

For suppose that there exists $x \in N_{3,1}$. Choose $a_{1} \in A_{1}$ nonadjacent to x. Then the cliques $\left\{a_{1}\right\}, A_{2}$, and $A_{3} \cup\{x\}$ are pairwise disjoint, and there are no edges between them, and consequently they may be enlarged to form a spread, contradicting the maximality of $\left|A_{3}\right|$. Hence $N_{3,1}=N_{3,2}=\emptyset$. Now suppose that $x \in N_{1,2}$ has a nonneighbour $y \in M_{1,3}$. Let $a_{2} \in A_{2}$ be a nonneighbour of x. Then the three cliques $\{x\},\left\{a_{2}\right\}$ and $A_{3} \cup\{y\}$ again may be enlarged to form a spread, contrary to the maximality of $\left|A_{3}\right|$. This proves (2).
(3) $N_{1,2}, N_{2,1}=\emptyset$, and A_{1}, A_{2} both have cardinality 1 .

For we claim that $\left(N_{1,2} \cup A_{1}, N_{2,1} \cup A_{2}\right)$ is a homogeneous pair of cliques. Certainly both sets are cliques, so let $v \in V(G)$ with $v \notin N_{1,2} \cup N_{2,1} \cup A_{1} \cup A_{2}$. We will show that v is either complete or anticomplete to $N_{1,2} \cup A_{1}$. Now v belongs to one of the sets $A_{3}, M_{1,3}, N_{1,3}, M_{2,3}, N_{2,3}, M_{1,2}$, by (2). If $v \in A_{3} \cup M_{2,3} \cup N_{2,3}$ then it is anticomplete to $N_{1,2} \cup A_{1}$, by 18.3 , and if $v \in M_{1,3} \cup N_{1,3} \cup M_{1,2}$ then v is complete to $N_{1,2} \cup A_{1}$, by (1), (2) and the final assertion of 18.3 , since (A_{2}, A_{3}, A_{1}) is not poor. This proves that v is either complete or anticomplete to $N_{1,2} \cup A_{1}$, and similarly it is either complete or anticomplete to $N_{2,1} \cup A_{2}$. Hence ($N_{1,2} \cup A_{1}, N_{2,1} \cup A_{2}$) is a homogeneous pair of cliques, nondominating because $A_{3} \neq \emptyset$, and so by 3.3, the claim follows. This proves (3).

For $i=1,2$, let $A_{i}=\left\{a_{i}\right\}$.
(4) Either $M_{1,3}$ is complete to $N_{1,3}$, or $M_{2,3}$ is complete to $N_{2,3}$.

For suppose that for $i=1,2$ there exist $m_{i} \in M_{i, 3}$ and $n_{i} \in N_{i, 3}$, nonadjacent. Hence n_{1}, n_{2} are adjacent, by the final assertion of 18.3. If m_{1}, m_{2} are adjacent, then $m_{1}-a_{1}-n_{1}-n_{2}-a_{2}-m_{2}-m_{1}$ is a 6 -hole, a contradiction. Thus m_{1}, m_{2} are nonadjacent, and so $m_{1}-a_{1}-n_{1}-n_{2}-a_{2}-m_{2}$ is a path P of length 5. Choose $a_{3} \in A_{3}$ nonadjacent to n_{1}. Then since $\left\{n_{2}, n_{1}, a_{3}, a_{2}\right\}$ is not a claw, a_{3} is not adjacent to n_{2}; and so P can be completed to a 7 -hole via $m_{2}-a_{3}-m_{1}$, a contradiction. This proves (4).

For $i=1,2$, let X_{i} be the set of all vertices in $M_{1,2}$ with a nonneighbour in $N_{i, 3}$. Let $X_{0}=$ $M_{1,2} \backslash\left(X_{1} \cup X_{2}\right)$.
(5) $X_{1} \cap X_{2}=\emptyset, X_{1}$ is complete to $M_{2,3}$ and X_{2} is complete to $M_{1,3}$.

For suppose first that $x \in X_{1} \cap X_{2}$. For $i=1,2$, let $n_{i} \in N_{i, 3}$ be nonadjacent to x. Then $x-a_{1}-n_{1}-n_{2}-a_{2}-x$ is a 5 -hole, and a_{3} has at most one neighbour in it, where $a_{3} \in A_{3}$ is a nonneighbour of n_{1}, a contradiction. This proves the first assertion. Now suppose that $x_{1} \in X_{1}$ is nonadjacent to $m \in M_{2,3}$. Choose $n \in N_{1,3}$ nonadjacent to x_{1}; and choose $a_{3} \in A_{3}$ adjacent to n. Then $x_{1}-a_{2}-m-a_{3}-n-a_{1}-x_{1}$ is a 6 -hole, a contradiction. Thus X_{1} is complete to $M_{2,3}$ and similarly X_{2} is complete to $M_{1,3}$. This proves (5).
(6) At least one of $M_{1,3}, M_{2,3}$ is nonempty.

For suppose not. Then by 18.3, $N_{1,3} \cup N_{2,3}$ is an internal clique cutset, and therefore G is decomposable, a contradiction.
(7) It is not the case that $M_{1,3}$ is complete to $N_{1,3}$ and $M_{2,3}$ is complete to $N_{2,3}$.

For let $B_{1}=A_{1} \cup N_{1,3} \cup X_{2}, B_{2}=A_{2} \cup N_{2,3} \cup X_{1}$, and $B_{3}=A_{3}$. Then B_{1}, B_{2}, B_{3} are disjoint cliques, and their union is not $V(G)$, by (6); and since $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triad for each $a_{3} \in A_{3}$, and there are at least two such vertices a_{3}, it follows from 15.1 that there is a triad $\left\{t_{1}, t_{2}, t_{3}\right\}$ with $t_{1}, t_{2} \in B_{1} \cup B_{2} \cup B_{3}$ and $t_{3} \notin B_{1} \cup B_{2} \cup B_{3}$. Not both $t_{1}, t_{2} \in B_{3}$, so we may assume from the symmetry that $t_{1} \in B_{1}$. Consequently $t_{3} \notin X_{0} \cup M_{1,3}$, since $X_{0} \cup M_{1,3}$ is complete to B_{1} by hypoth-
esis, (1) and (5), and so $t_{3} \in M_{2,3}$. Hence t_{3} is complete to $B_{2} \cup B_{3}$ by (5) and the hypothesis, and therefore $t_{1}, t_{2} \in B_{1}$, a contradiction since t_{1}, t_{2} are nonadjacent. This proves (7).

In view of (4) and (7), we may assume that $M_{1,3}$ is complete to $N_{1,3}$ and $M_{2,3}$ is not complete to $N_{2,3}$.
(8) $X_{1}=\emptyset$, that is, $N_{1,3}$ is complete to $M_{1,2}$.

For suppose not, and choose $n \in N_{1,3}$ and $m \in M_{1,2}$, nonadjacent. Then $m \in X_{1}$, and so $m \notin X_{2}$ by (5). Choose $x \in N_{2,3}$ and $y \in M_{2,3}$, nonadjacent. Since $m \notin X_{2}$, it follows that m, x are adjacent. Thus $x-n$ - $a_{1}-m$ - x is a 4 -hole C. Choose $a_{3} \in A_{3}$ nonadjacent to x. Since $\left\{n, a_{3}, x, a_{1}\right\}$ is not a claw, it follows that a_{3} is not adjacent to n. Since $\left\{m, x, y, a_{1}\right\}$ is not a claw, m, y are not adjacent. But a_{3}, y are adjacent, and neither of them has any neighbours in the 4 -hole; and therefore G is decomposable, by 17.4 , a contradiction. This proves (8).
(9) Not both $M_{1,3}, X_{2}$ are nonempty.

For suppose they are, and choose $m_{1} \in M_{1,3}$ and $m_{2} \in X_{2}$. Choose $n \in N_{2,3}$ nonadjacent to m_{2}, and choose $a_{3} \in A_{3}$ adjacent to n, and $a_{3}^{\prime} \in A_{3}$ nonadjacent to n. By the second assertion of (5), m_{1}, m_{2} are adjacent; but then $m_{2}-m_{1}-a_{3}-n-a_{2}-m_{2}$ is a 5 -numbering of a 5 -hole, and a_{1}, a_{3}^{\prime} are hats in positions $1 \frac{1}{2}, 2 \frac{1}{2}$ respectively, and 18.2 implies that G is decomposable, a contradiction. This proves (9).

Let Y be the set of all vertices in $M_{2,3}$ with a nonneighbour in $N_{2,3}$.
(10) Y is complete to $M_{1,3} ; Y$ is a clique; and Y is anticomplete to $M_{1,2} \backslash X_{2}$.

For suppose that $y \in Y$ is nonadjacent to $m \in M_{1,3}$. Choose $x \in N_{2,3}$ nonadjacent to y, and choose $a_{3} \in A_{3}$ adjacent to x; then $\left\{a_{3}, x, y, m\right\}$ is a claw, a contradiction. Thus Y is complete to $M_{1,3}$. Now suppose that there exist nonadjacent $y_{1}, y_{2} \in Y$. Since the spread (A_{3}, A_{1}, A_{2}) is not poor, one of $M_{1,3}, N_{1,3}$ is nonempty. If there exists $n \in N_{1,3}$, let $a_{3} \in A_{3}$ be adjacent to n; then $\left\{a_{3}, n, x, y\right\}$ is a claw, a contradiction. Thus there exists $m \in M_{1,3}$, adjacent to y_{1}, y_{2} since Y is complete to $M_{1,3}$. But then $\left\{m, a_{1}, y_{1}, y_{2}\right\}$ is a claw, a contradiction. Thus Y is a clique. Finally suppose that $y \in Y$ has a neighbour $m \in M_{1,2} \backslash X_{2}$. Let $x \in N_{2,3}$ be nonadjacent to y; then $\left\{m, x, y, a_{1}\right\}$ is a claw, a contradiction. This proves (10).

Let $B_{1}=A_{1} \cup N_{1,3} \cup X_{2}, B_{2}=A_{2} \cup N_{2,3}$ and $B_{3}=A_{3} \cup Y$. From (5), (10) and 18.3, these three sets are all cliques.
(11) $B_{1} \cup B_{2} \cup B_{3}=V(G)$.

For suppose not. Since $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triad for all $a_{3} \in A_{3}, 15.1$ implies that there is a triad $\left\{t_{1}, t_{2}, t_{3}\right\}$ with $t_{1}, t_{2} \in B_{1} \cup B_{2} \cup B_{3}$ and $t_{3} \notin B_{1} \cup B_{2} \cup B_{3}$. It follows that $t_{3} \in X_{0} \cup M_{1,3} \cup\left(M_{2,3} \backslash Y\right)$. Now X_{0} is complete to $B_{1} \cup B_{2}$, and $M_{1,3}$ is complete to $B_{1} \cup B_{3}$, by (5) and (10); and therefore $t_{3} \in M_{2,3} \backslash Y$. Hence t_{3} is complete to B_{2}, and so we may assume that $t_{1} \in B_{1}$ and $t_{2} \in B_{3}$. Since t_{3} is
complete to A_{3}, it follows that $t_{2} \in Y$. If there exists $n \in N_{1,3}$, let $a_{3} \in A_{3}$ be adjacent to n, and then $\left\{a_{3}, n, t_{2}, t_{3}\right\}$ is a claw, a contradiction. Thus $N_{1,3}=\emptyset$. Since $\left(A_{3}, A_{1}, A_{2}\right)$ is not poor, there exists $m_{1} \in M_{1,3}$. By (9), $X_{2}=\emptyset$, and so $X_{0}=M_{1,2}$. Choose $m_{2} \in M_{1,2}$. Let $Z=A_{2} \cup A_{3} \cup M_{2,3} \cup N_{2,3}$; thus, A_{1} is anticomplete to Z. Let P be the set of all vertices in Z complete to $M_{1,2}$ and anticomplete to $M_{1,3}$, and let Q be the set of all vertices in Z that are complete to $M_{1,3}$ and anticomplete to $M_{1,2}$. Since m_{1}, m_{2} exist, it follows that $P \cap Q=\emptyset$. Moreover, $A_{2} \cup N_{2,3} \subseteq P$, and $A_{3} \cup Y \subseteq Q$, by (10). If $p_{1}, p_{2} \in P$ are nonadjacent, then $\left\{m_{2}, a_{1}, p_{1}, p_{2}\right\}$ is a claw, while if $q_{1}, q_{2} \in Q$ are nonadjacent then $\left\{m_{1}, a_{1}, q_{1}, q_{2}\right\}$ is a claw, in either case a contradiction; thus, P, Q are cliques. We claim that (P, Q) is a homogeneous pair of cliques. For let $v \in V(G) \backslash(P \cup Q)$. We claim that v is either complete or anticomplete to P, and either complete or anticomplete to Q. This is true if $v \notin Z$, so we assume that $v \in Z$, and consequently $v \in Z \backslash(P \cup Q) \subseteq M_{2,3} \backslash Y$. Suppose first that v has a nonneighbour $p \in P$. Since v is complete to $A_{2} \cup A_{3} \cup N_{2,3}$, it follows that $p \in M_{2,3}$. If v has a neighbour $x \in M_{1,2}$, then $\left\{x, a_{1}, p, v\right\}$ is a claw, while if v has a nonneighbour $x \in M_{1,3}$ then $\left\{a_{3}, x, p, v\right\}$ is a claw, in either case a contradiction; and otherwise v is complete to $M_{1,3}$ and anticomplete to $M_{1,2}$, and therefore belongs to Q, a contradiction. Thus v is complete to P. Suppose that v has a nonneighbour $q \in Q$. Since v is complete to $A_{2} \cup A_{3} \cup N_{2,3}$, it follows that $q \in M_{2,3}$. If v has a neighbour $x \in M_{1,3}$ then $\left\{x, a_{1}, v, q\right\}$ is a claw, and if v has a nonneighbour $x \in M_{1,2}$ then $\left\{a_{2}, x, v, q\right\}$ is a claw, in either case a contradiction; and otherwise v is anticomplete to $M_{1,3}$ and complete to $M_{1,2}$, and therefore belongs to P, a contradiction. This proves that (P, Q) is a homogeneous pair, nondominating since $A_{1} \neq \emptyset$. Since $A_{3} \subseteq P$ and $\left|A_{3}\right| \geq 2,3.3$ implies that G is decomposable, a contradiction. This proves (11).

From (11) it follows that $X_{0}=M_{1,3}=\emptyset$ and $Y=M_{2,3}$. Since $\left(A_{3}, A_{1}, A_{2}\right)$ is not poor, $N_{1,3}$ is nonempty; and since $\left(A_{2}, A_{3}, A_{1}\right)$ is not poor, one of $M_{2,3}, N_{2,3}$ is nonempty. If $M_{2,3}$ is nonempty then $Y \neq \emptyset$, and therefore $N_{2,3} \neq \emptyset$ from the definition of Y. Consequently $N_{1,3}, N_{2,3}$ are both nonempty. If $x \in N_{1,3}$ and $y \in N_{2,3}$, then x, y are adjacent by 18.3 ; and if $a_{3} \in A_{3}$, then since $\left\{x, a_{1}, a_{3}, y\right\}$ and $\left\{y, a_{2}, a_{3}, x\right\}$ are not claws, it follows that a_{3} is adjacent to both or neither of x, y. Consequently x, y have the same neighbours in A_{3}. Since this holds for all choices of x, y, and since $N_{1,3}, N_{2,3}$ are both nonempty, it follows that there exists $Z \subseteq A_{3}$ such that every vertex in $N_{1,3} \cup N_{2,3}$ is complete to Z and anticomplete to $A_{3} \backslash Z$. Since every vertex in $N_{1,3}$ has a neighbour and a nonneighbour in A_{3}, it follows that $Z \neq \emptyset$, and $Z \neq A_{3}$. Since all vertices in Z are twins, and all vertices in $A_{3} \backslash Z$ are twins, it follows that $|Z|=1$ and $\left|A_{3}\right|=2$. Let $a_{3} \in A_{3} \backslash Z$, and $z \in Z$. If $x, y \in M_{2,3}$ are nonadjacent then $\{z, x, y, n\}$ is a claw, where $n \in N_{1,3}$. It follows that a_{1}, a_{3} are both simplicial vertices, with no common neighbour, and the theorem follows from 18.1. This proves 18.5.

Finally, let us explicitly prove the main theorem.
Proof of 2.1. If some hole has length ≥ 6, the result follows from 16.2, so we assume that every hole has length at most 5 . By 9.2 , we may assume that every 5 -hole is dominating. If $\alpha(G) \geq 4$, the result follows from 17.1, and otherwise it follows from 18.5. This proves 2.1.

References

[1] Maria Chudnovsky and Paul Seymour, "A structure theorem for claw-free perfect graphs", manuscript, June 2003.
[2] Maria Chudnovsky and Paul Seymour, "Claw-free graphs. II. Circular interval graphs", manuscript, October 2003.
[3] Maria Chudnovsky, Neil Robertson, Paul Seymour and Robin Thomas "The strong perfect graph theorem", manuscript, June 2002.
[4] W.T.Tutte, "On the factorization of linear graphs", J. London Math. Soc. 22 (1947), 107-111.

