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Abstract

The (false) “coarse Menger” conjecture proposed that for all k, c there exists `, such that for every
graph G and subsets S, T ⊆ V (G), either there are k + 1 S − T paths pairwise with distance more
than c, or there is a set X ⊆ V (G) with |X| ≤ k such that every S − T path has distance at most `
from X. This is known to be false, but may be true if G is planar. Here we show that it is true if G
is planar and all vertices in S ∪ T are on the same region.



1 Introduction

The “disjoint paths problem” asks when there is a set of k + 1 vertex-disjoint paths between sets
S, T of vertices of a graph G; and it is answered by a theorem of K. Menger from 1927 [8], that such
paths exist if and only if there is no subset X ⊆ V (G) of size ≤ k such that every S − T path has
a vertex in X. But what if we want the paths to be at least a certain distance from one another?1

This question is motivated both by the developing area of “coarse graph theory”, which is concerned
with the large-scale geometric structure of graphs (see Georgakopoulos and Papasoglu [5]), and by
the algorithmic question of deciding whether such paths exist (see Bienstock [3], Kawarabayashi and
Kobayashi [7], and Baligács and MacManus [2]). We say X,Y are c-distant if their distance is at
least c+ 1.

A coarse analogue of Menger’s theorem was conjectured by Albrechtsen, Huynh, Jacobs, Knappe
and Wollan [1], and independently by Georgakopoulos and Papasoglu [5]:

1.1 False conjecture: For all integers k, c ≥ 0 there exists ` > 0 with the following property. Let
G be a graph and let S, T ⊆ V (G). Then either

• there are k + 1 paths between S, T , pairwise c-distant; or

• there is a set X ⊆ V (G) with |X| ≤ k such that every path between S, T contains a vertex with
distance at most ` from some member of X.

Both sets of authors proved the result for k = 1, but we showed in [9] that 1.1 is false for all k ≥ 2,
even if c = 2 and G has maximum degree three.

On the other hand, our counterexample is highly non-planar (it has unbounded genus), and one
might hope that the conjecture 1.1 is true for planar graphs, or perhaps even for graphs drawn in any
fixed surface. In this paper we show that it is true if G is planar and can be drawn in the plane such
that all vertices in S ∪ T are incident with the infinite region (briefly, “with S, T on the outside”).
More exactly:

1.2 Let c, k ≥ 0, and let G be drawn in the plane, with S, T on the outside. Then either:

• there are k + 1 paths between S, T , pairwise c-distant; or

• there is a set of at most k connected subgraphs of G, such that every path between S, T intersects
one of these subgraphs, and the sum of the diameters of the subgraphs is at most 200k3c.

(All graphs in this paper are finite, and have no loops or parallel edges.) To prove this, we first obtain
a necessary and sufficient condition for the existence of k paths P1, . . . , Pk pairwise at distance at
least c, where Pi joins two given vertices si, ti, and s1, . . . , sk, t1, . . . , tk all belong to the infinite
region.

Finally, we obtain a linear-time algorithm to test whether there is a set of k+ 1 S−T paths that
are pairwise c-distant (for fixed c, k, and still assuming that S, T are on the outside of the drawing).

1If X and Y are vertices, or sets of vertices, or subgraphs, of a graph G, then distG(X,Y ) denotes the distance
between X,Y , that is, the number of edges in the shortest path of G with one end in X and the other in Y .
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2 The linkage problem

The linkage problem is different from the question answered by Menger’s theorem: now we are given
k pairs (si, ti) (1 ≤ i ≤ k) of vertices of a graph G, and a linkage for this set of pairs means a set
of k vertex-disjoint paths P1, . . . , Pk, where Pi joins si, ti for 1 ≤ i ≤ k. Testing whether a linkage
exists is NP-complete if k is part of the input [6], and solvable in polynomial time if k is fixed [11].
But it is much simpler if G is drawn in a closed disc Σ and s1, . . . , sk, t1, . . . , tk belong to bd(Σ): it
is shown in [10] that in that case, a linkage for the pairing (si, ti) (1 ≤ i ≤ k) exists if and only if:

• no two of the pairs (si, ti) “cross” (that is, for 1 ≤ i < j ≤ k, there is a line segment of bd(Σ)
that contains both of si, ti and neither of sj , tj); and

• for every two points a, b ∈ bd(Σ) and every simple curve L between a, b in Σ that meets the
drawing only in vertices, |L∩V (G)| is at least the number of values of i ∈ {1, . . . , k} such that
both line segments of bd(Σ) between a, b contain one of si, ti.

Here we are asking for a linkage of c-distant paths, but it turns out that, in the same disc case,
a similar theorem holds; and this is a key lemma for the proof of 1.2. In this section we state and
prove it.

If G is drawn in Σ, each vertex of G is a point of Σ and each edge of G is a line segment, that is,
a subset of Σ homeomorphic to the closed interval [0, 1]. We denote the union of the set of vertices
and the set of edges of G by U(G). A region of G in Σ means an arc-wise connected component of
Σ \ U(G).

Now us fix some number c ≥ 0 (throughout the paper); and again, G be drawn in a closed disc
Σ. A log is a path of G of length at most c. A boom2 of length t is a sequence Q1, . . . , Qt of logs,
such that for 1 ≤ i < t, there is a region of G incident with a vertex of Qi and with a vertex of Qi+1

(this is true, for instance, if Qi ∩Qi+1 is non-null). If b ∈ bd(Σ), a boom Q1, . . . , Qt attaches to b if
either:

• b ∈ V (Q1 ∪ · · · ∪Qt), or

• b belongs to a region of G that is incident with a vertex of Q1 ∪ · · · ∪Qt.

(Note that the regions are disjoint from U(G), so if b satisfies the first bullet it is a vertex, and if it
satisfies the second then it belongs to bd(Σ) \ U(G).) If a, b ∈ bd(Σ), a boom Q1, . . . , Qt joins a, b
if either it attaches to both a, b, or t = 0 and a, b belong to a common region. We will prove the
following (see Figure 1):

2.1 Let Σ be a closed disc, let G be a graph drawn in Σ, and let c ≥ 0 be an integer. Let
s1, t1, . . . , sk, tk ∈ V (G) ∩ bd(Σ), such that (si, ti), (sj , tj) do not cross for 1 ≤ i < j ≤ k. Then
exactly one of the following holds:

• There is a linkage for the pairs (s1, t1), . . . , (sk, tk), of paths that are pairwise c-distant;

• there exist distinct a, b ∈ bd(Σ), and a boom joining a, b of length less than the number of
i ∈ {1, . . . , k} such that (si, ti) crosses (a, b).
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Figure 1: A boom of length three, obstructing a linkage for (si, ti) (1 ≤ i ≤ 4) of pairwise 4-distant
paths. The gray areas are regions.

There is a problem that is slightly more general than the linkage problem across a disc described
above, and it is useful for our application to prove this more complicated version. Let C be a circle.
A subset of C that is nonempty, closed and arcwise connected is called an interval of C; so intervals
are either line segments, or single points or the whole of C. Two intervals are internally-disjoint if no
internal point of either of them belongs to the other. If I1, I2, I3, I4 are pairwise internally-disjoint
intervals of C, we say that (I1, I3) crosses (I2, I4) if there is a rotation around C that traverses
the sets I1, I2, I3, I4 in this order. (This extends the definition for crossing of pairs of points given
earlier.) For intervals I with |I| = 1 and |I| = {x} say, we often write x for I.

Now let Σ be a closed disc, and let us assign a direction of rotation “clockwise” to bd(Σ). If
A,B are distinct, internally-disjoint intervals of bd(Σ), [A → B] denotes the interval L of bd(Σ)
that is minimal subject to L ∩ A,L ∩ B 6= ∅, and such that A,L,B are in clockwise order. Let
I = {I1, . . . , Ik} be a set of pairwise internally-disjoint intervals of bd(Σ), numbered in clockwise
order. We call I = {I1, . . . , Ik} an interval system for bd(Σ). For 1 ≤ i < j ≤ k, let di,j ≥ 0 be an
integer, such that if 1 ≤ p, q, r, s ≤ k then one of dp,r, dq,s = 0. We call the function d a demand
function for I. If G is drawn in Σ, a linkage in G for d, I is a family L = (Li,j : 1 ≤ i < j ≤ k)
of pairwise disjoint sets of paths, where Li,j contains di,j paths, all between Ii, Ij , and the paths in
U(L) are pairwise vertex-disjoint where U(L) denotes the set of paths

⋃
1≤i<j≤k Lij . (The condition

“one of dp,r, dq,s = 0” is assumed because there could not be a corresponding linkage if this condition
was not satisfied.) A linkage L is c-distant if every two members of U(L) are c-distant.

The next result implies 2.1 by taking each Ii to be a singleton. We will use this, rather than 2.1,
in the proof of 1.2.

2.2 Let Σ be a closed disc, let I = {I1, . . . , Ik} be an interval system, and let d be a demand function
for I. Let G be a graph drawn in Σ, and let c ≥ 0 be an integer. Then exactly one of the following
holds:

• there is a c-distant linkage in G for d, I;
2Historically, a boom was an obstruction, made by logs chained together and strung across a harbour mouth, so it

seems an appropriate name.
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• there exist a, b ∈ bd(Σ), and a boom joining a, b, of length less than the sum of di,j over all
1 ≤ i < j ≤ k such that (Ii, Ij) crosses (a, b).

Proof. It is easy to see that not both hold and we omit the argument. Now we prove that one of
the statements holds. We suppose for a contradiction that neither holds. By slightly enlarging Σ,
we may assume that no edge of G intersects Σ, and the only vertices of G in Σ are the vertices in
I1 ∪ · · · ∪ Ik. (This is not quite trivial: the enlargement does not change whether the first outcome
of the theorem holds, but in the second outcome one of a, b, say x, might belong to V (G) \ (S ∪ T )
and to the boundary of the old disc, and needs to be replaced with some point in a region with x of
the boundary of the new disc.) We may also assume that k ≥ 2, and so none of the intervals in I is
the whole of bd(Σ). Moreover, we can assume that for each of the intervals Ii, both its ends (or its
point, if it is a singleton) belong to V (G).

If P, P ′ are paths of G, with ends s, t and s′, t′ respectively, and s, s′, t, t′ ∈ bd(Σ), we say that
P ′ is inside P if P, P ′ are vertex-disjoint and either

• s 6= t and s′, t′ ∈ [s→ t]; or

• s = t and [Ik → I1] = V (P ).

Now let 0 ≤ d′ij ≤ dij for 1 ≤ i < j ≤ k, such that for 1 ≤ i ≤ j ≤ k, if d′ij > 0 then
d′i′j′ = di′j′ for all i′, j′ with i ≤ i′ < j′ ≤ j and (i′, j′) 6= (i, j). We call d′ a partial d-demand. Let
L = (Lij : 1 ≤ i < j ≤ k) be a c-distant linkage for the demand function d′ for I. For 1 ≤ i < j ≤ k
and P ∈ Lij , we say that P is pushed if for each vertex v ∈ V (P ), either:

• v ∈ [Ii → Ij ]; or

• v is incident with a region that contains a point of [Ii → Ij ]; or

• there is a region incident with v and some vertex u, and a log Q of length ≤ c with ends u,w,
where w belongs to some path P ′ 6= P in U(L) that is inside P .

We say that L is pushed if for 1 ≤ i < j ≤ k, each P ∈ Li,j is pushed.
Let us choose a partial d-demand d′, with

∑
d′ij maximum such that there is a pushed c-distant

linkage L = (Lij : 1 ≤ i < j ≤ k) for d′. We may further assume that for 1 ≤ i < j ≤ k and each
P ∈ Lij , V (P )∩ Ii contains only one vertex, an end of P , and the same for V (P )∩ Ij . For every two
internally-disjoint intervals A,B of bd(Σ), let f(A,B) be the number of paths in U(L) such that its
pairs of ends crosses (A,B).

(1) For 1 ≤ i < j ≤ k, and each P ∈ Li,j, and for each v ∈ V (P ), there exists b in [Ii → Ij ] and not
in the interior of any member of I, and a boom Q1, . . . , Qt attaching to b and with V (Q1) = {v}, of
length t = f(V (P ) ∩ Ii, b).

Let P have ends s ∈ Ii and t ∈ Ij . Define φ(P ) by:

• if s 6= t, let φ(P ) be the number of paths in U(L) with both ends in [s→ t] (including P itself);

• if s = t and V (P ) = [Ii → Ij ], let φ(P ) = 1; and

• if s = t and V (P ) = [Ij → Ii], let φ(P ) = |U(L)|.
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We proceed by induction on φ(P ). Let v ∈ V (P ). Since P is pushed, either:

• v ∈ [Ii → Ij ]; or

• v is incident with a region that contains a point of [Ii → Ij ]; or

• there is a region incident with v and some vertex u, and a log Q with ends u,w, where w
belongs to some path P ′ of L inside P .

In the first two cases, the boom we want has length one, with a one-vertex log. In the third case,
let u,Q,w, P ′ be as in that case. Since P ′ is inside P and hence φ(P ′) < φ(P ), we can apply the
inductive hypothesis to P ′, w. The result follows by concatenating Q with the boom for P ′, w. This
proves (1).

We suppose (for a contradiction) that d′ij 6= dij for some i, j with 1 ≤ i < j ≤ k. Choose such a
pair (i, j) with [Ii → Ij ] minimal. So we know:

• di′,j′ = 0 for all i′, j′ with 1 ≤ i′ < i and i < j′ < j, and di′,j′ = 0 for all i′, j′ with i < i′ < j
and j < j′ ≤ k, since d is a demand function and dij 6= 0;

• d′i′,j′ = di′,j′ for all i′, j′ with i ≤ i′ < j′ ≤ j and (i′, j′) 6= (i, j), from the minimality of [Ii → Ij ];
and

• d′i′,j′ = 0 for all i′, j′ with 1 ≤ i′ ≤ i and j ≤ j′ ≤ k and (i′, j′) 6= (i, j), since d′ is a partial
d-demand and d′i,j < di,j .

It follows that for 1 ≤ i′ < j′ ≤ k, if Li′j′ 6= ∅, then either

• i ≤ i′ < j′ ≤ j; or

• 1 ≤ i′ < j′ ≤ i, or j ≤ i′ < j′ ≤ k.

Let P1,P2 be the union of all the sets Li′j′ satisfying the first bullet and second bullet respectively.
Thus, P1,P2 are disjoint and have union U(L). For i = 1, 2 let Zi be the set of all vertices with
distance at most c from some member of Pi.

(2) There is a path from Ii to Ij in G \ (Z1 ∪ Z2).

Suppose that there is no such path. Consequently there is a region of G \ (Z1 ∪ Z2) containing
points of [Ii → Ij ], [Ij → Ii]. (Note that this is true even if one of Ii ∩ V (G), Ij ∩ V (G) is a subset of
Z1 ∪ Z2.) Hence either:

• there is a region of G containing points a1 ∈ [Ii → Ij ] and a2 ∈ [Ij → Ii]; or

• there is a region of G containing a point a2 ∈ [Ij → Ii] and incident with a vertex z1 ∈ Z1; or

• there is a region of G containing a point a1 ∈ [Ii → Ij ] and incident with a vertex z2 ∈ Z2; or

• there is a region of G incident with a vertex z1 ∈ Z1 and with a vertex z2 ∈ Z2.
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(Note that the points a1, a2 might lie in the interior of members of I.) In the first case, there is a
boom of length zero joining a1, a2, and yet (Ii, Ij) crosses (a1, a2) and di,j ≥ 1, a contradiction.

In the second case, since z1 ∈ Z1, there is a log Q between z1 and some u ∈ V (P ), for some
P ∈ P1. Let P ∈ Li′j′ . By (1), there exists b ∈ [Ii′ → Ij′ ], not in the interior of any member of
I, such that there is a boom Q1, . . . , Qt with u ∈ V (Q1), attaching to b and with V (Q1) = {u}, of
length t = f(V (P ) ∩ Ii′ , b). Consequently Q,Q2, . . . , Qt is a boom of the same length t, joining a2
and b. Now there are two subcases. If (i′, j′) 6= (i, j), then f(V (P ) ∩ Ii′ , b) equals the sum of di′′j′′

over all choices of i′′ < j′′ such that Ii′′ ⊆ [I ′i → b] and Ij′′ ⊆ [b→ Ij′ ]. This sum is less than the sum
of di′′j′′ over all choices of i′′, j′′ with i′′ < j′′ such that (Ii′′ , Ij′′) crosses (a2, b), since this latter sum
also contains dij > 0. Thus t is less than the sum of di′′,j′′ over all i′′, j′′ such that (Ii′′ , Ij′′) crosses
(a2, b), a contradiction. In the second subcase, when (i′, j′) = (i, j), then f(V (P ) ∩ Ii′ , b) equals d′i,j
plus the sum of di′′j′′ over all choices of i′′ < j′′ such that Ii′′ ⊆ [Ii → b] and Ij′′ ⊆ [b → Ij ] and
(i′′, j′′) 6= (i, j). Again, this sum is less than the sum of di′′j′′ over all choices of i′′ < j′′ such that
(Ii′′ , Ij′′) crosses (a2, b), since this latter sum contains dij > d′ij , and again we obtain a contradiction.

The third and fourth cases are similar, using [Ij → Ii] in place of [Ii → Ij ] in the third case, and
combining both arguments for the fourth case. This proves (2).

Since there is a path P from Ii to Ij in G\(Z1∪Z2), we can choose such a path P to minimize the
set of regions that belong to the side of P in Σ (in the natural sense) that contains [Ii → Ij ]. It follows
that if we define L′ij = Lij ∪ {P}, and L′i′j′ = Li′j′ for all (i′, j′) 6= (i, j), then (Li′j′ : 1 ≤ i′ < j′ ≤ k)
is pushed, contrary to the maximality of the choice of d′. This contradiction shows that d′ = d, and
so proves 2.2.

As we said, this result is a strengthening of 2.1. There are other strengthenings possible, that can
be proved in the same way. First, instead of specifying pairs of vertices and asking for paths joining
them with pairwise distance more than c, one could specify disjoint subsets of vertices, and ask for
connected subgraphs, each including one of the subsets, again with pairwise distance more than c;
and again such subgraphs exist if and only if there is no obstructing boom. (When c = 0, this was
done in [10].) Second, instead of asking for the paths pairwise to have distance more than c, one
could specify a minimum distance for each pair of paths that lie on a common region of the union of
the paths, and a similar result holds (varying the lengths of logs in a boom appropriately). Third,
we could make the graph a digraph, and ask for each path to be a directed path from a specified end
to its other end. We omit the details.

3 The coarse Menger conjecture with a bounded number of alter-
nations

Now we turn to the main topic, the proof of 1.2. The proof uses edge-contraction, which is easy
enough for general graphs but difficult to be precise about when graphs are drawn in a surface. In
all cases, edge-contraction is to be applied to the drawing, not just to the graph, and we beg the
reader’s indulgence for any imprecision. We are avoiding loops and parallel edges in this paper, but
they might appear when we contract edges, so we need some way to get rid of them. Let us just say
that, when we do a contraction, any loops that appear are deleted, and if we make a set of parallel
edges, then all but one of the edges in the set are deleted, choosing the one survivor arbitrarily.
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We are given S, T , subsets of vertices of a graph G drawn in the plane, with S, T on the outside.
With such a drawing, we can choose a simple closed curve in the plane that passes through each
vertex in S ∪T , bounding an open disc in which all the remainder of the graph is drawn. Let us call
such a curve a bounding curve. (We stress that the only vertices drawn in the bounding curve itself
are those in S∪; all the others are strictly inside.) If G has cut-vertices (or even worse, if G is not
connected), the order in which a bounding curve passes through the vertices of S ∪ T may not be
unique, but that will not matter.

Given G,S, T as above, if we contract some set F of edges of G, making a graph G′ say, let H be
the subgraph of G with vertex set V (G) and edge set F . Each vertex v of G′ is made by identifying
the vertices of some component η(v) of H under contraction, and we call η(v) the pre-image of v
under contracting F . Let S′ be the set of v ∈ V (G′) such that S ∩ V (η(v)) 6= ∅, and define T ′

similarly. Then G′ is also drawn in the plane and S′, T ′ are on the outside. We say that “G′, S′, T ′

are obtained from G,S, T by contracting F”.
Let C be a bounding curve, and let us assign it a direction of rotation called “clockwise”. We

may assume that S, T 6= ∅. If I is an interval of C with |I| = {x}, we say x is the end of I and the
interior of I is null. We can choose a set I = {I1, I2, . . . , I2n} of pairwise internally-disjoint intervals
of C with the following properties:

• I1, I2, . . . , I2n are numbered in clockwise order on bd(Σ);

• for 1 ≤ i ≤ 2n with i odd, the end(s) of Ii belong to S, and for i even, the end(s) of Ii belong
to T ;

• I1, I3, I5, . . . , I2n−1 are pairwise disjoint, and I2, I4, . . . , I2n are pairwise disjoint;

• S ⊆ I1 ∪ I3 ∪ I5 ∪ · · · ∪ I2n−1, and T ⊆ I2 ∪ I4 ∪ · · · ∪ I2n;

Thus, I is an interval system for bd(Σ). We call such a set I an interval covering for S, T ; and we
care about the size of I. The next result shows that, if I is bounded, we can find the k connected
subgraphs as in 1.2 not only with bounded diameter, but with a bounded number of edges in total.

3.1 Let G be drawn in the plane, and let S, T ⊆ V (G) be on the outside. Let C be a bounding curve,
and let I be an interval covering in C of S, T with size 2n. Suppose that there do not exist k + 1
paths between S and T , pairwise with distance more than c. Then there exist k connected subgraphs
B1, . . . , Bk, such that every S − T path in G contains a vertex of B1 ∪ · · · ∪ Bk, and B1 ∪ · · · ∪ Bk

has at most 8kn2c edges.

Proof. Let I = {I1, I2, . . . , I2n}, numbered as in the definition. Let Ii have ends ai, bi, where bi is
the clockwise end of Ii. Moreover there is an interval Li of C with ends bi, ai+1 (where a2n+1 means
a1) such that ai+1 is the clockwise end of Li. Thus I1, . . . , I2n, L1, . . . , L2n are pairwise internally-
disjoint intervals of C with union C. For all choices of J1, J2 ∈ {I1, . . . , I2n, L1, . . . , L2n}, if there is
a boom of length at most k joining some point of J1 and some point of J2, let F (J1, J2) = F (J2, J1)
be the union of the edge-sets of the logs in some shortest such boom. If there is no such boom, let
F (J1, J2) = ∅. Thus each F (J1, J2) has size at most kc. Let F be the union of the sets F (J1, J2)
over all choices of {J1, J2}. Since there are at most 8n2 choices of the unordered pair {J1, J2}, F has
size at most 8kn2c.
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Let G′, S′, T ′ be obtained from G,S, T by contracting F . For each v ∈ V (G′), let η(v) its pre-
image under contracting F .

(1) There do not exist k + 1 vertex-disjoint paths in G′ from S′ to T ′.

Suppose that there are such paths P1, . . . , Pk+1. For 1 ≤ h ≤ k + 1, let Ph have ends sh ∈ S
and th ∈ T . (The choice of sh, th is not always uniquely determined by Ph, since it might have both
ends in S ∩ T , but let us choose some such labeling of its ends.) For 1 ≤ i < j ≤ 2n:

• if i, j have the same parity define dij = 0,

• if i is odd and j is even let dij be the number of h ∈ {1, . . . , k + 1} with sh ∈ Ii and th ∈ Ij ;
and

• if i is even and j is odd, let dij be the number of h ∈ {1, . . . , k + 1} with th ∈ Ii and sh ∈ Ij .

(Thus each of P1, . . . , Pk+1 is counted exactly once.) Thus d is a demand function for I. By
hypothesis, there is no c-distant linkage in G for d, I. Hence by 2.2, there exist a, b ∈ C, and a boom
of length less than t joining a, b, where t is the sum of dij over 1 ≤ i < j ≤ n such that (Ii, Ij) crosses
(a, b) in C. Choose X,Y ∈ {I1, . . . , I2n, L1, . . . , L2n} such that a ∈ X and b ∈ Y . Since t ≤ k + 1,
there is a boom of length at most k joining X,Y , such that F contains the edges of all its logs. But
all these edges are contracted in making G′; and this contradicts that P1, . . . , Pk+1 exist. This proves
(1).

From (1) and Menger’s theorem, there is a set X ⊆ V (G′) with |X| ≤ k such that every S′ − T ′
path in G′ contains a vertex of X. Consequently every S − T path in G contains a vertex of one of
the subgraphs η(x) (x ∈ X). But each η(x) has all its edges in F . This proves 3.1.

4 The coarse Menger conjecture in the general disc case

To complete the proof of 1.2, we need to show how to reduce the general case to the case covered
in the previous section. If G is connected and non-null and drawn in the plane, let r be its infinite
region. There is a closed walk v0, e1, v1, . . . , en, vn = v1 that traces its boundary in the natural sense:
that is, every edge incident with r appears once or twice in this walk, and for 1 ≤ i ≤ n, the edges
ei, ei+1 and their common end vi make an “angle” of the boundary of r. We call this a boundary
walk of the drawing.

IfW is a closed walk v0, e1, . . . , en, vn = v0, a subwalk ofW is a walk of the form vi, ei+1, vi+1, . . . , ej , vj
or of the form vj , ej+1, . . . , vn = v0, e1, v1, . . . , vi, where 0 ≤ i ≤ j ≤ k. In particular, if 1 ≤ i < j ≤ k,
we call the first the (i, j)-subwalk and the second the (j, i)-subwalk. We need the following lemma.

4.1 Let G be a connected graph, drawn in the plane, and let v0, e1, v1, . . . , en, vn = v0 be a boundary
walk. Let X ⊆ V (G), such that for 1 ≤ i < j ≤ n, if vi = vj then one of vi+1, . . . , vj−1 ∈ X, and one
of vj+1, . . . , vn, v1, . . . , vi−1 is in X. Then the number of i ∈ {1, . . . , n} with vi ∈ X is at most 2|X|.
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Proof. There is a hypothesis that for 1 ≤ i < j ≤ n, if vi = vj then one of vi+1, . . . , vj−1 ∈ X, and
one of vj+1, . . . , vn, v1, . . . , vi−1 is in X; let us call this the betweenness hypothesis. For any walk W
with terms w0, f1, w1, . . . , fm, wm = w0 in G, let φ(W ) be the number of i ∈ {1, . . . ,m} such that
wi ∈ X.

Now let W be the given boundary walk of G. We proceed by induction on the length of W . If
for each x ∈ X there is at most one i ∈ {1, . . . , n} such that vi = x, then φ(W ) ≤ |X| and the
claim is true; so we assume that there exist 1 ≤ i < j ≤ n such that vi = vj ∈ X. Choose such
i, j with j − i minimum, and let W1,W2 be the (i, j)-subwalk and the (j, i)-subwalk respectively.
Thus there are two subdrawings G1, G2 of the drawing of G, such that Wi is a boundary walk of
Gi for i = 1, 2, and V (G1 ∩ G2) = {vi}. Let Xi = X ∩ V (Gi) for i = 1, 2. From the minimality
of j − i, it follows that φ(W1) = |X1|; and from the hypothesis, there exists h with i < h < j such
that vh ∈ X, and so |X1| ≥ 2. Moreover, W2 satisfies the betweenness hypothesis, so we can apply
the inductive hypothesis to it, and therefore φ(W2) ≤ 2|X2|. But φ(W ) = φ(W1) + φ(W2), and
|X1|+ |X2| = |X|+ 1, and so

φ(W ) ≤ |X1|+ 2|X2| = 2(|X1|+ |X2|)− |X1| = 2|X|+ 2− |X1| ≤ 2|X|

since |X1| ≥ 2. This proves 4.1.

We also need the following.

4.2 Let G be a connected graph drawn in the plane, let C be a bounding curve, let Σ be the closed
disc bounded by C, and let I = {I1, . . . , I2n} be an interval system in C. For 1 ≤ i ≤ 2n, let Pi be an
S − T path with one end in Ii and the other in Ii+1, such that if Pi has length > 0, then [Ii → Ii+1]
has nonnull interior, and all its vertices are incident with the region of G in Σ that contains the
interior of [Ii → Ii+1] (where I2n+1 means I1). Let k ≥ 1. Then either

• there are k + 1 of the paths P1, . . . , P2n pairwise c-distant; or

• there are connected subgraphs B1, . . . , Bt with t ≤ 5k/2− 1, such that each Bi has diameter at
most 3c, and each Pi has a vertex in some Bj.

Proof. We proceed by induction on n. (I2n+1 means I1 throughout.) Suppose that distG(Pi, Pj) ≤ c
for some non-conseutive i, j with 1 ≤ i ≤ j ≤ 2n (that is, with j ≥ i + 2 and i + 2n ≥ j + 2). We
may assume that i = 1. Let Q be a log between P1, Pj , and let B be the maximal subgraph of G
such that each of its vertices has distance at most c from Q. Thus B has diameter at most 3c. Let
k1 be the maximum number of P2, . . . , Pj−1 that have distance more than c from Q and more than c
from each other. These k1 paths also have distance at least c+ 1 from each of Pj+1, . . . , P2n, since if
some Pj′ with j + 1 ≤ j ≤ 2n has positive length then all of its vertices are incident with the region
of G in Σ that contains the interior of [Ij′ → Ij′+1] (and so are on the side of Q not containing P2).
In particular, they have distance > c from P2n, and consequently we may assume that k1 ≤ k − 1.

Similarly, let k2 be the maximum number of Pj+1, . . . , P2n that have distance more than c from
Q and more than c from each other; and then k2 ≤ k − 1. From the inductive hypothesis applied to
P2, . . . , Pj−1, if k1 ≥ 1, there is a set of at most 5k1/2−1 connected subgraphs of G, each of diameter
at most 3c, such that each of P2, . . . , Pj−1 intersects one of them, or intersects B; and similarly if
k2 ≥ 1, there is a set of at most 5k2/2 − 1 connected subgraphs of G, each of diameter at most 3c,
such that each of Pj+1, . . . , P2n intersects one of them, or intersects B.

9



Assume first that k1, k2 ≥ 1. Consequently, we have in total at most 5k1/2 − 1 + 5k2/2 − 1 + 1
connected subgraphs, each of diameter at most 3c, such that each of P1, . . . , P2n intersects one of
them. If k1 + k2 > k then the first outcome holds, and otherwise the second holds.

So we may assume that k1 = 0 say. But then all of P1, . . . , Pj meet B, and so if k2 > 0, we have
(5k2/2 − 1) + 1 ≤ 5k/2 − 1 connected subgraphs that work, and if also k2 = 0 then B suffices by
itself. In either case, the result holds.

So we can assume that there is no such log Q. Hence P1, P3, . . . , P2n−1 are pairwise c-distant,
and so n ≤ k. But we may choose 2n singleton sets such that each Pi contains one of them, and so
we may assume that 2n > 5k/2 − 1, and so n = k = 1. If distG(P1, P2) > c then the first outcome
holds, and otherwise there is a log joining P1, P2 and the second holds. This proves 4.2.

We remark that 5/2 might not be the best possible constant in 4.2, although it is easy to show
that no constant less than 3/2 works in general.

We also need:

4.3 Let G be a connected graph drawn in the plane, with S, T on the outside, and let W be its
boundary walk. Suppose that X ⊆ V (G) has the property that every subwalk of W that contains a
vertex in S and a vertex in T also contains a vertex in X; and suppose that there do not exist k + 1
S − T paths pairwise with distance more than c. Then there exist k connected subgraphs B1, . . . , Bk,
such that every S − T path in G contains a vertex of B1 ∪ · · · ∪ Bk, and B1 ∪ · · · ∪ Bk has at most
32k|X|2c edges.

Proof. We proceed by induction on the length of W . Let W be v0, e1, v1, . . . , en, vn, and suppose
first that there exist 1 ≤ i < j ≤ n such that vi = vj and none of vi+1, . . . , vj−1 belong to X. It
follows that at least one of S, T is disjoint from {vi+1, . . . , vj−1}. Let W1,W2 be the (i, j)- and (j, i)-
subwalks respectively. There are subdrawings G1, G2 such that G1∪G2 = G and V (G1∩G2) = {vi},
such that Wi is a boundary walk of Gi for i = 1, 2. If both S, T are disjoint from {vi+1, . . . , vj−1},
then deleting V (G1)\{vi} makes no difference, and the result follows by induction applied to W2, G2.
We assume then that S ∩ {vi+1, . . . , vj−1} 6= ∅, and so T = T ∩ V (G2). Let S2 = (S ∩ V (G2))∪ {vi}.
Then every subwalk of W2 between S2, T contains a vertex in X, because either it is a subwalk of
W , or it passes through vi, and then it can be extended to a subwalk of W by adding a portion of
W1. But then the result follows from the inductive hypothesis applied to G2, S2, T,X ∩ V (G2).

We may therefore assume that there is no such pair i, j. Consequently the hypotheses of 4.1 are
satisfied, and so the number of i ∈ {1, . . . , n} with vi ∈ X is at most 2|X|. Hence there is a partition
of {1, . . . , n} into at most 4|X| intervals (where we count a set of the form {j, . . . , n, 1, . . . , i} as an
interval if i < j), such that for each of these intervals I say, one of S, T is disjoint from {vi : i ∈ I}.
(To see this, take {i} for each vi ∈ X as a singleton interval, and also take all the gaps between them.)
Let C be a bounding curve. It follows (by intersecting each of our intervals with V (C)∩ V (G)) that
there is an interval system I in C of size at most 4|X|, such that S ∪ T ⊆

⋃
I∈I I, and such that for

each I ∈ I, one of S, T is disjoint from I. By replacing by their union any two consecutive intervals
in I that are both disjoint from S or both disjoint from T , we may assume that I is an interval
covering of S, T of size at most 4|X|. Hence the result follows from 3.1. This proves 4.3.

Now we deduce our main theorem, which we restate:

4.4 Let c, k ≥ 0, let G be drawn in the plane, with S, T on the outside. Then either:
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• there are k + 1 paths between S, T , pairwise at distance more than c; or

• there is a set of at most k connected subgraphs of G, such that every path between S, T intersects
one of these subgraphs, and the sum of the diameters of the subgraphs is at most 200k3c.

Proof. We may assume that G is connected. Let C be a bounding curve, let Σ be the closed disc
bounded by C, and let I = {I1, . . . , I2n} be an interval covering of S, T . For 1 ≤ i ≤ 2n, let Pi be
an S − T path with one end in Ii and the other in Ii+1, such that for each v ∈ V (Pi), v is incident
with a region of G in Σ that contains a point of [Ii → Ii+1]. By 4.2, we may assume that there is
a set of at most 5k/2 − 1 connected subgraphs of G, each of diameter at most 3c, such that each
of P1, . . . , P2n intersects one of them. These subgraphs need not be vertex-disjoint, but their union
has at most 5k/2 components, and the sum of the diameters of these components is at most 15kc/2.
Let F be the union of the edge sets of these components, and let G′, S′, T ′ be obtained from G,S, T
by contracting F . Each of the components with union F contracts to a vertex in G′; let X be the
set of such vertices. Thus |X| ≤ 5k/2 − 1. For each v ∈ V (G′), let η(v) be the pre-image of v
under contracting F . Thus the sum of the diameters of η(v), over all v ∈ V (G′), is at most 15kc/2.
(Note that, typically, η(v) consists just of the vertex v and so has diameter zero: the only terms that
contribute to the sum are when v ∈ X.)

Now G′ is connected; let W be a boundary walk, where W is v0, e1, . . . , et, vt = v0 say. Every
subwalk of W that contains a vertex of S′ and a vertex of T ′, also contains a vertex of X, because of
the way we constructed X. We may assume that there do not exist k+ 1 paths of G′ between S′, T ′,
pairwise at distance more than c, since otherwise the first outcome of the theorem holds. Thus, by
4.3, there exist k connected subgraphs B′1, . . . , B

′
k of G′, such that every S′ − T ′ path in G′ contains

a vertex of B′1 ∪ · · · ∪B′k, and B′1 ∪ · · · ∪B′k has at most 32k(5k/2− 1)2c edges. For 1 ≤ i ≤ k, let Bi

be the subgraph of G formed by the union of the edges of B′i and the subgraphs η(v) (v ∈ V (B′i)).
Thus B1, . . . , Bk are connected, and every S − T path in G meets one of them. Moreover, the sum
of the diameters of B1, . . . , Bk is at most 32k(5k/2− 1)2c+ 15kc/2 ≤ 200k3c, since B′1 ∪ · · · ∪B′k has
at most 32k(5k/2−1)2c edges and the sum of the diameters of η(v) for v ∈ V (G′) is at most 15kc/2.
This proves 4.4.

5 An algorithm

Suppose we are given a graph drawn in the plane, with S, T on the outside. Can we check in
polynomial time whether there exist k S − T paths pairwise c-distant? If c, k are constants, the
answer is yes, as follows. Let us say the depth of a vertex v is the minimum n such that there is a
sequence

v = v0, r1, v1, r2, . . . , vn

of alternating vertices and regions, where vn is incident with the infinite region, and ri is incident
with vi−1, vi for 1 ≤ i ≤ n. The S−T paths we want exist if and only if there exist distinct s1, . . . , sk
in S and distinct t1, . . . , tk ∈ T , such that there are k paths joining si, ti for 1 ≤ i ≤ k, pairwise
c-distant. And for a given choice of s1, . . . , sk, t1, . . . , tk, whether such paths exist is determined by
the existence of certain booms of length at most k − 1, attaching to two points of some bounding
curve, as in 2.1. The vertices in every such boom have depth at most c(k − 1)/2, so we can delete
all vertices with depth more than c(k − 1)/2 + 1 without changing whether the booms exist, and
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therefore without changing whether the paths we want exist. (The “+1” is to avoid making new
regions incident with vertices at depth c(k−1)/2.) But after this, the graph has bounded tree-width,
and the problem can be solved in linear time, by Courcelle’s theorem [4], since the question can be
expressed by a monadic second-order formula.
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