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Abstract

We prove that a graph G admits a tree-decomposition in which each bag is contained in the union of a
bounded number of balls of bounded radius, if and only if G admits a quasi-isometry to a graph with
bounded tree-width. (The “if” half is easy, but the “only if” half is challenging.) This generalizes
a recent result of Berger and Seymour, concerning tree-decompositions when each bag has bounded
radius.



1 Introduction

We need to begin with some definitions. Graphs in this paper may be infinite. If X is a vertex of a
graph G, or a subset of the vertex set of G, or a subgraph of G, and the same for Y , then distG(X,Y )
denotes the distance in G between X,Y , that is, the number of edges in the shortest path of G with
one end in X and the other in Y . (If no path exists we set distG(X,Y ) =∞.)

Let G,H be graphs, and let φ : V (G) → V (H) be a map. Let L,C ≥ 0; we say that φ is an
(L,C)-quasi-isometry if:

• for all u, v in V (G), if distG(u, v) is finite then distH(φ(u), φ(v)) ≤ LdistG(u, v) + C;

• for all u, v in V (G), if distH(φ(u), φ(v)) is finite then distG(u, v) ≤ LdistH(φ(u), φ(v))+C; and

• for every y ∈ V (H) there exists v ∈ V (G) such that distH(φ(v), y) ≤ C.

If X ⊆ V (G), let us say the diameter of X in G is the maximum of distG(u, v) over all u, v ∈ X. A
tree-decomposition of a graph G is a pair (T, (Bt : t ∈ V (T ))), where T is a tree (possibly infinite),
and Bt is a subset of V (G) for each t ∈ V (T ) (called a bag), such that:

• V (G) is the union of the sets Bt (t ∈ V (T ));

• for every edge e = uv of G, there exists t ∈ V (T ) with u, v ∈ Bt; and

• for all t1, t2, t3 ∈ V (T ), if t2 lies on the path of T between t1, t3, then Bt1 ∩Bt3 ⊆ Bt2 .

The width of a tree-decomposition (T, (Bt : t ∈ V (T ))) is the maximum of the numbers |Bt| − 1 for
t ∈ V (T ), or ∞ if there is no finite maximum; and the tree-width of G is the minimum width of a
tree-decomposition of G. If T is a path, we call (T, (Bt : t ∈ V (T ))) a path-decomposition, and the
path-width of G is defined analogously.

Our first result is an extension of a result of Berger and Seymour [1] (which can also be derived
from a combination of results of Chepoi et al. [3]). They proved:

1.1 For all r, if G is connected and admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for
each t ∈ V (T ), Bt has diameter at most r in G, then G admits a (1, 6r+ 1)-quasi-isometry to a tree.

This has a sort of converse, also proved in [1]: if G is connected and (L,C)-quasi-isometric to a
tree then it admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that Bt has diameter at most
L(L+ C + 1) + C in G, for each t ∈ V (T ).

We will extend 1.1 from trees to graphs of bounded tree-width, as follows (although saying that
this extends 1.1 is something of a stretch, because we do not know whether 1.2 holds with L = 1):

1.2 For all k, r, there exist L,C ≥ 1 such that if G admits a tree-decomposition (T, (Bt : t ∈ V (T )))
such that for each t ∈ V (T ), Bt is the union of at most k sets each with diameter at most r in G,
then G admits an (L,C)-quasi-isometry to a graph with tree-width at most k.

A similar result (with weaker constants) was obtained independently by R. Hickingbotham [6], by
applying a result of Dvořák and Norin [5].

Our proof obtains a quasi-isometry to a graph with a tree-decomposition indexed by a subdivision
of the same tree T that indexed the tree-decomposition of G; and so if T is a path, we find a quasi-
isometry to a graph with bounded path-width. Consequently:
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1.3 For all k, r, there exist L,C ≥ 1 such that if G admits a path-decomposition (T, (Bt : t ∈ V (T )))
such that for each t ∈ V (T ), Bt is the union of at most k sets each with diameter at most r in G,
then G admits an (L,C)-quasi-isometry to a graph with path-width at most k.

A path-decomposition is essentially a sequence of sets of vertices satisfying the “betweenness”
condition. There is a more general notion (see [2, 4, 8, 7]), where we replace the sequence by a
family of subsets indexed by a linearly ordered set, giving what we call “line-width”. Line-width and
path-width are the same for finite graphs, but for infinite graphs they may be different. One could
ask whether 1.3 works with line-width in place of path-width, but we do not know.

In 1.2, we start with a tree-decomposition in which each bag is the union of k bounded-radius
balls, and we obtain a tree-decomposition in which each bag has size at most k + 1: and one might
hope that the final k in the statement of 1.2 should be k− 1. Obviously not for k = 1; but not when
k ≥ 2 either. To see this when k = 2, let G be a cycle, with vertices v1- · · · -vn-v1 in order. For
1 ≤ i ≤ n − 1, let Bvi = {vi, vi+1, vn}, and let T be the tree G \ {vn}. Then (T, (Bt : t ∈ V (T ))) is
a tree-decomposition of G, and each of its bags is the union of two balls of bounded radius (one the
singleton {vn} and the other consisting of two adjacent vertices). On the other hand, for all (L,C),
if n is large enough then there is no (L,C)-quasi-isometry from G to a graph with tree-width at most
1. A similar example works for each value of k ≥ 2 (take a k× k grid and subdivide each of its edges
many times).

Again, 1.2 has a sort of converse, because if G admits an (L,C)-quasi-isometry to a graph with
tree-width at most k, then G admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for each
t ∈ V (T ), Bt is the union of at most k+ 1 sets each of bounded diameter — we will prove this in the
next section. But if we start with a graph G that admits a quasi-isometry to a graph with tree-width
at most k, and apply this converse, we obtain a tree-decomposition in which each bag is a union of
k + 1 sets of bounded diameter; and if we then apply 1.2, we obtain a quasi-isometry to a graph
with tree-width at most k + 1. Somewhere we went from tree-width k to tree-width k + 1, and this
is unsatisfying, at least on aesthetic grounds.

A way to get rid of it is to make a small tweak in the definition of tree-decomposition; say a
pseudo-tree-decomposition (T, (Bt : t ∈ V (T ))) is the same as a tree-decomposition, except we relax
the condition that every edge has both ends in some bag. Instead, we insist that for every edge
uv, either some bag contains both u, v, or there is an edge st of T such that Bs \ Bt = {u} and
Bt \Bs = {v}. Define pseudo-tree-width correspondingly (it differs from tree-width by at most one).
We will prove a version of 1.2 with “tree-width at most k” replaced by “pseudo-tree-width at most
k− 1”, and a version of 2.1 with “tree-width at most k” replaced by “pseudo-tree-width at most k”,
and the anomalous error of one is gone. More exactly, we will prove:

1.4 For all k, r, there exist L,C such that if G admits a tree-decomposition (T, (Bt : t ∈ V (T )))
such that for each t ∈ V (T ), Bt is the union of at most k sets each with diameter at most r in G,
then G admits an (L,C)-quasi-isometry to a graph with pseudo-tree-width at most k − 1.

Conversely, for all L,C ≥ 1, if G admits an (L,C)-quasi-isometry to a graph with pseudo-tree-
width at most k − 1, then G admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for each
t ∈ V (T ), Bt is the union of at most k sets each of diameter at most 2L(L+ C) + C.
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2 The proof of 1.4

Let us state the definition of pseudo-tree-width more formally. A pseudo-tree-decomposition of a
graph G is a pair (T, (Bt : t ∈ V (T ))), where T is a tree, and Bt is a subset of V (G) for each
t ∈ V (T ) (called a bag), such that:

• V (G) is the union of the sets Bt (t ∈ V (T ));

• for every edge e = uv of G, either there exists t ∈ V (T ) with u, v ∈ Bt, or there is an edge
st ∈ E(T ) such that Bs \Bt = {u} and Bt \Bs = {v}; and

• for all t1, t2, t3 ∈ V (T ), if t2 lies on the path of T between t1, t3, then Bt1 ∩Bt3 ⊆ Bt2 .

The width of a pseudo-tree-decomposition (T, (Bt : t ∈ V (T ))) is the maximum of the numbers |Bt|−1
for t ∈ V (T ), or ∞ if there is no finite maximum; and the pseudo-tree-width of G is the minimum
width of a pseudo-tree-decomposition of G. If T is a path, we call (T, (Bt : t ∈ V (T ))) a pseudo-path-
decomposition, and the pseudo-path-width of G is defined analogously. When T is a finite path, we
sometimes use the notation (B1, . . . , Bn) (with the usual meaning) in place of (T, (Bt : t ∈ V (T ))).

Before we prove the main part of 1.4, let us prove its (much easier) second part, the converse:

2.1 If G admits an (L,C)-quasi-isometry to a graph with pseudo-tree-width at most k − 1, then G
admits a tree-decomposition (T, (Dt : t ∈ V (T ))) such that for each t ∈ V (T ), Dt is the union of at
most k sets each of diameter at most 2L(L+ C) + C.

Proof. Let H be a graph with pseudo-tree-width at most k − 1, and let (T, (Bt : t ∈ V (T ))) be
a pseudo-tree-decomposition of H with width at most k − 1. Let φ be an (L,C)-quasi-isometry
from a graph G to H. For each h ∈ V (H), let Xh be the set of vertices i ∈ V (H) such that
distH(h, i) ≤ L + C. For each t ∈ V (T ), let Dt be the set of all vertices v ∈ V (G) such that
φ(v) ∈ Xh for some h ∈ Bt. We claim that (T, (Dt : t ∈ V (T ))) is a tree-decomposition of G
satisfying the theorem. So we must check that:

•
⋃
t∈V (T )Dt = V (G);

• for every edge uv of G there exists t ∈ V (T ) with {u, v} ∈ Dt;

• for all t1, t2, t3 ∈ V (T ), if t2 lies on the path of T between t1, t3, then Dt1 ∩Dt3 ⊆ Dt2 ; and

• for each t ∈ V (T ), Dt is the union of at most k sets each of diameter (in G) at most 2L(L +
C) + C.

For the first statement, let v ∈ V (G); then φ(v) ∈ V (H), and so φ(v) ∈ Bt for some t ∈ V (T ). In
particular, since φ(v) ∈ Xφ(v), it follows that v ∈ Dt. This proves the first statement.

For the second statement, let uv ∈ E(G), and choose t ∈ V (T ) with φ(v) ∈ Bt. Since φ is an
(L,C)-quasi-isometry, distH(φ(u), φ(v)) ≤ L + C, and so φ(u) ∈ Xφ(v). It follows that u, v ∈ Dt.
This proves the second statement.

For the third statement, let t1, t2, t3 ∈ V (T ), such that t2 lies on the path of T between t1, t3,
and let v ∈ Dt1 ∩ Dt3 . Hence for i = 1, 3, there exists hi ∈ Bti with φ(v) ∈ Xhi ; let Pi be a path
of H between φ(v), hi of length at most L + C. Since P1 ∪ P3 is a connected graph with vertices
in Bt1 and in Bt3 , it also has a vertex in Bt2 , say h2. Thus h2 belongs to one of V (P1), V (P3), and
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so distH(h2, φ(v)) ≤ L + C; and hence φ(v) ∈ Xh2 , and therefore v ∈ Dt2 . This proves the third
statement.

Finally, for the fourth statement, let t ∈ V (T ). For each h ∈ B(t), let Fh be the set of all
v ∈ V (G) such that φ(v) ∈ Xh. Thus Dt is the union of the sets Fh (h ∈ Bt), and there are |Bt| ≤ k
such sets. We claim that each Fh has diameter at most 2L(L + C) + C in G. If u, v ∈ Fh, then
each of φ(u), φ(v) has distance at most L + C from h, and so distH(φ(u), φ(v)) ≤ 2(L + C). Since
φ is an (L,C)-quasi-isometry, it follows that distH(u, v) ≤ 2L(L + C) + C. This proves the fourth
statement, and so proves 2.1.

To prove 1.4, we need the following lemma:

2.2 Let G be a graph, and let A,B be disjoint subsets of V (G) with union V (G). Let |A|, |B| ≤ k,
and suppose that there are at most k edges between A,B. Then there is a pseudo-path-decomposition
(B1, . . . , Bn) of G with width at most k − 1 and with A ⊆ B1 and B ⊆ Bn.

Proof. We proceed by induction on k+ |A|+ |B|. If some vertex a ∈ A has no neighbours in B, then
from the inductive hypothesis, applied to G\{a}, there is a pseudo-path-decomposition (B1, . . . , Bn)
of G \ {a} with width at most k − 1 and with A \ {a} ⊆ B1 and B ⊆ Bn. But then (A,B1, . . . , Bn)
satisfies the theorem. Thus we may assume that each vertex in A has a neighbour in B, and vice
versa.

If every vertex in A has exactly one neighbour in B and vice versa, the result is true; so we assume
that some vertex in A has at least two neighbours in B, and hence |A| ≤ k − 1. Let b ∈ B with a
neighbour in A, and let G′ be obtained by deleting b. In G′, there are at most k − 1 edges between
A and B \ {b}, and these two sets both have size at most k − 1. From the inductive hypothesis
applied to G′, there is a pseudo-path-decomposition (C1, . . . , Cn) of G′ with width at most k − 2
and with A ⊆ C1 and B \ {b} ⊆ Cn. Define Bi = Ci ∪ {b} for 1 ≤ i ≤ n; then (B1, . . . , Bn) is a
pseudo-path-decomposition of G satisfying the theorem. This proves 2.2.

To prove the first part of 1.4, it suffices to prove it when G is connected (by working with each
component of G separately); and it suffices to prove it when r = 1. To see the latter, let G be a
connected graph that admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that for each t ∈ V (T ),
Bt is the union of at most k sets each with diameter at most r in G. For each t ∈ V (T ), and each
pair u, v of nonadjacent vertices of G[Bt] with distG(u, v) ≤ r, add an edge joining u, v, and let G′ be
the resultant graph. Then (T, (Bt : t ∈ V (T ))) is a tree-decomposition of G′, and for each t ∈ V (T ),
Bt is the union of at most k cliques of G′. Moreover, the identity map is an (r, 0)-quasi-isometry
between G,G′; and so if G′ admits an (L,C)-quasi-isometry to a graph with pseudo-tree-width at
most k − 1, then G admits an (rL, rC)-quasi-isometry to the same graph. Consequently, for given
k, if L,C satisfy the theorem when r = 1, then rL, rC satisfy the theorem for general r. Hence it
suffices to prove the following:

2.3 For all k, if G is connected and admits a tree-decomposition (T, (Bt : t ∈ V (T ))) such that Bt
is the union of at most k cliques for each t ∈ V (T ), then G admits a (2k+ 2, 2k− 1)-quasi-isometry
to a graph with pseudo-tree-width at most k − 1.

Proof. Let (T, (Bt : t ∈ V (T ))) be a tree-decomposition of G such that for each t ∈ V (T ), Bt is
the union of at most k cliques. Fix a root r ∈ V (T ) (arbitrarily). For each t ∈ V (T ), its ancestors
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are the vertices of the path of T between r, t, and its strict ancestors are its ancestors different from
t. If s is an ancestor of t then t is a descendant of s, and descendants of t different from t are strict
descendants of t. For t ∈ V (T ), its height is the length of the path of T between r, t.

We will recursively define a set of pairs, called “cores”. Each core will be a pair (t, C) where
t ∈ V (T ) and C is a subset of Bt inducing a non-null connected subgraph, and we will call t its
birthday. The set of all cores with the same birthday will be given an arbitrary linear order called
the “birth order”, and if (t, C) precedes (t, C ′) in the birth order then we will say that (t, C) is an
elder sibling of (t, C ′), and (t, C ′) is a younger sibling of (t, C). Each core (t, C) will have a spread
S(t, C), which is the vertex set of a certain subtree of T with root t, defined below.

Here is the inductive definition. If there exists t ∈ V (T ) such that we have not yet defined the
set of cores with birthday t, choose some such t with minimum height. We say v ∈ Bt is disqualified
if there is a core (s, C) such that s is a strict ancestor of t, and t ∈ S(s, C), and either v ∈ C or v has
a neighbour in C. Let Z be the set of vertices in Bt that are not disqualified. For each component
C of G[Z], we define (t, C) to be a core; this defines the set of all cores with birthday t. Choose an
arbitrary linear order, called the birth order, of the set of cores with birthday t. For each core (t, C),
its spread S(t, C) is the set of all t′ ∈ V (T ) such that

• t′ is a descendant of t;

• C ∩Bt′ 6= ∅;

• t′ ∈ S(s, C ′) for every core (s, C ′) such that s is a strict ancestor of t and t ∈ S(s, C ′); and

• t′ ∈ S(t, C ′) for every elder sibling (t, C ′) of (t, C).

This completes the inductive definition of the set of all cores. We see that the spread of every
core includes the spread of all its younger siblings; and for any two cores, either their spreads are
vertex-disjoint, or one is included in the other.

Two subsets X,Y ⊆ V (G) are anticomplete if they are disjoint and there are no edges of G
between them. We need, first:

(1) If (t1, C1), (t2, C2) are distinct cores and their spreads intersect, then C1, C2 are anticomplete.

We may assume that t1 6= t2. Since the spreads of (t1, C1), (t2, C2) intersect, t1, t2 have a com-
mon descendant t0 say, so one of t1, t2 is a strict ancestor of the other. Hence we may assume that
t1 is a strict ancestor of t2, and therefore t2 ∈ S(t1, C1) since the spreads intersect. Since (t2, C2) is
a core, it follows that for each v ∈ C2, v /∈ C1 and v has no neighbour in C1. Consequently, C1, C2

are anticomplete. This proves (1).

(2) For each t ∈ V (T ), there are at most k cores (s, C) such that t ∈ S(s, C).

Let (s1, C1), . . . , (sn, Cn) be the set of all cores whose spread contains t, and let D1, . . . , Dm be
cliques with union Bt, with m ≤ k. The sets C1 ∩Bt, . . . , Cn ∩Bt are nonempty, and by (1) they are
pairwise anticomplete. Consequently, for 1 ≤ i ≤ n, there exists ji ∈ {1, . . . ,m} such that Ci ∩ Bt
contains a vertex of Dji ; and if i, i′ ∈ {1, . . . , n} are distinct, then ji 6= ji′ , because Ci ∩ Bt and
Ci′ ∩Bt are anticomplete and Dji is a clique. Thus n ≤ m ≤ k. This proves (2).
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For each v ∈ V (G), there exists t ∈ V (T ) with v ∈ Bt, and the set of such vertices t induces a
subtree of T . In particular, there is a unique t ∈ V (T ) of minimum height with v ∈ Bt, and we call
t the source of v. If t is the source of v, there might or might not exist C ⊆ Bt with v ∈ C such that
(t, C) is a core. If there exists such C we say v is central. If there exists a core (t′, C ′) such that t′

is a strict ancestor of t and t ∈ S(t′, C ′) and v has a neighbour in C ′, we say v is peripheral. (Note
that v cannot belong to C ′, from the definition of t.)

(3) Every vertex v ∈ V (G) is central or peripheral, and not both.

Let t be the birthday of v. The first statement is clear from the definition of the set of cores
with birthday t. For the “not both” part, suppose that v is central and peripheral; choose C ⊆ Bt
with v ∈ C such that (t, C) is a core, and choose a core (t′, C ′) such that t′ is a strict ancestor of t
and t ∈ S(t′, C ′) and v has a neighbour in C ′. Since t ∈ S(t, C)∩S(t′, C ′), and v ∈ C has a neighbour
in C ′, this contradicts (1). This proves (3).

For each v ∈ V (G), we define a core φ(v) as follows. Let t1 ∈ V (T ) be the source of v. If v
is central, φ(v) is the core (t1, C1) with v ∈ C1. Now assume v is peripheral. Hence there is a
strict ancestor t0 of t1 and a core (t0, C0) such that t1 ∈ S(t0, C0), and v has a neighbour in C0.
Choose such t0 of minimum height; and of all the cores (t0, C0) such that t1 ∈ S(t0, C0), and v has a
neighbour in C0, choose (t0, C0) with this property, as early as possible in the birth order. We define
φ(v) = (t0, C0).

(4) Let v ∈ V (G), let φ(v) = (t0, C0), and let t ∈ V (T ), such that v ∈ Bt. Then exactly one of
the following holds:

• v is peripheral, and t ∈ S(t0, C0); or

• there is a core (t′, C ′) with t ∈ S(t′, C ′) and v ∈ C ′.

If both statements hold, then since t ∈ S(t0, C0) and t ∈ S(t′, C ′) and there is an edge between C0, C
′

(because v ∈ C ′ and has a neighbour in C0), this contradicts (1). So not both hold. We prove that
at least one holds by induction on the height of t. If there exists C with v ∈ C such that (t, C) is a
core, the claim is true, so we assume not. Hence, from the definition of cores, there is a core (t2, C2)
with t ∈ S(t2, C2), such that t2 is a strict ancestor of t and v belongs to or has a neighbour in C2. If
v ∈ C2, the claim holds, so we assume that v /∈ C2 and v has a neighbour in C2.

Let t1 be the source of v. Thus, t0, t1, t2 all belong to the path of T between r, t, and t0 is an
ancestor of t1. Suppose that either t2 is a strict ancestor of t0, or (t2, C2) is an elder sibling of
(t0, C0); and hence v is peripheral, in both cases. Since v has a neighbour in C2, this contradicts the
definition of φ(v). So we assume that either t2 is a strict descendant of t0 or (t2, C2) is a younger
sibling of (t0, C0).

If t = t1 the result is true, so we assume that t 6= t1. Let s be the parent of t; so s lies in the
path of T between t1, t, and therefore v ∈ Bs. From the inductive hypothesis, either v is peripheral
and s ∈ S(t0, C0), or there is a core (t′, C ′) with s ∈ S(t′, C ′) and v ∈ C ′.

Suppose the first holds. Since either t0 is a strict ancestor of t2, or (t0, C0) is an elder sibling
of (t2, C2), and since S(t2, C2) contains t and t2 ∈ S(t0, C0), it follows (from the second half of the
definition of cores) that S(t2, C2) ⊆ S(t0, C0). Thus t ∈ S(t0, C0) and the claim is true.
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So we assume the second holds, that is, there is a core (t′, C ′) with s ∈ S(t′, C ′) and v ∈ C ′. If
t ∈ S(t′, C ′) the claim holds, so we assume not. Since t2 is a strict ancestor of t and t ∈ S(t2, C2),
it follows that t2 is an ancestor of s and s ∈ S(t2, C2). But there is an edge between C2, C

′, since
v ∈ C ′ and v has a neighbour in C2; and so from (1), either (t′, C ′) = (t2, C2) or the spreads of
(t′, C ′) and (t2, C2) are disjoint. The first is impossible since t /∈ S(t′, C ′) and t ∈ S(t2, C2), and the
second is impossible since s belongs to both spreads. This proves (4).

(5) Let P be a path of T with one end r, and let v ∈ V (G). Let φ(v) = (t0, C0). Let C(P, v) be
the set of cores (t, C) such that t ∈ V (P ) and v ∈ C. Let the members of C(P, v) with birthday
different from t0 be (t1, C1), . . . , (tn, Cn), numbered such that t0, t1, . . . , tn have strictly increasing
height. Then:

• ti /∈ S(th, Ch) for 0 ≤ h < i ≤ n;

• for 1 ≤ i ≤ n, let si be the parent of ti: then si ∈ S(ti−1, Ci−1);

• n ≤ k − 1.

The first bullet holds by (1), since v ∈ Ci and either v ∈ Ch, or h = 0 and v has a neighbour in Ch.
For the second bullet, let t′0 be the source of v. Thus t0 is an ancestor of t′0 (possibly t′0 = t0),

and t1, . . . , tn are strict descendants of t′0 (to see that t1 6= t′0, observe that this is trivially true
if v is not central, and true if v is central since then t0 = t′0.) Let 1 ≤ i ≤ n. If v /∈ Bsi , then
i = 1 and ti = t′0, which is impossible. So v ∈ Bsi . If si ∈ S(t0, C0), then ti−1 ∈ S(t0, C0), and
so i = 1 by the first bullet of (5) (because otherwise ti−1 /∈ S(t0, C0)) and the claim is true. So we
assume that si /∈ S(t0, C0). From (4), there is a core (t′, C ′) with si ∈ S(t′, C ′) and v ∈ C ′. Hence
(t′, C ′) = (th, Ch) for some h ∈ {0, . . . , i − 1}. If h < i − 1, then ti−1 ∈ S(th, Ch), contradicting the
first bullet of (5). Thus h = i− 1 and the claim holds.

For the third bullet, we may assume that n ≥ 1. For 0 ≤ i ≤ n define g(i) to be the number of
cores (t, C) such that t is a strict ancestor of ti and ti ∈ S(t, C). We will prove by induction on i
that g(i) ≤ k − i− 1. Since there is a core (t0, C0), it follows that g(0) ≤ k − 1 by (2). Inductively,
suppose that 1 ≤ i ≤ n, and g(i − 1) ≤ k − (i − 1) − 1. Let Ai−1 be the set of all cores (t, C) such
that t is a strict ancestor of ti−1 and ti−1 ∈ S(t, C); and let Ai be the set of all cores (t, C) such
that t is a strict ancestor of ti and ti ∈ S(t, C). Thus g(i − 1) = |Ai−1| and g(i) = |Ai|. We claim
that Ai ⊆ Ai−1. Let (t, C) ∈ Ai, and suppose that (t, C) /∈ Ai−1. Thus t is a strict ancestor of ti,
and a descendant of ti−1. Since ti /∈ S(ti−1, Ci−1), and Ci−1 ∩ Bti 6= ∅ (because it contains v), the
definition of S(ti−1, Ci−1) implies that there is a core (d,D) such that d is a strict ancestor of ti−1,
and ti−1 ∈ S(d,D), and ti /∈ S(d,D). But this contradicts the definition of the spread of (t, C), since
d is a strict ancestor of ti−1 and ti ∈ S(t, C).

Consequently Ai−1 ⊆ Ai for 1 ≤ i ≤ n. But for 1 ≤ i ≤ n, since Ci−1 ∩ Bti 6= ∅ and yet
ti /∈ S(ti−1, Ci−1), there is a core (d,D) such that d is a strict ancestor of ti−1, and ti−1 ∈ S(d,D),
and ti /∈ S(d,D). But then (d,D) ∈ Ai−1\Ai, and so g(i)leg(i−1)−1 ≤ (k−(i−1)−1)−1 = k−i−1.
This proves the third bullet and so proves (5).

Next we construct a graph J . Its vertex set is the set of all triples (s, t, C) where (t, C) is a
core and s is in its spread. Consequently s is a descendant of t for all vertices (s, t, C) of J . If
(s1, t1, C1), (s2, t2, C2) ∈ V (J) are distinct, they are adjacent in J if either:
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• s1 = s2 and distG(C1, C2) ≤ 3, or

• s1, s2 are adjacent in T and C1 ∩ C2 6= ∅.

In particular, if (s, t, C) ∈ V (J) and s 6= t, let s′ be the parent of s; then (s′, t, C) ∈ V (J) is adjacent
in J to (s, t, C) ∈ V (J), and edges of this type are called green edges. All edges of J that are not
green are called red. We will eventually show that there is a (2k + 2, 2k − 1)-quasi-isometry from G
to the graph obtained from J by contracting all green edges. But first we prove some properties of
J .

(6) J has pseudo-tree-width at most k − 1.

For each s ∈ V (T ), let As be the set of all (s, t, C) ∈ V (J). Thus the sets As (s ∈ V (T )) are
pairwise disjoint and have union V (J). Let s, t ∈ V (T ) where s is the parent of t. There may be
edges of J between As and At, but we claim that there are at most k such edges. Choose a set F
of at most k cliques with union Bs. For each edge e ∈ E(J) between As, At, we define Fe ∈ F as
follows. Let the ends of e be (s, s1, C1) ∈ V (J) and (t, t1, D1). Then C1∩D1 6= ∅; choose Fe ∈ F that
contains a vertex in C1 ∩D1. We claim that Fe1 6= Fe2 for all distinct edges e1, e2 between As, At.
To see this, let ei have ends (s, si, Ci) ∈ V (J) and (t, ti, Di) for i = 1, 2. Either (s1, C1) 6= (s2, C2)
or (t1, D1) 6= (t2, D2). In the first case, C1, C2 are anticomplete by (1); so no clique intersects both
C1, C2; and so Fe1 6= Fe2 . In the second case, D1, D2 are anticomplete by (1); so no clique intersects
both D1, D2; and so Fe1 6= Fe2 . Since |F| ≤ k, this proves that there are at most k edges of J
between As, At.

Let f = st be an edge of T , where s is the parent of t. From 2.2, since |As|, |At| ≤ k by (2), there

is a pseudo-path-decomposition (Bf
1 , . . . , B

f
n(f)) of J [As ∪ At] with width at most k − 1 and with

As ⊆ Bf
1 and At ⊆ Bf

n(f). This defines n(f), for each edge f of T . Subdivide each edge f ∈ E(T )

n(f) times, making a tree T ′. Define Ct = Bt for each t ∈ V (T ). For each f = st ∈ E(T ) where s
is the parent of t, let s, u1, . . . , un(f), t be the vertices in order of the path formed by subdividing f ,

and define Cui = Bf
i for 1 ≤ i ≤ n(f). This defines a pseudo-tree-decomposition of J with width at

most k − 1, and so proves (6).

The function φ does not map into V (J), since φ(v) is a pair, not a triple. For each v ∈ V (G),
define ψ(v) = (t, t, C) where φ(v) = (t, C).

(7) Let v ∈ V (G), and let (t, C) be a core with v ∈ C. Then there is a path of J between ψ(v)
and (t, t, C) with at most k − 1 red edges.

Let P be the path of T between r, t, and define (t0, C0), . . . , (tn, Cn) as in (5). By the second
bullet of (5), for 0 ≤ i < n, there is a path of J from (ti−1, ti−1, Ci−1) to (ti, ti, Ci) in which all edges
are green except the last; and since n ≤ k − 1 (again by (5)), and (t, C) = (tn, Cn), this proves (7).

(8) Let v1, v2 ∈ V (G) be adjacent. Then there is a path of J between ψ(v1), ψ(v2) using at most
k red edges.

Let ψ(vi) = (ti, ti, Ci) for i = 1, 2, and let t′i be the source of vi for i = 1, 2. Since vi belongs
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to or has a neighbour in Ci, for i = 1, 2, and v1v2 ∈ E(G), it follows that distG(C1, C2) ≤ 3. There
exists s ∈ V (T ) with v1v2 ∈ Bs, since v1v2 is an edge; and by choosing s of minimum height we may
assume that s is the source of one of v1, v2, say v2, and so s = t′2.

A green path of J means a path of J containing only green edges. Suppose that t2 ∈ S(t1, C1).
Conequently there is a green path of J between (t1, t1, C1) and (t2, t1, C1), with vertex set all the
triples (t, t1, C) such that t is in the path of T between t1, t2, in order. Since there is a (red) edge of
J between (t2, t1, C1) and (t2, t2, C2) (from the definition of J , since distG(C1, C2) ≤ 3), the claim is
true. Thus we may assume that t2 /∈ S(t1, C1). In particular, t2 is a strict descendant of t′1.

Since t2 is in the path of T between t′1, t
′
2, and v1 ∈ Bt′1 ∩ Bt′2 , it follows that v1 ∈ Bt2 . Since

t2 /∈ S(t1, C1), (4) implies that there is a core (d,D) with t2 ∈ S(d,D) and v1 ∈ D. Thus (t1, t1, C1)
is joined to (d, d,D) by a path of J with only k−1 red edges, by (7); (d, d,D) is joined to (t2, d,D) by
a green path; and (t2, d,D) is adjacent to (t2, t2, C2) via a red edge, since distG(C2, D) ≤ 2 (because
v2 has a neighbour in both). This proves (8).

(9) For each core (t, C), G[C] has diameter at most 2k − 1.

G[C] has no stable set of size k + 1 (because C can be partitioned into at most k cliques), and
therefore G[C] has no induced path with 2k + 1 vertices. Since it is connected, it has diameter at
most 2k − 1. This proves (9).

(10) If (s1, t1, C1) and (s,t2, C2) are joined by a green path of J , and v1 ∈ C1 and v2 ∈ C2, then
distG(v1, v2) ≤ 2k − 1.

Any two vertices of J joined by a green edge have the same second and third coordinates, and
so t1 = t2 and C1 = C2. Consequently v1, v2 ∈ C1, and the result follows from (9). This proves (10).

(11) Let v1, v2 ∈ V (G), and suppose P is a path of J between ψ(v1), ψ(v2) containing at most n
red edges. Then distG(v1, v2) ≤ (2k + 2)n+ 2k − 1.

If n = 0 the result follows from (10), so we assume that n ≥ 1. Let P have ends b0 and an+1,
and let the red edges of P be a1b1, a2b2, . . . , anbn in order, numbered such that there there is a green
subpath of P between bi, ai+1 for 0 ≤ i ≤ n. For 1 ≤ i ≤ n, define αi, βi as follows: let ai = (s, t, C)
and bi = (s′, t′, C ′) say; choose αi ∈ C and βi ∈ C ′ with distance at most three in G. (This is possible
from the definition of red edges.) Let β0 = v1 and αn+1 = v2. Thus distG(αi, βi) ≤ 3 for 1 ≤ i ≤ n;
and distG(βi, αi+1) ≤ 2k − 1 by (10). Consequently distG(v1, v2) ≤ (2k + 2)n+ 2k − 1.

(12) For each j ∈ J , there exists v ∈ V (G) such that there is a path of J between j and ψ(v)
using at most k − 1 red edges.

Let j = (s, t, C), and choose v ∈ C ∩ Bs. There is a green path between j and (t, t, C); and by
(7), since v ∈ C ⊆ Bt, there is a path between (t, t, C) and ψ(v) containing at most k − 1 red edges.
This proves (12).

Let H be obtained from J by contracting all green edges. Thus each vertex of H is formed
by identifying all the vertices (s, t, C) for a fixed core (t, C), and so we can identify V (H) with
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the set of all cores in the natural way. From (6), and since contraction does not increase pseudo-
tree-width, H has pseudo-tree-width at most k − 1, and from (8), (11), (12), the function ψ is a
(2k + 2, 2k − 1)-quasi-isometry from G to H. This proves 2.3 and hence (with 2.1) proves 1.4.
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