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Problem 1. (From Paul Seymour)
Take a digraph drawn in the plane without crossings, and let O be a point of the plane

not used by the drawing. For each edge e = uv, let w(e) be the angle the line OP turns
through as P follows the edge e from P = u to P = v. Suppose that w(e) > 0 for each edge.
Then, obviously, for every directed cycle, the sum of w(e) over the edges of the cycle equals
360 degrees.

Is that the only way to make such a digraph? Not in general, but what about strongly
2-connected digraphs? Suppose that G is a strongly 2-connected digraph and for every edge
e, w(e) is some real number, such that for every directed cycle, the sum of w(e) over the edges
of the cycle equals 1. Does G have to come from a planar drawing in this way? In particular,
does G have to be planar?

From Stéphan: This looks like some problem we looked at with Adrian and Pierre where
vertices are on the unit cycle and every circuit has winding number one. We started with a
longest cycle and tried to perform ear decomposition if I remember well, but got nowhere. A
spinoff question: Is it true that minimum out-degree 3 implies the existence of a cycle with
winding number >1?

From Daniel Carter (and Paul Seymour): The answer to the first question (“Does G have
to come from a planar drawing in this way?”) is no. Here is a counterexample:

A weighting is given by giving all of the red edges weight 1/4 and all the blue edges weight
1/2. But one can check there is no way to draw this graph in the plane minus the origin
without crossings so all edges go strictly clockwise. I can come up with examples with no
digons as well. Of course, this is planar, so the latter statement “does G have to be planar?”
is still open. Also the former statement may be true with more assumptions.

(From Paul Seymour) I had better modify this: assume the digraph is strongly 2-connected
and the underlying undirected graph is 3-connected. Is it true then?

From Daniel Carter: Still no. Here is how to generate many counterexamples. Let f be
a vector field on S2 with isolated zeros. Project onto R2 so one of the zeros gets mapped to
∞. The rest of the zeros are either “whorls” or “saddles”, and there is one more whorl than
saddle by Poincaré–Hopf. We can arrange so they are mapped onto the x-axis in the order
whorl, saddle, whorl, saddle, ..., whorl. Draw a ray going left from the first whorl, and draw
a segment between consecutive saddle-whorl pairs for the rest (matching the saddles to the
whorl immediately to their right), arranging so this ray and these segments are orthogonal
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to the vector field everywhere. Draw a planar graph on this so that nothing touches any of
the zeros of the vector field, and the tangent vector at each point along each edge is never
orthogonal to the vector field. Orient the edges in this graph according to the vector field.
We claim the resulting digraph is weightable by putting weight 1 on any edge crossing the
ray or any of the line segments we drew earlier and 0 on all other edges. This is again a
consequence of Poincaré–Hopf. Starting with a large enough planar graph and at least one
saddle allows you to obtain strongly 2-connected, weakly 3-connected counterexamples. In the
example below, give black edges weight 0 and red edges weight 1.

So here is the current set of conjectures: (1) If G is strongly 2-connected and weightable,
then G is planar; (2) If G is strongly 2-connected, weakly 3-connected, and weightable, then
there is a drawing of G in the plane and vector field of the form described above so that G is
given by the above construction.

I believe I can prove that (2) implies (1). It would be nice to know if (1) also implies (2); I
think I can prove this for graphs whose planar drawing has just two faces bounded by cycles,
corresponding to the case of no saddles. Raphael notes that it might be possible to use a result
of Guenin and Thomas to prove that strongly 2-connected, weakly 3-connected, weightable,
and planar implies strongly planar, which could be a helpful intermediate step to showing (1)
implies (2).

Problem 2. (From Paul Seymour)
What are the digraphs in which every directed cycle has length four? I know the answer

if they all have length three (see https://www.arxiv.org/abs/2410.13008), but I can’t do
length four. What if they all have length some nice big prime number, is that easier?

Problem 3. Tree-treewidth (from David Wood)
Given a graph parameter f , Liu–Norin–Wood defined a new graph parameter tree-f as

follows. For a graph G, let tree-f(G) be the minimum integer k such that G has a tree-
decomposition (Bx : x ∈ V (T )) such that f(G[Bx]) ⩽ k for each node x ∈ V (T ). Seymour
introduced tree-χ a few years ago. Tree-α has recently been extensively studied. Liu–Norin–
Wood recently introduced tree-treewidth. They showed that any proper minor-closed class
has bounded tree-treewidth (in fact, graphs excluding a fixed odd minor have bounded tree-
pathwidth). The proof uses the Graph Product Structure Theorem, so the bounds are large.
It would be interesting to prove this without using the Graph Minor Structure Theorem and
with better bounds. In particular, what is the maximum of tree- tw(G) for a Kt-minor-free
graph G? Liu–Norin–Wood gave a lower bound of Ω(t2), and asked whether Kt-minor-free
graphs G have tree-tw(G) ∈ O(t2)? Natural tools to use for answering this question include
chordal partitions and sparse covers [a,b,c].

Problem 4. (tw,had)-bounded classes (from David Wood)
Let tw(G) be the treewidth of a graph G. The Hadwiger number had(G) of a graph

G is the maximum integer t such that Kt is a minor of G. We have had(G) ⩽ tw(G) + 1
for every graph G. Campbell–Davies–Distel–Frederickson–Gollin–Hendrey–Hickingbotham–
Wiederrecht–Wood–Yepremyan asked for what classes of graphs is a reverse inequality true?
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To this end, they defined a hereditary graph class G to be (tw,had)-bounded if there is a
function f such that tw(G) ⩽ f(had(G)) for every graph G ∈ G, and G is linearly (tw,had)-
bounded if there is a constant c such that tw(G) ⩽ c had(G) for every G ∈ G. Campbell
et al. conjectured that every (tw,had)-bounded hereditary graph class is linearly (tw,had)-
bounded. This conjecture is true for several examples, including circle graphs and outer-string
graphs (on surfaces with the vertices on a bounded number of cuffs).

Problem 5. Polynomial / Linear Grid Minor Theorem (from David Wood)
The following two results are the state-of-the-art bounds in Robertson and Seymour’s

Grid Minor Theorem: Every graph with treewidth at least ck9 polylog k has a k × k grid
minor [Chuzhoy–Tan]. Every graph with treewidth at least tct

2
k has a Kt minor or a k × k

grid minor [Kawarabayashi–Kobayashi]. Does the Grid Minor Theorem hold with polynomial
dependence on t and linear dependence on k? That is, does every graph with treewidth at
least tck have a Kt minor or a k × k grid minor?

Problem 6. Undecidability of graph class containment (from Daniel Carter)
Let S and S′ be two families of graphs defined by finitely many forbidden (induced) sub-

graphs, (induced) minors, and/or (induced) topological minors. (We say H is an induced
minor of G if it may be formed from G by vertex deletions and edge contractions. We say
H is an induced topological minor of G if a subdivision of H is an induced subgraph of G.)
Is it decidable to determine if S ⊆ S′? In an upcoming paper, Maria Chudnovsky, Nicolas
Trotignon and I prove this problem is decidable if either (a) S is defined by forbidding just
subgraphs, minors, and/or topological minors (and S′ is unrestricted), or (b) S′ is defined by
forbidding just (induced) subgraphs and/or induced topological minors (and S is unrestricted).
We suspect the general case is undecidable.

Towards that end, we prove the following problem is undecidable. Let H be a given graph
with four special vertices a1, a2, b1, b2, and two special subsets of vertices U1 and U2, and F a
finite set of graphs. Is it possible to add two induced paths P1, P2 to H, Pi going from ai to
bi, so that the resulting graph is F-free, and where the neighborhood of each vertex in Pi is
restricted to lie in Ui ∪ Pi ∪ P3−i? This seems to be close to the desired result. On the other
hand, we prove the analogous problem is decidable with any number of paths if the vertices
on each path Pi to be added have their neighborhoods restricted to Ui ∪ Pi. This was used to
get the two special cases (a) and (b) above.

Similar methods can be used to prove the following problem is undecidable. Let H be a
graph and F a finite set of graphs. Is there an F-free Hamiltonian graph containing H?

Problem 7. Erdős–Hajnal for digraphs (from Tung Nguyen)
For two digraphs G,H, we say that H is an induced subdigraph of G if there exists S ⊆ V (G)

for which H is isomorphic to G[S]; and say that G is H-free if it has no H induced subdigraph.
A digraph is acyclic if it contains no (induced) subdigraph which is a directed cycle; and the
dichromatic number of a digraph G is the least integer k ⩾ 0 for which V (G) can be partitioned
into k vertex subsets each inducing an acyclic subdigraph. The following conjecture was due to
Harutyunyan and McDiarmid and first appeared as Conjecture 1.1 in a paper of Harutyunyan,
Le, Newman, and Thomassé:

For every tournament H, there exists c > 0 such that every H-free digraph G has
an acyclic induced subdigraph with at least |G|c vertices.

(In the cited paper above this was stated for all forbidden digraphs H; but the conjecture only
makes sense when H is a tournament since one can take G to be a tournament.) Another
formulation of this conjecture says that there exists τ > 0 such that every H-free digraph G
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has dichromatic number at most |G|1−τ . The conjecture contains the tournament version of
the Erdős–Hajnal conjecture (which is known to be equivalent to the original EH conjecture),
but it is unknown if the other direction holds.

Even though a bound of 2c
√

log |G| (in place of |G|c) is known, it is currently unknown
whether such a bound can be substantially improved when H is the cyclic triangle C3. In
more detail, given the recent work on the EH conjecture, can a bound of 2c

√
log |G| log log |G| be

proven in this case?
Moreover, in order to gain a better understanding of C3-free digraphs, Harutyunyan, Le,

Newman, and Thomassé proved (Theorem 1.7 in the paper) that every C3-free digraph G has
dichromatic number at most 35α(G)−1α(G)! = α(G)O(α(G)) where α(G) is the usual stability
number of G, and they conjectured (Conjecture 1.6) that a polynomial bound on α(G) is true.
Can a singly exponential bound be done in this direction?

Problem 8. Clustered colouring and girth (from David Wood)
An (improper vertex) colouring of a graph has clustering k if each monochromatic com-

ponent has at most k vertices. Here, a monochromatic component is a maximal connected
subgraph of vertices all assigned the same colour. Briański–Hickingbotham–Wood recently
studied clustering colouring with respect to girth. Here are some questions that arose from
their work:

1. Are graphs with girth at least some absolute constant and with bounded treewidth 2-
colourable with bounded clustering? Here the clustering may depend on the treewidth.
The answer is “yes” for graphs with treewidth 2 and girth at least 5. In general, girth at
least 7 is needed for a positive answer. Three colours is achievable for girth at least 5
by a more general result of Liu and Wood. This question remains open with “treewidth”
replaced by “pathwidth”.

2. Are Kt-minor-free graphs with girth at least some absolute constant 3-colourable with
bounded clustering (depending on t). Girth at least 5 is needed for a positive answer.
Four colours is achievable for girth at least 5 by a more general result of Liu and Wood.

3. Are Kt-minor-free graphs with girth at least some absolute constant 2-colourable with
bounded clustering (depending on t)? Girth at least 7 is needed for a positive answer.
The answer is “yes” for graphs embeddable in a fixed surface. The answer is “yes” if the
girth is Ω(log t).

Problem 9. Clustered 3-colouring planar graphs (from David Wood)
Linial–Matoušek–Sheffet–Tardos defined fc(n) to be the minimum integer such that every

n-vertex planar graph is c-colourable with clustering fc(n). The 4-Colour Theorem says that
fc(n) = 1 for every c ⩾ 4. Linial et al. showed that f2(n) = Θ(n2/3) and Ω(n1/3) ⩽ f3(n) ⩽
O(n1/2). Determining f3(n) is wide open.

As discussed by Campbell–Gollin–Hendrey–Lesgourgues–Mohar–Tamitegama–Tan–Wood,
a natural approach for improving the upper bound on f3(n) is to apply the Planar Graph Prod-
uct Structure Theorem of Dujmović–Joret–Micek–Morin–Ueckerdt–Wood, which says that ev-
ery planar graph is contained in H ⊠ P for some graph H of treewidth at most 8 and some
path P . The idea would be to 3-colour H ⊠ P with small clustering, thus determining a
3-colouring of G. Two issues arise, however. First, it may be that |V (H ⊠ P )| is significantly
larger than |V (G)| (the best bounds are |V (H)| ⩽ |V (G)| and |V (P )| ⩽ O(|V (G)|(1+ϵ)/2)
by Hendrey–Wood). So clustering O(|V (H ⊠ P )|β) does not immediately imply clustering
O(|V (G)|β). Second, Campbell et al. showed there are graphs H with treewidth 3 and there
are paths P such that every 3-colouring of H ⊠ P has clustering Ω(|V (H ⊠ P )|3/7). So (even
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ignoring the first issue) the best upper bound on f3(n) that one could hope for using this
method is f3(n) ⩽ O(n3/7), which is between the known bounds mentioned above.

Islands provide another approach: what is the least function g(n) such that every n-vertex
planar graph G has a set S of at most g(n) vertices, such that every vertex in S has at most
two neighbours in V (G) \ S? A greedy colouring algorithm shows that f3(n) ⩽ g(n). I would
be surprised if g(n) ∈ o(n1/2), but it is worth considering.

The above lower bound is established as follows. Fix an integer k ⩾ 2. Let F1, . . . , Fk be
disjoint fans each with k2 vertices. Let wi be the centre of Fi. Let G be obtained by adding
one vertex v adjacent to every vertex in F1 ∪ · · · ∪ Fk. So G has k3 + 1 vertices. Suppose
that G is 3-colourable with clustering less than k. Say v is red. Since v is adjacent to every
other vertex, some Fi has no red vertex. Say wi is blue. So the path Fi − wi has less than
k blue vertices, and no red vertices. Deleting the blue vertices from Fi − wi leaves at most k
components, all of which are green. At least one such component has at least ⌈(k2 − 1)/k⌉ = k
vertices, which is a contradiction. So every 3-colouring has clustering at least k ≈ n1/3. It
would be very interesting to find a better lower bound.

Problem 10. The sunny side of χ-boundedness (from Nicolas Trotignon)
Call a sun any graph obtained from a cycle by adding a pending edge at each vertex. The

length of a sun is the length of the cycle. Are sun-free graphs χ-bounded?
By "-free" we mean that we exclude all suns as induced subgraphs. Here are some remarks.

The triangle-free case is of interest and can be rephrased as: is there an upper bound on the
chromatic number of graphs with no triangle and no sun of length at least 4 (as induced
subgraphs)?

It has been observed by several researchers (though I could not find a reference) that shift
graphs are triangle-free graphs of arbitrarily large chromatic number that contain no sun of
length at least 5. So, excluding suns of length 4 is essential.

Remark from James Davies: This becomes easy if you forbid Kt,t using degree-boundedness
arguments. In the general case, I think I can find vertex sets A = {a1, . . . , at}, B = {b1, . . . , bt},
C so that G[C] has large chromatic number, A cover C, and G[A ∪ B] is the matching
a1b1, . . . , atbt. It feels like this might be useful, particularly if there is a way to also make
B anti-complete to C.

Problem 11. El-Zahar–Erdős for triangle-free graphs (from Tung Nguyen)
A conjecture of El-Zahar and Erdős says that for every two integers w, t ≥ 1, there exists

d ≥ 1 such that every graph G with ω(G) ≤ w and χ(G) ⩾ d contains two disjoint anticomplete
vertex subsets A and B such that χ(G[A]), χ(G[B]) ⩾ t. In particular this remains open when
w = 2, that is when G is triangle-free. Is there a counterexample to the following ultra-strong
strengthening? There exists C > 0 such that for every integer t ≥ 1, every triangle-free
graph G with χ(G) ⩾ Ct contains two disjoint anticomplete vertex subsets A and B with
χ(G[A]), χ(G[B]) ⩾ t. In the case of K4-free graphs a counterexample to this ultra-strong
version can be built by random graphs.

Raphael Steiner: The triangle-free process gives a counterexample. In fact, the following
argument can also be used to show that the smallest value d = d(w, t) satisfying El-Zahar-
Erdős, if it exists, satisfies d(2, t) ⩾ Ω(t4/3). The triangle-free process is the following random
process to generate a triangle-free graph on n vertices: Start from the empty graph G0 on
n vertices. For i ⩾ 1, while there is still a non-edge in Gi−1 that can be added without
creating a triangle, uniformly at random pick one such non-edge among all addable non-
edges and add it to Gi−1 to create Gi. Addable non-edges are also called open, and non-
addable non-edges are called closed. Let G be the eventual outcome of the process, which
is always triangle-free. See also https://www.sciencedirect.com/science/article/pii/
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S0001870809000620. In this article Bohman proves the following fact about this random
graph G: W.h.p. it has independence number at most O(

√
n lnn), and hence chromatic

number at least χ := Ω(
√

n
lnn). Now, suppose towards a contradiction that Tung’s statement

holds with some constant C. This would mean that there exist anticomplete disjoint sets
A,B ⊆ V (G) such that χ(G[A]), χ(G[B]) ⩾ χ

C = Ω(
√

n
lnn). Since it is well-known (see e.g.

the intro of https://doi.org/10.1137/21M1437573 for some history) that every x-vertex
triangle-free graph has chromatic number at most O(

√
x

lnx), the above inequality implies that
|A|, |B| ⩾ εn where ε > 0 is a constant depending solely on C. Now, what is left to prove
is that w.h.p. as n → ∞ the random graph G does not contain two disjoint anticomplete
sets of size at least εn. So fix any pair A,B of disjoint subsets of V (G) of size at least εn.
For technical reasons, we would like to estimate the probability of the following event E :=
{G has no edges between A and B and ∆(G) ≤ B

√
n lnn}, for some large enough constant

B > 0. I claim that P[E ] ≤ exp(−Ω(n1.49)) for any fixed pair (A,B). The probability of E
occuring can be bounded as follows: For every i ⩾ 0 let Ei be the event that Gi has no edges
between A and B and that ∆(Gi) ≤ B

√
n lnn (to let this make sense for every i ⩾ 0, set

Gi := G for every i > e(G)). We then have

P[E ] =
∏
i⩾1

P[Ei|Ei−1].

Note that a non-edge that is closed in Gi−1 must have both endpoints in the neighborhood of
some vertex. Hence, for every i ⩾ 1, if Ei−1 is satisfied then the number of open non-edges in
Gi−1 between A and B is at least

|A||B| −
∑

v∈V (Gi−1)

dGi−1(v)
2

2
⩾ ε2n2 −∆(Gi−1)e(Gi−1) ⩾ ε2n2 −B

√
n ln(n)(i− 1).

In particular, for 1 ≤ i ≤ n1.49, conditional on Ei−1, the chance that the newly added edge
when creating Gi from Gi−1 does not go between A and B is at most 1 − ε2 + o(1). This
implies P[Ei|Ei−1] ≤ 1 − ε2 + o(1) for 1 ≤ i ≤ n1.49. Hence, the above product gives P[E ] ≤
(1 − ε2 + o(1))n

1.49
= exp(−Ω(n1.49)), as desired. Let F be the event that G contains two

anticomplete sets of size εn and that ∆(G) ≤ B
√
n lnn. By a union bound over all choices

of A and B (at most 4n), we find that P[F ] ≤ 4n exp(−Ω(n1.49)) = o(1). Hence, with high
probability, G has no anticomplete sets of size εn, or satisfies ∆(G) > B

√
n lnn. However,

by Bohman’s result, the latter outcome happens with probability o(1), since α(G) ⩾ ∆(G) as
G is triangle-free. Hence, with high probability, G has no anticomplete sets of size εn. This
completes the argument.

From Paul Seymour: I don’t understand, please would you explain more? RS = Raphael
Steiner? What’s the triangle free process? Linear in what?

From Tung (to RS): I guess the triangle-free process you mentioned is the one in arXiv:0806.4375,
but I’m not sure about the pseudorandom properties comparable to an ER random graph of
the same density like you said; this seems to require nontrivial calculations to back up. But
at least I haven’t been able to build a counterexample from the ER random graphs. Also,
the problem asks for “linear-chromatic”, not “linear-sized”; and I think it is well-known that
sparse ER random graphs give graphs with arbitrarily large girth and no linear-sized anticom-
plete pairs. And I am not aware of any relative quick way to go from “linear-chromatic” to
“linear-sized”. It would be very nice if there’s such a way. Thanks!

From Daniel Carter: See “Dynamic concentration of the triangle-free process” by Bohman–
Keevash for where the intuition RS mentions is formulated more precisely. We expect the
triangle-free process to give a graph that “looks like” G(n, p) with p = Θ(

√
log n/n), except

with no triangles. Such a graph has χ = Θ(
√
n/ log n), but this graph also has anticomplete
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sets of size Ω(
√

n/ log n), so RS’s simple back-of-the-envelope calculation doesn’t work. How-
ever, we need anticomplete sets much larger than this in order to get anticomplete sets of
chromatic number that large, so the construction probably still works.

From Tung (to Raphael and Daniel): That’s great! Thanks for the explanation! So that
means the statement I proposed is very false in fact, beyond what I had hoped for.

Problem 12. Special cases of Hadwiger’s conjecture (from Vaidyanathan Sivaraman)
Hadwiger’s conjecture (1943) states that h(G) ⩾ χ(G) (h(G) denotes the number of vertices

in a largest complete graph that is a minor of G, and χ(G) is the chromatic number of G).
Prove Hadwiger’s conjecture for

1. Graphs all of whose induced subgraphs H satisfy χ(H)− ω(H) ≤ 2

2. (P5, C5)-free graphs

3. (P5, P
c
5 )-free graphs

4. ISK4-free graphs (these are graphs not containing a subdivision of K4 as an induced
subgraph)

Remark from Nicolas Trotignon: A way to prove Hadwiger conjecture for ISK4-free graphs
would be to prove a conjecture of Lévêque, Maffray and Trotignon stating that ISK4-free
graphs are 4-colorable. The best upper bound so far is due to Ngoc Khang Le who proved
that ISK4-free graphs are 24-colorable. Chudnovsky, Liu, Schaudt, Spirkl, Trotignon and
Vušković proved that (ISK4, triangle)-free graphs are 3-colorable.

From Tung: Is it known whether {P5, P5}-free graphs satisfy linear Hadwiger?
From Daniel Carter: Here is another interesting class: (K2 ∪ 2K1,K3 ∪ K1)-free graphs

(i.e. complements of line graphs of triangle-free graphs). If Hadwiger holds here then it also
holds in (fork, fork)-free graphs by the structure theorem of Chudnovsky, Cook, and Seymour
(it is easy to see that all of the decompositions and the other basic classes pose no issue for
Hadwiger).

Problem 13. Pivot-minors (from Jim Geelen)
Sang-il Oum conjectured that excluding a bipartite circle graph as a pivot-minor bounds

rank-width. I would be very happy to work on that conjecture with anyone who is interested.
Here is another, likely easier, problem on pivot minors. Let’s say that two graphs G1 and

G2, on the same vertex set, are at distance ≤ d if G2 is a pivot-minor of a graph obtained
from G1 by adding at most d vertices. The set of graphs at distance at most d from bipartite
graphs form a pivot-minor-closed class. Can we find a qualitative characterization for this
class? Is it enough to exclude Kn and the direct sum of n triangles? That is, if G is a graph
that contains neither Kn nor the direct-sum of n triangles as a pivot-minor, is G at distance
at most f(n) from a bipartite graph?

Problem 14. Regular chromatic thresholds (from Stéphan Thomassé)
An application of the Dense Neighborhood Lemma gives that for every ε, every K5-free

0.7n+εn-regular graph on n vertices has bounded chromatic number (joint work with Romain
Bourneuf and Pierre Charbit).

The threshold 0.7 is best possible, but can we drop the εn term?
Also, do n/4-regular triangle-free graphs have bounded χ? This is true for n/4 + εn from

a result of O’rourke, and the 1/4-threshold is best possible.
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Problem 15. Domination in tournaments (from Stéphan Thomassé)
An easy application of the Dense Neighborhood Lemma gives that every tournament with

fractional chromatic number k (fractional cover by transitive tournaments) has domination
number at most O(kk). (joint work with Romain Bourneuf and Pierre Charbit).

**** Can the bound be improved to poly(k)?
From Tung: Could you explain what the Dense Neighborhood Lemma is? Is that your

result saying every tournament with huge chromatic number contains a vertex whose out-
neighbourhood induces a tournament with large chromatic number? Or maybe your stronger
theorem (which implies the above) stating that every tournament with huge domination num-
ber contains a bounded-size subtournament with large chromatic number?

From Stéphan: This is a variation of VC-dimension, easier to explain on the blackboard
friday. I’m extremely interested if you have an alternative proof that bounded fractional chi
implies bounded domination.

Note that this directly implies an already known fact (that we proved with Ararat Haru-
tyunyan, Tien Nam Le and Hehui Wu): if the out-neighborhoods of a tournament T have
chromatic number at most k, then χ(T ) ≤ f(k). Indeed T has fractional χ at most 2k since
Farkas Lemma provides a fractional 2-cover of V (T ) by its out-neighborhoods.

**** What is the best bound for f?
From Tung: Just a small reminder from last year’s problem list that it is open whether

f(k) = 2k suffices.
Let us introduce a silly parameter generalizing fractional chi: let us say that a tournament

has fractional VC-dimension at most k if we can find a fractional cover of its vertices by
tournaments of VC-dimension at most k, which total weight is at most k.

We can prove (via DNL) that bounded fractional VC-dimension implies bounded domina-
tion.

**** Is it useful for anything?
A possible application: Call Tk the tournament obtained by iterating k times substitutions

of directed 3-cycles.
**** Is it true that Tk-free tournaments have bounded fractional VC-dimension?
From Tung: A related question (perhaps easier?): Is it true that Sk-free tourmanents have

bounded fractional VC-dimension? Here Sk, inductively, is obtained by substituting a copy of
Sk−1 for two vertices of the directed 3-cycle; and S1 is the one-vertex tournament.

From Stéphan: This is definitely a better toy problem.

Problem 16. Asymptotic Dimension of Fat Minor Free Graphs (from Robert Hick-
ingbotham)

The following conjecture is due to Bonamy–Bousquet–Esperet–Groenland–Liu–Pirot–Scott.
Let G be a graph and H be a subgraph of G. The weak-diameter of H (in G) is

max{distG(u, v) : u, v ∈ V (H)}. For integers c, d ⩾ 0, we say that G is (c, d)-weak diame-
ter colourable if there exists an (improper) c-colouring of G such that each monochromatic
component has weak-diameter at most d.

For a positive integer K, a K-fat minor model of a graph H in a graph G is a collection
(Bv : v ∈ V (H)) ∪ (Pe : e ∈ E(H)) of connected sets in G such that

• V (Bv) ∩ V (Pe) ̸= ∅ whenever v is an end of e in H; and

• for any pair of distinct X,Y ∈ {Bv : v ∈ V (H)} ∪ {Pe : e ∈ E(H)} not covered by the
above condition, we have distG(X,Y ) ⩾ K.

If G contains a K-fat minor model of H, then we say that H is a K-fat minor of G.
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Conjecture: There exist functions c, d such that every graph G with no K-fat
H-minor is (c(H), d(H,K))-weak diameter colourable.

Problem 17. Additive Distortion Quasi-Isometries (from Robert Hickingbotham)
Nguyen–Scott–Seymour conjectured the following:

Conjecture: For all k, L,C ∈ N there exists C ′ ∈ N such that if ϕ is an (L,C)-
quasi-isometry from a graph G to a graph H where tw(H) ≤ k, then there is a
function w : E(H) → N0 such that the same function ϕ is a (1, C ′)-quasi-isometry
from G to the weighted graph (H,w).

Here’s a weakening of the conjecture (potentially due to Scott).

Conjecture: For all k, L,C ∈ N there exists d,C ′ ∈ N such that if ϕ is an (L,C)-
quasi-isometry from a graph G to a graph H where tw(H) ≤ k, then there are
functions wH : E(H) → N0 and wG : E(G) → N0 such that each component of
w−1
G (0) has weak-diameter at most d and the same function ϕ is a (1, C ′)-quasi-

isometry from the weighted graph (G,wG) to the weighted graph (H,wH).

Problem 18. Asymptotic dimension of k-gap planar graphs (from Robert Hickingbotham)
Let k ⩾ 0. A graph G is k-gap planar if it has a drawing in the plane such that each

crossing is charged to one of the two edges involved and every edge has at most k crossings
charged to it. Does this class of graphs have bounded asymptotic dimension? Some comments
on this:

• The class of k-gap planar graphs has polynomial expansion https://www.sciencedirect.
com/science/article/pii/S0304397518303670.

• It suffices to consider the case k = 1 since every k-gap planar graph is quasi-isometric
to a 1-gap planar graph (by subdividing each edge k times).

• A graph is k-planar if it has a drawing in the plane such that each edge is in at most k
crossings. The class of k-planar graphs has bounded asymptotic dimension due to having
bounded layered treewidth https://ems.press/journals/jems/articles/10594301.
However, the class of k-gap planar graphs does not have bounded layered treewidth
(there exist 1-gap planar graphs with radius 1 and arbitrarily large complete graph
minors https://epubs.siam.org/doi/10.1137/22M1542854).

• Asymptotic dimension can be defined via weak-diameter colouring https://ems.press/
journals/jems/articles/10594301. A warm-up question to this problem is to first
determine the weak-diameter chromatic number for the class of k-gap-planar graphs.

Problem 19. Burling number of Burling graphs (from Linda Cook and James Davies)
Let B1, B2, B3, . . . be the usual sequence of Burling graphs. See e.g. [13] for a definition

of the Burling sequence. A graph is a Burling graph if it is an induced subgraph of some Bi.
We define the Burling number B(G) of a graph G to be equal to the maximum i such that G
contains Bi as an induced subgraph.

Note that for each i, Bi is a fixed graph, so for each fixed k there is a polynomial time
algorithm that tests whether or not B(G) = k (by looking at all subsets of size |Bk| and
|Bk+1|).

1. Is there a polynomial time algorithm for determining B(G)? What if G is a Burling
graph?

9

https://arxiv.org/abs/2501.09839
https://www.sciencedirect.com/science/article/pii/S0304397518303670
https://www.sciencedirect.com/science/article/pii/S0304397518303670
https://ems.press/journals/jems/articles/10594301
https://epubs.siam.org/doi/10.1137/22M1542854
https://ems.press/journals/jems/articles/10594301
https://ems.press/journals/jems/articles/10594301


2. Is there a polynomial time approximation algorithm? To be more precise, is there some
increasing function f and a polynomial time algorithm that outputs some s so that
s ≤ B(G) ≤ f(s). What if G is a Burling graph?

By recent work, a positive answer to any of these questions would give a polynomial time
approximation algorithm for the chromatic number of Burling graphs.

Note that for general graphs we have no idea whether there is a polynomial time approxi-
mation algorithm for chromatic number and is attributed to Alon from 1993. (listed as problem
10.2 in Jensen and Toft). See also a nice related previous Barbados Problem of Maria from
2016 [4]) We hope that this paper of Pawel and Bartosz on MIS in Burling Graphs is helpful
[13]. Some nice papers showing NP-Hardness of detecting certain induced subgraphs: From
Nicolas and Maffray [10] from Bienstock [2]. We do not know whether the decision problem
“Is B(G) = k?” on input G and k is even in NP.

Problem 20. Cycles in vertex-transitive digraphs (from Raphael Steiner)
Let f(n) be the largest integer such that every connected vertex-transitive digraph on n

vertices contains a directed cycle of length at least f(n). For graphs, denote the analogous
function by g(n).

The corresponding problem for undirected graphs is well-researched (Lovász conjecture),
and the currently best lower bound is g(n) ⩾ Ω(n13/21). For digraphs it seems little is known.
Can you prove a non-trivial lower bound on f(n)? In particular, is there ε > 0 such that
f(n) ⩾ nε? An open problem of Alspach asks whether f(n) ≤ n − ω(1). Erdős and Trotter
proved that f(n) ≤ n − 1 for some n. Looking at their construction and determining the
maximum length of a directed cycle in it could be a first step to understand the problem of
Alspach.

We (Bućic, Hendrey, Mohar, Steiner, Yepremyan) now have positive answers to these questions.

Problem 21. Odd Girth (from Stéphan Thomassé)
Let og(n) be the minimum value k such that every graph with n vertices and odd girth

at least k has chromatic number at most 8. We can prove that og(n) is at most 16n2/3 (not
fantastic, but o(n). This has been probably investigated somewhere...).

**** What is the best bound for og(n)?
**** Can we replace 8 by 3 and still get o(n)?
We are interested in og(n), with Romain Bourneuf and Pierre Charbit, since we can show

that every triangle-free graph with minimum degree at least n/3 − n/8og(n) has chromatic
number less than some fixed value.

From Raphael: This old paper by Kierstead, Szemerédi and Trotter seems highly relevant. It
implies that og(n) = O(n1/7). Also it shows that the answer to the second question is positive,
one can get even O(

√
n) for 3 instead of 8.

From Stéphan: Thank you, very nice! It implies then that triangle free and minimum
degree n/3 − n1−ε implies bounded chi (and this is I think matched by some constructions).
Sorry for not having dug enough biblio...

Problem 22. Holetown problem (From Nicolas Trotignon)
Problem 1: Decide in polytime if an input graph contains induced cycles of three different

lengths.
Problem 2, possibly more difficult: Decide in polytime if an input graph contains holes of

three different lengths, where a hole is an induced cycle of length at least 4.
There exists a polytime algorithm that decides if a graph has two holes of different lengths,

see [7]. This is why Problem 1 is maybe easier. Because if there are triangles, we may reduce
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Problem 1 to decide whether a graph has holes of two different lengths, and when there is no
triangle, the structure of graphs with answer "no" might be possible to describe.

Problem 23. Independent sets in triangle-free graphs (from Matija Bucić)
Is it true that in a triangle-free graph of independence number α there are at most 2O(α)

maximum independent sets?
We asked this in a recent paper with Maria Chudnovsky and Julien Codsi where we looked

at versions of this question for maximal instead of maximum. In that case the answer is no
since the triangle-free process produces graphs with αO(α) many maximal independent sets.
The question would have some loose implications to determining Ramsey number R(3, k) very
precisely (it is in a sense an easier prerequisite I am told by Will Perkins), this is currently
known up to a factor of 4.

David: The very recent paper “Triangle-free graphs with the fewest independent sets” by
Pjotr Buys, Jan van den Heuvel and Ross Kang may or may not be relevant.

Problem 24. Discrete X-Ray reconstruction problem (from Matija Bucić)
Given a properly edge coloured n-vertex graph G with average degree d ⩾ O(log n) show

that one can find a subset of vertices U and a partition of the colours into two sets C1, C2 such
that G[U ] is connected using only edges of colors in C1 and only using edges of colors in C2.

This question is due to Matoušek, Přívětivý, and Škovroň from 2006 [11]. Its solution
would provide a solution to a nice discrete geometry question via a linear algebraic reduction
they prove. It is also interesting from some subsampling expanders point of view. As an
example that degree log n is needed look at the hypercube graph with the usual coloring. In
[11] they prove degree O(log n log logn) is enough. If it helps you may assume (for the original
geometry problem purposes) that each color class is a perfect matching.

Problem 25. Eigenvalues of regular graphs (from Matija Bucić)
Let d > 1 be a fixed integer. Prove that in any d-regular connected graph on n vertices

the multiplicity of the second largest eigenvalue of its adjacency matrix is o(n/ log log n).
This was explicitly asked recently by McKenzie, Rasumussen and Srivastava [12] but traces

its origins to [8]. It would have nice implications towards equiangular lines problem but is nice
in its own right imo.

Problem 26. Chromatic number vs fractional chromatic number (from Sang-il Oum)
Which hereditary class C of graphs has a function f such that χ(G) ≤ f(χf (G)) for all

graphs G ∈ C?
Any χ-bounded class would have such property. Can we extend any of interesting theorems

on χ-boundedness to such graph classes?
Are there some graph classes not χ-bounded but has such a function?
From Tung: I have also asked this question to some people in the community (including

Paul and Louis if I remember correctly), in particular in the case where C is defined by
excluding a given induced forest (focusing on the Gyárfás–Sumner conjecture). In this special
case I suspect that f can be even taken to be a polynomial; so we could reduce polynomial
Gyárfás–Sumner to the fractional version (which seems much more amenable given the recent
work on Erdős–Hajnal).

Problem 27. Shortest cycle with modularity constraints (from Chun-Hung Liu)
Fix integers ℓ and m with 0 ≤ ℓ < m and m ⩾ 2. Can we find a shortest cycle of length ℓ

mod m in the input graph G in polynomial time?
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The cases (ℓ,m) = (1, 2) and (0, 2) correspond to the problem on finding the odd girth and
even girth, respectively, and they are known to be polynomial time solvable. For any m ⩾ 3
and nonzero ℓ, whether there is a polynomial time algorithm that simply tests the existence of
a cycle of length ℓ mod m was an old open problem; a positive answer was recently provided
by Youngho Yoo and I via providing a polynomial time algorithm to test the existence of a
subdivision of an arbitrary fixed graph with group expressable constraints. It is possible that
the algorithm for testing the existence of such a cycle can be used as a black box to find the
shortest one.

Problem 28. Near faithful-universal graphs (from Alexandra Wesolek)
A host graph H is called subgraph-universal for a family of graphs G if every graph G ∈ G

appears as a subgraph of H. For host graphs that are trees, the first result from Gol’dberg
and Livshits from 1968 shows that there exists a subgraph-universal tree for n-vertex trees on
nO(log(n)) vertices. Their construction was shown to be tight up to a polynomial factor in n
by Chung, Graham and Coppersmith. We can often find a much smaller subgraph universal
graph for n-vertex trees if we weaken the conditions of the host graph.

Let Gk(n) be the family of n-vertex graphs with no Ck-minor. Does there exists a function
f such that for every k ⩾ 1 there exists a subgraph-universal graph with no Cf(k)-minor and
nOk(1) vertices for Gk(n)?

We showed that there exists an outerplanar universal graph of treewidth 3 for the class of
trees in Bergold-Iršič-Lauff-Orthaber-Scheucher-Wesolek. It contains large cycles. In another
yet unpublished work we show that there exists a subgraph universal graph of treewidth 3k−1
and nOk(1) vertices for treewidth k graphs [1].

Problem 29. Defective colouring of blowups (from Sergey Norin)
This recent problem is due to Guo-Kang-Zwaneveld. The d-defective chromatic number

χ∆,d(G) of a graph G is the least k such that there exists a partition V1, . . . , Vk of V (G) with
∆(G|Vi) ≤ d for every 1 ≤ i ≤ k.

Conjecture (Guo, Kang, Zwaneveld): For every graph G and every integer d ⩾ 0

χ(G) = χ∆,d(G⊠Kd+1).

Update (Sergey Norin and Raphael Steiner): This conjecture is false. Further update: χ(G) ≤
2χd(G⊠Kd+1) always holds, and the constant in this estimate cannot be improved below 30/29,
not even asymptotically. It is easy to see that χ(G) ⩾ χ∆,d(G⊠Kd+1). Guo-Kang-Zwaneveld
show that the conjecture holds when χ∆,d(G⊠Kd+1) ≤ 3 (and so when χ(G) ≤ 4). The proof
is very short, but the next case appears to be significantly harder:

Question: Let G be a graph, d ⩾ 0 be an integer and let G′ = G⊠Kd+1. Suppose that there
exists a partition V1, . . . , V4 of V (G′) such that ∆(G′|Vi) ≤ d for 1 ≤ i ≤ 4. Is it true that
χ(G) ≤ 4?

Problem 30. Analogue of tree decompositions for 2-complexes (from Sergey Norin)
Let G and H be graphs. An H-decomposition of G is a function β : V (H) → 2V (G)

assigning to every vertex of H a subset of V (G) such that

• for every uv ∈ E(G) there exists t ∈ V (H) such that u, v ∈ β(t),

• for every v ∈ V (G) the subgraph of H induced by {t ∈ V (H) | v ∈ β(t)} is connected
and non-null.
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Question: What is the “right” extension of this definition to 2-dimensional simplicial com-
plexes G and H?

In particular, we seem to have a reasonable notion of a “bramble” on a 2-dimensional
simplicial complex. (See Eppstein-Hickingbotham-Merker-Norin-Seweryn-Wood.) For graphs,
brambles are dual to tree-decompositions, in a sense that a high-order bramble is an obstruction
to a low-width tree-decomposition. It would be nice to preserve this property, i.e. to have
brambles with large hitting number to be (the only?) obstructions to decompositions over a
contractible 2-complex with small overlap.

Problem 31. Linear versus Centered Chromatic Number (from Pat Morin)
A centered colouring of a graph G is a vertex colouring with the property that every

connected subgraph H of G contains a vertex whose colour is different from that of all other
vertices in H. The centered chromatic number χcen(G) of G is the minimum number k of
colours for which G has a a centered colouring using k colours. A linear colouring of G is a
vertex colouring with the property that every path P in G contains a vertex whose colour is
different from that of all other vertices in P . The linear chromatic number χlin(G) of G is the
minimum number k of colours for which G has a a linear colouring using k colours.

Obviously, χlin(G) ≤ χcen(G) (since every path in G is a connected subgraph of G). On
the other hand, Bose-Dujmović-Houdrouge-Javarsineh-Morin show that χcen(G) ≤ Õ(χ10

lin(G)).
Is it true that χcen(G) ∈ O(χlin(G))? Czerwiński-Nadara-Pilipczuk bravely conjecture that
χcen(G) ≤ 2χlin(G).

Problem 32. Some Erdős-Pósa Problems (from Kevin Hendrey)
A guest class H has the Erdös-Pósa property in a host class G if there is a function f such

that for every G ∈ G and every positive integer k, one of the following holds:

• G contains k disjoint members of H, or

• there is a set S of at most f(k) vertices hitting all members of H in G.

Famously, Erdős and Pósa proved that every graph contains either many disjoint cycles or a
small set hitting all cycles, so the class of cycles has the Erdős-Pósa property in the class of
all graphs.

A cycle C in a graph G is geodesic for all v, w ∈ V (C), the distance from v to w in C is
the same as the distance from v to w in G.

1. Do geodesic cycles have the Erdős-Pósa property in the class of all graphs?

2. Do induced cycles of length 0 mod 3 have the Erdős-Pósa property in the class of all
graphs?

3. Do pairs of linked cycles have the Erdős-Pósa property in the class of graphs embedded
in 3-space?

I believe the first two questions are due to O-joung Kwon, and the third is due to Jinha
Kim.

Some Remarks on Kevin’s #2 from Linda

• A weaker version of problem 2 coming from of O-Joung Kwon, Eunjung Kim and
Tony Hyunh is stated as Problem 8 in https://web.math.princeton.edu/~tunghn/
2022bbda.pdf
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• Problem 2 is from Jihna Kim who was motivated by concerns in topological combinatorics
(graphs with no induced cycle of length 0 mod 3 have nice properties [9, 6]). However
already weaker versions are enough for her application: see the MATRIX Workshop 2023
Open Problem list Problem 18 (and also in the comments) https://dimag.ibs.re.kr/
home/cook/open-problems/. If you are interested in 2, I would strongly recommend
contacting her :)

Problem 33. Minimal monotone class with unbounded chromatic number (from Bar-
tosz Walczak)

A class of graphs G is monotone if it is closed under (non-induced) subgraphs. Does there
exist a monotone class G of graphs with unbounded chromatic number which is minimal with
that property, that is, for every proper monotone subclass H of G, the graphs in H have
bounded chromatic number?

A negative answer follows from the well-known conjecture of Erdős and Hajnal which
asserts that for any c and g there is c′ such that every graph with chromatic number at least
c′ contains a subgraph with girth at least g and chromatic number at least c. The latter
conjecture is known to be true for g = 4 by a result due to Rödl, but it is open for g ≥ 5.
A weaker variant of the conjecture with “girth” replaced by “odd girth”, stated by Mohar and
Wu, also implies a negative answer, but it is also open. By Rödl’s result, it suffices to focus
on classes of graphs G that are triangle-free.

Problem 34. Fractional degree list packing (from Evelyne Smith-Roberge)
This is a problem of Cambie, Cames van Batenburg, Davies, and Kang that I like (it is

Problem 29 in [3]). First, some background: given a graph G with list assignment L where
|L(v)| = k for all v ∈ V (G), an L-packing is a list of k L-colourings where for each vertex
v and each colour c ∈ L(v), v gets assigned colour c in exactly one of the colourings in our
list. The smallest such k such that an L-packing exists no matter L is the list packing number
of G. If our lists are different sizes, we cannot ask for an L-packing, but we can still ask for
something analogous: a probability distribution on the L-colourings of G where for each v and
each c ∈ L(v), the probability that v gets colour c is 1

|L(v)| . This is a fractional L-packing.
Consider now a graph G with list assignment L where |L(v)| = deg(v) for all v ∈ V (G)

(call this a degree list assignment). The question is: if G has a fractional L-packing no matter
the degree list assignment L, what does G look like? (I don’t know of any examples of such
G, so as far as I know it is possible the answer is G does not exist. (ESR: actually there are
already some even in the first paper where list packing is introduced, but the paper doesn’t
talk about this degree list assignment so I did not think of them. Apologies!))

Raphael Steiner: I can show that all bipartite graphs with minimum degree at least C log n
have this property. So these graphs do exist and there are in fact many.

(ESR: Woohoo! Thanks. I figured there must be some such graphs, but I somehow hadn’t
considered looking at graphs whose list chromatic number was way below what the degree
list assignment would give) RS: A generalization of the above argument shows that for some
absolute constant C > 0 the following holds: For every graph G on n vertices, we have
χ•
ℓ (G) ≤ Cχ(G) log n, where the first quantity is the fractional list packing number. (This is

also implied by a result in the paper Packing List-Colourings; the characterization is the goal!
Again, I apologize – my parenthetical comment above was definitely known previously, and
implied by results I definitely should have thought of when writing this before)

NB: In the same paper linked above, Cambie et al. show that if we work instead with list
assignments L where |L(v)| = deg(v) + 1 for all v, every graph is fractionally packable.
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A helpful, related question: suppose G is a 2-connected graph. Suppose I can precolour
any single vertex in G any way I like no matter the degree list assignment L, and always have
that precolouring extend to a colouring of G. What does G look like?

We could also ask the same two questions for correspondence colouring (DP-colouring).
It would be extra interesting if the correspondence colouring questions had different answers
than the list colouring questions.

Problem 35. We are still interested in 4-critical t-perfect graphs (communicated by
Linda Cook, joint with Maria, James, Jane and Sang-il)

This was presented other workshops this year so I don’t think we present it again, but for
those who weren’t there here is the question.

We recently showed that t-perfect graphs 1 have chromatic number at most 200,000. It is
open whether they are 4-colorable. There are only two known minimal examples of 4-critical
t-perfect graphs (due to Paul Seymour, Monique Laurent and due to Yohann Benchetrit) and
they are both small graphs. This seems silly, and we would like more (ideally an infinite list
of them). See [5] for more background on the problems.
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