A Bound on χ for Graphs in $Forb^*(bull)$

Irena Penev

Abstract: Given a graph H, Forb(H) is the class of all graphs that do not contain H as an induced subgraph, and $Forb^*(H)$ is the class of all graphs that do not contain any subdivision of H as an induced subgraph. A class \mathcal{G} of graphs is χ -bound if there exists a function $f : \mathbb{N} \to \mathbb{N}$ (called a χ -binding function for \mathcal{G}) such that for all $G \in \mathcal{G}$, $\chi(G) \leq f(\omega(G))$. χ -bound classes of graphs were introduced in 1987 by András Gyárfás as a generalization of the class of perfect graphs. Gyárfás conjectured that for any tree T, the class Forb(T) is χ -bound. In 1997, Alex Scott proved a 'topological' version of this conjecture: for any tree T, the class $Forb^*(T)$ is χ -bound; he then conjectured that for every graph H, the class $Forb^*(H)$ is χ -bound.

The *bull* is the graph consisting of a triangle and two disjoint pendant edges, and an (m,n)-bull is the graph obtained from the bull by subdividing one pendant edge m-1 times and the other n-1 times. In this talk, we present proofs of two special cases of Scott's conjecture: we first outline a proof of the fact that the class $Forb^*(bull)$ is χ -bound by a quadratic function, and then we discuss a proof that for all m and n, the class $Forb^*((m, n) - bull)$ is χ -bound by an exponential function.

Joint work with Maria Chudnovsky, Alex Scott, and Nicolas Trotignon